Deep Reinforcement Learning of

Video Games

Jos van de Wolfshaar
s2098407
October 13, 2017

MSc. Project
Artificial Intelligence
University of Groningen, The Netherlands

Supervisors
Dr. M.A. (Marco) Wiering
Prof. dr. L.R.B. (Lambert) Schomaker

ALICE Institute
University of Groningen

Nijenborgh 9, 9747 AG, Groningen, The Netherlands

univerSitY Of faculty of science
groningen and engineering

artificial
intelligence

Contents

Introduction

1.1 Deep reinforcement learning L oo

1.2 Research questions
1.2.1 Architectural neural network design
1.2.2 Prototype based reinforcement learning

Theoretical Background

Deep Learning

2.1 Multi-layer perceptrons e
2.2 Optimizing neural networks L oL
2.2.1 Gradient descent oL
2.2.2 Stochastic gradient descent Lo
223 RMSProp
2.2.4 Backpropagationo
2.3 Convolutional neural networks 0oL
2.3.1 The convolutional layer
2.3.2 Pooling
2.3.3 The full architecture
2.4 Activation functions Lo
Reinforcement Learning
3.1 General definitions
3.2 Reinforcement learning algorithms
3.2.1 Monte Carlo evaluation and control
3.2.2 Temporal difference learning L.
3.3 Function approximation L oL
3.3.1 Supervised learningo
3.3.2 Policy gradient methods oL oo
State-of-the-Art Deep Reinforcement Learning
4.1 Deep Q-learning in the arcade learning environment
4.2 Reducing overestimations and variance oL
4.3 Prioritized replay memory oL
4.4 Adaptive normalization of targets
4.5 Massive parallelization o oL
4.6 A dueling network architecture L.
4.7 Encouraging exploration oL oL Lo
4.8 Optimality tightening L L
4.9 Asynchronous methods L
4.10 Policy gradient Q-learning
4.11 Episodic control Lo

11
11
13
13
13
14
14
15

II Experiments

5 General Implementation

5.1 Asynchronous advantage actor-critic o000
5.2 Deep neural networko Lo

5.2.1 Neural network architecture

5.2.2 Optimization
5.3 Arcade environment interface Lo L.
5.4 A simple game for fast experimenting
5.5 Default hyperparameterso o

6 Neural Designs for Deep Reinforcement Learning
6.1 Local weight sharing L oo
6.1.1 Local weight sharing layer
6.1.2 LWS architectures L
6.1.3 Performance analysison Catch
6.2 Spatial softmax
6.2.1 Spatial softmax architectures,
6.3 Hyperparameter sensitivity Lo oL
6.3.1 Gradient clipping Lo
6.3.2 Activation functions L oL o
6.3.3 Weight initializations oo
6.4 Experiments on arcade games oo
6.4.1 Value loss factoro o

7 Prototype Based Deep Reinforcement Learning
7.1 Learning policy quantization
7.1.1 Useful ideas from LVQo oo
7.1.2 The learning policy quantization algorithm
7.2 Variationson LPQ o
7.2.1 Distance functions
7.2.2 Multiple action prototypeso
7.2.3 Sizing the prototype competition L.
7.2.4 Softmax temperature. o
725 GLPQwvs. LPQ o o
7.3 Experiments on arcade gameso

8 Concluding Remarks and Discussion
Appendices

A Supplementary Material Neural Architecture Design
Al Experiments
A.1.1 Gradient norm clipping
A.1.2 Adam as a gradient descent optimizer
A.1.3 Bias initialization

B Gender Classification with Local Weight Sharing Layers

Supplementary Material Learning Policy Quantization
C.1 Prototype gradients
C.2 Supplementary experimentso

24

25
25
25
26
27
27
27
28

29
29
30
31
32
32
34
35
35
35
37
39
39

43
43
43
44
46
46
47
47
49
52
52

56
58

59
59
59
60
61

62

Abstract

The ability to learn is arguably the most crucial aspect of human intelligence. In reinforce-
ment learning, we attempt to formalize a certain type of learning that is based on rewards
and penalties. These supervisory signals should guide an agent to learn optimal behavior.
In particular, this research focuses on deep reinforcement learning, where the agent should
learn to play video games solely from pixel input.

This thesis contributes to deep reinforcement learning research by assessing several vari-
ations to an existing state-of-the-art algorithm. First, we provide an extensive analysis on
how the design decisions of the agent’s deep neural network affect its performance. Second,
we introduce a novel neural layer that allows for local specializations in the visual input
of the agents, as opposed to the global weight sharing that occurs in convolutional layers.
Third, we introduce a ‘what’ and ‘where’ neural network architecture, inspired by the infor-
mation flow of the visual cortical areas in the human brain. Finally, we explore prototype
based deep reinforcement learning by introducing a novel output layer that is largely in-
spired by learning vector quantization. In a subset of our experiments, we show substantial
improvements compared to existing alternatives.

Chapter 1

Introduction

Learning is a crucial aspect of intelligence and it is this phenomenon that we try to translate
into formal mathematical rules when we practice machine learning research. Formalizing
learning increases our understanding and admiration of human intelligence, as we can more
accurately argue what are crucial aspects and limitations of learning machines and organ-
isms. Machine learning (ML) is now recognized as a field of science for a handful of decades.
A vast range of different approaches and problems exist within ML. Roughly speaking, we
can divide machine learning into three main themes: supervised learning, unsupervised learn-
ing and reinforcement learning. In the remainder of this section, we briefly introduce the
aforementioned themes in machine learning. In Section 1.1 we narrow down to the main
research topic addressed in this thesis, known as deep reinforcement learning. Section 1.2
lists the research questions that will be addressed in the remaining chapters of this thesis.

In supervised learning (SL), we are concerned with the pathological situation where we
explicitly tell a machine learning algorithm what the correct response y is to some stimuli
x. For example, we could build an SL algorithm that can recognize handwritten digits (y)
from small images (x). For classification problems, y is a class label and in the case of
handwritten digit recognition it is simply y € {0,1,...,9}. Many other forms of supervised
learning have been studied and they all have a major factor in common: human-provided
labeling. This consequently restricts SL to deal with problems that are well-defined in the
sense that it is straightforward to separate different responses and to reliably define the
according labels. Although a great deal of human learning is to a certain extent supervised,
we are also capable of learning autonomously and without being told ezactly what would
have been the correct response.

Unsupervised learning (UL) focuses on problems in which we try to reveal the underly-
ing structure of data. Of course, given the means for measuring or simulating real world
phenomena with satisfactory precision, we can represent almost any entity with data. Once
represented as data, for some of these UL algorithms they become vectors a; that populate
some input space X C R™. UL algorithms try to extract high-level notions about the data
that are useful for e.g. exploration, visualization, feature selection and many other appli-
cations. Most UL algorithms achieve this by exploiting the relations between distances in
X. Different kinds of tasks require different ways of dealing with X and the corresponding
distance measures. Note that in UL, the algorithms are designed to solve problems that do
not make use of explicit labeling. Instead, they are used to explain the data with a lower
complexity than the raw data itself, preferably such that it fosters our understanding of the
phenomenon that the data represents.

