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Abstract

The ability to learn is arguably the most crucial aspect of human intelligence. In reinforce-
ment learning, we attempt to formalize a certain type of learning that is based on rewards
and penalties. These supervisory signals should guide an agent to learn optimal behavior.
In particular, this research focuses on deep reinforcement learning, where the agent should
learn to play video games solely from pixel input.

This thesis contributes to deep reinforcement learning research by assessing several vari-
ations to an existing state-of-the-art algorithm. First, we provide an extensive analysis on
how the design decisions of the agent’s deep neural network affect its performance. Second,
we introduce a novel neural layer that allows for local specializations in the visual input
of the agents, as opposed to the global weight sharing that occurs in convolutional layers.
Third, we introduce a ‘what’ and ‘where’ neural network architecture, inspired by the infor-
mation flow of the visual cortical areas in the human brain. Finally, we explore prototype
based deep reinforcement learning by introducing a novel output layer that is largely in-
spired by learning vector quantization. In a subset of our experiments, we show substantial
improvements compared to existing alternatives.



Chapter 1

Introduction

Learning is a crucial aspect of intelligence and it is this phenomenon that we try to translate
into formal mathematical rules when we practice machine learning research. Formalizing
learning increases our understanding and admiration of human intelligence, as we can more
accurately argue what are crucial aspects and limitations of learning machines and organ-
isms. Machine learning (ML) is now recognized as a field of science for a handful of decades.
A vast range of different approaches and problems exist within ML. Roughly speaking, we
can divide machine learning into three main themes: supervised learning, unsupervised learn-
ing and reinforcement learning. In the remainder of this section, we briefly introduce the
aforementioned themes in machine learning. In Section 1.1 we narrow down to the main
research topic addressed in this thesis, known as deep reinforcement learning. Section 1.2
lists the research questions that will be addressed in the remaining chapters of this thesis.

In supervised learning (SL), we are concerned with the pathological situation where we
explicitly tell a machine learning algorithm what the correct response y is to some stimuli
x. For example, we could build an SL algorithm that can recognize handwritten digits (y)
from small images (x). For classification problems, y is a class label and in the case of
handwritten digit recognition it is simply y ∈ {0, 1, . . . , 9}. Many other forms of supervised
learning have been studied and they all have a major factor in common: human-provided
labeling. This consequently restricts SL to deal with problems that are well-defined in the
sense that it is straightforward to separate different responses and to reliably define the
according labels. Although a great deal of human learning is to a certain extent supervised,
we are also capable of learning autonomously and without being told exactly what would
have been the correct response.

Unsupervised learning (UL) focuses on problems in which we try to reveal the underly-
ing structure of data. Of course, given the means for measuring or simulating real world
phenomena with satisfactory precision, we can represent almost any entity with data. Once
represented as data, for some of these UL algorithms they become vectors xi that populate
some input space X ⊆ Rn. UL algorithms try to extract high-level notions about the data
that are useful for e.g. exploration, visualization, feature selection and many other appli-
cations. Most UL algorithms achieve this by exploiting the relations between distances in
X . Different kinds of tasks require different ways of dealing with X and the corresponding
distance measures. Note that in UL, the algorithms are designed to solve problems that do
not make use of explicit labeling. Instead, they are used to explain the data with a lower
complexity than the raw data itself, preferably such that it fosters our understanding of the
phenomenon that the data represents.

Lastly, reinforcement learning (RL) could be considered to operate between SL and UL
in terms of supervision. In RL, we do not tell the algorithm explicitly what to do, we rather
let it try some specific (sequences of) responses and provide feedback in terms of a reward
or penalty. Note that being rewarded or penalized – as in RL – is a different kind of signal
than being told exactly – as in SL – what the correct response should have been. So RL
algorithms specialize in problems that can be solved by a trial-and-error process. For many
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tasks that we deal with in the real world, we cannot formally describe a desired response or
decision at every moment in time. This is partly due to the complexity of the decisions that
can be made, but also because of the fact that we simply have limited resources in terms of
time and equipment to do so. The existence of RL alleviates this burden and allows machines
to solve complex tasks such as elevator control (Crites and Barto, 1998), traffic light control
(Wiering, 2000), playing board games (Tesauro, 1995; Silver et al., 2016), playing video
games (Mnih et al., 2013), controlling robotic arms (Levine et al., 2016), designing neural
network architectures (Zoph and Le, 2017) and many more. In all of these tasks, it is difficult
to specify time- and order-dependent desired responses, but it is relatively straightforward
to define what are desirable states for the system to be in.

In general, allowing an algorithm to solve a problem by means of reinforcement learning
instead of SL, requires considerably less effort in terms of supervision. The central ideas of
reinforcement learning are further discussed in Chapter 3.

1.1 Deep reinforcement learning

Ultimately, machine learning algorithms should be relying on seemingly few assumptions,
design and preprocessing effort. To reduce design and preprocessing effort, we can focus
our attention on the improvement of existing methods and introduction of algorithms that
consider the inputs in a similar way as we do ourselves. Since our eyes merely require
photons, and our ears merely require a sound source and a medium we can attempt to
develop algorithms that start at the same point of this processing pipeline. Moreover,
artificial intelligence research has shown that taking inspiration from biology – perhaps at
different scales – can lead to the inception of powerful machine learning algorithms.

Artificial neural networks are a popular example of biologically inspired machine learning
models. In these networks, artificial neurons process their input by applying trivial mathe-
matical operations. When a large number of these neurons are combined and organized in a
layer-wise fashion, they can exhibit state-of-the-art performance in several machine learning
domains. Using many layers of artificial neurons is referred to as deep learning (Goodfellow
et al., 2016; Schmidhuber, 2015; LeCun et al., 2015). Deep learning has become increasingly
more prominent since the last decade and is now presumably the most practiced field within
machine learning research. A more technical discussion of deep learning in the context of
this thesis is provided in Chapter 2.

Although the majority of deep learning applications and research focuses on supervised
learning, deep learning for reinforcement learning problems has also been explored relatively
recently. The combination of the two is more commonly referred to as deep reinforcement
learning (DRL). The use of DRL for old arcade games (Mnih et al., 2013) and the ancient
game of Go (Silver et al., 2016) are well-known examples within the DRL community. Both
reinforcement learning and deep learning are directions in machine learning that are highly
generic in principle. Therefore, advancing the unification of these two paradigms is an
appealing focus for further research and likely to advance the implementation of systems
that ultimately contribute to our society.

1.2 Research questions

This section states the research questions so that, once answered, the whole contributes to
the field of machine learning and reinforcement learning, in particular deep reinforcement
learning.

1.2.1 Architectural neural network design

One of the merits of DRL is that – in principle – little feature engineering is necessary.
However, the designer of the algorithm still has many important decisions to make. Some
of these decisions include how many layers should be used (this is partly an efficiency and
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performance trade-off), what kind of layers should be used, how many neurons should a
layer have, what kind of activation functions are used etc. Although the available literature
mostly reports outcomes of research in which architectural neural network design decisions
were made successfully, few if any report design decisions that were unsuccessful. Moreover,
given the popularity of DL research, many novel ideas have been introduced over the last
few years that are worth exploring. The first research questions that come to mind are:

1. To what extent do architectural design decisions and hyperparameters of an agent’s
deep neural network affect the resulting performance?

(a) How sensitive are these algorithms to variations?

(b) What are well performing architectures?

(c) Are there any ‘brittle’ hyperparameters?

(d) Can spatial consistency in the visual input of video games be exploited?

The above questions will be addressed in Chapter 6. Question (d) will be addressed by
proposing a new neural network layer that can exploit spatial consistency, meaning that it
can locally specialize for certain features.

1.2.2 Prototype based reinforcement learning

On a coarse grained level, decision making as done by RL agents can be related to classifica-
tion. Usually, classification is solved through supervised learning. One particular class of SL
algorithms is known as nearest prototype classification (NPC). The most prominent NPC
algorithm is learning vector quantization (LVQ) (Kohonen, 1990; Kohonen et al., 1996). As
opposed to linearly separating different kinds of inputs in the final layer of a neural network,
LVQ chooses to place prototype vectors in the input space X . Roughly speaking, a new
input x is then classified by looking at the nearest prototypes in X . This particular classifi-
cation scheme could in principle be used for reinforcement learning with some modifications.
More specifically, we will look at how it can be used to frame the agent’s decision making
as a learning vector quantization problem. In that case the prototypes will be placed in a
feature space H ⊆ Rn in which we compare the prototypes to nearby hidden activations h of
a deep neural network. We will address the following research question with corresponding
subquestions:

2. Is prototype based learning suited for deep reinforcement learning?

(a) How does it relate to existing LVQ variants?

(b) What are important hyperparameters?

(c) What are proper distance measures for H?

(d) How does it compare to existing approaches for DRL in terms of performance?

To answer these questions, we propose a novel reinforcement learning algorithm in Chapter 7
which is largely inspired by existing LVQ approaches. Our algorithm can be varied in many
aspects and we provide the corresponding experiments to advocate certain design decisions.
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Part I

Theoretical Background
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Chapter 2

Deep Learning

Deep learning (DL) encompasses neural networks with many-layered computations. These
‘layers of computation’ might be hidden layers in an ordinary fully connected multi-layer
perceptron (MLP), but they can also correspond to repetitive computations in recurrent
neural networks (RNNs). In the first half of this decade, the machine learning community
has witnessed significant advances in optimizing deep neural networks (DNNs). There are
a number of factors that have allowed this field of research to gain such momentum. Nowa-
days, large labeled datasets are available that are typically required for high dimensional
inputs with large neural networks for them to generalize well. Other than that, we have
witnessed an increase in computing power. Furthermore, there have been some technical
advances that allowed the gradients to be sufficiently large and stable to train deep networks.
The most prominent successes to date remain in the field of computer vision with the use of
convolutional neural networks (CNNs). As of 2012, the state-of-the-art systems in computer
vision tasks ranging from classification, segmentation and localization have been dominated
by these networks (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; Szegedy et al.,
2015; Srivastava et al., 2015; He et al., 2015a; Huang et al., 2016). Another highly influenc-
ing development is that of the advanced RNNs such as long short-term memory (LSTM)
networks (Hochreiter and Schmidhuber, 1997). It is important to stress that most of this
research is about supervised learning. Hence, these models consider static learning problems
in the sense that they do not involve some artificially intelligent agent that interacts with
its environment.

This chapter will cover the deep learning models that are most relevant to a reinforcement
learning setting. First, we discuss a basic neural network architecture in Section 2.1. Then
we discuss how to train such models in Section 2.2. Next, CNNs are explained in Section
2.3. We emphasize that our account of deep learning is by no means complete. This is
partially for brevity and because of the fact that most of our models only require the use
of a relatively small subset of ideas from DL. There exist excellent surveys on DL that are
worth consulting for further study (Schmidhuber, 2015; LeCun et al., 2015) and the recently
published textbook by Goodfellow et al. (2016).

2.1 Multi-layer perceptrons

The fundamental unit in deep learning models is the perceptron. The perceptron is a greatly
simplified artificial neuron which can perform a trivial mathematical operation. A percep-
tron linearly combines a set of incoming connections from inputs, which can be provided
externally or through the output of other perceptrons. If the input is x ∈ Rn, the output
of a perceptron is f(w · x + b) where f(·) is called the activation function, the elements of
w ∈ Rn are the weights that represent the connection strengths for the different inputs in
x and b ∈ R is the bias.

One can combine such perceptrons in multiple layers to make multi-layer perceptrons
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Figure 2.1: Basic multi-layer perceptron (MLP).

(MLPs) as depicted in Figure 2.1. The figure shows a feedforward neural network in which
there are no connections between the neurons in the same layer and no connections going
in the direction of the input layer. The connections are only directed towards the output.
In such an approximator, the adjustable parameters are the connections between the layers.
The output of this MLP can be used for different kinds of problems such as regression
or classification problems. The goal is to find the proper setting of these parameters to
maximize the task performance. The next section discusses how this goal can be achieved.

2.2 Optimizing neural networks

This section elaborates on algorithms that are used for training neural networks. We merely
discuss approaches that are directly related to our experiments in Part II. The algorithms
that we discuss here are a form of gradient descent.

2.2.1 Gradient descent

Gradient descent was first formulated by Cauchy (1847). Gradient descent is an iterative
method to find the (local) minimum of a function. For neural networks and many other
machine learning method the function to minimize is often referred to as the loss function
or cost function. This function expresses the error of the current approximation to a target
distribution. In this text, loss functions are denoted as L(x, y;θ). The semicolon emphasizes
the fact that the role of x and y are conceptually different from the role of θ. The vector
x denotes the model’s input and y denotes the model’s target (i.e. the desired output).
The function should be minimized with respect to θ. To accomplish this, gradient decent
methods consider the gradient of the function to find the local direction of steepest descent
in the parameter space given by θ. This boils down to iteratively updating θ as follows:

θ ← θ − ηgt, (2.1)

where
gt = ∇θL(x, y;θ), (2.2)

and η ∈ (0, 1) is the learning rate which characterizes the magnitude of the updates with
respect to the gradients.

The loss function L(x, y;θ) should characterize the error of the model with respect to
the task it is trained for. For the sake of simplicity, we restrict ourselves to the case of
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regression, where the loss function is usually of the form:

L(x, y;θ) =
1

2

N∑
i

(f(x(i);θ)− y(i))2, (2.3)

where N is the number of examples in the data set and f(x;θ) is the model’s prediction
and 1

2 is added for mathematical convenience. Evaluating this term repetitively can become
computationally expensive in case of large data sets. Moreover, minimizing this term for a
train set will not guarantee adequate performance on some unseen test set. Ultimately, the
model should be able to generalize over unseen data. To ensure stability and convergence
during training, the learning rate should generally not exceed a small non-zero constant e.g.
10−3. This can make learning slow, particularly if every update involves computing the
entire sum as in Equation 2.3.

2.2.2 Stochastic gradient descent

SGD approximates the error gradient by only considering a subset of the training data:

L(x, y;θ) =
1

2

M∑
i

(f(x(i);θ)− y(i))2, (2.4)

where M < N . Originally, the case in which M = 1 was referred to as SGD. Nowadays, when
1 < M < N , it is common to refer to the method as being stochastic batch gradient descent
or just SGD. The method is stochastic in the sense that the error gradient is approximated
instead of being fully evaluated and in the sense that examples are considered in a random
order per training epoch. By doing so, the algorithm no longer follows the exact shape of
the error surface. It is important to mention that the examples are randomly selected. Note
that the method is significantly more efficient, as we only need to evaluate a subset of the
data for each update of θ.

2.2.3 RMSprop

The RMSprop algorithm (Tieleman and Hinton, 2012) adapts its gradient updates according
to the root of a running average of the square gradient. This means that the gradient updates
are given by:

m← ρm + (1− ρ)g2
t , (2.5)

θt ← θt−1 − η
gt√
m + ϵ

, (2.6)

Where m is the running average of the squared gradient, ρ is the corresponding decay
parameter, gt is the gradient at time t and ϵ is the fuzz factor that is required for numerical
stability. Note that all operations in Equations (2.5) and (2.6) are element-wise. Such
adaptive optimizers have become a default choice for optimizing DNNs as they outperform
carefully tuned alternatives that use simple SGD.

There are several alternatives to RMSprop that use adaptive learning rates that are
omitted for the sake of brevity and because they do not appear elsewhere in this thesis such
as Adam (Kingma and Ba, 2014), AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012),
YellowFin (Zhang et al., 2017) or AdaSecant (Gulcehre et al., 2014, 2017).

2.2.4 Backpropagation

The many layers of computation in neural networks means that we can rewrite most gradients
as a product of many differentiated terms by means of applying the chain rule. Moreover,
many terms reappear in the gradients of different weight matrices. Therefore, a lot of
computation can be spared by creating an index of already evaluated expressions that might
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Figure 2.2: Visualization of feature hierarchy that is implicitly learned in a convolutional
neural network. Image is taken from (Zeiler and Fergus, 2014).

be reused elsewhere. This is the idea behind the backpropagation algorithm (Rumelhart
et al., 1986). For a modern discussion about the implementation of such an algorithm, see
chapter 6, section 6.5 of (Goodfellow et al., 2016).

