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Abstract

Efficient utilisation of resources plays an important role in the performance
of batch-based task processing. In the cases where different types of resources
are used within the same application, it is hard to achieve good utilisation of all
the different types of resources. By adaptively altering the size of the available
resources for all the different resource types the overall utilisation of resources
can be improved. Eliminating the necessity of doing trial runs to determine the
desired ratio between resources or having knowledge on the different steps on
beforehand. With the current developments in cloud infrastructure, enabling
dynamic clusters of resources for applications, this can improve throughput
and decrease lead times in the field of computing science.

In this thesis a solution is proposed that tries to come up with the right
calculations necessary to create an adaptive system that provisions the right
resources at run-time. The solution aims to provide a generic algorithm to
estimate the desired ratios of instances processing tasks as well as ratios of the
resources that are used by these instances.

To verify the proposed solution a reference framework is provided that
tries to eliminate underutilisation of virtual machines in the cloud, where
functionally different virtual machines are used in a CPU intensive calculation
job. Experiments are conducted based on use-case in which the probability of
pipeline failures is determined based on the settlement of soils. These exper-
iments show that the solution is well capable of eliminating large amounts of
underutilisation. Resulting in increased throughput and lower lead times.
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Chapter 1

Introduction

Efficient utilisation of resources is a classical problem in a broad variety of research
fields, like logistics and production. In the context of computing science, this means
to efficiently use hardware. Currently, physical data-centres often have low overall
utilisation, as the data-centres are designed to handle estimated peak loads at the
time the data-centres are built. To improve resource utilisation, resources are only
required to be available at the moment there is demand. With current developments
in cloud computing, renting hardware becomes more and more affordable1. The
time it takes to acquire new resources in the cloud is currently on a level that within
minutes new resources can be acquired, compared with the time it takes to decide
new hardware should be present in a physical data-centre and the resources actually
being available is several orders of magnitude larger. This developments in cloud
computing enables operations engineers to change the size of their resource cluster
while running applications. However, managing different types of resources is still
a difficult and a mostly manual process. Most cloud providers have functionality
to easily scale a group of resources based on utilisation thresholds23, but adaptively
altering the size of the resource group based on application demands is not widely
available. Especially when different types of resources are used in one resource
cluster. To efficiently use the available resources, the demand for different types of
resources has to be known at design time. Leaving no room for dynamic resource
demand at runtime.

Estimating the idle-time of resources by determining the demand of resources at
runtime and taking decisions on the size of the resource cluster leads to lower lead
times and thus lower costs. For instance, compute intensive data processing applic-
ations, where data is processed via series of compute intensive components, benefits
from such an automated decision process regarding the allocation of resources. Link-
ing components, with different resource needs, in a chain leads to a mixed resource
demand for different types of resources within the processing chain, resulting in a

1Public cloud competition prompts 66% drop in prices since 2013
2Microsoft Azure Virtual Machine Scale Sets scaling
3Amazon Auto Scaling

1

http://www.computerweekly.com/news/4500270463/Public-cloud-competition-results-in-66-drop-in-prices-since-2013-research-reveals
https://docs.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-autoscale-overview
http://docs.aws.amazon.com/autoscaling/latest/userguide/WhatIsAutoScaling.html


heterogeneous resource demand.

The management of heterogeneous resources is a widely researched topic in the field
of manufacturing. Issues with utilisation of production capacity and the reduction of
waste can be related to utilisation of computing resources. For instance, managing
the resources of each manufacturing step of a product chain is an important factor for
the profitability of a company. Production rates of intermediary steps should match
throughout the processing chain to prevent piling up of semi-finished products. A
proven concept to decrease lead times and reduce inventory levels throughout the
manufacturing process is just-in-time manufacturing (JIT). Henry Ford described
this manufacturing process in his book My Life and Work [1]:

“We have found in buying materials that it is not worthwhile to buy for
other than immediate needs. We buy only enough to fit into the plan of
production, taking into consideration the state of transportation at the
time. If transportation were perfect and an even flow of materials could
be assured, it would not be necessary to carry any stock whatsoever. The
carloads of raw materials would arrive on schedule and in the planned
order and amounts, and go from the railway cars into production. That
would save a great deal of money, for it would give a very rapid turnover
and thus decrease the amount of money tied up in materials.”

The most famous example of just-in-time manufacturing is the Toyota Production
System[2]. In which Toyota addressed the main problem of overproduction and the
waste introduced by high inventory levels. In Figure 1.1 a graphical interpretation
of the Toyota Production System is displayed. The key concept in this figure is that
the production reacts on the demand of the dealer, and the different links in the
product chain are only processing cars when there is a demand for them. Preventing
the production of intermediate products that might never be used for actual cars.

2



Figure 1.1: Toyota Production System4

To be able to generalise the kind of problems addressed in this research, the Toyota
Production System example is used to describe the key elements that can indicate
the applicability of this research on other types of problems.

Figure 1.2: Relationships between definitions with their corresponding analogies
from the Toyota example.

The relationship between the definitions described below is shown in Figure 1.2.
Where arrows indicate one-to-many relationships, so a processing chain consists out
of multiple processing steps and a processing step processes multiple tasks.

Processing chain
A chain of processing steps that solve a problem based on a certain input.
In the Toyota case five processing steps are distinguished: dealer, body pro-
cessing, painting, assembly, and line-off.

4https://www.toyota-europe.com/world-of-toyota/this-is-toyota/
toyota-production-system

3
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Processing step
A link in the chain that independently processes input from the previous step
and outputs it for the next step. A processing step can have requirements
on the type of resources needed to complete the process. For instance, paint
guns are required to successfully execute the painting processing step. Each
processing step can be run in parallel. So, for instance, multiple cars can be
assembled when there are multiple assembly stations.

Task
Element, or sequence of elements, that flow as atomic unit through the pro-
cessing chain transforming at each step. A product order is a task at the
beginning of the processing chain, the task flows through the processing chain
transforming into the desired output of a car.

Resource type
A type of resources needed to fulfil a processing step. Each processing step
can have a different set of requirements on resource types. For instance, the
painting processing step requires paint guns to be able to paint the car and
the body processing step needs welding machines to form the body. In this
research, we focus on reusable resource types, like the machines and person-
nel. And not on resource types used once, like products bought from other
manufacturers that are used in the car, i.e. tyres or windows acquired from
outside the processing chain.

Cluster
All of the resources available to the processing chain, partitioned into distinct
sets of resource types. So for instance, the cluster consists of all the paint guns
and the welding machines, each in their own distinct set.

Managing the cluster of resources available to the processing chain is the key element
of this research. The distribution of resource types in the cluster is an important
factor on how the tasks flow through the processing chain. When the resources
required by a specific processing step are in abundance two things can happen:

1. All of the resources are used and too much intermediate results are created for
the next processing step to handle.

2. Not all resources are used by the processing step wasting available resources.

For example, lets assume the body processing needs 1 welding machine for 3 hours
to process one body and the painting step needs 1 paint gun for half an hour to paint
the body. When there are 9 welding machines and only 1 paint gun available to the
processing chain, either 3 welding machines won’t be used, or a queue of welded
chassis is piling up before the painting step increasing with 1 chassis per hour. As
the welding machines are capable of handling 9 chassis per 3 hours, and the paint
gun only handles 6 chassis per 3 hours. To get an optimal flow through the system,
with using the painting step fully, 6 welding machines are needed per paint gun.
This way, the 6 welding machines can be used to process 6 chassis per 3 hours and

4



the single paint gun can also be used to process 6 chassis in 3 hours. In this example
the ratio can be determined very easily, as the ratio of welding machines to paint
guns is 6 to 1.

The more interesting case is when this ratio cannot be determined easily and the
ratio can dynamically change due to different input characteristics or other external
effects. For instance, when Toyota produces different types cars in the same factory
and the body processing of the different types of cars differs. In this case, the fixed
ratios of the previous example do not hold any longer, as it depends on the types
of cars requested by the Toyota dealer. An automated system could be able to
decide the ratio between resource types needed in the processing chain. Resulting
in a fine-grained resource distribution changing over time, instead of having a fixed
cluster for the whole lifespan of the processing chain.

This research introduces an approach on how decisions on the distribution of resource
types can be made automatically during the lifespan of the processing chain, using
information of the utilisation of the resources and information of the processing
chain and processing steps. This approach is verified by applying it to the use-case
of STOOP, where compute intensive models for soil settling and pipe stresses are
used to determine the chances of gas- and water-pipeline failures.

1.1 TNO

The research is done at the Dutch organisation for applied scientific research (TNO),
aimed at creating a generic solution with the project Sensortechnology applied to
underground pipelineinfrastructures5 (STOOP) as case study.

TNO is an independent Dutch research organisation. The goal of TNO is to apply
scientific research in practice. The mission of TNO is to connect people and know-
ledge to create innovations that enhance the competitive strength or industry and
the well-being of society in a sustainable way.

The STOOP project is executed at the Monitoring and Control Services department
of TNO, the goal of the STOOP project is to monitor underground pipeline networks
in order to be able to make an assessment of the integrity of the pipelines. So that
asset managers can make an objective assessment whether or not a pipeline should be
replaced. The STOOP project is be discussed further as case study in the evaluation
in Section 7.1, where the STOOP project provides meaningful scenarios to evaluate.

5Innovative techniques for monitoring infrastructures

5
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1.2 Research question

The main focus of this research lays in the decision process for an efficient distri-
bution of different resource types. Combining information on both the application
level and the infrastructure level could allow us to take more informed decisions.
Important is the fact that the decision taking should be a continuous process while
applications run on a cluster, as the resource demand is not known beforehand and
can be variable throughout the life-time of applications.

Two different types of distributions should be computed: the distribution of pro-
cessing step instances, and the distribution of resource types. There is a close
relation between these two distributions, so the decision taking should consider this
relationship.

This leads to the main research question:

“How to adaptively provision heterogeneous resources for compute intens-
ive data processing?”

In order to answer this main research question, several sub-questions have to be
answered:

1. Which metrics are needed to provide a clear overview of the status of the pro-
cessing chain?

Different metrics are needed to determine where in the processing chain over-
and underutilisation occurs. What information do we need from both the
application level and the infrastructure level to have a clear overview of the
whole processing chain?

2. How to continuously decide efficient distributions of processing step instances?

Subsequent processing steps should perform at the same throughput of tasks
to prevent over- and underutilisation of these steps. How can the metrics
be used to determine an efficient distribution of processing step instances for
the whole processing chain at a certain point in the lifespan of the processing
chain.

3. How to continuously decide efficient distributions of resource types in the
cluster?

Like the decision for efficient distributions of processing step instances, effi-
cient distributions for the resource types in the cluster should be decided on.
How can the cluster be distributed in the case of possibly multiple running
processing chains on the same cluster.

6



1.3 Contribution

This research focuses on introducing a solution for the problems that are discussed
in Chapter 3. The solution gives an new approach on how to efficiently use hetero-
geneous resources in an adaptive way. An algorithm is proposed to determine the
ideal distribution of processing steps and resources, based on metrics on application
level as well as on the resource level. The solution gives a general approach that has
applicability on a broader level than just the computing science field.

A reference implementation provides a basic framework that supports the solution
so that the solution can be verified. The framework is not a fine-tuned and optimised
implementation, but given the dynamic nature of problems being handled this does
not influence the verification of the solution.

1.4 Document structure

This chapter briefly introduced the topic of this research, with the main focus and
research question. In Chapter 2 the state of the art of different research fields subject
are discussed. The problem statement is discussed in Chapter 3, where the problems
related to the research question is elaborated upon. Chapter 4 provides a general
solution that solves the research question and the problems stated in Chapter 3. The
solution is worked out into a reference architecture in Chapter 5. An implementation
based on the architecture is briefly discussed in Chapter 6, where the implementation
and realisation of the reference framework are introduced. In Chapter 7 the reference
framework is tested and evaluated against test scenarios from the STOOP project.
Chapter 8 provides some directions for future work of this research. And finally, in
Chapter 9 a conclusion is given based on the evaluation and the applicability of the
framework.

7
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Chapter 2

Related work

In the different fields that are connected to this research, like dynamic provisioning,
data processing, and task scheduling, a lot of research is done that can contribute to
this research. Most research focuses on single research fields and less research on the
wide topic of this research, where dynamic provisioning of heterogeneous resources
is used to support data processing. The related work is split up into different aspects
of the research, corresponding with the blocks identified in Figure 1.2: processing
chain, processing steps, and the resource cluster. The related work is often on the
topic of two or more blocks, the discussion of the related work addresses the research
in the block the main contribution lays to get a clear overview on the state of the
art.

2.1 Processing chains

Processing chains can be seen as the logic for processing tasks, with processing
steps transforming input tasks into the desired input for the next processing step.
Therefore, it is important to identify how such a processing chain is designed so
that processing steps are able to process tasks. Depending on the kind of problems
that are solved by the processing chain, there can be different constraints on the
processing guarantees that define how faults in processing tasks by processing steps
are handled.

2.1.1 Chain design

To be able to process tasks through processing chains, processing steps are required
to have great scalability. As the number of processing steps must be able to change
easily without introducing large overheads when large numbers of processing step
instances are deployed.