Lastly, reinforcement learning (RL) could be considered to operate between SL and UL
in terms of supervision. In RL, we do not tell the algorithm explicitly what to do, we rather
let it try some specific (sequences of) responses and provide feedback in terms of a reward
or penalty. Note that being rewarded or penalized — as in RL — is a different kind of signal
than being told exactly — as in SL — what the correct response should have been. So RL
algorithms specialize in problems that can be solved by a trial-and-error process. For many

tasks that we deal with in the real world, we cannot formally describe a desired response or
decision at every moment in time. This is partly due to the complexity of the decisions that
can be made, but also because of the fact that we simply have limited resources in terms of
time and equipment to do so. The existence of RL alleviates this burden and allows machines
to solve complex tasks such as elevator control (Crites and Barto, 1998), traffic light control
(Wiering, 2000), playing board games (Tesauro, 1995; Silver et al., 2016), playing video
games (Mnih et al., 2013), controlling robotic arms (Levine et al., 2016), designing neural
network architectures (Zoph and Le, 2017) and many more. In all of these tasks, it is difficult
to specify time- and order-dependent desired responses, but it is relatively straightforward
to define what are desirable states for the system to be in.

In general, allowing an algorithm to solve a problem by means of reinforcement learning
instead of SL, requires considerably less effort in terms of supervision. The central ideas of
reinforcement learning are further discussed in Chapter 3.

1.1 Deep reinforcement learning

Ultimately, machine learning algorithms should be relying on seemingly few assumptions,
design and preprocessing effort. To reduce design and preprocessing effort, we can focus
our attention on the improvement of existing methods and introduction of algorithms that
consider the inputs in a similar way as we do ourselves. Since our eyes merely require
photons, and our ears merely require a sound source and a medium we can attempt to
develop algorithms that start at the same point of this processing pipeline. Moreover,
artificial intelligence research has shown that taking inspiration from biology — perhaps at
different scales — can lead to the inception of powerful machine learning algorithms.

Artificial neural networks are a popular example of biologically inspired machine learning
models. In these networks, artificial neurons process their input by applying trivial mathe-
matical operations. When a large number of these neurons are combined and organized in a
layer-wise fashion, they can exhibit state-of-the-art performance in several machine learning
domains. Using many layers of artificial neurons is referred to as deep learning (Goodfellow
et al., 2016; Schmidhuber, 2015; LeCun et al., 2015). Deep learning has become increasingly
more prominent since the last decade and is now presumably the most practiced field within
machine learning research. A more technical discussion of deep learning in the context of
this thesis is provided in Chapter 2.

Although the majority of deep learning applications and research focuses on supervised
learning, deep learning for reinforcement learning problems has also been explored relatively
recently. The combination of the two is more commonly referred to as deep reinforcement
learning (DRL). The use of DRL for old arcade games (Mnih et al., 2013) and the ancient
game of Go (Silver et al., 2016) are well-known examples within the DRL community. Both
reinforcement learning and deep learning are directions in machine learning that are highly
generic in principle. Therefore, advancing the unification of these two paradigms is an
appealing focus for further research and likely to advance the implementation of systems
that ultimately contribute to our society.

1.2 Research questions

This section states the research questions so that, once answered, the whole contributes to
the field of machine learning and reinforcement learning, in particular deep reinforcement
learning.

1.2.1 Architectural neural network design

One of the merits of DRL is that — in principle — little feature engineering is necessary.
However, the designer of the algorithm still has many important decisions to make. Some
of these decisions include how many layers should be used (this is partly an efficiency and

performance trade-off), what kind of layers should be used, how many neurons should a
layer have, what kind of activation functions are used etc. Although the available literature
mostly reports outcomes of research in which architectural neural network design decisions
were made successfully, few if any report design decisions that were unsuccessful. Moreover,
given the popularity of DL research, many novel ideas have been introduced over the last
few years that are worth exploring. The first research questions that come to mind are:

1. To what extent do architectural design decisions and hyperparameters of an agent’s
deep neural network affect the resulting performance?

(a) How sensitive are these algorithms to variations?
(b

) What are well performing architectures?
(c) Are there any ‘brittle’ hyperparameters?
)

(d) Can spatial consistency in the visual input of video games be exploited?

The above questions will be addressed in Chapter 6. Question (d) will be addressed by
proposing a new neural network layer that can exploit spatial consistency, meaning that it
can locally specialize for certain features.

1.2.2 Prototype based reinforcement learning

On a coarse grained level, decision making as done by RL agents can be related to classifica-
tion. Usually, classification is solved through supervised learning. One particular class of SL
algorithms is known as nearest prototype classification (NPC). The most prominent NPC
algorithm is learning vector quantization (LVQ) (Kohonen, 1990; Kohonen et al., 1996). As
opposed to linearly separating different kinds of inputs in the final layer of a neural network,
LVQ chooses to place prototype vectors in the input space X. Roughly speaking, a new
input « is then classified by looking at the nearest prototypes in X'. This particular classifi-
cation scheme could in principle be used for reinforcement learning with some modifications.
More specifically, we will look at how it can be used to frame the agent’s decision making
as a learning vector quantization problem. In that case the prototypes will be placed in a
feature space H C R™ in which we compare the prototypes to nearby hidden activations h of
a deep neural network. We will address the following research question with corresponding
subquestions:

2. Is prototype based learning suited for deep reinforcement learning?
(a) How does it relate to existing LVQ variants?
(b

) What are important hyperparameters?
(¢) What are proper distance measures for H?
)

(d) How does it compare to existing approaches for DRL in terms of performance?

To answer these questions, we propose a novel reinforcement learning algorithm in Chapter 7
which is largely inspired by existing LVQ approaches. Our algorithm can be varied in many
aspects and we provide the corresponding experiments to advocate certain design decisions.

Part 1

Theoretical Background

Chapter 2

Deep Learning

Deep learning (DL) encompasses neural networks with many-layered computations. These
‘layers of computation’ might be hidden layers in an ordinary fully connected multi-layer
perceptron (MLP), but they can also correspond to repetitive computations in recurrent
neural networks (RNNs). In the first half of this decade, the machine learning community
has witnessed significant advances in optimizing deep neural networks (DNNs). There are
a number of factors that have allowed this field of research to gain such momentum. Nowa-
days, large labeled datasets are available that are typically required for high dimensional
inputs with large neural networks for them to generalize well. Other than that, we have
witnessed an increase in computing power. Furthermore, there have been some technical
advances that allowed the gradients to be sufficiently large and stable to train deep networks.
The most prominent successes to date remain in the field of computer vision with the use of
convolutional neural networks (CNNs). As of 2012, the state-of-the-art systems in computer
vision tasks ranging from classification, segmentation and localization have been dominated
by these networks (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; Szegedy et al.,
2015; Srivastava et al., 2015; He et al., 2015a; Huang et al., 2016). Another highly influenc-
ing development is that of the advanced RNNs such as long short-term memory (LSTM)
networks (Hochreiter and Schmidhuber, 1997). It is important to stress that most of this
research is about supervised learning. Hence, these models consider static learning problems
in the sense that they do not involve some artificially intelligent agent that interacts with
its environment.

This chapter will cover the deep learning models that are most relevant to a reinforcement
learning setting. First, we discuss a basic neural network architecture in Section 2.1. Then
we discuss how to train such models in Section 2.2. Next, CNNs are explained in Section
2.3. We emphasize that our account of deep learning is by no means complete. This is
partially for brevity and because of the fact that most of our models only require the use
of a relatively small subset of ideas from DL. There exist excellent surveys on DL that are
worth consulting for further study (Schmidhuber, 2015; LeCun et al., 2015) and the recently
published textbook by Goodfellow et al. (2016).

2.1 Multi-layer perceptrons

The fundamental unit in deep learning models is the perceptron. The perceptron is a greatly
simplified artificial neuron which can perform a trivial mathematical operation. A percep-
tron linearly combines a set of incoming connections from inputs, which can be provided
externally or through the output of other perceptrons. If the input is & € R™, the output
of a perceptron is f(w -« + b) where f(-) is called the activation function, the elements of
w € R" are the weights that represent the connection strengths for the different inputs in
x and b € R is the bias.

