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Abstract  

The current study tries to identify changes in centrality of cortical components related to 

mental fatigue. Participants were subjected to a scanning session lasting two hours, consisting 

of either four blocks of modified Eriksen flanker task (fatigue) or two blocks of modified 

Eriksen flanker and two blocks of relaxing nature documentary watching (control). During 

scanning, both anatomical and functional scanning was performed. Cortical components were 

obtained through independent component analysis of a temporally concatenated dataset 

containing the preprocessed functional data of all subjects and sessions. Adjacency matrices 

of components within subject and session were constructed based on the time series uniquely 

defined for each component per subject and session. Subsequently, both positive and signed 

eigenvector centrality were computed and differences in changes in centrality over time 

between the control and fatigue groups were identified. Five components show significant 

different in positive centrality changes over time between groups, however, none of these 

effects survived multiple comparison correction. Signed centrality revealed additional 

information, but was deemed too unreliable for further analysis in the current study.  
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1. Introduction 

In a rapidly developing world where technology and machinery grows more complex by 

the year, human error can also have consequences that grow ever more complex. One of the 

leading causes of accidents in the workplace is mental fatigue. The effect is so large, and so 

predictable that large companies employ risk-prevention strategies based on fatigue effects 

amongst employees (for an example see: Sherry and Philbrick, 2016). The psychological 

sensation of fatigue, accompanied by a bodily feeling of weariness, is known to every single 

individual on the planet, which is why it deserves the proper amount of attention. Decades of 

work have already lead to a fair understanding of the underlying mechanisms of fatigue, and a 

clear description of several separate parts of the process of fatigue induction already exist, yet 

a single overarching description of the development of fatigue remains elusive. 

Fatigue has been described as a psychobiologic al state associated with decreased 

efficiency and unwillingness to work (GrandJean, 1979), and as an acting stop signal intended 

to ensure effective resource management and prevention of full depletion (Hopstaken, van der 

Linden, Bakker & Kompier, 2015). It is a process starting with subjective sensations of effort 

and fatigue, leading to objective performance decline (Sun, Lim, Meng, Kwok, Thakor & 

Bezerianos, 2014). The same authors note that it is likely a defensive strategy for scenarios 

when excessive load is put on the frontal executive system. It is more than simple 

deterioration of task performance, as compromised performance monitoring is also observed. 

This decreased efficiency of performance monitoring is thought to be a result of changes in 

network connectivity, specifically changes in synchronization levels between cortical regions. 

When following GrandJean’s perspective of Mental Fatigue as a psychobiological state 

change, and combining it with the specific proposed role of mental fatigue acting as a stop 

signal to modulate resource spending, we quickly arrive at the theoretical notion of mental 

fatigue being a grand scale inhibitory signaling strategy. To further elucidate the underlying 
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neural mechanisms involved in the process of fatigue, first it is necessary to understand what 

is already known about mental fatigue. There are several distinct fields from which we can 

gather a large amount of evidence towards the specific principles that govern fatigue 

development.  

The first line of evidence is provided by behavioral studies. From these we can gather that 

fatigued individuals are very likely to show an increase in reaction times (Scheffers, 

Humphrey, Stanny, Kramer and Coles, 1999; Boksem, Meijman, and Lorist, 2005; Lorist, 

Boksem, Ridderinkhof, 2005; Lorist, Bezdan, ten Caat, Span, Roerdink, and Maurits, 2009; 

Zhao, Zhao, Liu, and Zheng, 2012; Guo, Chen, Zhang, Pan, and Wu, 2016), are more prone to 

making errors compared to well-rested individuals (Scheffers, et al., 1999; Boksem et al., 

2005; Lorist et al., 2009; Faber, Maurits, Lorist, 2012; Hopstaken, van der Linden, Bakker, 

and Kompier, 2015; Guo et al., 2016), and are less attentive of the task at hand (Guo et al., 

2016; Li, Song, and Miao, 2016). Van der Linden and Eling (2006) report that fatigued 

individuals have a reduced local processing as opposed to global processing of stimuli. 

Another study indirectly showed this reduced attention in fatigued individuals by providing 

evidence on direction of gaze, where fatigued individuals spent more time looking away from 

the task at hand (Hopstaken, van der Linden, Bakker, Kompier, and Leung, 2016). Combined 

with an increase in error rates this suggests that conflict monitoring and attentional control 

systems might perform suboptimally under conditions of mental fatigue, where the distinction 

between relevant and irrelevant stimuli blurs and participants allow themselves, whether 

consciously or subconsciously, to look around and fixate on task irrelevant features of their 

surroundings. Subsequent multilevel correlational analysis showed the direction of gaze was 

not only correlated with subjective attention, but a direct correlation between the gaze 

direction and other measures was observed as well. This provides evidence towards a possible 

disassociation between changes in several measures as time on task progresses, and the direct 

relationship with mental fatigue. For instance, when individuals had their gaze directed 

towards the task, it was correlated with an increase in pupil diameter, even though a different 

study found an overall decrease of pupil diameter as a function of time on task (Hopstaken et 

al., 2015). The same effect shows for the measure of task performance. Task performance 

generally declines with time on task, but Hopstaken et al. (2016) found a negative correlation 

between task performance and time spent gazing away from the screen. This provides us with 

additional evidence that the decline in task performance is not necessarily related to mental 

fatigue, but rather an emergent property of fatigue due to individual’s increase in task-

unrelated gazing. As such, we might state that a difference in gaze behavior underlies the 

decrease in task performance, the decrease in subjective attention and the decrease in pupil 

diameter.   

The second line of evidence comes from investigations on the temporal dynamics of 

cortical activation as measured in electrophysiological signals through EEG, subsequently 

analyzed in the event-related potential style. Most important here is the relationship between 

mental fatigue and the amplitude of the P300. First of all, it follows from the work of Datta, 

Cusack, Hawkins, Heutink, Rorden, Robertson and Manly (2007) that measuring P300-related 

changes is accompanied by an increase in the measure of error rates. Following that, the 

amplitude of the P300 has been observed to decrease as a function of time on task in general 

(Zhao, Zheng, Zhao, and Liu, 2010; Zhao, Zhao, Liu, and Zheng, 2012; Möckel, Beste, and 
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Wascher, 2015; Hopstaken, van der Linden, Bakker, and Kompier, 2015; Hopstaken, van der 

Linden, Bakker, Kompier, and Leung, 2016; Guo, Chen, Zhang, Pan, and Wu, 2016), and 

P300 amplitudes are positively correlated with the times when individuals showed task-

directed gazing behavior (Hopstaken et al., 2016),  However, the distinction between gaze 

behavior and fatigue related effects is less sharp, as correlation between gaze towards screen 

and P300 amplitude can still exist, even when P300 amplitudes tend to decrease over time. 

Therefore, P300 amplitudes might still be a strong indication towards a state of mental 

fatigue, and it would serve us well to find evidence of a neural generator for the P300 to see if 

de-activation in that specific cortical region co-exists with a state of mental fatigue. Li, Wang 

and Hu (2009) have provided exactly such evidence for an anatomical basis for P300 

generation. Anatomical generator sites of the P300 include the Anterior Cingulate Cortex, 

Parietal (visuospatial task), Middle Frontal, and Superior Temporal regions. In these specific 

areas, after induction of mental fatigue, we assume to find a deactivation, or reduced 

activation, to explain the reduced P300 amplitudes. As the P300 is commonly thought to 

reflect context updating (see Donchin and Coles, 1988), we might associate a reduced 

amplitude with poorer performance maintenance, or attentional control.  

