



# **Identification And Production Of Novel Lantibiotics**

# from *Clostridium* Species

via Heterologous Expression in *Lactococcus lactis* 



Afif Pranaya Jati S3169839 Daily Supervisor : Ruben Cebrian Castillo Project Supervisor : Prof. Oscar Kuipers February-October 2017 Molecular Genetics Research Group

### Identification And Production Of Novel Lantibiotics from Clostridium Species

#### via Heterologous Expression in Lactococcus lactis

### Abstract

The capability of nisin induced gene expression system (NICE) in *Lactococcus lactis* to modify small peptides into lanthipeptides, provide an exciting opportunity for novel antimicrobials production to combat various pathogens. This system can be exploited to produce "new to nature" lantibiotics from various organisms using synthetic biology approach. This study aimed to identify and produce novel lantibiotics from the genus of *Clostridium* that had not been discovered.

As a result, 54 putative clostridia new lantibiotic genes were discovered after *in silico* analysis with BAGEL3 and Anti-SMASH. Subsequently, based on the novelty and the compatibility to expression system, twelve putative clostridia lantibiotic genes were selected as candidates and tested for production via heterologous expression in *Lactococcus lactis*. Interestingly, eleven peptides except Clos16 displayed antimicrobial activity against *L. lactis* NZ9000 as indicator strain. Moreover, *Micrococcus flavus* is susceptible to Clos4, Clos12, Clos22 and ClosDP. Additionally, Clos2, Clos14 and ClosDP lantibiotics showed antimicrobial activity against *Clostridium sporogenes* and *Micrococcus luteus*. Nevertheless, mass spectrometry analyses using MALDI-TOF and LC-MS/MS revealed multiple dehydrated serines and/or threonines in several putative lantibiotic candidates, confirming successful production and secretion of novel lantibiotics from the genus of *Clostridium* by nisin synthetic machinery.

Keywords: antimicrobial resistance, antimicrobial peptides, lantibiotics, *Clostridium*, synthetic biology, heterologous expression, *Lactococcus lactis*  Table of Contents

| Abstract                                                                                      | II  |
|-----------------------------------------------------------------------------------------------|-----|
| Table of Contents                                                                             | III |
| Chapter 1. Introduction                                                                       | 1   |
| 1.1. The Necessity Of Novel Antimicrobial Compounds                                           | 1   |
| 1.2. Lantibiotics: Promising Candidate to Fight Against Various Pathogens                     | 2   |
| 1.3. Synthetic Biology of Lantibiotics                                                        | 4   |
| 1.4. Novel Lantibiotics Production via Nisin Controlled Expression System in <i>L. lactis</i> | 5   |
| Chapter 2. Materials and Methods                                                              | 7   |
| 2.1. Bacterial strains, Plasmids, and Growth Conditions                                       | 7   |
| 2.2. Genome Mining                                                                            | 9   |
| 2.3. Molecular Cloning                                                                        | 9   |
| 2.4. Peptide Expression and Purification                                                      | 10  |
| 2.5. Purification of NisP                                                                     | 11  |
| 2.6. Antimicrobial Assay                                                                      | 12  |
| 2.7. MALDI-TOF and LC-MS/MS Analysis                                                          | 12  |
| Chapter 3. Result and Discussion                                                              | 13  |
| 3.1. Lantibiotic Gene Mining In <i>Clostridium</i> Spp.                                       | 13  |
| 3.1.1) Selection Of Genomes For Gene Mining                                                   | 13  |
| 3.1.2) Putative Lantibiotic Areas Of Interest And Selected New<br>Lantibiotics                | 14  |
| 3.1.3) The Organization Of Gene Operon From Selected Putative<br>Lantibiotics                 | 18  |
| 3.2. Peptides Purification Result                                                             | 19  |
| 3.3. Antimicrobial Assay                                                                      | 20  |
| 3.4. Characteristic Of Novel Lantibiotics Based on MALDI-TOF and LC-MS/MS analysis            | 21  |
| 3.5. Remarks                                                                                  | 26  |
| Chapter 4. Summary and Future Perspective                                                     | 28  |
| Acknowledgment                                                                                | 29  |
| References                                                                                    | 30  |

# **Chapter 1. Introduction**

### 1.1 The Necessity Of Novel Antimicrobial Compounds

Nowadays and since some years, antimicrobial resistant bacteria are causing a significant problem for global health that encouraged development of new therapies or drugs. As reported in antimicrobial resistance review (O'Neill, 2014), this phenomenon estimated could kill 10 million people a year in 2050 and may cause some serious implications to the global economy and welfares. In 2015, *World Health Organization* (WHO) released "Global Action Plan on Antimicrobial Resistance" that encouraged more research and studies in development of novel antimicrobials, and also recommended global stakeholders to increase investments in new medicine production. In fact, last year the WHO published the list of bacteria for which new antimicrobial are urgently needed (http://www.who.int/medicines/publications/WHO-PPL-Short\_Summary\_25Feb-ET\_NM\_WHO.pdf).

The current situation of new antimicrobial discovery is at critical level. Since lipopeptides 30 years ago, none of new family antibiotics have been discovered, meanwhile the development of novel antibiotics is dwindling in recent years and become more expensive in the prices (Fig.1). On the other hand, the multidrug resistant pathogen strains in the world are increasing significantly (Gelband et al., 2015; Trimble & Hancock, 2017).



