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Abstract

In this master thesis we explore the possibility of violations of the Born rule
postulate in the vicinity of the black hole. We introduce the black hole
information paradox and review the recent development in the firewall
discussion. In the second part we introduce a thought experiment in the
framework of AdS/CFT. We formulate a conflict between quantum
entanglement and typicality. An exploration of this conflict by D. Marolf and
J. Polchinski in 2015 [15] has resulted into the conclusion that ’non-excited’
black hole states could not be dual to typical CFT states without violating the
Born rule. In this thesis we try to get more insight into the matter and
explicitly quantify the statements made. By computing correlation function on
the eternal BTZ black hole in 2+1 dimensions, we find violations of the Born
rule to be immeasurable, indicating there would be a possibility for
non-excited black holes to be dual to typical CFT states.
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1 Introduction

In 1972 Jacob Bekenstein connected the quantity of thermodynamic entropy
to the area of black holes. The famous area law is given by the Beckenstein-
Hawking formula[1]:

S =
A

4GN
(1)

This law relates the area of the black hole to the entropy. This statement made
a very big impact. Elaborating on this calculation Stephen Hawking formulated
his theory of black hole radiation and showed that black holes could evaporate
[2]. The result caused a situation. A notorious situation known in the business
as the ”black hole information paradox”. A black hole starting in a pure state
would radiate away into a mixed state consisting of thermal radiation, causing
to lose information of it’s purity. The principle of conservation of information
or quantum unitarity was a sacred one, and never seen violated before. At the
black hole, where quantum mechanics and general relativity met in concrete way,
the situation looked very frightening. Either the process did not obey quantum
unitarity, or something different happened which was at that moment, and for
many years to come not understood.

A second interesting feature of Bekenstein-Hawking formula is the relation
between the entropy and the area of the black hole. It suggested the idea of
quantum holography. Originally formulated by Gerardus ’t Hooft [3]. The idea
that the information inside a volume could be alternatively and fully described
by the surface enclosing it. In 1998 J.C. Maldacena conjectured a concrete ex-
ample of such a holographic principle. With string theory being the only true
proposal as a theory for quantum gravity, he found a duality between a N = 4
supersymmetric Yang-Mills gauge theory without gravity, and a type IIB string
theory compactified on AdS5 × S5 with gravity [4]. The boundary of the Anti-
de Sitter space was found to be exactly equal to a quantum field theory with
conformal symmetry, a conformal field theory or CFT. The AdS/CFT proposal
was the first example of a gauge/gravity duality. An excellent tool to describe
ill defined processes in one theory via the well understood dual theory.

The birth of quantum holography shed new light on the black hole infor-
mation problem. Defining the process in AdS/CFT ruled out the possibility of
information loss. However the solution to the paradox continued to be unknown.
Quite recently in 2009 S. Mathur, and later in 2013 by a group of researchers
going by the name of AMPS (Almheiri, Marolf, Polchinski Sully), argued that
the black hole information paradox redefined in AdS/CFT was a question of
whether or not the interior region of the black hole existed at all[5,6]. In other
words; If someone would try to cross the horizon, ’something’ should destroy
that special someone. AMPS called this ’something’ a ’firewall’. Something
quite dramatic seen in the light of general relativity, which according to the
equivalence principle predicts the horizon to be a place like anywhere else.
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The existence of the interior turned out to depend on whether or not the
interior region of the black hole was entangled with the exterior region in a very
specific way. This rather surprising, but very fundamental, fact gave birth to a
formulation of a number of new paradoxes [7,8]. All originating from the newly
explicification of the information problem in terms of quantum entanglement.

A black hole in AdS was shown to be dual to a very high energy state de-
scribed by a thermal density matrix in the CFT [9,23]. Here one can connect
the different micro-states of the ensemble in the CFT to the entropy of the black
hole, all being entangled in different ways. In 2013 J. Polchinski and D. Marolf
sharpened the paradox by stating that only very a-typical microstates, charac-
tarized by a highly specific entanglement, would resemble black holes without
a firewall, so called ’smooth’ horizon states [10]. They formulated a conflict
between typicality and entanglement. Questions like, what kind of black hole
then is the dual to a typical micro-state in CFT? Is there even one?
This conflict was honed even more by S. Shenker and D. Stanford. They brought
in the phenomenon of quantum chaos [11,12]. With black holes known to be
highly chaotic objects, the smallest perturbation was shown to have dramatic
effects on the entanglement of the system. This highly specific entanglement
which was needed for black holes to have smooth horizons turned from a very
unusual unlikely case to a near impossible puzzle. Even so proposals for con-
structing a black hole interior were developed [13,14], trying to go around and
solving all the paradoxes that were lying out there. However in 2015 J. Polchin-
ski and D. Marolf came back and stated that it in principle wasn’t possible to
construct a AdS black hole with a smooth interior being dual to a typical CFT
state within the laws of quantum mechanics. They posed that any construction
of such kind would result into violations of the born rule postulate of quantum
mechanics [15].

Now the Born rule has never shown to be violated anywhere in nature, nei-
ther has it been been proven to exist. The Born rule however has been verified
many times by experiment and is not considered as controversial. As being a
postulate of quantum mechanics, it is a foundation on which the theory is build.
Taken to be true by assumption. If the born rule would be broken in the vicinity
of a black hole, quantum mechanics would need a modification. Something very
important to find out if searching for the real theory of quantum gravity.
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In this thesis we research this statement of Marolf and Polchinski; If one
constructs an AdS black hole with a smooth horizon dual to a typical state
in the CFT, do we observe violations of the Born rule. In section I, a broad
introduction into the background theory is supplied. First, via a derivation of
Rindler space, the semi-classical form of the information paradox is explained.
With this, the concept of Hawking radiation and the matter of entanglement
between the inner and outer region of the black hole is analyzed. Continuing we
briefly review AdS/CFT, the information problem in AdS/CFT, black holes in
AdS/CFT, and the conflict between typicality and entanglement. We construct
a black hole by applying quantum field theory on a black hole background in
AdS/CFT. These results we can further use in our thought-experiment.
In the continuing section, II, we formulate a thought experiment to test the
statement of Marolf and Polchinski. We define our black hole to have a smooth
horizon and monitor the effect on the black hole state by acting on it with a
unitary operator. This unitary operation will perturb the black hole state very
mildly, however drastically change it’s entanglement configuration. We will try
to interpret the modified state, and see what has happened both in the CFT
and AdS picture. The question to answer now is, if the two pictures, AdS and
CFT, show similar physical situations or do they differ. To that, if they differ,
do they do so within the laws of quantum mechanics? We will derive a bound
within quantum mechanics to test the born rule. We will present our results by
computing correlation functions and the effect on the energy of the system. We
conclude with a discussion, the implications of this research, and a look towards
future research on the matter. The entire thesis uses c = ~ = G = k = 1
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Section I

In section I is a theoretical background.. The review starts with the concept of
Rindler space. Rindler space is flat space, however it functions as an excellent

tool to understand what is going on at the black hole. As one will see very
shortly, it shows many similarities with black holes, and can be used to grasp
the concept of Hawking radiation and the entanglement issue related to black

holes.

Secondly the basics of AdS/CFT will be outlined. The AdS/CFT
correspondence is the framework where computations will be made in. It is
therefore key to understand how one can describe the process of black hole

evaporation. After this we can state the information paradox in it’s
holographic form. The firewall arguments will be briefly summed, as the
connection without quantum chaos. When having done so, The conflict

between entanglement and typicality can be best understood.
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2 Rindler Space

Rindler space is as mentioned above just ordinary Minkowski space. The key
feature is presented by observing the spacetime symmetries of the metric. Ev-
ery spacetime symmetry is generated by a ’Killing vector’, named after Wilhelm
Killing. Minkowski spacetime has 10 different Killing isometries. 1 + 3 transla-
tions, 3 rotations and 3 boosts. In ordinary (t, x) coordinates time translation is
generated by the Killing vector ∂/∂t A Lorentz boost in the x− direction is sub-
sequently generated by x∂/∂t+ t∂/∂x. However, if one changes coordinates to a
boosted coordinate frame, time translation is now generated by x∂/∂t + t∂/∂x.
Both sets of coordinates will have a different notion of time, and therefore a
different energy ground state or vacuum. This is called the ”Unruh effect” [21].
Relating both sets is done by a Bogoliubov transformation. This will be ex-
plained below in detail, and gives rise to interesting phenomena in quantum
field theory. A good full review on the subject is given by [16]. Below the same
motivation for the Rindler construction is followed.
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2.1 Two sets of coordinates

The first set of coordinates will just be regular Minkowski coordinates. The
Minkowski metric is given by:

ds2 = dt2 − dx2 (2)

With
x = (x, y, z) (3)

From now on we just consider x instead of x.
Consider now the following boost operation with boost parameter β:

t→ t coshβ + x sinhβ (4)

x→ t sinhβ + x coshβ (5)

One can observe that plugging the new coordinates back into the metric equa-
tion, the metric stays the same. In other words the metric is invariant under
this transformation. This isometry is generated by the boost Killing vector:

Kµ = x
∂

∂t
+ t

∂

∂x
(6)

One could see that this symmetry suggests the following coordinate transforma-
tion: Consider now the following transformation motivated by the boost Killing
vector:

t = χ sinh η (7)

x = χ cosh η (8)

Resulting in the following diagram:
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Figure 1: Rindler space

As one can observe, the trajectory runs down in the quadrant II. This due to
the fact that the boost operator works consequently on negative x. Secondly,
the fact that the entire Rindler plane consists out of four wedges. The left, right,
future and past wedge. For now we focus on the left and right wedge and later
continue to the future and past regions. Both the left and the right Rindler
wedge are can be related to the Minkowski plane.

t =
eξ̄a sinh aη̄

a
(9)

x =
eξ̄a cosh aη̄

a
. (10)

and for the left wedge:

t =
eξ̄a sinh aη̄

a
(11)

x = −e
ξ̄a cosh aη̄

a
. (12)

only differing by a minus sign for the spatial component.These new coordinates
will uniformly accelerate the old coordinates assymptoting to the speed of light.
The spacetime has become asymptotic and is now characterized by the two
Rindler horizons on the lightcone at U = V = 0.
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The metric now looks like:

ds2 = e2ξa(dη2 − dξ2). (13)

The metric is independent of η. The Killing vector describing time translation
is now given by ∂/∂η. To describe our spacetime in quantum field theory we go
first to lightcone coordinates: Minkowski coordinates can be related to lightcone
coordinates in the usual way:

u = t− x (14)

v = t+ x (15)

Also the Rindler coordinates (η, ξ) can be taken together in UV coordinates:

U = η − ξ (16)

and,
V = η + ξ (17)

We can relate the uv Minkowski coordinates to the UV Rindler ones as follows:
For the right wedge:

u = t− x =
eξa sinh aη

a
− eξa cosh aη

a
= −1

a
e−aU (18)

Where U = η − ξ. The same for v and V:

v = t+ x =
eξa sinh aη

a
+
eξa cosh aη

a
=

1

a
e−aV (19)

For the left wedge:

u = t− x =
eaξ̄ sinh aη̄

a
+
eξ̄a cosh aη̄

a
=

1

a
e−aŪ (20)

Where U = η − ξ. The same for v & V:

v = t+ x =
eξ̄a sinh aη̄

a
− eξ̄a cosh aη̄

a
= −1

a
e−aV̄ (21)

We called the Rindler coordinates for the left wedge, Ū and V̄ . In this case
these coordinates are related to η and ξ like this:

Ū = η̄ + ξ̄ (22)

and,
V̄ = η̄ − ξ̄ (23)
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2.2 The Boguliubov transformation

2.2.1 Expansion of Rindler modes

In the following section, we continue the story to add some quantum fields to
the metric. We are going to do this according standard quantum field theory.
When doing so we have two notions of time. In the Minkowski coordinates time
translation is generated by the usual Killing vector ∂/∂t, however in Rindler
coordinates this is done by the above mentioned boost Killing vector x∂/∂t +
t∂/∂x. Now usually the positive frequency modes are defined to correspond to
the annihilation operator in the mode expansion. These therefore define the
notion of the vacuum state. However now that there are two notions of time-
translation, two sets of annihilation operators with different sets of positive
frequency wavefunctions, we have two different vacua. What happens below
is the relation between these two sets of modes. This is done by a Boguliubov
transformation and is possible since both are complete sets of energy-momentum
eigenstates.
The expansion of the scalar field (eq. 9) can be written in two dimensions, 1
time and 1 spatial, as follows:

φ(x, t) =

∫ ∞
−∞

dk√
4πk

[
a(~k)e−ıkµ(t−x) + a†(~k)eıkµ(t−x)

]
(24)

or

φ(x, t) =

∫ ∞
−∞

dk√
4πk

[
a(~k)fM (t, x) + a†(~k)f?M (t, x)

]
(25)

with kµ = (ω,~k)

We can subdivide the integral in a negative and a positive part:

(26)
φ(x, t) =

∫ ∞
0

dk√
4πk

[
a−(k)e−ıkµ(t−x) + a−†(k)eıkµ(t−x)

+ a+(k)e−ıkµ(t+x) + a+†(k)eıkµ(t+x)

]
We can clean this up a bit by making use of the uv-coordinate change. Recall:
u = t− x and v = t+ x

φ(u, v) =

∫ ∞
0

dk√
4πk

[
a−(k)e−ıkµu + a−†(k)eıkµu + a+(k)e−ıkµv + a+†(k)eıkµv

] (27)

We can grab the u parts and v parts together and write the function like this:

φ(u, v) = φ−(u) + φ+(v) (28)

We made a distinction between the positive and negative frequencies corre-
sponding to left and right moving waves.
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The next step is to derive the same expression for fields expanded in Rindler
coordinates. The KG equation in terms of Rindler coordinates (η, ξ), needs to
be solved and these solutions have to be expanded in a similar way. Remember
we work with a massless scalar field.

(∂t∂t + ∂x∂x)φ = 0 (29)

now becomes:
(∂η∂η + ∂ξ∂ξ)φ = 0 (30)

Since the Lagrangian density of the field is invariant under this transformation
the quantization procedure is exactly the same and we can express the field in
terms of these new coordinates like this:

ψR(ξ, η) =

∫ ∞
−∞

dω′√
4πω

[
bR(ω)e−ıωµ(η+ξ) + bR†(ω)eıωµ(η−ξ)

]
(31)

or

ψR(ξ, η) =

∫ ∞
−∞

dω√
4πω

[
bR(ω)gR(η, ξ) + bR†(ω)g?R(η, ξ)

]
(32)

Again similar commutation hold for these creation and annihilation operators
of Rindler modes:

[b(ω), b†(ω)] = iδ3(~x− ~y] (33)

[b†(ω), b†(ω′))] = 0 (34)

[b(ω), b(ω′)] = 0 (35)

Similarly we can write the expansion in in a positive and negative part. Making
use of the coordinates U = η − ξ and V = η + ξ we end up with:

ψR(U, V ) =

∫ ∞
0

dω√
4πω

[
b−R(ω)e−ıωµU + b−†R (k)eıωµU + b+R(ω)e−ıωµV + b+†R (ω)eıωµV

] (36)

And in short splitted up into a positive and negative part for k:

ψR(U, V ) = ψ−R(U) + ψR+(V ) (37)

Now this expansion is only for fields in the right wedge, since these coordi-
nates map to this wedge only. This is indicated by the R in the superscript
of the creation and annihilation operators. For the left wedge the expansion
looks the same only with coordinates (η̄, ξ̄). The Rindler vacuum is defined as
: bR(ω) |0R〉 = bL |0R〉 respectively for the right and left wedge.

Moreover due to this transformation symmetry in the Lagrangian density we
can demand that the fields are equal to each other. We are going to work with
the right wedge coordinates.

φ(u, v) = ξR(U, V ) (38)
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or
φ−(u) + φ+(v) = ψ−R(U) + ψR+(V ) (39)

We consider only the positive parts, φ+(v) and ψ+(V ). We can split the left
and right movers. These two can be taken separately, since they don’t interact
with one another. Continuing:

φ+(v) = ψR+(V ) (40)

or: ∫ ∞
0

dk√
4πk

[
a+(k)e−ıkµv + a+†(k)eıkµv

]
=∫ ∞

0

dω√
4πω

[
b+R(ω)e−ıωµV + b+†R (ω)eıωµV

] (41)

To solve this equation we take a Fourier transform to V on both sides. Or
in other words: we multiply with

∫∞
−∞

dV ′√
2π
e(ikV ′). Let us first look at the right

hand side of equation 48.

Right hand side:

(42)

∫ ∞
−∞

dV√
2π
e(iω′V )

∫ ∞
0

dω√
4πω

[
b+R(ω)e−ıωV + b+†R (ω)eıωV

]
=

∫ ∞
0

dω√
2π

∫ ∞
−∞

dV ′√
4πω

[
b+R(ω)e−ı(ω−ω′)V + b+†R (ω)eı(ω+ω′)V

]
By taking the Fourier transform to v we cancel to Fourier transform to k and
end up with:

=
1√
2|ω|

{
b+R(ω) for ω > 0

b+†R (ω) for ω < 0
(43)

Now the left hand side of eq. 48 is unfortunately less trivial. We start with the
fourier transform to V.

Left hand side:

(44)

∫ ∞
−∞

dV√
2π
e(iω′V )

∫ ∞
0

dk√
4πk

[
a+(k)e−ıkµv + a+†(k)eıkµv

]
=

∫ ∞
0

d√
2π

∫ ∞
−∞

dV√
4πk

[
a+(k)eıω′V−ıkµv + a+†(k)eıω′V+ıkµv

]
Because V is a Rindler coordinate and v a Minkowski one, we can try helping
our cause by writing V in terms of v. Recall: v = 1

ae
−aV , and write:

Left hand side:

=

∫ ∞
0

dk√
2k

[
a+(k)F (k, ω′) + a+†(k)F (−k, ω′)

]
(45)
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where,

F (k, ω′) =

∫ ∞
−∞

dV

2π
exp

[
iω′V + i

k

a
e−aV

]
(46)

We now set both sides equal to each other and find:

b+R(ω) =

∫ ∞
0

dk

[
αRωKa

+(k) + βRωKa
+†(k)

]
(47)

The coefficients αRωk and βRωK are called the Bogulubov Coefficients, and are
given by:

αRωk =

√
ω′

k
F (k, ω′) =

√
ω′

k

∫ ∞
−∞

dV

2π
exp

[
iω′V + i

k

a
e−aV

]
(48)

and,

βRωk =

√
ω′

k
F (−k, ω′) =

√
ω′

k

∫ ∞
−∞

dV

2π
exp

[
iω′V − ik

a
e−aV

]
(49)

By solving these we find the relation between the Rindler operator b+r , and the
Minkowski operators a+ and a+†.
We find a similar expression for b+R when we hermitian conjugate eq. 56:

b+†R (ω) =

∫ ∞
0

dk

[
α?RωKa

+†(k) + β?RωKa
+(k)

]
(50)

Likewise we can find expressions for the Left Rindler wedge when substitute all
R’s for L’s and use the transformation: v = − 1

ae
−aV̄ .