The cingulate cortex shown to be involved in P300 generation has also been linked to 

generation of the error related negativity (anterior cingulate cortex: Holroyd, Nieuwenhuis, 

Mars, and Coles, 2004; for a thorough and systematic review on the ERN, see: Wessel, 2012), 

the N200 (medial cingulate cortex), and is theorized to be part of the performance monitoring 

system (For example, see: van Noordt and Segalowitz, 2012). Additionally, the ERN has also 

been shown to decrease in magnitude as a function of time on task (Scheffers, Humphrey, 

Stanny, Kramer and Coles, 1999; Lorist, Boksem, Ridderinkhof, 2005), and Scheffers et al. 

also showed the relationship between a reduced ERN amplitude and poorer task performance. 

Increase of N200 amplitudes as a result of fatigue induction have also been reported (Möckel, 

Beste, and Wascher, 2015). Lastly, a decrease of amplitudes of the mismatch negativity and 

the N100 component have been reported as an effect of time on task (MMN: Li, Song, and 

Miao, 2016: N100: Boksem, Meijman, and Lorist, 2005; Faber, Maurits, Lorist, 2012). 

Coincidentally, there is evidence of two separate neural generators of the MMN, the superior 

temporal gyrus, and the inferior frontal gyrus (Alho, 1995). The neural generators of the N100 

component are thought to lie in the superior temporal gyrus and the planum temporale 

(Zouradakis, Simos, and Papanicolaou, 1998; Godey, Schwartz, de Graaf, Chauvel, and 

Liégeois-Chauvel, 2001). When we combine these pieces of evidence, taking special notice of 

the elevated error rates fatigued individuals seem to experience along with the decrease of 

both P300 and ERN amplitudes, it all strongly suggest the involvement of performance 

monitoring, conflict monitoring and attentional controlling systems in the development of 

mental fatigue. Based on the aforementioned evidence, we expect to see reduced activation of 

the anterior cingulate cortex, frontal areas, and temporal areas, and increased activation in the 

medial cingulate cortex as a result of mental fatigue.   

A third line of evidence comes from literature pertaining neural oscillations. Several 

independent teams of researchers have investigated the link between frequency band specific 

changes over time and mental fatigue. Instead of looking at the fatigue induced changes in 

brain activity specifically related to stimulus processing or error detection, time frequency 

analysis has the advantage of showing changes in cortical activation related to ongoing 
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processes. Inducing fatigue has been shown to coincide with changes in broad-spectrum EEG 

data. Both power in the theta frequency band (4Hz – 8Hz) and the alpha frequency band (8Hz 

– 13Hz) have been shown to increase as a function of time on task (For results pertaining 

theta frequency band increase see: Boksem, Meijman, and Lorist, 2005; Zhao, Zheng, Zhao, 

and Liu, 2010; Zhao, Zhao, Liu, and Zheng, 2012; Tanaka, Shigihara, Ishii, Funakura, Kanai, 

Watanabe, 2012; Wascher, Rasch, Sänger, Hoffmann, Schneider, Rinkenauer, Heuer, 

Gutberlet, 2014; for results concerning alpha, see: Boksem et al., 2005; Zhao et al., 2010; 

Zhao et al., 2012; Shigihara, Tanaka, Ishii, Kanai, Funakura, and Watanabe, 2013; Wascher et 

al., 2014; Fan, Zhou, Liu, and Xie, 2015; Xie, Xu, Wang, Li, Han, and Jia, 2016). Power in 

the beta frequency band (13Hz-25Hz) has been shown to decrease as a function of time on 

task (Zhao et al., 2010; Zhao et al., 2012; Tanaka et al., 2012; Shigihara et al., 2013; Fan et 

al., 2015). Lastly, power in the delta frequency band has also been investigated in one 

paradigm, where it was shown to decrease as a function of time on task, specifically in the 

dorsolateral prefrontal cortex and the posterior cingulate gyrus (Ishii, Tanaka, Watanabe, 

2014). A positive correlation between activation in the dorsolateral prefrontal cortex and 

posterior cingulate cortex was also reported. 

After disentangling the different frequency band specific effects, one might consider each 

of these effects in turn to better elucidate the mechanisms underlying the development of 

fatigue. Klimesch (1999) notes that, in order for proper task performance to occur, the 

expected behavior of the alpha and theta frequency bands are counterbalanced. He states that 

good performance is associated with an increase in alpha activation and a decrease of power 

in the theta-frequency band. The evidence from mental fatigue paradigms is in line with this 

statement. Both alpha and theta show an increase in power after fatigue induction in several 

different studies, leading to a different alpha/theta ratio, and there is ample evidence of poor 

performance in fatigued individuals. Klimesch (1999) subsequently writes that the reported 

findings are associated with information encoding and memory systems in general. The alpha 

frequency band (specifically, the upper alpha frequency band) is thought to reflect search and 

retrieval processes in semantic long-term memory, and the theta frequency band is thought to 

reflect novel information encoding. However, more recent work on alpha-frequency band 

oscillations show a more complex role for the alpha-frequency band, with speculated roles 

including cortical inhibition of task irrelevant regions, cortical idling, regulating the locus of 

attention, and binding within the global neuronal workspace (Palva, and Palva, 2012). It is 

beyond the scope of the current article to delineate the exact role of the alpha-frequency band 

oscillations in the brain, yet it must be noted that the role of the alpha frequency band is 

obviously widespread and important for cortical information processing, attention, and 

consciousness in general. Therefore, it is unsurprising to see effects of time on task on the 

alpha frequency band specific power in mental fatigue paradigms. We expect to see changes 

in event-related synchronization over cortical areas which are not critical to the maintenance 

of homeostatic equilibrium or task maintenance. It is also expected that task relevant areas, 

and conflict monitoring areas show event related desynchronization within the alpha 

frequency band. Lastly, we expect that, in the current paradigm, this translates into increase in 

activation in task-relevant areas and areas which are critical for maintaining internal 

homeostasis, and a decrease in activation in task irrelevant areas. Stated otherwise, this means 

that when brain states are written in terms of linear summations of localized states, the weight 
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coinciding with task-relevant areas will increase, whereas the weight related to task-irrelevant 

areas will decrease.   

The beta frequency waves shows an inverse relationship with alpha frequency band 

activity, appearing mostly in wakeful and conscious states, rather than the relaxed state with 

eyes closed in which alpha is generally seen. Oscillations in the beta frequency band have 

been associated with gamma-aminobutyric acid based signaling. For example, see the 

induction of beta-waves after benzodiazepine ingestion (Feshchenko, Veselis, and Reinsel, 

1997), and the relationship between benzodiazepines and GABA (Olsen and DeLorey, 1999; 

Olsen and Betz, 2006). From this we can postulate that beta-wave activity is associated with 

inhibitory processing, as GABA is the main inhibitory neurotransmitter of the central nervous 

system. It has already been shown that an increase in GABA, for example, by oral 

administration, decreases beta waves and increases alpha waves (Abdou, Higashiguchi, Horie, 

Kim, Hatta, and Yokogoshi, 2006). Furthermore, beta frequency band oscillations have been 

shown to relate to response inhibition (Huster, Enriquez-Geppert, Lavallee, Falkenstein, 

Hermann, 2013). However, it has also been shown that beta band activity reflects arousal of 

the visual system during increased visual attention (Wróbel , 2000), and has been specifically 

linked to emotional context. An increase in beta band activity was seen in dogs when they 

expected a picture of a rewarding piece of meat (Da Silva, van Rotterdam, van Leeuwen, and 

Tielen, 1970), and increased beta power was also observed as a response to emotionally 

negative stimuli (Güntekin and Basar, 2007, 2010; Woodruff, Daut, Brower and Bragg, 

2011). Lastly, a strong link exists between beta power, somatosensory and motor functions 

(Pfurtscheller, Stancak, and Neuper, 1996). More specifically, beta band activity has been 

theorized to be a signature of an active promotion of the existing motor set, whilst 

compromising neuronal processing of new movements, following the discovery that beta band 

power is greatest during holding periods following voluntary movement, and its suppression 

or even replacement by gamma oscillations during planning and execution of movement. 

