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Abstract

Individuals with depression are prone to engage in rumination, a
process in which attention turns inwards to narrowly-focused, nega-
tive patterns of thought, at the cost of attending to a task. Depres-
sion is furthermore associated with certain cognitive deficits, such
as increased difficulty inhibiting information that is no longer relev-
ant and increased difficulty switching between task goals. Previous
studies have investigated how these factors affect task performance,
but their observations have generally only been supported by verbal
theories. Here, we present a computational cognitive model of per-
formance on one such task, an n-back task in which the stimuli are
faces with different emotional expressions. Depressed participants
were previously found to have a stronger attachment to sad faces
than to neutral or happy faces. Compared to faces with other expres-
sions, they integrated sad faces into working memory more quickly,
while they spent more time disengaging from sad faces that were
no longer relevant. By having a perceptual bias towards sad stim-
uli, and selectively elaborating on sad items as they are removed
from working memory, our model is able to reproduce the reaction
time effects observed in the original data, as well as accuracy and re-
sponse rate metrics. This study demonstrates how a cognitive model
can serve as an explicit, testable implementation of a verbal theory,
providing a deeper understanding of the cognitive processes under-
lying behaviour.

Keywords: depression; rumination; mind-wandering; working memory;
computational cognitive modelling.
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Chapter 1

Introduction

Cognitive effects of depression

A depressed mind is characterised not only by its emotional state, but equally
by its cognitive processes. Depression has been associated with a number of
cognitive effects, ranging from deficits in inhibition and goal switching to per-
ceptual and attentional biases. Many of these are tied to the occurrence of
depressive rumination, a narrowly-focused form of mind-wandering that is a
strong indicator for depression (Marchetti, Koster, Klinger & Alloy, 2016).

Smallwood and Schooler (2006) described mind-wandering as a “shift of at-
tention away from a primary task toward internal information, such as memor-
ies.” (p. 946). In the case of rumination, this internal information is decidedly
negative and focuses largely on the self, e.g. on conversations or arguments
that have occurred in the past, or on one’s current dysphoric state (Marchetti
et al., 2016). The difference between depressive rumination, which can be
quite harmful, and more benign mind-wandering may lie in how thoughts are
constrained in these states. Unlike normal mind-wandering, which is relatively
unconstrained, rumination is subject to strong automatic constraints, making it
more likely that ruminators perseverate in certain narrow tracks of thought from
which it is difficult to escape (Christoff, Irving, Fox, Spreng & Andrews-Hanna,
2016; Harel, Tennyson, Fava & Bar, 2016).

The thought patterns that characterise rumination can be found both at short
time scales and over longer stretches of time. For example, they are observed
in the brief moments of spontaneous thought that occur during lapses in atten-
tion to an experimental task. By periodically probing participants’ thoughts as
they performed a choice reaction time task, Hoffmann, Banzhaf, Kanske, Ber-
mpohl and Singer (2016) found that participants with depression experienced
off-task thoughts more frequently than healthy controls, and that these thoughts
were more negative, past-oriented, and focused on the self. In a set of experi-
ence sampling studies, which asked participants to complete a small self-report
questionnaire 10 times a day over a period of five to six days, depressed par-
ticipants exhibited a similar pattern: they had a much stronger inclination to-
wards reporting negative thoughts and feelings than their non-depressed coun-
terparts (Wigman et al., 2015).

Those who engage in depressive rumination tend to have more difficulty
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inhibiting information that is no longer relevant to their current task goal,
compared to non-ruminators. This is most plainly visible in a task-switching
paradigm: when the task set switches continuously, depressive rumination leads
to weaker inhibition of previous task sets—something which can be beneficial
when tasks are cycled, since switching costs will be lower (Whitmer & Banich,
2007). A comparable inhibitory deficit is found in long-term memory: by hav-
ing participants memorise a list of learning items of which only a subset is
subsequently rehearsed, Whitmer and Banich (2010) found that depressive ru-
minators inhibited unrehearsed items from the original list less strongly than
non-ruminators.

Altamirano, Miyake and Whitmer (2010) put forward the trait-inflexibility
view, saying that people who are prone to ruminate are characterised by a
certain ‘mental inflexibility’, meaning that they emphasise goal maintenance
over the ability to shift between goals. They found that, compared to non-
ruminators, depressive ruminators were worse at shifting goals in a letter-naming
task in which they had to switch between reading letters appearing in one loca-
tion to reading letters in another location. At the same time, depressive rumin-
ators were better at maintaining their goal in a modified Stroop task that—since
it consisted largely of congruent trials—encouraged goal neglect.

Interestingly, some evidence suggests that this mental inflexibility that is as-
sociated with depression can largely disappear when a person is not actively en-
gaged in rumination: preventing depressed individuals from ruminating by dis-
tracting them reduced their switching costs in a task-switching paradigm (Whitmer
& Gotlib, 2012). Inducing rumination in non-depressed controls had no effect
on switching cost, however, which implies that it is the combination of rumina-
tion and other cognitive factors that changes behaviour in depressed individu-
als.

The cognitive effects of depression also extend to the domain of perception
and attention, where evidence suggests a negativity bias, mirroring the posit-
ivity bias that is often found in healthy humans. For example, Gollan, Pane,
McCloskey and Coccaro (2008) report that, when depressed participants were
asked to judge the emotion of a neutral face in a forced-choice task, they saw its
emotion as sad more often than happy, while non-depressed participants leaned
towards judging the face as happy. This corresponds well with the finding by
Surguladze et al. (2004) that depressed individuals exhibit a bias towards clas-
sifying faces of varying expressions as more negative than they are. In a review
of the literature, Bourke, Douglas and Porter (2010) discuss several studies in
which depressed individuals demonstrate selective attention towards sad faces
and/or away from happy faces, although they note that the effect has not been
widely replicated. When Suslow, Junghanns and Arolt (2001) asked depressed
participants to detect deviant facial expressions in a grid of neutral faces, they
responded more slowly than non-depressed controls when the deviant face was
happy, but not when it was sad, suggesting that their attention to positive stim-
uli was relatively weak.

Modelling depression and rumination

Gaining a better understanding of how depression influences and interacts with
cognition is likely to aid in the development of better diagnostic tools and ef-
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fective treatments. Current schemes used to diagnose psychiatric disorders can
be overly simplistic in their categorisation, and do not translate well to the
clinical level (van Os et al., 1999). Theories of depression tend to be verbal,
inferred from empirical observations. This can make them difficult to gener-
alise or integrate with other theories. In addition, strictly verbal theories can
afford themselves a degree of flexibility, which, while perhaps making it easier
to accommodate new observations, makes these theories harder to falsify.

Taking a mechanistic approach that integrates the ‘what’ with the ‘how’ (i.e.,
Marr’s computational and algorithmic levels of analysis (Marr, 1982)) helps us
create a more precise description of cognition in the depressed mind. As Ashby
and Helie (2011) put it, “connections between brain regions do not change from
task to task” (p. 276). Theories should therefore be no more flexible than ne-
cessary. In recent years, the field of computational psychiatry has demonstrated
the benefits of striving towards more rigorous accounts of the role of cognition
in mental illness. By implementing a theory in a computational model, we can
generate testable predictions on the basis of well-defined computational pro-
cesses that we suspect may underpin a certain behaviour, thereby improving
our understanding of it. This brings with it obvious benefits for the successful
diagnosis and treatment of not only depression, but also schizophrenia, anxiety,
ADHD, and others (Adams, Huys & Roiser, 2016).

While some computational models focus only on a particular aspect of a
task (e.g. perception), cognitive models specified within a cognitive architec-
ture such as ACT-R (Anderson, 2007) or PRIMs (Taatgen, 2013) encompass the
entire cognitive process, from an initial task goal to its completion. This makes
them well-suited for investigating how changes to each part of a task contribute
to changes in performance. In addition, mechanisms that explain differences in
behaviour on one task can easily be transferred to a different task.