One can combine such perceptrons in multiple layers to make multi-layer perceptrons

Input Hidden Output
layer layer layer

— f(x;0)

Figure 2.1: Basic multi-layer perceptron (MLP).

(MLPs) as depicted in Figure 2.1. The figure shows a feedforward neural network in which
there are no connections between the neurons in the same layer and no connections going
in the direction of the input layer. The connections are only directed towards the output.
In such an approximator, the adjustable parameters are the connections between the layers.
The output of this MLP can be used for different kinds of problems such as regression
or classification problems. The goal is to find the proper setting of these parameters to
maximize the task performance. The next section discusses how this goal can be achieved.

2.2 Optimizing neural networks

This section elaborates on algorithms that are used for training neural networks. We merely
discuss approaches that are directly related to our experiments in Part II. The algorithms
that we discuss here are a form of gradient descent.

2.2.1 Gradient descent

Gradient descent was first formulated by Cauchy (1847). Gradient descent is an iterative
method to find the (local) minimum of a function. For neural networks and many other
machine learning method the function to minimize is often referred to as the loss function
or cost function. This function expresses the error of the current approximation to a target
distribution. In this text, loss functions are denoted as £(, y; @). The semicolon emphasizes
the fact that the role of @ and y are conceptually different from the role of 8. The vector
x denotes the model’s input and y denotes the model’s target (i.e. the desired output).
The function should be minimized with respect to 8. To accomplish this, gradient decent
methods consider the gradient of the function to find the local direction of steepest descent
in the parameter space given by 0. This boils down to iteratively updating @ as follows:

0 « 0 —ng,, (2.1)

where
gt = v9£($7 y7 0)7 (22)

and 1 € (0,1) is the learning rate which characterizes the magnitude of the updates with
respect to the gradients.

The loss function L(z,y;0) should characterize the error of the model with respect to
the task it is trained for. For the sake of simplicity, we restrict ourselves to the case of

regression, where the loss function is usually of the form:
1
L(w.y:0) =5) (fz'):0) —y)?, (2.3)
i
where N is the number of examples in the data set and f(x;0) is the model’s prediction
and % is added for mathematical convenience. Evaluating this term repetitively can become
computationally expensive in case of large data sets. Moreover, minimizing this term for a
train set will not guarantee adequate performance on some unseen test set. Ultimately, the
model should be able to generalize over unseen data. To ensure stability and convergence
during training, the learning rate should generally not exceed a small non-zero constant e.g.
1073, This can make learning slow, particularly if every update involves computing the
entire sum as in Equation 2.3.

2.2.2 Stochastic gradient descent
SGD approzimates the error gradient by only considering a subset of the training data:

1 M

L(w.y:0) =5 > (f():0) —y)?, (24)

%

where M < N. Originally, the case in which M = 1 was referred to as SGD. Nowadays, when
1 < M < N, it is common to refer to the method as being stochastic batch gradient descent
or just SGD. The method is stochastic in the sense that the error gradient is approximated
instead of being fully evaluated and in the sense that examples are considered in a random
order per training epoch. By doing so, the algorithm no longer follows the exact shape of
the error surface. It is important to mention that the examples are randomly selected. Note
that the method is significantly more efficient, as we only need to evaluate a subset of the
data for each update of 6.

2.2.3 RMSprop

The RMSprop algorithm (Tieleman and Hinton, 2012) adapts its gradient updates according
to the root of a running average of the square gradient. This means that the gradient updates
are given by:

m — pm + (1 - p)g7, (2.5)
g

vm Fe

Where m is the running average of the squared gradient, p is the corresponding decay
parameter, g, is the gradient at time ¢ and € is the fuzz factor that is required for numerical
stability. Note that all operations in Equations (2.5) and (2.6) are element-wise. Such
adaptive optimizers have become a default choice for optimizing DNNs as they outperform
carefully tuned alternatives that use simple SGD.

There are several alternatives to RMSprop that use adaptive learning rates that are
omitted for the sake of brevity and because they do not appear elsewhere in this thesis such
as Adam (Kingma and Ba, 2014), AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012),
YellowFin (Zhang et al., 2017) or AdaSecant (Gulcehre et al., 2014, 2017).

Gt <— et—l —n

2.2.4 Backpropagation

The many layers of computation in neural networks means that we can rewrite most gradients
as a product of many differentiated terms by means of applying the chain rule. Moreover,
many terms reappear in the gradients of different weight matrices. Therefore, a lot of
computation can be spared by creating an index of already evaluated expressions that might

=
Y

i

Figure 2.2: Visualization of feature hierarchy that is implicitly learned in a convolutional
neural network. Image is taken from (Zeiler and Fergus, 2014).

be reused elsewhere. This is the idea behind the backpropagation algorithm (Rumelhart
et al., 1986). For a modern discussion about the implementation of such an algorithm, see
chapter 6, section 6.5 of (Goodfellow et al., 2016).

2.3 Convolutional neural networks

Adding many layers can be useful for tackling highly nonlinear problems such as image
recognition. Naively stacking layers of neurons does not automatically yield good perfor-
mance because of potential overfitting. Overfitting occurs when the model becomes too
flexible such that the model also describes noise patterns that are not representative of the
underlying data distribution, which eventually leads to impeded performance. Specialized
architectures such as convolutional neural networks (CNNs) enable many layered compu-
tations with proper convergence guarantees and high accuracies. The first description of a
modern CNN was posed by LeCun (1989), though many texts discussing the first convolu-
tional networks refer to (LeCun et al., 1998). Such CNNs are related to the Neocognitron
architecture (Fukushima, 1980), but the Neocognitron was optimized with a layer-wise un-
supervised clustering algorithm. Rather than having fully connected layers in which each
hidden neuron is connected to all neurons in the preceding layer, CNNs have layers in which
neurons are locally connected. This is similar to how the mammalian brain is organized
to process visual stimuli (Hubel and Wiesel, 1962, 1959, 1968). Since the most prominent
applications of CNNs are within the field of computer-vision, we will discuss their properties
in the context of image recognition. It is important to realize that these properties can also
be true for other domains (e.g. time sequences, video data or tactile sensor data), but that
they need to be slightly altered to be applicable.

2.3.1 The convolutional layer

From an analytical perspective, convolutional layers (CLs) employ convolution operations
instead of a more general matrix-vector product that is used in fully connected layers. There
are a number of motivations for using convolutions. First of all, grid-like data such as images
often have valuable information that can be extracted locally. A few examples of such local
patterns are edges, corners and color transitions. In order to detect these features, we can
restrict a hidden neuron to be only connected to a subregion of the image. By doing so,
we greatly reduce the amount of parameters of the network with respect to the number of
hidden neurons. This reduces the risk of overfitting, as we force the learned representation
to be constituted of smaller local features instead of features that are learned globally.
Moreover, for image data it is evident that these features can often be detected at almost
any position of the image. Hence, it makes sense to share the weights of the neurons in
a convolutional layers across the input. This weight sharing additionally reduces the risk
of overfitting by further reducing the amount of parameters. Thirdly, using convolutions
instead of matrix-vector products is considerably more efficient, especially when computed
on specialized hardware such as GPUs or tensor processing units (Jouppi et al., 2017). This
speeds up the forward and backward passes, yielding faster training and evaluating.