Fig. 1. The price and consumption of antibiotic in the United States by year of FDA approval (FDA, 2010)

This fact also triggered significant exodus of pharmaceutical industries for investing their research and development on production of novel antimicrobial compounds, due to the complexity and big production costs, resulting significant fewer incomes. Since the exodus of big pharma, now, discovery of novel antimicrobial compound becomes scientific challenge for academia (Banin et al., 2017; Trimble & Hancock, 2017). Recently, many researchers are focusing on how to produce new antimicrobials from common antibiotic derivatives or to find promising approaches to produce novel compounds in synthetic, natural, or in combination, by exploiting the existing biological system in nature. These approaches open up opportunity to produce novel antimicrobials in safe and well-standardized methods which are important for global antibiotic use.

#### 1.2. Lantibiotics: Promising Candidate to Fight Against Various Pathogens

Recent studies showed promising potential of lantibiotics as alternative to prevalent antibiotics. Lantibiotics displayed broad-spectrum activity against Grampositive pathogens including methicillin-resistance *Staphylococcus aureus* (MRSA) and vancomycin resistance *enterococci* (VRE) and other Gram-positive species such as *Micrococcus sp.* and *Listeria sp* (Montalban-Lopez et al., 2012). The term of lantibiotic itself referred to the *lanthionine* peptides containing antibiotic. They are ribosomally synthesized peptides which produced by Gram-positive and also Gram-negative bacteria. Lantibiotics are characterized by the presence of typical amino acids: dehydrobutirine and dehydroalanine (after dehydration of threonine and serine) that are able to react with the SH group of cysteine forming a thioether-linked amino acid lanthionine and methyllanthionine rings (Willey & van Der Donk, 2007).

Lanthipeptides are categorized into four classes based on posttranslational modification and maturation enzymes, also antimicrobial activity. Class I lanthipeptides need two distinct enzymes namely LanB for dehydrations of serine-threonine residues, and LanC enzyme to form the rings. For the secretion, they require LanT enzyme, carrying peptide outside membrane and finally LanP protease releasing the leader peptide (Repka et al., 2017). Class II lanthipeptides are processed by a bifunctional enzyme called LanM (Fig.2) which can do both modifications (dehydration and cyclation). Both classes I and II lanthipeptides shared *lan*T transporter gene, but in class II this gene is multifunctional which also involved in release of the leader by a N-terminal Cys protease domain (Willey & van Der Donk, 2007).

Moreover, Class II lanthipeptides have a unique group which composed by two distinct lantibiotic parts designated as lantibiotic alpha (LanA1) and beta (LanA2), both may have different activity each other, but work synergistically to perform antimicrobial activity (Martin et al., 2004). Class III lanthipeptides are a group which employ a versatile enzyme: LanL. LanL is a lyase/serine-threonine kinase/cyclase that can handle all modification steps. Furthermore, class IV lanthipeptides synthesized by a different multifunctional enzyme (RamC/LabRK) that can form labionine, a new modified structure. However, based on antimicrobial activity, only class I and class II lanthipeptides that noticed as lantibiotics (Montalban-Lopez et al., 2012).



Fig.2: The scheme of typical gene operon encoding class I and class II lanthipeptides (adapted from Sandiford, 2014).

Lantibiotics are also characterized by their low resistance level because they have multiple mode of actions like pore-forming on the cell walls causing ATP leakage or the sequestration of cell wall precursor, lipid II, that inhibit the cell wall synthesis and the replication. The low resistance level of lantibiotics uncovered from the study of nisin, a food grade lantibiotic that has been used as a food preservative for over 50 years with low resistance development (Weidemannn et al., 2001; Montalban-Lopez et al., 2012).

# 1.3. Synthetic Biology of Lantibiotics



Fig.3: The strategy of novel lantibiotics production using synthetic biology

Synthetic biology approach could perform gene mining of novel lantibiotics by employing the modularity and the orthogonality of engineering into biology insights. This approach applies combination method between *in silico* analysis and heterologous expression for production system. *In silico* analysis of putative lanthipeptide genes via bioinformatic tools (BAGEL3 or Anti-Smash) provided an accurate prediction of putative novel lantibiotics. BAGEL3 software could analyze DNA sequences by two different approaches (van Heel et al., 2013). First, an indirect approach which is the context of bacteriocin-or RiPP gene-based mining and the direct approach which is structural genebased mining directly via Glimmer, a software for finding genes in microbes (van Heel et al., 2013; Delcher et al., 2007). These approaches could improve the success rate by reducing false positive probability and minimize manual evaluation of results. In addition, Anti-SMASH is an application that could predict putative genes also their biochemical properties, and further details including gene cluster description, annotation and genomic loci for biosynthetic pathway (Weber et al., 2005; Zhao et al., 2016). Combination of BAGEL3 and Anti-SMASH for genome mining give accurate information for identification of unknown lanthipeptide genes in various organisms.

Afterwards, new DNA sequence encoding putative lanthipeptide gene fused to nisin leader sequence and subsequently introduced into the production host, for example, *Lactococcus lactis*. Naturally, *Lactococcus lactis* will run biosynthesis system and bring out a novel and mature peptide. Nonetheless, characterization of a novel compound accomplished using MALDI-TOF or LC-MS/MS mass spectra analysis (Majchrzykiewicz et al., 2010; Montalban-Lopez et al., 2012; van Heel et al., 2016).

#### 1.4. Novel Lantibiotics Production via Nisin Controlled Expression System in L. lactis

Nisin controlled gene expression system (NICE) has been established as a powerful tool for production of new lantibiotics in *L. lactis*. To develop the system, the cells require some nisin genes. In case of wild-type nisin production, eleven genes are required. First, the regulation system *nis*KR genes, in which *nis*K is the receptor for the inducer (nisin) and *nis*R is the activator of nisin promoter to produce precursor of nisin, modification enzymes and transporter (NisBTC), the leader peptidase NisP, and additionally, immunity genes *nis*EFGI to protect cell from final product's cytotoxicity (Kuipers et al., 1995) (Fig.4A).