In a previous computational cognitive model of rumination, van Vugt, van
der Velde and ESM-MERGE Investigators (2017) showed how increasing the
prominence of negative items in the model’s memory could transform its be-
haviour from healthy mind-wandering into negatively-focused depressive rumi-
nation. When applied to a sustained attention task, the model predicted lower
accuracy as a result of the changed quality of its off-task thinking. Following up
on earlier models, this model by van Vugt et al. implemented mind-wandering
as a process of continuous memory retrievals, competing for resources with the
main task process (van Vugt, Taatgen, Sackur & Bastian, 2015; Taatgen, Katidi-
oti, Borst & van Vugt, 2015).

Problem statement and thesis overview

The aim of this thesis is to identify which cognitive processes can account for the
behavioural differences that are observed in depression, and to specify how they
may do so. To this end, I present a computational cognitive model of perfor-
mance on a working memory task, that was developed on the basis of existing
theories described in this chapter. This model is evaluated against empirical
observations of depressed and non-depressed participants.

Chapter 2 introduces the task that will be modelled: the emotional n-back
task. Chapter 3 discusses the model. It explains how the task is modelled, and
how a depressed version of the model differs from a non-depressed version. In
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Chapter 4, the model’s performance is compared to empirical data from Levens
and Gotlib (2010). These results and their implications are discussed in Chapter
5.
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Chapter 2

Emotional n-back

A task was selected that incorporates multiple aspects of cognition that are af-
fected by depression. The emotional n-back task (Levens & Gotlib, 2010, 2015)
involves perception and classification of emotional faces, requires continuous
updating of task information in working memory, including the forgetting of
information that is no longer relevant, and offers opportunity for rumination to
occur. Levens and Gotlib (2010) had depressed and non-depressed participants
perform this task. Importantly, they found that depression impaired perfor-
mance in some, but not all conditions. Both groups were capable of doing the
task to a high standard, which means that the differences that were observed
between groups did not originate from a general passivity or lack of motivation
in the depressed group (Scheurich et al., 2008).

The current chapter describes the emotional n-back task, and covers the
most important findings of Levens and Gotlib (2010). The following chapter
presents a cognitive model of the same task.

A working memory task with emotional stimuli

The emotional n-back is a variation on the regular n-back paradigm, which is a
common method for assessing working memory performance (Owen, McMillan,
Laird & Bullmore, 2005). The basic premise of an n-back task is that the parti-
cipant perceives a series of stimuli (visual or auditory), and has to indicate for
each stimulus whether it matches a stimulus shown n trials earlier. Normally,
the stimuli are neutral; they can be letters, numbers, or other symbols that do
not carry an emotional meaning.

In an emotional n-back task, however, the stimuli are designed to elicit an
emotional response in the participant, with the aim of affecting their work-
ing memory performance. For example, stimuli can be emotionally charged
words (Kopf, Dresler, Reicherts, Herrmann & Reif, 2013) or images of emotional
scenes (Marx et al., 2011).

The version of the emotional n-back task that is the focus of this thesis uses
photographs of faces displaying one of three facial expressions—happy, neutral,
or sad—as stimuli (see Figure 2.1). In each trial a face is shown, upon which
participants indicate whether its expression matches the expression of the face
that was presented n trials ago.
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Figure 2.1: Examples of the stimuli used by Levens and Gotlib (2010). All im-
ages are from the NimStim Face Set (Tottenham et al., 2009) and were presen-
ted in greyscale.

n-back strategies

A difficulty of interpreting performance on the n-back task is that it is not neces-
sarily clear how participants approach the task. In some cases, the strategy that
participants use can be inferred from their behavioural results (Juvina & Taat-
gen, 2007), but a more common solution is to simply ask participants what their
approach to the task is. Previous research has identified at least two common
strategies that people use.

The first, labelled the activation strategy (Lovett, Daily & Reder, 2000) or
the low-control strategy (Juvina & Taatgen, 2007), is best described as a ‘lazy’
approach to the task, since it does not involve any form of rehearsal of recently
encountered items. Participants rely on a judgement of familiarity (“Does this
item seem familiar?”) to decide whether an item matches the one shown n
trials earlier. Juvina and Taatgen (2007) suggest that some basic estimation of
recency (e.g. using ‘time tags’) may also contribute to this decision.

The second n-back strategy requires more conscious effort. Known as the
update strategy (Lovett et al., 2000) or the high-control strategy (Juvina & Taat-
gen, 2007), this method involves actively maintaining a list of the n most re-
cently experienced items in working memory. Participants using this strategy
update their mental list every time a new stimulus appears: the new stimulus
is added to the front of the list, while the oldest item is discarded, and every
other item shifts back one place. Comparing the newest item and the oldest one
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then yields the correct response. If time permits, the items in the list may be
rehearsed through subvocalisation to keep them accessible.

Because the use of different strategies can be a confounding factor, Levens
and Gotlib (2010) specifically instructed participants to only use the second,
high-effort strategy.

Separating perceptual bias from WM differences

Assuming the use of a high-control strategy, the process of doing the n-back task
can be divided in three distinct components. First, a stimulus that appears on
screen has to be perceived and categorised. Here, this means that the parti-
cipant sees a new face and recognises its expression. Then, the contents of the
list in working memory are updated: a representation of the new face and its
expression enters the list, while the oldest element is discarded. The item that
was previously in the 1-back position now moves to the 2-back position. Fol-
lowing this, the new stimulus can be compared to the stimulus that was shown
two trials ago, and a response is initiated.

There are two points where valence-specific biases can emerge: the initial
perception and classification of a stimulus, and the subsequent working memory
operations involved in processing the stimulus and the ones before it in the re-
hearsal list. One question that Levens and Gotlib (2010) set out to answer
is, if depressed participants do indeed perform differently than healthy con-
trols, should these differences be attributed to a perceptual and/or attentional
bias, or to differences in working memory performance (or perhaps both)?
As Chapter 1 discussed, previous studies have implicated both perception and
working memory in the behavioural differences that emerge from depression.

To separate perception from working memory, Levens and Gotlib (2010) had
subjects perform two versions of the task: a 0-back and a 2-back. This 0-back
is largely identical to the 2-back, with the difference that participants compare
the current stimulus to a target expression, specified at the start of a block,
rather than to a previous stimulus. Since the 0-back task requires the same per-
ceptual processes as the 2-back, but does not require participants to maintain
a list of stimuli in working memory, it should isolate any bias in attending to
and categorising the stimuli from differences in working memory processing. In
other words, a difference in performance between depressed and non-depressed
participants on the 0-back task would indicate an effect of perception on perfor-
mance, whereas equal 0-back performance would suggest that any differences
that emerge in the 2-back task are attributable to working memory biases.

Procedure

The 0-back task consisted of three blocks, each containing 43 trials. At the
start of each block, the target expression for that block was shown. Figure 2.2
shows how trials were structured: a face stimulus appeared on screen for 2
seconds, during which participants could respond by pressing a key labelled
“same” (if the face’s expression matched the target) or “diff” (if the face had
a different expression than the target). There was a 0.5 s interval between
stimulus presentations.
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The 2-back task consisted of six blocks, each with 55 trials. Trials in this
version of the task were identical to those in the 0-back (see Figure 2.2), except
that participants had to compare a face’s expression to that of a face shown two
trials earlier rather than to a target expression.

Figure 2.2: Timeline showing two trials in the n-back task. Each face stimulus
appeared for 2 seconds, during which participants could respond with a button
press. The interstimulus interval was 0.5 seconds. In the 0-back condition,
participants compared the face to a target expression given at the start of the
block. In the 2-back condition, participants compared the face to the face shown
two trials ago.

Conditions

The 2-back task requires different mental operations, depending both on the
stimulus in the current trial and on the contents of previous trials. In total, we
can distinguish four different conditions:

• Match set: [◦ • ◦ •]1 The current stimulus matches the 2-back stim-
ulus.

• Break set: [• ◦ • ◦] The current stimulus does not match the 2-back
stimulus, but the previous trial was a match set trial. That old set has to
be ‘broken’ in order to discard the old 2-back item from the mental list.

• No set: [◦ ◦ ◦ ◦] The current stimulus does not match the 2-back
stimulus, nor was there a match in the previous trial.

• Perseveration set: [• ◦ • •] The current stimulus does not match
the 2-back stimulus, but the previous trial was a match set trial, and the
valence of the current stimulus is the same as that of the old set.