9



Dean and Ghemawat[3], have published their research at Google for distributed and
scalable processing of data. The MapReduce programming model is introduced,
which is a simple model that enables developers to design highly scalable and dis-
tributed programs that can be run on a large scale cloud infrastructure. The ab-
straction of the model is inspired by the map and reduce primitives originating from
functional languages, like Haskell. For the map primitive a single function is applied
to all entries in a list. And for the reduce primitive all these records are reduced to
a single entry. The reduce operation always reduces two elements into one element
of the same type. Another important aspect of the MapReduce model is that all the
functions are stateless and always give the same result when called with the same
input variables. Due to this stateless nature of the functions, they are very well
suited for distributed execution on partitions of a data-set. Looking at the Toyota
example from Chapter 1, this principle can be applied to the automotive sector.
Where, for instance, the body processing step is a map phase that for each order
executes a function, i.e. creating the metal body of the car. However, reducing a
two assembled cars into one does not make sense. But when shipping cars the set
of cars in the cargo ship can be seen as the reduction of cars to a single entity.

To be able to run the MapReduce model well on heterogeneous clusters, Ahmad et
al.[4] introduced Tarazu. The MapReduce model is evaluated against heterogeneous
clusters, in this case the heterogeneity lays in different performance of different types
of resources. A cluster mixed with Intel Xeon processors and Intel Atom processors
is tested, naturally the Xeon processors outperform the Atom processors signific-
antly. In the MapReduce model the notion of heterogeneous clusters is absent, a
homogeneous set of workers is assumed so the tasks can be scheduled on the different
workers evenly. A suite of optimisations to improve MapReduce performance on het-
erogeneous clusters is introduced, consisting of: load balancing of map operations,
scheduling of map operations, and load balancing of reduce operations.

Available solutions

In the field of computing science, there are several largely used solutions that provide
a design language and a runtime platform that executes the designed applications.

Hadoop MapReduce MapReduce is one of the core components of Apache Ha-
doop. It is the open-source implementation of the programming model introduced
by Dean and Ghemawat[3]. Heterogeneous resources cannot be used efficiently by
Hadoop MapReduce, the Tarazu solution can assist in the case where the hetero-
geneity of the resources lays in the performance of different resources. But when
processing steps are strictly limited to use a specific resource and can’t run on other
resources the Tarazu solution does not help.

10



Apache Spark Apache Spark1 is a processing engine that supports batch pro-
cessing as well as streaming processing, in the form of micro-batch processing. The
performance of Spark is significantly better than Hadoops MapReduce, because it
uses in-memory transfer of data between subsequent stages instead of using much
slower disks. Therefore, Spark is currently preferred over Hadoops MapReduce by
most developers. Spark is often used in combination with Hadoops Distributed File
System (HDFS) to support parallel data processing while taking data locality in
mind.

One of the biggest drawbacks of Spark, for this research, is that it assumes that all
workers are homogeneous and makes, therefore, no scheduling difference for tasks.
This is a clear design decision that works very well for cases where homogeneous
resources are used, but limits the possibilities to support models that do not run on
the platforms Spark is designed for, like models that require Windows.

Apache Storm Apache Storm2 is a parallel and distributed streaming data frame-
work, for which Toshniwal et al.[5] described how Storm is used at Twitter. It uses
micro-batching to process tasks through a series of processing steps, called bolts. It
is mainly focused on near-real time processing of tasks.

Just like Apache Spark, Storm assumes homogeneous resources. Complicating the
deployment of processing chains with processing steps that have strictly different
resource constraints.

2.1.2 Processing guarantees

In distributed data processing the chances on errors in the processing are significantly
larger, as failures in network transmission occur and the chance that at least one
resource fails increases when more resources are introduced to the cluster.

In the description of how Apache Storm is used at Twitter[5], two of the most
interesting processing guarantees for distributed processing are discussed:

at least once
The at least once guarantee can be simply be realised by adding an acknow-
ledgement when a piece of data is processed correctly. If after a certain time-
out a piece of data is not acknowledged it can be rescheduled. If an element
takes longer to process than the time-out is this means that the element will
be handled twice in the pipeline.

at most once
The at most once guarantee means that the piece of data is scheduled once
and will not be rescheduled. In case of a failure in processing a piece of

1Apache Spark
2Apache Storm

11
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data, this element will be dropped. This means that there is no necessity of
acknowledging of pieces of data.

Another guarantee one could think of is that each piece of data is processed ex-
actly one in each processing step. This however requires complete synchronisation
of data in-between processing steps, introducing an exponential bottleneck when
applications are deployed on a large scale.

Depending on the processing chain a choice should be made on the guarantee of the
data processing.

2.1.3 Summary

The MapReduce programming model is an interesting principle to start from, as it
is widely used and a lot of research is done on the distributed data processing with
for instance Apache Spark and Apache Storm.

However, almost all of the current research and available solutions assume a ho-
mogeneous set of resource. Or at least a homogeneous set of resources that are
compatible with each other, so that tasks can be processed by all of the available
resources. In this research we want to investigate whether it is possible to have
strictly separate types of resources that are not compatible with each other.

In this research a reference design is made based upon a newly created framework,
as the dependency of the existing frameworks on homogeneous workers is too strong
to easily modify these frameworks. In the newly created framework design elements
of mainly the MapReduce programming model is incorporated.

2.2 Processing steps

The discussion of research on processing steps contains mainly the runtime aspects,
as the design of the processing steps has been handled at the discussing on processing
chains. In this section the balancing of processing steps is discussed, as well as
methods on how to scale and deploy distributed processing steps.

2.2.1 Balancing

To be able to estimate resource demands of processing chains it is important to have
a good knowledge of the running processing chain and the resources it uses, while
avoiding introducing too much stress on the resources for gathering load metrics.

There are a lot of different approaches to measure the load on a resource instance, or
the load on a cluster of resources. Both at application level as well as on operating
system or hardware level.
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For time series streaming data, Xing et al.[6] introduced a greedy algorithm for
push-based continuous streaming that aims at avoiding overload and minimising
end-to-end latency. The greedy algorithm tries to correlate stream rates to create
a balanced operator mapping plan where the average load variance is minimised or
the average load correlation is maximised, i.e. don’t synchronise the load burst of
two input streams. This way the load is balanced by not letting the inputs create
high peaks at the same time and be nearly idle in between these peaks. This method
can be mainly used when different processing chains run on the same platform with
a burst like character.

Shah et al.[7] have introduced Flux, a data-flow operator between producers and
consumers. The goal of Flux is to re-partition data coming from producers so that
an even distribution is created for the consumers attached to it. This way the
possibility of bottlenecks in the data are prevented.

A back-pressure method is described, by Collins et al.[8], to handle congestion on
a single machine with multi-core processor. Processing steps, or filters, are moved
around across the available cores and the ratio between filters is altered through
the back-pressure algorithm. This algorithm indicates which filters work faster than
others, by letting filters ask an amount of tasks that they are able to receive in their
buffers. This way there is no buffer overflow and are no tasks dropped. The paper
focuses on computations on a single machine, with a case study of the JPEG encoder,
but the principle can be applied to flows distributed over multiple machines.

2.2.2 Distributed deployment

The research on scientific workflows, currently mainly discussed in the field of Bio-
logy, is closely related to the set of problems that we try to solve in this research.
Where chains of operations are applied on input data. Containerisation is a powerful
tool to isolate instances of different components of workflows. Which can be applic-
able to our processing chains, where for instance each processing step resides in an
isolated container. And the resource types are different kind of virtual machines, on
which these containers can run.

Zheng et al. [9] discusses the importance of isolation for scientific workflows, mainly
because of the reproducibility that containerisation gives. As the environments are
clearly described in an image. Several options of using Docker are investigated:
wrapper scripts, worker in container, container in worker, and shared containers.
The performance of these options are tested too see the overhead of using Docker
in scientific workflows.

A popular biology workflow system, Galaxy, is integrated into a flexible container-
based solution by Liu et al.[10]. This enables the workflow system to fully utilise
cloud resources. To make it easier for scientists without computing-science back-
ground, different types of using docker are investigated. Namely, Docker in Docker,
Sibling Docker, and Tool in Docker.
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Challenges that arise when taking ordinary scientific workflows to the cloud is dis-
cussed by Zhao et al.[11]. A generic reference platform is presented that can be used
to alter current workflow platforms to use in the cloud. An example is given with
the Swift workflow management system that is integrated to be used in the cloud.

2.2.3 Task scheduling

As tasks are distributed over a set of instances, the tasks should be scheduled evenly
over all the available instances. This also means that instances that have less per-
formance should receive less tasks than well performing instances.

Work stealing is an effective method for scheduling fine-grained tasks, mainly focused
on multi-core processors within one machine. The algorithm dates back to 1981 when
Burton and Sleep[12] proposed the idea. The algorithm works with using concurrent
queues for each core in the processor. Each core processes tasks on its own queue,
unless the core is underutilised, at that moment the core attempts to steal tasks
directly from the task queue of other cores. This algorithm has many variants that
are implemented over time, for example Acar et al.[13], where the queues are strictly
private and stealing of work occurs via message passing.

The scheduling done in MapReduce, described by Dean and Ghemawat[3], works in
a relative simple way. The master node is responsible to schedule tasks on worker
nodes, when a worker node is able to receive new tasks it will notify the master that it
has a slot available for a new task. The master node will then check if there are tasks
that are local to that slave node, so that the data transfer overhead will be minimised.
To overcome the problem of tasks that take too long to execute, i.e. stragglers,
reducing the performance of the complete processing chain, the master will start
speculative tasks which compute the same operation on the same data. Using this
technique the speculative tasks can finish earlier than the original task, resulting in
a lower overall execution time. To indicate if tasks are stragglers MapReduce will
look at the progress of a operation and the time it took to reach that progress, this
will be compared to the mean of the execution times for that specific operation. The
open-source implementation of MapReduce uses thresholds of task execution times
instead of monitoring the task progress metrics.

The scheduling mechanism in MapReduce and Hadoop assumes homogeneity of their
workers. Meaning that all nodes work at roughly the same rate and that progress
of tasks occurs at a constant rate. However, when run on rented hardware in clouds
these assumptions do not always hold. For instance, the number of virtual machines
that are deployed on a single machine can have a great impact on performance when
all the virtual machines compete for resources on the machine. Zaharia et al.[14]
proposed a scheduler for Hadoop that tries to overcome this kind of heterogeneity
of resource performance. This scheduler gives tasks a ranking based on the estim-
ated time the task will end if it is scheduled now, this way the scheduler has more
opportunity to schedule speculative tasks during the execution of the job. Also, the
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scheduler tries to schedule speculative tasks on faster nodes instead of on all nodes,
to relieve slow nodes as much as possible.

2.2.4 Instance scaling

To make sure that processing step instances have access to the right resource that is
allocated to them, a cluster manager is needed that is able to match the resources to
processing step instances. Looking at the opportunity of isolated containers, scaling
up instances should have little impact on the performance.

In an extensive survey, by Peinl et al.[15], several aspects of cluster management
are discussed on available management solutions for running containerised software
in a cluster: image registry, container management, cluster scheduler, orchestration,
service discovery, storage, software defined networks, load-balancer, monitoring, and
management suites. The paper is published in April of 2016, most of the discussed
solutions are still available and maintained, but a lot of new developments have been
made in this field. For this research the cluster schedulers, the orchestration, and
software defined network solutions are the most interesting.

Researchers at Google published, by Verma et al.[16], their Borg. Google’s Borg
platform is a cluster manager that Google uses for their own applications. Hundred
thousands of jobs, from many thousand of different applications across a number
of clusters each with up to thousands of machines. Google’s Borg system is open-
sourced as Kubernetes, which is currently one of the most used cluster manager and
container provisioning system for Docker.

Available solutions

To be able to launch containers on multiple hosts while communication between
containers across hosts is still possible, container cluster managers create a layer of
abstraction for the cluster and provide tools to manage and provision containers in
the cluster.

Docker Swarm The integrated cluster manager of Docker is Docker Swarm3. It
is integrated in the command line interface and API of Docker. One of the most
significant features Swarm offers is the multi-host networking, especially the multi-
host networking with Linux nodes as well as Windows nodes. Currently Swarm is
the only solution that offers this functionality.

Swarm is built around services, container declarations for which a desired amount
of instances can be set. Swarm ensures that the service is running and that the
amount of replicas matches the description. For these services service discovery, by
using DNS entries for services and instances, is available.

3Docker Swarm mode
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Kubernetes As discussed before, Googles Borg system was open-sourced as Kuber-
netes4. The principal of Kubernetes differs quite a bit with Docker Swarm. Kuber-
netes has a modular design, and plugins are available that change the behaviour.
For instance, Kubernetes doesn’t have multi-host networking support built-in, but
supports a large number of Container Network Plugins that provide this function-
ality.

The basis concept of Kubernetes is the pod structure, a collection of containers
tightly scheduled together. Containers inside a pod are likely to have quite a lot of
communication between each other and are able to share data volumes. To be able
to expose pods to other pods or to the host machine, services are used to expose
ports.

Rancher Rancher5 is an abstraction on top of other cluster managers. By default,
it uses Cattle, an alternative to Docker Swarm and Kubernetes, but it also sup-
ports Docker Swarm and Kubernetes as back-ends for Rancher to run on. Rancher
provides a very powerful web interface, that enables users to setup a cluster very
fast and get a good overview of the cluster and the services.

However, Rancher seems to be caught up by Docker Swarm and Kubernetes. Which
are more robust and have the same capabilities as Rancher.

Apache Mesos & Marathon Where the previous container cluster managers
discussed are built upon Docker and share quite the same functionality. Apache
Mesos6, the cluster manager, and Apache Marathon, the container orchestrator,
have a slightly different approach. Mesos focuses on isolating resources, providing
an abstraction layer for computing elements, able to handle larger amounts of hosts.