NICE system requires the combined activity of two plasmids (Fig. 4B). *Lactococcus* strains used for NICE induction system should harbor *nis*KR genes. The *nis*A gene that encoded nisin precursor should be cloned in expression vector together with the leader. This gene could be modified by inserting DNA sequence of a putative lantibiotic gene and integrate it to the conserved leader peptide (Majchrzykiewicz et al., 2010). Leader peptide will keep the peptide inactive, also lead it to promiscuous modification enzymes (NisBC). In another plasmid, *nis*BTC are required. The N-terminal region of NisB will bind to FNLD box motif in the leader peptide sequence and perform the glutamylation of serine-threonine using a cofactor called glutamyl-tRNA<sup>Glu</sup>, therefore resulting dehydrated amino acids (Ortega et al., 2015; Zhou, 2016). Another modification enzyme, NisC, is responsible for performing cyclase reaction after serine-threonine dehydrations. Importantly, NisC enzyme binds to a conserved motif FxLx in the leader peptide to catalyze the reaction (Abts et al., 2013).



Fig. 4. A.) Wild-type Nisin expression system in *L.lactis*.B.) Controlled nisin gene expression system

Next step after modification by NisB and NisC, the nisin precursor will be secreted outside of cell by NisT enzyme. NisT enzyme is a broad spectrum (poly) peptide transporter which able to export unmodified peptide independently without NisBC biosynthetic enzymes, and also partially or entirely modified nisin precursor after posttranslational modification (Kuipers et al., 2004). After bringing out of cell by NisT, the inactive peptide will be cleaved from leader by serine protease enzyme called NisP. This enzyme could recognize the conserved motif such as GAxPR (which x is variable amino acid) that conserved in a leader sequence and will cleave leader peptide at one site after the motif sequence (Majchrzykiewicz et al., 2010). Interestingly, this cleavage process could be done *in vitro* using a cell-membrane free extract of NisP overproducer strain and supernatant (SN) that contain inactive lantibiotic peptide (van der Meer et al., 1993; Seizen et al., 1995; Perez et al., 2014). As final result, the active peptide will be formed and show antimicrobial activity. Moreover, nisin-controlled expression system in Lactococcus lactis is very flexible and able to be modified with different lantibiotic enzymes such as GdmD (Gallidermin) produced by Staphylococcus gallinarum and MrsD (Mersacidin) produced by Bacillus amyloliquefaciens, to create a hybrid peptide (Zhao et al., 2016). This fact proved that nisin controlled expression system in *L.lactis* can be very useful and powerful as a tool for novel lantibiotics production.

# **Chapter 2. Materials and Methods**

# 2.1 Bacterial Strains, Plasmids, And Growth Conditions

The strains used in this work listed in Table 1.

| Strain                               | Characteristic                     | Purpose           | Reference       |
|--------------------------------------|------------------------------------|-------------------|-----------------|
| <i>Escherichia coli</i> TOP-10       | mcrA, $\Delta(mrr$ -hsdRMS-mcrBC), | Cloning           | Invitrogen      |
|                                      | Phi80lacZ(del)M15, ∆lacX74,        | intermediate      |                 |
|                                      | deoR, recA1, araD139, ∆(ara-       |                   |                 |
|                                      | leu)7697, galU, galK,              |                   |                 |
|                                      | rpsL(SmR), endA1, nupG             |                   |                 |
| Lactococcus lactis NZ900             | pepN::nisRK                        | sensitive strain  | Kuipers et al., |
|                                      |                                    |                   | 1998            |
| L. lactis NZ9000 pIL3-253 pNZ-nisP8H | EryR, CmR, NisP producer           | Sensitive strain  | Montalbán-      |
|                                      | strain                             |                   | López et al.,   |
|                                      |                                    |                   | unpublished     |
| L. lactis NZ9000 pTLR-BTC            | EryR, pepN::nisRK ,                | cloning and       | Lab collection  |
|                                      | <i>nis</i> BTC                     | expression host   |                 |
| L. lactis NZ9000 pTLR-BTC pNZ8048    | EryR, CmR, pepN::nisRK             | Negative control  | Lab collection  |
|                                      | <i>nis</i> BTC                     | strain with empty |                 |
|                                      |                                    | expression vector |                 |
| L. lactis NZ9000 pIL3-BTC pNZ8048-   | EryR, CmR, NisA producer           | Positive control  | Lab collection  |
| nisA                                 | strain                             | Antimicrobial     |                 |
|                                      |                                    | assay             |                 |
| Micrococcus flavus                   | -                                  | sensitive strain  | Lab collection  |
| a                                    |                                    |                   |                 |
| C. sporogenes C22/10                 | -                                  | sensitive strain  | Lab collection  |
|                                      |                                    |                   |                 |

Table 1. Strains used in this work

*L. lactis* NZ9000 were cultured in M17 (Difco) medium supplemented with 0.5% (wt/vol) glucose (GM17) at 30°C. Minimal expression medium (MEM) was used for protein expression and purification (Rink et al., 2005). Chloramphenicol and/or erythromycin were added when necessary and used at 5  $\mu$ g/ml and 10  $\mu$ g/ml respectively. On the other hand, *E. coli* TOP-10 for amplification of pUC57-ClosMix plasmid (Table 2.) was cultured in LB medium at 37°C with shaking for overnight. Ampicillin was used as a selective marker when necessary at 100  $\mu$ g/ml. Chemocompetent cells preparation and transformation in *E. coli* was done according to (Sambrook & Russell, 2001).

