MULTIVECTORS WITH TRIVIAL VALUES AND THE
INVERSE SCATTERING TRANSFORM

FLORIS WISSE

ABSTRACT. This is a research concerning 2 related but separate
subjects in mathematics and theoretical physics. The mathemati-
cal aspects concern geometry, algebra and analysis. The physical
aspects concern Hamiltonian and Lagrangian systems. The first
subject is variational multivectors on a jet space. We prove that
variational multivectors with trivial values are themselves trivial.
We accomplish this by finding a homotopy operator for variational
multivectors. We find this homotopy operator by identifying varia-
tional multivectors with horizontal differential forms on a jet space.
To get more insight into homotopy operators, we first consider ex-
amples on manifolds, jet spaces and super jet spaces. The second
subject is the Inverse Scattering Transform as a method to solve a
class of non-linear partial differential equations. We will use this
method to find solutions of the Korteweg-de Vries equation.

1. INTRODUCTION

In the mathematical part of this thesis we will study variational
multivectors on a jet space. They are used in Hamiltonian mechanics,
where Poisson brackets are variational bivectors. We consider a vari-
ational 2-vector P, and let [-, ] denote the Schouten bracket. By the
classical master equation P is Hamiltonian if and only if [P, P] = 0. We
define a homotopy operator as an operator on differential forms. Let A
be a set of differential forms. The differential k-forms are denoted by
A*. Let d be a differential. The operator h : A¥ — A¥~1is an homotopy
operator if for all w € A¥, dw = 0 implies that dh(w) = w. Whenever
dw = 0, w is called closed. Whenever there exists an 7 € A*~! such that
dn = w, w is called exact. The existence of a homotopy operator shows
that every closed differential form is exact. We will find a homotopy
operator for variational multivectors.

In the physics part of this thesis we will inspect the inverse scattering
transform by applying it to the KdV equation. We will use it to find
and study solutions of the KdV equation. We will also use it to find
conserved values and symmetries of the KdV equation.

Sections 2-3 concern themselves with the mathematical problem dis-
cussed in this thesis. Sections 4-5 concern themselves with the physical
subject. The conclusion concerns itself with both.
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We will introduce structures on jet spaces in section 2. In partic-
ular we will introduce the jet space in section 2.1, differentiation in
section 2.2 and differential forms in section 2.3. In section 2.4 we will
introduce the jet superbundle, and in section 2.5 we will introduce mul-
tivectors as Hamiltonians on a specific jet superbundle, and state the
main theorem of this thesis. In 2.6 we will consider multivectors as
skew symmetric horizontal differential operators. In the subsequent
section 3 we will study homotopy operators corresponding to several
differentials. In section 3.1 we will study a homotopy operator corre-
sponding to the differential on manifolds. In section 3.2 we will study
the Cartan homotopy operator corresponding to the Cartan differen-
tial on jet spaces. In section 3.3 we will study the horizontal homotopy
operator corresponding to the horizontal differential on jet spaces. In
section 3.4 we will proof the main theorem.

In section 4 we will introduce the KdV equation. In section 4.1 we
will introduce the KdV equation. In sections 4.2 we will consider a
derivation of the KdV equation, and in section 4.3 we will study the
Hamiltonian and Lagrangian structures of the KdV equation. In sec-
tion 5 we will study the mathematics behind the solitons. First we will
focus on the time independent scattering of the Schrodinger eigenvalue
equation in section 5.1. After this, we will study the inverse scattering
problem in section 5.2. In section 5.3 we will study the time dependence
of the solutions of the Schrodinger eigenvalue equations. In section 5.4
to find and study properties of specisolutions of the KdV equation us-
ing the inverse scattering transform. We will specifically look at the
long term behaviour of the solutions, the conserved quantities and the
symmetries of the solutions. We will look at several physical In section
8 we will consider multid

2. THE GEOMETRY OF JET SPACES

In this section we will introduce the geometry of the problem. We
will do this along the lines of [1] and [2].

2.1. The definition of a jet space. First, we will recall the definition
of a jet space and define useful objects that are to be used.

Definition 2.1. Let M be a smooth manifold of dimension n and 7 :
E — M alocally trivial smooth vector bundle over M with dimension
m + n. The set of sections s of the bundle 7 will be denoted as I'(w).
We will use the multi-indices to denote derivatives w.r.t. manifold
coordinates € = (z1,...,x,) in the following way. Let s € I'(7) and
a = (a1, ...,a,) € NZj. Then we define

d\*  dm dee
) 5 da:(flmdxgns'
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We define |a| = Y77 | ;. Two sections s, so € I'(7) are tangent at x
with order k if for all & € N” such that |a] <k

() - () o

Tangency is an equivalence relation. The equivalence class [s]% of sec-
tions that are tangent to s at @ with order k is called the k-jet of s
at . Each k-jet [s]f can be labelled by the values of its derivatives,
which we denote by u, = (%) s(x), |a| < n. The set of all k-jets

of 7 is called the manifold of k-jets of =:
JHm) = {[s]y | sel(r),ze M}

The derivatives u/, can be used as coordinates for J*(r). It is endowed
with a natural structure of a vector bundle 7, : J*(7) — M and the
vector bundle y; : J¥(w) — J'(m) for | < k. The jet space of 7 is
defined as the projective limit

J>=(m) = lim J* ()
k—ro00

It has an infinite chain of epimorphisms 7. : J°(7) — J*(7) and
a vector bundle structure 7, : J*(7w) — M [1, p. 10].

Remark 2.2. In a coordinate neighbourhood U C M such that the
bundle 7 is trivial, coordinates naturally arise [2, p. 5]. Each point
[s]% € J(7|y) can be labelled by coordinates

(z, [u]) = (v, ug, ..., uq, ...),
where 4/, denotes the derivative of any section s € [s]® w.r.t o at point
x.

We will now introduce the set of functions on the jet space.
Definition 2.3. The ring of smooth functions C*(J*(7)) is denoted
by

Fi(m) == C(J*(x)).

The ring of smooth functions on the jet space J*°(r) is defined as the
direct limit

F(m) = lim Fi(r).

k—o00

Definition 2.4. For any section s € I'(r) we define the map jo, :
['(m) = I'(7s) by

Joo(s)(®) = [l
Joo($) is called the infinite jet of s. Each function f € F(m) defines a
nonlinear differential operator Ay : I'(m) — C*°(M),

Ag(s) = s ()(s).
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We denote the set of nonlinear differential operators I'(§;) — I'(&2)
as Diff(&,&).

Lemma 2.5. j% : F(7) — Diff(m, ) is an isomorphism.

This is shown in [3].

2.2. Differentiation on the jet space. We will now define certain
vector fields on the jet space.

Definition 2.6. We define horizontal vector fields as C(7) = F(m)®cee (ar)
D(T'M). A horizontal vector field Y-, _; fiv" € F(m)@coe(any (T M) acts

on F(7) via the rule
2 fuont =3 fu'ei

iel icl
Remark 2.7. Let 1; = (0,...,0,1,0,...,0) € N", where the one is
placed in the ith entry. In jet space coordinates we write dii as

d 0 0
dzt  Oxt + guaﬂia_ua

Remark 2.8. A horizontal vector field can be uniquely determined by
its action on C*°(M). The set of horizontal vector fields C() is also
called the Cartan distribution.

Definition 2.9. We denote the set of horizontal differentiations of
F(m) as CDiff(F(7), F(m)). In coordinates we write for A € CDiff(F(n), F (7))

the finite sum A(x,u) =) fo(z,u) <%>a.
We will now define the vertical vector fields.

Definition 2.10. Let X € ['(TJ*(m)). We call X compatible if it
commutes with any horizontal vector field. We call a compatible vector
field vertical if for all f € C*(M), X(f) = 0. The set of all vertical
vector fields over J*(r) is denoted as Vj(w). We define the vertical
vector fields as the projective limit

V(x) = lim Vi()

T—00

We will now introduce the related concept of horizontal modules.

Definition 2.11. Let £ be a vector bundle ¢ : X — M, we denote
the pullback of ¢ along 7., as 7% (£). The set of sections of 7% () is
defined as the direct limit

[(r(§)) = lim [(m(€))-

k—o0

It is called the horizontal module of &.
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Remark 2.12. By definition, I'(};(§)) = Fi(7) ®@ceo(ary I'(§). There-
fore, the horizontal module of £ is given by I'(w% (€)) = F(7) @ceo(an)
L(¢).