2.3 Convolutional neural networks

Adding many layers can be useful for tackling highly nonlinear problems such as image
recognition. Naively stacking layers of neurons does not automatically yield good perfor-
mance because of potential overfitting. Overfitting occurs when the model becomes too
flexible such that the model also describes noise patterns that are not representative of the
underlying data distribution, which eventually leads to impeded performance. Specialized
architectures such as convolutional neural networks (CNNs) enable many layered compu-
tations with proper convergence guarantees and high accuracies. The first description of a
modern CNN was posed by LeCun (1989), though many texts discussing the first convolu-
tional networks refer to (LeCun et al., 1998). Such CNNs are related to the Neocognitron
architecture (Fukushima, 1980), but the Neocognitron was optimized with a layer-wise un-
supervised clustering algorithm. Rather than having fully connected layers in which each
hidden neuron is connected to all neurons in the preceding layer, CNNs have layers in which
neurons are locally connected. This is similar to how the mammalian brain is organized
to process visual stimuli (Hubel and Wiesel, 1962, 1959, 1968). Since the most prominent
applications of CNNs are within the field of computer-vision, we will discuss their properties
in the context of image recognition. It is important to realize that these properties can also
be true for other domains (e.g. time sequences, video data or tactile sensor data), but that
they need to be slightly altered to be applicable.
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2.3.1 The convolutional layer

From an analytical perspective, convolutional layers (CLs) employ convolution operations
instead of a more general matrix-vector product that is used in fully connected layers. There
are a number of motivations for using convolutions. First of all, grid-like data such as images
often have valuable information that can be extracted locally. A few examples of such local
patterns are edges, corners and color transitions. In order to detect these features, we can
restrict a hidden neuron to be only connected to a subregion of the image. By doing so,
we greatly reduce the amount of parameters of the network with respect to the number of
hidden neurons. This reduces the risk of overfitting, as we force the learned representation
to be constituted of smaller local features instead of features that are learned globally.
Moreover, for image data it is evident that these features can often be detected at almost
any position of the image. Hence, it makes sense to share the weights of the neurons in
a convolutional layers across the input. This weight sharing additionally reduces the risk
of overfitting by further reducing the amount of parameters. Thirdly, using convolutions
instead of matrix-vector products is considerably more efficient, especially when computed
on specialized hardware such as GPUs or tensor processing units (Jouppi et al., 2017). This
speeds up the forward and backward passes, yielding faster training and evaluating.

A CL is typically parameterized by a 4D-tensor Wk,c,i,j in which k is the kernel index, c
is the channel index and i and j are the row and column indexes of the image, respectively.
Channels are sometimes referred to as feature maps. The input of a CL is also represented as
a 4D-tensor Xl,c,i,j with a minibatch index l and similar indices for the remaining dimensions.
The output of a CL is also a 4D-tensor Yl,c,i,j with similar indexing. Usually, convolutions
are summed across all channels for each position, which is why a single kernel is represented
as a 3D-tensor. The first kernel W0,c,i,j is used for computing the first feature map of the
output tensor Yl,0,i,j , the second kernel is used for the second feature map etc. The output
tensor still inherits a grid-like structure. Therefore, multiple convolutional layers can be
stacked to form deep CNNs.

Interestingly, the representations that are learned by these hidden CLs automatically
reflect a hierarchical breakdown of the features that are commonly present in images (Zeiler
and Fergus, 2014). A visualization of this hierarchy can be found in Figure 2.2. However,
this representational view is challenged by the fact that highway networks (Srivastava et al.,
2015) and residual networks (He et al., 2015a) are insensitive to removing (Srivastava et al.,
2015) or shuffling layers (Veit et al., 2016). In (Greff et al., 2016) it is argued that the
insensitivity could be explained better by imposing an unrolled iterative estimation view.
In the latter view, the networks consist of stages in which each state consists of blocks
that successively refine the representation of earlier layers. It is also shown that under
the corresponding assumptions, residual networks and highway networks can be derived
naturally.

2.3.2 Pooling

Another operation that is commonly used in convolutional neural networks is pooling. A
pooling operation downsamples the representation in a layer. There are different approaches
to pooling such as max-pooling, mean-pooling, L2-norm pooling etc. (Zhou et al., 1988;
Goodfellow et al., 2016). The most common method is max-pooling in which the represen-
tation is downsampled along the grid-directions of the input. This is accomplished by taking
the maximum activation of the output tensor at local k × k patches. By using pooling, the
network becomes less sensitive to small changes of the input such as translation and slight
rotations.

However, in principle, pooling operations could make the whole neglect particularly
important spatial details. For this reason, pooling operations are avoided when considering
problems such as robotic control (Levine et al., 2016) or when learning to play video games
based on pixel input (Mnih et al., 2013, 2015).
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2.3.3 The full architecture

By combining multiple convolutions and pooling operations, deep CNNs can be efficiently
trained on large datasets yielding exceptional performance on a wide variety of tasks. Usu-
ally, the last convolutional layer is followed by a few fully connected layers and an output
layer. A fully connected layer is just a regular MLP structure in which each neuron is con-
nected to all neurons in the preceding layer. Adding such layers to convolutional neural
networks allows for non-local interactions of the features from the convolutional stream.

2.4 Activation functions

As stated before, neural networks use activation functions. These activation functions are
often nonlinear such as a hyperbolic tangent function f = tanh, or a sigmoid function
f(x) = 1/(1 + exp(−x)). A particularly influential idea was the introduction of the ReLU
nonlinearity which is defined as f(x) = max{0, x} (Nair and Hinton, 2010). The ReLU
function was designed to overcome the vanishing gradient issue which is caused by the many
multiplications that arise in DNNs (Pascanu et al., 2013). A possible cause for gradients
to vanish is the fact that activation functions have derivatives that are less than 1. The
ReLU’s derivative is defined as 1 if x ≥ 0 and is 0 otherwise. This fosters the propagation
of gradients to layers that are close to the input layer. This eventually leads to improved
performance.

Since then, the design of a proper activation function has been an actively pursued
question, giving rise to many alternatives, such as parametric ReLUs (He et al., 2015b),
exponential linear units (Clevert et al., 2015) and scaled exponential linear units (Klambauer
et al., 2017).
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Chapter 3

Reinforcement Learning

Deep reinforcement learning involves the integration of DNNs into the realm of reinforcement
learning (RL). In reinforcement learning problems, an agent is expected to learn to behave
optimally given its environment. The environment occasionally provides the agent with
rewards which the agent can use to guide its learning process and behavior. Section 3.1 lists
the general definitions that we use throughout the remainder of this thesis. The definitions
are taken from (Sutton and Barto, 2017). For brevity and clarity, we restrict ourselves
to discrete time, discrete action spaces and discrete state spaces. Each of these might
individually be altered to its continuous counterpart, but we refrain from further elaboration
given that our domain of experiments only requires the discrete definitions.

3.1 General definitions

Formally, we define the following:

State space The state space S is a finite set of states or a continuous state space. A state
is usually the part of the world that the agent observes. In the case of video games, the
state space might be given by all different pixel inputs that could be encountered during a
game.

Action space The action space A is a finite set of actions or a continuous action space.
These are the actions that the agent can take. For video games, this might correspond to
the joystick inputs that are possible. The joystick could in principle be controlled by an
actual robot, but it might also be controlled programmatically.

Model An environment’s model describes the exact transitions between states and might
be conditioned by the agent’s actions. Mathematically, this might be written as Pa

ss′ =
P[St+1 = s′|St = s,At = a]. For many problems, the model is not readily available. We will
come back to this issue later.

Reward function The reward function R describes the rewards that are associated with
a certain state or a certain state-action pair. Generally speaking, positive rewards reinforce
the agent to act in a certain way, while negative rewards should discourage the agent to do
so. The magnitude of the reward can express the relative importance of different reinforcing
or punishing signals.

Return The return Gt is the total discounted reward from time-step t:

Gt = Rt+1 + γRt+2 + . . . =
∞∑
k=0

γkRt+k+1, (3.1)
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where Rt+1 is the reward at time t and γ is the discount factor which is explained next.

Discount factor The discount factor γ ∈ [0, 1] describes how future rewards are dis-
counted. In the extreme case γ is either 0 or 1. When γ = 0, the agent considers only the
immediate reward, which is also referred to as a strictly myopic agent. When γ = 1 the
agent requires the problem to be finite in time, since otherwise the rewards might infinitely
accumulate. There are several reasons to have γ < 1. Firstly, it guarantees the fact that
rewards cannot infinitely accumulate, thus avoiding numerical overflow and allowing for eas-
ier mathematical analysis. Second, many problems in RL are solved reasonably well when
one considers only rewards in the near future. Moreover, the variance of the empirical re-
turns will be lower than the undiscounted case, allowing for more stable training of function
approximators.

Policy The policy π of the agent defines how the agent chooses its actions given the
observed states. It fully defines the behavior of an agent:

π(a|s) = P[At = a | St = s]

Ultimately, the agent should acquire the optimal policy. The optimal policy is the policy
that maximizes cumulative rewards (the return).

Markov decision process A reinforcement learning task that satisfies the Markov prop-
erty is called a Markov decision process (MDP). A system has the Markov property if the
probability distribution of the next state given some current state is fully determined by just
the current state and not by any other state i.e. P[St+1 | St, At, St−1, At−1, . . . , S0, A0] =
P[St+1 | St, At]. An MDP is defined by the tuple ⟨S,A,P,R, γ⟩. Hence the probability tran-
sition matrix as introduced above can be defined as Pa

ss′ = P[St+1 = s′ | St = s,At = a].

Value functions We often use value functions to solve reinforcement learning problems.
The state-value function Vπ(s) tells us the expected cumulative reward for being in state
s and following policy π. The state-action value function Qπ(s, a) gives us the expected
cumulative reward for being in state s, taking action a and then following π.

In an MDP, Vπ(s) is defined as

Vπ(s) = Eπ[Gt | St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣ St = s

]
, (3.2)

where Eπ[·] denotes the expected value of a random variable under the policy π. The
definition of Qπ(s, a) for an MDP is as follows:

Qπ(s, a) = Eπ [Gt | St = s,At = a] = Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣ St = s,At = a

]
. (3.3)

Optimality In reinforcement learning, the agent needs to learn optimal behavior. If we
consider a policy π and a policy π′, we have that π ≥ π′ if and only if Vπ(s) ≥ Vπ′(s) for
all s ∈ S. Since there is always at least one policy that is greater than or equal of value
compared to all other policies, we can say that this policy is optimal, which we denote by
π∗. It is evident that the corresponding value functions need to maximize their values over
all policies, meaning:

V∗(s) = max
π

Vπ(s), (3.4)

Q∗(s, a) = max
π

Qπ(s, a), (3.5)

are the optimal state-value function and the optimal state-action value function, respectively.
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3.2 Reinforcement learning algorithms

In order to find the optimal policy, one can use a range of methods. For example, the optimal
policy can be found by finding the optimal value function. The simplest of these methods
relies on policy evaluation and policy iteration. In policy evaluation, we want to know Vπ(s)
given π for all s ∈ S. Once we have determined Vπ(s), we can improve our current policy
based on the new estimated values such that Vπ′(s) ≥ Vπ(s) for at least some s ∈ S.

In practice, policy iteration is rarely suitable for the RL problem at hand. This is because
either the model is unavailable, or the state space S is simply too large for the algorithm to
find the optimal solution in reasonable time.

The remainder of this section discusses algorithms that can be applied in a model-free
manner. In many cases an environment model is not available. This is either because the true
dynamics are unknown or it is too costly to implement. Moreover, model-free algorithms
constitute a more general approach. Hence, the developments that can be made toward
improving model-free algorithms have the potential to be applied to more problems than
improvements that are made on model-based algorithms. Our experiments are restricted
to model-free approaches, which is why further discussion of model-based algorithms is not
included. The algorithms discussed below are basic and central to RL. The specific notation
and naming conventions are taken from (Sutton and Barto, 2017), which can be consulted for
further study. For a more detailed overview of relatively recent RL algorithms, see (Wiering
and Van Otterlo, 2012).

3.2.1 Monte Carlo evaluation and control

The first step towards a more practical approach is to omit the environment model and
learn from actual experience instead. The simplest of these methods is the Monte Carlo
evaluation algorithm. In this algorithm, the agent obtains an estimate of a value function
by generating a so-called episode that starts at some state S0 and ends in terminal state ST .
For every state (or state-action pair) that was part of this episode, we obtain an empirical
return. This return is then used to update the estimates of the value function.

One can express a Monte Carlo update mathematically:

V (St)← V (St) + α(Gt − V (St)), (3.6)

where α ∈ [0, 1] is a step-size parameter, often referred to as the learning rate. Alternatively,
we can use Monte Carlo control. Since we do not have an environment model now, we
cannot greedily act with respect to solely V (s). We need to act greedily with respect to
Q(s, a). However, if we behave purely greedily by always taking the action that maximizes
our expected reward, we are at risk of not exploring the parts of the state space that are
potentially much better. A straightforward trick is to act ε-greedily, which means that with
a probability of ε ∈ (0, 1] we choose a random action.

3.2.2 Temporal difference learning

Instead of generating a full episode from any state St for a single update, one can take only
a single step and use the estimated value of the next state V (St+1) to update V (St). This
is the idea behind the TD(0) algorithm. Its update rule is:

V (St)← V (St) + α(Rt+1 + γV (St+1)− V (St)) (3.7)

It is possible to unify TD(0) with Monte-Carlo by using n-step returns G
(n)
t . If we then

combine all n-step returns we can average them to obtain:

Gλ
t = (1− λ)

∑∞
n=1 λ

n−1G
(n)
t , where G

(n)
t =

∑n
k=0 γ

kRt+k+1 + γnV (St+n) (3.8)

where λ ∈ [0, 1]. The update rule now becomes:

V (St)← V (St) + α

(
Gλ

t − V (St)

)
(3.9)
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Equation (3.8) can be considered to be the forward-view of TD(λ). An alternative
approach is to use eligibility traces. For every state that is visited, we raise its eligibility,
as it has now gained some credit towards the final outcome of this episode. Then at each
step we update all s ∈ S. The updates are then in proportion to the single step TD-error
δt = Rt+1 + γV (St+1)− V (St) and the eligibility trace.

TD learning can also be applied to control. The TD(0) equivalent of this method is called
Sarsa. The generalization to Sarsa(λ) is completely analogous to the extension of TD(0) to
TD(λ).

Q-learning (Watkins and Dayan, 1992) differs from Sarsa in the sense that it always
chooses the state-action pair that maximizes the bootstrapped value of Q(s, a). Its update
rule is given by:

Q(St, At)← Q(St, At) + α

[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
(3.10)

In this case Rt+1 + γmaxaQ(St+1, a) can be seen as the target. Note that the targets in
Q-learning are greedy, while the agent will select actions in the same ε-greedy way as done
in Sarsa. Algorithms that use a different mechanism for selecting targets than for selecting
actions are known as off-policy methods while the alternative methods that use the same
mechanism for both are known as on-policy methods.

3.3 Function approximation

Section 3.2 discussed tabular methods for solving reinforcement learning problems. This
means that all states and actions are enumerated in a table-like fashion. The downside of
table lookup approaches is that there is no generalization across the state space. Hence,
in large state spaces it is intractable to use such methods, as there are simply not enough
resources to visit all states sufficiently often. For example, the game of Go has approximately
10200 different board states. Even a single dynamic programming evaluation iteration would
take an exorbitant amount of time.

In such cases, it helps to use function approximators for the value functions e.g. V (s) ≈
V (s;θ) and Q(s, a) ≈ Q(s, a;θ) where θ contains the adjustable parameters. The function
approximators make use of features that are either learned or manually engineered to allow
the algorithm to generalize across the state space. By generalizing, the algorithm transfers
knowledge learned for a particular state to similar states in the future, without necessarily
having seen them before. The next section elaborates on supervised learning, a common
application of function approximation that is useful for RL methods.

3.3.1 Supervised learning

Supervised learning (SL) is a branch of machine learning that considers problems in which
some input is related to a desired target. There is a vast amount of different SL algorithms,
too large to list here. For RL, it is relevant to consider linear SL methods and nonlinear
SL methods. Linear methods simply use a linear combination of features that are extracted
from some input. By combining features linearly, one can solve regression or classification
problems. Note that the Q(s, a;θ) and V (s;θ) functions are real-valued functions and so
approximating these functions comes down to a regression problem. Deep reinforcement
learning in particular is done with DNNs which are obviously highly nonlinear.