Eq. 60 and Eq. 63 relate the operators between Minkowski and Rindler. It
is also conveniant to have an expression that relate the modes. We can write
down the following:

gR(η, ξ) =

∫ ∞
0

dk

[
αRωKfM (t, x) + β?RωKf

?
M (t, x)

]
(51)

and:

g?R(η, ξ) =

∫ ∞
0

dk

[
α?RωKf

?
M (t, x) + βRωKfM (t, x)

]
(52)

Another argument for this to be true is the completeness of both sets of modes.

2.2.2 Solving the Boguliubov Coefficients

The next step is solving eq. (48), here we follow [17]:

αRωk =

√
ω′

k
F (k, ω′) =

√
ω′

k

∫ ∞
−∞

dV

2π
exp

[
iω′V + i

k

a
e−aV

]
(53)



2 RINDLER SPACE 13

We can start by making a couple of substitutions. We take: x = e−aV , with
dx = −ae−aV dV , s = − iωa and b = −ik

a

F (k, ω′) =
1

2πa

∫ ∞
0

dxxs−1e−bx (54)

Integration boundaries change to [0,∞), since x is a positive everywhere. αRωk
now becomes:

αRωk =

√
ω′

k

1

2πa

∫ ∞
0

dxxs−1e−bx (55)

The expression we have now, looks a lot like a gamma function. We use the
identity: e−s log(b)Γ(s) =

∫∞
0
dxxt−1e−bx, where the logarithm is defined as:

log(A+ iB) = log|A + iB|+i sgn(B) tan−1( |B|A ). Where ′ sgn′ is the sign func-
tion, which gives the sign of a certain function. The sign function is 1 when the
argument is positive, and negative when the argument is −1. So k > 0 gives a
positive result etc. Now this is exactly what we need.
Proceding:

(56)

αRωk =

√
ω′

k

1

2πa

∫ ∞
0

dxxs−1e−bx

=

√
ω′

k

1

2πa
e−s log(b)Γ(s)

=

√
ω′

k

1

2πa
e
iω′
a log(−ika )Γ(− iω

a
)

Using the logarithm identity and some more algebra, we end up with:

(57)αRωk =

√
ω′

k

1

2πa

(
a

k

) iω
a

e
ωπ
2a Γ(− iω

′

a
)

Here we have used in the exponent that the argument of the logarithm goes to
π
2 , when the angle goes to infinity. It does so since the real part of the logarithm
is zero.
Continuing by making use of another identity of the gamma function: xΓ(x) =

Γ(1 + x), with x = −iω′
a we get:

(58)αRωk =

√
ω′

k

1

2πa

(
a

−iω′

)(
a

k

) iω′
a

e
ωπ
2a Γ

(
1− iω

a

)
It is time to clean up. We end up with:

αRωk =
ie
ωπ
2a

√
kω2π

(
a

k

)− iωa
Γ

(
1− iω

a

)
(59)

Which is our final result for αRωk. The ω′ is changed for ω, since it was only a
dummy variable.
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Computing the other Bogulubov coefficients goes on the exact same way: We
find for:

βRωk = − ie
−ωπ
2a

√
kω2π

(
a

k

)− iωa
Γ

(
1− iω

a

)
(60)

Only the sign function changes sign since, we now have dealt with: F (−k, ω)
instead of F (k, ω). We can find the following relation between the two coeffi-
cients:

αRωk = −eπωa βRωk (61)

For the left wedge we deal we again take the positive (V̄ ) part of the wavefunc-
tion. By complex conjugating the right wedge we end up in the left wedge. For
the rest we substitute L’s for the R’s and find:

αLωk = − ie
ωπ
2a

√
kω2π

(
a

k

) iω
a

Γ

(
1 +

iω

a

)
(62)

and,

βLωk =
ie
−ωπ
2a

√
kω2π

(
a

k

) iω
a

Γ

(
1 +

iω

a

)
(63)

We can now relate these coefficients with each other and find the following
relations between left and right.

βRωk = −e−πωa α?Lωk, βLωk = −e−πωa α?Rωk , (64)
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2.3 Unruh Effect

The first result we can derive is the following: The number operator is defined
for Minkowski Operators by:

NM
k = a†kak (65)

To give a trivial example on it’s significance, let us find the number of particles
in the Minkowski vacuum or equivalently compute the expectation value of N
in |0M 〉

〈0M |NM |0M 〉 = 〈0M | a†kak |0M 〉 = 0 (66)

By definition, or eq. 13, we end up with 0. ak annihilates the ket-state, as does
a†k on the bra-state.
Now the same holds for the Rindler vacuum. Take the right wedge. We let the
Rindler creation and annilihation operators work on the state and find:

〈0R|NR |0R〉 = 〈0R| b†ωbω |0R〉 = 0 (67)

The question is however what happens when we let the Rindler Operators work
on the Minkowski vacuum. Right now with the Bogulubov coefficients we can
make sense out of this question by relating bR and b†R in terms of Minkowski
operators and Bogulubov coefficients.

(68)

〈0M |NR |0M 〉 = 〈0M |
∫
dk

[
α?RωKa

†(k) + β?RωKa
R(k)

]
×
∫
dk

[
αRωKa

(k′) + βRωKa
+†(k′)

]
|0M 〉

=

∫
dk|βωk|2 〈0M | aka′k† |0M 〉

=

∫
dk|βωk|2δkk′

=

∫
dk|βωk|2

We use our expression for βωk and end up with after some algebra:

〈0M |NR |0M 〉 =
1

e
2πω
a − 1

δ(ω − ω′) (69)

This result is called the Unruh effect. It may seem surprising at first. Because
what we see here is exactly the same expectation value as a Bose-Einstein parti-
cle in a thermal bath of Temperature T = a/2π. This result might seem strange
at first sight. If you consider the vacuum to be a state with zero energy then,
yes indeed this result is strange. But this definition is not correct. The vacuum
is the state with the lowest energy, and for Rindler space, as being accelerated
spacetime, it is not so weird that the lowest energy state is different then the
vacuum state of Minkowski space. Crucial to understand is the fact that only
a Rindler observer is observing particles. Since this observer is accelerating.
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A Minkowski observer just freefalling through spacetime does not observe any
particles, as the spacetime is still just flat Minkowski geometry.
To describe the path of a Minkowski observer in terms of Rindler modes one has
to bring together the left and right wedge. This should be possible since both
sets are complete and describe the entire spacetime. We make us the equation’s
between the operators of the different expansions (44) and (47).

b+R(ω) =

∫ ∞
0

dk

[
αRωKa

+(k) + βRωKa
+†(k)

]
(70)

and,

b+†R (ω) =

∫ ∞
0

dk

[
α?RωKa

+†(k) + β?RωKa
+(k)

]
(71)

Likewise for the left Rindler modes:

b+L(ω) =

∫ ∞
0

dk

[
αLωKa

+(k) + βLωKa
+†(k)

]
(72)

and,

b+†L (ω) =

∫ ∞
0

dk

[
α?LωKa

+†(k) + β?LωKa
+(k)

]
(73)

We can now use the relations between the Bogoliubov coefficients, equation (61),
to connect left and right ones. Substituting these in we obtain:

b+R(ω) =

∫ ∞
0

dk

[
αRωKa

+(k)− e−πωa α?LωKa+†(k)

]
(74)

,

b+†R (ω) =

∫ ∞
0

dk

[
α?RωKa

+†(k)− αLωKa+(k)

]
(75)

and for the left:

b+L(ω) =

∫ ∞
0

dk

[
αLωKa

+(k)− e−πωa α?RωKa+†(k)

]
(76)

,

b+†L (ω) =

∫ ∞
0

dk

[
α?LωKa

+†(k)− αRωKa+(k)

]
(77)
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They are all written down explicitly since we will need a specific combination
of them to let them describe the full Minkowski vacuum. We continue by looking
at the expansion of the field in terms of Minkowski modes:

φ(v) =

∫ ∞
0

dk√
4πk

[
a(k)fM (v) + a†(k)f?M (v)

]
(78)

We want to write a+(k) in terms of Rindler operators to see which combination
of them annihilations the vacuum, or correspond to positive frequency modes.
In order to do so, we have to invert the previous equations and isolote all the
parts that correspond to the a+(k) resp a+†(k). The way to find all operators
being proportional to a+(k) is to take the following combination:

a+(k) ∝ b+R(ω)− e−πωa b+†L (ω)

This looks like this:

a+(k) =

∫ ∞
0

dω
C

αRωK

[
b+R(ω)− e−πωa b+†L (ω)

]
(79)

where C is a constant given by: C = 1

1−e−
2πω
a

. Furthermore α?L = −αR is

used to relate the Bogoliubov coefficients. Of course, a similar relation is when
L and R are interchanged:

a+(k) =

∫ ∞
0

dω
C

αLωK

[
b+L(ω)− e−πωa b+†R (ω)

]
(80)

This relation can be written likewise for all negative frequency modes correspond
to a+†(k) only switching to the hermitian conjugate of (76) and (77). Now we
can derive a very important result from here. If we plug (76) and (77) into
equation (75) we find that the following combination of Rindler operators should
annihilate the Minkowski vacuum:

bR − e−πωa bL† |0m〉 = 0 (81)

bL − e−πωa bR† |0m〉 = 0 (82)

These relations imply the following:

bR†bR − bL†bL = |0R〉 (83)

This relation tells us that the number of Rindler particles in the left wedge is
the same as in the right wedge. Right now we can write the following.

|0m〉 =
∏
i

∞∑
ni=0

Kn

ni!
(bR†bL†)ni |0R〉 (84)

Here we follow [1]. We use a discrete sum instead of the integral to find the
Kn. The physics don’t change by this. Continuing to find this parameter we
use relations (eq. 85, 86) and find:

Kn+1 − e−
πωi
a Kni = 0 (85)
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Solving:

Kni = e−
niπωi
a K0 (86)

Plugging back in:

|Om〉 =
∏
i

∞∑
ni=0

e−
niπωi
a K0

ni!
(bR†bL†)ni |0R〉 (87)

We now define the state as follows: Every state with ni particles has ni particles
with energy ωi in each wedge, left and right. Defining as in [1]

1

ni!
(bR†bL†)ni |0R〉 ≡ |ni, R〉 ⊗ |ni, L〉 (88)

and the state becomes per frequency(the product is left out):

|Om〉 = Ci

∞∑
ni=0

e−
niπωi
a |ni, R〉 ⊗ |ni, L〉 (89)

With normalization factor Ci =
√

1− exp(− 2πωi
a ). This is our main result from

Rindler space. We see that the state of the Minkowski vacuum is an entangled
state between the left and right Rindler wedge. This is a fundamental result
and very important one for the continuing story. To underline the importance,
when one wants to cross the Rindler horizon as a Minkowski observer the two
wedges need to be in this exact entangled state. First, we can see what happens
if one would put the system into a different state. For instance by perturbing
the system and putting the system in a mixed state. The Minkowski vacuum
now is described by the density matrix ρ. Lets see what we find: The density
matrix of the system is now given by:

ρ = |ψ〉 〈ψ| = |0M 〉 〈0M i| =

(Ci)
2
∞∑
ni=0

e−
2niπωi

a

(
|ni, R〉 ⊗ |ni, L〉 〈ni, R| ⊗ 〈ni, L|

)
(90)

We can write in terms of a left and right part by taking the partial trace:

ρR ⊗ ρL (91)

The density matrix for the right wedge, ρR, is reached by taking the partial
trace over the left eigenstates: in matrix form:

ρR =
∑
〈ni, L| ρ |ni, L〉 (92)

and we end up with:

ρR = (Ci)
2
∞∑
ni=0

e−
2niπωi

a |ni, R〉 〈ni, R| (93)
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What we see is a thermal state and correlation with the left wedge is lost. To
make the situation even more concrete, we could see what happens with the
stress energy tensor Tµν if the system is not in the entangled state (77). It is
shown in appendix A that this quantity, Tµν , will be non-zero computed at the
horizon. This means that there is energy sitting there! A first connection can
be made with the concept of a ’firewall’.
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2.4 Hawking radiation and connection to black holes

The connection with Black holes is not very hard to see. In the case of Rindler
space the acceleration has to be supplied by a rocket booster of some sorts, how-
ever in the black hole case the gravitational field will do the trick. An immediate
connection can be made describing an infalling observer in a Schwarzschild met-
ric in terms of coordinate time and proper time. Probably known to the reader
is the fact that the time needed to describe the trajectory in terms of coordinate
time is infinite, while the elapsed time for an infaller to reach the horizon in
terms of proper time is finite and well defined. The observer freely falling in
terms of proper time is not accelerating away, however the one far away from
the black hole trying to describe the process from outside of the black hole, has
to accelerate away from the black hole to prevent him/herself from falling in.
Expanding the field in terms of modes for both observers gives the analogy to
Rindler. Relating the asymptotic modes, often called outgoing modes, to the
infalling modes in similar fashion as equation (69). We observe with now |ψ〉
being the black hole vacuum for asymptotic modes:

〈ψ| b†ωbω |ψ〉 =
1

e
ω
T − 1

δ(ω − ω′) (94)

The Hawking flux or black body radiation spectrum for a black hole with tem-
perature T , which is related to the acceleration by T = a

2π [18]. By explicitly
doing the calculation for a quantum field in d dimensions, one finds that this
quantity is reduced by a so called grey-body factor. The fact is that modes
can scatter of the gravitational field of the black hole. This causes a certain
probability to exist for most to be reflected back towards to horizon, limiting
the chance to escape completely.

〈ψ| b†ωbω |ψ〉 =
Γsωlm

e
2πω
a − 1

δ(ω − ω′) (95)

This gray-body factor can be seen as a transmission coefficient, and depends on
the angular momentum of the mode [19]. The Hawking flux causes the black hole
to evaporate since the energy of the Hawking photons is negative. The energy
of these modes can be seen as the conserved charge corresponding to the time-
translation Killing vector, which is time-like outside of the horizon. However
this Killing vector becomes space-like inside the horizon. The conserved charge
now becomes a momentum and can have a negative signature. It turns out,
due to the mixing of positive and negative frequency modes in the interior, a
negative sign is needed [18]. The description of the interior of the black hole
is actually a highly relevant problem, which will be looked at in the AdS/CFT
section, when describing the firewall argument.
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2.5 Information Paradox

With the mechanism of Hawking radiation explained, the original formulation of
the information problem can be stated. Since the black hole loses it’s energy in
the form of thermal radiation, the black hole will eventually end up in a complete
mixed state of thermal radiation. However, the trouble arises if the black hole
started out in a pure state. This process of black hole evaporation would cause
a pure state to transit into a mixed state, and this cannot be described by a
standard S-matrix process.

|ψBH〉 → ρthermal (96)

To keep the process unitary, information has to travel outside of the horizon
into the hawking radiation, which is forbidden by causality. As a consequence
we end up with two possibilities. Either the information should be lost, or the
Hawking radiation should in some way contain the information about the pu-
rity of the state. This would mean that by computing all correlation functions
between the Hawking photons, one would find the final state still to be pure.
As is the case for the process of burning up a pure state encyclopedia.
The situation can be viewed at graphically by looking at the von Neumann
entropy of the system. 1 Now describing the two scenarios once more. What
Hawking proposed was a linear increase in entanglement entropy. The black
hole starting out in a pure state will slowly increase it’s entropy by the evap-
oration process and do so until there was nothing but thermal radiation left.
The information preserving alternative needs the entanglement entropy to go
to zero at the end of it’s lifetime. In other words, there has to be some tipping
point where the entropy would start decreasing. This moment in time is called
the Page time [41]. We sketch both cases below.

1The von Neumann or entanglement entropy is a measure to quantify the entanglement
and is given by: S = −Tr ρ log ρ. A pure state will have zero entropy, while a mixed state
will have maximal von Neumann entropy.
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Figure 2: The von Neumann entropy versus time for an evaporating black hole
according to Hawking and Page 3

A unitary black hole evaporation process follows the Page curve. Questions
like, what triggers the entropy to decrease, or how does the full S-matrix of
the black hole look like, are unanswerable at the moment. A full description
of quantum gravity has to give insight in these puzzles, which is a wish for many.

For completeness of the review, we mention a third option for the evapora-
tion process. The black hole could decrease to a remnant. A Planckian size
object with a very high entropy. The entanglement entropy of the object would
be so large, it would exceed the Bekenstein entropy and therefore violate the
fact that the number of microstates is given by the Bekenstein entropy [19].
This last option seems very implausible, however was considered by some and
has to be mentioned when discussing the information paradox.

The paradox seemed/seems very solid, and indeed nobody could crack the code
for over twenty years. However new hope glared on the horizon, when the
AdS/CFT correspondence came into our world.
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3 AdS/CFT

The black hole information paradox has gotten new light since the AdS/CFT
duality was developed in 1998. In this review the basics of AdS, CFT and the
connection between them is explained. After this we go back to black holes,
talking about how one can desribe them in AdS/CFT. By applying quantum
field theory to a BTZ-AdS metric, we will be able to construct a set up, on
which we can compute correlation functions, and perform calculations on the
black hole.
Secondly, the black hole information paradox in AdS/CFT is reviewed. We
make the connection between typicality and entanglement. Furthermore the
connection with quantum chaos is underlined, as it is an important factor in the
conflict.
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3.1 Introduction

A hologram is a very thin film, describing a three dimensional object. The
two dimensional film containing all the information of the object, only in an
alternative description. The original idea of ’t Hooft [3] to suggest this might
be relevant in physics was based on the work of Bekenstein and Hawking [1]
[2]. Every bit of information fallen into the black hole was described on the
surface of the object. With entropy usually being thought of as a quantity
related to the volume, this was an extraordinary idea. ’t Hooft proposed now to
look at any closed surface area. He showed that the degrees of freedom inside
were maximized if the area consisted of one big black hole. In the search for a
theory of quantum gravity, black holes were considered to be a natural physical
cut-off for quantum field theory to break down at higher energies. According
to ’t Hooft it was therefore logical to describe any volume less energetic then a
black hole, like ordinary quantum field theories, with a description lying on the
surface enclosing that volume.
Susskind then proposed the holographic principle could be realized inside string
theory [22]. Five years later the development of AdS/CFT in 1998 was the first
realization of such a holographic principle. The original statement of the duality
is given by[4]:

D = 4 , N = 4 U(N) Super Yang Mills = IIB string theory on AdS5 × S5

(97)
where N is the rank of the field theory and N is the number of supersymme-
tries. A supersymmetric Yang Mills theory in four dimensions is found dual to
a string theory on a five dimensional Anti-de Sitter space times a five dimen-
sional sphere. The gauge theory is subject to a conformal symmetry. Together
with Poincaré symmetry it is invariant under scale-transformations/dilations
and special-conformal transformations. This high degree of symmetry field the-
ory was found to be equivalent to the boundary of AdS space, which is highly
symmetric manifold itself. It is characterized by a negative curvature.
It is illuminating to look at the couplings on both sides, following the review of
[21]. The gauge theory is charactarized by the coupling, given by gYM and the
rank of the fields, N . Again ’t Hooft showed that in the limit when N is large,
one can perturbatively expand in terms of 1/N and g2

YM . The amplitude now
has the following form:

Z =
∑
g≥0

N2−2g
∑
n=0

Cg,nλ
n (98)

where λ = g2
YM the ’t Hooft coupling.
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This can be identified with the loop expansion from string theory. The loop
expansion in Riemann surfaces for a closed string theory has a similar form as
equation (98) [9].