A CL is typically parameterized by a 4D-tensor Wy, .. ; ; in which k is the kernel index, c
is the channel index and 7 and j are the row and column indexes of the image, respectively.
Channels are sometimes referred to as feature maps. The input of a CL is also represented as
a 4D-tensor X; . ; ; with a minibatch index [and similar indices for the remaining dimensions.
The output of a CL is also a 4D-tensor Y; . ; ; with similar indexing. Usually, convolutions
are summed across all channels for each position, which is why a single kernel is represented
as a 3D-tensor. The first kernel Wy . ; ; is used for computing the first feature map of the
output tensor Y, g ; ;, the second kernel is used for the second feature map etc. The output
tensor still inherits a grid-like structure. Therefore, multiple convolutional layers can be
stacked to form deep CNNs.

Interestingly, the representations that are learned by these hidden CLs automatically
reflect a hierarchical breakdown of the features that are commonly present in images (Zeiler
and Fergus, 2014). A visualization of this hierarchy can be found in Figure 2.2. However,
this representational view is challenged by the fact that highway networks (Srivastava et al.,
2015) and residual networks (He et al., 2015a) are insensitive to removing (Srivastava et al.,
2015) or shuffling layers (Veit et al., 2016). In (Greff et al., 2016) it is argued that the
insensitivity could be explained better by imposing an unrolled iterative estimation view.
In the latter view, the networks consist of stages in which each state consists of blocks
that successively refine the representation of earlier layers. It is also shown that under
the corresponding assumptions, residual networks and highway networks can be derived
naturally.

2.3.2 Pooling

Another operation that is commonly used in convolutional neural networks is pooling. A
pooling operation downsamples the representation in a layer. There are different approaches
to pooling such as max-pooling, mean-pooling, L2-norm pooling etc. (Zhou et al., 1988;
Goodfellow et al., 2016). The most common method is max-pooling in which the represen-
tation is downsampled along the grid-directions of the input. This is accomplished by taking
the maximum activation of the output tensor at local k x k patches. By using pooling, the
network becomes less sensitive to small changes of the input such as translation and slight
rotations.

However, in principle, pooling operations could make the whole neglect particularly
important spatial details. For this reason, pooling operations are avoided when considering
problems such as robotic control (Levine et al., 2016) or when learning to play video games
based on pixel input (Mnih et al., 2013, 2015).

2.3.3 The full architecture

By combining multiple convolutions and pooling operations, deep CNNs can be efficiently
trained on large datasets yielding exceptional performance on a wide variety of tasks. Usu-
ally, the last convolutional layer is followed by a few fully connected layers and an output
layer. A fully connected layer is just a regular MLP structure in which each neuron is con-
nected to all neurons in the preceding layer. Adding such layers to convolutional neural
networks allows for non-local interactions of the features from the convolutional stream.

2.4 Activation functions

As stated before, neural networks use activation functions. These activation functions are
often nonlinear such as a hyperbolic tangent function f = tanh, or a sigmoid function
f(z) =1/(1 + exp(—x)). A particularly influential idea was the introduction of the ReLU
nonlinearity which is defined as f(z) = max{0,z} (Nair and Hinton, 2010). The ReLU
function was designed to overcome the vanishing gradient issue which is caused by the many
multiplications that arise in DNNs (Pascanu et al., 2013). A possible cause for gradients
to vanish is the fact that activation functions have derivatives that are less than 1. The
ReLU’s derivative is defined as 1 if x > 0 and is 0 otherwise. This fosters the propagation
of gradients to layers that are close to the input layer. This eventually leads to improved
performance.

Since then, the design of a proper activation function has been an actively pursued
question, giving rise to many alternatives, such as parametric ReLUs (He et al., 2015b),
exponential linear units (Clevert et al., 2015) and scaled exponential linear units (Klambauer
et al., 2017).

10

Chapter 3

Reinforcement Learning

Deep reinforcement learning involves the integration of DNNs into the realm of reinforcement
learning (RL). In reinforcement learning problems, an agent is expected to learn to behave
optimally given its environment. The environment occasionally provides the agent with
rewards which the agent can use to guide its learning process and behavior. Section 3.1 lists
the general definitions that we use throughout the remainder of this thesis. The definitions
are taken from (Sutton and Barto, 2017). For brevity and clarity, we restrict ourselves
to discrete time, discrete action spaces and discrete state spaces. Each of these might
individually be altered to its continuous counterpart, but we refrain from further elaboration
given that our domain of experiments only requires the discrete definitions.

3.1 General definitions

Formally, we define the following:

State space The state space S is a finite set of states or a continuous state space. A state
is usually the part of the world that the agent observes. In the case of video games, the
state space might be given by all different pixel inputs that could be encountered during a
game.

Action space The action space A is a finite set of actions or a continuous action space.
These are the actions that the agent can take. For video games, this might correspond to
the joystick inputs that are possible. The joystick could in principle be controlled by an
actual robot, but it might also be controlled programmatically.

Model An environment’s model describes the exact transitions between states and might
be conditioned by the agent’s actions. Mathematically, this might be written as PZ, =
P[S¢+1 = 8|St = s, Ay = a]. For many problems, the model is not readily available. We will

come back to this issue later.

Reward function The reward function R describes the rewards that are associated with
a certain state or a certain state-action pair. Generally speaking, positive rewards reinforce
the agent to act in a certain way, while negative rewards should discourage the agent to do
so. The magnitude of the reward can express the relative importance of different reinforcing
or punishing signals.

Return The return G; is the total discounted reward from time-step t:

oo
Gi=Rip1+7vRisa+... = > V" Riria, (3.1)
k=0

11

where R;y1 is the reward at time ¢ and « is the discount factor which is explained next.

Discount factor The discount factor v € [0,1] describes how future rewards are dis-
counted. In the extreme case +y is either 0 or 1. When v = 0, the agent considers only the
immediate reward, which is also referred to as a strictly myopic agent. When v = 1 the
agent requires the problem to be finite in time, since otherwise the rewards might infinitely
accumulate. There are several reasons to have v < 1. Firstly, it guarantees the fact that
rewards cannot infinitely accumulate, thus avoiding numerical overflow and allowing for eas-
ier mathematical analysis. Second, many problems in RL are solved reasonably well when
one considers only rewards in the near future. Moreover, the variance of the empirical re-
turns will be lower than the undiscounted case, allowing for more stable training of function
approximators.

Policy The policy m of the agent defines how the agent chooses its actions given the
observed states. It fully defines the behavior of an agent:

m(als) =PlA; =a | S; = 5]

Ultimately, the agent should acquire the optimal policy. The optimal policy is the policy
that maximizes cumulative rewards (the return).

Markov decision process A reinforcement learning task that satisfies the Markov prop-
erty is called a Markov decision process (MDP). A system has the Markov property if the
probability distribution of the next state given some current state is fully determined by just
the current state and not by any other state i.e. P[S¢i1 | S, Aty St—1,A4¢-1,...,50,Ag] =
P[Stt+1 | St, At]. An MDP is defined by the tuple (S, A, P, R,~). Hence the probability tran-
sition matrix as introduced above can be defined as PZ, = P[Siy1 =5 | S, = s, A, = a].

Value functions We often use value functions to solve reinforcement learning problems.
The state-value function V;(s) tells us the expected cumulative reward for being in state
s and following policy w. The state-action value function Q,(s,a) gives us the expected
cumulative reward for being in state s, taking action a and then following .