In RL, the simplest function approximator is a linear approximator where

v(s;θ) = ϕ(s)Tθ, (3.11)

in which ϕ(s) is a feature vector corresponding to the state s. An important property of
linear models is that they are guaranteed to converge to a least-squares fit of the actual
value function (Tsitsiklis et al., 1997). For neural networks, this guarantee has not been
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established and clearly, the optimization process is based on many assumptions that can
become challenging to combine with RL. For example, changing the weights at earlier layers
changes the input distribution for other layers later on, while there is no explicit mechanism
to account for these distribution shifts. Second, the gradients can be inaccurate because the
inputs in a batch only make up a small subset of the full input space. Thirdly, the fact that
the agent alters its behavior through time causes the input distribution to change as well.

Gradient descent

A very common method for DNN optimization is gradient descent (Cauchy, 1847). In
order to apply gradient descent, we need to define the loss-function first. The loss function
expresses the performance penalty of our SL model which we seek to minimize. See Section
2.2 for an introduction.

Note that the update rules that we encounter in reinforcement learning (such as Equation
(3.9) and (3.10)) can be framed in relation to gradient descent updates. We could define
the following parameter updates ∆θ for the range of algorithms discussed above:

• For Monte Carlo evaluation we have Gt as the target:

∆θ = α
(
Gt − V (s;θ)

)
∇θV (s;θ) (3.12)

• For TD(0) we have R+ γV (s′;θ) as the target:

∆θ = α
(
R+ γV (s′;θ)− V (s;θ)

)
∇θV (s;θ) (3.13)

• And for TD(λ) we have the λ-return Gλ
t :

∆θ = α
(
Gλ

t − V (s;θ)
)
∇θV (s;θ) (3.14)

3.3.2 Policy gradient methods

The algorithms discussed so far optimize performance by finding the optimal value function
from which the corresponding policy is derived. Policy gradient methods on the other hand,
seek to maximize some performance measure with respect to policy weights. In this case we
perform gradient ascent:

θ ← θ + α∇ξ(θ), (3.15)

Where α is the learning rate and ξ(θ) is the performance measure. In the case of discrete
action spaces a common way to parameterize the policy is to use an exponential softmax
distribution:

π(a | s;θ) =
exp(h(s, a;θ))∑
a′ exp(h(s, a′;θ))

, (3.16)

Where h(s, a;θ) is some function approximator. In a way this method predicts action
preferences. A major advantage of doing so is that it might converge to an optimal stochastic
policy, which is not possible when using e.g. ε-greedy action picking. Moreover, the policy
may be a simpler function to estimate than the exact Q-function, as the algorithm now only
has to figure out which actions work best, rather than what the expected return is for each
action.

Theorem

The policy gradient theorem is that (Sutton and Barto, 2017):

∇ξ(θ) =
∑
s

dπ(s)
∑
a

Qπ(s, a)∇θπ(a | s;θ), (3.17)

In which dπ(s) is the stationary distribution over π. In the episodic case, this corre-
sponds to the expected number of visits in an episode divided by the total number of
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states for that episode if we follow π.

The policy gradient theorem provides an analytical expression for the policy gradient which
can be used in gradient ascent.

The REINFORCE algorithm

The REINFORCE algorithm (Williams, 1992) is a Monte Carlo policy gradient algorithm.
Its update rule is given by:

θ ← θ + αγtGt∇θ log π(At | St,θ), (3.18)

which is motivated by the fact that:

∇ξ(θ) = Eπ

[
γGt
∇θπ(At | St,θ)

π(At | St,θ)

]
. (3.19)

An extension to this algorithm is to include a baseline that varies with a state. It can
be shown that the baseline subtraction does not cause the expected value of the gradient to
change as long as it does not vary with a. The update rule now becomes:

θ ← θ + αγt
(
Gt − b(St)

)
∇θ log π(At | St,θ) (3.20)

A common choice for b(St) is to use V (s;w), where w is the set of parameters for the critic.
This causes the updates to have a lower variance which should improve the stability of the
optimization through gradient ascent.

Actor-Critic methods

Actor-critic methods are similar to the REINFORCE algorithm with a value function as a
baseline, but are different in the sense that they also bootstrap. The ‘actor’ in this method
is π(a|s;θ) and the critic is V (s;w). Both the actor and critic learn on-policy.
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Chapter 4

State-of-the-Art Deep
Reinforcement Learning

The two former chapters have introduced deep learning and reinforcement learning which
are the two major components of deep reinforcement learning. Recently, deep neural net-
works have been successfully implemented in RL approaches. The reason for this delayed
introduction of deep learning to the field of RL, is mainly that it was unclear how to en-
sure that the networks were trained in a stable manner. For linear function approximators,
this was not a problem as much, since these functions are guaranteed to converge to their
optimal fit of the actual value function they approximate (Tsitsiklis et al., 1997). Through
surprisingly modest changes to the way in which these networks were trained, numerous
successful applications of DRL have been established and it currently is a popular field of
research.

In this chapter, we will discuss the foremost advances in DRL. As the field is still relatively
young, we are able to describe most of the major contributions in satisfying detail. First,
we will consider the deep Q-network (DQN) by (Mnih et al., 2013). We will see that their
research forms the basis of many other improvements as we discuss these in detail. Later
on, we elaborate on an actor-critic algorithm that accounts for the basis of our experiments
in Part II. For another extensive overview of deep reinforcement learning, see (Li, 2017).
There are other sources available that list state-of-the-art reinforcement learning algorithms
that are not necessarily combined with deep learning, such as the detailed work by Wiering
and Van Otterlo (2012).

The developments regarding DRL are discussed in a (roughly speaking) chronological
order. Many of the ideas presented here outperformed former state-of-the-art ideas at the
time they were published. If so, we will say they ‘outperform the state-of-the-art’ while
in fact later ideas discussed in this chapter might surpass the particular idea in terms of
performance. This structure is mainly intended for brevity, to avoid being repetitive and to
limit referring to individual performance differences.

4.1 Deep Q-learning in the arcade learning environment

The influential algorithm proposed by (Mnih et al., 2013) uses Q-learning (Watkins and
Dayan, 1992) with a function approximator Q(s, a; θ) and a replay memory D which consists
of experienced transitions (St, At, Rt+1, St+1). The replayed experience is adopted such that
data is reused for learning, rather than training on a single experience only once. In the
DQN network, the function approximator is trained to minimize the difference between its
prediction and the target given in equation 4.1

yt = Rt+1 + γmax
a′

Q(St+1, a
′;θt) (4.1)
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In which Rt+1 ∈ R is the immediate reward, γ ∈ [0, 1] is the discount factor, St+1 denotes
the new state at time t + 1, a′ is chosen such that the maximum Q-value as estimated by
the DNN is returned and θt is the parameterization of the function approximator. A major
problem with using such bootstrapped values of a nonlinear function approximator, is that
convergence to a good approximation is rare if it is trained naively. This is gradient descent
methods that are commonly used to train neural networks are based on an assumption
that the underlying distribution of a function to approximate does not change during the
training process. Obviously, if the target network itself is learning, the target distribution
changes. Moreover, subsequent observations and valuations of states or actions are highly
correlated, which can quickly lead to overfitting, as the data from a single batch is highly
biased towards the neighborhood of the current state in the state space. To this end, Mnih
et al. proposed to use a separate target network θ−, which contains snapshots of another
DQN that is continuously updated. The parameters θ− are only periodically synchronized
with θt. In other words, the target distribution is more constant compared to the naive
Q-learning approach, both by freezing the parameters and by averaging over the already
experienced transitions. Another important consideration is to use |A| different outputs,
where each output predicts the Q-value of an action from A. By doing so, only a single
forward pass is required to compute all Q-values. This is considerably more efficient than
computing a separate forward pass for each action.

Their experiments were performed in the Arcade Learning Environment (Bellemare et al.,
2013), which is a collection of Atari 2600 games designed to be a benchmark of artificially
intelligent (reinforcement learning) agents of which six different games were considered. Only
pixel inputs were used as state observations with some minor preprocessing steps. Since the
agent is dealing with grid-like inputs, they employed a CNN as their function approximator
with two convolutional layers, another fully connected layer and an output layer as described
above. A ReLU activation function was used for all layers. These games employ different
scoring systems, which is why all positive rewards were clipped at 1, all negative rewards at
-1, and all 0 rewards unchanged. This also eases up the hyperparameter optimization for
the algorithms, as the magnitude of the gradients does not vary significantly across games.

In (Mnih et al., 2015) a similar approach was explored on 49 different Atari games. Mnih
et al. dove further into stabilizing their network and they made it one layer deeper. First,
they increased the size of the network by adding another convolutional layer and increasing
the number of hidden neurons in the final fully connected hidden layer. Other than that,
they clipped their temporal difference error to be between −1 and 1 by which they argue to
improve the stability of the algorithm in terms of hyperparameter sensitivity.

The next subsections discuss several alternative approaches to the ALE which are mostly
based on the work by (Mnih et al., 2013, 2015). The ALE in particular is a good candidate
to show an algorithm’s generality in the sense that no feature-engineering is needed for the
algorithms and the same algorithm is applied to up to 49 different Atari games which can
be quite different in terms of appearance and complexity. It is important to realize that
there are several other platforms available for training reinforcement learning agents from
pixel input (Beattie et al., 2016; Wymann et al., 2000; Kempka et al., 2016; Synnaeve et al.,
2016). However, we have decided not to discuss the efforts on the latter frameworks in
detail, because they are typically more recent and, consequently, they involve less relevant
influential literature.

4.2 Reducing overestimations and variance

A problem that is both empirically and theoretically shown to be present in Q-learning is
that the Q-values that are learned can be highly overestimating the actual reward, which
slows down the learning process. This overestimations have been said to be caused by the
fact that the function approximator was not flexible enough (Thrun and Schwartz, 1993),
or because of noise (Hasselt, 2010). In (Van Hasselt et al., 2015), it is show that these
overestimations can have a considerable negative effect in many cases. In their paper, they
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extend on the tabular version of the double Q-learning algorithm (Hasselt, 2010), such that it
is applicable to function approximation. In double Q-learning with function approximation,
the target is changed to:

yt = Rt + γQ(St+1, arg max
a

Q(St+1, a;θt);θ
′), (4.2)

Where θ′ is another set of weights. For each minibatch in training, the role of θ and θ′ might
be randomly switched. They show that adopting double Q-learning exhibits state-of-the-art
performance by improving on DQN in the Atari domain.

Another way of reducing overestimations and variance is introduced in (Anschel et al.,
2016). They provide theoretical arguments for the reduction of variance through averaging
a set of DQN target networks that are simply previously stored checkpoints of the DQN
network. They show that their averaged DQN target yields lower value estimates that are
typically more stable through time. Moreover, the algorithm exhibits superior performance
compared to DQN across a handful of Atari games.

4.3 Prioritized replay memory

Perhaps not surprisingly, the magnitude of gradient descent updates that occur during a
training process for a DQN agent vary largely across states, depending on how well the
function approximator predicts in that particular part of the state-action space. Therefore,
it is likely that there are transitions in the replay memory that are more useful than others,
simply because the error in that particular case was larger. This observation was the main
motivation behind developing the prioritized experience replay DQN agent (Schaul et al.,
2015), partly inspired by the work of Moore and Atkeson (1993). By prioritizing the right
transitions, learning can be significantly sped up. To that end, Schaul et al. propose to
measure the importance of an update by the magnitude of the temporal difference error.
The priority of picking a transition is given by P (i) = pαi /

∑
k p

α
k in which pαi is the priority

of transition i. In their paper, Schaul et al. explore the effectiveness of using proportional
prioritizing where pi = |δi|+ϵ with ϵ > 0 to make the probability guaranteed to be nonzero or
rank-based prioritizing with pi = 1/rank(i). They show that their method outperforms the
double Q-learning approach from (Van Hasselt et al., 2015) and that rank-based prioritizing
works better than proportional prioritizing.

A similar approach is adopted in the work by (Narasimhan et al., 2015). Although their
application domain is not the ALE, they employ a DQN with prioritized sampling which
was also inspired by the prioritized sweeping method of (Moore and Atkeson, 1993). They
distinguish between positive and negative rewards in the replay memory and sample a certain
fraction ρ from the positive rewards and 1− ρ from the remaining experiences. Narasimhan
et al. also show that using a prioritized experience replay memory can significantly improve
the agent’s performance.

4.4 Adaptive normalization of targets

As discussed previously, the rewards of the games in Atari were clipped to be in the range of
[−1, 1] (Mnih et al., 2013, 2015). By doing so, Mnih et al. were able to find a hyperparam-
eter setting that would yield good performance across almost all 49 Atari games. However,
there are a few drawbacks of introducing this clipping mechanism. First of all, it is domain
specific. Many Atari games have rewards that go outside the range of [−1, 1]. By performing
this clipping we are no longer optimizing the sum of rewards directly, but rather indirectly
through maximizing the frequency of positive rewards compared to negative rewards. Con-
sider the two episodes of three states in which we obtain the following rewards and have
no discount: {+2, 0,+2}, {+1,+1,+1}. Note that the first episode would result in a higher
return if no clipping was used, whereas the second episode would be preferred if we do use
clipping.
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In (Van Hasselt et al., 2016) the authors establish a method to alleviate this dependency
with theoretical justifications. By adaptively normalizing the targets and preserving the
transformations to exactly reconstruct the actual output, they are able to robustly train the
same DQN architecture without reward clipping. Perhaps surprisingly, they find that the
improvement in the Atari domain is not consistent across all 49 games. For several games,
the normalization strategy yields worse results. The authors suspect that this might be due
to the fact that the optimal strategy is sometimes reached sooner when preferring reward
frequency (clipped) over the exact reward value (normalized).

4.5 Massive parallelization

In (Nair et al., 2015), the authors propose a distributed architecture named Gorila for mas-
sively parallel reinforcement learning. Their architecture consists of (i) actors that have a
locally accessible replica of the Q-network, (ii) experience replay memory that contains ex-
periences that are gathered by the actors, (iii) learners that compute the gradients and have
a target Q-network and (iv) a parameter server which is a distributed storage of parameters
and it is responsible for applying the gradient updates. They not only show a significant
speed up of training time, but the method also yields agents that play considerably better
when given the same amount of input frames.

4.6 A dueling network architecture

In the work by (Wang et al., 2015), a dueling network architecture is introduced. The dueling
network architecture is effectively a Q-network with explicit inheritance of a separate value
estimate and an advantage estimate. Interestingly, they also explore a combination of this
method and the prioritized replay memory from (Schaul et al., 2015). They show that the
combination of these methods yields state-of-the-art performance in the ALE, outperforming
all previously discussed methods.

4.7 Encouraging exploration

An important consideration in RL in general is that an agent should have the right balance
between exploration (covering parts of the state space that are not well known to potentially
discover a better policy at the risk of a decreased return), and exploitation (acting greedily
with respect to the currently obtained value estimates such that the expected reward under
that valuation is optimal at the risk of not discovering better alternatives). As pointed
out by (Osband et al., 2016), a DQN can suffer from an insufficient exploration strategy.
They propose a bootstrapped DQN neural network architecture. In their approach, the
neural network has the same hidden layers as the standard DQN from (Mnih et al., 2015).
However, at the end Osband et al. have K different ‘heads’ that each have their own Q-value
estimates and their own targets. During training, the agent randomly chooses one amongst
these heads and executes a full episode. Each experience that is added to the replay buffer
is accompanied with a bootstrap mask, which determines which of the K bootstrap heads
will be involved in actually updating the parameters based on the new experience. They
demonstrate how this technique yields networks with a better exploration, outperforming
the DQN form (Mnih et al., 2015) across most games in the ALE.

4.8 Optimality tightening

He et al. (2016) directly address the sparsity and delay of the reward signal in reinforcement
learning tasks by augmenting the objective function with some additional terms that consider
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long-term future and past rewards as well. By doing so, rewards are propagated faster. To
see why, if we look at the standard target of a Q-learning agent we have:

yDQN
j = Rj + γmax

a
Q(Sj+1, aj ;θ). (4.3)

It is evident that information only travels from state sj+1 to sj . For this reason He et al.
(2016) propose to make use of the following inequality:

yDQN
j = Rj + γmax

a
Q(Sj+1, aj ;θ) ≥ · · · ≥

k∑
i=0

γiRj+i + γk+1 max
a

Q(Sj+k+1, a) = Lj,k,

(4.4)
which provides a lower bound of the target Lj,k. Intuitively, this inequality is valid since the

empirical part (
∑k

i=0 γ
iRj+i) should not be greater than the difference between the single

step bootstrapped return at state j and the discounted return at state Sj+k+1. Similarly,
they also define an upper bound by looking at preceding rewards. These bounds are then
used to minimize the Bellman equation with respect to constraints Q(s, a;θ) ≥ Lmax

j =

maxk∈{1,...,K} Lj,k and Q(s, a;θ) ≤ Umin
j = mink∈{1,...,K}. They show that across the 49

Atari games, the performance is better than a default DQN (Mnih et al., 2015) and compa-
rable to the double Q-learning method (Van Hasselt et al., 2015) which were both trained
for 10 times as long.