Z =
∑
g≥0

g2g−2
s Zg (99)

with string coupling gs.
If we now want to relate both sides, we have to relate the parameters describing
them. Next to the string coupling gs, which indicates the importance of quantum
corrections, the string theory is defined by the curvature length LAdS and the
string length ls. The ratio of the two, LAdS/ls, is a measure of how big the
radius of AdS is in string lengths. If your curvature length is comparable to
your string length, stringy/planckian effects are important.
For the duality to hold we find the following relations between the two sides:

gs = g2
YM ∼

λ

N
,

(
LAdS
ls

)4

= 4πg2
YMN ∼ λ (100)

We can observe the fact that the parameters can be tuned in the that is desir-
able. Let us find the regime for classical gravity. For the stringy effects to be
negligible, we need LAdS/ls >> 1. This means that we find λ >> 1. Secondly,
we want quantum corrections to be small, therefore we want gs to be small,
which means we need to take next to λ also N >> 1. We observe a very im-
portant property of the duality. When evaluating the gravity side in the weak
coupling regime, the gauge side turns out to be in the strong coupling regime.
Similar in the opposite case. The AdS/CFT correspondence is what is called
a weak/strong coupling duality. One of the two sides is evaluated in the weak
coupling regime, when the other is evaluated in the strong regime. This is what
makes the duality so valuable. When on one side perturbation theory breaks
down, one can observe what is happening on the other side.
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There is a lot of evidence to be found for the correspondence [27]. First
of all, the symmetry groups on both sides agree. The isometry group of AdS5

is SO(4, 2), which matches with the conformal group in 4 dimensions4 After
the discovery, Edward Witten and others elaborated on Maldacena’s work and
started constructing a map between bulk fields and boundary operators [23,24].
This was the beginning of the so called ”dictionary”. A vademecum to relate
quantities in the bulk to the boundary. The dictionary will be reviewed in sec-
tion 3 of the AdS/CFT paragraph. With this, things like correlation functions
[23], and causality [25,26], were tested, always with success. However, quanti-
ties like correlation functions can be hard to compute in the strongly coupled
regime of the CFT. This causes a limitation on what is testable. To emphasize
once more, not once the correspondence seemed to be violated. The ground on
which the duality seemed to stand looks pretty solid.
After the first example from Maldacena, many different dualities were developed
in all kinds of dimensions. In 2009 the general formulation of the duality was
stated by Polchinski et al. [31]. The volume/bulk theory is always described
with one extra dimension, with on the boundary lying the conformal field the-
ory. The general correspondence is usually formulated as AdSd+1/CFTd. The
S is a trivial part of the duality, and is therefore left out of the formulation.

Figure 3: The conformal field theory lies on the boundary of the AdS cylinder.
Different cross sections in AdS correspond to different circles on the CFT

4For p > 1, q > 1, CO(Rp,q) ∼= SO(p+ 1, q + 1), which for p = 1, q = 3 is equal to SO(4, 2)
[27]
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3.2 AdS

The bulk is described by an Anti-de Sitter space. AdS is different from Minkowski
space. It is a solution of the Einstein equation with a negative cosmological con-
stant. The space is contracting. It is maximally symmetric. The isometry group
of AdS5 has 15 elements. AdSd is a d dimensional hyperbolic manifold, and can
be described by a hyperboloid in d + 1 dimensional flat space. A set of points
(X1, X2, ..., Xd+1) obeys the following equation:

−(X1)2 − (X2)2 + ... + (Xd−1)2 + (Xd)2 + (Xd+1)2 = −L2
AdS (101)

with L again the curvature length/radius of AdS. These points are embedded
in an d+ 1 dimensional space with metric:

ds2 = −(dX1)2 − (dX2)2 + ... + (dXd−1)2 + (dXd)2 + (dXd+1)2 (102)

We can do several coordinate transformations to get more grip on how the
space looks like. Often AdS is described by the Poincaré patch. We follow the
following coordinate transformations:

X1 =
1

2z
(z2 + L2

AdS +

d∑
i=3

(xi)2 − t2) (103)

X2 =
LAdSt

z
(104)

Xi =
LAdSx

i

z
(105)

Xd+1 =
1

2z
(z2 + L2

AdS −
d∑
i=3

(xi)2 − t2) (106)

The Poincaré patch is given by:

ds2 =
L2
AdS

z2

[
− dt2 + dx̄2 + dz2

]
(107)

with x̄ =
∑d

3 x
i. The patch only describes part of the entire spacetime, since

it is now singular at z = 0, therefore it only describes values for z 6= 0. The
patch consists of Minkowski space slices ”warped” in the z-direction. After a
conformal rescaling we can find for z → 0:

ds2
CFT = −dt2 + dx̄2 (108)

which is the expected Minkowski metric if considered in 4 dimensions.
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Another very useful coordinate transformation is the global patch. We have
to transform equation (102) with the following coordinate changes. We switch
to spherical coordinates for the d− 2 sphere. We introduce angles α3 until αd

z =
L2
AdS√

L2
AdS + r2

(109)

x3 =
1

L2
AdS

cosα1 (110)

xi =
1

L2
AdS

sinα3... sinαi−2 sinαi−1 (111)

xi−1 =
1

L2
AdS

sinα3... sinαi−2 cosαi−1 (112)

We apply this to the Poincaré patch, and obtain AdS in d in global coordi-
nates:

ds2 = −(1 +
r2

L2
AdS

)dt2 +
1

1 + r2

L2
AdS

dr2 + r2dΩ2
d−2 (113)

The time coordinate t is now the proper time in the center of the cylinder at
r = 0 and runs from (−∞,∞). The radial coordinate is zero at the center of
the cylinder and runs to infinity at the boundary. The radius of AdS is related
to the coupling λ.
Global coordinates are ’static’ coordinates. This means the spacetime now stays
in one place. However, since AdS has a negative curvature, there is a potential
towards the center. Because of this reason, AdS is sometimes thought of as
’gravity in a box’.
As one can observe the metric is of similar form of for example the Schwarzschild
metric:

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
d−1 (114)

Often another transformation to tortoise coordinates is made. Taking ρ = tan r
running from [0, 2π], we write the metric in the following form:

ds2 =
1

cos2 ρ

(
− dt2 + dρ2

)
+ sin2 ρdΩ2

d−1 (115)

Where we have taken lAdS = 1. This metric is convenient when making calcu-
lations on the AdS metric, and will be used later on when expanding quantum
fields on it.
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We continue by looking at the Penrose diagram of global AdS-space. Here
we use r, t coordinates again. 5

Figure 4: The Penrose diagram from global AdS space

Now one can observe several facts from this diagram. First of all, it is
possible for null-geodesics to reach the boundary in finite time. This means
one needs to impose boundary conditions at the boundary. By observing the
diagram one notices massive particles to show a similar type of trajectory as
the light rays, only they will never reach the boundary. It is nice to see how the
Penrose diagram represents the potential mentioned above.
Secondly, time runs up in the diagram all the way from past infinity to future
infinity. The diagram cannot be written in a more compact form, since lightlike
particles keep bouncing of the boundaries forever. The boundary of AdS is
timelike, and it’s topological structure R× Sd−1 is exactly that of a Minkowski
spacetime.

Figure 5: Trajectories of Particles in AdS. Null geodesics on the left, Massive
particles on the right.

5Picture from [19], page 69
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3.3 CFT

To get a feel of what a conformal field theory is, and what makes it interesting,
it is informative to start with a quick sidestep to the concept of the renormal-
ization group flow. This will only be for introductory purposes, therefore the
tone is kept rather qualitative.
In quantum field theory the running coupling constant tells you how the theory
behaves at different length scales. This quantity is governed by the renormal-
ization group (RG) flow. The RG-flow is determined by the Beta-function [28].
For quantum field theories with only one coupling, like QCD and QED this is
given by:

β = µ
∂

∂µ
α (116)

We see it consisting of the slope of the coupling α to the energy scale µ. The
beta function can have different values. When β is negative, the theory is called
to be ”asymptotically free”. The coupling drops to zero at large energy scales
and becomes calculable. This is what happens for QCD for example. The anti-
screening of the gluons causes the theory to be strongly coupled at low energies.
When positive, the coupling of a quantum field theory increases at higher energy.
An example of such a theory is QED. Actually, QED increases asymptotically
towards the Landau pole, causing the coupling to become infinite. A similar
theory is called ”infrared red free”. Now the theory is perturbative in the low
energy limit, and is an effective description of a complete theory in the UV.
Now, the beta function can become zero too. This can be the case for a theory
for all length scales, on an interval, or for a theory at a ’fixed point’. The the-
ory has become scale invariant field. Often these theories obey an even bigger
symmetry group. The conformal group. The conformal group consists of:

1. Poincaré symmetry, Lorentz symmetry plus translations in all directions,

xµ → Λµνx
nu + aµ (117)

2. Scaling invariance / Dilatations Dµ,

x→ λxµ (118)

3. Special conformal transformations Kµ

xµ → xµ − bµx2

1− 2b · x+ b2x2
(119)

The main consequence one has draw from the introduction, is the fact that, due
to the scale invariance of the CFT, the stress energy tensor Tµν is traceless,
Tµµ = 0. Put differently, the theory does not have a mass gap. The energy
spectrum is continuous, causing fields not to have asymptotic states. Usually,
these states are considered to be non-interacting, and used in the S-matrix
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formalism to describe a scattering process. However, now due to this lack of
mass gap, the entire concept of an S-matrix is ill-defined. Because of this reason,
the basic observables are correlation functions of local operators O [29].
These local operators are often also referred to as primary operators. They
transform under conformal rescaling in a simple way[47].

O′(x′)→ λ−∆O(x) (120)

and for general conformal transformations as

O′(x′)→
(
∂x′

∂x

)−∆

O(x). (121)

Here ∆ is the conformal dimension of the theory. This parameter makes sure
the action of a certain quantum field theory is scale invariant. The primary
fields transform under conformal transformations in general by In CFT’s one is
interested in computing correlation functions between primary operators. The
two point function of a CFT with one scaling dimensions ∆ is given by [30]:

〈O(x)O(x′)〉 ∝ 1

|x− x′|2∆
(122)



3 ADS/CFT 32

3.4 Relating the two sides

The two sides of the correspondence are related in the following section. AdS/CFT
implies a 1-1 mapping. This includes the Hilbert spaces to be equivalent, the
Hamiltonian to be the same, and, as we saw earlier, the symmetry groups to be
corresponding. Next to this, we need to be able to relate any quantity in the
AdS to one in the CFT. In the general case of the duality, we have seen a CFT
in d dimensions, as R× Sd−1, to be positioned on the boundary of the AdSd+1.
On the CFT side, one is interested in finding all correlation functions between
local operators. Together these quantities can be encoded into a generating
functional form:

ZCFT [φi] = 〈e
∫
ddx

∑
i φi(xi)O(xi)〉 (123)

The correlation functions are then obtained by taking functional derivatives with
respect to φi(x), and setting the φi(xi)

′s to zero. The generating functional on
the CFT side can be taken exactly equivalent to the string partition function,
when the boundary value of the bulk field φ(x) is given by φi(x). The mapping
between the two sides is therefore represented by an equivalence of the partition
functions.

Zstring[φi(x)] = ZCFT [φi(x)] (124)

where φi(xi) corresponds to value the bulk field φ(xi) extrapolated to the bound-
ary at z → 0.
Equation (136) is referred to by J. Polchinski as Maldacena’s equation and con-
sidered to be the greatest equation of all time.

As mentioned above, one can take functional derivatives to obtain:

∂nZCFT
∂φi(x1)∂φi(x2)...∂φi(xn)

∣∣∣∣
φi(xi)=0

∼ 〈O(x1)...O(xn)〉 (125)

which works similarly on the bulk side resulting in:

〈O(x1)...O(xn)〉 = lim
r→∞

r−n∆〈φ1(t, r,Ω)φ2(t, r,Ω)...φn(t, r,Ω)〉 (126)

where we re-encounter the scaling dimension ∆. It is related to the mass of the
field by:

∆ =
d

2
+

1

2

√
d2 + 4m2 (127)

Equation (125) is a statement of the correspondence more useful, when the user
is interested in computing correlation functions in the bulk/boundary. In our
case we will be working with scalar fields, however this statement holds equally
well for higher spin fields.
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3.5 Black holes in AdS/CFT

3.5.1 Thermal Field theory

Before we dive into black holes in AdS, let us take an informative detour contin-
uing with path integrals. Our bulk path integral or the path integral for curved
spacetimes in general is given by:

Z =

∫
D[g, φ]ei

∫
ddxL[φ] (128)

Where one does not only integrate over different field paths, but also over differ-
ent metric configurations. If one considers asymptotic AdS space, this operation
is not very significant, however we write it down for completeness. To evaluate
this quantity, one introduces a Wick rotation to let the functional converge.
Setting τ = it

Z =

∫
D[g, φ]e−

∫
dτ

∫
dd−1xLE [φ] (129)

where the Lagrangian density is now in Euclidean form. We can write this
differently in the canonical quantization form in terms of the Hamiltonian.∫

D[g, φ]e−
∫
dτ

∫
dd−1xLE [φ] = 〈φf (x)| e−τH |φi(x)〉 (130)

Taking φf (x) = φi(x), and integrating over φ we get:∫
D[φ] 〈φ(x)| e−τH |φ(x)〉 = Tr e−τH (131)

Identifying τ with the inverse temperature, β, we are looking at the partition

function of a thermal ensemble, ρth = e−βH

Z , at finite β.

Z = Tr e−βH (132)

A well known connection is made between quantum field theory at finite temper-
ature and quantum statistical mechanics. The imaginary time can be identified
with the inverse temperature. Even more so, the imaginary time τ turns out to
be periodic, which can be shown when looking at expectation values of operators
in a thermal state.

〈O(t1)〉 = Tr(ρthA) (133)

Taking a product of two operators:

〈O1(t1)O2(t2)〉 = Tr
(
e−βHO1(t1)O2(t2)

)
(134)

Working in the Heisenberg picture, and using the cyclicity of the trace:

(135)

〈O1(t1)O2(t2)〉 = Tr
(
e−βHO1(t1)O2(t2)

)
= Tr

(
O2(t2)e−βHO1(t1)

)
= Tr

(
e−βHO2(t2)e−βHO1(t1)eβH

)
= Tr

(
e−βHO2(t2)O1(t1 + iβ)

)
= 〈O2(t1)O1(t2 + iβ)〉
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This result is known as the KMS condition. It shows that the time, t, to be
periodic with iβ, or τ to be periodic with β. The KMS condition is the con-
dition satisfied by every KMS state. A system in thermal equilibrium with it’s
environment. A second note on the KMS condition, it tells us that Lorentz
invariance is broken. Since only the time component has become periodic in
Euclidean signature, we lose the fact that all spacetime directions transform in
similar fashion.

With this result we can retrieve some important relations. Take for O1(t1),
and, O2(t2), your field φ creation/annihilation operators b†ω, and, b†ω, and use
the KMS condition.

(136)〈b†ωbω′〉 = Tr
(
e−βHb†ωbω′

)
= Tr

(
e−βHbω′e

−βHb†ωe
βH
)

Using the following identity:

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2
[Â, [Â, B̂]] (137)

we write e−βHb†ωe
βH to first order as:

(138)
e−βHb†ωe

βH = b†ω − β[H, b†ω]

= b†ω(1− βω)

= e−βωb†ω

Where we made use of canonical commutation relation [H, b†ω] = ωb†ω. Plugging
this back into relation (149) and using [bω′ , b

†
ω] = δωω′ we find

(139)
〈b†ωbω′〉 = e−βω〈bωb†ω′〉

=
1

eβω − 1
δωω′

The Bose Einstein distribution for in a thermal bath.

3.5.2 Black Holes

We have made the identification of the imaginary time to the temperature.
As seen above, the black hole is a thermodynamic object with a temperature,
giving of black body radiation. When trying to describe such an object in
AdS/CFT this suggests an affiliation with quantum field theory at finite tem-
perature. Within the CFT one can construct any energetic state, by acting on
the vacuum with local operators. In the bulk this looks like throwing in pertur-
bations/particles from the boundary [37]. Recall the AdS vacuum metric:

ds2 = −(1 + r2)dt2 +
1

(1 + r2)
dr2 + r2dΩ2

2 (140)
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and the Schwarzschild metric on a Minkowski manifold.

ds2 = −(1− 2M

r
)dt2 +

1

(1− 2M
r )

dr2 + r2dΩ2
2 (141)

This suggests the following construction for a Schwarzschild black hole in AdS.

ds2 = −(1− 2M

r
+ r2)dt2 +

1

(1− 2M
r + r2)

dr2 + r2dΩ2
2 (142)

We can derive the temperature of the black hole by observing what happens at
the horizon [46]. The horizon is at the root of V (r) = (1 − 2M

r + r2). Rewrite
this by: r = rh + ρ2.

(143)
1− 2M

r
+ r2 = 1− 2M

rh + ρ2
+ (rh + ρ2)2

=
1

rh + ρ2

[
rh − 2M + r3

h + ρ2(1 + 3r2
H) + 3r2

hρ
4 + ρ6

]
Now looking at what happens close to the horizon, we drop the constants and
look to leading order in ρ what happens for ρ � 1. The higher order terms go
to zero much faster, and can be dropped too.

V (ρ) =
1

rh + ρ2

[
rh− 2M + r3

h +ρ2(1 + 3r2
H) + 3r2

hρ
4 +ρ6

]
→ 1 + 3rh

r2
h

ρ2 (144)

As we saw earlier, the temperature is related to the euclidean time τ . Wick
rotating the metric and plugging back V (ρ) we find for the metric:

ds2 =
4rh

1 + 3r2
h

[(
1 + 3r2

h

2rh

)2

ρ2dτ2 + dρ2

]
+ r2

hdΩ2
2 (145)

Now there is a nice trick here. Observe the term between brackets being similar
to the euclidean plane in terms of polar coordinates is given by

ds2 = r2dθ2 + dr2 (146)

In these coordinates there is what is called a ’conical singularity’ at r = 0. The
coordinate θ is not well defined at r = 0. Imagine walking over the pole on
the earth at r = 0. Your polar coordinate θ will discontinuously make a 180
degree turn. However due to the fact that θ is periodic with 2π we do not
experience any problems when computing smooth curves on and over r = 0. In
other words, the singularity is coordinate dependent now.
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For the black hole we have to do he same thing. By making τ periodic with
β = 2π× 2rh

1+3r2
h

, the metric becomes smooth at r = rh. For the temperature we

find:

T =
1 + 2r2

h

4πrh
(147)

Plotting this gives us,

Figure 6: Black hole in Schwarschild geometry vs. Black holes in AdS

One observes black holes to have positive specific heat in AdS after critical tem-
perature T0. Physically, this corresponds to the Hawking radiation bouncing of
the boundary in AdS and returning into the black hole. This has the effect for
the black hole to become stable and in thermal equilibrium with it’s environ-
ment. Black holes are named ’Big’, when they are stable in AdS. Big black holes
do not evaporate and are therefore eternal. The information problem remains to
exist, as a question of how one consistently constructs the interior of the black
hole (see chapter 3.7).
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3.5.3 Two sided black hole in AdS/CFT

In 2001 J. Maldacena conjectured another very important result in AdS/CFT
[35]. He proposed a duality for the maximally extended AdS-Schwarzschild ge-
ometry. In his paper he showed the geometry to be dual to two copies of a
conformal field theory in a highly specifically entangled state, called the Ther-
mofield double state. This state has it’s origin a while ago when thermal field
theory was developed. If one tries to describe a thermal system, characterized
by a thermal density matrix ρth = e−βH/Z, by a pure state, one is not possible
to do so with one Hilbert spaceH1. By doubling the degrees of freedom, forming
a second copy of the Hilbert space H2, one constructs an entangled pure state
with H = H1 ⊗H2 in the following way:

|TFD〉 =
∑
n

e−
βEn

2

√
Z
|En〉1 ⊗ |En〉2 (148)

where |En〉 are the set of orthonormal eigenstates of the Hamiltonian H. Taking
the partial trace over the full density matrix ρ , Tr2 |TFD〉 〈TFD|, over one
Hilbert space to find:

ρ1 =
∑
n

e−βEn

Z
|En〉1 〈En|1 =

e−βH

Z
(149)

The thermal density matrix. Each of the two sides correspond exactly to a
thermal state. Correlation functions within the thermofield state are given by
their thermal expectation value:

〈TFD| O1O2.....On |TFD〉 =
1

Z
Tr
[
e−βHO1O2.....On

]
(150)

Maldacena showed this state to have a holographic interpretation. With both
systems corresponding to a CFT dual to an asymptotic region of AdS connected
via a wormhole. The two CFT’s are together in the entangled state given by
(151), and are non-interacting. The remarkable fact of the proposal is the ge-
ometric connection that forms purely from the entanglement between the two
sides. It is in principle possible for two observers in both asymptotic regions to
meet in the interior of the black hole.