Mesos can run dockerised applications as well as “ordinary” programs. But a lot of
functionalities that are available at default in other managers have to be configured
and managed manually.

Marathon is the layer on top of Mesos that enables orchestration of containers. It
is designed to handle long-running applications, with possible stateful applications.

2.2.5 Summary

Several techniques are discussed that are able to balance the flow through a pro-
cessing chain, by using intelligent scheduling algorithms or via back-pressure. These
techniques can be interesting to use or adapt to prevent in-balance of processing
steps. For usage in CPU-intensive tasks, the back-pressure algorithm seems to be

4Kubernetes
5Rancher
6Apache Mesos
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the most interesting, as it has great scalability and is able to handle differences in
throughput of instances.

For the deployment of processing step instances, containerised solutions tend to
be very powerful as each container is fully independent of other instances. This
requires the processing steps to be stateless so that the distributed deployment does
not impact the scalability of the processing chain. In the field of Biology, many
efforts are made to make it as easy as possible for biologists to deploy and run
their own application. For this research this is not an important factor, therefore,
approaches like Docker in Docker or other exotic forms of Docker usage are not being
used. But containerisation itself is very powerful as it provides easy deployment of
large scale applications as well as improving the reproducibility of scenarios.

For the scheduling of tasks in the processing chain a combination of the scheduling
as proposed in MapReduce and the back-pressure algorithm seems to be a powerful
combination. As the number of instances of each processing steps should be able
to change, using only back-pressure is not recommended as each instance is then
required to know which instances are available to request tasks. Therefore, asking
a master for a certain amount of tasks which in turn distributes that to appropriate
instances seems to be a promising approach.

To manage these containers, mostly via the Docker ecosystem, a large number of
products exists that abstract the notion of hosts individually. By using a container
cluster manager, all the resources of the cluster are available via a single interface.
Allowing large number of containers to run on a cluster of resources with the cap-
ability of the containers communicating with each other on a shared network space.
Given the fact that most container cluster managers share a basic set of functional-
ities, there will not be made a decision on the cluster manager until the realisation
of the reference framework.

2.3 Resource clusters

The cluster of resources available to the processing chain is supposed to scale up
and down the different types of resources individually, creating a cluster that fits
the current processing chain deployed on the cluster. Two aspects of the resource
cluster are interesting to investigate, namely the scaling of resource types and the
ability of having heterogeneous clusters that are able to communicate freely between
each other.

2.3.1 Resource type scaling

Adaptive provisioning is an important factor of this research. Managing the set of
resources is a key aspect in preventing over- and underutilisation of resources by
processing chains.

17



In the field of scientific workflows, comparable to the processing chains discussed in
this research, Ostermann et al.[17] proposed four provisioning algorithms for man-
aging virtual machines in the cloud: Cloud start, instance type, Grid rescheduling,
and Cloud stop. These algorithms make sure the right amount of machines are
provisioned, as well as the most suitable machines for the processing chain being
executed. The use of cloud resources as extension upon existing grid infrastructures
is investigated. A just-in-time workflow scheduler is used to be able to utilise the
changing cluster fully. The provisioning rules are based on execution time of tasks
combined with fuzzy resource descriptions, based on the virtual machine instance
types at Amazon expressed in EC2 Compute Units.

The Aneka platform is introduced by Buyya et al.[18]. Aneka is a resource provi-
sioning platform that is able to provision virtual machines on Microsoft Azure as
well as on Amazon EC2. A deadline-based algorithm is used to provision resources
in order to meet deadlines based on time.

Zhang et al.[19] have presented Harmony, a dynamic resource provisioning scheme
for the cloud. The K-means clustering algorithm is used to divide workload into
distinct task classes with similar resource and performance requirements. A dynamic
capacity provisioning model for heterogeneous resources is used to determine the
resource needs of a pipeline. Harmony tries to balance between energy saving and
scheduling delays, while considering the reconfiguration costs of provisioning virtual
machines.

Zhang et al.[20] discusses a method of CPU demand approximation to predict the
needed resources for multi-tier applications. The method works on multi-tier ap-
plications with a network of queues placed between the different tiers. The model
is capable of modelling diverse workloads with changing CPU demand over time.
Approximation of resource demands is done by using statistical regression based on
the CPU demand along all the tiers in the system.

To distribute data between multiple data-centres to utilise energy price differences,
Xu et al.[21] proposed capacity allocation and load shifting schemes. Not only the
costs are considered, but also the outage probability is taken into account as data-
centres have to keep enough resource buffers to handle outages. The ratio-based
load swapping scheme, where data-centres can shift a portion of its load to other
data-centres, seems to be the most interesting.

Kansal et al.[22] have studied whether or not they can reduce carbon emission by
turning off underutilised servers. An overview of load balancing techniques for the
cloud is given, with the corresponding load metrics that are used by these techniques.
The goal of this paper is to indicate whether or not data-centres can be more ecologic
friendly by reducing carbon emissions when shutting down idle servers. But none of
the discussed load balancing techniques uses energy consumption or carbon emission
as metric.
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2.3.2 Heterogeneous clusters

Heterogeneous clusters covers a wide area of clusters with heterogeneous hardware
or software. Most of the research is done in the field of heterogeneous hardware,
where heterogeneous hardware in the cloud lead to varying execution times.

An extension on OpenStack is published by Crago et al.[23], this extension let users
provision VMs with more heterogeneity than currently is available in OpenStack.
With the possibility to, for instance, request a number of accelerators or CPU ar-
chitectures. This is done in a similar way as currently is done by cloud providers,
with predefined resource sets. But the extension allows users to give key-value pairs
with additional requirements for the resource. The publication mainly focuses on
the technical implementation in OpenStack.

To be able to utilise less powerful resources, Thai et al.[24] introduced a scheduler for
heterogeneous clusters. The heterogeneity discussed is in the performance difference
between resources. Service Level Objectives are used to determine priority for jobs.
By running jobs on less powerful resources a significant cost saving realised with
reduction of deadline violations.

Another approach for utilising a heterogeneous cluster with machine with and without
GPU is to probe with small tasks and calculating statistics about this probe step.
Chen et al.[25] used this approach to accelerate the MapReduce paradigm using a
cluster with nodes with GPU, with unknown characteristics, i.e. there is no inform-
ation about the exact performance of the GPUs. The statistics in this case are used
to dynamically change the task block sizes to fully utilise the available GPUs in the
cluster.

Like the previous approach Shirahata et al.[26] presented a method to perform a
similar way of probing with MapReduce and Hadoop on a mixed GPU and non-
GPU cluster. By using Hadoop to schedule jobs, separate CPU and GPU binaries
are used. A new job is started firstly with both CPU and GPU capabilities, and
metrics of the CPU usage and GPU usage is monitored to see if the task is meant to
run on a CPU or a GPU. These metrics are then used to determine the CPU-GPU
ratio for that type of task.

Hassaan et al.[27] introduced an extension on Apache Spark to run Spark jobs on a
heterogeneous cluster. The end-to-end framework introduced uses SparkGPU. The
framework is able to process streamed data on a heterogeneous cluster of CPUs
and GPUs. To be able to run programs on the GPU from within Java or Scala
applications, Java Native Access is used for communication between user program
and GPUs. Also, they investigated if a manager application on the host machine is
useful to reduce the overhead that JNA introduces.
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2.3.3 Summary

The current adaptive provisioning of resources is mainly focused on scaling a resource
type up or down based on the request load of the applications running on the
resources. For batch-based applications, most likely, all the requests are available at
the beginning of the application. This makes it harder to scale up resource types, as
in most cases this would mean that the amount of instances would increase heavily
when a processing chain is deployed. Resulting in the fact that the overhead of
provisioning resources increases, which is harmful when the costs and the lead time
of the processing chain are considered important features of the processing chain.
This is why the solution provides a new algorithm to estimate the demand for
resources, which is not depend heavily on a threshold value for the utilisation.

For heterogeneous clusters, most research is done based on heterogeneous hardware
that is able to run all tasks, where the different resource types have different per-
formance. This approach makes it easier to schedule tasks, as all tasks are able
to run on each resource. In this research the focus lays on heterogeneous clusters
based on the software layer, where applications can only run on one of the resource
types. So processing chains are split up into containers that are required to run on
specific groups of nodes, thus, making approaches like probing tasks to check for
differences in processing throughput less effective. So part of the architecture pro-
posed in Chapter 5 covers the scheduling of tasks and instances on different resource
types.
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Chapter 3

Problem statement

In this chapter the problem is elaborated upon, giving background information on
the research question. The focus lays on describing what the problem in adaptive
provisioning of heterogeneous resources is with respect to compute intensive data
processing. As discussed in Section 1.2, the research question can be split up into
three separate parts. The main research question is: “How to adaptively provi-
sion heterogeneous resources for compute intensive data processing?”. To be able to
reason about the problem being tackled in this research, the kind of applications
that will run on the adaptively provisioned cluster are discussed. Afterwards, the
different aspects of the research question are discussed through the sub-questions
identified earlier.

1. Which metrics are needed to provide a clear overview of the status of the
processing chain?

2. How to continuously decide efficient distributions of processing step instances?

3. How to continuously decide efficient distributions of resource types in the
cluster?

The theoretical part of the research can be solved by answering these sub-questions.
The implementation side of the research question is handled in the architecture and
the realisation (Chapters 5 and 6). However, the decisions taken there do not effect
the core of the research.

3.1 Compute intensive data processing

Processing chains have as property that tasks flow through the processing steps,
with a fixed order between the processing steps. A connection between two steps
indicates that the producing processing step provides the input for the consuming
processing step. As there is no intermediate entity that receives the complete task,
the two processing steps must be compatible regarding the output of the producing
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step and the input of the consuming step. Each processing step acts as consuming
processing step to receive new tasks, as well as acting as producing processing step
for successfully processed tasks in that processing step. However, the first processing
step in the chain only produces tasks and receive or retrieve tasks from outside the
processing chain. As well as, the last step in the processing chain only consumes
tasks and distribute the results outside of the processing chain.

Each processing step can be parallelised individually, so there is no fixed connection
between an instance of the consuming processing step and an instance of the produ-
cing processing step. For each task the destination of the task can change to another
instance of the receiving processing step. With these requirements for the processing
chains, a more extensive illustration of the kind of processing chains discussed in
this research can be made. In Figure 3.1, an example of the flow of tasks through
the processing chain is shown. With three processing steps linked sequentially in a
processing chain, the first and the last processing step have three instances and the
second processing step has two instances. Eight tasks are introduced at Processing
Step A that are being processed by the instances before the intermediate result is
sent to Processing Step B. The result of processing in Processing Step B becomes
then the input for the Processing Step C. The tasks remain the same throughout
the flow, only the data they are carrying changes at each processing step. So the
blue Task 1 is the same task as the purple Task 1, only the data carried by the task
changes.

Figure 3.1: Flow of tasks through a processing chain

To achieve a efficient flow of tasks through the processing chain it is required that
each processing step handles roughly equal amounts of tasks per unit of time. As
in this case the tasks do not pile up in front of slower processing steps, and faster
processing steps are not idle too long. Instances of processing steps are isolated
entities that do not depend on other instances in that processing step, therefore
increasing the amount of instances should result in a linear increase of potential
task throughput of the processing step. To be able to reason on the throughput
of processing steps, we assume that processing a task by processing step instances
takes in general the same amount of time for all the instances of that processing step.
When at a certain point in time a processing step handles 100 tasks per minute with
10 instances, we assume that 20 instances of the same processing step are capable
of handling 200 tasks per minute.
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To identify the processing steps that are under- or overutilised, information is needed
about the flow of tasks in the processing chain. When an overview of the current
state of the processing chain is made, with different kinds of information, important
decisions should be made for future time steps to try to create a more efficient
distribution of processing step instances.

To make sure that the scale of the different resource types support the distribution of
processing step instances, another set of information is needed about the utilisation
of the different types of resources. With the information on the different types of
resources, decisions can be made if the current distribution of resources corresponds
with the distribution of processing step instances.

When looking at the Toyota example from 1, lets assume the following partial scen-
ario:

• 50 body processing instances

• 10 painting processing instances

• 60 welding machines

• 18 paint guns

• Body processing takes 3 hours per task per instance

• Painting takes 0.5 hour per task per instance

Lets start by analysing the body processing step. Each body processing instance
needs one welding machine to successfully process a task. So the resource capacity
of 60 welding machines for 50 body processing instances is 60

50
· 100% = 120%, so at

all times there are 10 welding machines not in use by any body processing instance.
For the painting processing step, each instance needs 2 paint guns to successfully
process a task. The resource capacity in this case is 18

10·2 ·100% = 90%, which means
that always one painting processing instance is idle and not capable of handling new
tasks. For both processing steps the resource capacity is not optimal, as the aim is
to have 100% utilisation of resources.