4.9 Asynchronous methods

Despite the significant successes that have been obtained through the usage of a DQN with
an experience replay memory, the replay memory itself has some disadvantages. First of
all, a replay memory requires a larger amount of computer memory. Second, the amount of
computation per real interaction is higher and third, it restricts the applicable algorithms to
be off-policy RL methods. Mnih et al. (2016) introduce asynchronous algorithms for DRL.
By running multiple agents in their own instance of the environment in parallel, one can also
decorrelate subsequent gradient updates. This opens the way for on-policy methods such as
Sarsa, n-step methods and actor-critic methods. A major disadvantage of using single step
methods is that in the case of a reward, only the value of the current state-action pair (s, a)
is affected directly, whereas n-step methods directly update the valuation of multiple state-
action pairs. Mnih et al. (2016) show that an asynchronous advantage actor-critic (A3C)
design outperforms all previously mentioned approaches in the ALE in less training time.
Their best performing model uses a similar architecture as (Mnih et al., 2015), but with
an additional LSTM layer preceding the output layer. Note that the output layer contains
both the critic’s output and the actor’s output. Other than that, Mnih et al. (2016) explore
the A3C model in other domains such as a Labyrinth environment which is made publicly
available by (Beattie et al., 2016), the TORCS 3D car racing simulator (Wymann et al.,
2000) and MuJoCo (Todorov et al., 2012) which is a physics simulator with continuous
control tasks. The wide applicability of their approach supports the notion that the A3C
algorithm is a robust DRL method.

There are a number of notable extensions of the A3C method. Jaderberg et al. (2016)
show that the performance of A3C can be substantially improved by introducing a set of
auxiliary RL tasks. These tasks constitute pseudo-rewards that are given for feature control
tasks and pixel control tasks. Given a set C of these tasks, let c ∈ C be a task from this set
and let π(c) be the corresponding policy for that task. The objective is now defined as:

arg max
θ

Eπ[R1:∞] + λC
∑
c∈C

Eπ(c) [R
(c)
1:∞] (4.5)

where R
(c)
t:t+n is the discounted return for the auxiliary reward r(c). For each task c an n-step

Q-learning loss is optimized. In the pixel control task an agent is learned to maximize the
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pixel change in a set of n×n non-overlapping cells of the input image. By similar reasoning,
they define feature control as a task with the objective to maximize the change of specific
hidden neural units. In addition to these control tasks, the agent is given the task of reward
prediction, which comes down to a supervised learning task in which the agent predicts
sign(Rt+1) given a subset of the state history. For improving data-efficiency, they adopt
experience replay for the auxiliary tasks as well as value function replay, which is effectively
an off-policy value regression that improves the value estimator of the actor-critic network.
Experience replay also provides sampling freedom to ensure that different targets for the
reward prediction task are equally represented in the training curriculum. The loss function
of the UNREAL algorithm is given by:

LUNREAL(θ) = LA3C + λVRLVR + λPC

∑
c

L(c)
Q + λRPLRP (4.6)

where LA3C is the A3C loss, λVRLVR is the weighted value function replay loss, λPC

∑
c L

(c)
Q

is the auxiliary control loss and λRPLRP is the reinforcement signal prediction loss. Although
adding these auxiliary tasks yields an agent that learns faster, the newly introduced loss co-
efficients need careful and costly tuning. Jaderberg et al. (2016) show that reward prediction
contributes most to the improvement over A3C, whereas pixel control had the least effect
of improvement.

4.10 Policy gradient Q-learning

In (O’Donoghue et al., 2016) the authors establish an analytical connection between action-
value and actor-critic methods with entropy regularization as in (Mnih et al., 2016). By
combining the merits of Q-learning and policy gradient methods, the authors propose a
Policy Gradient and Q-learning (PGQL) method. By including Q-learning, the authors
can make use of a replay buffer and prioritized experience replay. They parameterize the
Q-estimate as follows:

Q(s, a;θ,w) = α

(
log π(s, a;θ) +Hπ(s)

)
+ V (s;w) (4.7)

In which H is the regularization entropy, π and θ and w are the parameters of the policy
and value estimates respectively.

4.11 Episodic control

Although part of the research in (Blundell et al., 2016) does not rely on deep learning,
their results show that brain inspired algorithms for reinforcement learning can yield agents
that perform remarkably well on the Atari domain. The authors propose a new method for
reinforcement learning which aims to rapidly memorize previous experiences by explicitly
storing feature vectors in a growing Q-table. Whenever the current feature vector already
exists in the table, the new Q-value in the table is found by taking the maximum of the
old Q value and the currently experienced return. When the current feature vector does
not yet exist, the table is extended with this feature vector and the corresponding return.
It is important to realize that these greedy updates would result in poor performance in
non-deterministic environments.

For determining the Q-values during action selection, the algorithms copies the Q-value
from the table when the feature vector is present and otherwise it averages the Q-values
of k nearest neighbors. The authors show that both random projections of the raw pixel
values and the embeddings obtained from a variational auto encoder (VAE) provide useful
feature representations that outperform many previous approaches, especially in the early
training episodes. Interestingly, the authors used a discount factor of γ = 1 allowing for a
more direct optimization of the total score.
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As an alternative to the nearest neighbor mechanism in (Blundell et al., 2016), the
neural episodic control (NEC) as presented in (Pritzel et al., 2017) performs lookups using
an attention mechanism that takes Q-values by matching an embedding vector h to key
vectors ki. Each key vector is accompanied with a Q value. The Q values from the table are
combined by taking a weighted average over the Q values of the 50 nearest key vectors ki

where the weights are given by the normalized distance between h and ki. The embedding
vectors are the hidden activations of the last hidden layer of a DNN that has the same
architecture as (Mnih et al., 2013). The authors show that NEC outperforms most previously
mentioned approaches across 49 Atari games.
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Part II

Experiments
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Chapter 5

General Implementation

In this chapter we will discuss our general implementation in detail. The material here
is general in the sense that all specific experiments and research questions depend on the
design decisions discussed here.

5.1 Asynchronous advantage actor-critic

The baseline RL model for our experiments will be the asynchronous advantage actor-critic
method (A3C) as proposed by (Mnih et al., 2016). This model has already been introduced
briefly in Section 4.9. Since this model is so important to our experiments here, we will now
cover it in detail.

The A3C method is asynchronous in the sense that multiple RL agents are deployed
in their own instance of the environment. Each agent has its own ‘local’ copy of a deep
neural network (which is discussed further in Section 5.2). The agent itself runs an actor
learner thread that is similar to the standard advantage actor-critic algorithm. An important
difference is that the parameter updates that are computed by the agent are sent to a global
network that is shared between all agents. Note that by the definition taken from (Sutton and
Barto, 2017), an actor-critic algorithm is also an n-step method. Similar to the approach that
is taken in (Mnih et al., 2016), the baseline model will be implemented with the forward-view
of n-step returns. An actor acts for five steps after which a parameter update is computed
for the currently obtained batch. This parameter update is then sent to the global network.
As pointed out by Mnih et al., the global network update can be done without actual thread
locking. Although this might entail occasionally unpredictable behavior of gradient updates,
they empirically found that this effect was more than compensated by the relative speed up
due to less thread handling overhead.

The A3C learner thread algorithm is listed in Algorithm 1. Note that Tmax is a hyper-
parameter that is specified beforehand. There is an additional term β∇θ′H(π(st;θ

′)) added
to the gradient update accumulate dθ of the policy network, where H(π(st;θ

′)) denotes the
entropy of the policy and β is a weighting factor for the entropy loss. This is suggested by
(Mnih et al., 2016), as it encourages exploration.

5.2 Deep neural network

For most of our experiments, we will adopt the architecture as presented by (Mnih et al.,
2013). This architecture may have been outperformed by the slightly deeper neural network
by (Mnih et al., 2015), but this is solely true for deep Q-learning. The A3C method has
been shown to outperform the deeper architecture from (Mnih et al., 2013).
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Algorithm 1 Asynchronous advantage actor-learner thread

1: // Assume global shared parameter vectors θ and θV and global shared counter T = 0
2: // Assume thread-specific parameter vectors θ′ and θ′

V

3: repeat
4: Reset gradient updates: dθ ← 0 and dθV ← 0.
5: Synchronize thread-specific parameters θ′ ← θ and θ′

V ← θV

6: tstart = t
7: Get state st
8: repeat
9: Perform at according to policy π(at|st;θ′)

10: Receive reward Rt and new state st+1

11: t← t+ 1
12: T ← T + 1
13: until terminal st or t− tstart == tmax

14: G =

{
0 for nonterminal st

V (st;θ
′
V ) for non-terminal st i.e. bootstrap from last state

15: for i ∈ {t− 1, . . . , tstart} do
16: G← Ri + γG
17: dθ ← dθ +∇θ′ log π(ai|si;θ′)(R− V (si;θ

′
V )) + β∇θ′H(π(st;θ

′))
18: dθV ← dθV + λV ∂(G− V (si;θ

′
V ))2/∂θ′

V

19: Perform asynchronous update of θ using dθ and θV using dθV

20: until T > Tmax

5.2.1 Neural network architecture

The simplest architecture that we consider in our experiments is the architecture as shown
in Figure 5.1. This architecture is feed-forward, so it does not have any recurrent layers. The
first hidden layer is a convolutional layer with 8× 8 convolutions and a stride of 4× 4 with
32 kernels. The second hidden layer is also a convolutional layer with 4×4 convolutions and
a stride of 2× 2 and contains 64 kernels. The third hidden layer is fully connected, contains
256 neurons and takes the flattened output volume of the second layer as input. The final
hidden layer is followed by two output streams: one for the actor and one for the critic. The
actor’s output is a softmax policy output with |A| neurons which gives the probability of
performing each action and the second output is the value approximator (which is obviously
linear). All hidden layers use ReLU activation functions (Nair and Hinton, 2010).

Input

↔ 4

Conv. 1

↔ 32

Conv. 2

↔ 64

↕ 256

FC 3

↕ |A|

π(s, a)

↕ 1

V (s)

Figure 5.1: A schematic view of the A3C FF network. All hidden layers use ReLU activation
functions, while the value function uses a linear output activation function and a softmax
is applied to the policy output. The kernel sizes are 8× 8 and 4× 4 for the first and second
layer, respectively. The corresponding strides are 4× 4 and 2× 2.
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(a) Breakout (b) Pong (c) Beam Rider

Figure 5.2: Screenshots of Atari games that were considered in our experiments. When
viewed in Adobe Acrobat Reader, Pong and Breakout are animated.

5.2.2 Optimization

Our network will be optimized using the RMSprop algorithm (Tieleman and Hinton, 2012)
in which we share the running averaged gradient across all learner threads. This decision is
motivated by the observations done by (Mnih et al., 2016), who concluded that this yielded
better performance than using a separate RMSprop optimizer for each actor-learner thread.
The equations for this algorithm are listed in Section 2.2.3.

5.3 Arcade environment interface

Part of our experiments will be done on a subset of Atari 2600 games from the Arcade
Learning Environment (ALE) (Bellemare et al., 2013). Since our implementation is written
in Python code, we adopted the gym package as released by (Brockman et al., 2016). This
package provides a high level programming interface to the Atari 2600 games. We follow
previously discussed approaches by using action repeats. This means that in order to simplify
the environment interaction and to decrease the computational load of the algorithm, we
choose to repeat each action for 4 frames after picking it according to our current policy.
Other than that we perform some simple preprocessing. A state is given by taking the last k
frames. For each of these frames we first deal with some Atari emulator artifacts that cause
objects to be invisible in some frames by taking the max pixel value of the current frame
and the previous frame for each pixel location. Then, we extract the luminance channel and
resize the 160 × 120 input frames to 84 × 84. The state is given by concatenating the k
resulting preprocessed frames. Figure 5.2 displays the subset of games that are considered
in the experiments. Both Breakout and Pong are animated when viewed in Adobe Acrobat
Reader1.

5.4 A simple game for fast experimenting

For a lot of the Atari games that are available through the ALE, convergence towards a
good policy can take a significant amount of time, often requiring over 30 million frames.
For testing and hyperparameter tuning purposes, we have implemented the game Catch
as described in (Mnih et al., 2014). In our version of the game, the agent only has to
catch a ball that falls from top to bottom, potentially bouncing off walls. The world is a

1https://get.adobe.com/nl/reader/
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Figure 5.3: Image of Catch game. To see the animated version, use Adobe Acrobat Reader.

Table 5.1: Overview of default settings for hyperparameters as used in our experiments.

Name Symbol Value

Learning rate η 7 · 10−4

Discount factor γ 0.99

RMSprop root mean square decay ρ 0.99

RMSprop stability constant ϵ 0.1

Entropy factor β 0.01

Value loss factor λV 0.5

Steps lookahead tmax 20

Total steps ALE Tmax 1 · 108

Total steps Catch Tmax 1 · 106

Frames per observation NA 4

Action repeat ALE NA 4

Action repeat Catch NA 1

Number of threads NA 12

24 × 24 grid where the ball has a vertical speed of vy = −1 cell/s and a horizontal speed
of vx ∈ {−2,−1, 0, 1, 2}. If the agent catches the ball by moving a little bar in between the
ball and the bottom of the world, the episode ends and the agent receives a reward of +1.
If the agent misses the ball, the agent obtains a zero reward. With such a game, a typical
run of the A3C algorithm only requires about 15 minutes of training time to reach a proper
policy. For our experiments, we resize the 24 × 24 world to have the size of 84 × 84 pixels
per frame. See Figure 5.3 for an impression of the game.

5.5 Default hyperparameters

There are many hyperparameters that need to be set. Table 5.1 provides an overview. Most
of these parameters were copied from (Mnih et al., 2016) with the exception of the number
of threads and the amount of lookahead steps, which is motivated by the configurations in
(Jaderberg et al., 2016).
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Chapter 6

Neural Designs for Deep
Reinforcement Learning

An appealing property of DRL algorithms as opposed to many other RL approaches, is
that DRL algorithms require no manual feature engineering. On the other hand, manu-
ally engineered features can be more appropriate for the task at hand. Moreover, they
can be combined with linear function approximators, so that the algorithm as a whole is
guaranteed to converge under the right theoretical conditions (Tsitsiklis et al., 1997). Since
the introduction of the DQN algorithm, many other ideas in DRL have been explored (see
also Chapter 4). However, to the best of our knowledge, there has not been an extensive
comparison of DNN architectures for DRL. This chapter will attempt to characterize the
dependency of an agent’s performance on DNN design decisions. We will address the first
main research question of this thesis: To what extent do architectural design decisions and
hyperparameters of an agent’s deep neural network affect the resulting performance?

Note on experiment setup This chapter is structured by discussing each variation to
the default A3C FF architecture briefly together with the outcomes of one or more parameter
sweeps. The parameter sweeps required fast experimenting, which is why in these sweeps
Catch (see Section 5.4) was used as the test-bed. All parameter sweep plots are created
with at least 50 to a 100 different runs. For each run the parameter was either sampled
from a uniform distribution or a log-uniform distribution. In the concluding section of
this chapter, we compare a few architectural designs on a small set of Atari games. The
exact configuration of these alternative architectures are motivated by the outcomes of the
parameter sweeps on Catch.

It is important to stress that the equations in this chapter do not include a batch index
for the tensors, as the batch index does not contribute to further explanation of the ideas
introduced here and might even be distractive for that reason.

6.1 Local weight sharing

Intuitively, the idea of shared weights in the visual cortex seems to be extremely restrictive
and implausible to be identical to the ‘hard’ weight sharing that can be found in convolutional
neural networks. Especially the fact that biological processes would be able to govern the
synapses by such extent that they are exactly the same across all receptive fields of the
visual cortex seems a questionable assumption.