Remark 2.13. An interesting horizontal module is the module of

generating sections »(w) = ['(7’ (7)). Each vertical vector field is

uniquely defined by a generating section ¢ € (m) in the following

way:
= d .. 0

=1 «

as is shown in [3, p.147]. d(ou) is the called evolutionary derivative of ¢.

We will now extend the precomposition j% to horizontal modules.

Definition 2.14. Let Y, ; fiv' € F(7) Qcooary T'(§). Then ji
F () @coo(ary I'(§) — Diff(mr, €) is defined by

Qo f) =) g (1)
iel iel
We will now extend the notion of horizontal differential operators to
horizontal modules.

Definition 2.15. Let P, = I'(7*(&;)) and P, = I'(7*(&2)) be horizontal
modules. The set of linear maps between I'(&;) and T'(&;) is denoted
as Hom(&;, &). The horizontal module of linear maps between P; and
P, is defined by

Hom(Py, ) := F(7) @ceo(ary Hom(1, &o).

Similarly, the linear differential operators between I'(§1) and I'(§2) is
denoted as Diff™ (¢, &). The module of horizontal differential opera-
tors between P; and P, is defined by

CDIff(Py, Py) = F() @ceo(ary Diff ™ (&5, &5).

The set of multilinear horizontal differential operators A : P, x ... X
P, — @ can be constructed as

CDiff(Py;...; Py, Q) = CDiff( Py, CDiff( P, ..., CDiff( Py, Q)...).
Specifically
CDiffy, (P, Q) := CDiffy(P;...; P,Q).

Remark 2.16. By equation (1), the precomposition j3, maps elements
of CDiff(Py, P,) to the set Diff(r, Diff™" (&, &)) € Diff(r @ &, &). Ele-
ments of CDiff(Py;...; Py, Pyi1) are mapped to the set

k
Diff(r, Diff"" (&, Diff™ (&, ..., DIt (&, &s1)--.) C Difi(r&ED &, &)

=1

We will now define the linearization of sections of horizontal modules.
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Definition 2.17. The linearization E;"z) € CDiff(s¢(7), P) of a section

> ier fv' € P applied to ¢ € »(r) is defined by
@)= A (e
iel
2.3. Differential forms. The horizontal differential is defined as
_ - d
d = daz'—
o daz?
The Cartan differential d¢ is defined as the difference between the de
Rham differential dyz and the horizontal differential.

] S
dc IddR—d:Z[dUJa‘i‘;dl' u£+1i]a_%

j7a

The module of horizontal differential p-forms is
]\p(ﬂ') = f(ﬂ') ®C°°(M) AP(M)
The module of vertical differential forms is generated by
w? = de(ul).
The module of vertical differential ¢-forms is denoted as C'A%(rw). Let
a = (ag,..,a,) € (N)? and j = (ji,...,Jg) with 1 < j; < m. We
introduce the notation w?, := wi A ... Awd,. The space of differential

k-forms on J*°(7) can be defined as the sum of products of horizontal
differential p-forms and vertical differential g-form such that p+ ¢ = k:

A7) = @ A(7) @5z CAY(r)
pta=k

This gives us the following bi-complex:

A () 29 A7) @pm CTA(T) —< ...

d d

d d (2)

A(r) =2 AY(r) ®@r(m CA(T) —< ...

d d

F(r) -2 C'A(r) LA

We also define the horizontal cohomology
_ kerd: AP(7) @) CAY(m) = APTH(T) @7 (x) CAY(m)
~imd : A7) @7 CAI(7) = Alr) @p(ry CAI(T)

EP9(r)
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For the cohomology of the horizontal differential forms we will use the
notation H(w) := E*°(w). H"(r) is called the set of Lagrangians or
Hamiltonians. The equivalence class corresponding to w € AP(7) @z ()
CAi(r) is denoted as [w].

Remark 2.18. Since A"(m) is a horizontal module, the map jZ, :
A™(m) — Diff(T'(r), A"(M)) exists. [w]| can be evaluated as a func-
tional using the map s — [}, 7% (w)(s).

Remark 2.19. Let P be a horizontal module. The adjoint module of
P is denoted by P := Hom(P,A"(r)). <,>: P x P — A"(w) denotes
the natural coupling between P and P. Specifically, F(r) = A"(7).

2.4. The Jet Superbundle. We will first introduce the jet super-
bundle. The definition will be very similar to our introduction of the
infinite jet bundle, and a lot of definitions will carry directly over from
the Jet bundle. In this section we follow a setup similar to [4].

Definition 2.20. Let M"™ be a manifold with dimension n and E a
supermanifold of superdimension (n + mg)|m; with the structure of a
vector bundle 7 : E — M™. If 7 can be split into two separate bundles
7 = m° @ 7! such that the fibres of 7¥ are even and the fibres of 7! are
odd, then we 7 is called a superbundle over M™. The superbundle can
be extended to an infinite jet superbundle by setting

7Tgo = (71'0)00

Moo = () M)e)"

7% is the usual infinite jet bundle over 7°. II denotes the parity opera-
tor. It declares odd vector bundles to be even, and even vector bundles
to be odd. The set mo, = 70, @ 7. is called a jet superbundle.

We define the set of sections of the superbundle as

(7o) = (7o)’ @ Do) = D) @ (T((m)™))"
Any section I'(m) 3 s = s + s' can be identified with a section

['(Too) D Joo(8) = Joo(8%) + (Juo((sH)M)I. With F(7) we denote a
superalgebra of differentiable functions on J* (7). We define it as

F(m) =) F(r°) @cn &(Fun((x)™))

Where Fp;,, (7)) is the subset of F((7!)) containing functions that
are linear in the fibre of (7! ). &(Fu,((7H)M)) is the Grassmann al-
gebra generated by these functions. A function f € F is called ho-
mogeneous whenever it is homogeneous w.r.t. the Grassmann algebra
&(Fiin (7)), The degree of a homogeneous function f is denoted by

Dy.
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The definitions of horizontal and vertical vector fields on jet super-
bundles are identical to the definition of these fields on jet bundles.

Let £ = & D& be £ @ X — M be a vector superbundle over M,
splitting in the even bundle &, and the odd bundle &. We define the
pullback 7% (£) = 7% (&) @ (7%, (&)™, The F(r)-supermodules are
defined in exactly the same way as F(m)-modules. Left sided vertical
vector fields can be written as

-
m d|a| g

Fon g4 0

’ Ja dz® <90 )8u{1

with ¢ € s(m). For the evolutionary derivative we also have a right-
sided variant, denoted with a arrow to the left. We define the lineariza-

tion as (87 (¢) = Sign(pw) &V (w).

2.5. Hamiltonian Structures. In this section we will define the Hamil-
tonian structures on a jet space. We will define and review the proper-
ties of the Schouten-Nijenhuis bracket, the Poisson bracket and discuss
when a variational bivector defines a Hamiltonian equation. We use
the same construction as is used in [4]. We start out with the defini-
tion of the horizontal jet bundle and consider an example: an infinite
jet version of Kupershmidt’s cotangent bundle to a vector bundle.

The following definition comes directly from [5].

Definition 2.21. Let £ be a vector bundle over J* (7). Two sections
81,82 € I'(§) are horizontally equivalent at 6 € J*°(n)if Vo € NZ,
if Dy(s?) = D,(s5) at 0 for all multi-indices o and fibre-indices 3.
Denote the equivalence class by [s]g. The set

T (&) = {[slels € T(€),0 € J*(m)}
is called the horizontal jet space of &.

We will now define Kupershmidt’s cotangent bundle to a vector bun-
dle and the infinite jet version.

Definition 2.22. Let 7 : E — M be a locally trivial smooth vector
bundle over M. Let 7* : E* — M be the dual bundle to 7. Let 7 be
the vector bundle 7 : E*®pm A"(T*M"™) — M". The superbundle K =
K% (K1), where K° = 7 and K! = 7 is called Kupershmidt’s cotangent
bundle to m. The horizontal jet superbundle Ko = J& (KG(K1)) is
called the cotangent bundle of 7.

We will use u to refer to even coordinates and b to refer to odd co-
ordinates of Kupershmidt’s jet bundle. We will now define variational
multivectors as the Hamiltonians of Kupershmidt’s jet bundle.

Definition 2.23. Elements P € H"(K) is are variational multivectors.
If P is homogeneous with degree D;(P) = k, then P is a variational
k-vector. The set of variational k-vectors is denoted by H}}(KC).
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We will now define the Schouten bracket, which will give us a way
to evaluate multivectors.