The metric of AdS-Schwarzschild in d dimensions is given by:

ds2 = −(r2 − r2
h)dt2 +

1

(r2 − r2
h)
dr2 + r2dΩ2

d−2 (151)

extending this with kruskal transformations:

Region I U = −e−rh(t−r∗) V = erh(t+r∗)

Region II U = e−rh(t−r∗) V = erh(t+r∗)

Region III U = e−rh(t−r∗) V = −erh(t+r∗)

Region IV U = −e−rh(t−r∗) V = −erh(t+r∗)
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the metric becomes:

ds2 =
(r2 − r2

h)

r2
hUV

dUdV + r2dΩ2
d−2 (152)

With asymptotic region I defined for U < 0 and V > 0, region III for U > 0 and
V < 0 and the interior for U > 0 and V > 0. The singularity is at U = V = 0.

The penrose diagram is depicted below.

Figure 7: The Thermofield double state

A very important point is the Hamiltonian of the system. Due to the killing
isometry ∂t, time runs up in CFT 1 and down in the second CFT. Similarly
in the usual extended Schwarzshild geometry. The Hamiltonian in this case is
defined as:

H = H1 −H2 (153)

The state is time-independent.

e−iHt |TFD〉 =
1√
Z

∑
n

e−i(H1−H2)te−
βEn

2 |En〉1 ⊗ |En〉2 = |TFD〉 (154)

But, in this case there is no connection possible between the two asymptotic
regions. This state just resembles a black hole in thermal equilibrium.
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If one wants to be able to meet observers from the other region via the
wormhole, one has to apply a CPT conjugation on one of the two sides. Time
now runs up on both sides, and observers from both asymptotic regions can in
principle meet in the interior of the black hole. The Hamiltonian now is given
by:

H̃ = H1 +H2 (155)

and the thermofield state is in that case

˜|TFD〉 =
∑
n

e−
βEn

2

√
Z

˜|En〉1 ⊗ |En〉2 (156)

where ˜|En〉1 is the CPT conjugation of |En〉1.
Both wedges still are described by ρth. We find for operators O in the thermal
CFT state similar relations as (152). We can write down expectation values for
two point correlators by using thermal field theory.

(157)
〈TFD| O†ωOω′ |TFD〉 =

1

Z
Tr
[
e−βHO†ωOω′

]
=

1

eβω − 1
δωω′

The holographic interpretation relates the primary CFT operators in a ther-
mal state, to creation and annihilation operators in the bulk [13].

Oω ⇔ bω (158)

This very important relation shows us the identifcation between the bulk and
the boundary operators. In fact the thermal state on the boundary can be in-
terpreted as a quark gluon plasma[13].
The state is considered to be an example of a black hole with a smooth horizon.
In 2013 Hartman and Maldacena provided some evidence in terms of comput-
ing correlators between the two sides, and showing the evolution of the mutual
information between the two CFT’s to evolve exactly like the growth of the
interior of the black hole [36]. There is agreement on the smoothness of the
state, which is why the thermofield state is often used as a reference point.
The characteristic entanglement of the state causing it the have a smooth hori-
zon, is key for understanding what is needed to solve the information paradox.
The astonishing fact that two non-interacting CFT’s entangled in the ther-
mofield state generate a geometric connection via a wormhole remains until
today somewhat of a mystery. It suggests a very deep meaning of quantum en-
tanglement. Van Raamsdonk and others continued investigating the idea that
entanglement could generate geometry in a more general way. He formulated
by the means of the Ryu Takayanagi proposal6 a way to extract the Einstein
equations purely coming from computing entanglement entropies. [38]

6The RT proposal relates the entanglement entropy of a region A in a CFT in a state |ψ〉
to the extremal surface area of a plane with codimension 2 whos boundary is given by the
CFT [39]
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3.6 Fields in AdS

To perform computations, one has to lay down quantum field theory on an
AdS background. In usual quantum field theory the fields are expanded in
Minkowski spacetime, with it’s ’flat’ spacetime signature. In our case we need
to quantize the fields in a curved space-time. As stated in the quantum field
theory section this procedure is different then the normal/flat case. The general
second-quantization procedure of fields in curved space time is described in [32].
As for our goal the theory is used as a computational tool, we do not review
this section in this thesis completely.
The easiest way to do so is to look at scalar fields. We will solve the Klein-
Gordon equation for the 3 dimensional case. One can of course solve the equa-
tion in higher dimensions, however this will not do anything different with the
relevant physics. The Klein Gordon equation is given by:

�φ = m2φ (159)

We work in ’mostly plus’-signature. The thing that has changed now is that the
D’alembertian now is given by:

� =
1√
|g|
∂ν
√
|g|gµν∂µ (160)

here gµν is the inverse of the metric, and g is the determinant of the metric. For
a diagonal matrix this is given by the product of it’s components:

det(A) =
∏
i

Aii (161)

Empty AdS-space-time in 2+1-dimensions in global coordinates can be written
down by equation (113):

ds2 = −(1 + r2)dt2 +
1

(1 + r2)
dr2 + r2dΩ2

1 (162)

Where dΩ1 represent the spherically symmetric angular part in a 1-sphere.
Continuing with this metric to the Klein-Gordon equation we observe that
we have two Killing vector fields, one timelike and one spacelike given by:
K1 = (−(1 + r2), 0, 0, ), and K2 = (0, 0, 0, r2 sin2(θ)). This means that the
time, and angular component of the Klein-Gordon equation will give trivial so-
lutions. We see that the these components pass trough equation (117) smoothly
and give straightforward results. We write the Klein-Gordon equation as a result
following equation (117) for each component:

− 1

(1 + r2)

∂2φ

∂t2
+

1

r
∂rr(1 + r2)∂rφ+

1

r2

∂2φ

∂Ω2
−m2φ = 0 (163)

where
√
|g| = r. To solve this equation we need a trial solution. As mentioned

above, the time part as well as the angular part need trivial solutions, leaving
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the radial part to be solved. The solution is of a complete set of modes with
corresponding creation and annihilation operators.

φ(t, r,Ω) =
∑
ω,l,m

[aω,lmfω,lm(t, r,Ω) + a†ω,lmf
∗
ω′,l′m′(t, r,Ω)] (164)

Where fω,lm(t, r,Ω) is given by:

fω,lm(t, r,Ω) = e−iωt+ikΩ(Ω)
U(r)

r
(165)

If we plug this into the differential equation we retrieve:

ω2

(1 + r2)

U(r)

r
+

1

r
∂rr(1 + r2)∂r

U(r)

r
− k2

r2

U(r)

r
−m2U(r)

r
= 0 (166)

We observe that we only have a radial dependence left. This is the equa-
tion to solve. Working out the algebra of the middle part, obtained from the
D’alembertian and putting this back in equation (7) we obtain:

1

r
(1 + r2)

∂2U(r)

∂r2
+

(r2 − 1)

r2

∂U(r)

∂r
+

ω2

(1 + r2)

U(r)

r
+

1

r
(

1

r2
− 1)U(r)

−k
2

r2

U(r)

r
−m2U(r)

r
= 0

(167)

Some more algebra, multiplying with r and rearranging gives us:

(1 + r2)2 ∂
2U(r)

∂r2
+

(r2 − 1)(r2 + 1)

r

∂U(r)

∂r
+ V (r)U(r) = −ω2U(r) (168)

with

V (r) =
(1 + r2)

r2
[1− k2 − (m2 + 1)r2] (169)

Now this differential equation is solvable with hypergeometric functions. The
solutions are given by:

(170)

U(r)→
(
r2
) k+1

2
(
r2 + 1

)w/2(
C1 ∗

2F1

[
1

2
(k + w −∆) ,

1

2
(k + w + ∆) ; k + 1;−r2

]
+ C2

(
−1− r2

)−k ∗
2F1

[
1

2
(−k + w −∆) ,

1

2
(−k + w + ∆) ; 1− k;−r2

])
where ∆ = 1+

√
m2 + 1. The constants can be found using boundary conditions.
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To observe the asymptotic behavior at r → ∞, we can approximate the
radial solution by a power law:

φ(t, r,Ω) = e−iωteikΩra (171)

Substituting into differential equation (120) and simplifying trough the same
trivial steps as before

− 1

r2
ω2ra +

1

r
∂rr

3∂rr
a +

k2

r2
ra −m2ra = 0 (172)

Working out the radial part.

−ω2ra−2 + a(a+ 2)ra + k2ra−2 −m2ra = 0 (173)

We are interested in the limit of r →, therefore only considering dominant terms,
ra,

a(a+ 2)ra = m2ra (174)

Which gives a second order equation for a:

a2 + 2a−m2 = 0 (175)

where the roots are given by

a = −1±
√

1 +m2 (176)

The negative root is exactly the conformal dimension, ∆, of the boundary field.
In other words we see the how the bulk is connected to the CFT boundary .
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3.6.1 Fields in eternal BTZ

In this thesis the BTZ black hole is used to do calculations on. The next step
is to do the same thing we did in empty AdS, only now for a metric containing
a black hole. This metric for the eternal BTZ black hole in 2 + 1 dimensions is
given by:

ds2 = −(r2 − r2
h)dt2 +

1

(r2 − r2
h)
dr2 + r2dΩ2

1 (177)

Again we solve the Klein Gordon equation:

�φ = m2φ (178)

We have a complete set of solutions:

φ(t, r,Ω) =

∫ ∞
0

dωdk

2π
√

2ω
[bω,kfω,k(t, r,Ω) + b†ω,kf

∗
ω,k(t, r,Ω)] (179)

The operators are related in the usual way:

[bω,k, b
†
ω′,k] = δ(ω − ω′)δ(k − k′) (180)

We have for the wavefunctions

fω,k(t, r,Ω) = e−iωt+ikΩΨ(r)ω,k. (181)

In similar fashian as for empty AdS, we end up with a differential equation for
the radial solutions:

−(r2 − r2
h)2 ∂

2Ψ(r)

∂r2
− 2r(r2 − r2

h)
∂Ψ(r)

∂r
+ V (r)Ψ(r) = ω2Ψ(r) (182)

with

V (r) = (r2 − r2
h)

[
k2 +

r2
h

4

r2
+m2 +

3

4

]
(183)
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This is another differential equation solved by hypergeometric functions.

(184)

Ψ(r)→
(
r2
) rh−ik

2rh
(
r2 − r2

h

)− iw
2rh

(
c2e
−πkrh

(
r2

r2
h

) ik
rh

2F1

(
r2
h + ikrh − iwrh −

√
(m2 + 1) r4

h

2r2
h

,

r2
h + ikrh − iwrh +

√
(m2 + 1) r4

h

2r2
h

;
ik

rh
+ 1;

r2

r2
h

)
+

c1 2F1

(
r2
h − ikrh − iwrh +

√
(m2 + 1) r4

h

2r2
h

,

−
−r2

h + ikrh + iwrh +
√

(m2 + 1) r4
h

2r2
h

; 1− ik

rh
;
r2

r2
h

))

We can make several substitutions:

a =
ik

2rh
, b =

iω

2rh
, ∆ = 1 +

√
m2 + 1 (185)

This gives us:

(186)

Ψ(r)→
(
r2
)1−a (

r2 − r2
h

)−b(
C2e

−πkrh

(
r2

r2
h

)2a

2F1

(
1− a− b− ∆

2
, a− b+

∆

2
; 2a+ 1;

r2

r2
h

)
+ C1,

2F1

(
∆

2
− a− b, ∆

2
− 1 + a+ b; 1− 2a;

r2

r2
h

))

The solution is of the form of:

Ψ(r) = r2(r2 − r2
h)−b

[
(r2)−aC1P (r) + (r2)aC2Q(r)

]
(187)

With

P (r) = 2F1

(
∆

2
− a− b, ∆

2
− 1 + a+ b; 1− 2a;

r2

r2
h

)
Q(r) = (

1

r2
h

)a 2F1

(
1− a− b− ∆

2
, a− b+

∆

2
; 2a+ 1;

r2

r2
h

) (188)
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The solution should be subject to two boundary conditions at the boundary
and the horizon. In the near horizon limit when r → rh. As 2F1(a, b, c, 1) =
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) , the hypergeometric functions contribute by a constant. It is con-

venient to transform to tortoise coordinate r∗

r∗ =
1

rh
log

(
r − rh
r + rh

)
(189)

The solution is given in the near horizon limit, r∗ → −∞ by:

Ψ(r) ∼ C
[
e−iδωke−iωr∗ + eiδωkeiωr∗

]
(190)

Where δ is a real constant in terms of gamma functions given by:

eiδ = 4b

√
Γ(−2b)Γ(−a+ b+ ∆/2)Γ(−a+ b+ ∆/2)

Γ(2b)Γ(−a− b+ ∆/2)Γ(a− b+ ∆/2)
. (191)

The second boundary condition is when r →∞ at the boundary of AdS. In this
limit the wavefunction should be related to the conformal dimension of the dual
field theory ∆. By using the following hypergeometric identity[43]:

2F1(a, b, c, z) ∝ Γ(−a+ b)Γ(c)

Γ(b)Γ(c− a)

(−z)−a
(

1 +O(
1

z
)

)
+

Γ(a− b)Γ(c)

Γ(a)Γ(c− b)
(−z)−b +O(

1

z
)

(
1 +O(

1

z
)

) (192)

We can expand around infinity and find that only a particular combination of
P (r) and Q(r) is appropriate as the other one goes like r∆ which blows up when
r →∞. We normalize the solution by demanding:

Ψ(r)→ 1

Υ(ω, k)
r−∆ (193)

at the boundary. Where Υ is given by [34]

Υ = (2π)
d
2

√
2

Γ(∆− d
2 + 1)π

d
2

Γ(∆)
⇒

for d=2
(2π)

3
2 . (194)

One finds for the full normalized mode:

Ψ(r) =

1

Γ(∆)
D1

(
r2

r2
h

)a(
r2

r2
h

− 1

)−a−∆
2

2F1

(
a− b+

δ

2
, a+ b+

∆

2
,∆,

r2
h

r2
h − r2

) (195)

with

D1 =

√
Γ(a+ b+ ∆

2 Γ(a− b+ ∆
2 Γ(−a+ b+ ∆

2 Γ(−a− b+ ∆
2

Γ(2b)Γ(−2b)
(196)
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With both limits, horizon and boundary, we can describe the full region of
spacetime in region I. With a similar expansion in region III, we can continue
both modes from both wedges to fully construct the interior of the black hole,
region II. The expansion behind the horizon in terms of both wedges is given
by

φ(t, r,Ω)II =

∫ ∞
0

dω′dk

2π
√

2ω′

bRg
(1)
ω′k(t, r,Ω) + b†Lg

∗(2)
ω′k (t, r,Ω) + b†Rg

∗(1)
ω′k (t, r,Ω) + bLg

(2)
ω′k(t, r,Ω),

(197)

which in the near horizon approximation looks like for a spherically symmetric
setting

g
(1)
ω′ (t2, r2) = r

− 1
2

h e−iδωke−iω(t+r∗) and g
(2)
ω′ (t2, r2) = r

− 1
2

h e−iδωke−iω(t−r∗).
(198)

obtaining:

φ(t, r,Ω)II →
r→rh

1
√
rh

∫ ∞
0

dω′dk

2π
√

2ω′

[
bRe
−iδωke−iω(t+r∗) + b†Le

iδωkeiω(t−r∗) + h.c.

] (199)

When correlating different wedges, it is necessary to write this in Kruskal-
Szekeres form, since coordinate patch describes the entire region of all four
wedges together. Recall, in region II we have: U = e−rh(t−r∗) and V =
e−rh(t+r∗) :

φ(t, r,Ω)II →
r→rh

1
√
rh

∫ ∞
0

dω′dk

2π
√

2ω′

[
bRe
−iδωkV −iaω

′
+ b†Le

iδωkU iaω
′
+ h.c.

] (200)

where a = β/2π, and β is related to the horizon radius by β = 2π/rh. We
now have a full set of solutions for a scalar field in 2 + 1 dimensions for the
eternal BTZ-black hole. The setting can be used to actually compute correlation
functions or other desired quantities.

To do so, one needs to be able to relate the left and the right operators. Here
we can use the relations found from the Rindler decomposition. Since both sub-
systems left and right are thermal systems they are related in the same way
as the left and right Rindler wedges, as they were thermal systems too. Using
equation (81) and (82)

bL,ω1
|TFD〉 = e−

βω
2 b†R,ω2

|TFD〉 (201)

and
b†L,ω1

|TFD〉 = e
βω
2 bR,ω2

|TFD〉 (202)
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3.7 Information problem in AdS/CFT

3.7.1 Construction of the interior

With the knowledge on how to describe black holes in AdS, we can study the
information problem in the correspondence. The problem arises when describ-
ing quantum field theory in the interior of the black hole. Below there is the
standard Penrose diagram7 of a black hole formed from collapse. There are
three types of quantum modes present. The red and green modes are interior
modes, respectively left and right moving ones. The purple mode is a right
moving exterior mode.
By definition the interior lies in the causal future of the exterior of the black

Figure 8: Black hole formed from gravitational collapse. The orange line rep-
resents a collapsing photon shell, the dotted line the event horizon, and the
red line is the singularity. On the top right corner, one can see the Hawk-
ing radiation coming out. The green and blue arrows represents right moving
interior/exterior modes.9

hole. One therefore expects to construct the interior by continuing the exte-
rior modes forward in time. The left movers, the red arrow, can be continued
without any difficulty. However, a problem arises with the right moving modes.
One can observe two colored arrows in the picture. A resp. interior( green) and
exterior (blue) right moving mode. Both modes extrapolated back in time coast
along the horizon, and therefore will be highly blue-shifted. This blue-shifting
can go up so high, one obtains center of mass energies higher then the Planck
scale. This problem is referred to as the Trans-Planckian problem. The interior
modes need to be traced back trough the shell, reflected of the boundary at
r = 0, and back into space.