GM17 medium was used for liquid cultures of indicator strains including *L. lactis* NZ9000 and *Micrococcus flavus,* incubated at 30°C overnight for antimicrobial assay. Also,

to perform antimicrobial assay against *Clostridium* species, Reinforced Clostridium Medium (RCM) (Kemperman et al., 2003) was used to grow *Clostridium sporogenes* C22/10 anaerobically at 37°C overnight and placed inside the anaerobic jar, Anaerocult A (Merck).

| Vector                 | Characteristic                                 | Purpose                                | Source           |
|------------------------|------------------------------------------------|----------------------------------------|------------------|
| pUC57- <i>clos</i> Mix | AmpR,                                          | Synthetic gen with the                 | Genescript       |
|                        |                                                | different putative lantibiotics        | This work        |
|                        |                                                | inside separated by <i>Xhol</i> sites. |                  |
| pNZ- <i>nis</i> A      | CmR, <i>nisA</i> gen cloned under <i>nis</i> P | Putative lantibiotics cloning          | van Heel et al., |
|                        | promoter                                       | vector                                 | 2013             |
| pNZ- <i>clos</i> 2     | CmR, putative peptide Clos2                    | New lantibiotic expression             | This work        |
|                        | cloned fused to nisin leader.                  |                                        |                  |
| pNZ- <i>clos</i> 4     | CmR, putative peptide Clos4                    | New lantibiotic expression             | This work        |
|                        | cloned fused to nisin leader.                  |                                        |                  |
| pNZ- <i>clos</i> 5     | CmR, putative peptide Clos5                    | New lantibiotic expression             | This work        |
|                        | cloned fused to nisin leader.                  |                                        |                  |
| pNZ- <i>clos</i> 12    | CmR, putative peptide Clos12                   | New lantibiotic expression             | This work        |
|                        | cloned fused to nisin leader.                  |                                        |                  |
| pNZ- <i>clos</i> 14    | CmR, putative peptide Clos14                   | New lantibiotic expression             | This work        |
|                        | cloned fused to nisin leader.                  |                                        |                  |
| pNZ- <i>clos</i> 15    | CmR, putative peptide Clos15                   | New lantibiotic expression             | This work        |
|                        | cloned fused to nisin leader.                  |                                        |                  |
| pNZ- <i>clos</i> 16    | CmR, putative peptide Clos16                   | New lantibiotic expression             | This work        |
|                        | cloned fused to nisin leader.                  |                                        |                  |
| pNZ- <i>clos</i> 17    | CmR, putative peptide Clos17                   | New lantibiotic expression             | This work        |
|                        | cloned fused to nisin leader.                  |                                        |                  |
| pNZ- <i>clos</i> 22    | CmR, putative peptide Clos22                   | New lantibiotic expression             | This work        |
|                        | cloned fused to nisin leader.                  |                                        |                  |
| pNZ- <i>clos</i> 24    | CmR, putative peptide Clos24                   | New lantibiotic expression             | This work        |
|                        | cloned fused to nisin leader.                  |                                        |                  |
| pNZ- <i>clos</i> 25    | CmR, putative peptide Clos25                   | New lantibiotic expression             | This work        |
|                        | cloned fused to nisin leader.                  |                                        |                  |
| pNZ- <i>clos</i> DP    | CmR, putative double peptide                   | New lantibiotic expression             | This work        |
|                        | lantibiotic cloned fused to nisin              |                                        |                  |
|                        | leader (each one).                             |                                        |                  |

# Table 2. Plasmids used in this work

CmR: chloramphenicol resistance. EryR: erythromycin resistance. AmpR: ampicillin resistance

| Name      | Sequence (5'→3')                        | PCR conditions                   | Description/     |
|-----------|-----------------------------------------|----------------------------------|------------------|
|           |                                         |                                  | Purpose          |
| Pep-fwPep | ATCTTGTTTCAG <u>U</u> TTCAAAAAAAGATTCAG | 1x 95°C 180", 30x (95°C 30",58°C | Amplification of |
|           | GTGCTAGCCCACGT                          | 30",68°C 60") 1x 68°C 90"        | DNA fragments    |
| Рер-      | ACCGCATGCT <u>U</u> CTCGAGGGTTTTCTAATTT |                                  | containing       |
| rvXhoI-   | TGGTTCAAAG                              |                                  | putative genes.  |
| USER-Rv   |                                         |                                  |                  |
| pN-USER-  | AAGCATGCGG <b>U</b> CTTTGAACCAAAATTAGAA | 1x 95°C 180", 30x (95°C 30",58°C | Vector backbone  |
| fw        | AACCAAGGCTTG                            | 30",68°C 240") 1x 68°C 300"      | amplification    |
| Leader-   | ACTGAAACAAGA <u>U</u> CAAGATTAAAATCTTTT |                                  |                  |
| USER-rv   | GTTGAC                                  |                                  |                  |
| pNZ-Cm-   | CATGCAGGATTGTTTATGAACTCTATTCAG          | 1x 95°C 180", 30x (95°C 30",58°C | Colony PCR       |
| fw        | GAATTGTCAG                              | 30",68°C 60") 1x 68°C 90"        |                  |
| pNZ-SphI- | TCGCCGCATGCTATCAATCAAAGCAACACG          |                                  |                  |
| rv        | TGC                                     |                                  |                  |

Table 3: Primers and PCR conditions used in this work

# 2.2 Genome Mining

Identification of novel putative lantibiotic genes was done with BAGEL3 and Anti-SMASH genome mining software. Genomes from almost 600 *Clostridium* sps. from NCBI had been screened. BAGEL3 could database software be accessed on http://bagel2.molgenrug.nl/index.php/bagel3 for Anti-SMASH and via https://antismash.secondarymetabolites.org/#!/start. Selected putative lantibiotic genes (PLG) cloned fused to nisin leader and under nisin promoter control in pNZ8048 plasmid for their heterologous expression in *Lactococcus lactis* NZ9000.