1The trial history is symbolised by a list of dots, with the oldest trial on the left and the current
trial on the right; filled dots are stimuli that share the same expression.
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Results summary

Levens and Gotlib (2010) recorded the response (‘same’, ’diff’, or none) and
response time on each trial. Chapter 4 provides a more in-depth look at their
results, along with those of the cognitive model, but here a summary is given of
similarities and differences between the two groups.

Response rate: In both the 0-back and the 2-back task, depressed parti-
cipants responded less frequently than those in the control group.

Accuracy: There was no difference in response accuracy between the groups
in either of the tasks.

Response time: There was no difference in response time between the
groups in the 0-back task. In the 2-back task, depressed participants had slower
responses in general. By applying a z-transformation to response times, Levens
and Gotlib identified valence-specific differences within and between the groups.
Depressed participants responded relatively more quickly than controls to a
sad stimulus on screen, than to a happy one. Conversely, non-depressed par-
ticipants were relatively fast when responding to a happy stimulus. Levens and
Gotlib took this to mean that mood-congruent stimuli were easier to integrate
into working memory (rather than the effect being due to a perceptual bias,
since it would then also have shown up in the 0-back condition). Furthermore,
depressed participants responded more slowly when the previous trial had con-
tained a sad set. The authors proposed that this slowdown may be the result
of having to break up the old ‘set’ of sad items, whereby related sad concepts
and memories are activated before the oldest member of the set is successfully
forgotten. The opposite effect was also observed: in trials during which a happy
set had to be broken, participants in the control group were relatively slow to re-
spond. Levens and Gotlib concluded that, while depressed participants seemed
to have a tendency to linger on trials where the oldest member of a sad set was
discarded, healthy controls must do the same when discarding a happy item.
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Chapter 3

Model

Approach

In this chapter, I present two variants of a cognitive model that performs the
emotional n-back task of Levens and Gotlib (2010): a ‘regular’ version, repres-
enting the control group in that study, and a ‘depressed’ version, representing
the depressed participants. The aim of these models is to replicate performance
of both groups on the 0-back task and the 2-back task of the original exper-
iment, while offering a mechanistic explanation of observed differences that
aligns with existing theoretical insights.

Modelling strategy and assumptions

Because of the large number of trials in the emotional n-back task, and its mono-
tonous nature, it is likely that participants spent a significant portion of their
time on off-task thinking. Indeed, the observation that mind-wandering occurs
during working memory tasks, and that its intensity increases as time goes on, is
a common one (Smallwood, Obonsawin & Heim, 2003; Krimsky, Forster, Llabre
& Jha, 2017). Mean response rates of participants in Levens and Gotlib’s exper-
iment ranged from 85% to 98%, supporting the idea that attention was not al-
ways directed to the task when a response had to be made. The observation that
depressed participants had lower response rates than those in the control group
furthermore suggests that depressed participants had a stronger tendency to-
wards off-task thinking—a pattern which would match observations from other
experiments involving depressed and non-depressed subjects (Hoffmann et al.,
2016), and which is compatible with the idea that depressed participants are
more likely to engage in a ‘stickier’ kind of mind-wandering that is harder to
break out of (Christoff et al., 2016; Andrews-Hanna et al., 2013)1. Continuing
on previous modelling work (van Vugt et al., 2015; Taatgen et al., 2015), the
task is therefore modelled as a competition between goals, each of which is vy-
ing for resources: one goal being task-related processing, the other to engage in
mind-wandering.

1An alternative explanation for the difference in response rate between groups could be that
depressed participants simply found the task more difficult. There was, however, no indication
that depressed participants performed any worse in terms of response accuracy, even in the most
demanding conditions, which makes this interpretation unlikely.
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Architecture

The model is constructed within the PRIMs cognitive architecture (Taatgen,
2013), an extension to the ACT-R architecture (Anderson, 2007). Like ACT-
R, the PRIMs architecture provides a framework for modelling the full set of
information processing steps that make up a cognitive task. The architecture
consists of a number of modules (declarative memory, working memory, vision,
goal state, motor action) that exchange information through buffers. A PRIMs
model has one or more goals, each of which has a unique set of operators associ-
ated with it. PRIMs operators are comparable to production rules in ACT-R: like
a production rule, an operator is styled as an if-then rule requiring certain con-
ditions to be met before a sequence of primitive information processing steps is
performed. For example, a goal might be to memorise a letter shown on screen.
An operator associated with this goal may first check that there is a letter, read
the letter, and then encode it in a new memory chunk in working memory.

While ACT-R makes a distinction between procedural knowledge (operat-
ors or productions) and declarative knowledge (memory chunks), PRIMs treats
both as regular chunks stored in declarative memory. This means that each goal
and operator has an activation value (a measure of memory trace strength) that
is boosted by retrievals and decays exponentially over time. As a consequence, a
PRIMs model is not constrained to a single goal, but can maintain multiple con-
current, competing goals. The advantage of this approach is that it allows for
dynamics that the traditional ACT-R approach does not. Goals spread activation
to their operators, which makes operators belonging to more active goals more
likely to be selected for execution. This means that, as long as their conditions
are met, a PRIMs model can flexibly alternate operators from different goals.

In PRIMs, activation can spread from any chunk to any other chunk, mean-
ing that a chunk in working memory cannot only spread activation to similar
chunks in declarative memory, but also to particular operators that it favours.

The additional flexibility offered by PRIMs allows our model to freely switch
between operators corresponding to task goals and operators that implement
off-task thought.

0-back model

Task strategy

The 0-back model has two concurrent goals, which constantly compete for re-
sources: (i) to perform the task, and (ii) to engage in task-unrelated mind-
wandering. Operators belonging to the first goal perform the steps needed to
do the task. At the start of each block of trials the target expression (happy,
neutral, or sad) is shown on screen. The model stores this information in a slot
in its goal buffer. Upon seeing a new face stimulus, the model attempts to re-
cognise the facial expression of the actor in the photograph. If it succeeds, the
model responds with a key press: same when the expression matches the target,
and diff when it does not. If the model does not recognise the facial expression,
it will respond with a random key press. After responding, the model can keep
its attention on the task until the onset of the next trial by subvocalising the
target expression or simply by focusing on the task.
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Stimuli

Because PRIMs’ model of visual perception and processing is quite simplistic,
recognition of facial expressions is modelled as a simple memory retrieval. The
stimuli are encoded in text form. Figure 3.1 shows how an image of a particular
actor with a happy facial expression can be represented in text form by a chunk.

(a) Stimulus

slot1 face14 ← chunk name
slot2 face-expression ← chunk type
slot3 happy ← expression
slot4 happy14 ← image name

(b) Chunk representation

Figure 3.1: Example of a stimulus that was used by Levens and Gotlib (2010)
(a), and its representation as a chunk in declarative memory as used in our
model (b).

Chunks representing each face are placed in the model’s declarative memory
before the task starts. When a stimulus is presented on screen, only the name
of the image, stored in the last slot of its corresponding chunk, is used (e.g.
happy14 in the example in Figure 3.1). This name serves as a cue for the model
to retrieve the full chunk from memory, allowing it to characterise the facial
expression.

Mind-wandering

Off-task thinking is modelled through a set of operators under the umbrella of
the model’s second goal: mind-wandering. These operators allow the model to
retrieve random memories (unrelated to the task) from declarative memory at
any time during a trial. Each memory is stored in its own chunk in declarative
memory. An example of a chunk encoding a memory is shown in Figure 3.2.
Upon retrieving a memory, the model brings it to the forefront of attention
by placing it in working memory. At this point, the model can retrieve another
memory to prolong the mind-wandering episode. This generates a characteristic
‘thought pump’, in which memories follow one another.

There is no fixed end point for a mind-wandering episode, which means
that, in theory, it can go on indefinitely. In practice, however, the stochasticity
in the activation of operators means that inevitably an operator related to the
task will get selected, at which point the mind-wandering episode ends.

slot1 memory4 ← chunk name
slot2 memory ← chunk type
slot3 self ← focus
slot4 memory4 ← memory name

Figure 3.2: Example of a memory chunk retrieved during mind-wandering.
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Figure 3.3: Goal interleaving in the 0-back model. Task operators are blue,
while mind-wandering operators are red. Two trials are shown: one with only
task-related operators, and one in which a series of mind-wandering operators
intervene. Depending on the length of the mind-wandering episode, the model
may or may not return to the task with enough time to respond.