In an MDP, V. (s) is defined as

> A Riskn

k=0

Vﬂ-(s) =]Eﬂ-[Gt | St = S] =]Eﬂ-

St = S] s (32)

where E.[] denotes the expected value of a random variable under the policy w. The
definition of Q(s,a) for an MDP is as follows:

oo

k
> Y Rijri
k=0

Qr(s,a) =E,[G¢ | St =s,A; =a] =E, S;=s5,4;=a (3.3)

Optimality In reinforcement learning, the agent needs to learn optimal behavior. If we
consider a policy 7 and a policy 7/, we have that 7 > 7’ if and only if V,(s) > V,/(s) for
all s € S§. Since there is always at least one policy that is greater than or equal of value
compared to all other policies, we can say that this policy is optimal, which we denote by
7. It is evident that the corresponding value functions need to maximize their values over
all policies, meaning:

Vi(s) = max Ve (s), (3.4)
Q«(s,a) = mfuxQ,r(s,a), (3.5)

are the optimal state-value function and the optimal state-action value function, respectively.

12

3.2 Reinforcement learning algorithms

In order to find the optimal policy, one can use a range of methods. For example, the optimal
policy can be found by finding the optimal value function. The simplest of these methods
relies on policy evaluation and policy iteration. In policy evaluation, we want to know V. (s)
given 7 for all s € §. Once we have determined V. (s), we can improve our current policy
based on the new estimated values such that V;/(s) > Vi(s) for at least some s € S.

In practice, policy iteration is rarely suitable for the RL problem at hand. This is because
either the model is unavailable, or the state space S is simply too large for the algorithm to
find the optimal solution in reasonable time.

The remainder of this section discusses algorithms that can be applied in a model-free
manner. In many cases an environment model is not available. This is either because the true
dynamics are unknown or it is too costly to implement. Moreover, model-free algorithms
constitute a more general approach. Hence, the developments that can be made toward
improving model-free algorithms have the potential to be applied to more problems than
improvements that are made on model-based algorithms. Our experiments are restricted
to model-free approaches, which is why further discussion of model-based algorithms is not
included. The algorithms discussed below are basic and central to RL. The specific notation
and naming conventions are taken from (Sutton and Barto, 2017), which can be consulted for
further study. For a more detailed overview of relatively recent RL algorithms, see (Wiering
and Van Otterlo, 2012).

3.2.1 Monte Carlo evaluation and control

The first step towards a more practical approach is to omit the environment model and
learn from actual experience instead. The simplest of these methods is the Monte Carlo
evaluation algorithm. In this algorithm, the agent obtains an estimate of a value function
by generating a so-called episode that starts at some state Sy and ends in terminal state St.
For every state (or state-action pair) that was part of this episode, we obtain an empirical
return. This return is then used to update the estimates of the value function.

One can express a Monte Carlo update mathematically:

V(St) = V(S¢) + a(Gy — V(Sy)), (3.6)

where « € [0,1] is a step-size parameter, often referred to as the learning rate. Alternatively,
we can use Monte Carlo control. Since we do not have an environment model now, we
cannot greedily act with respect to solely V(s). We need to act greedily with respect to
Q(s,a). However, if we behave purely greedily by always taking the action that maximizes
our expected reward, we are at risk of not exploring the parts of the state space that are
potentially much better. A straightforward trick is to act e-greedily, which means that with
a probability of ¢ € (0, 1] we choose a random action.

3.2.2 Temporal difference learning

Instead of generating a full episode from any state S; for a single update, one can take only
a single step and use the estimated value of the next state V' (S¢+1) to update V(S¢). This
is the idea behind the TD(0) algorithm. Its update rule is:

V(St) = V(Si) + a(Riy1 + vV (Se41) — V(Sh)) (3.7)

It is possible to unify TD(0) with Monte-Carlo by using n-step returns ng). If we then
combine all n-step returns we can average them to obtain:

G =(1- N2 A6, where G = S0 ¥ Rigir +9"V(Sen) (3.8)

where A € [0,1]. The update rule now becomes:

V(S) < V(S;) + a(G;\ — V(St)> (3.9)

13

Equation (3.8) can be considered to be the forward-view of TD(A). An alternative
approach is to use eligibility traces. For every state that is visited, we raise its eligibility,
as it has now gained some credit towards the final outcome of this episode. Then at each
step we update all s € §. The updates are then in proportion to the single step TD-error
0t = Ryy1 + YV (Sir1) — V(S;) and the eligibility trace.

TD learning can also be applied to control. The TD(0) equivalent of this method is called
Sarsa. The generalization to Sarsa(A) is completely analogous to the extension of TD(0) to
TD(M).

Q-learning (Watkins and Dayan, 1992) differs from Sarsa in the sense that it always
chooses the state-action pair that maximizes the bootstrapped value of Q(s,a). Its update
rule is given by:

Q(St, Ar) « Q(St, Ap) + | Reyr + Y max Q(St+1,a) — Q(St, Ar) (3.10)

In this case R;11 + v max, Q(Si+1,a) can be seen as the target. Note that the targets in
Q-learning are greedy, while the agent will select actions in the same e-greedy way as done
in Sarsa. Algorithms that use a different mechanism for selecting targets than for selecting
actions are known as off-policy methods while the alternative methods that use the same
mechanism for both are known as on-policy methods.

3.3 Function approximation

Section 3.2 discussed tabular methods for solving reinforcement learning problems. This
means that all states and actions are enumerated in a table-like fashion. The downside of
table lookup approaches is that there is no generalization across the state space. Hence,
in large state spaces it is intractable to use such methods, as there are simply not enough
resources to visit all states sufficiently often. For example, the game of Go has approximately
10290 different board states. Even a single dynamic programming evaluation iteration would
take an exorbitant amount of time.

In such cases, it helps to use function approximators for the value functions e.g. V(s) =
V(s;0) and Q(s,a) ~ Q(s,a;0) where 0 contains the adjustable parameters. The function
approximators make use of features that are either learned or manually engineered to allow
the algorithm to generalize across the state space. By generalizing, the algorithm transfers
knowledge learned for a particular state to similar states in the future, without necessarily
having seen them before. The next section elaborates on supervised learning, a common
application of function approximation that is useful for RL methods.

3.3.1 Supervised learning

Supervised learning (SL) is a branch of machine learning that considers problems in which
some input is related to a desired target. There is a vast amount of different SL algorithms,
too large to list here. For RL, it is relevant to consider linear SL methods and nonlinear
SL methods. Linear methods simply use a linear combination of features that are extracted
from some input. By combining features linearly, one can solve regression or classification
problems. Note that the Q(s,a;0) and V (s;0) functions are real-valued functions and so
approximating these functions comes down to a regression problem. Deep reinforcement
learning in particular is done with DNNs which are obviously highly nonlinear.
In RL, the simplest function approximator is a linear approximator where

v(s;0) = ¢(s)"0, (3.11)

in which ¢(s) is a feature vector corresponding to the state s. An important property of
linear models is that they are guaranteed to converge to a least-squares fit of the actual
value function (Tsitsiklis et al., 1997). For neural networks, this guarantee has not been

14

established and clearly, the optimization process is based on many assumptions that can
become challenging to combine with RL. For example, changing the weights at earlier layers
changes the input distribution for other layers later on, while there is no explicit mechanism
to account for these distribution shifts. Second, the gradients can be inaccurate because the
inputs in a batch only make up a small subset of the full input space. Thirdly, the fact that
the agent alters its behavior through time causes the input distribution to change as well.

Gradient descent

A very common method for DNN optimization is gradient descent (Cauchy, 1847). In
order to apply gradient descent, we need to define the loss-function first. The loss function
expresses the performance penalty of our SL model which we seek to minimize. See Section
2.2 for an introduction.