When looking at the relation between the two processing instances it can be de-
termined how many tasks the body processing step and the painting processing step
can handle per hour. The body processing step is able to handle 50

3
= 162

3
tasks

per hour, and the painting processing step is able to handle 9
0.5

= 18 tasks per hour.
The efficiency of the relation is 162

3
/18 = 25

27
= 0.93, so the rate of tasks produced

by the body processing step is only capable of utilising 93% of the painting pro-
cessing instances, not including the idle painting processing instance that has no
paint guns to use. To achieve an optimal distribution of processing instances the
ratio between the body processing step and the painting processing step should be
50 : 9 · 25

27
= 50 : 81

3
= 6 : 1, which corresponds to the ratio of time needed to

process one task per instance. To level the current ratio of processing step instances
two options are available: increasing the amount of body processing instances, and
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decreasing the amount of painting processing instances. For the resource type distri-
bution, there is no efficient usage of resources for both processing steps. Adjusting
the resources for the current situation is relatively easy, as removing 10 welding
machines and adding 2 paint guns result in an possibility of optimal resource usage
when all the processing step instances have tasks to process. But the interesting fact
is estimating the resource type distribution for future time steps, as the processing
step distribution may change over time. For example, due to changes in input data
that requires more or different calculations in one of the processing steps, leading
to a changed demand from the processing chain. So interaction is needed between
both distributions to be able to result in an efficient processing chain.

In this example all of the information was clear and available, but the interesting case
is when this information is not yet available. Retrieving the information from each
processing instance individually is a costly procedure, especially when the amount
of instances grows to thousands or more. The kind of metrics that need to be
gathered to create a clear overview of the system is discussed in the next section.
The sections after that explain how these metrics can be used to determine the
correct distributions.

3.2 Metrics gathering

To be able to identify which metrics are needed to deduce interesting metrics for
the decision, first needed are the useful types of information for both the processing
chain as well as the resource type utilisation.

For the processing chain it is important to know how the flow of tasks is in the
chain. Intuitively, the throughput of tasks at each processing step is a good indic-
ator of the performance of a processing chain, as this information could indicate
processing steps that are under- or over-performing. However, when the buffer of
tasks in-between processing tasks reaches it’s maximum capacity this buffer will
limit the throughput of the producing processing step. This would be the case when
the producing processing step process tasks at a higher rate than the consuming
processing step. But also, when the consuming processing step is capable of hand-
ling more tasks than the producing processing step is producing, the throughput of
the consuming processing step will be capped at the throughput of the producing
processing step.

Therefore, more information specific for the consuming processing steps and the
producing processing steps is needed to have a clear overview of the processing
pipeline. For producing processing steps it could be advantageous to look at the
overall buffer between the producing processing step and the consuming processing
step. When these buffers contain low amounts of tasks for a longer time period, it
indicates that tasks are consumed almost instantly. Resulting in two possibilities,
either the consuming processing steps has an equal throughput of tasks, which is
the desirable configuration. But it can also mean that the consuming processing
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step has a greater potential throughput and instances are waiting for the producing
processing step to process tasks. Also looking at the derivation of the buffer usage
can indicate the trend of the buffer usage, which can be used to identify the difference
in throughputs of the two subsequent processing steps when the buffer is not nearly
empty or nearly at full capacity. To prevent gathering of metrics regularly at a
certain interval, the producing step can indicate for each task the fraction of time
it has waited due to a full local buffer. Ideally this would approach zero, indicating
that the task did not wait to be placed in the local buffer. When this value increases
it indicates the buffer is full, and there are too much producers for the amount of
consumers. This metric, however, is only capable of indicating that the local buffer
is actually full but is not able to indicate whether or not the the available buffer
capacity is increasing or decreasing. For this, the relation between processed tasks
per time unit and the increase or decrease of the local buffer can be investigated.
For instance, when the processing step is processing 100 tasks a minute, but the
local buffers increase with 25 tasks a minute. This indicates that the local buffers
eventually fill up, to prevent waiting for this limit to be reached this relation can be
used to predict the correct ratio between producers and consumers. This metric can
be described as the relative delta of local buffers, as the delta of the local buffers
indicate the change in the availability of buffer capacity and this delta is expressed
relative to the amount of tasks processed in the delta window.

Consuming processing steps are either limited to the amount of tasks it is able to
consume from the producing processing step, or limited to its own potential capacity.
For the first case, not all consuming step instances are used fully. This can be
measured by recording the average time a processing step instances waits before it
is able to receive a new task. For instance, when a processing step instance is waiting
on average 2 minutes for a task and processes a task on average for 4 minutes, the
utilisation of that processing step is 4

2+4
= 2

3
. Such an utilisation indication gives

a very good starting point to calculate the necessary ratio of instances of both
processing steps.

Also for the utilisation of resource types additional information is needed. However,
it depends on the type of resources what is needed. When the usage of a resource
instance is binary, i.e. the resource instance is either used fully or not at all, an
estimation of the utilisation of the group of instances of that resource type can be
made by calculating the percentage of time the resource instances are used. So, for
instance, a paint gun is either used to paint one car or it is not, it is not partially
used for one car and partially for another car at the same time. When 10 paint guns
have a total utilisation of 6 hours in a 1 hour window, it means that the paint guns
are idle for 4 hours. Resulting in an utilisation factor of 6

10
= 3

5
.

Another possibility is that one resource instance is capable of handling multiple
tasks in parallel, in that case the utilisation of the resource instance is already
a fraction. Namely, the fraction of processing steps using the resource versus the
potential capacity of that resource instance. In that case, aggregating the utilisation
of the group of resource instances can be simply done by, for instance, averaging the
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utilisations.

Because resources and processing step instances are not likely to be created instantly
and without costs, information is needed on the time it takes to start processing step
instances. This delay introduced in the creation of new instances has implications
on the desired window metrics should be gathered and the decision making. When
the delay of creating new instances is large with respect to the total running time
of the system, we need to be very sure we need that extra instance. But when the
delay is small it can be advantageous to start new instances with less certainty, as
new instances that turn out to be under-utilised can be removed without large costs
to the system.

Summarising, the following metrics would be needed to be able to reason about the
flow of tasks through the processing chain and the utilisation of resources by that
processing chain are shown in Table 3.1.

Processing chain metrics
Metric code Description
PublishWait Fraction of wait times to publish tasks in the local buffer

of producing processing steps, relative to the processing
time of the task.

BufferChange The fraction of the amount of tasks being published to
the local buffer versus the amount of tasks transferred
to consumers.

ConsumeWait Fraction of wait times versus processing times of con-
suming processing steps.

Resource utilisation metrics
Metric code Description
Utilisation Fraction of utilisation, calculated by resource specific

metrics.

Table 3.1: Metrics definitions

3.3 Processing chain distribution

With the processing chain metrics, imbalances in the distribution of instances of
processing steps can be identified. To be able to do this specific states are identified
between subsequent processing steps. These three possible states are: fast producer
and slow consumer, slow producer and fast consumer, and balanced consumer and
producer. Where a fast producer and slow consumer is a state where a processing
step that with the current amount of instances is able to processes more tasks than
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the consuming processing step is able to handle with its current amount of instances.
For the slow producer and fast consumer, this logically means that the producing
step processes tasks at a lower rate than the consuming processing step is able to
handle. And the balanced consumer and producer is the desired state, that is tried
to achieve for each pair of subsequent processing steps in the processing chain.

For each pair of subsequent processing steps we have a set of metrics as defined
before, with these metrics we can identify in which category the pair of steps belong
to. In Chapter 4 solving the question on how the distribution should be determined
is answered.

Mapping the states and the metric characteristics gives the following overview:

• Fast producer and slow consumer

PublishWait > 0 ∧ BufferChange ≈ 1 ∧ ConsumeWait ≈ 0
The producer has a significant wait time for each tasks to be placed in the
local buffer. Therefore, the relative buffer delta is zero, as the producer
is not producing more tasks than there are tasks consumed from the
local buffer. The consumer can in this case only be fully occupied with
consuming tasks, otherwise there could be a fault in transferring tasks
from the consumer to the producer.

PublishWait ≈ 0 ∧ BufferChange > 1 ∧ ConsumeWait ≈ 0
The producer is producing more tasks than are consumed, with a local
buffer that is not yet full. As the wait times are still approximately zero,
but the relative buffer delta indicates an increase in the buffer usage. Just
like before, this means that the consumer should have no wait times, as
the buffer is increasing.

• Slow producer and fast consumer

PublishWait ≈ 0 ∧ BufferChange ≈ 1 ∧ ConsumeWait > 0
The consumer is waiting for tasks to be published, combined with ap-
proximately zero wait times of the producer and an even relative buffer
delta this indicates that the local buffer of the producer is empty and
when new tasks are published they are consumed directly by an available
consumer.

PublishWait ≈ 0 ∧ BufferChange < 1 ∧ ConsumeWait ≈ 0
The consumer is fully occupied with consuming tasks from the publisher,
but the local buffer of the producer is decreasing. Indicating that in a
certain amount of time the local buffer of the producer will be empty,
resulting in a state where consumers are waiting for tasks.

• Balanced producer and consumer

PublishWait ≈ 0 ∧ BufferChange ≈ 1 ∧ ConsumeWait ≈ 0
This is the ideal situation, both the producer and consumer are not wait-
ing on each other and the buffer remains roughly the same, indicating
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that both processing steps are processing tasks at the same rate.

BufferChange
PublishWait ConsumeWait < 1 ≈ 1 > 1

≈ 0 ≈ 0 SP-FC Balanced FP-SC
≈ 0 > 0 - SP-FS -
> 0 ≈ 0 - FP-SC -
> 0 > 0 - - -

Table 3.2: Producer-Consumer categorisation, indicating in which category the pro-
ducer and consumer belong to. With the following possibilities: Fast producer slow
consumer (FP-SC), Slow producer fast consumer (SP-FC), balanced producer and
consumer (Balanced), and the erroneous category (-)

The combinations of metrics that are not described by the above overview indicate
a faulty state, as there is a relation between the metrics. For instance, not both the
producer and the consumer can wait half of the time, as for the producer to wait the
local buffer should be full and for the consumer to wait the local buffer should be
empty. In Table 3.2 all the possible values of the metrics with their corresponding
category are shown.

3.4 Resource type distribution

Making decisions on the distribution of processing step instances is only part of the
question that is solved. Matching the available resources with the processing chain
is an important factor in achieving an overall efficient usage of resources with respect
to the processing chain.

Determining an efficient resource distribution at a specific time is relatively straight-
forward, as we have the resource utilisation metrics for the different resource types.
This can simply be done by multiplying the current amount of resource instances by
the utilisation metric. For instance, when there are 100 welding machines with an
overall utilisation of 0.8 and 30 paint guns with an overall utilisation of 0.9, the ratio
between the two resource types should be: (100·0.8) : (30·0.9) = 80 : 27 = 1 : 0.3375.

However, when processing step instances are competing for a resource that is utilised
fully there will be processing step instances that have to wait before using a resource.
The waiting on resources cannot be covered by determining the processing step
distribution solely. Take for instance the case where there are 100 welding machines
with a utilisation of 1.0, this could happen when 100 processing step instances use
each one welding machine. But when there are 120 welding machines each requiring
one welding machine, 20 processing steps instances will be halted at each moment
as there is no resource available to fulfil tasks. Or another possibility is that, when
resources can be shared by multiple processing step instances, the performance of
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the processing step instances decreases. Resulting in disturbing the processing step
distribution, as when resources are not fully occupied the processing step instances
will increase their performance.

Therefore, interaction is needed between the determinations of both the resource
type distribution and the the processing step distribution. To avoid exhaustive
usage of resources by processing step instances and to create efficient and sustain-
able distributions that the processing chain is able to use. As when a resource
is exhausted, the resource will most likely throttle the processing step instances,
resulting in lower throughput of the instances which results in wrong distributions
when the is scaled up. As the instances will return to their actual throughput in
that case, and the deployed distribution is in-balanced.
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Chapter 4

Solution

In this chapter solutions on the problems stated in Chapter 3 are discussed. Focusing
on the theoretical approaches on the calculations of the different distributions.

The chapter is divided into three main sections, firstly to calculate the optimal
processing chain distribution based on the metrics gathered from the processing
chain. With this distribution the translation to the actual instance count of the
different processing steps has to be determined to fully utilise the resource available
to the cluster at that moment. And lastly, calculating the distribution of resources in
the cluster and resource instance counts is described based on user defined strategies.

An worked out example, based on the Toyota example, clarifies the solution.

4.1 Processing chain distribution

In Section 3.3 a categorisation of pairs of processing steps is made to determine if
the relation between the processing steps is: fast producer and slow consumer, slow
producer and fast consumer, or balanced producer and consumer.

When the processing steps are categorised into the different states, the determination
of the ratio between the steps should occur. For this the currently deployed ratio
between the processing steps is needed, provided by equation 4.1, where n is the
amount of instances for either the producing processing state or the consuming
processing state.

r = nproducing : nconsuming (4.1)

The calculation of the new ratio depends on the category the pair of processing steps
falls in, as well as the BufferChange. The category determines if there should
be more or less publishers relative to consumers, and the buffer change indicates
whether or not the buffer is full or empty. If the buffer is not at it’s full or empty
level, the change in the buffer can be used to determine the optimal ratio between
processing steps. The BufferChange is 2 when the producers process 2 times more
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tasks than the consumers is consuming and is 0.5 when the consumers consume tasks
2 times faster than the producer is producing. Multiplying the amount of consumer
by the BufferChange results in an increase of workers when the producer is faster
and a decrease of workers when the consumer is faster, which is the goal of calculating
the ratios between processing steps.

When the buffer full, either the the producer has a significant wait percentage to
publish tasks in its buffer or the consumer is exactly on par with the production
of the producer. In the case the producer is waiting, it makes sense to lower the
amount of producer instances with the percentage that the producers are waiting on
average. The same holds up for the case when the buffer is empty and consumers
are waiting significantly for new tasks, in that case the consumer instances should
be lowered.