Interleaving goals

Because of the way the model is structured, there is no set procedure for a
trial. At each stage in a trial, operators from both goals can become active. For
example, when a stimulus appears, the model can either process it to determine

16



its expression, or ignore it and start mind-wandering. The same concept applies
to dealing with a face chunk that has been retrieved: the model either uses it
to respond, or it ignores it. Similarly, in periods between trials, the model can
either keep attending to the task, or it can engage in off-task thought. Note
that the occurrence of mind-wandering in a trial does not mean that the model
cannot engage in the task at all in that trial. As Figure 3.3 illustrates, after a
period of mind-wandering the model may still return to the task when a task-
related operator gets selected.

Emotion-specific effects

The behavioural data show that task performance was modulated by the emo-
tional content of the stimuli. Specifically, participants were more accurate in
their responses to happy faces than to sad and neutral faces, with neutral faces
being especially difficult to recognise. In addition, participants responded more
quickly to happy faces than to faces from either of the other two categories.
These effects were present in both groups.

Partial matching of face chunks

To reproduce the effect of facial expression on response accuracy, the model’s
process of classifying a face is made to be imperfect. Retrieving a face chunk
from memory uses partial matching, which means that on occasion the model
will retrieve a chunk that does not perfectly match the face shown on screen,
and as a result it will misclassify the facial expression (e.g., thinking a face is
sad while it is in fact neutral). This imperfect behaviour mirrors that of humans,
who are also prone to making this kind of mistake (Gollan et al., 2008).

To retrieve a face chunk, the stimulus name that is shown on screen (e.g.
“happy14”) is passed to the retrieval buffer as a query. Since we allow par-
tial matching, all chunks in declarative memory are potential candidates for the
subsequent retrieval. Which chunk ultimately gets selected for retrieval depends
on activation. In the ACT-R and PRIMs architectures a chunk’s activation value
(Ai) is comprised of several elements: base-level activation (Bi), spreading ac-
tivation received from other chunks (Si), the chunk’s mismatch to the retrieval
request (Mi), and a random noise term (ε):

Ai = Bi + Si +Mi + ε

The less a chunk resembles the request, the larger its mismatch term will be,
and as a result, the lower its activation.

The mismatch between two face chunks depends on the facial expression
encoded in each of the chunks. For example, a sad face is very similar to a
different sad face, and is also more similar to a neutral face than to a happy face.
The degree to which one face differs from another is specified in a mismatch
value. Mismatch values range from 0 (no difference at all, i.e., exactly the same
face) to -1 (maximally different). Table 3.1 lists these mismatch values for all
possible combinations of face chunks. These values were estimated on the basis
of the empirical data and adjusted to provide a reasonable fit. Both versions of
the model use the same values.
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Table 3.1: Mismatch values of face chunks that do not match the retrieval re-
quest. A more negative value represents a greater mismatch.

Expression Perceived as Mismatch

happy happy (different face1) -0.05
neutral -0.1
sad -0.3

neutral happy -0.2
neutral (different face) -0.05
sad -0.2

sad happy -0.3
neutral -0.1
sad (different face) -0.05

1A request for one happy face (e.g. face14) may return a different happy face (face18).

Activation of face chunks

The effect of facial expression on response time is captured in the model through
differences in the activation of face chunks in memory. By manipulating the
activation of a face chunk, we can make it easier or more difficult to retrieve,
and as a result increase or decrease response times.

Following the standard ACT-R formula, the time it takes to retrieve a chunk
i with activation Ai from memory is

tretrieval = Fe−Ai

(where F is the latency factor, a global constant). Thus, assuming sufficient
activation for successful retrieval, chunks with a high activation are retrieved
more quickly than chunks with a low activation. We can use this property to
control how long it takes for the model to respond in trials with faces of a
particular mood. In the model, the baselevel activations of face chunks is set
individually for each mood. Table 3.2 shows the values that were selected on
the basis of their fit.

Table 3.2: Baselevel activation values (in arbitrary units) for face chunks of each
mood.

Expression Activation

happy 1
neutral 0.4
sad 0.4

Differentiating a depressed model from a control model

When it comes to the 0-back task, the depressed participants in Levens and
Gotlib (2010) are different from non-depressed controls in two respects: (i)
their mean response time was higher, and (ii) their mean response rate was
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lower. As Table 3.3 shows, the depressed version of the 0-back model also
differs from the control model in two ways to capture these differences. It
reproduces the depressed participants’ higher response times by taking longer
to execute a keypress than the control model. This is consistent with findings
of general psychomotor slowing in depressed patients (Schrijvers, Hulstijn &
Sabbe, 2008). A lower response rate is achieved by increasing the activation of
mind-wandering operators, making the overall proportion of mind-wandering
during the task slightly higher and as a consequence reducing the number of
responses. This reflects the higher degree of rumination found in depressed
patients (Christoff et al., 2016; Andrews-Hanna et al., 2013).

Table 3.3: Parameter differences between the control and depressed versions
of the 0-back model. All other parameters kept constant (see Appendix A for a
detailed overview of parameter settings).

Parameter Control Depressed

Keypress duration 0.4 s 0.5 s
Activation of mind-wandering operators 2 2.25

2-back model

Changes relative to the 0-back model

The 2-back model works the same as the 0-back model when it comes to perceiv-
ing and classifying stimuli, making responses, and engaging in off-task think-
ing. Where the two models differ is in the process of determining the correct
response. The 2-back model uses n-back chunks to keep track of previous ob-
servations. An example of such a chunk is given in Figure 3.4.

slot1 imaginalN42 ← chunk name
slot2 face-observation ← chunk type
slot3 two-back ← place in mental list
slot4 happy ← facial expression
slot5 context12 ← context in which observation was made

Figure 3.4: Example of an n-back chunk that is used as part of the model’s
mental list of recent stimuli. This chunk encodes the fact that the model saw a
happy face two trials ago.

Because the response time effects are thought to arise from differences in
how quickly the mental list of stimuli is updated under particular circumstances,
it is important that the model should capture this updating process in detail.
Figure 3.5 gives an overview of the model’s task strategy. The mental list of the
most recent stimuli is stored in the model’s declarative memory, and is updated
in every trial. At the start of a trial, the model retrieves from its memory each
of the n-back observations in turn. Upon retrieving an n-back chunk, it creates
an updated version in its imaginal buffer that changes its index in the list from
n to n + 1. In the case of the old 2-back chunk, its index is changed to “old”,

19



reflecting the fact that it is no longer part of the list. The updated chunk is
pushed back to declarative memory. Once the items on the mental list have
been shifted back by one place, the new stimulus that is currently on screen can
be added. The model determines its expression in the same way as before, and
creates a new n-back chunk that places the observation at the front of the list.

Figure 3.5: Task strategy of the 2-back model. Operators that update the old
items on the mental list are green, those that process the new stimulus are blue,
and the operators that make the response are purple.

The valence-specific differences in response time that were found in the 2-
back task imply that the time it takes to integrate new observations into work-
ing memory depends on their valence, and differs between depressed and non-
depressed participants. Levens and Gotlib (2010) observed that depressed par-
ticipants needed less time to integrate a stimulus into their mental list when it
was congruent with their mood (i.e., a sad face was integrated more quickly
than a happy or neutral face). This was a surprising result, given the lack of
any effect of emotion on response time in the 0-back task. Indeed, other studies
(including a later one by the same authors using the same task) have shown
(formerly) depressed participants to have a negative perceptual bias (Levens
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& Gotlib, 2015; Gollan et al., 2008; Bourke et al., 2010), which contradicts
what was found here. For this reason, our 2-back model goes along with the
consensus view, by implementing such a mood-congruent perceptual bias. This
bias was left out of the 0-back model for the sake of reproducing the original
data better, but one could argue that both models should include the bias.