Combining these disparate sources of information provides us with evidence of the 

widespread utility of beta frequency band oscillations, and it remains unclear what the 

specific role of the change in beta-frequency band power in the context of fatigue 

development is. One might postulate the decrease of beta frequency band activity to reflect 

the decrease of emotional intensity experienced by individuals in states of mental fatigue. 

Alternatively, it can be postulated that the observed decrease in beta power is related to a 

reduced inhibition strength of task irrelevant motor actions, reflected in the increase in error 

rates coming from erroneous, and involuntary button presses.    

Two specific points of interest to notice are the following. Although in general alpha 

power increases and beta power decreases, there are studies providing more localized results 

which show the opposite effect. A decrease in alpha power in the right middle and superior 

frontal gyri, and an increase in beta power was observed in the middle temporal gyrus and the 

inferior parietal lobule by Shigihara, Tanaka, Ishii, Kanai, Funakura, and Watanabe (2013). 

An increase in beta power in the right inferior and middle frontal gyri was found by Tanaka, 

Ishii, Watanabe (2014), These results provide evidence towards a theory where the right 

frontal gyrus might play a special role in the development of fatigue, which coincides with the 

reports. Secondly, it has been shown that adding an extra incentive can reverse behavioral, 

event related potential, and frequency band specific effects and return them to baseline values 
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(Hopstaken, van der Linden, Bakker, and Kompier, 2015; Hopstaken, van der Linden, Bakker, 

Kompier, and Leung, 2016). 

The evidence provided thus far suggests few specific anatomical sites related to fatigue 

development, but does not yet contain investigation on the behavior of the full brain in fatigue 

paradigms. Neuroimaging studies can offer more clarity concerning possible neural correlates 

of fatigue. Increased activation as a function of time on task is reported in the superior 

temporal gyrus, cingulate regions, and inferior frontal regions (Cook, O’Connor, Lange, and 

Steffener, 2007). Cook et al. also reported increased activation in the hippocampus, thalamus, 

cerebellar clusters and the cerebellar vermis, and decreased activation was observed in the 

posterior parietal cortex. The decrease in posterior parietal is explained in terms of the 

posterior attentional network. Changes in general monitoring systems and attention related 

systems were coupled to the observed increase in activation of the frontal regions, cingulate 

regions and cerebellar regions. A second functional MRI study tried to expand the knowledge 

on fatigue through compensation strategy research, and reported midbrain deactivation 

specifically under conditions of compensatory effort (Nakagawa, Sugiura et al., 2013). These 

authors subsequently provided a large set of areas which show a decreased activation in 

fatigued individuals, split over two conditions. For sake of simplicity, only the areas showing 

changes in the hard condition will be described below, assuming that the hard condition was 

more fatiguing than the easy condition. Areas showing highly significant decreases in 

activation consist of right superior and bilateral middle frontal gyri, left superior temporal 

gyrus, left middle occipital gyrus, right fusiform gyrus, right precuneus and the right posterior 

lobe of the cerebellum. In the fatigue condition, the midbrain deactivation was also observed, 

suggesting compensatory effort to play a role in the development of fatigue. Note the 

discrepancy in direction of activation reported for the superior temporal gyrus. As we have 

seen that the P300 and MMN amplitudes decrease, and the superior temporal gyrus has been 

put forward as a generator for both of these phenomena, we expect to see a deactivation in 

this region, in line with what was observed by Nakagawa et al. (2013). 

Having looked at results using different techniques, Ullsperger and von Cramon (2001) 

furthered the knowledge on mental fatigue by making use of the fact that there is an intricate 

relationship between the temporal and spatial domain of cortical activation. They specifically 

used both EEG and fMRI to investigate the internal monitoring of performance. Due to the 

increased error rates and increased reaction times reported several times, it is quite clear that 

performance suffers when fatigue grows. Ullsperger and von Cramon postulated their 

hypotheses concerning performance monitoring in a framework containing both neural 

oscillations and anatomical regions, and tried to distinguish between neural correlates of 

response competition and error processing. They subsequently tested these hypotheses in a 

paradigm where both dimensions were measured through a combination of EEG and fMRI 

data. During a Flanker task, response competition was thought to be highest in the compatible 

trials compared to the incompatible trials. To disassociate between error processing and 

response competition, all trials which were answered incorrectly were left out of the contrast 

aimed at revealing response competition specific processes. Furthermore, the contrast created 

to investigate error processing specific effects consisted of incompatible trials only, where the 

contrast revealed differences between trials answered correctly, and those answered 

incorrectly. The response competition specific contrast revealed higher activation in the 
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mesial superior frontal gyrus when there was a stronger contrast between correct answer and 

incongruent flankers. This effect extended into regions surrounding the anterior cingulate 

sulcus, and was observed in the posterior cingulate cortex. Lateral effects of response 

competition include the lateral premotor cortex, right inferior frontal gyrus, and areas around 

the right intraparietal sulcus, and bilaterally in the anterior superior insula and on the middle 

frontal gyrus. Coincidentally, the error processing contrast revealed higher activation during 

erroneous trials in pre-supplementary motor area, regions surrounding the anterior cingulate 

sulcus, the anterior insula, and the regions surrounding the intraparietal sulcus. The 

subsequent ERP-analysis showed a strong distinction between activation patterns of response 

competition and error processing. Systems governing response competition and error 

processing show high overlap, but can be separated into two distinct networks. Both of these 

networks contain cortical areas reported in several experiments designed to investigate the 

effects of mental fatigue, giving rise to the suspicion that error processing performs 

suboptimally in fatigued individuals, and response competition is naturally stronger in 

fatigued individuals. The latter point is carefully stated in light of the gaze-direction effects 

mentioned earlier, and the increase in error rates seen in fatigued individuals. We expect to 

find changes in either if not both of these networks during the development of fatigue. 

Furthering this line of thinking, lastly, we consider a complete model specific to mental 

fatigue, as postulated by Ishii, Tanaka, and Watanabe (2014). Instead of trying to distinguish 

specific cortical areas related to fatigue development, their aim was to redefine the effects 

reported in the literature in terms of balancing acts between inhibitory and facilitating 

systems. Their work tries to first make the distinction between these two systems, and 

subsequently tries to unify their interactions in one model of mental fatigue. The facilitation 

system consists of the limbic system, basal ganglia, thalamus, orbitofrontal cortex, 

dorsolateral prefrontal cortex, anterior cingulate cortex, premotor area, supplementary motor 

area, and M1. Sensory information from the peripheral nervous system is used as a 

biofeedback mechanism to indicate periods of fatigue, and the facilitation system then inhibits 

motor output. Conversely, adding an incentive will reverse the effect and stimulate motor 

output. This reversal is strongly reminiscent of the reversal of mental fatigue related effects as 

reported by Hopstaken, van der Linden, Bakker, and Kompier (2015), and Hopstaken, van der 

Linden, Bakker, Kompier, and Leung (2016). The inhibitory system consists of thalamus, 

secondary somatosensory cortex, insular cortex, posterior cingulate cortex, anterior cingulate 

cortex, premotor area, supplementary motor area, and M1, and its role is to either block novel 

or to suppress ongoing activity of motor units. Notice the similarities between the constituents 

of both networks, and with the areas reported through neuroimaging studies on fatigue. The 

ideas presented above provide a picture of anatomical sites in which we expect to see changes 

in activation patterns during fatigue, but more importantly, it provides us with the idea of a 

balancing act between cortical networks making use of a shared, and limited, resource pool.