# 2.3. Molecular Cloning

For molecular expression of putative lantibiotics, two plasmid expression systems were used, pTLR-BTC (with *nis*BTC) and a pNZ8048 plasmid containing the candidate genes fused to nisin leader. Putative core peptides were ordered from GenScript. The core peptides were codon optimized for *L. lactis* assisted by Jcat program (Grote et al., 2005). In case of double peptide antimicrobial (ClosDP), only the cores of each peptide were optimized, and the putative leader sequence of each one replaced by nisin leader. The PLG were fused with the nisin leader, replacing the core of nisin in pNZ8048-*nis*A using USER method (Bitinaite et.al, 2007). For this, the backbone (pNZ8048-*nis*A without the core nisin) and each new peptide were amplified with a couple of primers: Leader-user-

rv/pNZ-user-f and Pep-rv/ Pep-fw respectively (Table.3). pUC57-*clos*Mix vector was isolated from *E. coli* and digested with FD *XhoI* (Thermo Scientific) for 4h according to the suppliers. Afterwards, each fragment was amplified by PCR using specific primers for USER ligation and *Pfu7x* enzyme was added (Nørholm, 2010). PCR conditions and primers used in this work (for cloning and checking) listed in (Table.3). The backbone PCR products were digested with FD *DpnI* digestion enzyme to remove template DNA and avoid false positive. The PCR products were purified before the ligation using Nucleospin Gel & PCR-Clean Up kit (Macherey-Nagel<sup>®</sup>).

For USER reaction, 1:1 molar ratio of backbone and inserts were mixed with 1µl of USER enzyme and 1µl of 10X T4 DNA ligase buffer completing to 10 with MilliQ water. The mixture was left at 37°C for 1h and then another hour at 24°C (Bitinaite & Nichols, 2009). Finally, the ligation product was dialyzed for 20 minutes over MilliQ water and transformed in *L. lactis* NZ9000 pTLR-BTC competent cells. Preparation of competent cells and transformation in *L. lactis* was performed according to (Holo & Nes, 1995). Electroporation was performed using BioRAD Gene Pulser with the parameter 2.5kV, 200  $\Omega$ , 25 µF. After transformation, the cells spread on plates with the appropriate antibiotics, and incubated at 30°C for 24-48h. 40 colonies were selected for screening by colony PCR step using *pNZ-Cm-fw* and *pNZ-SphI-rv* primers (Table 3.).

Plasmid isolation was done using a commercial plasmid isolation kit (Macherey-Nagel<sup>©</sup>). An additional step with lysozyme (40mg/ml) and incubation at 37°C (20min) was added in case of *L* .*lactis* plasmid isolation. The constructs were checked by sequencing (Macrogen).

#### 2.4. Peptide Expression and Purification

For peptide expression, *L. lactis* NZ9000 pTLR-BTC pNZ-Clos<sub>x</sub> were grown in 5ml of Minimal Expression Medium (MEM) supplemented with 0.5% glucose, 1% of vitamin also selected antibiotic markers (chloramphenicol and erythromycin). Afterwards, incubated at 30°C for overnight (Rink et al., 2005). The overnight culture were transferred into the larger volume of the same medium (2% inoculum in 200ml total volume) and induced with 4 ng/ml nisin (Sigma) after initial incubation at 30°C (OD600: 0.3-0.4). Subsequently, the cultures incubated 18h at 30°C to continue the peptides production. Finally, the supernatants (SN) were separated from cells by centrifugation at 4 °C for 20 min, with 5000 rpm (Avanti J-25 Beckman-Coulter).

In a first approximation, the new peptides were concentrated from the SN using reversed phase chromatography by C18. Briefly, the SNs were applied to a column with two grams of C18 previously reconstituted in 100% of solvent B (Acetonitrile 0.1%TFA) and equilibrated with solvent A (MilliQ water 0.1% TFA) at 2 ml/min flow. Afterwards, the matrix were washed with 25 ml of water, and the peptides joined were eluted with 25ml of a gradual amount (10 to 60%) of solvent B in A. Each fraction was finally lyophilized using FreeZone 4.5 Liter Benchtop Freeze Dry System (LabConco) for 48h to remove all the solvents before the antimicrobial test assay.

Subsequently, a cationic interchange purification with SP Sepharose HiTrap was applied to the previous active fractions to obtain high purity peptides. Columns were washed with 25 ml of wash buffer (50mM lactate pH 6), then with 25ml of elution buffer (50mM lactate pH 4, 1 M NaCl) and another one with 25 ml of wash buffer. The active fractions from C-18 were mixed 1:1 with dilution buffer (100mM lactate pH2.5) and directly applied to the column at 1ml/min flow. Finally, the column was washed with 25 ml of wash buffer and peptides eluted with 12 ml of elution buffer.

High purity peptides were obtained by high-pressure liquid chromatography (HPLC, Agilent) on an Aeris wide pore phenomenex 250  $C_{18}$  column (4.6mm 3.6um, XBC18). A linear gradient 20% to 60% of solvent B was applied for 25 min to separate the peptides. The fractions obtained from HPLC were lyophilized, and final purified peptides were dissolved in 500 µl of MQ water, then used for antimicrobial assay.