Alternatively, one could use locally connected layers (van den Dries and Wiering, 2012;
Taigman et al., 2014). Locally connected layers also use local connections such as those
found in convolutional layers. However, in locally connected layers, there is no weight sharing
between these neurons. This allows for local specialization that can be advantageous if the
spatial structure of the data remains constant through the full input space. In (Taigman
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et al., 2014) such consistency is ensured by considering face verification in which they use
a frontalization algorithm to preprocess images of faces such that the faces all appear to
be facing the camera. Taigman et al. (2014) argue that their locally connected layers yield
improved performance over convolutional layers or fully connected layers. Presumably, this
improvement is due to the local specialization of hidden neurons that would have been
impossible with convolutional layers given their explicit weight sharing. In (van den Dries
and Wiering, 2012), local connections were used so that certain hidden neurons consider
only a subset of inputs for an Othello playing agent. In that case the local connections were
mainly intended for reducing the amount of parameters.

On the other hand, using locally connected layers clearly has two disadvantages compared
to convolutional layers: they have more parameters which makes them prone to overfitting
and the fact that these are locally unique prohibits the use of a convolution operation to
compute the activations efficiently. To this end, we now propose a novel layer that can be
seen as a compromise between a convolutional layer and a locally connected layer which we
call a local weight sharing layer.

6.1.1 Local weight sharing layer

Instead of the global weight sharing that forces all weights to be exactly the same irrespective
of the spatial location which is normally found in convolutional layers, a local weight sharing
layer uses kernels that are each given a centroid. For brevity, we will refer to these units
as kernel centroid pairs (KCP). We want the activations of neurons near a KCP’s centroid
to be close to those that would have been obtained when using the KCP’s kernel, and less
like the activations that would have been obtained when using the kernels of more distant
KCPs. Additionally, when a spatial location is somewhere in between two centroids, it
should inherit some of the weights of both kernel centroid pairs.

We can accomplish this by defining a similarity function that is defined on the spatial
domain of the convolutional output. The column and row indices will be translated to
Cartesian coordinates which will be used to compute local weighting coefficients. In a local
weight sharing layer, each KCP first computes its activation, just like a single convolutional
layer would do. Then, we linearly combine the results of these KCPs by using spatial
coefficients which are determined by the spatial cells in the output tensors with respect
to the centroids of each KCP. As a result, when a spatial cell is close to a certain KCPs
centroid, its local kernel will look most like the kernel of that particular KCP. Note that each
locally determined output is still factored by several convolution kernels. Hence, to a certain
extent, one could regard this as soft weight sharing or distance based weight sharing. This
should result in a gradual change of local kernels when moving from centroid to centroid,
allowing the features to be significantly more complex with relatively few extra parameters.
Mathematically, we define the output of a spatial weight sharing layer as follows (where we
do not include a batch dimension):

Y = f

(
S−1∑
s=0

(
Ws ∗ X⊕ bs

)
⊙ Ss ⊘ S̄

)
, (6.1)

where Y is the output tensor, f is the activation function, Ws are rank 3 weight tensors, X
is the rank 4 input tensor, S is a rank 4 similarity tensor with Sb,i,j,c = ς(i, j, is, js) where
(is, js) parameterizes the centroid of the feature map in the case of feature-wise local sharing
or the centroid of the kernel group in case of group-wise local sharing. Note that ⊕, ⊙ and ⊘
denote element-wise addition, multiplication and division with optional broadcasting along
singleton dimensions. The function ς gives the ‘similarity’ of a spatial cell located at (i, j)
with respect to some convolution’s centroid (is, js). Finally, the S̄ tensor contains the sum
of the similarities of all KCPs, such that we still preserve the spatial and feature dimensions.
By dividing element-wise by S̄, the contributions of all KCPs always add up to 1 for each
neuron in the output volume.
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The function ς is defined as:

ς(i, j, is, js) = exp
(
− (x− µs)

⊤Σ(x− µs)
)
, (6.2)

where µs = [is, js]
⊤ and x = [i, j]⊤. The Σ matrix is initially set to the identity matrix

I2. When we allow the centroids µs to be trainable in our experiments, we also allow the
elements of Σ to be trained through gradient descent.

For a graphical illustration of what happens before the activation function is applied, see
Figure 6.1. The image displayed here corresponds to a feature-wise configuration for S.

We perform experiments with feature wise configurations as shown here, but we also
investigate KCP group-wise configurations. In the KCP group-wise configuration, there
would only be a single surface plot for the red and blue convolution features in Figure 6.1.
This means that all KCPs in a kernel group have the same centroid. It is interesting to
see whether the network can also learn optimal centroids by also letting (is, js) and Σ be
trainable parameters.

Figure 6.2 illustrates what the locally weighted kernels look like. In this case a network
with a single spatial weight sharing layer was trained on the MNIST handwritten digit
dataset. In this case, the centroids were not trainable. However, we can increase the
network’s complexity by letting it learn the positioning of the centroids. This can amount
to complex patterns of locally weighted kernels.

�

�

Convolution output Spatial coefficients

Summed and normalized

Figure 6.1: Graphical depiction of what is computed inside a spatial weight sharing layer.
For simplicity, we have drawn the situation for only two sets of kernel centroid pairs in a
feature-wise configuration. First we have the two output volumes of convolutions on the
left. These are multiplied element-wise with tensors that contain the spatial weight sharing
coefficients, denoted Ss in equation 6.1 and depicted with surface plots in the middle of
the figure. On the right we see a visualization of the spatially normalized output, which is
obtained through the element-wise multiplication with Ss, followed by summing over all s
element-wise and normalizing with S̄ (see equation (6.1)).

6.1.2 LWS architectures

In our experiments, we consider three different architectures. All LWS architectures use
LWS layers with 3 randomly initialized groups of KCPs. The first architecture also uses
trainable centroid locations (is, js) and a feature-wise configuration within a KCP (LWS +
T + FW), the second architecture uses a per-feature configuration without the trainable
centroids (LWS + FW). The third architecture uses a group-wise configuration within a
KCP (LWS + T + GW). For all LWS architectures, we have replaced the convolutional
layers as found in the default architecture for A3C FF with LWS layers. The first LWS
layer of the network has 32 output feature maps, meaning that there are 32 · 3 convolution
kernels of dimensions 8× 8× 4. The second LWS layer of the network has 64 output feature
maps, meaning that there are another 64 · 3 kernels of dimensions 4 × 4 × 32. The default
A3C FF architecture has 1,336,320+256|A| parameters, whereas the LWS architectures have
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Figure 6.2: Locally weighted kernels from a spatial soft weight sharing layer where the
centroids were allowed to vary.

1,449,984+256|A| parameters (excluding the kernel centroids). Although the amount of
kernels is 3 times as large, the dimensions of the LWS layer’s output volume is the same as
that of the convolutional layers. Since the majority of the weights is at the fully connected
layers, the LWS architectures have only slightly more parameters.

6.1.3 Performance analysis on Catch

One of the motivations behind the idea of the spatial weight sharing layers is that neurons
can locally specialize for certain kinds of input patterns. For such local specializations of
neurons to be advantageous, we require the input data to have the same spatial structure
throughout the whole dataset. Fortunately, the frames from a single Atari game have this
property to a certain extent. For example, in the game Breakout, the player’s bar with which
he/she should hit the ball is always at the bottom of the screen. We also tested our local
weight sharing layer on gender recognition using the Adience dataset (Levi and Hassner,
2015). The corresponding results are listed in Appendix B and suggest that these layers can
yield superior performance when compared to convolutional layers for such tasks.

Figure 6.3 provides the results of a learning rate sweep on the Catch game. For each
of the learning rate sweeps that follow, similar extrema were used for the parameters. In
the case of the learning rate η, we sampled a learning rate randomly from a log uniform
distribution between 10−6 and 10−2. It can be seen that in the range above 10−3, the
LWS models seem to slightly outperform the default A3C FF architecture. Apparently this
architecture is slightly more robust to higher learning rate settings. This could be explained
by the fact that the random initialization of the kernels will cause the KCP activations to
cancel out when computing the sum per spatial cell. This will then yield activations that
are typically lower on average than a convolutional layer would have. Apart from that, the
slight improvement might be the consequence of using a more flexible layer that allows for
spatial specialization.

6.2 Spatial softmax

A spatial softmax layer was initially proposed in the context of deep learning for robotic
control (Levine et al., 2016). This layer downsamples a feature map into coordinates in
Cartesian space (xk, yk). It accomplishes this by computing a softmax output per feature
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Figure 6.3: Comparison of local weight sharing models vs. default A3C FF model. The
plot shows a smoothed curve for the mean score on 20 evaluations (upper left) and the
mean score on the final 5 evaluations (upper right) taken during the training of 1 million
frames for different learning rates. The bar plot below reports the mean score of the final
5 evaluations averaged over all learning rates between 10−5 and 10−2. It can be seen that
the performance of the LWS model is comparable. for the higher learning rates, the LWS
models tend to perform better than the default A3C FF architecture.

map, after which the softmax output is multiplied by a mesh grid that contains the coordi-
nates (xij , yij) for the spatial locations in the feature map. In other words, for each output
feature map Fk, we compute the softmax ψ(Fk). Then, we compute the layer’s output as:(

Y2k

Y2k+1

)
=

( ∑
ij(ψ(Fk)⊙ Cx)ij∑
ij(ψ(Fk)⊙ Cy)ij

)
for k = 1, . . . ,K, (6.3)

where the output tensor Y is a 1D concatenated array containing all pairs of Y2k,Y2k+1 and
the row and column indices are denoted i and j respectively. The Cx and Cy tensors contain
the Cartesian coordinates for the x and y axis, respectively. Finally, K is the total number
of features in the layer’s input. In our implementation, the Cartesian coordinates are placed
at equidistant points in the range of [−0.5, 0.5] for both axes. The softmax function will be
applied feature-wise, so it can be expressed as:

ψ(Fk)ij =
exp(Fkij/τk)∑
uv exp(Fkuv/τk)

for k = 1, . . . ,K (6.4)
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(a) Input (b) Linear convolution (c) Softmax output
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Figure 6.4: Schematic visualization of the processing in a spatial softmax layer. The order of
transformations can be read from left to right. Note that this process occurs for all feature
maps. The image is a frame taken from the BeamRider game.

in which i and u are row indices, j and v are column indices and τk is the softmax tem-
perature parameter that controls the steepness of the function. The different phases in
the computation described by Equations (6.3) and (6.4) are visualized in Figure 6.4. In
our experiments, we consider different configurations for this τk parameter. Note that this
parameter is subscripted with k and so in principle we allow each feature to have its own
temperature. In our experiments, we allow τk to be trained by gradient descent.

Intuitively, these layers will be especially useful in situations where the relative position
of different objects in the input frames will be crucial for determining the optimal policy.
Therefore, they seem to be a good candidate component of a DNN for an actor-critic agent
in the ALE environment.

6.2.1 Spatial softmax architectures

We consider several designs for DNNs that use spatial softmax layers. First of all, we have
a model in which the second convolutional layer is replaced by a spatial softmax layer. The
remainder of the architecture is identical to that of A3C FF. We refer to this architecture
as A3C SS (spatial softmax). A second architecture draws inspiration from the dedicated
dorsal and ventral streams of information in the visual cortical areas of the human brain
(Mishkin et al., 1983; Ungerleider and Haxby, 1994). The ventral stream is also referred
to as the what pathway and the dorsal stream as the where pathway. The ventral stream
is mostly responsible for object recognition and requires high resolution representations.
These are typically provided by default convolutional layers. The dorsal stream is mostly
responsible for the spatial aspects of vision, such as the relative position of salient objects
in the scene. Such representations could be provided by the spatial softmax operation. The
novel architecture is referred to as the A3C WW (what and where). It applies a spatial
softmax operation to 32 of the 64 feature maps and a ReLU nonlinearity to the other 32
feature maps. The remainder of the model is identical to A3C FF. Other than that we
explore a few variations on the A3C SS model. We will consider a model with trainable
temperature for every feature map (A3C SS TT) and a model with a global temperature
that is trainable (A3C SS GT TT).

Performance analysis on Catch

Similar to what we have seen in Section 6.1.3, we conducted a learning rate sweep on the
simple Catch game. The results are given in Figure 6.5. It can be seen that the A3C WW
model outperforms the other architectures except for A3C FF. When compared to FF, the
WW architecture tends to perform marginally worse when the learning rate is higher than
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0.001. We can see that using feature specific temperatures (A3C SS TT) yields improved
performance compared to global temperatures (A3C SS GT TT).

6.3 Hyperparameter sensitivity

In this section we look at several experiments where we assess the influence of hyperparame-
ters such as activation functions, weight initializations, bias initializations, clipping methods
and more.

6.3.1 Gradient clipping

An important element of the DRL agents that we discussed is gradient clipping. Especially
when combined with RNNs such as LSTMs (Hochreiter and Schmidhuber, 1997), gradient
clipping can help to alleviate the problem of exploding gradients (Pascanu et al., 2013). By
default, the A3C architectures use gradient clipping by value, meaning that every scalar
element gi of a gradient g is replaced with min{cv, gi} for positive gi and replaced with
max{−cv, gi} for negative gi, where cv is a clipping bound. While this is an efficient way of
clipping, it might alter the direction of a gradient severely, potentially leading to catastrophic
divergence. To this end, we compared clipping by value to global norm clipping as advocated
in (Pascanu et al., 2013). Global norm clipping limits the magnitude of the gradients by
rescaling the gradients with cg/max{cg,

√∑
i ∥gi∥22} for all gradients, where gi can be the

vector representation of the gradient of any tensor and cg is a global clipping constant.
Although it is more expensive to compute, global norm clipping does not alter the direction
of the gradients. The particular choice for the global clipping constant cg = 25 was found
using a parameter search given in Appendix A. The per-value clipping was set at cv = 40.

Results The resulting comparison is displayed in Figure 6.6. It can be seen that despite the
attempt to find a proper value for cg, the global norm clipping configuration performs worse
than per-value clipping. This is mainly true for lower learning rates, suggesting that the
clipping is applied more than necessary. It was decided not to look for further optimizations,
since it was unlikely to yield substantial improvements given the results obtained here and in
Appendix A. However, it is still interesting to see what this difference is when using recurrent
neural networks such as the A3C LSTM architecture since exploding gradient problems are
more often observed for such architectures.

6.3.2 Activation functions

After a quick analysis of some of the fully trained agents on the Atari games, it became clear
that some features in the first hidden layer would be completely zero while playing the game.
This is presumably caused by an unfortunate initialization of the weights combined with the
fact that ReLU units can have zero gradients. Therefore, it makes sense to employ different
activation functions that do not come with such issues. It is interesting to see whether
adopting the exponential linear unit (ELU) would alleviate the zero-feature map issue. This
activation function was introduced by Clevert et al. (2015). They show that using the ELU
unit can yield comparable or even superior performance when compared to deep CNNs with
(relatively computationally expensive) batch normalization (Ioffe and Szegedy, 2015) and
ReLU activations Nair and Hinton (2010). The ELU activation is given by:

f(x) =

{
x if x > 0

α(exp(x)− 1) if x ≤ 0
, (6.5)

and its derivative is defined as:

f ′(x) =

{
1 if x > 0

f(x) + α if x ≤ 0
. (6.6)
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Figure 6.5: Comparison of A3C SS and A3C WW models vs. default A3C FF model. The
plot shows a smoothed curve for the mean score on 20 evaluations (upper left) and the
mean score on the final 5 evaluations (upper right) taken during the training of 1 million
frames for different learning rates. The bar plot below reports the mean score of the final 5
evaluations averaged over all learning rates between 10−5 and 10−2. It can be seen that the
performance of the SISWS is comparable. for the higher learning rates, the SISWS models
tend to perform better than the default A3C FF architecture.
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Figure 6.6: Comparison of different gradient clipping strategies. Section 6.3.1 provides
details on the two strategies. The plot shows a smoothed curve for the mean score on 20
evaluations (upper left) and the mean score on the final 5 evaluations (upper right) taken
during the training of 1 million frames for different learning rates. The bar plot below
reports the mean score of the final 5 evaluations averaged over all learning rates between
10−5 and 10−2. It can be seen that clipping by value outperforms global norm clipping.
The suboptimal performance of global norm clipping might indicate a poorly set clipping
parameter cg.