 This resource management is not specific to mental fatigue. Interference resolution, i.e., 

the solution to an internal conflict between two independent inputs vying for the same 

resources, has been studied in an fMRI paradigm by Zhu, Zacks, and Slade (2010). Their 

specific goal was to study differences between younger and older adults, however, their 

paradigm still provides us with valuable information concerning interference systems. Using a 

flanker task to introduce interference, the authors found a distinctive difference in inferior and 
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middle frontal gyrus between congruent and incongruent conditions. More interestingly was 

the clear right-sided lateralization of the correct trials as opposed to bilateral activation on 

error trials. The current paradigm is not so lenient towards disassociating the networks in 

question. For this, an alternative solution must be found. Following the theory on the two-

sidedness of mental fatigue, we expect to see these two balancing forces in action in a simple 

principle. Due to the large cortical scale, and high importance of these networks, we expect to 

find parts of these networks in a decomposition of the entire cortical activation pattern into its 

principal components. Subsequently, after directing ourselves to the language of graph theory, 

we expect to see changes in this balancing act. We specifically expect to see an increased 

influence of the ACC, PCC, frontal areas, insular cortex, primary-, pre-, and supplementary 

motor areas, secondary sensory area and subcortical regions, reflecting both inhibition and 

facilitation systems becoming more active when fatigue develops.  

 

2. Methods 

 

2.1. Subjects  

 Thirty-seven subjects took part in the study. Scanning was performed using a Philips 

Intera 3.0T scanner at the NeuroImaging Centre, Groningen. All participants filled out a 

questionnaire to verify their MR-compatibility. All subjects had normal or corrected to normal 

vision, and were right-handed. Participation was voluntary, and participants received 

compensation in the form of money (15 euros), or course-credits. Prior to the study, informed 

consent from each participant was obtained.  

 

2.2. Experimental Procedure 

 Participants were randomly assigned to the control or fatigue condition. Those in the 

fatigue condition were asked to perform a modified version of the Eriksen Flanker task 

(Eriksen and Eriksen, 1974) for a period of four blocks, lasting approximately half an hour 

each (For a clear description of the task, see Faber, Maurits, and Lorist, 2012). Participants in 

the control condition performed the modified Eriksen Flanker task for the first and last block 

of the scanning session and watched a minimally-stimulating nature documentary in between. 

 

2.3. fMRI data acquisition 

 For each subject, four functional scans and one anatomical scan were acquired. Each 

anatomical scan consisted of 160 slices and voxel sizes of 1mm³. Echo planar imaging was 

used for functional scanning, with a TR of 2 seconds. Each functional scan consisted of 39 

slices, scanned using an interleaved slice acquisition order, with a voxel size of 3,5mm³, and 

each functional set consisted of 780 scans. 

   

2.4. Preprocessing  

 Data of the first and last block of all participants was subjected to a standard batch of 

preprocessing steps. Functional data was subjected to a high-pass temporal filter with a 100 

second cut-off. Slice-timing correction was applied, and FMRIB’s linear registration tool was 

used for motion correction (Jenkinson and Smith, 2001; Jenkinson, Bannister, Brady and 

Smith, 2002). Subsequently, data for each individual was coregistered to their respective 
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anatomical data. Anatomical data was segmented into brain and non-brain tissues, and the 

brain extracted images were normalized to standard space after which the normalization 

parameters were applied to the functional data to register all functional datasets to the 

standard space as defined by the MNI-152 template. Spatial smoothing was performed using a 

3mm FWHM kernel. The data was subsequently concatenated across the temporal domain 

and group independent component analysis was performed to identify spatial maps of 

components which all participants, regardless of group, shared, whilst retaining information 

on optimal timecourses per component on the level of the individual. i.e. which set of unique, 

independent variables could be used to best explain the data of all participants. For this 

purpose, FSL’s MELODIC was used with implemented automatic dimensionality estimation 

prior to independent component analysis. During the ICA, voxel-wise demeaning was 

performed, and voxel-wise variance normalization was applied. MELODIC identified 207 

independent components (IC’s) with explained variance percentages ranging from 0.60% to 

0.41%. 

 

2.5. Component classification 

 We subsequently split the independent components into noise and signal components 

based on several objective criteria described below, and a subjective classification of what 

defines a component of interest based on earlier agreements within the field (for an up to date 

in depth review of what constitutes noise and signal within fMRI data, see Griffanti et al., 

2016) .  

 

2.5.1. Binary tissue masks 

 To ensure correct identification of components which represent cerebrospinal fluid, white 

matter tracts and grey matter, overlap scores were computed between each IC’s spatial map 

and a mask corresponding to one of the three tissue types. To minimize misclassification of 

components as noise due to large overlaps with small structures such as the low percentages 

of white matter still found in the grey-matter dominant regions of the brain, binarization of the 

tissue maps was performed prior to computing overlap values. Binary masks were created by 

using SPM’s segmented MNI-152 template tissue priors, and subsequently performing 

binarization of the tissue specific masks based on thresholding scores, thereby representing 

each voxel by one or zero. All scores in the standard space masks ranged from zero to one, 

and each mask showed its own characteristic distribution of intensity values over voxels. 

Therefore, we decided to base each threshold on visual inspection of sorted voxel values seen 

in figure 1.  
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Figure 1. Single voxel intensity values per mask for all voxels. Thresholds were chosen to be 

approximate to the ‘elbow’ of each graph, and are shown per tissue type as the horizontal 

line of matching color. 

 

For CSF and white matter, an appropriate threshold was easily found, and was set to be 

0.1529 for CSF and 0.1608 for white matter. All voxels showing intensity higher than these 

values were set to one and everything else to zero. For grey matter, it was harder to establish 

an optimal threshold, due to the non-logarithmic nature of the curve, and was eventually set to 

0.5569. For ease of further handling of overlap scores, the binary mask for grey matter was 

flipped in polarity, giving all voxels with intensity lower than the threshold a value of one, 

and all other voxels zero. This can also be thought of creating a map for areas which are high 

in non-grey matter material. (Note: during subsequent sections of the article, references to 

grey matter overlap will be given from the point of view of true overlap). The result of this 

last choice is that noise components will have high overlap scores for at least one tissue type, 

making the distinction between unwanted and wanted components fairly straightforward after 

overlap scores are computed. 