The time needed for a stimulus leaving the mental list was also found to
depend on its valence, such that mood-congruent stimuli were discarded more
slowly (i.e., a depressed participant needed more time to dismiss a sad face than
a happy or neutral face, whereas a control participant spent longer on trials
in which they had to forget a happy face). It is not certain why some items
are more easily purged from working memory than others. Levens and Gotlib
(2010) put forth the hypothesis that participants might struggle when breaking
up an old mood-congruent ‘set’ of matching stimuli in their mental list, and
that this causes them to slow down. While it would account for the observed
response time patterns, this explanation is difficult to operationalise, since it is
not clear how a ‘set’ would be represented in memory (whether as a single unit,
or as two units with a strong connection), nor is it clear what it would mean in
practical terms to ‘break’ a set. For this reason, a simpler mechanism is pursued
here. Whenever an observation that is pushed out of the mental list is congruent
with the model’s mood, there is an opportunity for the model to elaborate on
the item before responding, causing a slowdown. Figure 3.6 shows an example
of the depressed model lingering on a sad observation.

Figure 3.6: Depressed 2-back model elaborating on a mood-congruent item as
it is pushed off the mental list, slowing down its response.
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Differentiating a depressed model from a control model

The depressed model should perform differently than the control model on se-
veral fronts: (a) the overall response time should be higher, (b) the overall
response rate should be lower, and (c) there should be valence-specific biases
in working memory that are observable in the response time. As in the 0-back
model, the higher overall response times in the depressed group are assumed
to be the result of psychomotor slowing, which is commonly found in depressed
patients (e.g., Schrijvers et al., 2008). Also, as before, the lower response rate
is assumed to result from increased mind-wandering in the depressed group.
This is encouraged through a higher activation of mind-wandering operators.
Finally, the valence-specific biases are implemented through quicker perception
of certain faces and elaboration on mood-congruent items as they leave the re-
hearsal loop. Table 3.4 summarises the differences between the two versions of
the 2-back model.

Table 3.4: Parameter differences between the control and depressed versions
of the 2-back model. All other parameters kept constant (see Appendix A for a
detailed overview of parameter settings).

Parameter Control Depressed

Keypress duration 0.35 s 0.5 s
Activation of mind-wandering operators 1.5 1.6
Activation of happy/neutral/sad face chunks 1/0/0 1/0/1.5
Elaboration on discarded items happy sad

Quicker perception of sad faces

The depressed version of the 2-back model perceives sad faces more quickly
than the nondepressed model. Within the current PRIMs architecture it is not
possible to vary, based on the contents of a chunk, how long it takes to create
it in working memory, or push it to declarative memory. This means that we
can only affect the speed of integration by giving the model a perceptual bias:
changing how long it takes to recognise a face’s expression by manipulating the
duration of the required retrieval. As described previously, the time required to
retrieve a chunk from declarative memory depends on its activation, such that
a higher activation leads to a faster retrieval, following the formula: tretrieval =
Fe−Ai. By increasing the activation of sad face chunks from 0 to 1.5, we can
reduce the average time needed to retrieve them by a factor of e−0

e−1.5 ≈ 4.5.

Elaborating on mood-congruent items

Both models have the ability to elaborate on old 2-back stimuli as they are
removed from the mental list. The valence of the discarded item is important:
the depressed model will only elaborate on sad items, while the control model
only elaborates on happy items. The time penalty that is incurred by lingering
on an old item and subsequently having to refocus on updating the mental list
slows down the model’s response in that trial.
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Chapter 4

Results

Analysis

Performance of the cognitive models is compared to that of the depressed and
healthy participants in Levens and Gotlib (2010). Response rate, accuracy, and
response time were recorded in each trial. Following Levens and Gotlib, we re-
moved trials with response times outside 2.5 SD of a model participant’s mean
response time. Only correct trials were used for calculating mean response time.
We analysed the effects of group (depressed, control), emotion (happy, neutral,
sad), and response (same, diff) on response rate, accuracy, and response time
using repeated measures analysis of variance (RM-ANOVA). Degrees of free-
dom were adjusted using Greenhouse-Geisser correction wherever Mauchly’s
test found sphericity to be violated. Effect sizes were estimated using general-
ised eta-squared statistics. Where theoretically motivated, significant main and
interaction effects were further explored through pairwise t-tests with Bonfer-
roni correction of p-values1.

0-back task

In the 0-back task, participants decided whether a face stimulus had the same
facial expression as a target shown at the start of each block. Faces were happy,
neutral, or sad. Response times were measured from stimulus onset to the point
at which an answer key (“same” or “diff”) was pressed. This task only involves
the perceptual component of the n-back paradigm (perceiving and categorising
the stimulus), and leaves out the working memory manipulations that are part
of the 2-back task. As such, it allows us to isolate differences in perceptual bias
between depressed individuals and healthy controls.

The depressed and control version of the 0-back model were both run 50
times, simulating 50 participants in each group. The models went through 9
training runs (each run containing 3 blocks of 43 trials) to learn the task, before
performing a final run. Only this last run was used in the analysis. Table 4.1

1To maintain a degree of readability, not all effects, interactions, and pairwise comparisons of
means are included in the text. Please refer to the online version of the analysis for an exhaustive re-
port: https://github.com/maartenvandervelde/emotional-n-back/tree/master/analysis
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shows the behavioural fit of the models to the human data. Table 4.2 summar-
ises which of the effects that were observed in the human data are reproduced
by our model. The following sections take a more in-depth look at how the
0-back models stack up against depressed and nondepressed humans.

Table 4.1: Behavioural fit of the 0-back model simulations to the human data.
RMSE = root mean square error.

Measurement R2 RMSE

Accuracy 0.01 0.11
Response rate 0.38 0.04
z-transformed RT 0.71 0.50

Table 4.2: Which 0-back effects in humans were reproduced by the model?

Outcome variable Effect Reproduced

Accuracy Accuracy control = Accuracy depressed D

Accuracy diff > Accuracy same D

Accuracy happy > Accuracy neutral D

Accuracy happy > Accuracy sad D

Accuracy sad > Accuracy neutral —

Response rate RR control > RR depressed D

RR diff > RR same D

RR happy > RR sad —

Response time RT neutral, same > RT neutral, diff D

RT sad, diff > RT sad, same —

Accuracy

Figure 4.1 shows the response accuracy by expected response for each of the
three stimulus types. In Levens and Gotlib (2010), depressed and nondepressed
participants were equally accurate. In addition, both groups showed the same
effect of facial expression on response accuracy. Accuracy was lowest when
responding to a neutral stimulus, and highest when the stimulus was a happy
face. Responses to sad stimuli fell somewhere in the middle in terms of accuracy.
The high degree of accuracy in trials with happy stimuli demonstrates that,
given a face that is easily categorised, participants in both groups were near-
flawless at comparing it to the target and responding appropriately. The drop in
accuracy with sad stimuli and particularly with neutral stimuli suggests that it is
more difficult to categorise these facial expressions. Furthermore, participants
in both groups achieved higher accuracy in trials where the expected response
was different than in trials where same was the correct response.

Our model reproduces all but one of these observations. A three-way RM-
ANOVA conducted on the model data shows a significant effect of facial ex-
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pression (F (1.74, 170.21) = 115.43, p < 0.0001, η2 = 0.35) and expected re-
sponse (F (1, 98) = 370.96, p < 0.0001, η2 = 0.51), as well as their interaction
(F (1.74, 170.21) = 115.43, p < 0.0001, η2 = 0.35), on accuracy. No other ef-
fects were significant. Post-hoc comparisons of means confirmed that both mod-
els responded more accurately to happy faces than to neutral faces (t(196) =
13.999, p < 0.0001) and sad faces (t(196) = 12.116, p < 0.0001). While human
participants had more difficulty with neutral faces than with sad faces, the mod-
els showed no such effect. The main effect of expected response is due to the
models responding more accurately in trials in which the stimulus differs from
the target (t(98) = 19.26, p < 0.0001); a pattern which was also found in the
human data.
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Figure 4.1: Response accuracy of real and modelled depressed and control par-
ticipants on each condition of the 0-back task. Error bars indicate 1 SD from the
mean. Non-response trials are excluded. Human data from Levens and Gotlib
(2010).