In the equations 4.2-4.5 this description is translated into formulas that can be used
in algorithms later on.

Fast producer ∧ δ ≈ 1 : r′ = nproducing · (1− pw ) : nconsuming (4.2)
Fast producer ∧ δ > 1 : r′ = nproducing : nconsuming · δ (4.3)
Slow producer ∧ δ ≈ 1 : r′ = nproducing : nconsuming · (1− cw ) (4.4)
Slow producer ∧ δ < 1 : r′ = nproducing : nconsuming · δ (4.5)

Balanced ∧ δ < 1 : r′ = nproducing : nconsuming (4.6)

where δ = BufferChange, pw = PublishWait, cw = ConsumeWait

With the new set of ratios for the processing chain, the distribution can be calculated
with an recursive function displayed in equation 4.7.

Dn = Dn−1 · r′ (4.7)
D0 = 1 (4.8)

For each processing step in the processing chain the position in the chain determines
which D belongs to that processing step. The first processing step has index 1 and
the last processing step has index N . For clarification D is normalised against the
sum of D, following equation 4.9

D̂ =
D

|D|
(4.9)

The normalised distribution D̂ now contains the fraction of instances a processing
step needs with respect to the total amount of instances.
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4.2 Processing instance counts

With the normalised distribution D̂ calculated, this can be used to determine the
amount of instances each processing step that will improve the resource utilisation.
For this, the resource utilisation metric Utilisation is needed. This determines the
capability of each resource to be used by extra processing step instances. To be
able to use the utilisation in formulas a function is introduced in equation 4.10 that
returns the fraction of utilisation of an input processing step, which corresponds
with the utilisation of the resource that is needed for that processing step.

U(p) = utilisation of resource needed for p (4.10)

This function is used to determine the scaling factor to result in the total amount
of instances that at least can run on the specific resource, by dividing the current
amount of instances by the utilisation fraction. As the current amount of instances
do not produce more load than the current utilisation fraction, scaling the amount
of instances by 1 over the utilisation the instances cannot produce more than the
current load. As processing steps that have an calculated distribution fraction that
is higher than the current deployed distribution fraction are used fully, otherwise
the scaling up wouldn’t have effect at all. Equation 4.11 shows the calculation of
the scale factor, which is determined for all processing steps that have an higher
distribution factor than currently deployed.

sp =
1

U(p)

s = min
∀p

sp

pscale = argmin
∀p

sp

(4.11)

As all of the processing steps are scaled based upon the same scale factor the lowest
scale factor should be used, as this is the scale factor that leads to no overutilisation
of the processing steps. With these factors calculated, the new processing step
instance count can be determined. Following equation 4.12, the new set of processing
step instance counts can be calculated.

N′pscale = Npscale · s

N′ = N′pscale ·
D̂

D′pscale

(4.12)

where Np = # current instances of step p

This set N′ can now be used to scale the processing step instance. As N′ contains
fractions, the set must most likely be converted to a set of integers by either rounding,
ceiling, or flooring the fractions, depending on the characteristics of processing steps
instances and the kind of resources used in the processing chain.
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4.3 Resource provisioning

At the moment the processing step instance count is stable, meaning that the re-
source usage will be fairly constant, the optimal resource distribution can be de-
termined. By multiplying the amount of resource instances by the utilisation factor,
the optimal amount of instances for the current situation can be calculated. As the
number of processing step instances N′ will not use more than 100% of the resource,
no resources is overutilised at this moment. Like the calculation of the normalised
distribution of processing step instances D̂, for the resource distribution a normal-
ised distribution is used to make the calculations using the distribution easier, as
shown in equation 4.13.

R′r = Rr ·Ur

R̂ =
R′

|R′|
(4.13)

where Rr = # current instances of resource r, Ur = utilisation of resource r

To be able to know how much the resource instances should be scaled up or down,
a budget B of the maximal resource allocation is needed. Calculating the amount
of resource instances that is needed to create an even resource utilisation is a simple
task, as shown in equation 4.14.

R′′ = R̂ ·B (4.14)

This new optimal resource instance count R′′ is fractional, as resources are most
likely scaled based on integers, the fractions should be converted to corresponding
integers.

4.4 Example

To clarify the formulas above, a scenario is worked out based on the Toyata ex-
ample of Chapter 1. Where four processing steps are distinguished: Dealer, Body
processing, Painting, Assembly. In Table 4.1, the metrics of the processing steps at
a certain point in time are shown.

Instances PublishWait BufferChange ConsumeWait
Dealer 1 0.75 ≈ 1 0.25

Body processing 20 0.1 ≈ 1 ≈ 0
Painting 5 ≈ 0 1.2 ≈ 0
Assembly 10 ≈ 0 ≈ 1 ≈ 0

Table 4.1: Scenario metrics
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Each of the processing steps use a distinct resource, so four utilisation metrics are
shown in equation 4.15, with their corresponding scale factors.

U(Dealer) = 0.1 pDealer = 10

U(Body processing) = 0.4 pBody processing = 2.5

U(Painting) = 0.2 pPainting = 5

U(Assembly) = 0.3 pAssembly = 3.33

(4.15)

The initial ratios are determined from the number of instances from Table 4.1, as
shown in equation 4.16.

r1 = Dealer→ Body processing = 1 : 20

r2 = Body processing→ Painting = 20 : 5

r3 = Painting→ Assembly = 5 : 10

r4 = Assembly→ Dealer = 10 : 1

(4.16)

Now, given the initial ratios and the metrics at a certain point in time, the new
processing step distribution can be calculated. All the ratios are in the form of
1 : n, so that in the following calculations these numbers can be used more easily.
Equation 4.17 shows these calculations and their results.

r′1 = 1 · (1− 0.75) : 20 = 0.25 : 20 = 1 : 80

r′2 = 20 · (1− 0.1) : 5 = 18 : 5 = 1 : 0.2778

r′3 = 5 : 10 · 1.2 = 5 : 12 = 1 : 0.4167

r′4 = 10 : 1 = 1 : 0.1

(4.17)

Now the distribution of processing steps can be determined, as shown in equa-
tion 4.18, where the values of D′n correspond with the consumers of each pair of
processing steps. So the value of D′1 corresponds to the body processing instances,
and D′2 corresponds to the painting instances. The last value, D′4 corresponds to
the consumers of the first processing step, namely the dealer.

D′1 = 1 · r′1 = 80

D′2 = D′1 · r′2 = 22.222

D′3 = D′2 · r′3 = 9.259

D′4 = D′3 · r′4 = 0.926

(4.18)

Normalising this distribution gives the fractions of each processing step, as shown
in equation 4.19, which sum up to 1. Which indicates that in this case 71.17% of
all the processing step instances should be of the body processing type.
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D̂1 = 1 · r′1 = 0.7117

D̂2 = D′1 · r′2 = 0.1976

D̂3 = D′2 · r′3 = 0.0824

D̂4 = D′3 · r′4 = 0.0082

(4.19)

Now that we have the new distribution, the processing step instance count can be
determined. First the starting point for the scaling has to be determined, by looking
at the resource that is utilised the most. Which is the resource belonging to the
body processing step, as shown in equation 4.20

s = min
∀p

sp = 2.5

pscale = argmin
∀p

sp = Body processing
(4.20)

Filling in equation 4.12 with the calculated values gives the new processing step
instance distribution. In equation 4.21, the values of the desired instance counts are
calculated.

N′pscale = Npscale · pscale = 20 · 2.5 = 50

N′ = N′pscale ·
D̂

D′pscale
= 50 · {0.0082, 0.7117, 0.1976, 0.0824}

0.7117

= {0.579, 50, 13.883, 5.789}

(4.21)

As these numbers are fractional and it is most likely that we can not use half a paint
gun, these values are rounded up to the next integer. Table 4.2 shows the number
of processing step instances that should be provisioned.

# instances
Dealer 1

Body processing 50
Painting 14
Assembly 6

Table 4.2: New instance counts

When the number of instances for each processing steps stops changing the re-
sources can be scaled accordingly, by looking at the utilisation fractions and using
equation 4.13 and 4.14

36



Chapter 5

Architecture

This section proposes a conceptual architecture based on the solution introduced in
Chapter 4. This conceptual architecture provides the basis for the implementation
to verify the solution. The high-level architecture is the starting point for the rest of
this section. Some individual aspects of the architecture are discussed in more detail
to clarify relevant parts of the architecture with respect to the adaptive approach.

The focus of the architecture lays on the case where processing chains are chains of
algorithms and models that are run on compute instances that act as resources for
the processing chain.

This chapter starts with the introduction of a set of high-level requirements that
provides the basis for the architecture. Based on these requirements a high-level
architecture is discussed, of which several parts are elaborated upon in later sections.

5.1 Requirements

Based on the research question and the solution, a set of high-level requirements can
be deduced. The high-level requirements are split up into functional requirements,
i.e. what the solution is supposed to do, and non-functional requirements, what
quality attributes the solution must fulfil. The requirements are prioritised following
the MoSCoW method. Providing the following four categories:

Must Requirements that are critical for the final deliverable to be successful

Should Requirements that are not essential for the final deliverable to be successful.
These requirements can be as important as MUST requirements, but often do
not have the necessity to be included in the first deliverable

Could Requirements that are nice to have when there are enough time and re-
sources left. Often improving user experience.

Won’t Requirements that have are the least critical
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5.1.1 Functional Requirements

In Table 5.1 the functional requirements are displayed, with their identifier, priority,
title, and description.

FR-1 Must Adaptive provisioning

The platform must be able to estimate the needed resources demand
of running applications over time and dynamically provision that
estimate.

FR-2 Must Gather processing chain metrics

The platform must be able to gather metrics of processing chains to
be able to make a decision for FR-1, by estimating the processing
steps that are bottlenecks in the processing chain. Based on the
processing chain metrics discussed in Section 3.2.

FR-3 Must Gather resource metrics

The platform must be able to gather resource metrics from the
cluster to be able to make a decision for FR-1, by estimating what
resources are under- or overutilised in the cluster. Based on the
resource metrics discussed in Section 3.2.

FR-4 Must Language library

The platform must provide a scalable language library that de-
velopers can use to create user applications. This language library
is the needed layer of abstraction for developers to create user ap-
plications as intuitively as possible.

FR-5 Must Run user applications

The platform must be able to run processing chains written by
external developers. Processing chains written with the language
library (FR-4) should have the right communication protocols and
runtime capabilities to be executed on the platform.

FR-6 Must Schedule tasks

The platform must be able to schedule user applications on the
platform. This includes the scheduling of tasks, i.e. partitions
of the input data that flow through the processing chain, on the
available processing step instances.

FR-7 Could User Interface
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The platform should provide an user interface in which users are
informed about decisions made by the platform. Also, the platform
should provide statistics of running and finished processing chains.

FR-8 Won’t Data locality

The platform could provide a way to schedule tasks closely to where
the input data resides. So that data-heavy processing chains can be
executed on the platform, with limited performance losses. Based
on the scope of this research, this requirement won’t be embedded
in the architecture, leaving this for future work.

FR-9 Won’t Flow optimisations

The platform won’t optimise processing chains, for instance by com-
bining processing steps to limit the necessity of transferring data.

Table 5.1: Functional Requirements Requirements

Requirements FR-1, FR-2, and FR-3 are introduced based on the research question
as stated in the introduction, following the three sub-questions. To be able to have a
meaningful reference framework as it is intended to use, by having processing chains
that are dynamic and diverse, the requirements FR-4, FR-5, and FR-7 provide the
ability to create other applications that are run on the platform easily.

Scheduling of tasks is an implicit requirement, as due to the distributed nature of
the framework, scheduling (FR-6) plays an important role in the performance of the
framework.

Requirements FR-8 and FR-9 are added based on the related work in the field of
distributed data processing. But are left out of the scope of this research due to
time limitations.

5.1.2 Non-functional Requirements

In Table 5.2 the non-functional requirements are displayed, with their identifier,
priority, title, and description.

NFR-1 Must Distributed

The platform must be able to execute user application distributed
on a cluster of resources.

NFR-2 Must Scalability
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The platform must be designed with scalability in mind, the over-
head introduced when more resources are added should be minim-
ised. So that processing chains that are required to have low lead
times are able to provision a large amount of resources that are
used effectively. Furthermore, the platform must be able to handle
at least hundreds of resource units.

NFR-3 Must Fault tolerance

The platform must be able to handle faulty processing steps, re-
source malfunction, or packet loss.

NFR-4 Should Adaptability

The platform should be designed in such a way that new and other
techniques that replace existing functionalities can be added to the
platform easily. Like, for instance, adding other resource providers
or resource types.

Table 5.2: Non-functional Requirements Requirements

The chosen non-functional requirements are common for these types of frameworks.
They are present because insufficiently meeting these requirements limits the ability
of reasoning on the results of the framework.

5.2 High-level architecture

The high-level architecture of the platform gives an overview of the components in
the platform and the relations between these components. The logical centre of
the platform is the monitor, which monitors running processing chains and make
decisions for provisioning processing step instances as well as resource instances. The
monitor has no direct notion of the resources and processing step instances, separate
managers provide a layer of abstraction for these components. Thus, letting these
managers take care of the low-level matching between processing step instances
and resources, and letting the monitor take decisions on the global overview of
the processing chains. Providing the opportunity to change resource managers or
processing step managers to other vendors.