2.5.2. Component-Mask overlap scores 

To compute overlap scores, binary tissue masks were first reconstructed into vectors, as 

well as each component, where information concerning spatial location was represented in the 

vector form. Subsequently, the inner product between two such vectors was computed by: 

𝑣⃗𝑇 𝑤⃗⃗⃗ = 𝑥 = ∑ 𝑣𝑖

𝑛

𝑖=1

𝑤𝑖 ∨ 

With 𝑣⃗𝑇 being the transposed binary mask data, 𝑤⃗⃗⃗ the absolute form of the component under 

investigation, and 𝑥 representing the projection of  𝑤⃗⃗⃗ on 𝑣⃗𝑇. Here, 𝑥 can be seen to represent 

the amount of overlap between a component and a mask. 

The result of this computation was a set of three vectors, one for each tissue type, composed 

of overlap scores for each independent component. See figure 2 for the sorted overlap values 

per tissue type.  
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Figure 2. Overlap scores between the segmented tissue priors of the MNI-152 template with 

the maps of the independent components. For sake of comparison both tissue priors 

consisting of continuous values, shown in red, as the thresholded and subsequently binarized 

tissue priors, shown in blue, have been used to compute overlap scores.  

 

For each individual tissue type, there is a clear plateau of ‘normal’ overlap, and a set of 

components showing markedly higher overlap scores for each tissue type. It is this region of 

high overlap that was used to define components which white matter dominant, CSF 

dominant. Inversely, for grey matter, those components showing the lowest overlap scores 

were selected for pruning. A set of components showing intermediate overlap with both CSF 

and WM masks would normally be ignored, but when there was little to no grey matter 

present, it was assumed that these components instead resemble edge regions between tissue 

types and thus, did not carry information relevant for further analysis.  

In a more general setting, it is preferable to also include analysis of temporal information, 

to identify unwanted components based on saw-tooth patterns in IC temporal signals. Due to 

our choice of temporally concatenating datasets before ICA, timecourse data was only 

available on the individual level. However, the concatenated timecourses could still be 

converted into frequency spectra, which were subsequently used as a source of additional 

information, where noisy components were expected to show diffuse spectra with higher 

energy in higher frequency bands.  

After these initial pruning steps, the remainder of components was subjected to visual 

inspection for verification of proper cleansing. During visual inspection, care was taken to 

identify components related to edge/motion activity, and components related to physiological 

activity which were possibly left unidentified using the previous pruning steps. Of the 207 

initial components, 91 were classified as signal of interest and selected for further analysis. 



- 12 - 
 

After successful data reduction, further analysis was performed on remaining components 

based on their temporal information, which is unique per session and per participant. Spatial 

patterns emerging from ICA are not represented at each point in time for each individual and 

variations in component activity over time can be used to create a more global map of cortical 

activation patterns. Timecourses represent temporal activity of one spatial component, and 

can therefore be used to distinguish these global patterns of activity and variations over time.  

2.6. Adjacency scores/Linear Correlations 

 To describe these possible changes in global connectivity over time, we assume that there 

is some truth to Hebbian theory, and that what fires together, wires together. After combining 

this idea with that of a graph theoretical view of networks, the next step towards our goal of 

describing dynamical systems is that of connectedness, or adjacency within networks 

(Newman, 2008). Building on an already solid mathematical framework, which has been 

tested and validated in various applied settings countless times (e.g. Organic Chemistry: 

Estrada, 1996; Steganography: Pevny, Bas & Fridrich, 2010; Social network analysis: 

Freeman, Borgatti, & White, 1991), the validity of constructing adjacency matrices in the 

current context depends solely on the assumption that when two separate regions, or networks 

of the brain are highly active at the same time they are highly likely to be connected. The 

temporal information captured in the timecourse data for each component provides this 

information readily.  

Consequently, the correlation between all timecourse pairs within subject and session was 

computed to provide an index of connectedness. This resulted in an n x n correlation matrix 

per participant, per session, where n is the number of components that survived cleansing 

steps. This adjacency matrix is a real-valued, symmetric matrix, representing a network where 

weighted connections are independent of direction. i.e. 𝑟𝑖,𝑗 = 𝑟𝑗,𝑖 where r is the correlation 

coefficient, and i and j are adjacency matrix indices referring to component numbers, and r is 

computed as follows: 

𝑟 =
1

(𝑁 − 1)𝜎𝑥𝜎𝑦
∑(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

𝑁

𝑖=1

 

Where 𝑖 = 1,2, … , 𝑁 is the length of the time series of components 𝑥 and 𝑦,  𝜎 denotes 

standard deviation of a time series and an overbar denotes the mean of a time series. 

The symmetry imposed is a natural consequence of using correlation as a measure of 

connectivity, as correlation does not imply causation. Activity in component A is related to 

activity in component B. However, a measure of correlation does not provide the direction of 

information flow between components A and B. See figure 3 for an example of an adjacency 

matrix. 
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Figure 3. Adjacency matrix over all components, mean over all participants and sessions.  

 

By revealing connections between components, and carrying information on natural 

clusters of components, these adjacency matrices provide a useful tool for further connectivity 

studies. Describing which components have a lot of strong connections, and which are weakly 

connected can provide a plethora of information on the natural flow of information through 

network structures. Several methods have been developed to reduce the complexity of these 

systems by viewing only a subset of possible variables. With the aim in mind of describing 

the large scale changes within these networks, the current study makes use of the measure of 

Eigenvector centrality to investigate possible changes in the influence a single node exerts in 

the entire network structure. Subsequently, expansion to a more general case of graph 

eigenvector analysis is employed as an additional form of dimensionality reduction. 

 

2.7. Eigenvector Centrality 

 Quantitative statements about the internal workings of networks can be phrased in the 

terminology of graph theory. A graph is a set of nodes and edges, often explained using the 

analogy of a social network of friends. Each group of friends can be imagined using a graph, 

where each individual is a node, and edges represent whether two people are friendly towards 

each other. Some friends only really talk to one or two others in the group, whereas others are 

friendly towards everybody involved. Yet, it is clear that the whole structure consisting of 

individuals is one coherent group. One individual often does not like all of his or her friends 

equally well, leading to a ranking described in terms of liking ratings, or a similar subjective 

measure. When encoding these subjective liking ratings, we get a graph with weighted edges. 

The question then is which friend is the most important player in this specific group. 

Specifically, what part of the group’s activities as a whole can be explained by the activity or 

presence of a single individual? How heavy does his vote count compared to the vote of 

others? How strong does her opinion resonate throughout the group? This way of computing 

social influence of an individual strongly resembles independent component analysis, where 

statements are made about percentages of variance explained by single components. In 

essence, computing eigenvector centrality is a close cousin to ICA and PCA. 

For more detailed information on the measure of eigenvector centrality, see: Newman 

(2006) for a theoretical description; Lohmann, Margulies, Horstmann and Pleger (2010) for a 
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practical example in fMRI data analysis. For a possible implementation in Matlab, see: Brain 

Connectivity Toolbox (Rubinov and Sporns, 2010). For any real-valued non-negative 

symmetric matrix, eigenvector centrality is defined as the eigenvector associated to the largest 

absolute eigenvalue given by the matrix equation: 

𝐴𝑥 = 𝜆𝑥 

Which states that there exists a vector x, for which holds that it remains unchanged by 

multiplication with matrix A, with exception of a scaling term, lambda. If the matrix A is non-

negative, i.e. all of its entries are positive or zero, the Perron-Frobenius theorem states that the 

vector x associated to the largest absolute 𝜆 consists only of positive entries. In the case of 

weighted correlation matrices, this means a transformation is required to ensure all matrix 

entries are non-negative. This introduces a potential risk of skewing information, introducing 

non-existent information, or discarding information altogether. It would serve the analyst well 

to carefully consider the different transformations available to ensure non-negativity of all the 

matrix entries. 