Definition 2.24. Let F, H € H}(K). The variational Schouten bracket
[ -] - H}(K) x H}NK) — H, 1 (K) is defined as

ptq—1
O0F 0H O0H 6F
_ o T (D)D) P
[ H] ; dud b (=1) bl dul

Remark 2.25. The bracket is graded commutative:
[F,H] = —(=1)Pr= V@01, F]
It also satisfies a graded version of the Jacobi identity:
(—1)Pr=Pr=D[[F G, H] + (-1)Pe= D Pr=V][G, H], F]
+(=1)Pr=D@Pe=D[ [ F],G] = 0
This implies that it forms a shift graded Lie algebra.

Evaluation of a variational multivector P € H}}(K) at the densities
H' ..,H* € H"(7) is defined in the following manner:

P(H',... HY) = (=)*[l[[P, H'], H?], .], H"]
Remark 2.26. Note that, since H', ..., H" are Hamiltonians of J>(7) ~
H{(K), the variational Schouten bracket simplifies to
, SPH?
PH]=Y) (-1)f——

We will now state the central theorem of the thesis:

Theorem 2.27. Let P € H} (). If P(HY, ..., H*) = 0 for all H* € HY,
then P = 0.

2.6. Variational multivectors as differential operators. We will
now introduce an equivalent definition of variational multivectors. We
will first define the relevant differential operators.

Definition 2.28. Let P and @ be F(7)-modules. We denote P* :=

k times

——

P®...® P. We denote the set of k-linear horizontal differential oper-
ators A : P*¥ — Q as CDiffy(P, Q). We define CDiffy(P, Q) = Q. A
horizontal differential operator A € CDiffy (P, Q) is skew symmetric if
for all o € S,

A<p17 7pk> = <_1)0A(p0(1)7 "'7p0(k))-
We denote the set of skew symmetric multi-linear differential operators

by CDiff*"¥ (P, Q). In the special case P = Q, we call A € CDiff(Q, Q)
self adjoint if it is self adjoint in each argument, i.e.

<ALy s Djy s Pr)s Pt >=< A(P1, oy Pjm1s Phit1s P15 - Dk )5 D > -
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We denote the set of all skew adjoint symmetric differential operators
as CDiff* (P, Q).

Lemma 2.29. The set of variational multivectors H*(K) is isomorphic
to the set CDiff"" (5, »). There is an isomorphism f : HP(K)
CDiff*% (52, ) satisfying the following property:

SH* SH! SHk1

—, f(P >

Furthermore, for each operator Ap € CDiff*" (s¢(m), A*(7)) there ex-
ists a unique multivector P € CDiffi"**(z, ») such that

<P1; P(PZ: 7pk) >= [AP<p17 71%)]
This is shown in [6]. The main theorem of this thesis can be restated
by interpreting multivectors as differential operators.

Theorem 2.30. Let P € CDiff;* (5, 3). If P(p',...,p*) = 0 for all

—

p' € »(x), then P = 0.

PH', ... H" =<

3. HOMOTOPY OPERATORS ON STAR-SHAPED DOMAINS

In this section we will now show a proof of the Poincaré lemma on
star-shaped manifolds an jet spaces.

3.1. The de Rham differential. We will first show a proof of the
Poincaré lemma for differential k-forms on manifolds using a homotopy
operator. We follow the proof as outlined in [7, p. 63]. We call a set
V' C R™ star-shaped if Vz, VA € [0,1], \x € V. In other words, every
point € V is connected to the origin via a straight line. We will prove
the lemma on a star shaped domain V' C R"™. This then extends to
manifolds diffeomorphic to V. We will prove the following statement

Theorem 3.1. The Poincaré lemma on a Manifold
Let w be a differential k-form over the star shaped domain V' of dimen-
stonmn, 0 <k <n. w is exact whenever w 1s closed.

Proof. We will show this by constructing a homotopy operator h :
AFL(V) — A¥. We will begin by recalling a few concepts and results
from Lie theory. A vector field v : M™ — TM"™ has a flow which
we can denote by e : M™ — M"™ p — e“p. The pullback e“* of
e of a tangent vector u at point e“p is given by e : T, M —
T,M,u — (de=®)~'(uy). The pullback e“* : A*(T%, M) — A¥(Tx M)
of e on differential k-forms is defined by e*(w|eevp)(us, ..., ugx) =
(wp)(e*(uq), ..., e*(ug)). We will make use of the Lie derivative L,.
We define it as

%(661})* (Wlerp(ev)x) = (eev)* (Lv (w> |e:(:p(ev)(x))‘ (3)
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We define the inner product ¢ : A¥*Y(M) — A*(M) by setting t,w(v1, ..., vp_1) =
w(v, vy, ...,v,_1) Cartan’s identity tells us that we can express the Lie
derivative working on a k-form w € A¥(M™) as follows:

Ly(w) = d(tew) + tp(dw)

We can now construct a homotopy operator by integrating the Lie
derivative.
We integrate equation 3 from 0 to € < O:

EV\ * ‘ d U\ *
()" (Wleap(en) @) — we = /0 ) Wleap(uy ) i

B /0 (") (Lo(wleap(u)(a)) dp
= /0 (") (A((tow) leap(uo) (@) + (€"°)" Lo (AW ] cap(uv)(a)) it

- d/ o(ew)*((‘v(w\ewpmv)(x)))d’” /0 (€")" o (dwleap(uvy @) dpe
(4)

This formula looks a lot like our required homotopy operator. To see
this more clearly we define the operator hg:

) = = [ () o)) 5
Written in terms of this operator, we have
wlo = (€)" (Wleap(ev)()) = dhg(w)lz + by (dw) s (6)

To prove the theorem, we now choose the tangent vector field v =
Z?Zl(xia%i) € I'(TV). The flow of this vector field is given by ez =
e‘x.

We assume x € V. Therefore, for € < 0 we know that the flow ez € V
since we are on a star shaped domain. This implies that the exponential
map is well defined for ¢ < 0.

The pull-back of the flow is given by

een(€v, .. evp)) = eFw

() (wlz(v1y .oy vg)) = w eex(V1, oy Ug))

If we now take the limit € —+ —o0 we obtain

: ([ LEV\* — T ke .
ekr—noow’x (6 ) (w‘exp(ev)(m)) w‘z el}r—nooe w|e x(vla'“avk»

=Wy — 6EI_HOO Z fo(em)eb dapy A oo A dao

= W|a: - EEIPOO Z fg(())er diEa(l) AN dflfo(k)

Thus, if the right limit exists whenever dw = 0, we obtain the equation
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w = lim.,_, dhf(w) + hS(dw), proving the Poincaré lemma. To inves-
tigate the limit of the right terms, we look at the limit of our operator
he:

hy(w) = lim Af(w) = lim —/OE(LUoJ)[e“x])du

€E——00 €E——00

—— [ TGl an

- [ G

In the last sentence we used the substitution g = In \.

This allows us to state our final result: the construction of a homo-
topy operator h : A¥(M) — A*Y(M) such that h(n) = w whenever
dw = 0:

! dA
hw) = [ w)bral) S @
0
This shows that any closed form is exact. U

Remark 3.2. In this proof, we have used two properties of the vector
field v = Z?:l(xia%i)- Firstly, the flow e« of any point @ is defined
for all € < 0. Secondly, for all x € M, lim._,_,, e“x = xy for some
constant @y € M. We call vector fields satisfying these properties
dilations. Any dilation X can be used to construct a global chart such
that X = /\i(%. Therefore it can be used to construct a homotopy
operator. This implies that any manifold with a dilation has an exact
differential complex.

We will now apply the homotopy operator in an elementary example.

Example 3.3 (Homotopy operator on manifolds). We will consider
the 2-form w = dx A dy.

n = h(dz A dy)
:/0 Ly (dz A dy) [/\ac]%
= /0 (vdy — ydfc)[m’]%

1
= (xdy—ydx)/ AdA
0

1 1
= éxdy— Eydx

Now we can see that, indeed, dn = w
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3.2. The Poincaré Lemma on Jet Spaces: the Cartan differen-
tial. We will now prove the Poincaré Lemma for the Cartan differen-
tial. In coordinates, the Cartan differential has the following represen-
tation:

) - 0
de = du!, — — » dz'ul,, —
We will restrict in our proof the domain of d¢ to the set A™(m) @ CA(T),

the top row of bi-complex (2). For any w € A"(7) ® CA(n) we have
dr’ A w = 0. Therefore

de(w) = Z(duﬂ a(z ). (8)

Theorem 3.4. The Poincaré Lemma: the Cartan differential
Let m: E — M be a trivial vector bundle. Let w € A™(m) @ CA*(r),
k> 0. Then w is dg-exact whenever it is dg-closed.