7For an explanation of Penrose diagrams, see appendix B
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To somehow facilitate the issue here, one can construct the interior modes
in a related way. The usual way to do it is to look at the eternal black hole
or Hartle-Hawking state. This two-sided geometry offers the possibility for the
right moving modes to be evolved from the left asymptotic region, often referred
to as region III. Let’s look at the this in detail: One can trace the right moving

Figure 9: The Penrose diagram of the eternal AdS black hole.

modes back from the interior, region II, to the left region. In this way one can
construct the interior of the black hole more naturally. What is very obvious
now, is the connection with Rindler space. The main result of Rindler was the
right wedge entanglement with the left wedge. This means for the black hole
that modes from the interior need to be entangled with modes from exterior in
a very specific way!
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3.7.2 Quantum Cloning

With this prescription for the interior of the black hole, we can continue to see
what more AdS/CFT has in store. If one assumes the duality to hold in what-
ever case, it tells you the evaporation process should be describable within the
gauge theory, excluding the possibility of non-unitarity and information loss.
This means that any information that falls in should be contained inside the
Hawking radiation in some-kind of way. However if one does so, new troubles
arise. Let us look at the evaporation of a black hole formed from collapse.

Figure 10: One sided black hole fromed from collapse. The right arrow rep-
resents one observer. The black arrows represent that observer coming out in
Hawking radiation to keep the process unitary 11

There are two arrows in figure 10. The red arrow represents an infalling observer.
The black arrows represent that infalling observer coming out in Hawking ra-
diation. One can draw a so called nice slice trough both copies. A nice slice
is often called a Cauchy slice. It is a spacelike surface, S, on a manifold, M,
intersected by every non-spacelike (causal curve) only once. For example, in
Minkowski spacetime a slice at t = a resembles a Cauchy slice. This blue nice
slice shows us that at a certain instant in time, two copies of the same infor-
mation are present. This is not possible within quantum mechanics. In fact, it
violates the principle of quantum cloning. A statement which can be proven in
two lines.
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Take two quantum states, |φ〉& |ψ〉. Call Q̂ the cloning operator. If we
assume Q̂ to be a linear operator, we can observe its effect by letting it act on
|φ〉& |ψ〉.

Q̂ |φ〉+ Q̂ |ψ〉 = |φ〉 |φ〉+ |ψ〉 |ψ〉 (203)

However we find a contradiction if we put |φ〉& |ψ〉 in a superpositioned state:

Q̂(|φ〉+ |ψ〉) = |φ〉 |φ〉+ |ψ〉 |ψ〉+ 2 |φ〉 |ψ〉 (204)

Quantum superposition tells you (202) and (203) should of course be equal,
which they aren’t.

3.7.3 Black Hole Complementarity

A proposal for a solution to this problem came from Susskind and collaborators
[32]. They came forward with a somewhat abstract proposal. Although two
copies of the same information were present on one nice slice, no single observer
could observe both copies. Susskind et. al. argued that to describe the process
of black hole evaporation, a full formulation of quantum gravity was needed. It
would therefore be very well possible, for the lower energy effective theory not
to desribe the physics accurately. They presumed quantities, like the nice slice,
to be ill defined in the effective description of the theory, and one should restrict
the Hilbert space to the causal diamond of a single observer.
The idea seems radical at first glance, however becomes more conceivable after
a second. In a way this is what happens with AdS/CFT. There are two descrip-
tions of the same quantity. Both cannot be observed by a single observer.
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3.7.4 Strong Subadditivity and Firewalls

Black hole complementarity seemed to be saving the situation, however new
additional problems were formulated by S. Mathur and the AMPS group [5][6].
They were able to show inconsistencies for the construction of the interior even
within the causal region of one observer. They formulated the information
paradox for the infalling observer in terms of entanglement entropies.
Let us start with a black hole formed from gravitational collapse in a pure
state. Next to a necessary entanglement between interior and exterior modes,
we demand our final state of Hawking radiation to be pure again. This insists
a high degree of entanglement between the early Hawking radiation/exterior
modes and the late radiation. We run into a conflict of entanglement. As
always a picture says more then a thousand words:

Figure 11: Black hole formed from collapse. Three sets of modes. Modes B are
entangled with interior modes C. However, modes A need to be entangled with
modes B as well for purity of the final state

The statements can be made precise by looking at the strong subadditivity
relation for von Neumann entropies. Strong subadditivity inequality states:

SBC + SBA ≥ SB + SABC (205)

Since Hawking modes B and C are together in a pure state, we have SBC = 0.
This tells you immediately that SABC = SA.

SBA ≥ SB + SA (206)

This cannot be, since SBA should be lower then SB , for the black hole to end
up in a pure state.
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AMPS argue that there is another time scale relevant for the evaporation
process, the scrambling time. A time scale for infalling information to be ’scram-
bled’ into purely thermalized bits. From that moment on the entropy of the
infallen information and the black hole is maximized and should decrease after.
The black hole is one of the fastest scramblers out there, causing the scrambling
time to be much smaller then the Page time. This leaves the concept of an
old black hole highly irrelevant, and sharpens the situation dramatically. The
conclusion of the paper is that since both demands of entanglement cannot be
fullfilled, the entanglement between modes B and C should not be there in the
first place. They introduce the concept of a Firewall. Something at the horizon,
which breaks up the entanglement between the interior and exterior region, to
solve the paradox. This statement is highly disputable to say the least. Accord-
ing to the equivalence principle in general relativity, the horizon should not be
a special place for the infalling observer. The firewall proposal would violate
this fundamental feature dramatically.
AMPS argue that the 3 following postulates can not coexist together:

1. Unitarity. The process is describable by an S-matrix. If violated, in-
falling information about the purity of a state will be lost forever, and absent
in the outcoming Hawking radiation.
2. Effective Field Theory. One can describe the region outside the black
hole by gravity in terms of an effective field theory.
3. No Drama. Nothing happens at the horizon for the infalling observer.

Often the relation between the number of microstates and the Bekenstein en-
tropy of the black hole is stated as a fourth postulate. This however comes down
to the same issue of whether or not the entropy goes to zero at the end of the
page curve. As therefore can be taken under the same postulate as postulate 1.
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3.8 Entanglement vs Typicality

The period after the AMPS paper the discussion shifted to a debate of entan-
glement versus typicality. What exactly is meant by typicality will become clear
in a moment. As we have seen, black holes in AdS thermalize under their own
Hawking radiation. Which makes them, after some time, very well approxi-
mated by the two-sided black hole in AdS. In this case the dual field theory on
the boundary of the AdS space is represented by a thermal density matrix ρth
consisting of eS states. Where S is the Bekenstein entropy of the black hole.12.
Now coming back to typicality, a typical state of this ensemble is picked at ran-
dom by the Haar measure.13 For a highly energetic thermal system this would
suggest random phases for all matrix elements, and absolutely not the highly
specific entanglement structure of the thermofield state. The thermofield state
was until that day the only state of which there was consensus on the smooth-
ness of the horizon. However, it was just one state of the entire ensemble in the
CFT. The question phrased by Marolf and Polchinski was, if typical states with
generic entanglement structures were dual to smooth horizons too. Something
not too much to ask, if you realize how unlikely, ∼ e−S , it is for the black hole
to be exactly in the thermofield double state.
In [37] they answered the question themselves, by using the Eigenstate Ther-
malization Hypothesis (ETH) [42]. They approximated expectation values of
operators in the dual CFT as how they would behave in a quantum chaotic
system. In a thermal system you expect operators to take their thermal expec-
tation value after some time t, the scrambling time.

Figure 12: Thermalization of operators in a thermal system.

12Here we explicitly see the statistical relation between the number of microstates and the
black hole entropy The AdS/CFT duality proves Bekenstein to be right after 30 years

13The Haar measure, named after Alfred Haar, corresponds to the measure keeping the
subspace of all unitary transformations of the entire vector space rotationaly invariant. Using
this measure one is possible to pick a state completely at random [48].
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The ETH tells you how to do so in a consistent way with linear evolution of
quantum mechanics. The ETH states:

〈α|A |β〉 = Aαβ = A(Ēαβ)δαβ + e−S(Ēαβ)/2fA(Eα, Eβ)RAαβ (207)

where A, fA are smooth functions, and Ēαβ = Eα+Eβ/2. The smooth function
A essentially represents the thermal expectation value for operator A. The off-
diagonal contributions are characterized by RAαβ and suppressed by a factor of

e−S/2. The RAαβ ’s vary erratically. Marolf and Polchinksi showed that using this
evaluation for operators in a strongly coupled CFT, two point functions between
the left and the right CFT were exponentially suppressed with e−S for generic
states. With generic states they considered equally entangled states, however
with configurations different then the thermofield state. Showing these states
to obey this kind of behavior they argued it to be a strong argument in favour
for typical states to possess firewalls.

3.9 Quantum Chaos

Another dimension which has to be added to the story about the conflict between
entanglement and typicality is the addition of quantum chaos. Polchinski and
Marolf already used the ETH for quantum chaotic systems, which was further
elaborated on by Shenker and Stanford. They showed that the slightest pertur-
bation could completely destroy the ER bridge between the two CFT’s[11]. By
injecting a few particles in one of the two CFT’s early enough back in time, one
could cause a shockwave by a blue-shifting of the energy of the particles and
deform the geometry of the metric completely.

Ep ∼
E

r∗
er∗ti (208)

This resulted in an exponential decay of mutual information between the two
sides. The authors found the effect already to be significant when ti was of the
order of the scrambling time.
The main idea to extract from this result, is the chaotic character of the black
hole. The sensitivity to initial conditions resembles erratic behaviour. The
authors called this the ’butterfly effect’. If one would interpreted the CFT side as
a very hot plasma, this might seem not so far fetched. However doing so, would
form a strong indication towards hot horizons. The chaotic character of the
black hole made the case for black holes to possess the necessary entanglement
needed for a smooth interior looked highly unlikely.
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3.10 Violations of the Born Rule

In 2015 Marolf and Polchinski came to an even stronger conclusion [15]. They
stated that a typical CFT state dual to a smooth horizon black hole would vi-
olate the Born rule of quantum mechanics. In other words, any construction
that does seem to overcome all the challenges, objections and hardship; that
somehow managed to dual a smooth horizon interior to a typical CFT micro
state, would break a postulate of quantum mechanics, ruling out any possible
solution in principle.

This conclusion would strongly stand in the way of any proposal that tries
to solve the paradox in AdS/CFT. The goal of this thesis is therefore to argue
the grounds of the statement of Marolf and Polchinski. In the following section
the argument of [15] will be reviewed in detail. We will present a thought ex-
periment to quantify the statements made, and try to break the born rule by
all means necessary to see if we find the same conclusion.
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Section II

In this second section we will first discuss the Born rule regarding Black holes.
With a quick review of the argument of Marolf & Polchinski from [15], we
outline the different aspects of the problem. In the second part we introduce a
thought experiment. Here we test the Born rule for typical black holes states by
perturbing one. We will explain the methodology and quantify our statements
by computations of correlation functions in the last section. We will conclude
with a discussion and a look towards further research.
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4 Violations of the Born Rule

4.1 The Born Rule

The Born rule is one of the postulates of quantum mechanics, first stated by
Max Born in 1926 [44]. The rule is of great importance since it bridges the
mathematical framework to the physical experiment. For a state |ψ〉 we start
with it’s formal definition. Say we have Hermitian operator Â, with a corre-
sponding complete set of orthonormal eigenvectors ei and eigenvalues λi. A
measurement of Â yields collapse into one of it’s eigenstates with corresponding
eigenvalues. The probability to find a given eigenvalue is given by the Born rule.

The Born Rule: When a system is in state |ψ〉, the probability of finding
eigenvalue λi is given by:

P (Â = λi|ψ) = |(ei, ψ)|2. (209)

The overlap of state |ψ〉 with ei is what gives the associated probability. We
can therefore pose the following statement from this rule.

Measurement of operator Â on nearly parallel states in Hilbert space
H yields similar expectation values

4.2 Violations of the Born Rule for cool horizons

Marolf and Polchinski (MP) use exactly this statement in the context of the
AdS/CFT to present violations of the Born rule for typical states dual to smooth
horizons. Their argument is subtle. It consists of all the ingredients we reviewed.
The idea makes use of the AdS/CFT duality in a fundamental way. We will first
describe their argument in words together with a toy model. After that we ex-
plicitly show how to set up a thought experiment to quantify earlier statements
made. The argument can be schematically represented:
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(i) Start with a typical pure CFT state |φ〉 picked randomly from the ensemble
dual to a BTZ black hole in 2 + 1 dimensions. Assume the black hole to
have a smooth interior.

(ii) Rotate the phases of all modes in state |φ〉. This very slightly rotates the
state vector in the Hilbert space of the CFT, however drastically changes
the entanglement configuration of the state.

(iii) Observe the effect in both the CFT and AdS picture. The CFT state now
looks very similar to a typical state of the Hilbert space.

(iv) The AdS picture however changed notably. The smoothness of the horizon
depends on the exact right entanglement structure. The new configuration
would seem to cause the horizon to resemble a firewall, since the modes
are not correctly entangled with the interior any more.

(v) There is a contradiction if one assumes typical state to have smooth hori-
zons. We have two nearly parallel states in the CFT, the perturbed state
and a typical state, with two physically orthogonal interpretations in the
bulk.

(vi) MP conclude that the major premise was wrong in the first place. Typical
states are dual to firewall states, else one encounters strong violations of
the Born rule[15]

Things might not be completely clear after this first enumeration. The argument
requires a bit more insight in the exact course of events. The main point to
keep in mind is the fact that by perturbing the entanglement of a pure state,
one acquires different physical interpretations in the bulk, while the CFT state
remains nearly parallel to a typical state. If typical states are assumed to be
”smooth”, we encounter a contradiction.
The eminent question to ask is how to perform this kind of operation. The
following unitary operator Û fits the bill [15].

Û = eiθiNω with Nω =
∑
i

b†i bi (210)

It rotates all the phases of the number operator for all frequencies with the
amount of θ. To observe what the effect of this operation Û is, we look at toy
model construction of our situation.
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Toy model

In a very simplistic picture, we represent the modes in pure state |TFD〉 on
the left wedge to be entangled with the right wedge. If we act with the operator
Û on one of the two sides, we rotate the coefficients of the phases of all the

modes on one side only, recall Û = eiθib
†
i bi . We can see what happens to a single

mode. Represent the single mode state as a fermionic mode for simplicity in
this toy model with ground-state |0〉 and excited state |1〉. Say we put mode bL1
with bR1 into the following state:

|ψ〉1 =
|0L, 0R〉+ |1L, 1R〉√

2
(211)

Now acting with Û on, say the left wedge, we observe what happens: For θ
small,

(212)
Û |ψ〉1 = eiθb

†L
i bLi
|0L, 0R〉+ |1L, 1R〉√

2

∼ (1 + iθb†Li bLi )(|0L, 0R〉+ |1L, 1R〉)
= |0L, 0R〉+ (1 + iθ) |1L, 1R〉

The ladder operators act trivially on the ground-state and on the right wedge.
One can observe the phase shift given to the left modes. In other words, the
entanglement configuration has been modified a small amount. However, the
total amount of entanglement remains the same. This can be quantified by
looking at the von-Neumann entropy or entanglement entropy.
Recall S = −Tr ρ log ρ, and write for the reduced density matrix of the left
mode before and after the operation

Before→ ρL =

(
1
2 0

0 1
2

)
⇒ S = log 2

After→ ρL =

(
1
2 0

0 1−θ2

2

)
=

(
1
2 0

0 1
2

)
⇒ S = log 2

(213)

Where we dropped the θ2 assuming θ being small. We see Û rotate the phases
of mode with a definite frequency, therefore changing the entanglement configu-
ration. As we know from Rindler space, for the horizon to be smooth one needs
a very specific entanglement and a small deviation results into excitations on
the horizon. In other words, due to the modification by Û , a single mode state
now has a non-zero probability to be in an excited state. Even more so, when
we act with Û on an entire state, say |TFD〉, we sum over all frequencies. The
small perturbance for all frequencies adds up to a full firewall at the horizon.
For the purpose however of violating the Born rule it is sufficient to rotate only
a very small amount of modes. There is no need to create a firewall. Only a
few excited particles will be sufficient.
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On the other hand Û commutes with the CFT Hamiltonian H, since the
number operator commutes with the Hamiltonian. The ensemble in the CFT
stays untouched. Typical states remain typical states, however we now saw
the physical picture, of what is happening at the horizon, looking dramatically
different.

4.3 Discrete modes vs Wave-packets

There is one very important point which we should address now. The per-
spective of the infalling observer. The infalling observer has to measure the
excitations at the horizon. In the toy model above we have used discrete sets of
modes in frequency space. In other words, they are represented by a delta spike
in Fourier space. The problem arises when we Fourier transform this to regular
spacetime. The perturbation is distributed over the entire region of spacetime,

Figure 13: Fourier transform of a delta spike. ⇒
∫∞
−∞ dte−2πiωtδ(t) = 1

and therefore immeasurable for any observer. An observer always has to mea-
sure differences in energy, and in this case she won’t measure anything.
This problem is a usual one in quantum field theory and is resolved by using
wavepackets instead of delta spikes. The mode bi now looks like this

bi =

∫
dωgi(ω)bω. (214)

Where gi(ω) is a smooth function, that represents the ’smearing’ of the mode.
The consequence of this operation is however very critical. The commutator
[Û ,H] is now non-zero. This is caused by the number operator now having
off-diagonal components, due to the smearing. The immediate consequence is
the fact that the energy no longer is conserved for an operation with Û . The
increase in energy for state Û |ψ〉 means an exponential increase in number of
states available in the ensemble of the CFT. All these new states are smooth
horizon states by definition. This opens up the question if the new perturbed
state, U |ψ〉, is still a typical state. This vital point will be explained in detail
below, when setting up the thought experiment. For now we can summarize
this paragraph by stating the importance of the smearing of the wavepackets
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once more. The operator Û knows two competing effects. Next to mapping
smooth typical states to excited states, it increases the energy of the ensemble.
Is the increase in energy small enough for the state U |ψ〉 still to be typical? A
vast majority of excited states after the operation with Û , would emanate the
contradiction between typicality and smooth horizons.
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5 Bounds of the Born Rule

In this section we formulate a concrete way of how to test if there are violations
of the Born rule for typical CFT states dual to smooth horizon bulk states.
However, formulating a framework to find violations of the Born rule would be
applicable in more quantum mechanical cases applicable then for the black hole.
The formalism derived below is therefore valid for general quantum mechanical
cases. Mainly, the point of interest is to get insight in measures of comparison
between states. With these measures we can derive a condition, which, if not
respected, will result into a violation of the Born rule.