Of all the possible rescaling techniques, some have grown to be favorites within the 

network analysis community. Within neuroscience, adding one to every entry, thereby 

rescaling all matrix entries to lie between zero and two (For examples see: Preti, Bolton, and 

Van De Ville, 2016; Wink, de Munck, van der Werf, van den Heuvel, & Barkhof, 2012; 

Lohmann et al., 2010). This method provides a good approximation of network structures, and 

provides information on individual components from the perspective of the entire network. A 

second option is ensuring only positive entries by creating a binary matrix where one denotes 

there is a connection, and zero denotes that there is no connection between components (for 

examples, see: Bagler, 2008; Borgatti, 1995; Rosenkopf & Schilling, 2007). This method 

serves well for those that are only interested in possible connectivity studies and cluster 

analysis, without giving credit to weights of individual connections. A binary adjacency 

matrix also has the advantage of being computationally straightforward. Alternatively, one 

can choose to look at only the positive side, or the negative side of the scale, for an example 

of such a split where both sides were subsequently analyzed, see Hosseinmardi, Han, Lv and 

Mishra (2014). However, in the current research there is an interest in preserving naturally 

occurring clique structures. One such division between cliques in neuroscience is the natural 

division between types of cortical networks, with a clear distinction between networks 

powered by different neurotransmitters, networks which are predominantly excitatory in 

nature or rather inhibitory in nature. The current study uses the first of these aforementioned 

methods, and also provides a comparison with another method described below, aimed at 

directly describing the overall status of a component in terms of excitation or inhibition. 

 

2.8. Eigenvector centrality with negative relations 

 The current investigation not only aims to define which networks or cortical areas are the 

most influential players, but additionally tries to redefine the centrality measure in order to 

make a clear distinction between those components whose influence is mainly excitatory and 

those whose influence is mainly inhibitory. Components negatively correlated with a plethora 

of other cortical networks are thought to be either inhibitory themselves, or inhibited by 

everything else. Please note the two-sidedness of this statement, as correlation clearly does 

not imply causation. To preserve this structure and thus the distinction between positive and 
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negative correlations, the current research follows the precedent of Bonacich and Lloyd 

(2004) and uses matrices with negative entries to compute centrality scores. These centrality 

scores are subsequently compared to those resulting from more traditional metrics on 

centrality. See Seidel (1968) for a concise description on the properties of graphs with 

positive and negative entries, and their eigenvector decomposition. The resulting eigenvector 

is also signed, providing a natural distinction between two cliques. Given the direction of the 

original correlations, the clique distinction is thought to be related to inhibitory and excitatory 

signaling. The signed metric provides centrality scores relative to the clique to which a 

component belongs. This allows for retention of all information contained in the original time 

courses, without having to apply one of the earlier described transformations. The subtle 

difference between unsigned centrality, and signed centrality scores lies in the balancing act 

between positive and negative influence, where a component, or node, which has an equal 

amount of influence in both groups, will end up as a non-central player, i.e., it is unclear to 

which group or clique this component really belongs. It is neither liked by everyone, nor 

disliked by everyone. Its opposing influences balancing results in a player having neutral 

influence in the network. The resulting metric resembles the structure of centrality measures 

computed from a split dataset, such as in Hosseinmardi et al. (2014), and can be inspected 

below. 

 
Figure 4. Three eigenvector centrality measures computed from the mean adjacency matrix 

shown in figure 1. Comparison between defining centrality based on only positive entries, 

only negative entries, or the entire adjacency matrix. 

 

As can be seen from the signed metric in figure 4, in the current matrix, the network defined 

by negative entries has a relatively small influence in the global structure. Nonetheless, the 

influence of negative correlations can clearly be seen in those few components which have an 

overwhelming negative presence compared to their small positive influences, i.e., those 
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components which show very little to no positive outgroup communication. Figure 5 shows 

the natural clustering for the mean of all participants, with two clusters counterbalancing each 

other, and one cluster whose influence is mainly neutral.  

 

 
Figure 5. Mean adjacency matrix with components sorted by signed eigenvector centrality 

scores reveals natural community structures. 

 

 As a technical note, one of the usual arguments against using negative matrix entries for 

computation of eigenvectors is that signed matrices need not have a uniquely defined set of 

eigenvectors and eigenvalues, rather having a possibility of repetition in the eigenvalue set. 

However, eigenvector decompositions will only return eigenvalues which are identical or 

multiples in the case of degenerate matrices, i.e., when one of the vectors of the original 

adjacency matrix can be written in terms of one of the other vectors. It is expected that the 

unfortunate scenario of non-uniqueness of eigenvectors does not arise when handling 

weighted adjacency matrices where each weighted edge is defined up to 32 bit precision. 

Secondary, it can be shown that the signed metric, in critical ways, behaves the same as the 

original positive metric. For instance, the following equation holds true for both positive and 

signed eigenvectors: 

|𝑥|2 = 1 

i.e., the norm-squared (also referred to as the L-2 norm, or the 2-norm) of a vector x is equal 

to one. All eigenvectors, whether signed or positive, resulting from the decomposition as 

described above, will have a length of one. 

 

2.9. Principal Component Analysis 

 To maintain proper nomenclature, it is important to realize that eigenvector centrality, and 

especially the centrality measure relying on both positive and negative relations is simply a 

form of principal component analysis.  However, the version of eigenvalue decomposition 

implemented in the Brain connectivity toolbox, and the fast eigenvector centrality mapping 

toolbox (Wink, 2012; see equations 8 and 9) always ensures a non-negative matrix. To deal 

with signed matrices, MatLabs own eigenvector decomposition method was used (The 

MathWorks, 1993), following the QZ factorization algorithm (For more information see 

Kressner, 2005) and subsequent eigenvector normalization. This method was chosen over 

MatLab’s PCA function for ease of comparison, as the Brain Connectivity Toolbox makes use 

of the same method, after ensuring non-negativity of the input adjacency matrix.  
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2.10. Permutation Testing 

 After all eigenvector sets are computed per participant and per block, a permutation test 

per component over the eigenvectors is run. Without evidence supporting the assumption of 

normality of eigenvector components, the median was used for statistical analysis of 

differences in component distributions. Within condition, the permutation testing made a 

comparison between centrality during the fourth block and the first block of scanning. 

Secondary to that, between condition permutation testing was performed for both the first and 

last block. As a last test, the interaction effect was investigated by taking difference scores 

between fourth and first block per condition, to identify changes in centrality, and 

subsequently comparing the distribution of differences between fatigue and control 

conditions. From 10.000 permutations, p-values per component were computed through the 

set of equations: 

𝐶𝑖 = 𝑗 ̿∀{|𝑚𝑖| > |𝑛𝑗|} 

𝑝𝑖 =
(𝑁 − 𝐶𝑖)

𝑁
 

Where 𝑗 ̿is the size (or cardinality) of the set of j for which the following inequality holds true. 

|𝑚𝑖| is the true absolute difference between medians of component i, |𝑛𝑗| is the absolute 

difference between medians of permutation j. 𝐶𝑖 is then the number of occurrences where the 

difference between permuted medians is smaller than the true difference for component 𝑖, 𝑁 is 

the total number of permutations, and  𝑝𝑖 is the estimated p-value computed for component i. 

 

2.11. False Discovery Rate 

 Having performed permutation statistics on several hundreds of values, a multiple 

comparison correction is in order. A multiple comparison correction in the form of a false 

discovery rate according to Benjamini and Hochberg’s (1995) algorithm has been applied.  