Response rate

The mean response rate by expected response for each type of stimulus is
presented in Figure 4.2. As in the human data, the models’ response rates were
universally high. However, unlike accuracy, response rates did differ between
depressed participants and controls: on average, those with depression respon-
ded on about 3% fewer trials. The same is true for the models: a three-way RM-
ANOVA indicates a main effect of group on response rate (F (1, 98) = 81.45, p <
0.0001, η2 = 0.13). A follow-up test shows that the control model indeed had a
higher response rate than the depressed model (t(98) = 9.025, p < 0.0001). In
addition to group, there is also an effect of the expected response on response
rate (F (1, 98) = 3.80, p = 0.05, η2 = 0.006): the models tended to respond more
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frequently when the expected response was diff, although this effect is only
marginally significant in a pairwise comparison of means (t(98) = 1.949, p =
0.0542). The human data also contained an effect of facial expression: happy
faces elicited a higher response rate than sad faces. We do not observe such an
effect in the model.
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Figure 4.2: Response rate of real and modelled depressed and control parti-
cipants on each condition of the 0-back task. Error bars indicate 1 SD from the
mean. Human data from Levens and Gotlib (2010).

Response time

Figure 4.3 shows mean response times by expected response for each of the
three stimulus types. The human data showed a strong effect of group: de-
pressed participants had higher response times across conditions. This effect
is also present in the model results. The three-way RM-ANOVA reveals a sig-
nificant effect of group on RT (F (1, 98) = 7723.35, p < 0.0001, η2 = 0.92).
As expected, this is because response times of the depressed model are higher
(t(98) = 87.883, p < 0.0001).

To allow for a direct comparison between groups, despite the observed dif-
ferences in speed of responding, Levens and Gotlib (2010) z-transformed re-
sponse times (for every participant, each condition mean RT was subtracted
from their overall mean RT and divided by the SD of the condition RT). These
z-transformed response times are shown in Figure 4.4. Importantly, they show
that when correcting for participants’ baseline speed, there is no longer a dif-
ference in relative speed between the two groups. Both groups of human par-
ticipants responded more quickly to happy faces than to sad or neutral ones.
The same patterns are present in our model data. A three-way RM-ANOVA con-
firms that there is no effect of group on z-RTs, while there is an effect of facial
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Figure 4.3: Response times of real and modelled depressed and control parti-
cipants on each condition of the 0-back task. Error bars indicate 1 SD from the
mean. Trials with response times deviating more than 2.5 SD from the mean
are excluded. Human data from Levens and Gotlib (2010).

expression (F (1.99, 195.54) = 1694.29, p < 0.0001, η2 = 0.86). As expected,
responses to happy faces were significantly faster than those to neutral faces
(t(196) = 50.826, p < 0.0001) and sad faces (t(196) = 49.989, p < 0.0001).
There is also a significant main effect of expected response on z-RT (F (1, 98) =
714.68, p < 0.0001, η2 = 0.55): relative response speed was faster on trials in
which diff was the expected response (t(98) = 26.734, p < 0.0001). Finally, the
interaction between facial expression and expected response has a significant
effect on z-RT (F (1.91, 187.48) = 21.83, p < 0.0001, η2 = 0.08). Since all but
two of the 15 possible contrasts describe significant differences, we will focus
on those comparisons that are motivated by the human data. Levens and Gotlib
(2010) found humans to respond more slowly on trials with neutral faces when
the correct response was same than when it was diff. The same is true for our
models (t(292.53) = 17.793, p < 0.0001). In addition, humans responded more
quickly on sad same trials than on sad diff trials, whereas the opposite is true
for our model (t(292.53) = 16.997, p < 0.0001).
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Figure 4.4: Z-transformed response times of real and modelled depressed and
control participants on each condition of the 0-back task. Error bars indicate 1
SD from the mean. Trials with response times deviating more than 2.5 SD from
the mean are excluded. Human data from Levens and Gotlib (2010).

2-back

In the 2-back task participants decided whether a face stimulus had the same
facial expression as the face shown two trials before. Faces were happy, neut-
ral, or sad. Response times were measured from stimulus onset to the point at
which an answer key (“same” or “diff”) was pressed. Along with the perceptual
component of the n-back paradigm (perceiving and categorising the stimulus),
this version of the task also involves the working memory component (maintain-
ing a representation of recently seen stimuli). In combination with the 0-back
version of the task, this allows us to investigate differences in working memory
performance between depressed and healthy participants.

Both the depressed and control version of the 2-back model were run 50
times, simulating 50 model participants in each group. As before, the models
were trained on the task (6 blocks of 55 trials) for 3 full runs before they per-
formed a final run. Only this final run is analysed. The behavioural fit of the
models to the human data is summarised in Table 4.3, while Table 4.4 sum-
marises how well the models capture each of the effects observed in humans by
Levens and Gotlib (2010).

The 2-back task requires different mental operations, depending both on the
stimulus in the current trial and on the previous trials. Because of this, the
results for each of the conditions are analysed separately. The meaning of the
condition names is explained on page 11.
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Table 4.3: Behavioural fit of the 2-back model simulations to the human data.
RMSE = root mean square error.

Measurement R2 RMSE

Accuracy 0.01 0.11
Response rate 0.54 0.06
z-transformed RT 0.10 0.67

Table 4.4: Which 2-back effects in humans were reproduced by the model?

Outcome variable Effect Reproduced

Accuracy Accuracy control = Accuracy depressed —

Response rate RR control > RR depressed D

RR perseveration, happy > RR perseveration, sad —
RR perseveration, happy > RR perseveration, neutral D

Response time RT depressed > RT control D

RT match, happy > RT match, neutral D

RT match, happy > RT match, sad D

RT depressed, break sad > RT depressed, break neutral D

RT depressed, break sad > RT depressed, break happy D

RT control, break happy > RT control, break neutral D

RT control, break happy > RT control, break sad D

RT control, break happy > RT depressed, break happy D

RT control, break neutral = RT depressed, break neutral D

RT depressed, break sad > RT control, break sad D

RT control, no set neutral > RT control, no set happy D

RT control, no set sad > RT control, no set happy D

RT depressed, no set neutral > RT depressed, no set happy D

RT depressed, no set neutral > RT depressed, no set sad D

RT control, no set happy = RT depressed, no set happy —
RT control, no set neutral = RT depressed, no set neutral —
RT control, no set sad > RT depressed, no set sad D

Accuracy

The human participants in Levens and Gotlib (2010) did not differ significantly
in their accuracy on the 2-back task. Accuracy was generally above 80%. As
Figure 4.5 shows, our models are unable to replicate this result exactly. Al-
though neither model is perfectly accurate, both perform slightly better on the
task than they should; most notably the control model. Contrary to the human
data, mean accuracy of the control model appears to be higher than that of the
depressed model.

Indeed, the RM-ANOVA reveals that the model’s accuracy in match set trials
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is predicted by group (F (1, 98) = 231.83, p < 0.0001, η2 = 0.51). A follow-
up test confirms that the control model is more accurate than the depressed
model (t(98) = 15.226, p < 0.0001). No other effects are significant. The same
is true for break set, no set, and perseveration set trials. In all cases, group
membership has a significant effect on response accuracy (break set: F (1, 98) =
32.82, p < 0.0001, η2 = 0.10; no set: F (1, 98) = 202.94, p < 0.0001, η2 = 0.38;
perseveration set F (1, 98) = 64.38, p < 0.0001, η2 = 0.18). The control model is
always more accurate than the depressed model (break set: t(98) = 5.729, p <
0.0001; no set: t(98) = 14.246, p < 0.0001; perseveration set: t(98) = 8.024, p <
0.0001).
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Figure 4.5: Response accuracy of real and modelled depressed and control par-
ticipants on each condition of the 2-back task. Error bars indicate 1 SD from the
mean. Non-response trials are excluded. Human data from Levens and Gotlib
(2010).

Response rate

Levens and Gotlib (2010) found a significant effect of group membership on
response rate across conditions: participants with depression responded to sig-
nificantly fewer trials than nondepressed controls. Figure 4.6 suggests that our
models reproduce this effect quite well. The models’ mean response rates ap-
pear to match those of the human participants.