Note that the update rules that we encounter in reinforcement learning (such as Equation
(3.9) and (3.10)) can be framed in relation to gradient descent updates. We could define
the following parameter updates A8 for the range of algorithms discussed above:

e For Monte Carlo evaluation we have Gy as the target:
AG = a(Gt —V(s; 0)) VoV (s;0) (3.12)
e For TD(0) we have R + vV (s';0) as the target:

AG = a(R FAV(s:0) — V(s; 0))V9V(s; 9) (3.13)

e And for TD()\) we have the A-return G;:

AG = oz(GtA —V(s; 0))V9V(5; 0) (3.14)

3.3.2 Policy gradient methods

The algorithms discussed so far optimize performance by finding the optimal value function
from which the corresponding policy is derived. Policy gradient methods on the other hand,
seek to maximize some performance measure with respect to policy weights. In this case we
perform gradient ascent:

0 +— 0+ aVED), (3.15)

Where « is the learning rate and £(€) is the performance measure. In the case of discrete
action spaces a common way to parameterize the policy is to use an exponential softmax
distribution:
exp(h(s,a;0))

Yo exp(h(s,a’;0))’
Where h(s,a;0) is some function approximator. In a way this method predicts action
preferences. A major advantage of doing so is that it might converge to an optimal stochastic
policy, which is not possible when using e.g. e-greedy action picking. Moreover, the policy
may be a simpler function to estimate than the exact Q-function, as the algorithm now only
has to figure out which actions work best, rather than what the expected return is for each
action.

m(a]s;0) = (3.16)

()
Theorem

The policy gradient theorem is that (Sutton and Barto, 2017):

Ved) = Zdﬂ(s) ZQﬂ(s,a)Vgﬂ'(a | 5;0), (3.17)

In which d(s) is the stationary distribution over w. In the episodic case, this corre-
sponds to the expected number of visits in an episode divided by the total number of

15

L states for that episode if we follow 7. J

The policy gradient theorem provides an analytical expression for the policy gradient which
can be used in gradient ascent.
The REINFORCE algorithm

The REINFORCE algorithm (Williams, 1992) is a Monte Carlo policy gradient algorithm.
Its update rule is given by:

0+ 0+ ay'GVelogm(A; | S, 0), (3.18)

which is motivated by the fact that:

(3.19)

VE©) = Ex ['yGtW}

7T(At | St, 0)
An extension to this algorithm is to include a baseline that varies with a state. It can

be shown that the baseline subtraction does not cause the expected value of the gradient to
change as long as it does not vary with a. The update rule now becomes:

0+ 0+ Oé’}/t (Gt — b(St)> Ve log 7T(At | St, 0) (320)

A common choice for b(S;) is to use V(s; w), where w is the set of parameters for the critic.
This causes the updates to have a lower variance which should improve the stability of the
optimization through gradient ascent.

Actor-Critic methods

Actor-critic methods are similar to the REINFORCE algorithm with a value function as a
baseline, but are different in the sense that they also bootstrap. The ‘actor’ in this method
is 7(als; @) and the critic is V(s;w). Both the actor and critic learn on-policy.

16

Chapter 4

State-of-the-Art Deep
Reinforcement Learning

The two former chapters have introduced deep learning and reinforcement learning which
are the two major components of deep reinforcement learning. Recently, deep neural net-
works have been successfully implemented in RL approaches. The reason for this delayed
introduction of deep learning to the field of RL, is mainly that it was unclear how to en-
sure that the networks were trained in a stable manner. For linear function approximators,
this was not a problem as much, since these functions are guaranteed to converge to their
optimal fit of the actual value function they approximate (Tsitsiklis et al., 1997). Through
surprisingly modest changes to the way in which these networks were trained, numerous
successful applications of DRL have been established and it currently is a popular field of
research.

In this chapter, we will discuss the foremost advances in DRL. As the field is still relatively
young, we are able to describe most of the major contributions in satisfying detail. First,
we will consider the deep Q-network (DQN) by (Mnih et al., 2013). We will see that their
research forms the basis of many other improvements as we discuss these in detail. Later
on, we elaborate on an actor-critic algorithm that accounts for the basis of our experiments
in Part II. For another extensive overview of deep reinforcement learning, see (Li, 2017).
There are other sources available that list state-of-the-art reinforcement learning algorithms
that are not necessarily combined with deep learning, such as the detailed work by Wiering
and Van Otterlo (2012).

The developments regarding DRL are discussed in a (roughly speaking) chronological
order. Many of the ideas presented here outperformed former state-of-the-art ideas at the
time they were published. If so, we will say they ‘outperform the state-of-the-art’ while
in fact later ideas discussed in this chapter might surpass the particular idea in terms of
performance. This structure is mainly intended for brevity, to avoid being repetitive and to
limit referring to individual performance differences.

4.1 Deep Q-learning in the arcade learning environment

The influential algorithm proposed by (Mnih et al., 2013) uses Q-learning (Watkins and
Dayan, 1992) with a function approximator Q(s, a;#) and a replay memory D which consists
of experienced transitions (S, A¢, Rit1, St+1). The replayed experience is adopted such that
data is reused for learning, rather than training on a single experience only once. In the
DQN network, the function approximator is trained to minimize the difference between its
prediction and the target given in equation 4.1

Ye = Ryp1 + Y max Q(Si41,a';6,) (4.1)

17

In which R;y; € R is the immediate reward, v € [0,1] is the discount factor, S;y; denotes
the new state at time ¢ + 1, a’ is chosen such that the maximum Q-value as estimated by
the DNN is returned and 6, is the parameterization of the function approximator. A major
problem with using such bootstrapped values of a nonlinear function approximator, is that
convergence to a good approximation is rare if it is trained naively. This is gradient descent
methods that are commonly used to train neural networks are based on an assumption
that the underlying distribution of a function to approximate does not change during the
training process. Obviously, if the target network itself is learning, the target distribution
changes. Moreover, subsequent observations and valuations of states or actions are highly
correlated, which can quickly lead to overfitting, as the data from a single batch is highly
biased towards the neighborhood of the current state in the state space. To this end, Mnih
et al. proposed to use a separate target network 6, which contains snapshots of another
DQN that is continuously updated. The parameters 8~ are only periodically synchronized
with 6;. In other words, the target distribution is more constant compared to the naive
Q-learning approach, both by freezing the parameters and by averaging over the already
experienced transitions. Another important consideration is to use |A| different outputs,
where each output predicts the Q-value of an action from A. By doing so, only a single
forward pass is required to compute all Q-values. This is considerably more efficient than
computing a separate forward pass for each action.

Their experiments were performed in the Arcade Learning Environment (Bellemare et al.,
2013), which is a collection of Atari 2600 games designed to be a benchmark of artificially
intelligent (reinforcement learning) agents of which six different games were considered. Only
pixel inputs were used as state observations with some minor preprocessing steps. Since the
agent is dealing with grid-like inputs, they employed a CNN as their function approximator
with two convolutional layers, another fully connected layer and an output layer as described
above. A ReLU activation function was used for all layers. These games employ different
scoring systems, which is why all positive rewards were clipped at 1, all negative rewards at
-1, and all 0 rewards unchanged. This also eases up the hyperparameter optimization for
the algorithms, as the magnitude of the gradients does not vary significantly across games.

In (Mnih et al., 2015) a similar approach was explored on 49 different Atari games. Mnih
et al. dove further into stabilizing their network and they made it one layer deeper. First,
they increased the size of the network by adding another convolutional layer and increasing
the number of hidden neurons in the final fully connected hidden layer. Other than that,
they clipped their temporal difference error to be between —1 and 1 by which they argue to
improve the stability of the algorithm in terms of hyperparameter sensitivity.