 

3. Results 

 

3.1. Interaction 

 Based on permutation testing, five components show a significant difference between the 

first and last block of scanning when compared between the fatigue and control condition. 

Areas showing a significant difference between changes seen in the control and fatigue 

condition over time can be seen in figure 6 and include: Lateral central sulcus and 

surrounding gyri (p=0.039; red); Frontomedian areas, including anterior cingulate cortex 

(p=0.023; blue); Posterior cingulate gyrus (p=0.035; green); Right anteriofrontal areas 

(p=0.035; pink); Right insular cortex (p=0.033; yellow).  
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Figure 6. Locations of the five components showing significant differences in changes over 

time between control and fatigue conditions. 

 

Further investigation on these significant components shows the direction of these changes. 

See figure 7 below. 

  
Figure 7. Probability density functions of differences (Difference = Centrality block four - 

Centrality block one) in the control condition (Blue) and the fatigue condition (Red) for all 

significant components. 
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From figure 7 we see that the areas surrounding the central sulcus, the anterior cingulate 

cortex, the posterior cingulate cortex and the right insula become more central over time in 

the fatigue condition. The anteriofrontal areas seem to be distributed around no change over 

time in the fatigue group, rather showing an increase in centrality over time in the control 

group. 

 

3.2. Control 

 Within the control condition, no significant differences between block one and four were 

found. 

 

3.3. Fatigue 

 Within the fatigue condition, four components were found to differ significantly in their 

activation between block four and one. Figure 8 shows the regions changing significantly 

including: Orbitofrontal regions (p = 0.039; blue); Posterior cingulate cortex (p =0.008; red); 

Lateral occipital cortex and superior parietal lobule (p = 0.033; green); bilateral hippocampal 

regions (p = 0.012; pink).    

 
Figure 8. Anatomical sites showing significant changes over time within fatigue condition. 

 

3.4. Block one 

 Four component centralities were already significantly different between the control and 

fatigue condition during the first block of scanning, including: Right parietal regions (p = 

0.034); Left parietal regions (p = 0.031); Cerebellar regions (p = 0.013); Right insular region, 

specifically right amygdala (p = 0.049). 

 

3.5. Block four 

 After fatigue was successfully induced in the experimental group, five components show a 

significant difference in centrality scores between control and experimental group during the 

last block of scanning. These regions include: Lateral central sulcus and surrounding gyri (p = 

0.028); Lateral occipital cortex and superior parietal lobule (p = 0.010); Left insular cortex (p 

= 0.011); Inferior and middle frontal gyri (p = 0.009); Bilateral postcentral gyrus (p = 0.029). 
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3.6. Correction for multiple comparisons 

 Analysis on the false discovery rate revealed that all of the aforementioned effects are 

likely found by chance only, and no significant effects survived correcting for multiple 

comparisons. 

 

3.7. Comparison between positive and signed centrality metrics 

 Comparing eigenvectors obtained from classical methods with the signed metric results in 

some interesting properties. Although it provides a similar split between networks of 

components, the signed metric has the additional property of switching signs over time. For 

reference, see figures 9a and 9b below. Figure 9a shows the eigenvectors computed based on 

non-negative matrices, whereas figure 9b shows the output of eigenvector decomposition of 

the signed correlation matrices.  

 
Figure 9a (left) and 9b (right). Centrality scores for block one (blue) and block four (red) for 

all participants in the control group. 9a shows centrality scores based on the transformed 

non-negative matrix, whereas 9b shows centrality scores based on the original signed 

matrices. 

 

Although it appears the signed metric is not reliable for measuring the temporal dynamics of 

network interactions, we would like to mention one interesting result. For one random 

participant (Selected through the “lazy selection algorithm”, i.e., the first participant), the ten 

components showing the highest positive centrality and the ten showing the highest negative 

centrality have been investigated and mapped. See table 1. and 2. for the major constituents of 

each of these networks, and the overlap between the components and the earlier described 

inhibition and facilitation systems. 

Positive components and their 

constituents of pp1 

Overlap with proposed inhibition 

system 

Overlap with proposed 

facilitation system 

DLPFC, broader frontal region - DLPFC 

ACC, orbitofrontal cortex, caudate, 

nucleus accumbens 

ACC ACC, Orbitofrontal cortex, 

Caudate, Nucleus accumbens 

Hippocampus, Amygdala - Hippocampus, Amygdala 
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Amygdala, Hippocampus - Amygdala, Hippocampus 

Temporal fusiform cortex, Middle 

temporal gyrus, Hippocampus 

- Hippocampus 

Temporal fusiform cortex, 

Amygdala, Hippocampus 

- Amygdala, Hippocampus 

Temporal Pole, Superior temporal 

gyrus, Middle temporal gyrus, 

Frontal pole 

-  

Hippocampus, Lingual gyrus, 

Temporal occipital fusiform cortex, 

Precuneus cortex 

- Hippocampus 

Amygdala, Hippocampus, DLPFC - Amygdala, Hippocampus, DLPFC 

Middle frontal gyrus, ACC, inferior 

frontal gyrus, Postcentral gyrus 

ACC DLPFC, ACC 

Total component overlap: 2 18 

Table 1. Ten components showing the highest positive centrality scores, subdivided into the 

regions that showed the highest intensity in the spatial maps. Column two and three denote 

the overlap between the observed networks and the theoretical systems proposed by Ishii, 

Tanaka, and Watanabe (2014). 

 

Negative components and their 

constituents of pp1 

Overlap with proposed inhibition 

system 

Overlap with proposed 

facilitation system 

Frontal pole - - 

PCC, secondary somatosensory 

cortex, Angular gyrus 

PCC, SSC - 

Thalamus, ACC Thalamus, ACC ACC 

Insular cortex, Superior temporal 

gyrus, Inferior frontal gyrus 

Insular cortex - 

ACC, DLPFC, Secondary 

somatosensory cortex, Central 

opercular cortex 

ACC, SSC ACC, DLPFC 

ACC, PCC, superior frontal gyrus, 

frontomedian wall 

ACC, PCC ACC 

MCC, SMA, Precuneus SMA SMA 

Putamen, Heschl’s gyrus, Insular 

cortex, Secondary somatosensory 

cortex 

Insular cortex, SSC Putamen 

Superior temporal gyrus, 

Secondary somatosensory cortex, 

Insular cortex, Heschl’s gyrus 

SSC, Insular cortex - 

Visual areas surrounding parieto-

occipital sulcus 

- - 

Total component overlap: 13 6 

Table 2. Ten components showing the highest negative centrality scores, subdivided into the 

regions that showed the highest intensity in the spatial maps. Column two and three denote 

the overlap between the observed networks and the theoretical systems proposed by Ishii, 

Tanaka, and Watanabe (2014). 