#### 2.5. Purification of NisP

Nisin peptidase (NisP) was purified from the supernatant of the strain *L. lactis* NZ9000 pIL-253 pNZ8048-*nis*P8H. Briefly, 1L of MEM medium was inoculated at 10% with an overnight culture of *L. lactis* NZ9000 pIL-253 pNZ8048-*nis*P8H. When the OD600 reached 0.3-0.4, the culture induced with 5ng/ml of nisin and left at 30°C for 16 hours. The cells were removed by centrifugation and the supernatant was applied on Histrap Excel column previously equilibrated in 6 vol of NBB buffer. The column was washed with 4 vol of NWB buffer and then the peptidase were eluted with 12ml of NEB buffer and storage at -80°C (Table 4).

| Solution(s)                           | Compositions                                     |  |  |  |
|---------------------------------------|--------------------------------------------------|--|--|--|
| Solution A (10x)                      | 200mM NaH2PO4, 5M NaCl, water to 1L              |  |  |  |
| Solution B (10X)                      | 200mM Na2HPO4, 5M NaCl, water to 1L              |  |  |  |
| NPB (Native Purification Buffer) (5X) | 250mM NaH2PO4, 2.5M NaCl, water to 200ml pH:8    |  |  |  |
| Imidazole (100ml)                     | 3M imidazole + 8.77ml of solution A + 1.23 ml of |  |  |  |
|                                       | solution B. pH 6 water until 100ml               |  |  |  |
| NBB (Native Binding Bufer)            | 30ml of NPB (1X)+ 100μl imidazole, pH 6.         |  |  |  |
| NWB (Native Wash Buffer )             | 50ml NPB (1X)+ 335μl imidazole, pH 6             |  |  |  |
| NEB (Native Elution Buffer):          | 13.75ml of NPB (1X)+1.25ml imidazole, pH 6       |  |  |  |

Table 4: Aqueous solutions for NisP purification

# 2.6. Antimicrobial Assay

 $5 \ \mu$ l of concentrate peptides were used to check the antimicrobial activity by the spot-on-lawn assays and 0.7% of GM17 and RCM (Reinforced Clostridium Medium) semisolid agar were used for the assays. To release the nisin leader peptide, 2  $\mu$ l of purified NisP protease were added on the overlayer previously inoculated with the indicator strain (*L. lactis* and *M. flavus*) and then, 5  $\mu$ l of HPLC purified peptides were dropped on the same spot, left until dried, and finally incubated at 30°C overnight. Also, for *C. sporogenes* was incubated in RCM medium, anaerobically at 37°C for overnight.

# 2.7. MALDI-TOF and LC-MS/MS Analysis

For checking the presence of peptides, matrix-assisted laser desorption ionizationtime of flight mass spectrometry (MALDI-TOF) spectra analysis was performed. To do this, a mixture 1:1 vol : vol of the peptides fractions from HPLC with the matrix,  $\alpha$ -cyano-4-hydroxycinnamic acid (CHC) were performed and spotted to dry in the MALDI plate. The matrix for MALDI was prepared to mix 3-4 mg/ml of CHC in 50% acetonitrile 0.1% TFA. Mass spectra were documented with a Voyager-DE Pro (Applied Biosystems) MALDI-TOF. To increase the sensitivity, the calibration was applied with six different peptides provided by the program (protein MALDI-MS calibration). For obtaining more accurate peptides identification especially their dehydration level and other modifications, Liquid Chromatography with Tandem Mass Spectrometry (LC-MS/MS) was applied to the purified peptides (contained nisin leader peptide) of each Clos<sub>x</sub> peptide. Preparation for LC-MS/MS samples were done by lyophilized a mixture of HPLC purified sample (1ml), and subsequently, the freeze-dried samples were sent to the LC-MS/MS operator in ERIBA building, Universitair Medisch Centrum Groningen (UMCG).

# **Chapter 3. Result and Discussion**

# 3.1. Lantibiotic Gene Mining In *Clostridium* Spp.

This study focused on the identification of new lantibiotics codified in the genomes of several *Clostridium* spp. and subsequently, produce them under nisin controlled system in *L. lactis*. For this purpose, two bioinformatics program had been used. Firstly, a high screening genomic data has been accomplished using anti-SMASH and then small putative lantibiotic ORF has been identified using Bagel3. The selection of this genus has been decided based on the fact that antimicrobial peptides from *Clostridium* are difficult to produce due to the lack of information for biosynthesis and difficult growth conditions in the lab (Kemperman et al., 2003).

#### 3.1.1) Selection Of Genomes For Gene Mining

The different genomes used in this work were searched in NCBI Genome for *Clostridium* (<u>https://www.ncbi.nlm.nih.gov/genome/?term=clostridium</u>). According to this page, 563 genomes from 110 *Clostridium* species that are completely sequenced and stored in Genebank NCBI (Fig.5) have been screened. The species of *Clostridium* used for this work were: C. botulinum, C. perfringens, C. butyricum, C. novyi, C. beijerinckii, C. tyrobutyricum, C. pasteurianum, C. tetani, C. acetobutylicum, C. haemolyticum, C. intestinale, C. colicanis, C. sporogenes, C. celatum, C. carboxidivorans, C. baratii, C. cellulovorans, C. ljungdahlii, C. grantii, C. cavendishii, C. collagenovorans, C. estertheticum, C. acetireducens, C. ragsdalei, C. magnum, C. tepidiprofundi, C. homopropionicum, C. cylindrosporum, C. argentinense, C. akagii, C. hydrogeniformans, C. lundense, C. ihumii, C. senegalense, C. saccharobutylicum, C. autoethanogenum, C. paraputrificum, C. diolis, C. tunisiense, C. tetanomorphum, C. sartagoforme, C. arbusti ,C. cadaveris, C. saccharoperbutylacetonicum, C. bornimense, C. aceticum, C. fallax, C. amylolyticum, C. saudii, C. jeddahense, C. frigidicarnis, C. uliginosum, C. gasigenes, C. cochlearium, C. formicaceticum, C. taeniosporum, C. septicum, C. coskatii, C. neonatale, C. polynesiense, C. disporicum, C. sulfidigenes, C. algidicarnis, C. drakei, C. scatologenes, C. kluyveri, C. ventriculi, C. citroniae, C. clostridioforme, C. innocuum, C. hiranonis, C. hylemonae, C. ultunense, C. saccharolyticum, C. methylpentosum, C. papyrosolvens, C. bolteae, C. symbiosum, C. cellulosi, C. clariflavum, C. asparagiforme, C. leptum, C. spiroforme, C. lactatifermentans, C. populeti, C. polysaccharolyticum, C. fimetarium, C. lavalense, C. cocleatum, C. paradoxum, C. neopropionicum, C. glycyrrhizinilyticum, C. dakarense, C. purinilyticum, C. aminophilum, C. aerotolerans, C. saccharogumia, C. cellobioparum, C. *viride, C. straminisolvens, C. sporosphaeroides, C. josui, C. indolis, C. sphenoides, C. celerecrescens, C. stercorarium, C. termitidis, C. propionicum and C. scindens.* 43 strain of *Paeniclostridium sordelii* recently separated to the genera *Clostridium* also were analyzed.