The next subsections discuss several alternative approaches to the ALE which are mostly
based on the work by (Mnih et al., 2013, 2015). The ALE in particular is a good candidate
to show an algorithm’s generality in the sense that no feature-engineering is needed for the
algorithms and the same algorithm is applied to up to 49 different Atari games which can
be quite different in terms of appearance and complexity. It is important to realize that
there are several other platforms available for training reinforcement learning agents from
pixel input (Beattie et al., 2016; Wymann et al., 2000; Kempka et al., 2016; Synnaeve et al.,
2016). However, we have decided not to discuss the efforts on the latter frameworks in
detail, because they are typically more recent and, consequently, they involve less relevant
influential literature.

4.2 Reducing overestimations and variance

A problem that is both empirically and theoretically shown to be present in Q-learning is
that the Q-values that are learned can be highly overestimating the actual reward, which
slows down the learning process. This overestimations have been said to be caused by the
fact that the function approximator was not flexible enough (Thrun and Schwartz, 1993),
or because of noise (Hasselt, 2010). In (Van Hasselt et al., 2015), it is show that these
overestimations can have a considerable negative effect in many cases. In their paper, they

18

extend on the tabular version of the double Q-learning algorithm (Hasselt, 2010), such that it
is applicable to function approximation. In double Q-learning with function approximation,
the target is changed to:

vt = Ri +7Q(Sp 11, argmax Q(Se11, a; 04); 0", (4.2)

Where 6’ is another set of weights. For each minibatch in training, the role of @ and 8’ might
be randomly switched. They show that adopting double Q-learning exhibits state-of-the-art
performance by improving on DQN in the Atari domain.

Another way of reducing overestimations and variance is introduced in (Anschel et al.,
2016). They provide theoretical arguments for the reduction of variance through averaging
a set of DQN target networks that are simply previously stored checkpoints of the DQN
network. They show that their averaged DQN target yields lower value estimates that are
typically more stable through time. Moreover, the algorithm exhibits superior performance
compared to DQN across a handful of Atari games.

4.3 Prioritized replay memory

Perhaps not surprisingly, the magnitude of gradient descent updates that occur during a
training process for a DQN agent vary largely across states, depending on how well the
function approximator predicts in that particular part of the state-action space. Therefore,
it is likely that there are transitions in the replay memory that are more useful than others,
simply because the error in that particular case was larger. This observation was the main
motivation behind developing the prioritized experience replay DQN agent (Schaul et al.,
2015), partly inspired by the work of Moore and Atkeson (1993). By prioritizing the right
transitions, learning can be significantly sped up. To that end, Schaul et al. propose to
measure the importance of an update by the magnitude of the temporal difference error.
The priority of picking a transition is given by P(i) = p{/ >, pf in which p$* is the priority
of transition 4. In their paper, Schaul et al. explore the effectiveness of using proportional
prioritizing where p; = |6;|+¢ with € > 0 to make the probability guaranteed to be nonzero or
rank-based prioritizing with p; = 1/rank(é). They show that their method outperforms the
double Q-learning approach from (Van Hasselt et al., 2015) and that rank-based prioritizing
works better than proportional prioritizing.

A similar approach is adopted in the work by (Narasimhan et al., 2015). Although their
application domain is not the ALE, they employ a DQN with prioritized sampling which
was also inspired by the prioritized sweeping method of (Moore and Atkeson, 1993). They
distinguish between positive and negative rewards in the replay memory and sample a certain
fraction p from the positive rewards and 1 — p from the remaining experiences. Narasimhan
et al. also show that using a prioritized experience replay memory can significantly improve
the agent’s performance.

4.4 Adaptive normalization of targets

As discussed previously, the rewards of the games in Atari were clipped to be in the range of
[—1,1] (Mnih et al., 2013, 2015). By doing so, Mnih et al. were able to find a hyperparam-
eter setting that would yield good performance across almost all 49 Atari games. However,
there are a few drawbacks of introducing this clipping mechanism. First of all, it is domain
specific. Many Atari games have rewards that go outside the range of [—1, 1]. By performing
this clipping we are no longer optimizing the sum of rewards directly, but rather indirectly
through maximizing the frequency of positive rewards compared to negative rewards. Con-
sider the two episodes of three states in which we obtain the following rewards and have
no discount: {+2,0,+2},{+1,+1,4+1}. Note that the first episode would result in a higher
return if no clipping was used, whereas the second episode would be preferred if we do use

clipping.

19

In (Van Hasselt et al., 2016) the authors establish a method to alleviate this dependency
with theoretical justifications. By adaptively normalizing the targets and preserving the
transformations to exactly reconstruct the actual output, they are able to robustly train the
same DQN architecture without reward clipping. Perhaps surprisingly, they find that the
improvement in the Atari domain is not consistent across all 49 games. For several games,
the normalization strategy yields worse results. The authors suspect that this might be due
to the fact that the optimal strategy is sometimes reached sooner when preferring reward
frequency (clipped) over the exact reward value (normalized).

4.5 Massive parallelization

In (Nair et al., 2015), the authors propose a distributed architecture named Gorila for mas-
sively parallel reinforcement learning. Their architecture consists of (i) actors that have a
locally accessible replica of the Q-network, (ii) experience replay memory that contains ex-
periences that are gathered by the actors, (iii) learners that compute the gradients and have
a target Q-network and (iv) a parameter server which is a distributed storage of parameters
and it is responsible for applying the gradient updates. They not only show a significant
speed up of training time, but the method also yields agents that play considerably better
when given the same amount of input frames.

4.6 A dueling network architecture

In the work by (Wang et al., 2015), a dueling network architecture is introduced. The dueling
network architecture is effectively a Q-network with explicit inheritance of a separate value
estimate and an advantage estimate. Interestingly, they also explore a combination of this
method and the prioritized replay memory from (Schaul et al., 2015). They show that the
combination of these methods yields state-of-the-art performance in the ALE, outperforming
all previously discussed methods.

4.7 Encouraging exploration

An important consideration in RL in general is that an agent should have the right balance
between ezploration (covering parts of the state space that are not well known to potentially
discover a better policy at the risk of a decreased return), and exploitation (acting greedily
with respect to the currently obtained value estimates such that the expected reward under
that valuation is optimal at the risk of not discovering better alternatives). As pointed
out by (Osband et al., 2016), a DQN can suffer from an insufficient exploration strategy.
They propose a bootstrapped DQN neural network architecture. In their approach, the
neural network has the same hidden layers as the standard DQN from (Mnih et al., 2015).
However, at the end Osband et al. have K different ‘heads’ that each have their own Q-value
estimates and their own targets. During training, the agent randomly chooses one amongst
these heads and executes a full episode. Each experience that is added to the replay buffer
is accompanied with a bootstrap mask, which determines which of the K bootstrap heads
will be involved in actually updating the parameters based on the new experience. They
demonstrate how this technique yields networks with a better exploration, outperforming
the DQN form (Mnih et al., 2015) across most games in the ALE.

4.8 Optimality tightening

He et al. (2016) directly address the sparsity and delay of the reward signal in reinforcement
learning tasks by augmenting the objective function with some additional terms that consider

20

long-term future and past rewards as well. By doing so, rewards are propagated faster. To
see why, if we look at the standard target of a Q-learning agent we have:

y; N =R, +ymax Q(Sjt1,a4;0). (4.3)

It is evident that information only travels from state s;11 to s;. For this reason He et al.
(2016) propose to make use of the following inequality:

k
N = Ry + ymax Q(Sy41,a550) 2 - = > A Ry + 4" max Q(Sj4ns1,a) = Ly,
i=0
(4.4)
which provides a lower bound of the target L; . Intuitively, this inequality is valid since the
empirical part (ZLO 'R, i) should not be greater than the difference between the single
step bootstrapped return at state j and the discounted return at state Sj4x41. Similarly,
they also define an upper bound by looking at preceding rewards. These bounds are then
used to minimize the Bellman equation with respect to constraints Q(s,a;0) > Ly =
maxyeq1,.. kx} Ljrx and Q(s,a;0) < U]’m”1 = mingeqy,... k- They show that across the 49
Atari games, the performance is better than a default DQN (Mnih et al., 2015) and compa-
rable to the double Q-learning method (Van Hasselt et al., 2015) which were both trained
for 10 times as long.