Proof. We consider the vector space V' = w!(x). V is an infinite-
dimensional vector space with coordinates [u]. Let w|, € CA*(7) ®
A" (T;M) be the restriction of w to 7 1(:1:) We define the Cartan
differential on V' as dew([u]) = >_; (duf -2~ o Jw([u]). Since V' is a vector
space, V is star shaped. Any wl|, € CA*(r )®A”(T;M) can be written
as

Wl = .Z > f(u])dufl A Adul Advol (9)

Any term in this sum is of finite differential order, and can therefore
be further restricted to 7, Y(x), the manifold of p-jets over &. The de
Rham differential on this manifold is do. Therefore we can apply the
Poincaré lemma for manifolds. Let

wile = flu]) dull A ... A dulk dvol € Ak(ﬂp_l(a:)) @ A" (T;M).

The dilation of 7, '(x) is given by d%. The homotopy operator is
therefore

he AN (i () @ ATy M) — AN (g () @ ATy M),

dA
"‘]z—>/ Louwy |z ) [A]) — e

We define the homotopy operator on 7 !(x) as
he :CA*(m) @ AM(TEM) — CA* (7)) @ A™(TEM),

20 2 e D D hefl)

Jise-sJk a€(Nn)k J1se-sJk a€(Nn)k
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Clearly, hc is a de-homotopy operator for CA*(m) @ A™(T;M). We
define the Cartan homotopy operator of CA*(7) ® A™(7) by its evalu-
ation

he(w)(x, [u]) = he(wle)([u]).
Since d¢ has a corresponding homotopy operator, w is exact if and only
if it is closed. O

Remark 3.5. We require that 7 is trivial to ensure the global existence
of the vector field J;. This proof does not work if there is no vertical
vector field X such that X|, is a dilation of 7, '(z) at every point
x c M.

Remark 3.6. Note that the Cartan homotopy operator commutes with
the horizontal differential. Therefore it is also a homotopy operator for
the spaces E™?. On this space we can consider the operator

a9
’ Zj du ( dxi) ou,
5
_ J
_Z dw’ =3
J

The principle of least action can be stated as 6L = 0. Since 6L = d¢o L
we have do(0L) = 0. Since dw = de(w), we have he(dw) = he(de(w)).
This means that inverting the Cartan homotopy operator allows us
to construct Lagrangians from Euler-Lagrange equations. Working on

Fou € (), he simplifies to

ho(F du) = /0 (10 (F du)) (=, [Au])d—)\)\
- [ e
:/01F(;c, D) - wdA (10)

As an example, we can apply this to the hyperbolic Liouville equa-
tion, which is given by wu,, — e** =0

24) du, we obtain

Example 3.7. Applying he to (ugy —e
L = ho((ugy — ) du)

1
dA
— )\x_2)\u_
R
1 Lo, 1
= —Ulyy, — =€ —
2°" 2 2

If we calculate £ (h(w)), we find that this indeed gives us the original
equation.
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3.3. The Poincaré Lemma on Jet Spaces: The Horizontal Dif-
ferential. In this section we will show the construction of a homotopy
operator to the horizontal differential d on the set A"(7) of volume
forms over a jet space J*°(7). In other words, we will define an oper-
ator h : A"(r) — A""!(7) such that whenever w € A"(r) is d exact,
d(h(w)) = w. By finding the homotopy operator we will show which
volume forms are exact. Any w € A"(7) is d-closed. However, not
every horizontal volume is exact.

Lemma 3.8. Let n € A"~ Y(x). Then §(dn) = 0.

Proof. We will show that % dii = 0.

% (di (f)) - ; < %)a 3%%( (diz (f)>

() e () & o

«

Applymg dlrectly to we find

dz?

o (d\ 9 0
a_uzy<d_xi) oul, &Cﬁz ar

7’6
)
B+l 4 4
3 @uﬁ

o

J
— 8“‘047 1;

if a; >0

Applying this to equation (11) we find

%(diw)}i(—%)m 0+ 2 () w o

a a'>1;

() s () e

Uey

g

This shows that a volume form can only be d-exact whenever it is
d-closed.

Theorem 3.9. The Poincaré Lemma: the horizontal differential

Let m: E — V be the trivial vector bundle over a star-shaped domain
V. Let w be a horizontal differential form w € A™(w). Then w is d-
exact whenever w is d-closed.
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Proof. We will prove this by inverting the differential using a homo-
topy operator, in a way similar to the proof of the Poincaré lemma on
manifolds. To construct our homotopy operator, we first find 9% (n)
and then integrate it to obtain 7. To do this, we first notice that
a((")g(n)) = 8};(5177). Should we be able to integrate along the flow of
d%, we can obtain 7 from 93 (n). Thus, if we can invert the differential
on d(9%(n)), we are practically finished with our proof.

3.3.1. Reversing the differential on horizontal differential operators. In
this proof we will use the space of horizontal differential form valued
operators, CDiff(F(r), AP(r)). The fibre 2y of CDiff(F(7), A(7)) at any

point in of J*°(7) consists of vectors

Z Z i ag, de™ WA A de™® %,

T€S™ B p=0

where 7 € S™. It forms an algebra with multiplication

d B1 d B2
dz" WA Ade™®) =) AdaW AL Ad2™P) L — ) =
dx dx

d B1+B2
= (dz" D A LA d2zm @) A dzD A LA dz™ P <—)
dz

The horizontal differential on 2ly is defined by

dIB\

d18+1il
daﬁpdx IA . Adz™® —aﬁpde/\dx A Adz™®).

dxﬁ‘f’li

We will first invert the horlzontal differential on this algebra, as

described in [1, p. 50]. We will later see that we can use this inversion
to construct a homotopy operator for differential forms.
Inverting the differential is easier to do if we rewrite our operators
using a vector space automorphism. Specifically, we will use the algebra
generated by the even symbols Dy, ..., D,, and the odd symbols &1, ..., &,.
We define an automorphism by

d\”
Aut(dz-(yA...Adx () (@) ) = (—=1)& i1y ey Da-(—1) (12)

Where 7 € 5, and s, is a sequence that determines the sign. On this

algebra, we define an operator d’ that works by the graded Leibniz rule
as follows: ) )

d'(&)=D;, d(D;))=0 (13)
Recall that the graded Leibniz rule is given by d'(a - b) = d'(a) - b+
(—1)des(@)q.d'(b). We claim that if we choose the sequence s, correctly,

d o Aut = Aut o d. In other words, it will just be the horizontal
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differential on our algebra. To see why, we will calculate Autoc_i(de(l) A
- Adxy () and do Aut(dz-(1y A+ - - ANdw,(). To make the expressions
slightly less cumbersome, we use the notation §-(p41) - ... - &ra—1)  §r41) -

First we calculate Aut o d(dz (1) A ... Adzrp)):

Aut o a(de(l) NN dZL'T(p)) = Aut( Z de(l) VAN dl‘T(l) VANRTAVAN dIT(p)
l=p+1

dz-q) )

= Aut( Z (—1)p de(l) NN de(p) N de(

I=p+1

Vdaq )

To apply Aut, we have to rewrite this term in a way that will allow
us to apply definition 12. To do this, we define

=1l 1=1)(1=11-2)..(p+2 p+1)

Where we assume that n > [ > p. Note that its sign is (—1)V) =
(—1)NO+H=+1) where we define N(7) as the number of inversions of
7. This permutation looks as follows:

_( 1 2 -« p p+l p+2 - l +1 - n )
Tt = \r1) 72) - 7(p) 7(1) T(p+1) = 7(1=1) 7(I+1) - 7(n)

so that

n

Aut( Z (—1)p de(l) VANSVAN de(p) A dx,

1)
I=p+1 dz-)
n , d_
= Aut( Z (—1) dxﬂ(l) A oA dl’ﬂ(p) A dxﬂ(p_,_l)d—)
I=p+1 L7y (p+1)
= Y (—1pNOTeE - & Doty
I=p+1
= Y (F)PNOHE eI e &y e e D)
l=p+1
= Y (=DVOTae e & e e Dr
I=p+1

Now we calculate d’ o Aut(da-y A ... ANdarg):
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o Aut(da:T(l) AN dQZT(p))
= a/(_l)N(T)+Sp : g‘r(erl) BT 57'(71)

(—)NOHEEED TS ey &y e Eemy - Dagy

l=p+1

We will now choose the sign given by s,. By equating d o Aut and
Aut o d we obtain the recurrence relation

Sp+1 = Sp — P
Solving this recurrence relation for sy = 0, we obtain

5p = _p(pQ— 1) (14)

This gives the following sequence : ((—1)*) = (1,1,-1,—-1,1,1,—-1,—1,...)
For this choice of signs, we obtain d’ o Aut = Aut o d. From now on,
we will no longer differentiate between d and d.