Results The outcomes of our sweeps for the ELU units vs. ReLU units are given in Figure
6.7. We can see that despite of the fact that these activation functions are guaranteed to
have non-zero gradients, the models with ELU activations perform worse than the default
ReLU activations. This contrasts the findings in (Clevert et al., 2015) where these activation
functions were compared with ReLU activations in the context of computer vision tasks with
DNNs. Perhaps our results here underline the sensitivity of the algorithm to small variations
of the hyperparameters. On the other hand, the decreased performance is mainly observable
when the learning rates are greater than 10−3. This might be explained by the fact that
the magnitude of the gradients in ELUs are greater in general. Moreover, the default A3C
settings clip the gradients element-wise by value. In certain cases, the direction of the
gradients might be severely affected by this operation, resulting in parameter updates that
are far from the desired direction.

6.3.3 Weight initializations

In order to reproduce results close to the default A3C as reported in (Mnih et al., 2016),
many things have to be taken care of. For many domains in DL, weight initialization is only
marginally important for actual convergence and there exist different strategies for initializ-
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Figure 6.7: Comparison of ELU vs. default ReLU for the A3C FF model. The plot shows a
smoothed curve for the mean score on 20 evaluations (upper left) and the mean score on the
final 5 evaluations (upper right) taken during the training of 1 million frames for different
learning rates. The bar plot below reports the mean score of the final 5 evaluations averaged
over all learning rates between 10−5 and 10−2. It can be seen that the ELU activation tends
to be less likely to reach a proper policy for higher learning rates. This might be caused by
the fact that the expected gradient is greater, causing unstable learning.
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ing the weights in a neural network. This is reflected by the fact that different DL libraries
tend to use different initialization schemes. The default weight initialization strategy used by
Mnih et al. (2016) is that of the Torch library (Collobert et al., 2011). By default, for Torch
the weights are initialized from a uniform distribution between [−d, d] where d = 1/

√
fanin

and where fanin is the amount of connections per neuron with the previous layer. This
initialization originates from the observations by Glorot and Bengio (2010). An alternative
initialization is to draw the weights from a truncated normal distribution with mean 0 and
variance

√
2/fanin as put forward by He et al. (2015b). TFLearn (Tang, 2016) tends to

initialize the weights according to Sussillo and Abbott (2014) that suggest to initialize the
weights by drawing from a uniform distribution between [−

√
3d,
√

3d] where d equals that
of (Glorot and Bengio, 2010).

Results We will now assess the performance using each of these initialization strategies.
Figure 6.8 displays the comparison for the weight initialization strategies. We can see that
the agent is quite sensitive to different strategies. Moreover, we see that the default Torch
initialization yields the best results. The difference is quite substantial for the mean score
over all evaluations as can be seen on the top left. This indicates that the algorithm is still
sensitive to design decisions that are often not thought to be crucial, given that each of them
has theoretical justifications in the literature.

6.4 Experiments on arcade games

We now consider 3 different architectures on two games of the ALE. We have our (i) standard
A3C FF algorithm, (ii) a A3C LWS architecture with trainable centroids and (iii) an A3C
WW architecture. The FF and WW architectures have two convolution layers with the same
kernel size (8× 8 and 4× 4) and strides (4× 4 and 2× 2). In case of the LWS architecture,
the first two layers are local weight sharing layers with 3 trainable group-wise centroids per
layer. The WW model applies a ReLU nonlinearity to 32 out of 64 feature maps of the
second convolutional layer and a spatial softmax operation on the remaining 32 kernels.
The remainder of the architecture is the same as the default as introduced in Section 5.2.

Results The results are shown in Figure 6.9. For each line, five independent runs were
performed. For each run, the agent was evaluated by taking the average score over 50
episodes every 1 million steps. The figure displays the average over 5 runs. For Beam
Rider, we see that our A3C WW model outperforms the A3C FF and A3C LWS models
substantially. It seems that the added spatial features can greatly aid the agent to find a
proper policy sooner. The LWS and FF models tend to perform comparably. For Breakout,
we can see that the LWS and WW architectures tend to perform comparable and worse
than FF. Initially, the score progress is slower. This could be explained by the fact that
the spatial consistency of the frames does not meet the requirements for LWS layers to be
beneficial.

The Breakout game visually does not lend itself well to spatial softmax layers since a lot
of spatial structure is reappearing at many locations in the screen. For example, the ‘wall’
that has to be broken cannot be well assigned to a single Cartesian coordinate by means of
finding the softmax of a convolution output. In that case, the features that are generated by
the spatial softmax might even be impeding the potential of obtaining good policies. The
Beam Rider game is graphically more detailed than the Breakout game, which allows the
convolution kernels to more specifically target certain salient features.

6.4.1 Value loss factor

In Algorithm 1 we added a value loss coefficient to line 18 with symbol λV . By default, our
results are of runs where λV = 0.5. However, the original paper by Mnih et al. (2016) does
not mention such a value loss coefficient, implying that λV = 1. Nevertheless, others that
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Figure 6.8: Comparison between weight initializations with default A3C FF. The plot shows
a smoothed curve for the mean score on 20 evaluations (upper left) and the mean score on
the final 5 evaluations (upper right) taken during the training of 1 million frames for different
learning rates. The bar plot below reports the mean score of the final 5 evaluations averaged
over all learning rates between 10−5 and 10−2. Clearly, the initialization strategy can affect
performance. Moreover, deviating from the default strategy as proposed by Glorot and
Bengio (2010) yields impeded performance. More details are provided in Section 6.3.3.

have attempted to reproduce their results have contacted the authors who confirmed that
they actually multiplied the value loss by 0.5 1.

We noticed the importance of this parameter initially when we were considering Pong.
Being unaware of this multiplication, we observed surprisingly poor performance. After
realizing the difference in implementation, we reran the experiments. The results are given
in Figure 6.10. For each line, five independent runs were performed. For each run, the agent
was evaluated by taking the average score over 50 episodes every 1 million steps. The figure
displays the average over 5 runs. The performance is clearly affected by the loss coefficient.
When λV = 1.0 there is no learning at all. When λV = 0.5, learning is considerably better,
although the shaded areas indicate that the standard errors are substantially large. This
suggests that one or two runs resulted in poor performance. Obviously, altering the value
loss coefficient does not only change the relative size of the policy loss vs. the value loss,
but it also lowers the expected magnitude of the gradients. It is unlikely that the observed
failure for λV = 1 can be devoted solely to the ratio between the policy and value loss. It is

1https://github.com/muupan/async-rl/wiki

40

https://github.com/muupan/async-rl/wiki


0 10 20 30 40 50 60

Epoch

0

1000

2000

3000

4000

5000

S
co

re

BeamRider

A3C WW

A3C LWS

A3C FF

0 10 20 30 40 50 60

Epoch

0

50

100

150

200

250

300

S
co

re

Breakout

A3C WW

A3C LWS

A3C FF

Figure 6.9: Performance of several architectures on two Atari games. Each epoch corre-
sponds to 1 million steps. For each run, the agent is evaluated by taking the average score
of 50 episodes after every 1 million steps. The plot displays the average of 5 separate runs.
For Beam Rider (a), the WW architecture performs best, while the FF architecture and the
LWS architecture perform comparably. For Breakout (b), the FF architecture performs best
and the other two architectures perform comparably.

more likely that the greater magnitude of gradients caused the failure to learn.
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Figure 6.10: Comparison of different settings for λV which clearly affect performance. Each
epoch corresponds to 1 million steps. For each run, the agent is evaluated by taking the
average score of 50 episodes after every 1 million steps. The plot displays the average of
5 separate runs. The shaded areas indicate standard errors. When λV = 1.0, the default
A3C FF model does not learn at all. When λV = 0.5, the model performs much better on
average. The size of the shaded area seems to suggest that the agent failed to learn for one
or two runs.
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Chapter 7

Prototype Based Deep
Reinforcement Learning

Prototype based supervised learning algorithms can be used for classification tasks. In these
algorithms, there are usually several prototypes that populate an input space X or a feature
space H. There can be several prototypes per class and the algorithm typically classifies by
determining the similarity (or distance) to nearest prototypes of a new input x or feature
h. Note that this procedure is quite different from an ordinary softmax output, which is a
multinomial logistic regression operator, possibly on top of a deep neural network. In this
chapter, we will explore whether prototype based learning can be used for deep reinforcement
learning by proposing a novel actor-critic algorithm. We accomplish this by altering the A3C
algorithm to use a prototype based policy prediction. The introduction of prototypes solely
requires us to alter the construction of the policy output π(s, a;θ). This chapter covers
the second main research question: Is prototype based learning suited for deep reinforcement
learning?

7.1 Learning policy quantization

This section introduces a new kind of actor-critic algorithm: learning policy quantization
(LPQ). It draws inspiration from learning vector quantization (LVQ) (Kohonen, 1990, 1995;
Kohonen et al., 1996). LVQ is a supervised classification method in which some feature
space H is populated by a set of prototypes W = {wi}Wi=1. Each prototype belongs to a
particular class so that c(w) gives the class belonging to w. The LVQ1 algorithm classifies
a new vector x by saying that ŷ = c(arg minw d(x,w)), where d : Rn×Rn 7→ R is a distance
function. Given a supervised class label c(x), the algorithm learns by moving the closest
prototype towards x if c(x) = ŷ. If c(x) ̸= ŷ, then the prototype is moved in the opposite
direction.

Throughout the rest of this chapter, we come across some variations of LVQ. We ac-
knowledge that many other variations to LVQ exist that are out of the scope of this thesis.
The interested reader can consult (Kohonen, 1990, 1995; Kohonen et al., 1996).

7.1.1 Useful ideas from LVQ

There exist several ways of designing an LVQ classifier. We will now discuss a few options
that are relevant to the LPQ algorithm.

Multiple prototypes per class An LVQ’s division of the feature space can be made more
complex by defining multiple prototypes per class. In the extreme case the total number
of prototypes equals the number of data points. Storing separate prototypes this way then
yields a nearest neighbor classifier.
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Soft competition To find the winning prototype w∗ = arg minw d(x,w), one can either
choose to select the closest prototype only, or to have a majority vote among the m < M
closest prototypes. Ties can be broken by also selecting the labels with the least average
distance. Alternatively, one can use a distance weighted sum for each class such that closer
prototypes have a larger contribution to the competition’s outcome.

Distance function The distance function can greatly affect the behavior of the classifier.
The Euclidean distance or squared Euclidean distance are common choices. More compli-
cated distance functions can also be used. Matrix LVQ uses a parameterized matrix to learn
feature relevances (Schneider et al., 2009). Its distance function is defined as:

d(x,w) = (x−w)T Λ(x−w), (7.1)

where Λ ∈ Rn×n is a matrix that is initially set to an identity matrix In and which will be
iteratively updated through gradient descent such that it scales certain features and learns
to exploit correlations between different features.

Soft class assignments Rather than having an all-or-nothing classification, class confi-
dences can also be modeled by framing the set of prototypes as defining a density function
over the input space X . This is the idea behind robust soft learning vector quantization
(RSLVQ) (Seo and Obermayer, 2003).

Generalized Learning Vector Quantization In (Sato and Yamada, 1996), the authors
define the following objective function to be minimized:

∑
i Φ(µi) where µi =

d+(xi)− d−(xi)

d+(xi) + d−(xi)
, (7.2)

where Φ : R 7→ R is any monotonically increasing function, d+(x) = min
wi:c(wi)=c(x)

d(x,w)

is the distance to the closest correct prototype and d−(x) = min
wi:c(wi )̸=c(x)

d(x,wi) is the

distance to the closest prototype with a wrong label.

Deep Learning Vector Quantization Recently, De Vries et al. (2016) proposed a deep
LVQ algorithm in which the distance function is defined as follows:

d(x,w) = ∥f(x;θ)−w∥22, (7.3)

where f is a DNN with parameter vector θ. Note that if we were to choose f(x;θ) = Ax,
we arrive at the GMLVQ algorithm as previously mentioned. Their deep LVQ algorithm
serves as an alternative to the softmax function. The softmax function has a tendency to
severely extrapolate such that certain regions in the parameter space attain high confidences
for certain classes while there is no actual data that would support this level of confidence.
Moreover, they propose to use the objective function as found in generalized LVQ. They show
that a DNN with a GLVQ cost function outperforms a DNN with a softmax cost function.
In particular, they show that their approach is significantly less sensitive to adversarial
examples. An important design decision is to no longer define prototypes in the input space,
but in the feature space. This saves forward computations for prototypes and can simplify
the learning process as the feature space is generally a lower-dimensional representation
compared to the input itself.

7.1.2 The learning policy quantization algorithm

In this section we generalize the actor of the actor-critic algorithm such that we obtain a
novel RL method that bears similarities with LVQ in many aspects.
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To a certain extent, the parameterized policy π(s, a | θ) of the DNN in A3C draws some
parallels with a DNN classifier. In both cases, there is a certain notion of confidence toward
a particular class label (or action) and both are often parameterized by a softmax function.
Moreover, both can be optimized through gradient descent. We will now generalize the
actor’s output to be compatible with an LVQ classification scheme. Let us first rephrase the
softmax function as found in the standard A3C architecture:

π(s, a;θ) =

exp

(
wT

ahL−1(s;θL−1) + ba

)
∑

a′∈A exp

(
wT

a′hL−1(s;θL−1) + ba′

) , (7.4)

where hL−1 is the hidden activation of the last hidden layer which is computed from state s
and the vector θ′ that contains all parameters up to layer L. The vectors wa are the column
vectors of the weight matrix in the softmax layer and ba denotes the bias corresponding to
action a.

We generalize Equation (7.4) for LPQ as follows:

π(s, a;θ) =

exp

(
− d
(
wa,hL−1(s;θL−1)

))
∑

a′∈A exp

(
− d
(
wa′ ,hL−1(s;θL−1)

)) , (7.5)

where d is a distance function that maps the hidden activation and a prototype wa to a
scalar distance. In our experiments we explore the performance of several distance functions.
Note that we still use a softmax operation on the negative distances to compute a proper
probability distribution.

Generalized Learning Policy Quantization

Equation (7.5) can be seen as the LPQ counterpart of the LVQ2.1 algorithm. The LPQ
variant that is related most to the GLVQ extension as given in Equation (7.2) can be
obtained by defining.

π(s, a;θ) = Φ(µa, s;θ) =

exp

(
τµa

)
∑

a′∈A exp

(
τµa′

) , (7.6)

where

µa =
d−(h,wa′)− d(h,wa)

d−(h,wa′) + d(h,wa)
, (7.7)

where d−(h,wa′) = mina′:c(wa′ )̸=c(wa) d(h,wa′) is the distance to the closest prototype
belonging to another action class. The τ parameter in Equation (7.6) is referred to as the
temperature, which controls the steepness of the GLPQ operator.

There are several reasons for the precise formulation of Equation (7.6) and (7.7). Note
that Equation (7.7) is different from the relative similarity measure as put forward by Sato
and Yamada (1996). Suppose a is the correct action, then this leads to a high value of µ
whenever d(wa,h) is small. In other words, the actor will prefer the closer prototypes.

Attracting or repelling without supervision

Note that there is another subtle yet important difference in the definition of µa in Equa-
tion (7.7) compared to the definition in Equation (7.2). We can no longer directly determine
whether a certain prototype wa is correct. Therefore, Equation (7.7) does not use d+(h,wa)
but simply d(h,wa). In other words, we do not have supervised class labels anymore. The
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obvious question that comes to mind is: how should we determine when to move a prototype
toward some hidden activation vector h? The answer is provided by the environment inter-
action and the critic. To see this, consider the standard A3C algorithm in which we find
the following update rule (see also Algorithm (1) and Section 3.3.2 on the policy gradient
theorem):

dθ ← dθ +∇θ′ log π(ai | si;θ′)(Gt − V (si;θ
′
V )) + β∇θ′H(π(st;θ

′)), (7.8)

where Gt =
∑n−1

k=0 γ
kRt+k + γnV (st+n;θV ) is the n-step return obtained through environ-

ment interaction and V (st;θ
′
V )) is the output of the critic. It is important to realize that

all prototypes wa are contained in both θ and θ′. The factor (Gt−V (si;θ
′
V )) is also known

as the advantage. The advantage of a certain action a gives us the relative gain in expected
return after taking action a compared to the expected return of state st. In other words, a
positive advantage corresponds to a correct prototype, whereas a negative advantage would
correspond to a wrong prototype. Intuitively, applying Equation (7.8) now corresponds to
increasing the result of µi (that is by repelling wa and attracting wa′) whenever the advan-
tage is negative and decreasing the result of µi (that is by attracting wa and repelling wa′)
whenever the advantage is positive. Hence, the learning process closely resembles that of
LVQ while we only modify the construction of π(s, a;θ).