4.9 Asynchronous methods

Despite the significant successes that have been obtained through the usage of a DQN with
an experience replay memory, the replay memory itself has some disadvantages. First of
all, a replay memory requires a larger amount of computer memory. Second, the amount of
computation per real interaction is higher and third, it restricts the applicable algorithms to
be off-policy RL methods. Mnih et al. (2016) introduce asynchronous algorithms for DRL.
By running multiple agents in their own instance of the environment in parallel, one can also
decorrelate subsequent gradient updates. This opens the way for on-policy methods such as
Sarsa, n-step methods and actor-critic methods. A major disadvantage of using single step
methods is that in the case of a reward, only the value of the current state-action pair (s, a)
is affected directly, whereas n-step methods directly update the valuation of multiple state-
action pairs. Mnih et al. (2016) show that an asynchronous advantage actor-critic (A3C)
design outperforms all previously mentioned approaches in the ALE in less training time.
Their best performing model uses a similar architecture as (Mnih et al., 2015), but with
an additional LSTM layer preceding the output layer. Note that the output layer contains
both the critic’s output and the actor’s output. Other than that, Mnih et al. (2016) explore
the A3C model in other domains such as a Labyrinth environment which is made publicly
available by (Beattie et al., 2016), the TORCS 3D car racing simulator (Wymann et al.,
2000) and MuJoCo (Todorov et al., 2012) which is a physics simulator with continuous
control tasks. The wide applicability of their approach supports the notion that the A3C
algorithm is a robust DRL method.

There are a number of notable extensions of the A3C method. Jaderberg et al. (2016)
show that the performance of A3C can be substantially improved by introducing a set of
auxiliary RL tasks. These tasks constitute pseudo-rewards that are given for feature control
tasks and pixel control tasks. Given a set C of these tasks, let ¢ € C be a task from this set
and let 7(¢) be the corresponding policy for that task. The objective is now defined as:

arg max Ex[Ri.oo] + Ac) Erco (R] (4.5)
ceC

where Ri:ct) _n, 18 the discounted return for the auxiliary reward (). For each task ¢ an n-step
Q-learning loss is optimized. In the pixel control task an agent is learned to maximize the

21

pixel change in a set of n x n non-overlapping cells of the input image. By similar reasoning,
they define feature control as a task with the objective to maximize the change of specific
hidden neural units. In addition to these control tasks, the agent is given the task of reward
prediction, which comes down to a supervised learning task in which the agent predicts
sign(R:+1) given a subset of the state history. For improving data-efficiency, they adopt
experience replay for the auxiliary tasks as well as value function replay, which is effectively
an off-policy value regression that improves the value estimator of the actor-critic network.
Experience replay also provides sampling freedom to ensure that different targets for the
reward prediction task are equally represented in the training curriculum. The loss function
of the UNREAL algorithm is given by:

Lunrpan(0) = Lasc + AvrLvr + Apc Y ES) + ArpLrp (4.6)

where L3¢ is the A3C loss, Ayr Lvr is the weighted value function replay loss, Apc .. ES)
is the auxiliary control loss and Agp Lgrp is the reinforcement signal prediction loss. Although
adding these auxiliary tasks yields an agent that learns faster, the newly introduced loss co-
efficients need careful and costly tuning. Jaderberg et al. (2016) show that reward prediction
contributes most to the improvement over A3C, whereas pixel control had the least effect
of improvement.

4.10 Policy gradient Q-learning

In (O’Donoghue et al., 2016) the authors establish an analytical connection between action-
value and actor-critic methods with entropy regularization as in (Mnih et al., 2016). By
combining the merits of Q-learning and policy gradient methods, the authors propose a
Policy Gradient and Q-learning (PGQL) method. By including Q-learning, the authors
can make use of a replay buffer and prioritized experience replay. They parameterize the
Q-estimate as follows:

Q(s,a;0,w) = a(log 7(s,a;0) + H’T(s)) + V(s;w) (4.7)

In which H is the regularization entropy, 7 and @ and w are the parameters of the policy
and value estimates respectively.

4.11 Episodic control

Although part of the research in (Blundell et al., 2016) does not rely on deep learning,
their results show that brain inspired algorithms for reinforcement learning can yield agents
that perform remarkably well on the Atari domain. The authors propose a new method for
reinforcement learning which aims to rapidly memorize previous experiences by explicitly
storing feature vectors in a growing Q-table. Whenever the current feature vector already
exists in the table, the new Q-value in the table is found by taking the maximum of the
old Q value and the currently experienced return. When the current feature vector does
not yet exist, the table is extended with this feature vector and the corresponding return.
It is important to realize that these greedy updates would result in poor performance in
non-deterministic environments.

For determining the Q-values during action selection, the algorithms copies the Q-value
from the table when the feature vector is present and otherwise it averages the Q-values
of k nearest neighbors. The authors show that both random projections of the raw pixel
values and the embeddings obtained from a variational auto encoder (VAE) provide useful
feature representations that outperform many previous approaches, especially in the early
training episodes. Interestingly, the authors used a discount factor of v = 1 allowing for a
more direct optimization of the total score.

22

As an alternative to the nearest neighbor mechanism in (Blundell et al., 2016), the
neural episodic control (NEC) as presented in (Pritzel et al., 2017) performs lookups using
an attention mechanism that takes Q-values by matching an embedding vector h to key
vectors k;. Each key vector is accompanied with a Q value. The Q values from the table are
combined by taking a weighted average over the Q values of the 50 nearest key vectors k;
where the weights are given by the normalized distance between h and k;. The embedding
vectors are the hidden activations of the last hidden layer of a DNN that has the same
architecture as (Mnih et al., 2013). The authors show that NEC outperforms most previously
mentioned approaches across 49 Atari games.

23

Part 11

Experiments

24

Chapter 5

General Implementation

In this chapter we will discuss our general implementation in detail. The material here
is general in the sense that all specific experiments and research questions depend on the
design decisions discussed here.

5.1 Asynchronous advantage actor-critic

The baseline RL model for our experiments will be the asynchronous advantage actor-critic
method (A3C) as proposed by (Mnih et al., 2016). This model has already been introduced
briefly in Section 4.9. Since this model is so important to our experiments here, we will now
cover it in detail.

The A3C method is asynchronous in the sense that multiple RL agents are deployed
in their own instance of the environment. Each agent has its own ‘local’ copy of a deep
neural network (which is discussed further in Section 5.2). The agent itself runs an actor
learner thread that is similar to the standard advantage actor-critic algorithm. An important
difference is that the parameter updates that are computed by the agent are sent to a global
network that is shared between all agents. Note that by the definition taken from (Sutton and
Barto, 2017), an actor-critic algorithm is also an n-step method. Similar to the approach that
is taken in (Mnih et al., 2016), the baseline model will be implemented with the forward-view
of n-step returns. An actor acts for five steps after which a parameter update is computed
for the currently obtained batch. This parameter update is then sent to the global network.
As pointed out by Mnih et al., the global network update can be done without actual thread
locking. Although this might entail occasionally unpredictable behavior of gradient updates,
they empirically found that