We will now define the Koszul differential on this algebra

Definition 3.10. Let s be the derivation satisfying the graded Leibniz
rule and

s(&) =0, s(Di) =&

This differential has a interesting property. If we apply d o s to a
term, we obtain:

+ ) B-&y&w D (15)

The second sum in the final expression arises when d is applied to
&k If we apply s od to a term, we obtain:
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p
sod(&r) &) - Dp) = SZ(—DH&@ e &y e & Dar,g

p 1Al
= DB & &y Gy o o) D
k=1 l=1
p
+Y &y - Da (16)

=1

The second sum in the final expression arises when s is applied to D).
We then add equations (15) and (16) to obtain

dos(&r(1y - &rpy Da) +s0d(&rry oo &rpy Dp) = (pHBI)&(l)'---'fT(m('Dg

17
This means that the anticommutator of s and d, [s,d], is a weight
counting operator. We define 5 = ms whenever p+ |5 #0,5 =0

whenever p + |3| # 0. If d(&q) « - - &) - Dg) = 0, we see that

61(5(57(1) Cat fT(p) . Dﬁ)) = 57(1) e fT(p) . D/g. (18)

We call 5 the Koszul differential. We will use its properties to construct
the homotopy operator.

We note that for p =0, d3(>°,, faDg) = >, f3Ds — fo

Let fi-9- € CDiff(F(m), A(r)). We define

dx T

G(f! (i)adxil Ada'?) = —5((_§)adxil A Az (f7)

To show that 9% (w) is invertible whenever £ = 0, we consider 9%(w) =
" (), we note that

dG((2 0 ) = =T (@) + (2() (19)
We recall that we assumed

(1) = () () = 52 = 0 (20)

Therefore we have dG({% o) = (%(p). We can find an explicit formula
for G(£* o ¢) by investigating the Koszul differential.

For p = n we will explicitly write down §.
We obtain
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(ﬂ dzy A ..o A dxy)) (21)

dah
418l
= (—1)*"Aut to50 Aut(dT dzy Ao A day,)

— (~1)" Aut™ 0 5(Dy)

= SnAut IZ|B|£IC Dﬁ 1

S”Aut 12 |5| k; k+1)...(n—1 n)(n) Dg_y,

Sn—8n—1 ﬁk n— o=t
= (—1) noons kz W(_l)( k) dl’l AL A d.I'k,l A dl'kJrl AN dl’nm
=1
n d B—1k
— %(_ Ve Ldzy Ao Adzg A Adz, (dm) (22)
k=1

For w = fdaz' A... Ada™ € A" we define w[L] == (=1)* 1 fdz! AL A

dzi A ... Ada™ € A, Using this notation we can write
d B n ﬁk d B—1k d

G — — o — 23

@ (55)) > T () emd o @

3.3.2. The construction of a horizontal homotopy operator. We will
now move on to the final part of the proof. We choose ¢ = u, so
that the flow A, is given by A.(x,u,) = (¢, e“u,). The derivative of
A, works as follows: LA, (w) = A (0%w) = A(%(u)). We can now
integrate the derivative of the flow of w:

w —w(z,[0]) = Ao(w) — Ao (w)
0 4
:[m&&@m

u))de

/WAM%
/0 AAG(0 o w))de
/ A (G

<8

0% ou))de

—00

= d/_ (G(l2 ou))|e‘u)de
:aA(G%bu»MM%M. (24)
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w(z, [0]) is exact by the original Poincaré lemma on manifolds. We can
use the homotopy operator h to reconstruct the corresponding (n — 1)-
form. Therefore, our homotopy operator is:

he) = [ (G0 p)rul 5+ hielino) (25)

g

—

Remark 3.11. Let n € A* (), and F € (7). For a conserved
current 7 of an equation F = 0 we have dn =< Yy, F' >= 0. Noether’s
theorem tells us that if F = 0 is an Euler-Lagrange equation, Qfgn
is a differentiable symmetry of the equation, as is explained in [1].
Therefore, inverting the horizontal differential will allow us to derive
conserved currents from differentiable symmetries of Euler-Lagrange
equations.

Example 3.12. We will consider the same equation as in example
3.7, the hyperbolic Liouville equation: u,, — €¢** = 0. A conserved
current 7 of this equation with corresponding symmetry 1, has the
property: dn = ¥, (uz, — €*)dz A dy. To construct the conserved
current corresponding to the symmetry u, of z-translation, we will
apply the homotopy operator h to w = Uy (Ugy — €**) dz A dy. First we

consider ‘;—;‘:.
dw d. 0 u

aeN

= [ — Qu et — Ugye + 2u e + umy:c} dz Ndy =0

Therefore we can conclude that 7 indeed exists. We also note that
w(z,[0]) = 0. This implies that we need not concern ourselves with
the contribution of this term. To apply the homotopy operator, we
first calculate the operator £::

i +u & }
dx “dx dy

08 = da Ady[ — 2uge™ + (uyy — )

We can integrate by parts to find dv, where we apply % to a test
function ¢:

d d
() = [ — —(e2v —(ugp, )| dz A d
S =[— () + dy(u 0.)] dz A dy
Terms outside of total derivatives cancel since ‘;—jj = (0. This allows us
to easily find
G(ly0¢))

G(l% 0 ) = —e™pdy + uzp,da
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Note we also could have used the formula for operator G(¢% o ¢)),
written down in equation (23). We now take ¢ = u and integrate it in
the manner of equation (24) to find

1= [ G nhS

1
dA
:/ (—e*udy + uZdw)[Mu]—~—
0 A
1
= / (—e*"Mudy + AuZdz) dA
0
1 1 1
We can now see that indeed, dn = w.
3.4. The Poincaré lemma on variational multivectors.

Theorem 3.13. Let P be a variational multivector such that Vpq, ..., pp €
s(m) P(pt,....,p*) =0. Then P=0.

Proof. Since the variational multivectors are isomorphic to [Ap], it suf-
fices to show that for all Ap € CDiffy(s¢(m), A"(7)), Ap = 0 whenever
all its values Ap(py, ..., px) are trivial.

Two different jet bundles will be considered in this proof. Therefore,
to avoid confusion, the map jo, : I'(§) — J>®(§) will be denoted as
Jool€]. By remark 2.16 we state that the map

juo|m]* : CDiffy (52(r), AP(r)) — Diff(w, Dift™ (#, ..., Diff™™ (7, AP(M)...)
C Diff(r @ #*, AP(M))

exists. By Lemma 2.5 it is an isomorphism. Therefore j,[7]|* restricted

to C_Diffk(%/(ﬂ\), AP(7)) defines an injective homomorphism to Diff(7 @
7% AP(M)), with a left inverse that we will denote by jso[m]*"!. The
map

Joo[m @ #*]*71 1 Diff(z @ 7%, AP(M)) — AP(m & 7))
establishes an isomorphism. We denote by
wp = Joo|m & T (oo [7]*(P)) € AP(m @ %))
the volume form corresponding to P. We have for any 3y, ..., 8 € ['(7)

) . . 4] .
5—uwp(s ey 8) = 5—UAP( . 8k) = 0.
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Furthermore, locally we have

0 . . . .

@(AP<$1,...,Sj_l,U,Sj_H,...,Sk))(.CI?,S)

9 . . o R . .

= @(wp)(x,s(x), $1(2), ey 8(x), .o, Sp(T)) + %(wp)(x, s(x), 81, ..., 85, .., Sk)
J . .

= @(WP)(%,S(.T),Sl(Z’)? o $k()) =0

Therefore, by theorem (3.9), we have

dh(wp) = wp.

Note that by the linearity of k, h(w) is multilinear and skew symmetric
in #%. Therefore

oo™ @ 7 (M(w)) € Diff(rr, Diff'" (7, ..., Diff'" (7, A"~1(M))...).
Therefore the map
h(Ap) = Joo ] (oo [ @ 7] (R(joc[1 ® 7] (J[7]"(AP)))))
has the property
dh(Ap) = Ap
Whenever all values of P are trivial. This completes the proof O

We will now show an example in analogue to our proof.