Fig.5: Number of genomes from different *Clostridium* species observed in this study.

All genomes were uploaded ten by ten to AntiSMASH website for first selection of possible lantibiotic sequences identification. From the 563 initial genomes, only 17 genomes were identified harboring lantibiotics of interest. They were downloaded and analyzed with Bagel3.

# 3.1.2) Putative Lantibiotic Areas Of Interest And Selected New Lantibiotics

54 PLG clusters were detected by AntiSMASH and Bagel3 (Table.5). Among all putative lantibiotic genes, only 12 genes selected for heterologous expression in *L. lactis* NZ9000 pTLR-BTC. For heterologous expression, the presence of all modification enzyme in the same gene cluster (Fig.6), the presence of some lantibiotics related domain (FDLD in the leader, GG cut site), and the presence of cysteines and serines/threonines in the correct position considered as selection criteria.

| C. Appendendi<br>HUN 12.         MILLIDEPULIKIKKODENT (KATTPUNSEYACTPICS/WWWYETTIAK         Streptio           VISULDPPULAWKIKKODENT (KATTPUNSEYACTPICS/WWWYETTIAK         Galidermin         Streptio           MARAGOPELLAWKIKKODENT (KATTPUNSENCLEGGI/WORK)         Galidermin         Streptio           MARAGOPELLAWKIKKODENT (KATTPUNSENCLEGGI/WORK)         Galidermin         Galidermin           MCKLDPPL/WKKIKPERKEN/WEYSTS/ACTPCCATSLETCIT/WCKICK         HP           MOKENDEPULAWKIKPERKEN/WEYSTS/ACTPCCATSLETCIT/WSTCKGC         Galidermin           MUNNERGEN/WKATTPGC/WYETS/ACTPCCATSLETCIT/WSTCKGC         HP           MUNNERGEN/WKATTPGC/WYETS/ACTPCCATSLETCIT/WSTCKGC         HP           MUNNERGEN/WKATTPGC/WYETS/ACTPCCATSLETCIT/WASTPC/WGHC/WTWEQONCSHKK         Transpose           MUNNERGEN/WKATTPGC/WYETS/ACTPCTSSERFYTINRVI.N         InP           MUNNERGEN/WKATTPGC/WKATTPGC/WCXSSENCTTR/WKATY/WASTPC/WUNCDONCSHKK         Transpose           MUNNERGEN/WKATTPW/WHATG/WYEND/WKATY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/WKATYPY/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Strain name                    | Putative lantibiotic                                                                       | Homology<br>(BLASTD) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------|----------------------|
| HUR142         Visit DPPU/DV3YERS/SEGURYSYLS: TPE/CTL/DV3Y/USERCR         Calidermin           MARL_OPPU_DV3YERS/SEGURYSYLS: TPE/CTL/DX3YERUTHCROUND         Seeptin           MARL_OPPU_DV3YERS/SEGURYSYLS: TPE/CTL/DX3YERUTHCROUND         Seeptin           MARL_OPPU_DV3YERS/SEGURYSYLS: TPE/CTL/DX3YERUTHCROUND         Galidermin           MOKDON/SEGURYSYLS: TPE/CTL/DX3YERUTHCROUND         Galidermin           MARL_OPPU_DV3YERS/SEGURYSYLS: TPE/CTL/DX3YERUTHCROUND         Galidermin           MOKDON/SEGURYSYLS: TPE/CTL/DX3YERUTHCROUND         HP           C. Additionan         MINNERCINAGESEDULEUD/SEGURYSGETSECTSITUSYLCODE/VCTVTU2GQNNCSHKK         HP           C. Additionan         MINNERCINAGESEDULEUD/SEGURYSGETSECTSITUSYLCODE/VCTVTU2GQNNCSHKK         Transposace           MINNERCINAGESEDULEUD/SEGURYSTSSECULEUD/SEGURYSGENEVTYTVC         HP         Transposace           MINNERCINAGESEDULEUD/SEGURYSTSSECULEUD/SEGURYSTSSECULEUD/SEGURYSGENEVTYTVC         HP         Transposace           MINNERCINAGESEDULEUD/SEGURYSTSSECULEUD/SEGURYSTSSTSTSTTU3/TAGE/SEGURYSGENEVTYTVC         HP         Transposace           MINNERCINAGESEDULEUD/SEGURYSTSSECULEUD/SEGURYSTSTSTSTTU3/TAGE/SEGURYSGENET/SEGURYSGENET/SEGURYSTSSECULEUD/SEGURYSTSSTSTSTTU3/TAGE/SEGURYSGENET/SEGURYSGENE/SEGURYSTSSECULEUD/SEGURYSTSSTSTSTSTTU3/TAGE/SEGURYSGENET/SEGURYSTSSECULEUD/SEGURYSTSSTSTSTSTSTSTSTSTSTSTSTSTSTSTSTSTSTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C heijerinckij                 | MIKLDDEDLKIKKDDNKTCKVTPOVNSRYACTPGSCWKWVCFTTTAK                                            | Streptin             |