1. Our first measure is the expectation value of a certain operator in two
different quantum states, say |ψ1〉 and |ψ2〉. As we will see, the difference
is bounded from above by the spectrum of the operator. The quantity of
interest is given by:

|〈ψ2| Â |ψ2〉 − 〈ψ1| Â |ψ1〉 | (215)

2. The second measure is given by the inner-product between two states.
This is linked to the fidelity in quantum information theory. It is a measure
of the amount of overlap between vectors. It can be defined in the following
way

|〈ψ2|ψ1〉 |= 1− ε2

2
(216)

3. Both obtained measures will be related in order to formulate a condition
to test the Born rule.

5.0.1 A First Measure

We look at the change of the expectation value of a certain operator Â between
two normalized pure states. The quantity we’re interested in is given by

|〈ψ2| Â |ψ2〉 − 〈ψ1| Â |ψ1〉 |≤ ? (217)

The hypothesis is, when two states do not differ much, the change in expectation
value should also be limited. The two state vectors are both normalized, and
are shifted by:

|ψ2〉 − |ψ1〉 = |δψ〉 (218)

Define: |||δψ〉 ||= δ. We can work out quantity (216). We substitute equation
(217) in:

(219)|〈ψ2|A |ψ2〉 − 〈ψ1|A |ψ1〉 |
= |〈ψ2|A |ψ2〉+ 〈δψ|A |ψ1〉+ 〈ψ2|A |δψ〉+ 〈δψ|A |δψ〉 − 〈ψ2|A |ψ2〉 |=
|〈δψ|A |ψ1〉+ 〈ψ2|A |δψ〉+ 〈δψ|A |δψ〉 |
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We can use the triangle identity to obtain:

|〈δψ|A |ψ1〉+ 〈ψ2|A |δψ〉+ 〈δψ|A |δψ〉 |≤
|〈δψ|A |ψ1〉 |+|〈ψ2|A |δψ〉 |+|〈δψ|A |δψ〉 |

(220)

We can now make use of the Schwarz inequality to continue. For the first term,
this is given by:

|〈δψ|A |ψ1〉 |≤ |〈δψ| ||A|||ψ1〉 |= δ||A||≤ δmax
j
|λaj | (221)

where maxj |λaj | is the maximum eigenvalue of A The last inequality we can
obtain if A is a complete continuous self adjoint or Hermitian operator. For the
entire expression we obtain:

|〈ψ2|A |ψ2〉 − 〈ψ1|A |ψ1〉 |≤ max
j
|λaj |(2δ + δ2) (222)

Assuming δ to be small, we can take this up to first order

|〈ψ2|A |ψ2〉 − 〈ψ1|A |ψ1〉 |≤ max
j
|λaj |2δ. (223)

We have found our first bound on the Born Rule.

5.0.2 A Second Measure

We will calculate the projection between two state vectors, |ψ1〉 and |ψ2〉,

|〈ψ2|ψ1〉 | (224)

The quantity is a measure of overlap between the two states. For two states we
can formulate a general condition.

|〈ψ2|ψ1〉 |= 1− ε2

2
(225)

If the states are very similar, or parallel. ε will go to zero. A second measure is
obtained.
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5.1 Relating measures

To sum up, we have for the difference in expectation value:

|〈ψ2|A |ψ2〉 − 〈ψ1|A |ψ1〉 |≤ max
j
|λaj |(2δ + δ2). (226)

The overlap of both states.

|〈ψ2|ψ1〉 |= α = 1− ε2

2
(227)

Relate δ to ε:

δ =
√
|||ψ1〉 − |ψ2〉 ||2 =

√
|||ψ1〉 ||+|||ψ2〉 ||−2|〈ψ2|ψ1〉 |. (228)

The first two terms underneath the square root are products of normalized state
vectors, and the last term is related to ε via equation (20). We obtain:

δ =
√

2− 2− ε2 = ε (229)

We find that δ = ε. We now plug equation (20) into equation (19) with the
relation between δ and ε we just found. This gives:

|〈ψ2|A |ψ2〉 − 〈ψ1|A |ψ1〉 |≤ max
j
|λaj |2ε (230)

or

|〈ψ2|A |ψ2〉 − 〈ψ1|A |ψ1〉 |≤ 8 max
j
|λaj |(1− |〈ψ2|ψ1〉 |)2 (231)

Where we have found a condition for operators and states to satisfy. On one
side, the difference between an expectation value of an operator in two different
states, compared to the projection of these two states scaled with the maximum
eigenvalue of this operator on the other side. If this inequality is broken, the
Born rule is violated. In the next section we will apply this inequality to black
holes in AdS/CFT. We will do so, by acting on the thermofield state with
ÛMP = e−iθNω .
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6 Thought Experiment

Initial Conditions.
The commencing setting is a holographic eternal AdS BTZ black hole in 2 + 1
dimensions with 2− d CFT Hilbert space H(E), where the CFT is represented
by the microcanonical ensemble peaked around energy E. As described in the
theoretical formulation of the argument of MP (section 4.2), we start of by
picking a random typical pure state |ψ〉 from the ensemble ρCFT . We assume
the state to have a non-excited horizon. In other words, we assume the vast
majority of states in the ensemble to be smooth (equilibrium states are dual to
smooth horizons). Our initial state can be resembled by the thermofield dou-
ble state |TFD〉. Even though the thermofield state is a highly a-typical state
of the ensemble, the characteristics of local operators and therefore correlation
functions are similar. This frees us from specifying a construction to obtain
smooth horizon states dual to typical CFT states, and giving us the possibility
to do explicit calculations.

6.1 A Thought Experiment

Figure 14: We will act with Û on the left wedge of the thermofield double state

The left wedge of the thermofield state is acted on with Û . As we have seen,
Û maps all equilibrium states of the ensemble to excited states, however raise
the energy of the ensemble by a finite amount δE. These two effects need to
be captured to make statements about the violations of the Born rule.
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• In order to see whether Û had the desired ’excitation’ effect on the ther-
mofield state, we will compute two point functions between the interior
and exterior region of the black hole in a typical state |ψ1〉, and in the per-
turbed state |ψ2〉 or equivalently Û |ψ〉. The change in correlator δ〈φ1φ2〉
can then be defined by the left hand side of equation (27):

δ〈φ1φ2〉 ≡ |〈ψ2|φ(t1, r1)φ(t2, r2) |ψ2〉 − 〈ψ1|φ(t1, r1)φ(t2, r2) |ψ1〉 | (232)

Figure 15: A two point function between a point inside and outside of the
horizon

The perspective of the infalling observer is caught in picking this quantity.
The infaller measures correlation functions in order to determine in what
state he’s in.



6 THOUGHT EXPERIMENT 67

• The second effect of the operation is a raise in energy of the ensemble by
δE, due to the smearing of the wavepackets. Recall, the effect is due to
[Û ,H] 6= 0. The increase in energy, increases the dimension of the Hilbert
space. Let’s examine what happens.

Figure 16: The effect of Û on H(E).

Almost all of states of the ensemble in H(E) are ”smooth”, except for
some excited non-equilibrium states. We can observing the effect of Û . Û
maps all typical ’smooth’ states of H(E) to ’excited’ states into subspace
A.
However a second effect of this operation is the expansion of the Hilbert
space into H(E+ δE). This generates a new portion of states represented
by subspace B.
Continuing: A newly perturbed state from subspace A or Û |TFD〉, call
this state to |ψ2〉, will have an excited horizon, just like all states coming
from H(E). Now the question is whether or not a typical state from the
new Hilbert space H(E+ δE) has an excited horizon. Call a typical state
from subspace A: |ψ1〉. The question to answer is the following one:

How big is subspace A, or ÛH(E), compared to the entire Hilbert
space H(E + δE)?

Answering this, we randomly pick a state vector fromH(E+δE). Call this
vector |ψ〉. This vector can be spanned up by two orthonormal vectors.
From region A, and it’s orthogonal component. As follows:

|ψ〉 = α |ψA〉+ β |ψB〉 (233)

We are interested in the quantity α. To obtain this α we need to know
how much the energy increased with the operation of U . The number
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of states in H {E + δE} we can call N . Likewise the number of states
in region A we call n. This is approximately the same as the number of
states in the original Hilbert space H {E}. This change in dimension is
related to a change in energy by the second law of thermodynamics:

dS =
dE

T
(234)

The entropy is related to the number of states in a logarithmic way.

(235)

dS = log(dim[H {E + δE}])− log(dim[H {E}])
= log(N)− log(n)

=
dE

T

We end up with:

N = ne
dE
T (236)

To relate this to α we need to know what the projection is of the entire
vector space with dimensionality N onto the subspace with dimensionality
n. ||ψA|| is given by:

||ψA||=
√
n

N
. (237)

If we look at equation (29) we can identify ||ψA|| with α. We find α in
terms of the change in energy using equation (234):

α =

√
n

N
= e−

dE
2T (238)

Next we can identify |ψA〉 with |ψ2〉, our perturbed states, and |ψ〉 with
|ψ1〉. A typical state from the new ensemble H(E + δE)

|ψ1〉 = α |ψ2〉+ β |ψB〉 (239)

The projection of the excited states onto the full Hilbert space
can be identified with the second measure derived in section
5.0.2.
This was exactly what we’ve derived for two general states. The inner-
product between |ψ1〉, a typical state from H(E + δE) and |ψ2〉, the per-
turbed state from ÛH(E), is bounded by

|〈ψ2|ψ1〉 |= 1− ε2

2
⇒ α|〈ψ2| |||ψ1〉 |= α = 1− ε2

2
(240)

α is characterized by the change in energy and the temperature. The
change in energy is our second objective. The quantity is given by:

δE = 〈ψ2|H |ψ2〉 − 〈ψ1|H |ψ1〉 (241)

where H = HL + HR. The second bound represents the right hand side
of our Born rule inequality. Together with the left hand side determined
by the computed change in correlator, we can investigate the Born rule.
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• The computed quantities will be taken together into the Born rule condi-
tion . Putting

α = 1− ε2

2

and

δ〈φ1φ2〉 = |〈ψ2|φ(t1, r1)φ(t2, r2) |ψ2〉 − 〈ψ1|φ(t1, r1)φ(t2, r2) |ψ1〉 |

into the Born rule inequality (26)

|〈ψ2|A |ψ2〉 − 〈ψ1|A |ψ1〉 |≤ max
j
|λaj |2ε (242)

we obtain:

δ〈φ1φ2〉 ≤ 2 max
j
|λφ1φ2

j |
√
δE

T
(243)

where ε =
√

2
√

1− e δE2T . We have applied the derived bounds on the Born
rule on the eternal black hole, and established a concrete way to find vi-
olations of this rule. If inequality is broken, we find a violation of
the Born rule .

On the left hand side we see the change in two-point correlation func-
tion between a point inside the horizon and outside. On the right we have
the change in energy over the temperature together with the maximum
eigenvalue of the two point correlator. This quantity is a tricky point. We
have to specify the maximum eigenvalue of the two point correlation func-
tion. Since the expansion of the field has been done in terms of scalars, this
value is not definite. The issue deserves some thought. We have decided
to approximate the maximum eigenvalue, maxj |λφ1φ2

j |, as being of order
of the original value of the unperturbed correlator. Since one would
expect the correlation between a point inside and outside the horizon to be
maximal when the horizon is smooth, this seems the right approximation.
The value of this quantity will then depend on where the two points are
situated. For every regime, we will compute the unperturbed correlator
between both points, so that we have all the ingredients to apply the Born
rule inequality above. In the following section all these quantities will be
computed, and a judgment will be given on whether it is possible to break
the Born rule for typical smooth horizon black holes.
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We compare on one hand the change on a AdS bulk two-point correlation
function, which is a way to describe the experience of the infalling observer.
And on the other hand, the effect on the ensemble in the CFT. Which gives us
a measure on how typical the new modified state is. We expect it will be very
hard to break the Born rule. The increase in dimension is large, and the time
the infaller can measure is limited. We will try by all means to break the Born
rule searching for limits where the left hand side of condition (37) is large, while
the right hand side is small.

Just as an interesting remark, one could ask if there are other operations on
the thermofield state that would generate the same entanglement mixing effect
without perturbing the state out of equilibrium. We answer this question in
Appendix A.
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7 Computations

7.1 Change in Energy

Below a calculation is shown of the effect on the expectation value of the energy
by the operator U acting on the Thermofield state. Defining U as follows similar
as in [1]:

U = eiθiNω (244)

U will rotate the phases of the creation and annihilation operators. U is a uni-
tary operator and by letting it act on one of the two sides of the thermofield
state we can modify the entanglement. This can have an effect on the smooth-
ness of the horizon for the infalling observer.

We can calculate the effect of this operator on |TFD〉 by looking at the ex-
pectation value of the energy. In this case we rotate the phases in the left
subsystem. Defining U acting on the left subsystem as UL:

〈TFD|U†LHUL |TFD〉 = 〈TFD| e−iθiNω,LHeiθiNω,L |TFD〉 (245)

Here the Hamiltonian of the entire system is given by:

H = HL +HR (246)

Because the Hamiltonian is a linear operator we can split the expectation value
in a right and left part, and we observe the following:

〈TFD| e−iθiNω,L(HL +HR)eiθiNω,L |TFD〉 = (247)

〈TFD| e−iθiNω,LHLe
iθiNω,L |TFD〉+ 〈TFD|HR |TFD〉 (248)

Since the operator only acts on the left side the effect on the right side is zero.
If we are only interested in the effect of the operator we can neglect the term
on the right side, since it will drop out if we calculate the difference in energy
caused by U in the following way:

δE = 〈TFD|U†L(HL +HR)UL |TFD〉 − 〈TFD|HL +HR |TFD〉 (249)



7 COMPUTATIONS 72

Equation 41 will be the main goal of the underlying section.

Focusing on:
〈TFD| e−iθiNω,LHLe

iθiNω,L |TFD〉 (250)

and looking at a small change of the phase we can expand the exponents in the
following way:

⇒ e−iθiNω,LHLe
iθiNω,L = [1− iθNω,L−θ2N2

ω,L]HL[1+ iθNω,L−θ2N2
ω,L] (251)

We can substitute X = θNω,L and write expression 8 out:

⇒ HL +HLiX − iXHL −
X2

2
HL −HL

X2

2
+XHLX (252)

By looking at the terms we can see that this can be simplified using commutation
relations. As in [1] we use the commutative terms and write the series up to
second order as follows:

e−iθiNω,LHLe
iθiNω,L ⇒ HL + i[HL, X]− 1

2
[[H,X], X] +O(X3) (253)

The first order term is trivial to see and the second order term can be seen show-
ing [[H,X], X] = (HX −XH)X −X(HX −XH) = HXX − 2XHX −XXH
where we see the terms in equation (9) up to a factor of 2.

We have:
X = θiNω,L =

∑
i

θib
†
i bi (254)

The sum over i will be omitted in following equations. The next thing to do
is to introduce the creation and annihilation operators as wave packets. The
wavepackets are defined in the following way:

bi =

∫
dωgi(ω)bω (255)

The factor gi is again a smooth scaling factor, which we will define later on.
Writing X:

X = θi

∫
d2ωg∗i (ω1)b†ω1

gi(ω2)bω2 (256)

.
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Substituting this back into equation (10), we can look at the first order term,
i[HL, X], first:

i[HL, X] = iθi

(
HL

∫
d2ωg∗i (ω1)b†i (ω1)gi(ω2)bi(ω2)−∫

d2ωg∗i (ω1)b†i (ω1)gi(ω2)bi(ω2)HL

) (257)

Important to note is that the only elements in the expression of X that contribute
to the commutator i[HL, X] are the creation and annihilation operators.

= iθi

∫
d2ωg∗i (ω1)gi(ω2)[H, b†i (ω2)bi(ω1)] (258)

= iθi

∫
d2ωg∗i (ω1)gi(ω2)[HL, b

†
i (ω1)]bi(ω2) + b†i (ω1)[HL, bi(ω2)] (259)

= iθi

∫
d2ω(ω1 − ω2)g∗i (ω1)gi(ω2)b†i (ω1)bi(ω2) (260)

In the last step we used the following commutation relations between the
creation/annihilation operators and the Hamiltonian.

[b†i , H] = −ω1b
†
i and [bi, H] = ω2bi (261)

Equation 17 is the first order contribution.

We continue by looking at the second order term. The second order contri-
bution is given by: [H,X], X]. We work the commutator out in the following
steps. The commutator [H,X] is derived above. This contribution is commu-
tated with another value of X.

[[H,X], X] =∑
i

θiθjg
∗
i (ω1)gi(ω2)g∗i (ω3)gi(ω4)(ω1 − ω2)[b†i (ω1)bi(ω2), b†i (ω3)bi(ω4)] (262)

The sum is written here for completeness. Again we see that the only terms that
actually are present in the commutator are the creation/annihilation operators
coming from 2 times a contribution of X. Let’s work out the commutator:

(263)

[b†i (ω1)bi(ω2), b†i (ω3)bi(ω4)] = [b†i (ω1), b†i (ω3)]bi(ω2)bi(ω4) +

b†i (ω3)[b†i (ω1), bi(ω4)]bi(ω2) +

b†i (ω1)[bi(ω2), b†i (ω3)]bi(ω4) +

b†i (ω1)b†i (ω3)[bi(ω2), bi(ω4)]
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We can now make use of the usual commutation relations between the cre-
ation and annihilation operators:[bi, bj ] = [b†i , b

†
j ] = 0 and[bi, b

†
j ] = δωω′ .

After dropping the first and the last term due to these relations we end up with:

[b†i (ω1)bi(ω2), b†i (ω3)bi(ω4)] = b†i (ω1)bi(ω4)δ23 − bi(ω2), b†i (ω3)δ14 (264)

Plugging this back into equation (19) and we put the delta functions at work
we arrive at:

[H,X], X] =
∑
i

θiθj

g∗i (ω1)gi(ω2)g∗i (ω3)gi(ω4)(ω1 − ω2)(b†i (ω1)bi(ω4)δ23 − bi(ω2), b†i (ω3)δ14)

(265)

=
∑
i

θiθj |gi(ω1)|2|gi(ω3)|2(ω1 − ω3)(b†i (ω1)bi(ω1)− b†i (ω3)bi(ω3)) (266)

7.1.1 First order contribution

The next step is now to calculate the expectation value of the several contribu-
tions to:

〈TFD| e−iθiNω,LHLe
iθiNω,L |TFD〉 (267)

In the series expansion this was given by:

(268)= 〈TFD|HL |TFD〉+ 〈TFD| i[HL, X] |TFD〉 −
〈TFD| [HL, X], X] |TFD〉

+O(X3)

The first order term
〈TFD| iθi[HL, X] |TFD〉 (269)

is done first. The first order contribution given by equation (17) is plugged into
equation (26) above:

〈TFD| iθi
∫
d2ω(ω1 − ω2)g∗i (ω1)gi(ω2)b†i (ω1)bi(ω2) |TFD〉 (270)

To compute equation (27) we need the expectation value of the number operator
in the thermofield state. This is given by equation (..)