Example 3.14. Let A(p(x,u)) = (uzp(z, w)+up,)(z,u)) de € CDiff; (5 ( ), AP()).
This corresponds to the differential form w with the same formula

w = (uzp(2) + upe(z)) dz
Clearly 2w = £ A(p(z)) = 0. Furthermore,

o ) )

5—pw = @A(u) = @(umu +uu,) =0
Since w is a closed dlfferentlal form we can apply the horizontal homo-
topy operator to w, h(w fo G480 (u ,p)) %

G0 0 w) = G(2ugp(x) + 2up,(x) + 2updi
i

We calculate h(w) = fol 2upA d\ = up. This gives our final result

) = 2up

d(up) = ugp + up, = w = A.

The theorems (2.30) and (2.27) follow as a corollary of this proof. We

assume Ap = 0. Then the corresponding multivector A € CDiffy,_1 (s¢(7), 5¢(7))
is equal to 0. Theorem (2.27) follows directly from the one-to-one re-

lation stated in lemma (2.29). This completes our proof of the main
theorem.
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FIGURE 1. A single soliton

4. SoLITONS, IST AND THE KDV EQUATION

In this section we will consider non-linear equations. Specifically we
will analyse the Korteweg de Vries equation (KdV)using the inverse
scattering transform (IST), as is described in [8].

4.1. The KdV equation. The KdV equation is given by
Uy + Ugpy + 6UL; = 0. (26)

The KdV equation was derived by Korteweg and de Vries (1895). It
governs the evolution of long unidirectional water waves with small
elevation, collisionless plasma magnetohydrodynamic waves, and long
waves in anharmonic crystals. It has wave solutions of the form

u(z,t) = 2x% sech? (kx + wt).

The graph of u(x,0) is shown in figure 1. In 1955, Fermi, Pasta and
Ulam studied the motion of a one-dimensional anharmonic lattice [9].
They found that as time passes, the energy of the motion is stored in
low vibrational modes for extended periods of time, i.e. the energy
does not disperse to higher vibrational modes. In 1965, Kruskal and
Zabusky related this behaviour to the KAV equation, which they found
to have elastically interacting wave pulses [10]. That is, the profile and
velocity of the wave pulses before the interaction are identical before
and after the interaction. The only difference is a phase difference.
An example of this interaction is shown in figure 2. A solution u(x,t)
with 2 wave pulses is graphed at four different times t. It can be
clearly seen that the wave pulses do not just pass through each other.
They termed these wave pulses ”solitary-wave pulses” or solitons. In
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FIGURE 2. Two interacting solitons

1967, Miura, Kruskal, Gardner and Greene developed a method for
solving the KdV equation [11], the inverse scattering transform. In
1968, Miura, Kruskal and Gardner proved that the KdV equation has
an infinite amount of conserved quantities [12]. The inverse scattering
transform can be used to solve a large number of non-linear partial
differential equations. Its function is analogous to the Fourier transform
for linear partial differential equations. Many equations that can be
solved by the inverse scattering transform have soliton solutions and
an infinite amount of conserved values.

To get an intuitive grasp of the differential equation involved we will
first relate the KdV equation to the anharmonic lattice used by Fermi,
Pasta and Ulam.

4.2. A derivation of the KdV equation. We will consider a one
dimensional anharmonic lattice consisting of identical particles, con-
nected by non-linear springs. The force law will be given by F(q) =
—K(q + ag*). We will use a nearest neighbour approximation. For
each particle labelled by i € Z with displacement ¢;(t) from a state
with equidistant particles, we have the equation

m

E%‘;tt = @i—1 — 2¢; + Qi+1 + Oé((Qz'+1 - %’)2 - (Qi_l - %)2)

= qQi—1 — 2¢; + @i+1 + o(Git1 — Gi—1)(Git1 + ¢i-1 — 2¢;).  (27)
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Calling the typical distance between particles h, we derive the KdV
equation by using a continuum model ¢; — ¢(ih). Specifically, we use
the Taylor expansion

1 h? ht
q(z +h) = q(z) + hg.(z) + §h2(hx($) + Equ(z) + ﬁqﬂ:mw(x) +O(h%)

and replace ¢;—1(t) in equation (27) by ¢((i — 1)h,t) and g;+1 by q((i +
1)h,t) to obtain the partial differential equation
m 2 ht 6 3V\( 12 4
4

h
= hzq:cx + Eq:t:cxx + 2ah3q:cqgcx + O(ahE)) hG)

We now use the coordinate transformation ¢ — ht\/g to obtain

2

h
it = Gz + Eszmx + 2ahQqu7:c + O(ahga h4)

We then use another change of coordinates, T'= aht, X =x —t, to
obtain

3

h h
0=gqxr+ mCIXXXX + qxqxx + O(h?, o ah). (28)

We can then substitute u = ¢x into the equation to obtain

3

h h
Ur + —Uxxx + Uux + O(h2, —,ah) =0.
24a o'

For a << 1, and h >~ a or h < «, the PDE reduces to

ur + EUXXX +uux = 0,
which differs from the KdV equation only in the constants before the
terms. By appropriately rescaling u, X and 7" we obtain the KdV
equation, given by

ur +Uxxx + GUUX =0.

This shows that solutions of the KdV equation can be used to study
the motion of this one-dimensional anharmonic lattice.

4.3. Lagrangian and Hamiltonian structures. From this point on
we will only use the coordinates previously denoted by X and T, and
denote them by x and ¢t. As an application of the Poincaré lemma we
can find a Lagrangian of the KdV equation by using equation (10).
The KdV-equation itself is not an Euler-Lagrange equation (ELE).
However, if ¢, satisfies the KdV equation, the equation for ¢ is an ELE,
given by ¢u¢ + Qreze +6¢:q = 0. Note that g describes the transmission
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of waves through the anharmonic lattice, see equation (28). For the
Lagrangian we find

L = hc(Fdg)

1
0

1

= + L A + 2
- 2thx 9 Qbzaas 49z -

The KdV equation is also a Hamiltonian equation, with Poisson bracket

6P d 6Q

{RQ}% = Suda du

and Hamiltonian H; = [(—u® + 1u2)dz. The KdV equation is given
by
U = {U’v Hl}%

5. SCATTERING TRANSFORM OF THE SCHRODINGER EIGENVALUE
EQUATION

The inverse scattering transform is a non-linear analogue of the
Fourier transform. It allows us to solve Initial Value Problems (IVP’s)
of certain non-linear equations. It does this by transforming the initial
data to scattering data which evolve following uncomplicated differen-
tial equations. This transformation is called direct scattering. Given
the scattering data at any time ¢, we can then use the inverse scatter-
ing transform to obtain the solution at time t. The inverse scattering
transform was first developed for the KdV-equation by C. S. Gardner,
J. M. Greene, M. D. Kruskal and R. M. Miu [11].

5.1. The Schrodinger scattering problem. We will first consider
the scattering problem for the KdV-equation. The full derivation with
proofs was originally done by Faddeev [13] in 1964 and corrected by
Deift and Trubowitz [14] in 1979. Any proof that is left out in this
text can be found in these articles. To solve the KdV equation, it
is useful to consider a related equation: the one-dimensional time-
independent Schrodinger eigenvalue equation with a potential ¢(z,t).
We will require a function v(z,t) to satisfy this equation, i.e.

Ure + (A + )0 = 0. (29)
A € Ris an eigenvalue. We also require v to satisfy the time dependence
equation
vy = Av + Bu,. (30)
These two equations are related to the KdV equation by the compati-
bility condition v, = vz This gives us the compatibility conditions
2A, + By, = 0.
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We can choose B = 4\ — 2q, A = ¢, to obtain the KdV equation:

Different choices for A and B give different equations. We, however,
are only interested in the KdV equation. To summarise: for the system
given by equations (29) and (30) to be compatible for our choice of A
and B, we require ¢ to satisfy the KdV equation.