Note that we can obtain the normal LPQ algorithm by replacing µa with −d(wa,h). In
that case, the prototype gradients that are obtained when determining ∇θ′ log π(ai|si;θ′)
are identical to those obtained for RSLVQ (Seo and Obermayer, 2003). For further details,
see Appendix C.

7.2 Variations on LPQ

We now discuss some variations that could be added to the ideas above. Most of these
variations were assessed on the GLPQ algorithm, since the GLPQ turned out to outperform
the standard LPQ algorithm slightly (initially). Since we have explored many different
variations, we accompany each of the elaborations with the corresponding parameter sweeps
immediately, rather than listing all experiments afterwards at once. This will make the
whole more readable and will spare otherwise necessary repetition and reference to earlier
sections.

From the extensions that follow we see that the main analogies between LVQ and LPQ
are that (i) in both cases several prototypes potentially correspond to the same class, (ii)
multiple distance/similarity functions can be used and (iii) only a subset of the prototypes
might be involved in determining the actual output of the system.

7.2.1 Distance functions

We have implemented and tested the following distance functions:

• Euclidean distance: d(h,w) =
√

(h−w)T (h−w),

• Squared Euclidean distance: d(h,w) = (h−w)T (h−w),

• Manhattan distance: d(h,w) =
∑

i |(h−w)|i.

• Cosine distance: d(h,w) = 1−
∑

i wihi√∑
i w

2
i

√∑
i h

2
i

• Pearson distance: d(h,w) = 1−
∑

i(wi − w̄)(hi − h̄)√∑
i(wi − w̄)2

√∑
j(hi − h̄)2
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• Inverse squared Euclidean1: d(h,w) = − 1

1 + (h−w)T (h−w)

Note that for the sake of readability, we have omitted the subscripts for both vectors and
replaced h(s;θ′) with h.

Experiments on Catch We directly assess the distance functions on the Catch game. In
the results of Figure 7.1, we have used the standard LPQ algorithm which could be seen as
the reinforcement learning counterpart of the RSLVQ algorithm (Seo and Obermayer, 2003).
In these experiments, there were 16 prototypes per action. The usage of multiple prototypes
per class and how it affects the performance of the agent is discussed in Section 7.2.2.
Clearly, the squared Euclidean distance yields the best results, followed by the Manhattan
distance function. This is consistent with the analysis of (Sato and Yamada, 1996). The
other distance functions lead to considerably worse results. Given the clear outcome of this
analysis, the Euclidean distance function was chosen as the default distance function from
hereon.

7.2.2 Multiple action prototypes

Note that Equation (7.5) assumes that we have only a single prototype per class. We can
involve multiple prototypes per class in the competition by doing the following:

π(s, a;θ) =

∑
i:c(wi)=a exp

(
− d
(
wi,hL−1(s;θL−1)

))
∑

j exp

(
− d
(
wj ,hL−1(s;θL−1)

)) or, (7.9)

π(s, a;θ) =

∑
i:c(wi)=a exp

(
τµi

)
∑

j exp
(
τµj

) , (7.10)

where we the numerator sums over the prototypes belonging to action a and the denominator
sums over all prototypes. Note that we can unify the proposed policy function and the
standard softmax output by simply setting the number of prototypes per action to 1 and by
letting d(h,w) = −(wTh + b).

Experiments on Catch Figure 7.2 displays the results for different amounts of prototypes
per action. We assessed the robustness for different learning rates for 16, 32 or 64 prototypes
per action. All prototypes were allowed to participate in the competition and the softmax
outputs for each of the prototypes was summed as given in Equation (7.9) above. Especially
when looking to the plot on the left, it can be seen that the score seems to be greater when
the number of prototypes is either 16 or 32.

7.2.3 Sizing the prototype competition

Rather than involving all prototypes of the actor corresponding to any of the actions, we
can also choose a subset of neighboring prototypes, which we denote B. The subset B is
found by taking the k closest prototypes for each class:

B =
∪
a∈A

arg minB(k)⊂W

∑
w∈B(k)

d(h,w), (7.11)

which takes the union of action-specific subsets of size k that minimize the sum of distances.
Prior to the experiments, it was hypothesized that this might affect the local specificity of

1This can be seen as a negative inverse squared Euclidean similarity, which is technically not a distance
metric.
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Figure 7.1: Comparison of A3C FF with LPQ models in which we vary the distance func-
tions. The plot shows a smoothed curve for the mean score on 20 evaluations (upper left)
and the mean score on the final 5 evaluations (upper right) taken during the training of 1
million frames for different learning rates. The bar plot below reports the mean score of
the final 5 evaluations averaged over all learning rates between 10−5 and 10−2. The default
LPQ algorithm was used as described by Equation (7.9) where we used 16 prototypes per
action and all prototypes participated in the competition.

the parameter updates, as now only a subset of the closest prototypes would be updated.
Ideally, this would allow for higher learning rates for the prototypes in particular, as only a
part of the separation of H would be affected for each update.
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Figure 7.2: Comparison of A3C FF with GLPQ models in which we vary the amount of
prototypes per action. The plot shows a smoothed curve for the mean score on 20 evaluations
(upper left) and the mean score on the final 5 evaluations (upper right) taken during the
training of 1 million frames for different learning rates. The bar plot below reports the
mean score of the final 5 evaluations averaged over all learning rates between 10−5 and
10−2. Clearly, using 64 prototypes yields deteriorated performance, while using 16 or 32
prototypes yields comparable performance.

Experiments on Catch Figure 7.3 illustrates the results on the varying competition size
and how it affects the agent’s performance on the Catch game. The agent used the GLPQ
output as given in Equation 7.6 with 16 prototypes per action. It can be seen that the
algorithm is roughly invariant to the different competition sizes although we have restricted
our experiments to only a few different settings for reasons of limited time.

7.2.4 Softmax temperature

The GLPQ output has an interesting property as a consequence of the fact that µi ∈ [−1, 1].

Theorem 1. Consider a GLPQ output operator as in Equation (7.10). Also assume that
each action has k corresponding prototypes.

We then know that

max

∑
i:c(wi)=a exp(τµi)∑

j(τµj)
=

exp(2τ)

exp(2τ) + |A| − 1
(7.12)
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Figure 7.3: Comparison of A3C FF with GLPQ models in which we vary the competition
size. In all of these cases there were 16 prototypes per class. The k parameter represents the
competition size. For example, k = 4 implies that the 4 closest prototypes of each action
were used to construct Ãk as mentioned in Equation (7.11). The plot shows a smoothed
curve for the mean score on 20 evaluations (upper left) and the mean score on the final 5
evaluations (upper right) taken during the training of 1 million frames for different learning
rates. The bar plot below reports the mean score of the final 5 evaluations averaged over all
learning rates between 10−5 and 10−2. In general, greater competition sizes yield the best
performance.

Proof. We automatically know that the output is maximized for some action a if for all
prototypes for which c(wi) = a we have that wi = h. In such cases, we obtain µi = 1 and
µj = −1 for j ̸= i. Therefore, the resulting maximum value of the policy is

k exp(τ)

k exp(τ) + k(|A| − 1) exp(−τ)
=

exp(2τ)

exp(2τ) + |A| − 1
(7.13)
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Figure 7.4: A pseudo color plot that displays the relation between the number of actions
|A|, some desired maximum policy value p and the corresponding softmax temperature τ .

Corollary 1. Let p be the maximum value of the policy, we then have that

p =
exp(2τ)

exp(2τ) + |A| − 1
(7.14)

⇒ p exp(2τ) + p(|A| − 1) = exp(2τ) (7.15)

⇒ exp(2τ) = −p(|A| − 1)

p− 1
(7.16)

⇒ τ =
1

2
ln

(
−p(|A| − 1)

p− 1

)
, (7.17)

which we could use as a way of choosing a value for τ . The way that τ depends on |A|
and p is displayed in Figure 7.4.

In this particular case we have assumed that for all w ∈ B(k) for which c(w) = a we have
that w = h. This is not a desirable situation, as multiple prototypes now have the same
position, which is perhaps not optimal. Instead we can act as if only a single prototype can
be responsible for a policy output of p. In that case, we have:

τ =
1

2
ln

(
−p(|B

(k)| − 1)

p− 1

)
=

1

2
ln

(
−p(k|A| − 1)

p− 1

)
, (7.18)

in which we can see that the role of k with respect to τ is identical to the role of |A|. Hence,
we can conclude that the shape of the surface of τ is the same as in Figure 7.4 in which we
replace |A| with k and set |A| to be fixed. Perhaps a good strategy would be to initialize τ
using Equation (7.17) and slowly increase it to the value given by Equation (7.18).

Introducing such a softmax parameter severely influences the magnitude of the gradients.
Consequently, it also affects the agent’s performance if we are not careful. In Appendix C it
is shown that the gradient of the prototypes are proportional to the temperature. Note that
by similar reasoning, the other gradients that flow through the network are also proportional
to τ . We could compensate for this factor by multiplying the policy loss by 1

τ .

51



Results on Catch

We will now consider a range of different temperature configurations for GLPQ on the Catch
game.

Temperature configurations First we consider whether adding the temperature as in
Equation (7.17) yields improved performance. Figure 7.5 provides the results on the Catch
game. We have used three different configurations here. First, we let τ = 1 which is the
‘vanilla’ GLPQ algorithm. Then, we let τ depend on the time step by linearly increasing
p in Equation (7.17) from 0.9 to 0.99. This corresponds to the line indicated by τ(t). The
third configuration also linearly increases p in the same range and multiplies the policy loss
by 1

τ . We can see that using the schedule for p yields worse results than using either τ = 1 or
combining the schedule with the policy loss correction. Second, we can see that in general,
the line of the temperature schedule with loss correction ends up marginally higher than
when τ = 1. We have also experimented with a trainable temperature setting, which is
indicated by ‘τ trainable’. For the trainable τ we chose to multiply the loss with 1

τ since we
by then knew that this would yield slightly better results.

Temperature schedule range We can choose to use Equation (7.17) or (7.18) for de-
termining our temperatures. The first equation yields a lower temperature than the second.
We will now assess the performance using each of these configurations where we refer to the
model that uses the first Equation (7.17) as the ‘cold’ model and Equation (7.18) as the
‘hot’ model. We linearly increase p from 0.9 to 0.99 over a million steps and we multiply
the policy loss by 1

γ as this led to better results in the previous paragraph. The searing

model refers to the case where (7.18) where p was increased from 0.95 to 0.999. The results
are provided in Figure 7.6. In the plot we compare both hot and cold configurations with
the default A3C with softmax output. We can see that especially the hot and searing con-
figurations yield a higher performance when the learning rate is smaller than 10−3.5. This
might reflect the fact that this schedule allows for a less stochastic policy. Moreover, single
prototypes are now more decisive, such that the algorithm converges to a good policy while
not having to move a whole range of prototypes towards a certain position in the feature
space.

7.2.5 GLPQ vs. LPQ

It is also interesting to see whether GLPQ outperforms LPQ on the Catch game. Note that
the relative similarity measure as given in Equation (7.7) ensures that the attractive forces
are greater than the repulsive forces as shown in (Sato and Yamada, 1996). This ultimately
guarantees convergence under the standard stochastic convergence conditions for GLVQ.

The comparison of GLPQ and LPQ is illustrated in Figure 7.7. We have chosen the
best configuration of GLPQ that we obtained thus far, which corresponds to the ‘hot’ tem-
perature schedule as determined in the previous paragraph. Both GLPQ and LPQ used 16
prototypes per action and all prototypes participate in the competition. It can be seen that
GLPQ outperforms LPQ marginally, yet consistently for most of the learning rates that
were sampled.

7.3 Experiments on arcade games

Just as we did in Section 6.4 we have selected a few models that we assess in two Atari
games. We selected GLPQ with a temperature schedule following Equation (7.17), which
corresponds to the ‘cold’ model. Due to time constraints, we were unable to explore whether
the ‘hot’ model would yield better results, based on the experiments that we have seen before,
this might have been the case. The LPQ model that is displayed here also has suboptimal
parameter settings when compared to the outcomes of the parameter sweeps on Catch. The
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Figure 7.5: Comparison of temperature configurations where τ(t) refers to a schedule for
τ where p from Equation (7.17) is increased linearly from 0.9 to 0.99. The same holds for
other models that mention τ(t). The line labeled with τ(t) and Lπ(τ) refers to the model
where the policy loss is multiplied by 1/τ . The plot shows a smoothed curve for the mean
score on 20 evaluations (upper left) and the mean score on the final 5 evaluations (upper
right) taken during the training of 1 million frames for different learning rates. The bar
plot below reports the mean score of the final 5 evaluations averaged over all learning rates
between 10−5 and 10−2. For the trainable configuration of τ , the loss was also corrected
similarly, since this clearly yielded better performance.

GLPQ model uses 16 prototypes per action, while the LPQ model uses 15. The GLPQ
model includes all prototypes in the competition, while the LPQ only includes 10 for each
action.

The results are shown in Figure 7.8. It can be seen that GLPQ and LPQ generally train
slower than the default architecture for both games. For Breakout, the final performance for
LPQ and A3C FF is similar. For BeamRider, GLPQ starts improving considerably slower
than LPQ and FF, but surpasses LPQ eventually. This might indicate that the temperature
should have been higher for GLPQ, since the performance gradually approaches that of A3C
FF.
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Figure 7.6: Comparison of different temperature schedules. The plot shows a smoothed curve
for the mean score on 20 evaluations (upper left) and the mean score on the final 5 evaluations
(upper right) taken during the training of 1 million frames for different learning rates. The
bar plot below reports the mean score of the final 5 evaluations averaged over all learning
rates between 10−5 and 10−2. The greater the temperature, the better the performance on
the last evaluations on Catch. This is particularly true for lower temperatures. The bar plot
indicates the average score on the five last evaluations for all runs where α ∈ [10−5, 10−2].
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Figure 7.7: Comparison of GLPQ vs. LPQ on Catch. The plot shows a smoothed curve for
the mean score on 20 evaluations (left) and the mean score on the final 5 evaluations (right)
taken during the training of 1 million frames for different learning rates. It can be seen that
GLPQ tends to perform marginally better for the extrema of relatively high or low learning
rates. Both algorithms used the squared Euclidean distance with 16 prototypes per class
and a competition size of 16 per class.
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Figure 7.8: Results on two Atari games where we compare the performance of GLPQ and
LPQ with A3C FF. Each epoch corresponds to 1 million steps. For each run, the agent is
evaluated by taking the average score of 50 episodes after every 1 million steps. The plot
displays the average of 5 separate runs. The shaded areas indicate standard errors. For
Breakout, the final performance of the GLPQ and FF models are comparable, whereas the
GLPQ approach performs worse. For Beam Rider, the performance of the FF approach
surpasses that of GLPQ followed by LPQ.
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Chapter 8

Concluding Remarks and
Discussion

In this thesis we have explored several variations to a state-of-the-art deep reinforcement
learning algorithm. Given the fact that the body of literature on DRL is still relatively small
and the fact that architectural design decisions were not addressed in detail in other research
thus far, we have provided a comparison of different variations to the default architectures
as found in other literature. Fostering the comprehension of the influence of such decisions
is a valuable contribution to the field as we have seen that these variations can greatly
affect performance. The second major contribution is the introduction of a learning vector
quantization algorithm designed for an actor-critic agent. In the introduction, we have stated
two main research questions that were addressed in Chapters 6 and 7. We will now reflect
on these questions and provide the relevant discussion and directions for future research.

1. To what extent do architectural design decisions and hyperparameters of
an agent’s deep neural network affect the resulting performance? In Chapter 6
we have assessed variations to the A3C approach in terms of neural network architectures
and hyperparameter settings. We have confirmed that it appeared challenging to maintain
performance when parameters were varied, such as weight initialization, activation functions
or gradient clipping strategies. This seems to indicate that the default settings of the A3C as
proposed by Mnih et al. (2016) are sensitive in the sense that deviating from them generally
results in worse performance. In other words, the domain of optimal settings seems to be
narrow. This undermines the guarantee that results within relatively simple domains such as
the Catch game or Atari games can be generalized to other domains. Indeed, Jaderberg et al.
(2016) acknowledge that other types of video games require different parameter settings to
ensure proper performance, albeit an acceptable set of modifications given their impressive
results. The outcomes here suggest that further research into the hyperparameter sensitivity
and ensuring robustness could be a valuable contribution to the current literature in DRL.