The platform consists of four components that each take care of a part of the solution:

Monitor
The monitor is responsible for the deployment of processing chains by provid-
ing the resource manager and the processing step instance manager enough
information, so that they are capable to provision the cluster with the right

40



processing step instances. This is an ongoing process that monitors the pro-
gress and other metrics of the processing chain to see if changes should be
made in the amount of resources or amount of processing step instances used
by the processing chain. Therefore, the monitor can be seen as an control-
ler of a control loop that receives sensor output from the resource manager
and the resource manager, and controls the amount of instances of processing
steps and resource types. The monitor is responsible for FR-5, and for the
provisioning decisions for FR-1.

Resource manager
The resource manager is responsible for providing resources to processing step
instances, enabling processing step instances to process data. Metrics of the
usage of resources are shared with the monitor so that it is able to make
the decision to scale up or scale down the number of resources. Making the
resource manager responsible for FR-3 and partly for FR-1.

Processing step manager
The processing step manager is responsible for instantiating processing step in-
stances of the right type for processing chain. Also the communication between
processing step instances is taken care of by the processing step manager. It
has a notion of the available resources to the pipeline, so that it can match
processing step instances to resource instances. Thus, making it responsible
for FR-2 and partly for FR-1.

User interface
The user interface component provides users the ability to start new processing
chains and to monitor their running processing chains to see the progress and
the decisions made by the monitor. Giving the user the ability to watch the
performance of his processing chain. The user interface communicates only
with the monitor, making it only responsible for FR-7.

These components are shown in a schematic overview of the platform in Figure 5.1,
where the relations between the components are illustrated.

Giving this four main components of the platform, only FR-4 and FR-6 are not
accounted for yet. The architecture supporting these requirements is discussed later
in this chapter.

To create a separation of concerns the monitor is not responsible for all of the
tasks, but the resource manager and the processing step instance manager are each
responsible for their own part of the system. The monitor is the component that
takes decisions retrieved from both the resource manager and the processing step
manager, leaving the logic on how to provision resources and processing steps to
their managers.
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Figure 5.1: High-level overview

5.3 Language library

The language library is the tool developers use to create processing chains, consisting
of individual processing steps that can process tasks in parallel. The essence of the
language library is that it has to be easy to use without large complex configurations,
the developer should only worry about the pragmatics of the processing chain. To
support FR-4, which requires a clear and simple abstraction for developers to create
applications that can be run on the platform.

The MapReduce principle is very convenient to use for this types of problems, as
the different functions can be executed in parallel easily. As, for instance, the
map function executes a function on a partition of data independently of other
partitions. This stateless design of the MapReduce principle, therefore, is well suited
for executing tasks on a cluster of resources.

As the normal MapReduce functions do not take into account heterogeneous re-
sources to run tasks on, the principle is extended with possibilities for developers to
indicate on which resource a function is required to run. Making it necessary to be
able to run the language library on all resource types that ought to be supported in
the processing chains.

The language library contains the runtime requirements, so that when a processing
chain is written by a developer it can be packaged so that the processing chain can
be used in runtime. Implementing logic that enables the packaged applications to
transfer tasks between processing step instances.
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5.4 Runtime overview

The runtime environment consist of 3 major components: the platform monitor,
the processing step instances, and the processing chain mediators. The platform
monitor orchestrates processing chains, by starting and monitoring processing chains
initiated by users. Also, the dynamic provisioning is provided by the platform
monitor, as this component gathers metrics of the resources and the processing step
instances. The architecture of the run-time provides a solution for FR-6, also the
run-time architecture provides information on how the processing chain metrics are
gathered.

Processing chains need processing step instances to execute functions on input data,
for managing the distribution of tasks over the processing step instances processing
chain mediators are introduced. These mediators are responsible for distributing
tasks it receives to processing step instances for the next processing step. To prevent
the mediator to become a bottleneck when all data travels through the mediators,
only task descriptions are shared with the mediators. These task descriptions are
small packages indicating that the processing step that published the task description
has a task available. Processing step instances are then themselves responsible to
transfer the data between each other. The reason the mediators are situated between
the processing step instances is because the platform monitor is required to know
how tasks are travelling through the system so that it has a view of the running
processing chain, used to make provisioning decisions. The mediators share the
knowledge they have about the processing chain section they are responsible for. In
Figure 5.2 the communication steps between processing step instances and mediators
is shown. The dotted lines indicate that the amount of network traffic used is small
compared to the solid line. As these messages are only the requests or the tasks
metadata.

Figure 5.2: Runtime task distributing

The information the monitor gathers from the mediators is also used to inform
users of the status of their running processing chain. For instance, information
about the progress of the processing chain or information on the utilisation of the
processing step instances for each processing step. So that users can be informed if
the processing chain is in a stable state, where there is no or little changes in the
distributions.
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Figure 5.3 shows the sequence diagrams for the communication between publisher-
mediator-consumer. Indicating the communication protocol between these entities
and which entity is responsible for which part of the communication.

(a) Publisher-Mediator communication (b) Consumer-Mediator communication

(c) Consumer-Publisher communication

Figure 5.3: Task processing and distribution sequence diagrams

In these sequence diagrams it becomes clear which components in the platform are
responsible for the task distribution. Where the mediator plays an important role in
matching publishers and consumers, so that they are able to transfer intermediate
results in the chain.

5.5 Control loop

The control loop that periodically decides on the distribution of processing steps
instances and resource instances is mainly situated at the Monitor. The Monitor
controls the number of instances for both the processing steps as the resources, by
sharing the calculated instance numbers to respectively the processing step manager
and the resource manager. To be able to calculate new instance counts it requires
the information discussed in Chapter 4, which is runtime feedback based on the
instance counts deployed at that moment.

The resource manager takes a double role in this control loop, as it provides the
abstraction for the monitor to provision resources as well as providing utilisation
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metrics of the resource to the monitor. The feedback of the processing chain is
acquired from the mediators.

The rate the control loops calculates new distributions depends mainly on external
factors from resource providers. As the addition of resources can depend heavily on
the type of resources that are provisioned. Also, metrics of resources are most likely
not available instantaneous. For instance, metrics from virtual machines can have
delays of several minutes before they arrive at the Monitor.

5.6 Dynamic provisioning

Dynamic provisioning of processing step instances and resources is one of the key
contributions of this research. A part of the processing step instance provisioning
is taken care of by the cluster manager, which decides where to start the actual
processing step instances. But an important factor of the processing step instance
provisioning, the amount of instances that are deployed per processing step still has
to be determined. The key determination estimating the ideal ratio of processing
step instances for the different types of processing steps in the processing chain.
Using the formulas proposed in Chapter 4, the ideal distribution of processing step
instances can be determined. As the instances are provisioned based on integers only
and not on fractional values, the number of processing steps instances provisioned
have to be rounded up to the next integer. Resulting in slightly too high processing
step instance counts. However, this effect is not likely be of a high impact, as the
resource usage won’t be 100% in this case and assuming the instances won’t be
occupying the resources when they are waiting.

The resource provisioning is partly taken care of by an external resource provider,
but again, like the processing step instance provisioning, the estimation on the
distribution of resources types has to be made according the formulas proposed in
Chapter 4. As most batch-based use-cases tend to have a fixed upper-bound of
resource budget, rounding off resource instances to the next integer can result in an
violation of the resource budget. Therefore, the resource instances are be rounded
off to the nearest integer. In this case there is also a possibility of budget violation.
For instance when resource A is estimated at 4.5 instances and resource B at 5.5
instances, rounding off the instances results in 5 respectively 6 instances. Whereas,
the budget is 10 instances. Therefore, the last resource for which instances are
determined is given the amount of instances that are left in the budget.
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Chapter 6

Realisation

This chapter elaborates on the implementation details of the framework used for
verifying the adaptive approach, and how the setup is created for performing tests.

Firstly, the language library is discussed, which forms the basis of applications that
run on the platform. The runtime-components, i.e. the processing step runtime,
the mediators, and the monitor, are discussed separately. As these components are
the most important ones for platform that provide the information to make the
decisions.

Also this chapter discusses the deployment of the platform on cloud infrastructure
via Docker Swarm and Microsoft Azure.

6.1 Language library

The language library supports developers to create applications to run on the plat-
form. This library must be easy to use. With the usage of Scala as programming
language the functional idea behind the MapReduce model can be easily implemen-
ted, as Scala is an object oriented functional programming language.

In Listing 6.1 an example of an simple application is shown. This example is one
of the scenarios that is evaluated in Chapter 7. All the steps, data, dSettlement,
wTube, and the return value, are instances of ProcessingStep. This Processing-
Step class contains basic functionality on steps, like the map operation used in the
example. The operations supported by the ProcessingSteps is currently limited
to map and reduce operations, but the implementation is done in such a way that
this can be easily extended with new functionalities.

Map operations are relatively large, as no complex directed acyclic graph generator
that aggregates map operations that can run together is implemented. Ideally, the
settlement map operation would be split into separate map operations for generat-
ing the input (line 8), executing the external python library (lines 9 and 10), and
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retrieving the interesting pieces of the result (line 11). Making each map operations
solely responsible for a small part of the total computation.

1 ob j e c t TestScenar io1 extends Process ingChain {
2

3 de f chain ( ) : Proces s ingStep [_, _] = {
4 va l data = new RandomDatasource ( )
5

6 va l dSett lement = data map { case (x , y ) =>
7 import sys . p roce s s ._
8 va l input = DSettlement . xml (x )
9 va l s e t t l ementResu l t = ( "python .// core−wrap// run . py"

10 #< stringToInputStream ( input ) ) . ! !
11 (x , y , s e t t l ementResu l t . s p l i t ( " , " ) . l a s t . toF loat )
12 } setEnvironment VirtualMachine (Windows ( ) )
13

14 va l wTube = dSett lement map { case (x , y , load ) =>
15 va l input = WTube. xml ( load )
16 va l p i p e l i n e S t r e s s e s = WTube. c a l c u l a t e ( input )
17 (x , y , load , WTube. retrieveMaxVonMises ( p i p e l i n e S t r e s s e s ) )
18 } setEnvironment VirtualMachine ( Linux ( ) )
19

20 wTube map { case (x , y , load , maxVonMises ) =>
21 // Store in permanent s to rage
22 }
23 }
24 }

Listing 6.1: Application example

Together with the chain the data source are the only mandatory implementations
a developer has to develop to have an application that is able to run on the plat-
form. The random data source is shown in Listing 6.2, which shows that only the
initialisation of the data source has to be implemented. In which the initial values
are filled in, and the desired amount of partitions that are generated from the initial
values. In this case random numbers between 2.0 and 22.0 are generated, while the
amount of iterations can be changed at the time of deployment. The amount of
partitions are in this case equal to the amount of iterations, as the calculations take
a decent amount of time in the order of half a minute.

1 c l a s s RandomDatasource ( environment : Option [ Environment ] = None )
2 extends DataSource [ Float ] ( environment = environment ) {
3

4 ove r r i d e de f i n i t i a l i z e ( args : Array [ S t r ing ] ) : Unit = {
5 va l s i z e = i f ( args . l ength > 0) args (0 ) . t o In t e l s e 100000
6

7 i n i tVa l u e s = L i s t . range (0 , s i z e ) map {
8 _ => 2.0 f + 20 ∗ math . random . toFloat
9 }

10 p a r t i t i o n s = s i z e
11 }
12 }

Listing 6.2: Data source example
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Following these simple examples, the language library enables developers to create
processing easily without having to know how the platform actually works. Only
the amount of chosen partitions for the processing chain is an open question for each
developer, as having too much partitions introduces more overhead in the system
and having too few partitions leads to insufficient information at the mediators
about the performance of the chain.

6.2 Processing steps

The implementation of processing steps, with the communication with other pro-
cessing steps and the mediators can be split up into two categories: collectors, and
workers. The collectors provide the data source and manage the initial distribu-
tion of tasks and collect successfully executed tasks. Workers are the intermediate
processing steps that actually transform the data in each step.

So for each processing chain one processing step is a collector and the other steps
are workers in the chain.

The communication, such as shown in Figure 5.3, is implemented with ZeroMQ.
Which is a lightweight library on top of simple TCP sockets, enabling easy com-
munication between the components. For the processing steps only simple request
and reply sockets are used. Communication with the mediators occurs with request
sockets, while the communication for requesting a task from a previous processing
step happens in a standard request-reply fashion. The holder of the tasks acts as
reply server for the next processing step to request the task.

For serialisation and deserialisation of tasks the default Java serialisation from the
java.io package is used. When only simple primitives are used this is not a very
efficient solution, but the introduced overhead is ignored for this research. This can
however be optimised in future work.

6.2.1 Workers

Worker instances are split up into receiver threads and distributor threads. The
receiver threads receive new tasks from a mediator, after which the actual task is
retrieved. The receiver is also responsible for actually executing the function that
is implemented for that processing task. The receiver is implemented as an infinite
loop that receives task headers, after which it contacts the instance responsible for
the task header via a temporary socket to retrieve the task data.

The distributor thread is a server that listens for requests for tasks, so the distributor
thread and the receiver thread have a necessity of a shared store of completed tasks
that not yet have been transferred to the next processing step.
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6.2.2 Collector

For the test executed in Chapter 7 the kind of input data is a simple list of random
loads. Therefore, the current implementation only focuses on this use-case. Leaving
the implementation of other data source, such as input from distributed file systems
as HDFS or databases via query languages, for future work.