We will assume that ¢ has a finite L?norm, and lim, ,o ¢, = 0.
We define ¢, 1.9 as specific solutions of equation (29). We do this by
setting their boundary conditions to

lim ¢(x, VA, e VAT = 1
T—r—00

lim 1z, VA, tletivar — 1

Tr——+00

lim (z, VA, t)e VN =1,

Tr—-+00

The existence of these functions is shown by Deift and Trubowitz in
[14]. We will, for now, ignore the time dependence of these functions
and consider them at a fixed time ¢. We can separate three different
cases: A = k% >0, A =0and A = —k? < 0. For now we will ignore the
case A = 0. For A\ = k? we find the solutions satisfying
lim ¢(z, k)e ** =1
T——00

lim o (z, k)et™ =1

T—+00

lim o(x, k)e ** =1 (31)

T—r+00
For A = —x? we find the solutions satisfying
lim ¢(x,ik)et™ =1
T——00

lim (z,ik)e ™ =1
T——+00

lim o(x,ik)e™™ = 1.
T—>+00
The space of solutions of equation (29) is two-dimensional, and 1,
are linearly independent. Therefore we can write

¢(z, k) = a(k)y(z, k) + b(k)(z, k). (32)

The functions a and b give us information about the potential ¢, which
is called the scattering data. To clarify this term, we can rewrite the
equation by dividing by a:

1 - b

—p =i+ 0.

a a
In this equation v can be interpreted as an incoming polarised wave of
amplitude 1 from +o00. This wave is then scattered by the potential ¢
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into %(b, i.e. the transmitted wave going towards —oo, and gz/;, i.e. the
reflected wave going towards +oo. For this reason we will call 7 := %
the transmission coefficient and p = g the reflection coefficient. Using

these coefficients, the equation reads as

T =1+ pi). (33)

We will define bound states of the time-independent Schrédinger as
functions with a finite L?-norm. For A = k? we have lim,_,, |¢(z, k)| =
1. All solutions of this type therefore have an infinite L? norm. For
A\ = —x? the solution ¢ can have a finite L?-norm, since ff)oo é(x, k)*dr

converges. This however also requires that f0+°° d(x, k)* dz converges.
For this to be the case we must have ¢(x,ik) = b(ik)y(z,ik), since
Y(x,ir) diverges whenever # — oo. This implies that the zeroes of
a(ir) give the bound states of the Schrodinger eigenvalue equation.
For the Schrodinger eigenvalue equation, all bound states have eigen-
values ix located on the imaginary axis, and there is a finite amount
of eigenvalues. We label the bound states by ix,. For reasons con-
cerning residues in complex integration we will define the constant
Cy, = b(iky)/d (iky). S(q) = {{(kn,Cn)}, p(k)} is called the scattering
data of ¢. It turns out that, using the scattering data of ¢, ¢ can be
determined. This process is called inverse scattering. Furthermore, the
scattering data evolves in an uncomplicated manner.

5.2. Inverse scattering for the Schrodinger scattering problem.
In this section we will derive the equations of inverse scattering from
equation (33). This was first done by Gel'fand and Levitan in [15]. We

can rewrite ¢ and 1 as
P(x) = etk 4 / K(x,2)e™™dz
Y(x) = e 4 / K(z,2)e "*dz. (34)

K (z,2) determines the difference between 1 (z) and e~*%. As we will
see in the next section, K (x, z) is independent of the eigenvalue. If we
substitute equation 34 for ¢ into the Schrodinger equation, we obtain

/ [e‘iks(ai - 882 + q(2))K(z, s)]ds + lim e ths [@K(w, s) + 0sK(x, s)}

— 9, lim K(z,s)e”™ — e ™ [20,K (z, s) + 20,K (z, s) — q(z)]], = 0.
(35)
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It is sufficient for K (x,s) to satisfy
(0% — 0% + () K (3,5) = 0
lim 0,K(x,s) + 0sK(x,s) =0

S§—00

lim K(z,s)e ™" =0

§—00

20, K(z,z) —q(x) = 0. (36)

Since K (z,s) is unique, it necessarily satisfies these equations. This
gives us an easy way to calculate ¢, given K. We will next show that
K(z,s) can be determined from the scattering data.

Since the boundary condition of 1 is conjugate to ¢ and equation
(29) is real, we have the relation 1)* = 1. This can be seen by noticing
that ¥ + 1) is a real solution. This directly implies that K = K*. We
can substitute this into equation (33) to obtain

T¢ = et 4 / K*(z,2)e™dz + pe~ ™ 4 / pK (z,2)e"*dz.

We can further manipulate this equation by applying the integral trans-
form [ dke~*¥, where the contour ¢ lies in the upper half of complex
plane, starts at —oo, ends at +0o and passes over all zeroes of a. Fur-
thermore, we choose y > x:

/ e Mredk = / M=V 4 + / / K*(x, 2)e™ 7 dz dk

+/pe_ik(x+y) dk:—l—// pK (z, 2)e*EY 42 dk

=0+ K*(z,y) + /pe‘ik(r+y) dk + // pK (x,2)e”* Y 42 dk.
C cJT (37)
By using the residue theorem we find that

N
/ e Mredk =i Z C, e .
¢ n=1

If we define the function

N
1 [ -
F(z) = Py / peFr dk — ZZ Cpe ™%

n=1

equation (37) reduces to
K(x,y)+F(x+y)+/ K(z,2)F(y+2)dz=0. (38)

Thus, since we can calculate F' from the scattering data, we can de-
termine K from this integral equation. Using equation (36) we can
calculate ¢(z), solving the inverse scattering problem.
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5.3. Time Dependence. To investigate the time dependent scatter-
ing data S(q(t)), we investigate the time dependence of ¢(x, k, t), ¥ (x, k, t)
and ¢ (z, k, t) at the boundaries corresponding to their definition.

We then define dependent functions ¢®(z, k), ¥ (x, k), v®(z, k)
as the functions that satisfy the Schrédinger eigenvalue equation (29)
and the time dependence equation (30), as well as the initial value
conditions

¢ (w, k) = p(x, k)
VO, k) = (k)
GO (@, k) = (k).
We define the functions ¢, ¢ and 1; by setting
oz, k,t) = ( )€f4ik3t
Uk t) = M )
O, k,t) = DD (z, k)e Mt
The time evolution of ¢(z, k, t) is given by

S0l k1) = S0V = (g i+ (K~ )o. (39

We have '
lim ¢, —ike’*® = 0.

Tr—r—00

This implies that

d ,
lim — W= — Jim (4ik® — 4ik*)e=** = 0.

Therefore ¢(x, k,t) satisfies the boundary condition (31) at all times.
Similarly, ¢ (z, k, t) = ¢We "t and o (x, k, t) = et satisfy their
corresponding boundary conditions at all times.

Since the Schrodinger eigenvalue equation is linear, we have

¢\ (x, k) = a(k,0)0" (z, k) + b(k, 0)y ) (z, k)
Therefore
bz, k,t) = a(k,0)e " G(z, k, t) + b(k,0)e ® tp(z, k, 1)
We obtain
a(k,t) = a(k,0) bk, t) = b(k,0)e (40)
For the reflection coefficient we find
plk, ) = p(k, 0)e 5"

We obtain the results for negative A by substituting ix for k. Doing

this we obtain ;
Koy T _
ooty = 2t o s
a(ikp,t)
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In conclusion, the scattering data is given by
S(q(t)) = {{(kn, Cne_g’{gt)}’ p(k)e—&'k:?’t}.

5.4. Soliton solutions. We will now consider solutions of the KdV
equation for a given initial scattering data. Specifically, we will solve
the case in which we have N eigenvalues. However, we will first solve
the equation for N = 1. We will assume a reflectionless potential by
setting p(k) = 0 and we have 1 eigenvalue ix, with a corresponding
constant —iC' = c?. We will assume —iC' to be positive. We will later
see that this is required for obtaining a real solution. We then have

F(x) = e .
Substituting this into equation (38) we obtain
K(z,y) + e ™ (e " + / K(z,2z)e "*dz) = 0. (41)
We make the ansatz K(x,y) = ce "™ (x). This yields an equation for
()
V() + ce™™ + c2p(x) / e dz = 0.

This equation can be easily solved

Ce—/ﬂx
r)=——g——.
o) =~
Therefore, we can calculate K (x,x) to be
e_/iaf
K(z,z) = —*—.
(o) = =~ g

The time independent solution of the KdV equation is

q(x) = QiK(x, x)

dz
1 2
= 2% sech?(ka + 5 log ;—k)
We have ¢(t) = c2e~®"%. If we define 7y = — log C—i, we obtain the
time dependent solution
q(z,t) = 2k% sech?(k(z — 4Kt — 20)). (42)

Thus a solution with one eigenvalue s corresponds to a soliton of height
2k?, a velocity of 4k? and a characteristic width of L. This shows that
the solitons of the KdV equation have a very specific wave profile. The
graph of a single soliton with eigenvalue x = 1 is shown in figure 1.
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We can also explicitly calculate the solution of the KdV equation
for N eigenvalues k,,. To do this, we need to solve equation (38) with

F(x) = ij:l Kne "*. We obtain the equation

N N 0o
Khuy%+§:cﬁzMu#w_%ch%zwy/“Ktazkmzdzzo_
n=1 n=1 z

We make the ansatz

N
— Z cne” "V, ()
n=1

Substituting this into the equation for K yields

— Zc e Y| Y (x) — e 4 Z CmCn U ( )/OO e~ (rmtrn)z 4 | = 0.