Other than our exploration on hyperparameters we have looked at different neural lay-
ers. We have seen that local weight sharing can yield improved performance for certain
learning rate settings when compared to convolutional layers on the Catch game. Moreover,
Appendix B seems to support the fact that such layers can outperform default convolutional
architectures while using less parameters for certain domains. Unfortunately, the improve-
ments in our smaller scale experiments were not observable in the Atari domain, where we
have seen that the usage of LWS layers yielded deteriorated performance. Perhaps further
research on the similarity functions for kernel-centroid pairs and grid locations could improve
the performance of this algorithm. Alternatively, the local weight sharing might be made
online much like an attention mechanism. This could be achieved by creating a component
of the network that predicts the appropriate centroid location given some input. This would
make the whole architecture more adaptive to small variations between inputs.
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We have shown that using a combination of spatial softmax operations and regular
convolutions with ReLU nonlinearities can result in improved performance for the Beam
Rider game. However, this improvement was not observable for the Breakout game due to
the spatial structure of the game that cannot be represented well by spatial softmax layers.
Many improvements to state-of-the-art approaches in the literature performed worse for a
subset of games, while outperforming earlier approaches on most other games. Hence, it is
difficult to decide what our limited research effort entails for more general claims about the
performance of different architectures. Obviously, this decision would be easier to make if
we were to do more experiments, but we were unable to complete more experiments because
of limited time and limited computational resources.

2. Is prototype based learning suited for deep reinforcement learning? Chapter 7
described a new algorithm for reinforcement learning which is inspired by the learning vector
quantization (LVQ) algorithm. The new learning policy quantization (LPQ) algorithm was
combined with a deep neural network and tested on a simple Catch game and on two games
in the Atari domain. We have elaborated on several variations of the LPQ algorithm from
which we distilled an optimal set of parameters given the limited amount of experiments to
support these parameters. The variations included the usage of different distance functions,
LPQ vs. GLPQ, the competition size, the amount of prototypes per action and softmax
temperature configurations. All of these variations were accompanied with experiments
on the Catch game. We have seen that the temperature parameter and the choice of the
distance function seem to have a considerable effect on performance.

The best results on the Catch game seem to suggest that the GLPQ algorithm performs
slightly better than LPQ for lower learning rates and competitive for others when using a
temperature scheme which is based on the decisiveness of a single prototype vector. Be-
cause of limited time and computational resources, we were unable to further improve our
parameters and our understanding thereof. The best results obtained with GLPQ on Catch
seem to outperform the softmax layer.

Both GLPQ and LPQ yielded competitive results for the Catch game when compared
to a softmax layer, but they result in slightly worse performance on the two Atari games
that were assessed. Given the limited amount of experiments, it is difficult to make general
claims about the difference in performance of these algorithms for the full Atari domain, let
alone outside the ALE.

The novel application of learning vector quantization to actor-critic algorithms opens
up the door for a wide array of further research. For example, one could look into more
advanced strategies for softmax temperature settings, the proper initialization of prototypes,
dynamically adding or removing prototypes, alternative distance functions, adding learning
vector regression for value function approximation and more. Potentially, progress made
towards improving the LPQ algorithms will yield a better alternative to the default softmax
output.
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Appendix A

Supplementary Material Neural
Architecture Design

During the project, many other architectural variations were explored that presumably do
not deserve as much attention as the ones mentioned in Chapter 6. This appendix section
lists the ideas that were explored. Some of these ideas could use further exploration to show
their full potential, and some of these ideas are clearly performing poorly.

A.1 Experiments

A.1.1 Gradient norm clipping

In order to find a suitable setting for the global norm clipping parameter cg as explained in
Section 6.3.1, we performed parameter search where we vary the learning rate and cg both
by sampling them from a log uniform distribution and using the Catch game as a testbed.
The resulting qualitative plot can be seen in Figure A.1. It can be seen that only a small area
within the search space gave good results. From the results here we chose cg = 25 ≈ 101.4

for further experimenting in Section 6.3.1.
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Figure A.1: Gradient norm clipping c and learning rate η. Both were sampled from a log
uniform distribution in the range depicted by the axes.
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Figure A.2: Comparison of RMSprop vs. Adam. It can be seen that the RMSprop optimizer
outperforms Adam substantially. However, it should be noted that improvements to the
Adam optimizer could be achieved by further tuning the decay parameters.

A.1.2 Adam as a gradient descent optimizer

Other than the RMSprop algorithm, the Adam optimizer is a popular choice for gradient
descent optimization. The Adam optimizer was introduced by (Kingma and Ba, 2014).
Similar to the RMSprop algorithm as described above, this algorithm makes use of a running
average of the squared gradient. However, (Kingma and Ba, 2014) explicitly refer to this
as being the second order expectation of the gradient. They also keep track of the first
order expectation of the gradient, which is simply a running average of the gradient itself.
Moreover, (Kingma and Ba, 2014) suggest to rescale the moving averages to take into account
the initial bias towards zero. They define the following update equations:

m← β1m + (1− β1)g, (A.1)

v ← β2v + (1− β2)g2, (A.2)

m̂← m

1− βt
1

, (A.3)

v̂ ← v

1− βt
2

, (A.4)

θ ← θ − η m̂√
v̂ + ϵ

, (A.5)

in which m and v are the first and second order moments of the gradient, respectively. The
rescaled moments are given by m̂ and v̂. Again, all operations are element-wise.

Due to limited time and the fact that this variation would presumably not deliver major
improvements, we halted further investigation of the Adam optimizer. We now briefly discuss
the initial attempt for the Adam optimizer on Catch. We set β1 = 0.9 and β2 = 0.99,
following the advise of (Kingma and Ba, 2014). Similar to the RMSprop algorithm, we
shared the gradient statistics across all threads. Figure A.2 provides the results of our single
parameter sweep. It can be seen that the Adam optimizer with these parameters performs
worse than the RMSprop optimizer. Perhaps using the first order moment to build up
an averaged direction can be problematic for RL, as the target function’s distribution is
guaranteed to change over time, as well as the input distribution. Therefore, the desired
direction might abruptly change, which implies that the average direction is not always a
safe choice.
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Figure A.3: Comparison bias initializations with default A3C FF.

A.1.3 Bias initialization

Another way of counteracting the zero-gradient as discussed in Section 6.3.2 issue is by ini-
tializing the biases to a small non-zero constant rather than initializing them from a uniform
distribution as done in the Torch library. We have explored the performance difference when
initializing the biases at ϵ = 0.01. The results are depicted in Figure A.3. Despite the fact
that the feature maps are now less likely to become populated by zeros by chance, we cannot
observe significant improvements. Given that we are only viewing the results of between 50
or 100 different runs per line with a sampled learning rate, it is likely that sudden deviations
from smooth patterns are due to outliers in terms of training processes.
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Appendix B

Gender Classification with Local
Weight Sharing Layers

Gender classification

To determine whether our local weight sharing layers work outside the Atari domain, we
consider a five-fold cross-validation experiment on gender recognition using the Adience
dataset as put forward by (Eidinger et al., 2014). After selecting the images that have a
gender defined at all, there remain 6422 images of women and 5772 images of men. For a
more detailed specification of the folds in the data see Table B.1. For the sake of validation,
we compare the performance of a DNN that uses our spatial interpolation weight sharing
layer with a ‘default’ DNN. The default in our case is almost identical to the DNN used
by (Levi and Hassner, 2015) with which they obtained state-of-the-art results on gender
recognition and age estimation. Our exact hyperparameter settings are given in Table B.2.

Results Figure B.1 displays the accuracies that were measured for default DNN model on
all five folds. It can be seen that the SISWS model with trainable centroid locations seems to
marginally outperform the default CNN model. This supports the notion that such models
would be beneficial for problems that are spatially consistent. A more detailed overview of
all tested configurations is given in Table B.3. This table shows that choosing per-feature
configurations for the centroids does not necessarily lead to improved performance. This
could be caused by the fact that the performance is close to an upper bound given the
amount of ambiguous and unclear images in the dataset. For a good impression of typical
misclassifications, see (Van de Wolfshaar et al., 2015). Another explanation would be that
the per-feature configuration employs a more difficult function to optimize which leads to
neutralize the potential gain in complexity of the function.

Table B.1: Distribution among classes for the Adience dataset (Eidinger et al., 2014).

Fold #men #women

0 1474 1410

1 1157 1329

2 987 1207

3 1103 1275

4 1051 1201

Total 5772 6422
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Table B.2: Overview of the hyperparameters for the DNNs for gender classification.

Hyperparameter Value

Learning rate α 10−4

Optimizer Adam

Decay 1st moment estimate β1 0.9

Decay 2nd moment estimate β2 0.999

Numerical stability ϵ 10−8

Activation function ELU

Minibatch size 128
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Figure B.1: Comparison of mean test accuracy for gender recognition on all five folds of
the Adience dataset for the default DNN model vs the SISWS DNN model with trainable
centroids. It can be seen that the SISWS model for nearly all evaluations performed slightly
better than the default CNN architecture.

Table B.3: Overview of performances for gender classification on Adience.

Model Accuracy (%) ± SE

Default CNN 87.33± 1.00

LWS 88.56± 0.70

Levi and Hassner (2015) 86.8± 1.4

Van de Wolfshaar et al. (2015) 87.20± 0.7

Afifi and Abdelhamed (2017) 90.59±?.?
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Appendix C

Supplementary Material
Learning Policy Quantization

C.1 Prototype gradients

To be able to explain the effects of the parameter settings in Chapter 7, we determine the
gradients as present in GLPQ for the prototypes. Assume that we use the squared Euclidean
distance function. Also assume that for the other prototypes, wa is not the closest alternative
of another class, then:

∂ log π(s, a;θ)

∂wk
=

∂

∂wi
log

∑
i:c(wi)=a exp(τµi)∑

j exp(τµj)
(C.1)

=
∂

∂wk
log

∑
i:c(wi)=a

exp(τµi)−
∂

∂wk
log
∑
j

exp(τµj) (C.2)

=
1∑

i:c(wi)=a exp(τµi)

∂ exp(τµk)

∂wk
− 1∑

j exp(τµj)

∂ exp(τµk)

∂wk
(C.3)

= τ exp(τµk)
−2d−

(dk + d−)2
∂dk
∂wk

(
1∑

i:c(wi)=a exp(τµi)
− 1∑

j exp(τµj)

)
(C.4)

= τ
4d−

(dk + d−)2
(h−wk)

(
exp(τµk)∑

i:c(wi)=a exp(τµi)
− exp(τµk)∑

j exp(τµj)

)
, (C.5)

from which we can see that the gradient is proportional to a Hebbian term (h − wk).
Moreover, we see that the last factor could be reinterpreted:

exp(µk)∑
i:c(wi)=a exp(µi)

− exp(µk)∑
j exp(µj)

= P (wk | c(wk) = a, s)− P (wk | s), (C.6)

where P (wk | c(wk) = a, s) is the probability that the model assigns prototype k to a
feature vector assuming that the k-th prototype belongs to action a, and P (wk | s) is the
probability that the feature vector is generated by the prototype wk. This is similar to the
interpretation as seen in the work on the robust soft learning vector quantization algorithm
(Seo and Obermayer, 2003). To let both cases be most similar, we would have to modify
µa = da and minimize the corresponding cost function. It should be clear that the result of
Equation (C.6) is guaranteed to be positive.

Note, if wk is the closest alternative prototype for other classes such that d− = dk for
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i ̸= k, then we obtain the following:

∂ log π(s, a;θ)

∂wk
=

∂

∂wk
log

∑
i:c(wi)=a exp(τµi)∑

j exp(τµi)
(C.7)

=
∂

∂wk
log

∑
i:c(wi)=a

exp(τµi)−
∂

∂wk

∑
j

exp(τµj) (C.8)

=
1∑

i:c(wi)=a exp(τµi)

∂ exp(τµk)

∂wk
− 1∑

j exp(τµj)

∂ exp(τµk)

∂wk
+
∑
i ̸=k

∂ exp(τµi)

∂wk


(C.9)

= τ
4d−

(dk + d−)2
(h−wk)

(
exp(τµk)∑

i:c(wi)=a exp(τµi)
− exp(τµk)∑

j exp(τµj)

)
−
∑

i̸=k exp(τµi)
∂µi

∂wk∑
j exp(τµj)

(C.10)

=

τ
4d−

(dk + d−)2
(h−wk)

(
exp(τµk)∑

i:c(wi)=a exp(τµi)
− exp(τµk)∑

j exp(τµj)

)

+ 4τ(h−wk)

∑
i ̸=k exp(τµi)di/(dk + di)

2∑
j exp(τµj)

,

(C.11)

which can be interpreted as the addition of another attractive or repelling force to Equation
(C.10). Whether the force is attractive of repulsive depends on the sign of the advantage.
The added force is proportional to the probability that is assigned to other classes and the
distance to other classes. Note that it has the same direction as Equation (C.10), since the
quotient of the last term is guaranteed to be greater than 0.

Also, the above holds for any wk such that c(wk) = a. The gradient for the prototypes
such that c(wℓ) ̸= a are as follows:

∂ log π(s, a;θ)

∂wℓ
=

1∑
i:c(wi)=a exp(τµi)

∂
∑

i:c(wi)=a exp(τµi)

∂wℓ
− 1∑

j exp(τµj)

∂
∑

j exp(τµj)

∂wℓ
,

(C.12)

which means that if wℓ does not correspond to the prototype such that wℓ = arg minw:c(w)̸=a d(w,h),
the left term becomes zero. The remaining expression then becomes:

∂ log π(s, a;θ)

∂wℓ
= − 1∑

j exp(τµj)

∂ exp(τµℓ)

∂wℓ
(C.13)

= − 1∑
j exp(τµj)

τ exp(τµℓ)
−2d−

(dℓ + d−)2
∂dℓ
∂wℓ

(C.14)

= −τ 4d−
(dℓ + d−)2

(h−wℓ)
exp(τµℓ)∑
j exp(τµj)

, (C.15)

which is similar to the gradient obtained for incorrect prototypes in the case of RLSVQ (Seo
and Obermayer, 2003) when µℓ = −dℓ. To see this, note that

exp(τµℓ)∑
j exp(τµj)

= P(wℓ | s). (C.16)

It could also be that wℓ = arg minwi:c(wi )̸=a d(wi,h). In that case, the first term of
equation C.12 becomes:

1∑
i:c(wi)=a exp(τµi)

∂
∑

i:c(wi)=a exp(τµi)

∂wℓ
= −τ(h−wℓ)

∑
i:c(wi)=a exp(τµi)di/(dℓ + di)

2∑
i:c(wi)=a exp(τµi)

(C.17)
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So that the full gradient is:

−τ 4d−
(dk + d−)2

(h−wℓ)
exp(τµℓ)∑
j exp(τµj)

− 4τ(h−wℓ)

∑
i:c(wi)=a exp(τµi)di/(dℓ + di)

2∑
i:c(wi)=a exp(τµi)

(C.18)

The extension can again be interpreted as another attractive or repulsive force depending
on the sign of the advantage.

Finally, there is the possibility that wℓ is the closest alternative for all classes and not
only for the class of a. Then, the gradient is:

−τ 4d−
(da + d−)2

(h−wℓ)
exp(τµℓ)∑
j exp(τµj)

− 4τ(h−wℓ)

∑
i:c(wi)=a exp(τµi)di/(dℓ + di)

2∑
i:c(wi)=a exp(τµi)

− 4τ(h−wℓ)

∑
i:c(wi) ̸=c(wℓ)

exp(τµi)di/(dℓ + di)
2∑

j exp(τµj)

(C.19)

From the above it follows that GLPQ in terms of gradients puts more emphasis on those
prototypes that are located near class boundaries.

C.2 Supplementary experiments

Temperature sweep for LPQ We also tested the effect of the temperature parameter
without any scheduling on the default LPQ algorithm. The resulting sweep for the temper-
ature can be seen in Figure C.1.
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Figure C.1: Temperature sweep for the default LPQ algorithm. The random uniform and
zero clipping refer to different initialization strategies for the prototypes.
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