The collector is implemented with a separate task management and a receiver thread,
so that these responsibilities can run at the same time. The task management thread
is responsible for distributing tasks to the first mediator, this also means that the
task management thread is responsible for resubmitting tasks that are likely to be
lost in transmission or lost in a scale down of a processing step. The receiver thread
acts in the same fashion as for the workers, except from the fact that no operations
have to be done on the data.

The task management thread and the receiver thread share a store of tasks that
still have to be fulfilled. At the moment that store is empty the collector finishes,
which indicates that the processing chain successfully processed the batch and the
monitor is allowed to clean up the started resources and processing step instances.

6.3 Mediators

The mediators are relatively simple entities, that is built up with three elements: the
receiver of task headers, the distributor of task headers, and the metrics calculation
and sharing. The basis of the mediator are two queues: the task queue, and the
worker queue. The task queue contains the tasks that are published to the mediator
but are not yet distributed, and the worker queue contains the workers waiting for
new tasks.

The implementation of the mediator is self-explanatory given the architecture in
Chapter 5.

6.4 Monitor

The monitor implements the management of processing chains, including the con-
trol loop for the decisions on the number of processing step instances and resource
instances. For this it gathers metrics from mediators in processing chains, together
with resource utilisation from the resource manager. In the control loop the monitor
acts as controller, processing the available information and taking decisions on the
number of instances for both processing steps as resources.

As the monitor requires a good overview of the running processing chains, it provides
the API for the user interface. Such way, the user interface can retrieve interesting
information on processing chains, to inform users on the state of the platform.
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6.4.1 Metrics gathering

Two types of metrics are gathered by the monitor: processing chain metrics from
the mediators, and resource metrics from the resource manager.

The mediators send their collected metrics on a set interval to the monitor. There-
fore, the monitor implements a server that is able to receive the metrics of mediators.
The monitor itself has no dynamic control on the interval mediators send their met-
rics, but is able to set a specified interval at the start of a processing chain. Readings
of metrics received from the mediators are in the form of the case class in Listing 6.3.

1 case c l a s s MediatorReading (
2 tasksDone : Int ,
3 taskQueueSize : Double ,
4 workerQueueSize : Double ,
5 numWorkers : Int ,
6 publishWaitTime : Float
7 )

Listing 6.3: Mediator readings format

Gathering resource metrics occurs via a pull-based system, as the resource metrics
are retrieved from cloud providers. This way no additional servers have to run to
gather metrics and send these to the mediators. Metrics gathered from the cloud
provider usually occurs on a per VM basis, introducing the need to aggregate these
metrics into averages for the resource types.

A Scala trait is introduced so that implementations for other cloud providers can
be added easily to the system. This trait is a simple interface that requires a
gatherMetrics method to be implemented, which should result in a sequence of
VMMetrics, as shown in Listings 6.4 and 6.5.

1 t r a i t VMMetrics {
2 de f gatherMetr i c s ( ) : Future [ Seq [ VMMetric ] ]
3 }

Listing 6.4: VM metric trait

1 case c l a s s VMMetric (
2 i n s t anc e : Str ing ,
3 os : OperatingSystem ,
4 timestamp : Date ,
5 cpuPercentage : Double ,
6 memoryPercentage : Double
7 )

Listing 6.5: VM metric format

The implementation of the gathering of VM metrics can either occur periodically or
on a request basis in the control loop. At this point the gathering is done periodically
every minute, as the metrics from Microsoft Azure are updated each minute.
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6.4.2 Control loop

The control loop for determining the right amount of processing step instances, as
well as, determining the right distribution of resource types consists of five main
tasks:

1. Checking if all instances are running properly for a certain amount of time, to
ensure previous decisions are visible in the retrieved metrics.

2. Determine the desired processing step instance counts.

3. Determine the deployable processing step instance counts.

4. Determine if changes in the resource distribution are needed.

5. Provision the calculated processing step instance counts.

As not all information is available instantaneously, the algorithm has to check if the
needed information is available to the monitor. This happens based on predefined
timeouts that, for instance indicate the time it usually takes for processing step
instances to work fully, or the time it usually takes before resource usage is picked
up fully by the resource manager. These timeouts cannot be defined on before-
hand for all scenarios, different cloud providers can have different timeouts before
resource utilisation can be measured correctly. In future work, these timeouts can
be estimated at run-time by looking at trends in the metrics.

The determination of desired processing steps follows the solution and architecture
(Chapter 4 and Chapter 5) completely.

Docker Swarm is used to provide the cluster manager functionality, unfortunately
Docker Swarm has no intelligent algorithm implemented to decide where each con-
tainer in the cluster should be deployed. It looks, at this moment, only at the
number of containers running on each host to determine the best suitable host. In
our case, this is not desirable because it can occur that multiple resource intensive
containers are run on one host and containers that are mostly waiting on another
host. Ideally, a cluster manager should provision based on the utilisation of host,
and selecting the host that is underutilised first for deploying new containers. To
overcome this problem, processing tasks that have a high resource demand reserves
resources, preventing too much heavy containers to run on one host. This means
that when determining the amount of processing step instances may not exceed the
maximum amount of reservable resources.

Like the calculation of processing step instances, the calculation of the resource dis-
tribution follows the solution and architecture. The only additional feature that
is built in is a cool down period after a change in resource distribution. To pre-
vent continuously changing the resource distribution in the cases when the resource
demand is not close to integers.
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6.4.3 Application programming interface

The provided API of the monitor is implemented using the http4s library. The API
provides functionality in the following categories:

• Starting and stopping processing chains

• Control loop logs

• Processing chain metric statistics

• Resource metric statistics

• Docker cluster information, including service and tasks information, and ser-
vice logs.

• Export functionality of processing chain metrics and resource metrics to comma-
separated values (CSV) files.

As the user interface is implemented in Javascript with AngularJS, the API provides
all information in Javascript Object Notation (JSON) format, except for the CSV-
files for exporting metrics.

The API right now only supports traditional HTTP calls, but in future work a
WebSocket or HTTP long polling approach could be advantageous as the amount
of API calls will be reduced drastically this way.

6.5 Microsoft Azure

For the evaluation of the adaptive approach, Microsoft Azure is chosen as cloud
provider. All major cloud providers have the same functionality that are needed for
the platform, as the requirements for the cloud provider are quite common.

The cloud provider must act as resource manager, and therefore, provide an interface
to scale up or down resources types. As well as, providing utilisation metrics of the
virtual machines in the cluster. For managing the resource types, deployed as Azure
Virtual Machine Scale Sets, the Azure Virtual Machine Scale Sets REST APIs are
used. For measuring the utilisation of virtual machines, the Azure Diagnostics
Extension is used. This is an extension that runs on the actual virtual machines
that records usage of the virtual machine on a 1 minute interval.

For deploying a cluster as used in Chapter 7, Azure templates are used to simplify
the deployment of a scale set for each resource type and the management virtual
machine. On the management virtual machine the monitor runs, as well as in-
stances that do have some state, like processing chain collectors. As the scale sets
themselves are scaled up and down, there is always some information lost in the
case of deallocating virtual machines, which is not desirable for the processing chain
collectors.
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6.6 Docker & Docker Swarm

The usage of Docker enables components of the platform to run isolated and behave
the same regardless the host configuration the Docker containers are run on. En-
hancing the reproducability of the tests in the platform as configurations are clearly
defined in the so called Dockerfiles. This way the installed libraries are the same
for each run, and are others able to run the same tests without having to install
specific libraries on host systems.

To deploy Docker containers over a cluster of machines, Docker Swarm is used. The
main reason behind the decision for Docker Swarm is that it enables cross platform
networking, so Linux Docker containers are able to communicate with Windows
Docker containers via a shared subnet in an overlay network. Other functionality
that is used from Docker Swarm is present in all major container cluster management
solutions.
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Chapter 7

Evaluation and results

In this chapter the adaptive approach is evaluated with a use case from the STOOP
project. A comparison is made with the existing approach used in the STOOP
project on performing calculations on models with different resource needs.

7.1 Case Study

The data and models used to determine the chances of failures of a pipeline are very
diverse and are not all developed internally at TNO. Currently, an Apache Spark
workflow is used in the STOOP project to perform statistical calculations.

The STOOP workflow is simplified by the pseudo-code in Listing 7.1. The input of
the workflow is a list of pipeline segments. A probabilistic method is used on each of
these segments. For the probabilistic method stochastic variations are determined
and run in parallel. For each variation then the local calculation scenario for that
combination of segment and variation is determined. Then a number of ground
settlement and pipeline soil spring calculations are done, the number of these cal-
culations depends on the combination of segment and variation used. The results
are then used to calculate the segment stress on parts of the segment, the results
of these calculations indicate whether or not the pipeline is likely to fail for these
variations.

1 f o r every segment :
2 whi le not probab . converged ( )
3 f o r every va r i a t i o n :
4 constructRegionLayout ( )
5 doSet t l ementCa l cu la t i ons ( )
6 doP ipe l i n eCa l cu l a t i on s ( )
7 combineResults ( )
8 ca l cu l a t eSegmentSt r e s s ( )
9 hasFa i l ed ( )

Listing 7.1: Stoop workflow pseudo-code
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Looking at this simplified code of the STOOP case, it is clear that there is a lot of
dynamicity in the workflow. As the probabilistic method does not always converge
after the same amount of iterations. And for each segment and even each variation
the amount of settlement, pipeline, and segment stress calculations can change.

On top of these flow characteristics, also the environments the different calculations
should be run on are different. Namely, the settlement and pipeline calculations are
packaged into a Windows DLL, and the rest of the flow is run on Linux.

7.2 Models

For evaluating the adaptive approach, a part of the STOOP case study is tested. The
models for calculating settlements and for calculating pipeline segment stresses are
combined into a simple processing chain. For the settlement calculations a random
amount of load is introduced on a fixed composition of soils, for which the settlement
is calculated after 90 years. This settlement is used to calculate the stress that this
settlement introduces on a pipeline segment, which can be used to determine the
failure probability.

Figure 7.1: Test scenario

In this test case, we see dependencies on both Windows as well as Linux, where both
of the compute intensive models are black box models that are used as is.

The lead times of the models are dependent on stochastic values, which makes it
next to impossible to estimate the ratio between the models on beforehand.

The current solution used in the STOOP project makes use of Apache Spark. Where
a Linux Spark cluster is deployed, with a Windows partner virtual machine for each
Linux worker. At the moment the Linux workers are supposed to do a Windows
calculation, a pipe with the partner virtual machine is setup to delegate the calcu-
lation. This setup with dedicated partner virtual machines inherently has an static
and 1 to 1 distribution of resources.

7.2.1 Scenarios

For testing the effectiveness of the platform different scenarios are tested, based on
the models discussed. Because the solution is trying to reduce underutilisation of
resources, the scenarios are chosen in a way that there is a significant underutilisation
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present in the Spark scenario. This means that the main focus in the results lays in
the improvement of the utilisation and if the adaptive approach is able to perform
close to 100% utilisation of resources. The pipeline stress model takes roughly 2
times the time the settlement model takes per task, based on the stochastic values
used in the scenarios.

The two main scenarios are as follows:

1. In one area additional load is introduced, while the surrounding areas above
the pipeline are be constant. So one calculation is needed to predict the
settlement of the additional load after 90 years, and one calculation is needed
to determine the stress on the pipeline.

2. Four areas above the pipeline are of variable load, for each of these areas
a settlement calculation has to be performed and with this information one
pipeline stress calculation can be done. Each iteration of the scenario contains
four random loads.

In Figure 7.2, the two scenarios are shown in simple graphics to clarify the difference
between the scenarios.

(a) Scenario 1 (b) Scenario 2

Figure 7.2: Test scenarios

The first scenario has a higher demand for Linux, meaning that the Windows nodes
will be underutilised. For the second scenario this is turned around, with a higher
demand for Windows.

To be able to see the behaviour of the platform when the kind of load changes
throughout a test, a combination of the two scenarios is introduced. In this combin-
ation, the first half of iterations is performed with one settlement calculation, the
second half of iterations contains four settlement calculations.

For the tests a fixed amount of iterations is performed that vary the load. Giving
an indication on what values for the loads are acceptable and do not introduce too
much stress on the pipeline. The number of iterations per test are chosen in a way
that the total lead time is large enough for the adaptive approach to be able to
provision new resources. The three different scenarios are tested with 20 VMs, with
5 runs for each test. The first scenario, with one settlement calculation per pipeline
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stress calculation, is also performed with 100 VMs for 3 runs for each test. The total
test setup is shown in Table 7.1.

Scenario # Cores (VMs) # Iterations # Runs
1 40 (20) 15000 5
2 40 (20) 7500 5
3 40 (20) 15000 5
1 200 (100) 150000 3

Table 7.1: Test overview

The tests are done on the Azure cloud platform, with Standard D2 v31 instances
that are equipped with two cores and 8GB RAM. All VMs are deployed in the same
Azure region to have the best network connectivity between instances.

The throughput of the Spark setup is measured by logging the task time of each
task.

7.3 Results

The results of the tests are grouped based on the number of VMs used. The tests
with 20 VMs are discussed based on the average of the 5 runs. Whereas, the tests
with 100 VMs are discussed briefly with the average result of the 3 runs and a closer
look is performed on the first run of the adaptive approach to show the decisions
that are taken.

The results of the adaptive approach can be shown fine-grained, as the gathered
metrics are stored. The results of the Spark setup are determined based on task
duration, where each task contained 125-150 iterations.