 

 



- 22 - 
 

4. Discussion 

 

4.1. Fatigue effects 

 Although striking differences in changes over time between the two conditions have been 

found, none of these effects survive corrections for multiple comparisons. However, the areas 

that were found to change in a different manner over time when comparing control and 

fatigue conditions are interesting nonetheless. They include Lateral Central Sulcus and 

surrounding gyri; Frontomedian areas, including Anterior Cingulate Cortex; Posterior 

Cingulate Cortex; Right Anteriofrontal areas; and Right Insular Cortex. These areas do not 

contain the full set of areas where we expected to find changes over time, but those areas that 

belong to both observed results, and predicted anatomical sites, do show changes in the 

direction that was expected based on previous literature. The notable exception to this 

statement is the region containing the right sided anteriofrontal areas, whose difference in 

centrality over time was best explained by a drop of centrality in the control group, relative to 

a stable centrality for the two time points of the fatigue group. Due to the lack of statistical 

power for these effects, we cannot safely discuss the implications or interpretations of these 

findings, rather only remarking upon the peculiar fit there seems to be with the current 

findings and those proposed throughout the literature. The only exception is a tentative and 

speculative suggestion of the roles of the inhibition and facilitation systems. Assuming that 

these systems indeed exist as coherent identities, and assuming that the results reported above 

are indeed real effects instead of random fluctuations in the data, we might suggest the 

following additional notes on the theory proposed by Ishii et al. (2014). 

 Whenever an individual grows fatigued, it is of paramount importance that the remaining 

resources are distributed efficiently over the full system. This means inhibiting those regions 

or parts of a network that are not absolutely necessary to maintain proper task performance in 

the current context. I.e., the inhibition system and its auxiliaries become more active in order 

to reduce the activation of as many non-critical functions as possible. Coinciding with this 

activation of the inhibition system, the facilitation system is activated to ensure the proper 

workings of those regions or functions which are paramount to the current context, or task at 

hand. Restructuring the distribution of energy from small doses of energy to a lot of functions, 

to a larger dose of energy to only a few critical systems is, in itself, already quite a daunting 

task for any manager. Therefore, we would expect to see that the regions thought to belong to 

the facilitation system become highly influential in the domain, whilst it is working on this 

difficult task. Subsequently, when we see increased global inhibition, and increased local 

facilitation, we also expect to see an increase in faulty outcomes of these few systems still 

active. For example, as in any company structure, it is the safe option to have multiple 

individuals go over important documents, to ensure that no minor mistakes are made by any 

single individual. This means that all individuals perform less work per unit (the unit being 

one individual), but the total amount of energy or effort required to deliver the end product is 

likely higher than when the entire document is made, reviewed, corrected, and sent by only 

one individual. I.e., in terms of energy it might be more efficient to put only one individual on 

the project at hand, but the likelihood of making errors will be higher. Translating this back 

into the language of cortical structures, whilst retaining the essence of the message, and we do 

not find it a striking result that increasing inhibition and facilitation at the same time leads to 
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an increased efficiency in terms of resources or energy spent by the cortex as a whole, whilst 

allowing minor lapses of perfection to exit the cortical system as potential output is processed 

by fewer cortical subsystems. 

 Within the fatigue group, changes were seen in several sites which partially overlap with 

the sites contained in component set showing significant interaction effects. Centrality of the 

orbitofrontal cortex increased with time on task. This region is associated with emotion and 

reward in the cognitive processing of decision making. Secondly, it is known to receive 

information through projections from the magnocellular, medial nucleus of the mediodorsal 

thalamus. The magnocellular pathways process mainly broader features of a input field. This 

can potentially be linked to the evidence that global versus local processing is handled 

differently after mental fatigue has developed. Van der Linden and Eling (2006) report that 

local processing is compromised as a function of time on task, and we observe an increase in 

centrality of a system that receives mainly global information. The orbitofrontal cortex is also 

one of the candidate players of the proposed facilitation system. The hippocampus is another, 

and there too, we have observed an increase in centrality over time within the fatigue 

condition. But more interestingly, the PCC, thought to be part of the inhibition system, also 

shows an increase in centrality over time. This means three out of four observed effects are 

part of the systems where we expected to see the largest changes. However, since none of 

these effects survive corrections for multiple comparisons, it must be left as just an interesting 

note for the reader, who is also referred to the earlier paragraph on potential interpretation of 

an increase in both facilitation and inhibition systems. 

 We suggest that the changes in correlations between components, induced by states of 

mental fatigue, might not be large enough and do not carry a sufficient weight in their global 

influence. Stated otherwise, although a difference in flow of information is apparent between 

the first and last block of testing, this ‘rewiring’ leads to very subtle changes on the global 

scale of cortical networks. This leads to difficulties in interpretation, as we cannot state with 

certainty whether the effects of mental fatigue are nonexistent, or whether the centrality 

measure used to identify changes in global scale influencing is not sensitive enough to pick up 

these differences. 

 

4.2. Signed centrality 

 Due to the changing signs in the signed eigenvector centrality computation, problems arise 

with the analysis of possible changes over time. Some participants show changes in all 

components, leading to difficulties in deciding whether the sign changed or not. Therefore, it 

was deemed an insufficient addition towards the current investigation. Until it is clear why the 

sign changes over time, and corrections based on a rigorous method surrounding the signed 

metric have been worked out, the measure of signed centrality does not suffice for data with a 

temporal dimension. Regardless of the actual statistics, and remaining problems with the 

signed eigenvector metric, those components showing a strong negative centrality for one of 

the participants show a remarkable overlap with the theoretical inhibition system as proposed 

by Ishii et al. (2014), just as the most central components on the positive side of the scale 

show remarkable overlap with the proposed facilitation system. This is reminiscent of the 

work performed by Bonacich and Lloyd (2004), where negative centrality was only observed 

for the monks that were disliked by many of their peers, and liked by very few of their peers. 
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Thus, we suggest that the signed centrality metric (and by translation, the other centrality 

metrics), does indeed have the capacity to not only identify the amount of influence of a 

single participant or component of a network, but additionally, provides information on the 

direction of the influence. This might provide a valuable source of information in future 

studies, when the observations need to be classified into positively and negatively influential 

players. 

 

4.3. Limitations and suggestions for improvement 

 A possible shortcoming of the current design is the set-up of the control group. Although 

the task itself has been shown to induce a state of mental fatigue, fatigue effects can already 

be measured after only half an hour (Shigihara et al., 2013; Tanaka et al., 2014; ). The control 

group watched a thoroughly non-stimulating nature documentary for the second and third 

block, and resumed the flanker task for the last block of scanning. This led to the conclusion 

that the fatigued participants, when compared to the control group, did not show significant 

differences in global activation patterns between the first and last block of scanning. One 

possible explanation for these findings is that the control group, having been in the scanner 

for two hours, might have shown similar symptoms of being fatigued as the experimental 

group, albeit to a lesser degree. A reason for considering this possibility is that the scanner 

room is thoroughly darkened, during the second and third blocks of scanning, the control 

group participants were instructed to stay still, yet not fall asleep. It could well be that for 

some participants watching the nature documentary with the explicit instructions of not falling 

asleep might actually be thoroughly taxing. Lastly, it must be kept in mind that fatigue is not a 

pure binary state, but rather a continuum. We suspect that during these two hours of scanning, 

all participants showed some relative motion on that continuum towards the side of fatigue.  

One potential interesting investigation for future studies is found in the process of 

handling the output of matrix decompositions. After the set of eigenvalues and eigenvectors 

has been obtained, the question remains whether the expected changes occurring in conditions 

of mental fatigue are large enough to be part of the vector which explains the highest degree 

of variance in the data, or whether the changes have a more subtle nature. Taking into account 

that the leading eigenvector is also the principal component explaining the largest percentage 

of variance in the data, it could well be possible that it does not include the potentially minute 

changes which could be classified as fatigue related changes in connectivity. As a natural 

extension of leading eigenvector inspection, all eigenvectors up to a certain percentage of 

variance explained might be of interest in future studies. 
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