A RM-ANOVA finds that in match set trials, response rate is indeed mod-
ulated by group membership (F (1, 98) = 350.90, p < 0.0001, η2 = 0.65). A
post-hoc comparison of means confirms that the control model responded to
significantly more trials than the depressed model (t(98) = 18.732, p < 0.0001).
No other effects were significant.
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The effect of group on response rate is also present in break set trials (F (1, 98) =
199.64, p < 0.0001, η2 = 0.39). In addition, the valence of the set that is to be
broken has a significant effect on response rate (F (1.82, 178.81) = 46.95, p <
0.0001, η2 = 0.25), and so does the interaction between group and valence
(F (1.82, 178.81) = 79.22, p < 0.0001, η2 = 0.36). Follow-up tests reveal that the
control model had a higher response rate than the depressed model (t(98) =
14.129, p < 0.0001), and that the main effect of valence is due to lower response
rates when the broken set was sad than when it was happy (t(196) = 7.109, p <
0.0001) or neutral (t(196) = 9.257, p < 0.0001). Further investigation of the in-
teraction between group and valence yields significant differences in 12 of the
15 possible comparisons. These are omitted here.

As in the other conditions, group membership was a significant predictor of
response rate in the no set condition (F (1, 98) = 374.81, p < 0.0001, η2 = 0.63),
owing to the fact that the control model responded more frequently than the
depressed model (t(98) = 19.36, p < 0.0001). No other effects were significant
in this condition.

Finally, response rate in the perseveration set condition was predicted by
group membership (F (1, 98) = 151.05, p < 0.0001, η2 = 0.32), the valence of the
current stimulus (and therefore of the set in the previous trial; F (1.59, 155.69) =
37.13, p < 0.0001, η2 = 0.21), as well as the interaction between these two
factors (F (1.59, 155.69) = 46.12, p < 0.0001, η2 = 0.25). As before, the effect of
group is due to higher response rates in the control model (t(98) = 12.29, p <
0.0001). The effect of valence comes from lower response rates in trials that
perseverate on a sad set compared to trials that perseverate on a happy set
(t(196) = 7.389, p < 0.0001) or a neutral set (t(196) = 7.535, p < 0.0001). The
interaction between the two main effects yields significant differences in 9 of
the 15 possible comparisons. For this reason, it is not explored further here.

In summary, the depressed model’s response rate was found to be lower than
that of the control model in all four conditions, which matches the empirical
observations of Levens and Gotlib (2010). In conditions where a previous set
had to be broken (break set and perseveration set) both models responded less
frequently when this set was sad than when it was happy or neutral. Levens
and Gotlib (2010) reported a similar effect, albeit only in the perseveration set
condition: response rate was higher in happy perseveration set trials than in
neutral or sad ones. Both cases are compatible with the notion that a happy set
may be easier to ‘break up and forget’ than a sad one.

Response time

Response times of both models are shown alongside human response times
in Figure 4.7. There are several effects in the human data that we are inter-
ested in replicating. Firstly, depressed participants responded more slowly than
nondepressed controls in all conditions, an effect that is likely due to psycho-
motor slowing. In addition, there are some condition-specific effects. In the
match set condition, both groups responded more quickly when the stimulus
was a happy one. In the break set condition, depressed participants took longer
to respond when breaking up a sad set than they did when breaking happy or
neutral sets, whereas nondepressed control participants had the opposite tend-
ency, responding more slowly when breaking a happy set than when breaking a
neutral or sad set. This effect can be explained through a tendency to linger on
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Figure 4.6: Response rate of real and modelled depressed and control parti-
cipants on each condition of the 2-back task. Error bars indicate 1 SD from the
mean. Human data from Levens and Gotlib (2010).

old mood-congruent items as they are discarded. Finally, depressed participants
had relatively fast responses to sad stimuli in the no set condition, compared to
happy or neutral stimuli, which may reflect facilitated processing of sad stimuli.

RM-ANOVAs confirm that the depressed model’s response times are indeed
slower in each of the four conditions (match set: F (1, 98) = 2244.53, p <
0.0001, η2 = 0.91; t(98) = 47.377, p < 0.0001; break set: F (1, 98) = 1319.48, p <
0.0001, η2 = 0.85; t(98) = 36.325, p < 0.0001; no set: F (1, 98) = 3083.83, p <
0.0001, η2 = 0.93; t(98) = −55.532, p < 0.0001; perseveration set: F (1, 98) =
570.67, p < 0.0001, η2 = 0.68; t(98) = 23.889, p < 0.0001).

The RM-ANOVAs reveal a large effect size of group membership. Since the
relatively large difference in response time between groups is likely to obscure
the other effects, response times are once again z-transformed to investigate the
other effects. Figure 4.8 depicts these transformed RTs. It allows us to see the
relative speed of responding, taking into account overall differences in response
speed.

A RM-ANOVA conducted on match set trials yields significant effects of group
(F (1, 98) = 2366.71, p < 0.0001, η2 = 0.90), stimulus valence (F (1.97, 192.68) =
187.26, p < 0.0001, η2 = 0.54), and the interaction between group and valence
(F (1.97, 192.68) = 79.07, p < 0.0001, η2 = 0.33) on z-transformed RT. Most
interestingly, the effect of valence is due to both models responding relatively
more quickly to happy trials than to neutral trials (t(196) = 19.326, p < 0.0001)
or sad trials (t(196) = 8.784, p < 0.0001), in addition to responding more
quickly to sad trials than to neutral trials (t(196) = 10.542, p < 0.0001). This
result matches the pattern in the human data, where both groups had the most
rapid responses to happy match set trials.
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Figure 4.7: Response times of real and modelled depressed and control parti-
cipants on each condition of the 2-back task. Error bars indicate 1 SD from the
mean. Trials with response times deviating more than 2.5 SD from the mean
are excluded. Human data from Levens and Gotlib (2010).

In break set trials, the valence of the set that is broken has a significant
effect on z-RT (F (1.77, 173.82) = 294.65, p < 0.0001, η2 = 0.65), which is quali-
fied by an interaction effect of group and valence (F (1.77, 173.82) = 398.05, p <
0.0001, η2 = 0.72). 12 out of 15 post-hoc comparisons of means yield a signi-
ficant difference, but here we will focus on the comparisons that are relevant
to our modelling goals. As expected, we observe a mood-congruent slowing
effect in both groups. The control model responded more slowly in trials in
which a happy set was broken than in trials in which it broke a neutral set
(t(196) = 28.884, p < 0.0001) or a sad set (t(196) = 28.850, p < 0.0001).
Similarly, the depressed model made slower responses when it broke a sad set
than when it broke a happy set (t(196) = 10.834, p < 0.0001) or a neutral set
(t(196) = 16.267, p < 0.0001). In addition, in trials in which a sad set was
broken, the control model responded more quickly than the depressed model
(t(291.25) = 18.561, p < 0.0001), whereas the depressed model was quicker
to respond than the control model when a happy set was broken (t(291.25) =
19.736, p < 0.0001). The two models did not differ in their response time on tri-
als in which they disengaged from a neutral set (t(291.25) = 2.896, p = 0.0609).
These findings match the mood-congruent slowing effects found by Levens and
Gotlib (2010).

In no set trials, a RM-ANOVA yields a significant effect of group (F (1, 98) =
3145.81, p < 0.0001, η2 = 0.93), stimulus valence (F (2, 195.66) = 322.50, p <
0.0001, η2 = 0.66), and the interaction between group and valence (F (2, 195.66) =
175.30, p < 0.0001, η2 = 0.52). Follow-up comparisons of means reveal signific-
ant differences for 14 out of 15 possible comparisons. Here, too, we are primar-
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ily interested in comparisons that are relevant to the effects we are modelling.
In line with our expectations, the depressed model responded more slowly to
trials with neutral stimuli than to trials with sad stimuli (t(196) = 22.024, p <
0.0001) or happy stimuli (t(196) = 17.068, p < 0.0001). In addition, the con-
trol model was faster in its responses to happy stimuli than to neutral stimuli
(t(196) = 18.538, p < 0.0001) or sad stimuli (t(196) = 18.675, p < 0.0001).
The depressed model was quicker at responding to sad stimuli than the con-
trol model (t(288.35) = 20.953, p < 0.0001). These results align perfectly with
our expectations based on the human data. Two results are unexpected: both
models were expected to respond equally quickly to happy and neutral stim-
uli, but in both cases the depressed model is significantly slower (t(288.35) =
43.385, p < 0.0001; and t(288.35) = 41.989, p < 0.0001, respectively).