7.4 20 virtual machines

In Figures 7.3, 7.4, and 7.5 the results of the tests with 20 VMs are displayed. Each
of the tests is run 5 times and the average of these 5 runs is shown in the figures. For
the adaptive approach the cluster starts with 2 Windows VMs and 2 Linux VMs.

When taking a look at the results of the first scenario, it is clear that the adaptive
approach outperformes the Spark setup significantly when the resources are scaled
up to the resource budget of 20 VMs around the 30 minute mark. The Spark setup
initially has a lower throughput then later in the test, this can be explained by
the fact that in the Spark setup when the first tasks are handled the settlement

1Microsoft Azure instance overview
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model must be loaded. This takes around 10 minutes to complete, therefore, the
throughput of the Spark setup increases after the first tasks are completed after 30
minutes.

When looking at the difference in throughput when both approaches reached their
maximum throughput, we see an improvement of roughly 50%. Also the lead time
of the complete scenario is reduced by 59 minutes on a lead time of 206 minutes,
which is an reduction of 29%.

The resource utilisation of both approaches show the reason behind these improve-
ments. Spark is able to maximise the resources of the Linux VMs, but the Windows
VMs have an average of 38% utilisation over the scenario. The adaptive approach is
not able to maximise one of the resources, but both resource types have an average
utilisation of 70%. When looking at the stable part of the scenario, between 60 and
120 minutes, we see an average cluster usage of 91% for the adaptive approach and
70% for the Spark approach.

0

0.5

1

1.5

2

2.5

0:00 0:30 1:00 1:30 2:00 2:30 3:00

Ta
sk

s 
p

er
 s

ec
o

n
d

Time

Adaptive Spark

(a) Throughput

0

10

20

30

40

50

60

70

80

90

100

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30

U
ti

lis
at

io
n

 (
%

)

Time

Linux (adaptive) Windows (adaptive) Linux (Spark) Windows (Spark)

(b) Resource utilisation

Figure 7.3: Results of scenario 1 with 20 VMs, averaged over 5 runs

The results of the second scenario show a similar picture as the first scenario. How-
ever, the differences between the approaches is less than in the first scenario. But
still an improvement in throughput when the approaches are stable of 40% is made.
Also an reduction in lead time of 53 minutes is realised, based on a lead time of 200
minutes this is an improvement of 27%.

The resource utilisation also shows an similar picture, the window the adaptive
approach is stable is, however, smaller than in the first scenario. Looking at this
stable windows from 70 minutes to 120 minutes, the average resource utilisation
of the adaptive approach is 92% and for the Spark approach it is 71%. Which is
comparable to the first scenario.
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Figure 7.4: Results of scenario 2 with 20 VMs, averaged over 5 runs

The results of the third scenario show how well the approaches are able to adapt
to changing resource demands throughout the scenario. The first 90 minutes show
roughly the same results as the first scenario, where the adaptive approach outper-
formes the Spark scenario. At this 90 minute mark the adaptive approach reaches
the shift in demand, a large dip in the throughput is noticeable. At that moment
it tries to find a new resource distribution to fit the demand. At the 150 minute
mark, the adaptive approach starts to outperform the Spark approach again. The
difference in lead time between the approaches is 40 minutes, which is a 14% im-
provement. The overall resource utilisation of the adaptive approach is 65%, whereas
the Spark approach achieves an resource utilisation of 60%.
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Figure 7.5: Results of scenario 3 with 20 VMs, averaged over 5 runs

As this scenario is able to show how well the adaptive approach is able to handle
changing needs in the processing chains, a closer look is taken at the first run of the
adaptive approach with 20 VMs for this scenario. In Figure 7.6, the throughput and
resource utilisation are shown together with the resource instances and processing
step instances.

It is clear that around 1:25 the scenario flips to the four settlement calculations,
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which is also clearly visible in the resource utilisation. The adaptive approach makes
its first decision shortly after the dip in resource utilisation of the Linux cluster, when
it detects a large difference in utilisation between Windows and Linux. The pro-
cessing step instances are scaled just shortly after the resources are fully provisioned.

Interesting too see is the dip at 1:00, which was introduced by an error in a Windows
VMs that resulted in a loss of network connections. After a while the containers on
that host were restarted and worked the cluster properly again. This error did not
have any effect on the adaptive approach in the rest of the test.

Due to this dip no clear stable period can be found for the first half of the calcula-
tions. However, for the second half of the calculations a clear stable period is present
from 2:30 until the end of the run around 3:30.
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Figure 7.6: Results of the first run of scenario 3 with 20 VMs

Summarising the results of the test with 20 VMs, Table 7.2 shows the improvements
of the adaptive approach relative to the Spark approach. The throughput and
resource utilisation improvements are measured when both approaches are stable,
except from the resource utilisation of scenario 3, as no clear stable windows can be
determined.

These percentages show a significant improvement in all facets of tests. Also when
taking into account that the adaptive approach has to provision new resources at
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Scenario Throughput Resource utilisation Lead time
1 50% 30% 29%
2 40% 29% 27%
3 57% & 22% 8.3% 14%

Table 7.2: Improvements of the adaptive approach relative to the Spark approach

runtime, which introduces delays in computation, the lead time improvement is
likely to approach the throughput improvement when the scenarios take longer to
process.

The improvement in resource utilisation is the result that is the most interesting, as
the increased resource utilisation leads to the increased throughput and lead time.

7.5 100 virtual machines

The test with scenario 1 with 100 VMs shows largely the same result as the tests
with 20 VMs. The throughput achieved by the adaptive approach when it stable,
between 60 minutes and 240 minutes, is 11.3 iterations per second. The Spark
approach reaches 6.9 iterations per second. This means an improvement of 64%,
which is significantly larger than in the 20 VM case.

When comparing the throughputs of the 100 VM and the 20 VM cases, the 20 VM
case has a throughput of 2.24, so the 100 VM case achieves a scalability factor of
1.008. Whereas, the Spark scenario achieves a scalability factor of 0.944.

Looking at the resource utilisation, an average utilisation when the approaches are
stable of 94% for the adaptive approach and 67% for the Spark approach are reached.
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Figure 7.7: Results of scenario 1 with 100 VMs, averaged over 3 runs

A closer look at the processing step distribution (Figure 7.8) and resource distri-
bution (Figure 7.9) of the first run of the adaptive approach show that after 22
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minutes the first resource provision step is made. From a 5:5 distribution of Linux
and Windows, the decision is made to adapt to a 64:36 distribution. After this the
adaptive approach changes the distribution several times, in order to reach a stable
distribution after 105 minutes. The processing step distribution follows the resource
distribution closely.
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Figure 7.8: Resource distribution scenario 1 with 100VMs
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Figure 7.9: Processing step distribution scenario 1 with 100VMs

Figure 7.10 shows the overall utilisation of the different resource types. After the
last resource provision step the utilisation stabilises at 92% for Windows and 89%
for Linux.

The dip after 22 minutes in utilisation of Linux can be explained by the fact that
provisioning Linux VMs takes less time than provisioning Windows VMs. When
both resource types are provisioned correctly the algorithm carries on with calcu-
lating the processing step distribution, which results in an increase of the resource
utilisation.

To estimate the cost improvement of the tests, the amount of VM hours can be
determined. For the Spark scenario this is easy, as its tests ran for 404 minutes with
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Figure 7.10: Resource utilisation scenario 1 with 100VMs

50 Linux VMs and 50 Windows VMs. For the adaptive approach a calculation has
to be made for each window between provision steps. The results of this calculation
are shown in Table 7.3. In this table also the costs are displayed, based on the
pricing at the 27th of September. Which are $0.212 per hour for Windows VMs and
$0.120 for Linux VMs.

Approach VM hours (Windows, Linux) Costs (Windows + Linux)
Adaptive (135.33, Linux: 273.80) $28.69+ $32.86 = $61.55
Spark (336.67, Linux: 336.67) $71.37+ $40.40 = $111.77

Table 7.3: Costs of different approaches on Microsoft Azure

The differences in costs are even greater than previous comparisons, with nearly
halving the costs of the Spark approach, mainly because the adaptive approach
used more Linux VMs which are cheaper due to reduced licence costs.

7.6 Test difficulties

When testing both approaches, some difficulties came up that made it harder to
correctly test the different scenarios. Some of the larger difficulties are discussed.

The first and major obstacle that came up was the fact that when deploying larger
amounts of VMs the chance of incorrectly provisioned VMs increases. On average,
around 3% to 5% of the VMs did not provision correctly. To overcome this obstacle,
overprovisioning tackled this problem largely. The virtual machine scale sets of
Azure have the option to automatically overprovision VMs and deallocate the VMs
that are added in abundance. For the Spark approach a normal set of VMs was
used, so the overprovisioning had to be done manually. By deploying more VMs
and stopping VMs just before starting the Spark job.
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Another obstacle is the fact that Windows support for Docker Swarm is in a beta
stage. This was visible the most in the networking stack of containers in the Swarm
cluster. Sometimes containers do not have a network connection, which makes them
unusable for distributed calculations. To overcome this problem, the processing step
instances check if they have an active network connection when they are started, if
not they exit and a new container is started. This solution works for the largest part,
only when the network connection dropped when the processing step instance was
running already this did not work. This is most likely the reason that the adaptive
approach did not reached the 100% resource utilisation for one of the resource types.
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Chapter 8

Future work

As for every project, and especially because of the fact that a new solution and
platform is created in this thesis, there are still areas in which further research can
be performed. The major areas that have been identified are:

Data locality: For the reference platform to be useful for big data applications, it
is necessary to prevent data transfer through disks or even through networks. For
big data applications this can influence the performance of the application greatly.
When for instance a simple word count application needs to process terrabytes of
data it is very inefficient to transfer this data through different machine a couple of
times.

Improve efficiency: Improving the efficiency of the runtime components of the
platform can result in the platform using one of the resource at near 100% levels,
instead of the 90%-95% that is achieved right now. For instance, a good algorithm
to create directed acyclic graphs of the processing chain and combining steps that
have the same resource requirements. This would lower the number of hops the data
has to travel through the processing chain. But also improving the stability of VMs
in a cluster or improving the stability of Docker Swarm can help in achieving greater
efficiency.

Distributed file systems and database queries: Right now only single data
sources are supported by the platform. Supporting distributed file systems like the
Hadoop Distributed File System or query languages to process data from databases
on multiple data source instances can help in achieving better scalability of the
platform.

Machine learning control loop frequency: Machine learning can be effective to
reduce the currently static control loop intervals the platform uses. The lower these
intervals are, while preserving the same decision certainty, the more the lead time
decreases of processing chains run on the platform.
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Chapter 9

Conclusion

In this thesis a new approach to adaptively provision resources based on metrics
from both the application layer as well as the resource layer. By proposing a general
approach and implementing a reference platform for the STOOP project significant
improvements are made. The main research question posed is:

How to adaptively provision heterogeneous resources for compute intens-
ive data processing?

To be able to answer the main research question, the sub-questions identified in
Section 1.2 have to be answered first. The first sub-question that is answered is:

Which metrics are needed to provide a clear overview of the status of the
processing chain?

In Section 3.2 the basis of the necessary metrics is identified. For processing chains,
three metrics are distinguished: wait times to publish tasks, wait times for consum-
ing tasks, and changes in the local buffers in between processing steps. Especially
the wait times are extremely effective to estimate if an processing chain is in bal-
ance, as this would mean that none of the processing steps is waiting and thus fully
utilised.

Metrics for resources are a bit less concrete than the metrics of processing chains.
As it depends heavily on the kind of resources that are used which metrics are able
to describe the utilisation of resources. Therefore, in the algorithms, a percent-
age of utilisation is used. This can be implemented differently for different types
of resources. In the case of virtual machines with compute intensive models, the
percentage of CPU usage is used to determine the utilisation of the resources.

These metrics are used to assist in answering the second sub-question:

How to continuously decide efficient distributions of processing step in-
stances?

The answer to this question is described in Section 4.1 and Section 4.2. A series of
calculations based on the metrics identified earlier enables to calculate the desired
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processing step distribution at the moment of when the metrics are gathered. And
a way to convert this distribution to actual instance counts that can be deployed in
the processing chain.

The last sub-question that is needed to answer the main research questions is:

How to continuously decide efficient distributions of resource types in the
cluster?

The answer to this question is relatively simple, as the utilisation of the different
resource types should be on the same level. The only calculations that have to be
made is the calculation of the distribution, which can be related directly to the
utilisation metric. As well as, determining the actual counts of the resources by
multiplying the distribution by the resource budget.

Now that the sub-questions are answered, the main research question can be dis-
cussed. By gathering the necessary metrics for the algorithm to estimate the de-
sired distribution of processing step instances and thus the desired distribution of
resources, we are able to create a control loop that is able to continuously adapt the
processing chain and its resources to the estimated distributions.

In Chapter 7, this solution is evaluated with very promising results. An increase in
throughput of up to 50% is achieved. Of course, the kind of scenarios tested plays
an important factor in the results of the solution. When the demand for different
resource types by an application is roughly equal, the adaptive approach will not
achieve an improvement.

We can conclude that adaptive provisioning of heterogeneous resources for compute
intensive data processing can be very beneficial for applications with an inbalanced
resource demand. By using application metrics and resource metrics a control loop
can be setup that continuously adapts to changing demand from the application.

Furthermore, the ability of the adaptive provisioning enables the creation of ap-
plications without the need of determining the correct ratio of resource types on
beforehand. This could possibly save a lot of development time and time for trial
runs. As developers are able to create and deploy applications without the necessity
of estimating the ratio of processing step instances and resource instances.
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