〈TFD| b†(ω)b(ω′) |TFD〉 =
1√
Z

Tr[e−βHb†(ω)b(ω′)] =
1

eβω − 1
δωω′ (271)

Where Z = Tr[e−βH ]. Right now we can calculate equation (27) and we end up
with:

iθi

∫
d2ω(ω1 − ω2)g∗i (ω1)gi(ω2)

1

eβω − 1
δω1ω2

(272)
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By looking at the delta function we see that the only contribution that will hold
is when ω1 = ω2. This contribution however will be zero due to (ω1−ω2) term,
and we can conclude that the first order contribution vanishes.
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7.1.2 Second order contribution

Continuing to the second order term we have to calculate:

〈TFD| [[H,X], X] |TFD〉 (273)

We plug in equation (23) as end result of the second order contribution and get
the following:

〈TFD|
∑
i

θiθj

∫
dω1dω3g

∗
i (ω1)gj(ω1)g∗i (ω3)gj(ω3)(ω1 − ω3)

(b†i (ω1)bi(ω1)− b†i (ω3)bi(ω3)) |TFD〉
(274)

Making use of equation (30) we end up with:

−
∑
i

θ2
i

∫
dω1dω3|gi(ω1)|2|gi(ω3)|2(ω1 − ω3)

(
1

eβω1 − 1
− 1

eβω3 − 1

)
(275)

Where we can evaluate the dubbel sum for i = j. This makes sense since
a product of two gi(ω)′s falls off rapidly, when i 6= j. If we now calculate
equation (6) we see that equation 32 is the only standing term:

δE = 〈TFD|U†L(HL +HR)UL |TFD〉 − 〈TFD|HL +HR |TFD〉

=

δE =
∑
i

θ2
i

∫
δω

dω1dω3|gi(ω1)|2|gi(ω3)|2(ω1−ω3)

(
1

eβω1 − 1
− 1

eβω3 − 1

)
(276)
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To evaluate this we have to look at the Boltzmann factors. We can write
ω1 = ω0 + δω1 , and ω3 = ω0 + δω3.(

1

eβ(ω0+δω1) − 1
− 1

eβ(ω0+δω3) − 1

)
(277)

Since we are interested in the limit where δω ⇒ 0 we can Taylor-expand both
terms in resp: δω1 and δω3. This gives up to first order:(

1

eβ(ω0+δω1)−
1− 1

(eβω0+δω3 − 1)2

)
⇒

β
eβω0

(eβω0 − 1)2
δω3 − β

eβω0

(eβω0 − 1)2
δω1

(278)

Plugging back the relations ω1 = ω0 + δω1 ,and ω3 = ω0 + δω3 we obtain:

(ω3 − ω1)
βeβω0

(eβω0 − 1)2
(279)

This is put back into equation (36):

δE = θ2
i

∫
δω

dω1dω3
βeβω0

(eβω0 − 1)2
|gi(ω1)|2|gi(ω3)|2(ω1 − ω3)2 (280)

We have found our result for the change in energy.
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7.2 Correlation Functions

The second objective is the correlator between the exterior and interior of the
black hole. We would like to quantify the effect of the operation Û . In other
words, how much did the correlation between points across the horizon change.
This correlation is exactly observed in all n-point function between fields of
the interior and exterior, and when one wants to know exactly what happened
after an operation, one should calculate all of them. However, not all of them
are computable. The two-point function for the eternal BTZ black hole in d
= 2 + 1 is explicitly calculable. As we saw, we can solve the Klein Gordon
equation explicitly. We therefore work with a massless scalar field in three
dimensions. The derivation for massive fields of higher spin is more complicated
mathematically, but based on the same grounds.

δ〈φ1φ2〉 =

〈TFD|U†Lφ(t1, r1)φ(t2, r2)UL |TFD〉 − 〈TFD|φ(t1, r1)φ(t2, r2) |TFD〉
(281)

We substract from here the unperturbed correlator we find the difference or the
change due to the operation on the state with Û .
The points can be situated anywhere, and to see if there are violations of the
born rule one has to check all of them. We will check different regimes for this
correlator, approximating the radial wavefunctions for several limits.

1. Horizon Approximation: We will take both points on either side in the
vicinity of the horizon.

2. Boundary Approximation The first point will be close to the boundary,
while the second one inside the horizon stays in the horizon limit.

Since the point 1 is in the right wedge, we have an expansion as in equation
(70), with creation and annihilation strictly from the right wedge:

φ(t1, r1,Ω1) =

∫
dωdk

(2π)2

1√
2ω

[
bω,kfω,k(t1, r1,Ω) + b†ω,kf

∗
ω,k(t1, r1,Ω)

]
(282)

For point two we need modes from both the left and the right wedge. We
assumed angular symmetry here for both points in the field. The expansion of
the field in this region looks like this:

(283)
φ(t2, r2,Ω2) =

∫
dωdk

(2π)2

1√
2ω

[
bRg

(1)
ω,k(t2, r2,Ω2) + b†Lg

∗(2)
ω,k (t2, r2,Ω2)

+ b†Rg
∗(1)
ω,k (t2, r2,Ω2) + bLg

(2)
ω,k(t2, r2,Ω2)

]
The Hamiltonian is given by: H = H1 +H2. Therefore the first two operators
pair up with e−iωt.
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7.2.1 Two-point Function

We can start by analyzing the quantity we need. Given by equation (69). Lets

name the operators on the right wedge â and left wedge b̂ instead of aω,k,R/L
for more clarity. We also left out all the time and radial indications to keep the
bookkeeping process cleaner. The product between the two fields is given by
the following equation.

φ(t1, r1)φ(t2, r2) =

∫
dωdk

(2π)2

dω′dk′

(2π)2

1√
2ω

1√
2ω′

(â1f + â†2f
∗)[â3g

(1) + b̂†6g
∗(2) + â†4g

∗(1) + b̂5g
(2)]

(284)

From this we get 8 terms:

(285)⇒ f ∗ g(1)â1â3 + f ∗ g∗(2)â1b̂
†
6 + f ∗ g∗(1)â1â

†
4 + f ∗ g(2)â1b̂5

+ f∗ ∗ g(1)â†2â3 + f∗ ∗ g∗(2)â†2b̂
†
6 + f∗ ∗ g∗(1)â†2â

†
4 + f∗ ∗ g(2)â†2b̂5

Now we can start looking at the entire quantity of equation (69). We expand
as we did for the energy, ⇒ φ1φ2 + i[φ1φ2, X] − 1

2 [[φ1φ2, X], X] + O(X3), and
look at what is happening to first order:

iθ[φ(t1, r1)φ(t2, r2), b̂†ω7
b̂ω8 ] (286)

Each term from quantity (..) can be analyzed separately, and can be added later
on. We can see that only terms 2,4,6 and 8 will give contributions, since the
other terms commute with the number operator. From these four only terms 4
and 6 give a contribution after calculating the expectation value in the thermal
state. Before we calculate anything, we put in the spread of the frequency:

bi =

∫
dωgi(ω)bω (287)

We see that from equation (69) we have for term 4 and 6 three integrals defining
three different frequency spreads. Term 4 is done explicitly below:

Term 4⇒ iθf ∗ g(2)[âω b̂ω′ , b̂
†
ω7
b̂ω8

] (288)

Only the operators in the left wedge are treated as smeared out. We calculate
the commutator:

[âω b̂ω′ , b̂
†
ω7
b̂ω8 ] = âω b̂ω8δω′ω7 (289)

and end up with: ∫
dω7dω8|g7(ω7)||g8(ω8)|âω b̂ω8δω′ω7 (290)

We continue by calculating the expectation value:∫
dω7dω8g7(ω7)||g8(ω8)|〈TFD| âω b̂ω8 |TFD〉 δω′ω7 (291)



7 COMPUTATIONS 80

By using commutation relations and transformation rules between operators on
the left and the right we get:

⇒
∫
dω7dω8|g7(ω7)||g8(ω8)|e

−βω
2 〈TFD| b̂ω8

b̂†ω |TFD〉 δω′ω7
(292)

Now the operator b̂ω is an operator on the left wedge. Using the thermal ex-
pectation values, using the following result:

〈TFD| b̂ω8
b̂†ω7
|TFD〉 = − 1

e−βω − 1
δωω8

(293)

And we end up with for term 4:

âω b̂ω′ ⇒ −
∫
dω7dω8|g7(ω7)||g(ω8)| e−

βω
2

e−βω − 1
δωω8

δω′ω7
(294)

Likewise for term 6 we get:

â†ω b̂
†
ω′ ⇒ −

∫
dω7dω8|g7(ω7)||g8(ω8)| e

βω′
2

eβω′ − 1
δωω7

δω′ω8
(295)

We plug these two expressions back, and end up for the total change of the
correlator to first order with:

(296)

⇒
∫

dωdk

(2π)2

dω′dk′

(2π)2

1√
2ω

1√
2ω′

[
f ∗ g(2)

∫
dω7dω8|g7(ω7)||g(ω8)| e

βω
2

eβω − 1
δωω8

δω′ω7
−

f∗g∗(2)

∫
dω7dω8|g7(ω7)||g8(ω8)| e

βω′
2

eβω′ − 1
δωω7

δω′ω8

]
With the delta functions we kill the two integrals over ω7 ω8. The final expres-
sion now becomes:

δ〈φ(t1, r1)φ(t2, r2)〉 ⇒

θ

∫
dωdk

(2π)2

dω′dk′

(2π)2

1√
2ω

1√
2ω′
|g(ω)||g(ω′)|

[
fωg

(2)
ω′ e

βω
2

eβω − 1
−
f∗ωg
∗(2)
ω′ e

βω′
2

eβω′ − 1

] (297)
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7.2.2 Pulse-approximation

We are ready to observe the smearing of the operators in more detail. Since
the operators need to be spread out over a small frequency range, instead of
being treated like a delta function, a good approximation would be a Gaussian.
However mathematically this complicates the matter. As one can observe, the
integrand already contains quite a number terms depending on ω.
Secondly, we are interested in the limit where the width of the wavepacket is
small. In other words, the Gaussian would look like a Lorentzian. In this case,
a good approximation would be a block pulse. The pulse will have a constant
height, G0, for a small frequency window, δω, and will be zero everywhere else.
One can vary the width of the pulse to a desired value. The situation will look
like this: In formula form this looks like:

Figure 17: gi(ω) is given byG0 for a frequency window of δω between a minimum
frequency, ωmin and a maximum frequency, ωmax, and will be zero otherwise

gi(ω)⇒ Gi for ωmin ≤ ω ≤ ωmax. (298)

By looking at the smearing integrals over dωi, we see that these now simplify
to the following constant values only defined between ωmax and ωmin. In other
words: ∫

dωigi(ω)bωi ⇒ Gi

∫ ωmax

ωmin

dωibωi (299)

We look at equation (84) and focus on the ω integral. We change the integral
via the pulse-approximation:

δ〈φ(t1, r1)φ(t2, r2)〉 ⇒ θG2
0

∫ ωmax

ωmin

dωdω′√
2ω
√

2ω′

[
fωg

(2)
ω′ e

βω
2

eβω − 1
−
f∗ωg
∗(2)
ω′ e

βω′
2

eβω′ − 1

]
(300)

The k integral is left out, since it can be done trivially when keeping the angular
part symmetric.
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Also for the result for the change in energy equation (34) we can plug in the
pulse approximation and obtain:

δE = θ2
iG

4
0

βeβω0

(eβω0 − 1)2

∫
δω

dω1dω3(ω1 − ω3)2 (301)

We identify ω0 as ωmin, and evaluate the integrals:

δE ∼ θ2
iG

4
0

βeβωmin

(eβωmin − 1)2

∫ ωmax

ωmin

dω1dω3(ω1 − ω3)2 (302)

Performing the ω1 integral:

θ2
i

1

3
G4

0

βeβωmin

(eβωmin − 1)2

∫ ωmax

ωmin

dω3(ωmax − ω3)3 − (ωmin − ω3)3 (303)

And the ω3 integral:

θ2
i

1

12
G4

0

βeβωmin

(eβωmin − 1)2
[(ωmin − ωmax)4 + (ωmax − ωmin)4] (304)

We find

δE =
θ2
iG

4
0δω

4

12

βeβωmin

(eβωmin − 1)2
(305)

We see the following relation:

δE ∼ G4
0δω

4 (306)



7 COMPUTATIONS 83

7.3 Horizon approximation

Before we evaluate our correlation change in this first approximation we need to
specify the unperturbed correlator, which functions as the maximum eigenvalue
in the Born rule inequality.

Maximum Eigenvalue We have defined maxj |λφ1φ2

j | to be the unperturbed
correlator between both points. In the near horizon regime, this can be taken
from [34]: We have:

〈φ1φ2〉CFT ∼
1

((U1 − U2)(V1 − V2))
1
2

There is however an inconvenience with the massless scalar field in the limit.
For U1 = U2 or V1 = V2 the two-point correlator blows up [34]. The issue is
a well-known one, and is solved by considering derivatives of the field instead
of the original scalars. The original two-point function for a massless scalar is
then given by [34]:

lim
(V1−V2)→0

〈TFD| ∂U1∂U2φ1φ2 |TFD〉 =
β

4π2(U1 − U2)2
(307)

This quantity will be used in inequality (107) to test the Born rule as the
maximum eigenvalue of the correlation function between φ1&φ2.

max
j
|λφ1φ2

j |∼ β

4π2(U1 − U2)2
. (308)

With this quantity defined, we can now focus our attention on the effect of Û
on the two-point correlation function.
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The variation of the correlator depends on where the wavefunctions fω&g
(2)
ω′

are located.

δ〈φ(t1, r1)φ(t2, r2)〉 ⇒ θG2
0

∫ ωmax

ωmin

dωdω′√
2ω
√

2ω′

[
fωg

(2)
ω′ e

βω
2

eβω − 1
−
f∗ωg
∗(2)
ω′ e

βω′
2

eβω′ − 1

]
(309)

We evaluate both first in the near horizon approximation. Meaning we take
each point on both sides very close to the horizon. We are integrating over a

Figure 18: A two point function between a point inside and outside both in the
near horizon limit

window, we do not have to worry about the pole at ω = 0, however the integral
is still quite problematic, due to the number of terms. As our domain is when
δω is small, we can take out the smooth terms and evaluate them, around a
single frequency ω0.

δ〈φ1φ2〉 =
θG2

0

4π2ω0

e
βω0

2

eβω0 − 1

∫ ω0+δω

ω0

dωdω′
[
fωg

(2)
ω′ − f

∗
ωg
∗(2)
ω′

]
(310)

As we have seen (section 3.6), a spherically symmetric wave function in the near
horizon approximation outside of the horizon is given by:

fω = r
− 1

2

h (eiδω,k(−U1)iaω + e−iδω,k(V1)−iaω). (311)

now written in terms of Kruskal coordinates. Likewise we have for inside the
horizon wavefunctions g(1) and g(2) (recall equation (196). We only need g(2):

g
(2)
ω′ (t2, r2) = r

− 1
2

h e−iδ(U2)−iaω (312)

with

a =
β

2π
(313)
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Continuing to look at the product of wave functions in δ〈φ1φ2〉:[
fωg

(2)
ω′ − f

∗
ωg
∗(2)
ω′

]
=

1

rh

[
(−U1)iaω(U2)−iaω

′
+ e−2iδ(V1)−iaω(U2)−iaω

′
− h.c.

] (314)

Without any loss of generality we can look at the change in correlation between
the derivatives to U1/U2 of the fields 14

∂U1
∂U2

(δφ1φ2) (315)

Applying this to equation 8 we only are only left with the terms depending on
U1 and U2. After differentiating we obtain:

∂U1∂U2

[
fωg

(2)
ω′ − f

∗
ωg
∗(2)
ω′

]
=
β2ωω′

4π2rh
(−U1)iaω−1(U2)−iaω

′−1 − h.c. (316)

The quantity to calculate is:

∂U1
∂U2

δφ1φ2 =

ω0θG
2
0β

2

16π4rh

e
βω0

2

eβω0 − 1

∫ ω0+δω

ω0

dωdω′
[
(−U1)iaω−1(U2)−iaω

′−1 − h.c.

] (317)

The integral over ω is given by:∫ ω0+δω

ω0

dω(−U1)iaω−1 =
(−1 + (−U1)iaδω)(−U1)iaω0−1

ia log(−U1)
(318)

likewise the integral over ω′:∫ ω0+δω

ω0

dω′(U2)−iaω−1 = − (−1 + (U2)−iaδω)(U2)−iaω0−1

ia log(U2)
(319)

And the product is given by:

(320)

∫ ω0+δω

ω0

dωdω′(−U1)iaω−1(U2)−iaω
′−1

=
1

a2

(−1 + (−U1)iaδω)(−U1)iaω0−1(−1 + (U2)−iaδω)(U2)−iaω0−1

log(−U1) log(U2)

=
1

a2U1U2

(
− U1

U2

)iaω0 (−1 + (−U1)iaδω)(−1 + (U2)−iaδω)

log(−U1) log(U2)

=
1

a2U1U2

(
− U1

U2

)iaω0 (1− (−U1)iaδω − (U2)−iaδω +

(
− U1

U2

)iaδω
)

log(−U1) log(U2)

14The reason for taking the derivative is due to the well known problem with the lightlike
massless scalar field correlation function. One has 〈φ1φ2〉 ∼ 1

((U1−U2)(V1−V2))
1
2

which blows

up for U1 = U2
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Now the full quantity for the change of the correlator to first derivative in U1/U2

is given by:

∂U1
∂U2

δφ1φ2 ⇒
ω0θG

2
0

4π2rh

e
βω0

2

eβω0 − 1

1

U1U2

1

log(−U1) log(U2)[(
− U1

U2

)iaω0

(1− (−U1)iaδω − (U2)−iaδω +

(
− U1

U2

)iaδω
)− h.c.

] (321)
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7.4 Boundary approximation

The second regime for the variation of the two-point correlation function is one
point close to the boundary outside of the black hole, with the second point
inside still close to the horizon.

Figure 19: A two point function between a point in the near horizon limit and
one in at the boundary

Recall the boundary limit for the full wave function for the eternal black hole

fω,k(t, r,Ω) →
r→∞

1

Υ

1
√
rh
r−∆e−iωt+ikΩ (322)

with ∆ = 1+
√

1 +m2 = 2. From now on, we assume spherical symmetry again,
leaving out the angular dependence.

Maximum Eigenvalue For the new regime, the maximum eigenvalue maxj |λφ1φ2

j |
should be specified, before computing the new correlation change. We once more
define the new unperturbed two-point function between both points:

〈∂U1∂U2φboundary(t1r1)φhorizon(t2r2)〉 (323)

As we saw in the derivation for the change in correlation, in section 4.2, we have
a product between the creation/annihilation operators of the exterior with the
interior.

〈φ(t1r1)φ(t2r2)〉 ⇒

f ∗ g(1)âωâω′ + f ∗ g∗(2)âω b̂
†
ω′ + f ∗ g∗(1)âωâ

†
ω′ + f ∗ g(2)âω b̂ω′

+f∗ ∗ g(1)â†ωâω′ + f∗ ∗ g∗(2)â†ω b̂
†
ω′ + f∗ ∗ g∗(1)â†ωâ

†
ω′ + f∗ ∗ g(2)â†ω b̂ω′

(324)

From the thermal expectation values, we know only terms 3, 4, 5 and6 to give a
non-trivial value. From equation (..) and (..) we can write down
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•
âωâ

†
ω′ →

eβω

eβω − 1
δωω′ (325)

•

âω b̂ω′ →
e
βω
2

eβω − 1
δωω′ (326)

•
â†ω′ âω →

1

eβω − 1
δωω′ (327)

•

âω b̂
†
ω′ →

e
βω
2

eβω − 1
δωω′ (328)

If we then pair up these terms with their corresponding wave functions, we end
up with four terms:

〈φboundary(t1r1)φhorizon(t2r2)〉 ∼ 1

Υ

1

rh
r−2
1

∫ ∞
0

dω

ω
∗[

e−iδω

eβω − 1

(
e
βω
2 e−iωt1U−iaω2 + eiωt1V −iaω2

)
+

eiδω

eβω − 1

(
e
βω
2 eiωt1U iaω2 +e−iωt1V iaω2

)] (329)

Before continuing with this integral, we drop the term before the integral. The
constants Υ, rh and the radial component at the boundary r1 will drop out of
the Born rule inequality, when we divide by the change in correlator δ〈φ1φ2〉.