We find the biggest discrepancy between the model’s response times and
the human response times in the perseveration set condition. In general, both
models appear to be too fast in this condition, whereas humans tend to be slow-
est. Since this condition is not directly related to our modelling goals (Levens
and Gotlib (2010) did not find any significant effects of group, valence, or their
interaction), we will not explore it further here.
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Figure 4.8: Z-transformed response times of real and modelled depressed and
control participants on each condition of the 2-back task. Error bars indicate 1
SD from the mean. Trials with response times deviating more than 2.5 SD from
the mean are excluded. Human data from Levens and Gotlib (2010).
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Chapter 5

Discussion

General conclusion

The effects of depression on cognition have long been of interest to research-
ers. Experimental studies have highlighted cognitive impairments related to
inhibition of information that is no longer relevant, and switching between task
goals, as well as attentional and processing biases towards information with ne-
gative valence. The occurrence of excessively stable, negatively-coloured forms
of mind-wandering has been demonstrated on short time scales and, through
real-world experience sampling studies, over a much longer term. Together,
these factors cause subtle changes in the depressed mind that are observable
through behaviour.

This study has combined theoretical accounts of depression’s effect on cog-
nition and applied them in a cognitive model that performs a working memory
task. I have shown how manipulating this model can change its behaviour to
match either that of a nondepressed control subject, or that of a subject with de-
pression. As such, the model can provide an explicit account of how differences
in cognition may bring about observed differences in behaviour.

Rather than attributing behavioural abnormalities in depression to a single
factor or model parameter, this modelling approach has pointed us towards a
more complex set of differences. Through the model, we can evaluate to what
extent the cognitive factors described in the depression literature can explain
how behaviour changes. For instance, by increasing the model’s tendency to en-
gage in off-task thinking, we can cause its response rate in the task to decrease.
This fits well with empirical findings that link depression to higher rates of rumi-
nation, a negative, narrowly focussed form of mind-wandering from which it is
particularly difficult to disengage (Wigman et al., 2015; Marchetti et al., 2016;
Hoffmann et al., 2016). Slower responses in trials during which a previously
seen sad item must be forgotten are captured in the model through a process
of selective elaboration. By lingering on a mood-congruent stimulus as it is re-
moved from the focus of attention, the model implements a mechanism that
can explain inhibitory impairments observed in experimental studies (Whitmer
& Banich, 2007; De Lissnyder, Derakshan, De Raedt & Koster, 2011; Whitmer
& Gotlib, 2012). And giving the model a perceptual bias toward negative stim-
uli can explain why a depressed participant responds faster to a sad face than
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to a neutral one, in line with previous findings of a negativity bias in percep-
tion (Bourke et al., 2010).

Future work

The model of depression that is the topic of this thesis is applicable beyond the
n-back task that is reported here. The mental ‘operators’ that implement off-
task thought and undirected elaboration on particular kinds of task information
can be transferred to models of other tasks in which participants are prone
to disengage from task-related processing. An example of this is a complex
working memory (CWM) task (Huijser, van Vugt & Taatgen, 2017), which mixes
an attention task with triggers for self-referential processing (i.e., having the
participant think about questions such as “Am I kind?”). The occurrence of
self-referential processing makes participants more likely to engage in mind-
wandering during the task, with a negative effect on performance. Using the
model of depression presented here, one could make predictions of performance
on the CWM task by depressed participants, which can in turn be evaluated
empirically. Through this process, the generalisability of the current model can
be put to the test: which elements of the model are specific to the emotional
n-back task, and which elements are shared with other tasks?

Improvements in our understanding of how depression affects cognition may
benefit the development of novel treatments and diagnostic tools for depres-
sion. Current diagnostic tools tend to rely on placing symptoms into discrete,
artificial categories, an approach that does not do justice to the high dimen-
sionality of a condition like depression, which can express itself through a vari-
ety of mood symptoms, physical symptoms, thought patterns, and cognitive
impairments (Adams et al., 2016). Identifying which aspects of behaviour are
attributable to ongoing thought (e.g. rumination) and which are due to differ-
ences in the cognitive ‘hardware’ can also be helpful in shaping how depres-
sion is treated. In a study that repeated the emotional n-back task with parti-
cipants who had recovered from depression, Levens and Gotlib (2015) found
that the working memory biases that characterised depressed participants were
still present in these subjects—a finding that suggests that these negativity bi-
ases are not merely the product of ongoing rumination, but may be hard-wired
into the brain. While further work is needed, this may turn out to be a use-
ful tool for proactively identifying whether someone has a heightened risk of
developing depression later in life.

As this thesis has demonstrated, a cognitive architecture can serve a use-
ful purpose in evaluating verbal theories of cognitive processes; it forces them
to be operationalised within a well-defined set of constraints, and to integrate
within a larger whole. While the model in its current form has separate me-
chanisms that each account for a part of the observed behavioural differences,
future work should aim towards a more parsimonious approach. This may re-
quire adapting the structure of the architecture in which it is constructed. For
example, a factor such as cognitive slowing may be implemented more deeply
into the architecture, affecting not just the time it takes to press a key, but also
how quickly a production rule fires, or how quickly information moves between
buffers.

The current model also does not specify how its working memory biases
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interact with its tendency to ruminate. Modelling the contents of rumination
in more detail, as was done by van Vugt et al. (2017), may allow for stronger
integration between working memory biases and the ruminative process. For in-
stance, a model with a bias towards negativity in its working memory updating
may extend this bias through spreading activation towards similarly negative
items in declarative memory during off-task thinking. In this way, a bias in work-
ing memory places a top-down constraint on the contents of mind-wandering.
Alternatively, highly active concepts in memory may interrupt task-directed cog-
nition in a bottom-up fashion when they are thematically related to an item in
the focus of attention. Finally, it may be possible to have a general, architecture-
wide influence of mood on processing to account for these biases, e.g. as in
ACT-R Φ, which extends ACT-R with an affective system (Dancy, 2013).

Concluding remarks

Computational methods, including cognitive modelling, can help us uncover
the cognitive mechanisms that shape behaviour in depression and other psy-
chiatric disorders. In this thesis, I have shown how a cognitive model’s perfor-
mance on a working memory task can be transformed from that of a healthy,
non-depressed participant, into that of a participant with depression, using me-
chanisms that were motivated by existing theory. Through the concrete im-
plementation of verbal theories of depression, and by comparing the resulting
predictions against human behaviour, we can deepen our understanding of the
depressed mind.
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Appendix A

Model parameters

The set of architectural parameters comprises those parameters that are set to a
fixed value and not changed between depressed and non-depressed variants of
the model. Where possible, these parameters are set to their respective default
values. The parameters of the 0-back model whose value is different from the
default are listed in Table A.1. Those of the 2-back model are given in Table A.2.

Table A.1: Non-standard parameter settings of the 0-back model.

Parameter Value Default Explanation

default-activation 2.0 none lower bound on chunk activation
ans 0.05 0.2 activation noise
rt -5.0 -2.0 retrieval threshold
default-inter-operator-assoc 2.0 1.0 associative strength between operators of same goal
default-operator-self-assoc -3.0 -1.0 spreading activation from each operator to itself
pm t nil partial matching of retrievals
subvocalise 0.3 ± 0.1 s none duration of subvocalising the target
focus 0.15 ± 0.05 s none duration of focusing on the task

Table A.2: Non-standard parameter settings of the 2-back model.

Parameter Value Default Explanation

default-activation 0.0 none lower bound on chunk activation
ans 0.05 0.2 activation noise
rt -5.0 -2.0 retrieval threshold
lf 0.1 0.2 latency factor
default-operator-self-assoc -3.0 -1.0 spreading activation from each operator to itself
production-prim-latency 0.0 0.3 time to fire subsequent productions of an operator
imaginal-delay 0.0 0.2 time to create an imaginal chunk
pm t nil partial matching of retrievals
mp 10 5 mismatch penalty applied to partial matches
focus 0.15 ± 0.05 s none duration of focusing on the task
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Appendix B

Resources

The model files, simulation data, and the scripts used for the analysis (along
with instructions and additional analyses) can be downloaded from
https://github.com/maartenvandervelde/emotional-n-back

A custom build of the PRIMs cognitive architecture is needed to run the models
(requires macOS 10.12 or newer). Its source code can be downloaded from
https://github.com/maartenvandervelde/ACTransfer/tree/Maarten
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