Calculating the integral and take the coefficients of ¢,e™""¥ to obtain

e —(Km+En)x
)+ E ConCn WU (T = c,e ",
(Km + Hn)

We define the matrix C by setting its coefficients to

ef(nm#»nn)x

(K + En)’

Omn = CmCn

so that we can write
(I+C) =9,

where ¢(x) = (cre™™7,...,cye ™) and ¥ = (¢1,...,¥n). C can be
shown to be positive definite. Let 2 € RY such that x # 0, then

T e —(km+6n)z
C’x—ZZcmcn C _I_H)xmxn
n=1 m=1 m n
= Z Z cmcn/ —(kmthn)e 4o Tnln
n=1 m=1

/ Zcmxme chnxne i dg
:/ (ch:pn R”m) dz > 0.

T n=1

Since a sum of positive definite matrices is positive definite, I + C' is
invertible and we can write

Y(z) = (I+C) "¢().
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Thus we obtain

N N
K(z,x)=— Z Z cne (1 4+ C) L epe ™ e,

n=1 m=1

With this equation we can calculate g(z) = 2-£ K (z, ), which solves

dz
the inverse scattering problem.
We can rewrite this by noticing that we have d(”d?”m = L =
— e Fmtrn)E - Thege are the same coefficients that we find in our

formula for K (z,x). Writing I + C' = A, we have

= % log(det(A)).

Where we note that the logarithm of a positive definite matrix exists

and is real. Thus we can write down
2

o) = 21 log(det(4) (43)

We will now consider a 2 soliton solution. To do this we take two
eigenvalues 0 > k1 > kg, and a reflectionless potential. We can use this
to directly calculate det(A):

2 e—2K1T e—(r1tr2)x
det(A) = L+a55 A2 T
e—(k1tr2)z 1 _|_ 2 e~ 2K2T
€12 K1+K2 & 2k2
=14 eM Lt eMmtn2tAiz
2
— 2 3 _ 1 cn,O
Where we define 1, = =2k, (v —4K.t —pg) , With 2,9 = T log(m)
2
and etz = (fi=r2
K1+K2

To see how the 2 solitons affect each other, we study the solution as
t — +oo. We will move along a trajectory such that n; is constant.
For t — oo we see that 1, — —oco. Thus we have

det(A) ~ 1+ e™.
Substituting this into equation (43) gives us
oo (2, 1) = 2K7 sech? (ky (z — 4Kt — 119)),

which we recognise as a single soliton solution. For ¢ — —oo we see
that ny — oo and so

det(A) ~ e™(1 + emtz),
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This gives the solution

A
G—oo(2,t) = 2K sech? (ky (z — 4K3t — 219 — %)7

which is just the ¢, solution with = shifted by ’2—112. We see that the
only result of the interaction between the two solitons is a phase shift
in the solution. In figure 2 we can see how two solitons interact. It
displays ¢(z) at different times during the interaction.

In general, as is shown in [16], for reflectionless multi-soliton solu-
tions we obtain a similar result, where the solitons obtain a phase shift
between” t = —oo and t = +00 equal to the sum of each phase shift ob-
tained when interacting individually. The interaction of solitons with
continuous spectra (p # 0) also produces a phase shift. Furthermore,
the continuous spectra dissipates as t — .

5.5. Conservation laws. From the fact that a(k) is time-independent,
we can find an infinite set of conserved quantities [8]. The following
values are conserved for the KdV equation.

po=¢q,p1 =0
n—2

Mn = Z Mg fop,—2—; + q (/h;_l) vn 2 2. (44)
1=0 x

They are locally conserved, in the sense that 4 ;)1 (2, 1) de = j(xo, t)—
j(x1,t) for some current j. Only the even values of this sequence give
nontrivial conservation laws The first values are given by

Ho = g
pr =0
pi2 = ¢’
M3 = G4z

f4 = Qe+ 24°

15 = QGrzz + 6424

16 = 0;q + 6443 + 8¢°que + 5q”. (45)
To each conserved quantity corresponds the conservation law given by

Hn+1 X %(zqz +Qxx)'

atﬂn = _ax(,unJrQ —Qx

Equivalently, we have the following conserved currents

Bl | %(qu + Gue) )dt. (46)

Wn = :undx - (Mn+2 —Qx
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The first nontrivial conserved currents are given by

wo = (q)dx — (3q2 + e )dt
Wy = (qQ)dx — (29Gzz — qi + 4q3)dt
Wy = (qqzs + 2¢°)dz — (9039 + 126°qze + 99" — Quuze + ¢2p)dt.  (47)

In general, we have the relation dw; = (VF)dt A dz for some total
differential operator V. = 3, fi([g])<r-. The generating section is

determined by ¢; = VT(1). More specifically, due to the structure of
the conserved currents, we have

dpi
dt

= Vqt
Using this, we obtain

¢ =1

¢2 = 2q

b1 = 2qaq + 647

¢6 = 20%q + 2094, + 10¢2 + 5q".

When we physically interpret the conservation laws, we can do this
in two different ways. Firstly we can do this for the KdV equation
itself, which can describe water waves. Secondly we can interpret the
conservation laws for u, with u, = ¢, which is related to the thermal
conductivity of an anharmonic lattice. Since u satisfies a Lagrangian
equation we can use Noether’s theorem to find symmetries of this equa-
tion, given by 0.

The corresponding symmetries for the KdV equation are given by
95, The first few symmetries are given by

SO = 0
0 0
= q = _— —
52 aqz qx @q — o
Sy =20 =207, ~ —22
4 — V2qua0+12992 — —qt — ot

The first locally conserved quantity is the function ¢ itself, which cor-
responds to conservation of the area or volume of the wave. Interpret-
ing the solution as a water wave, this, together with conservation of
mass, reflects the incompressibility of the fluid. We see here that the
symmetry corresponding to the first conserved quantity is the trivial
symmetry. The volume of a single soliton is given by
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V:/ qdz

:/ 2k2sech®(kr)dr = lim 2ktanh(kz) — lim 2k tanh(kx)

) T—00 T—r—00

= 4k.

The second conserved quantity can be interpreted as the gravitational
energy of the solution, U = [ pgq dz dg = [ 1pgq* dz. The corre-
sponding symmetry is the spatial translation x — z 4+ dx. We note
here that this not imply that the conserved quantity corresponds to
momentum. This is a property of Lagrangian equations, which the
KdV equation is not. However, the conserved quantity %wo + wy corre-
sponds to the notion of momentum [17]. The gravitational energy for

a single soliton is given by
V= / ¢*dx

The third conserved quantity is harder to interpret. The third sym-
metry corresponds to the transformation t — ¢ + 6t. The third con-
served quantity of a single soliton is

1 oo
:/ 4#$ cosh(2z) sech® (k) dar

32
= 5.

3
Higher order symmetries and conserved quantity are more difficult
to interpret, since they contain terms with high powers of ¢ and high
order derivatives of q.

6. CONCLUSION

In the first part of this thesis we have looked at the geometry of
the jet space and multivectors. Furthermore, we have stated the main
theorem of the thesis. After that, we reproduced existing proofs of the
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Poincaré lemma for the total differential of a manifold, and the Cartan
and horizontal differential of the jet space. After this, we considered
a proof of our main theorem. It would be interesting to investigate
in under which conditions the horizontal homotopy operator of the jet
space of the bundle 7 @ #*. Is the condition that the horizontal ho-
motopy operator exists for J*°(7) sufficient? Furthermore, it would be
interesting to research whether this proof van be extended to the set-
ting of non-commutative, see [18] for more information on this subject.
In the second part of this thesis we have looked at the Schrodinger
inverse scattering problemand showed how to solve it using the inverse
scattering transform. We used this method to find specific solutions to
the Korteweg de Vries equation. Furthermore, we looked at properties
of more general solutions of the Korteweg de Vries equation. We also
discussed the conserved quantities of the Korteweg de Vries equation.It
would be interesting to further investigate the properties of the Korte-
weg de Vries equation in more detail. We could for example consider
how a soliton interacts with a continuous spectrum.

It would also be interesting to view the inverse scattering transform in
the frame of a change in coordinates of a Hamiltonian system. Specif-
ically, a change to action angle coordinates.

Lastly, it would also be interesting to consider multiple space dimen-
sions for the Korteweg de Vries equation. Specifically the Kadomt-
sev—Petviashvili equation would be interesting to study, since it is also

solvable by the IST.
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