δ〈φ1φ2〉 ≤ 2 max
j
|λφ1φ2

j |
√
δE

T
⇒ δ〈φ1φ2〉

maxj |λφ1φ2

j |

⇒ δ〈φ1φ2〉
〈φboundary(t1r1)φhorizon(t2r2)〉

=

√
δE

T

Continuing by writing everything in Kruskal coordinates and taking derivatives
to U1 and U2, both V2 terms drop, and we are left with two terms. The quantity
to compute is I:

I ∼ a2

2U1U2

∫ ∞
0

dωω∗

e
βω
2

eβω − 1

[
e−iδωU−iaω2

(
− U1

V1

) iaω
2

+ eiδωU iaω2

(
− U1

V1

)−iaω
2
] (330)

These terms can be taken together as:∫ ∞
−∞

dωω
e
βω
2

eβω − 1

(
1

U2

√
−U1

V1

)iaω
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The integral has n poles at ω = 2πi
β n, and is evaluated in the upper half plane

when
∣∣∣ 1
U2

√
−U1

V1

∣∣∣ < 1. The large semi-circle at R→∞ goes to zero by Jordan’s

Lemma. We find:

∫ ∞
−∞

dωω
e
βω
2

eβω − 1

(
1

U2

√
−U1

V1

)iaω
= 2πi

∑
Res(f(ω), ω0)

= lim
ω→ω0

(ω − ω0)
ωe

βω
2

eβω − 1

(
1

U2

√
−U1

V1

)iaω
With L’Hoptital’s rule we find

lim
ω→ω0

(ω − ω0)
ωe

βω
2

eβω − 1

(
1

U2

√
−U1

V1

)iaω
= −4π2

β2

∞∑
0

n

(
U2

√
−V1

U1

)n
(331)

The infinite sum has a limit for
∣∣∣U2

√
− V1

U1

∣∣∣ < 1, since it is exactly of the form:∑
nxn = x

x2−1 . With some algebra we write

−4π2

β2

∞∑
0

n

(
U2

√
−V1

U1

)n
= −4π2

β2

U2

√
− V1

U1

(U2

√
V1 −

√
U1)2

(332)

We conclude for quantity I :

I ∼
√
V1

U1

√
−U1(U2

√
V1 −

√
−U1)2

. (333)

Remember this is not the full correlation function between a point at the horizon
and the boundary. We have divided out the radial part r∆

1 of φ1, since this will
be divided out when evaluating the Born rule. This is the quantity we need in
our Born rule inequality to scale the change in correlation.
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7.4.1 Change in Correlation

The change of the two-point horizon-boundary correlator is given by:

〈δφbound(t1r1)φhor(t2r2)〉 ∼ ω0a
2θG2

0

4π2U1U2

e
βω0

2

eβω0 − 1

∫ ω0+δω

ω0

dωdω′∗[
e−iδωU−iaω2

(
− U1

V1

) iaω
2

−eiδωU iaω2

(
− U1

V1

)−iaω
2
] (334)

We could use the derivatives of the wavefunctions to U1, U2 from the original
correlator above. The function between square brackets consists of one term
and it’s hermitian conjugate.
As for the horizon approximation, we take out the smooth parts of the function
and evaluate the the effect of Û on the wavefunctions over a small window. Next
up, the integral over ω and ω′. They are straightforward and the answer can be
given immediately.∫ ω0+δω

ω0

dωdω′U−iaω
′

2

(
− U1

V1

) iaω
2

⇒
2

(
U
−ia(ω0+δω)
2 − U iaω0

2

)[(
− U1

V1

) iaω0+δω
2

−
(
− U1

V1

) iaω0
2
]

a2U1U2 logU2 log−U1

V1
)

(335)

The total change in correlator is then given by:

〈δφbound(t1r1)φhor(t2r2)〉 ∼ ω0θG
2
0

4π2U1U2 logU2 log
(
−U1

V1

) e
βω0

2

eβω0 − 1
∗

[
2

(
U
−κ+

2 − Uκ0
2

)[(
− U1

V1

)κ+
2

−
(
− U1

V1

)κ0
2
]
−H.C.

] (336)

Where κ+ = iaω0 + δω and κ0 = iaω0.
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8 Analysis

Our final result for the Born Rule inequality is given by:

δ〈φ1φ2〉 ≤ 2 max
j
|λφ1φ2

j |
√
δE

T
(337)

where the change in energy was given by:

δE =
θ2
iG

4
0δω

4

12

βeβω0

(eβω0 − 1)2
(338)

We have calculated two different regimes for the correlation function φ1φ2. All
the ingredients are on the table to test the Born rule.

8.1 Horizon Approximation

To test the Born rule, we substitute all necessary quantities into inequality
(135). Recall our result for the change in correlation function in the near horizon
approximation:

∂U1∂U2δφ1φ2 ⇒
ω0θG

2
0

4π2rh

e
βω0

2

eβω0 − 1

1

U1U2

1

log(−U1) log(U2)[(
− U1

U2

)iaω0

(1− (−U1)iaδω − (U2)−iaδω +

(
− U1

U2

)iaδω
)− h.c.

] (339)

For this regime we have set the maximum eigenvalue maxj |λφ1φ2

j | equal to

max
j
|λφ1φ2

j |∼ 〈TFD| ∂U1
∂U2

φ1φ2 |TFD〉 ∼
β

4π2(U1 − U2)2
(340)

We put them all in (135) and obtain:

ω0(U1 − U2)2

U1U2

1

log(−U1) log(U2)

[(
− U1

U2

)iaω0

∗(
1− (−U1)iaδω − (U2)−iaδω +

(
− U1

U2

)iaδω)
− h.c.

]
≤ 4πβ√

3
δω2

(341)
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Analysis

When trying to violate the Born rule, one wants to let the left hand side become
large, while the right should go to zero. One can immediately observe to take
ω0 to be large, causing the left side to substantial. Next, there are several
cases that need to be checked:

1. δω → 0, β → 0. For δω = 0, or β = 0, the left hand side and the right
hand side are both zero. Recall a = β/2π. One needs to take δω to be small
but non-zero.

2. δω, β small. In this case we can expand the left hand side. The case
for β is similar to the one of δω. The only terms consisting of δω or β are
between the big square brackets. We expand the terms:

→
[
1− 1− log

(
− 1

U1

)
iaδω−

1 + log(U2)iaδω + 1 + log

(
−U1

U2

)
iaδω − h.c.

]
= log

(
−U2

U1

)
iaδω − log

(
−U2

U1

)
iaδω = 0

(342)

This tells us δω has to be sufficient, for the left hand side to be finite. Likewise
for β

3. δω, β finite. Continuing holding δω, β finite, we vary the spacetime coor-
dinates to several limits.
The case for U1 = −U2 gives a zero left hand side. One can relate both coordi-
nates by taking U2 = −mU1. Where m is a number. In this case the inequality
becomes:

(343)

ω0(1 +m)2

ω0m

1

log(−U1) log(−mU1)[(
1

m

)ia(
1− (−U1)iaδω − (−mU1)−iaδω

+

(
1

m

)iaδω)
−
(

1

m

)−iaω0
(

1− (−U1)−iaδω

− (−mU1)iaδω+

(
1

m

)−iaδω)]
≤ 4πβ√

3
δω2

Right now it is dubious when we look at the m→ 0 limit. What we observe
is, the left hand side consisting of a first term blowing up, the second, logarithmic
term going to zero logarithmically, and several rapidly oscillating terms. In this
limit the left hand side behaves divergent.

lim
m→0

ω0

m
[

(
1

m

)iaω0

−
(

1

m

)−iaω0

]→∞ (344)
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However the infalling observer measures for a finite spread in spacetime. In
other words, it takes some time to measure something. In this sense one should
integrate on a very small region over m, say ε.

ω0

∫
ε

dmm−iaω0−1 ∼ m−iaω0

∣∣∣∣ε/2
−ε/2

(345)

The same for the Hermitian conjugate term. What we observe for both terms
is for ε being small but finite, the result behaves regular. Oscillating and be-
ing finite. Put differently, looking at the inequality for the limit m → 0. One
can explain the regular result by recognizing the applicability of the Riemann-
Lebesgue lemma 15. With ω0 large rapidly oscillating terms on the left hand
side like m−iaω0 , the lemma tells us that these terms are suppressed in O( 1

ω0
)

The left hand side will be of order 1 for a very specific choice of m and U1.
One does not know if this choice is physically possible, however one does know
that for the arbitrary m and U1 this possibility is extremely small, if not going
to zero.

15The Riemann-Lebesgue lemma is a very important theorem from Fourier analysis. It
states that for a continuous function f(x), the fourier integral between a and b for k → ∞
goes to zero when k →∞: lim

k→∞

∫ b
a dxe

ikxf(x)→ O( 1
k

)→ 0.[45]
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8.2 Boundary Approximation

For clarity we once more state the Born rule inequality

δ〈φ1φ2〉 ≤ 2 max
j
|λφ1φ2

j |
√
δE

T
(346)

The effect on the correlation for the horizon-boundary correlator is given by:

〈δφbound(t1r1)φhor(t2r2)〉 ∼ ω0θG
2
0

2π2U1U2 logU2 log
(
−U1

V1

) e
βω0

2

eβω0 − 1
∗

[(
U
−κ+

2 − Uκ0
2

)[(
− U1

V1

)κ+
2

−
(
− U1

V1

)κ0
2
]
−H.C.

] (347)

We found the maximum eigenvalue of the two-point horizon-boundary correlator
to scale with:

max
j
|λφ1φ2

j |∼
√
V1

U1

√
−U1(U2

√
V1 −

√
−U1)2

(348)

Since the right hand side, the change in energy, is similar to the horizon approxi-
mation one should focus on the left hand side. One can immediately identify the
similarities for δω, β → 0 with the horizon approximation. For the continuing
analysis, we take δω, β small.
For the analysis of different values for U/V , one puts together δ〈|φ1φ2〉 and

maxj |λφ1φ2

j |.

〈δφbound(t1r1)φhor(t2r2)〉
maxj |λφ1φ2

j |
⇒
√
−U1(U2

√
V1 −

√
−U1)2

U2

√
V1 logU2 log

(
−U1

V1

) ∗
[(
U
−κ+

2 − Uκ0
2

)[(
− U1

V1

)κ+
2

−
(
− U1

V1

)κ0
2
]
−H.C.

] (349)

The fraction in front of the big square brackets is the one of interest. The term
between square brackets consists of oscillating terms of order one. Observing
the fraction in front: √

−U1(U2

√
V1 −

√
−U1)2

U2

√
V1 logU2 log

(
−U1

V1

)
For this term to blow up, there are two different cases.
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1. U2 → 0. The second point is located nearly on the horizon. This is very
plausible. In this limit, taking U1/V1 constant C and ω0 large again, one
observes the fraction to behave in the following way:

lim
U2→0

ω0C

U2 log(U2)
= lim
U2→0

ω0

U2
(350)

The term is, as before, regularized by integrating U2 over a measuring
distance ε and applying the Riemann Lebesgue lemma. The fraction is
multiplied with the rapidly oscillating part between square brackets. All
terms will behave like:

lim
U2→0

ω0

U2
∗ Uκ0

2 → lim
U2→0

ω0U
κ−1
2 ⇒ ω0

∫
ε

Uκ0−1
2 ∼ Uκ0

2

∣∣∣∣ε (351)

2. V1 → 0 In addition to the above, one can take V1 → 0. Again the limit is
diverging, but can be normalized in the same way. Taking the other terms
constant in the form of P :

lim
V1→0

ω0P
√
V1 log

(
P
V1

) → lim
V1→0

ω0√
V1

⇒ ω0

∫
ε

1√
V1

∼
√
V1

∣∣∣∣ε (352)

Both limits together in this sense give a finite result for the left hand side, and
do not break the Born rule.
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9 Discussion

As the result of this thesis contradicts the predictions made by [15], we shed some
light on why this is the case. The authors in [15] discuss that there is an inter-
play between the increase in energy caused by the smearing of the wavepackets,
and the observation of Born rule violations. A comparison between our result
for the change in energy with the result of Marolf and Polchinski shows a similar

result, when we take e
βω
2

eβω−1
∼ 1, or β ∼ 1/ω. However, by computing correlators

between the inside and outside the horizon, we have tried to explicitly display
the experience of the infalling observer. This results into a different conclusion
outcome. Our observation shows Born rule violations to be very hard to detect
if not immeasurable by the infaller.

Although two-point functions give a good indication whether or not the horizon
consists of an excited nature, one should check all n-point correlators to gain full
clarity on the matter. Not only in two dimensions, but for higher dimensions as
well. The construction of these quantities does however consist of some mathe-
matical difficulties. Higher point functions become very complicated. Likewise
computing two-point functions for scalar fields in higher dimensions, one runs
into difficulties finding explicit solutions for the Klein-Gordon equation.

An improvement on the construction in this thesis might be approximating
the wave packets by a Gaussian instead of a pulse. This seems a more natu-
ral representation of a wave-packet. In this case, the difference with the pulse
approximation is most visible at the tails of the Gaussian. However, one is
interested in the limit where the width of the Gaussian is small. In this limit
the surface area of the tails is minimal, therefore the pulse approximation works
quite well.

A second point of interest might be the approximation of the maximum eigen-
value of the two-point correlator. For bosons this quantity is not well defined.
An interesting analysis would be to check the case for fermionic fields. In this
way the correlator has a definite maximum eigenvalue, and results are more
exact.

For a more complete view it is good to raise the question what would be the con-
sequence of Born rule violations if they would turn out to occur. Even though
violations of this kind have never been observed before, this does not necessarily
imply a disastrous repercussion. As finding the right construction for the inte-
rior of the black hole consistent with quantum mechanics and general relativity
is part of the quest for finding a UV-complete theory of quantum gravity, it
could very well be an ingredient of this yet to be developed theory. Of course
speculations of this kind are precarious, however it is clarifying to have a full
overview of potential scenarios with corresponding features.
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With the result of this thesis the endeavor remains to find a complete con-
struction for the interior of a black hole consistent with quantum mechanics.
As proposals like [13] show promising results, the hope is there so that maybe
one day we all could live in a world where we are able to dual typical CFT
microstates to non excited AdS black holes.



10 CONCLUSION 98

10 Conclusion

In this master thesis we have researched the question whether or not typical
black hole micro states with non-excited dual horizons could exist without vi-
olating the Born rule. The matter is investigated by the construction of a
quantitative representation of the Born identity in the form of a condition. The
condition derived in in this thesis relates the expectation value of a certain Her-
mitian operator Â in two different quantum states, to the overlap between these
states. As the overlap between the eigenvectors of Â and the quantum state in
question, is related by the Born rule to the expected probability of collapse into
that eigenstate, one expects parallel quantum states to yield similar expectation
values for a certain operator. Therefore, by applying this derived Born rule con-
dition to black holes within the context of holographic duality AdS/CFT, one
can analyze if both sides produce similar physical interpretations when typical
CFT micro-states are taken dual to smooth horizon AdS black hole states.
We have constructed a thought experiment, where a smooth horizon black hole
state dual to a typical CFT state is perturbed by a unitary operator Û . By
monitoring the perturbation on such a state, one is able to analyze the hypoth-
esis. We have related the effect of the pertubation on the energy of the state, to
the effect on two-point correlators between the inside and outside region of the
black hole. These quantities have been put into our derived Born rule condition.
We found the modification of these quantities to lie within the bounds of the
Born rule for several regimes of the two-point correlation functions. We can
therefore conclude that violations of the Born rule do not explicitly occur for
typical black hole states.
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12 Appendix A

12.1 Other operations?

As we have seen above, the wave-packet construction causes the situation to be
delicate. The increase in energy brings several issues along with it. It would be
highly convenient if we could in some other way change the entanglement of the
state, without changing the energy of the state. The relevant question is, if there
are operations on the thermofield state |TFD〉, that leave both partial density
ρL, ρR unperturbed, however modify the entanglement of the entire state.

Phase. One can add a phase-shift to one wedge. This is done by [40], by
applying time-evolution to one side of the |TFD〉. The authors actually find
a very interesting result. Since they produce a whole new set of new ”phase-
shifted” states, the question arises whether or not these states are too connected
via a wormhole as the thermofield state is. They find this only to be possible
if the interior is build up from so called state dependent operators [13]. State
dependency is actually one solution for finding a smooth interior dual to typical
states in the CFT. As the contents of this thesis is broader applicable, then
only state dependency we did not review it here. The reader interested in this
proposal can look at [13,34,49].

12.2 Schmidt Decomposition

So we are looking for an operation with the following properties:

Â |TFD〉 = |TFD〉′ (353)

However we need
ρL/R = ρ

′

L/R (354)

It turns out there are no other operations then a phase which have the desired
effect. To show this we make use of the Schmidt decomposition. The Schmidt
decomposition states the following:

Theorem 1.1: For every pure state |ψ〉 of composite system AB there exists
a basis of orthonormal states |iA〉 and |iB〉 such that,

|ψ〉 =
∑
i

λi |iA〉 |iB〉 (355)

The λi are called the Schmidt coefficients. They are non-negative eigenvalues
satisfying

∑
i λ

2 = 1. An important feauture from the Schmidt Decomposition
is for instance that the eigenvalues of ρA and ρB are the same since they are
both given by resp: ρA =

∑
i λ

2
i |iA〉 〈iA| and ρB =

∑
i λ

2
i |iB〉 〈iB |. One can see

that both the eigenvalues are given by: λ2
i .
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Now the fact is that we can both express ρL and ρ
′

L in the Schmidt-basis giving:

ρL =
∑
i

λ2
i |iA〉 〈iA| (356)

and,

ρ
′

L =
∑
i

λ
′2

i |i′A〉 〈i′A| (357)

The fact is that if we demand
ρL = ρ

′

L, (358)

one can state that the eigenfunctions and eigenvalues of ρ1 can only differ from
the eigenfunctions/values of ρ

′

1 with a phase.
This case is a classic one and can be shown by looking at 2 spin 1

2 particles. The
density matrix of 2-spin particles in the following state in the regular z-basis is
given by:

|ψ〉 =
1

2
(|↑z〉 〈↑z|+ |↓z〉 〈↓z|)→ ρz =

(
1
2 0

0 1
2

)
(359)

If we now write this state in terms of the x-basis and compute the density matrix
again we end up with the following:

(360)

|ψ〉 =
1

2
(|↑x〉 〈↑x|+ |↓x〉 〈↓x|

=
1

2
(

1√
2
|↑z + ↓z〉 〈↑z + ↓z|+

1√
2
|↑z − ↓z〉 〈↑z − ↓z|)

=
1

4
(|↑z〉 〈↑z|+ |↑z〉 〈↓z|+ |↓z〉 〈↑z|+ |↓z〉 〈↓z|+ |↑z〉 〈↑z| − |↑z〉 〈↓z|

− |↓z〉 〈↑z|+ |↓z〉 〈↓z|)

=
1

2
(|↑z〉 〈↑z|+ |↓z〉 〈↓z|)

Which gives the exact same density matrix as found in the z-basis. The result
therefore tells us that operator A can only be a phase. In this case again the
powerful properties of the Schimdt Decomposition are shown.
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