| MARKLOPPELUAVKIENTGOVTATISSIENTLESCENTORCORDW         Stergin           MCKLOPPELUAVKIENTGOVTATISSIENTSSETTERCITESCUCE         Galindermin           MCKLOPPELVIVKIENTGOVTATISSIENTSSETTERCITESCUCE         Galindermin           MCKUDPELVIVKIENTGOVTATISSIENTSSETTERCITESCUCE         Galindermin           MENNEVEXNERTSBEDUEVELVENDEGOVTASATATASATAVASATAVASATAVSALETYTSACTTEKCK         HP           MIKNPERVENDEGUEVELVENDEGOVTASITERQUAVKASATAVSATAVSALETYTSACTTEKCK         HP           MIKNPERVENDEGUEVELVENDEGOVTASITERQUAVKASATAVSATAVSALETYTSACTTEKCK         HP           MIKNPERVENDEGUEVELVENDEGGVASITASATAVSATAVSATAVSALETYTSACTTKKCK         HP           MIKNPERVENDEGUEVELVENDINGGVASITASATAVSATAVSATAVSALETYTSACTKKCK         HP           MIKNPERVENDEGUEVELVENDINGGVASITASATAVSATAVSATAVSALETYTSACTKKCK         HP           MIKNPERVENDINGUEVENDINGGVASITASATAVSATAVSATAVSATAVSATAVSATAVSATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HUN142                         | VGKLDDFDLDVKVKINSKKGIKPSVI SLTPKCTSLCPTNVFVCISKRCK                                         | Gallidermin          |
| MickabopPLDWVKATKGOV/STSTRUCTSSCTOPIGCIDRY         Galidermin           MickaboPLDUNKKEERSKOV/PSTSACTGGGASTSTRUCTSSCTOPIGCIDRY         Galidermin           MickaboPLDUNKKEERSKOV/PSTSACTGGGASTSTRUCTSSCTOPIGCIDRY         Galidermin           MickaboPLDUNKKEERSKOV/PSTSACTGGGASTSTRUCTSSCTOPIGCUMV         Galidermin           MickaboPLDUNKKEERSKOV/PSTSACTGGAST         HP           MickaboPLDUNKKEERSKOV/PSTSACTGGAST         Transposase           MickaboPLDUNKKEERSKOV/PSTSACTGAST         Transposase           MickaboPLDUNKKEERSKOV/PSTSACTGAST         HP           Mic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | MAKLGDFDLDLKVKIKPKGGVTPATVSRFNCTLFGCIKVKDNI                                                | Streptin             |
| Instruction         Instruction         Galidaemin           BitAbitQECONS         MIKINVEXCARSTEREDUCEVENCIDITY         IP           BitAbitQECONS         MIKINVEXCARSTEREDUCEVENCIDITY         Two peptide           BitAbitQECONS         MIKINVEXCARSTEREDUCEVENCIDITY         Two peptide           BitAbitQECONS         MIKINVEXCARSTEREDUCEVENCIDITY         Two peptide           BitAbitQECONS         MIKINVEXCARSTEREDUCEVENCIDITY         IP           MIKINVEXCARSTEREDUCEVENCIDITY         IP         IP           DUCCURRENTISALAGARY         IP         IP         IP           MIKINVEXCARSTEREDUCEVENCIDITY         IP         IP         IP           Coduation         MIKINVEXCARSTEREDUCEVENCIDITY         IP         IP           MIKINVEXCARSTEREDUCEVENCIDITY         IP         IP         IP           MIKINVEXCARSTEREDUCEVENCIDITY         IP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | MGKLDDFDLDVKVKATPKGGVKPSITSRILCTSSCYTOFIOCHDRV                                             | Gallidermin          |
| C. Codulationan<br>H0440055         MIKINFERGEDVELVED/UNINSINGGT/ASSAAD/SAT/ASSAAD/SAT/ASSALPTYTSKCK         IP           H0440055         MIKINFERGEEVVELPCE/DEVELVED/UNISIONSINGGT/ASSAAD/SAT/ASSAAD/SAT/ASSALPTYTSKCKK         IP           C. botulinum<br>strain CC041370         MIKINFERGEEV/VELPCE/DEVELVED/UNISIONSINGGT/SASIAAT/ASSALPTYTSKC/KKK         IP           MIKINFERGEEV/VELPCE/DEVELVED/UNISIONSINGGT/SASIAAT/ASSALPTYTSKC/KKK         IP           MIKINFERGEEV/VELPCE/DEVELVED/UNISIONSINGGT/SASIAAT/ASSALPTYTSKC/KKKK         IP           MIKINFERGEEV/VELPCE/DEVELVED/UNISIONSINGGT/SASIAAT/ASSALPTYTSKC/KKKKKK         IP           MIKINFERGEEV/VELPCE/DEVELVED/UNISIONSINGGT/SASIAAT/ASSALPTYTSKC/KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | MGKLDNFDLDVKIKKDEKRGVKPSVTSYSACTPGCATSLFRTCLTRSCKGC                                        | Gallidermin          |
| H04402 065         MIKINFRRQSEDVIKL/CEDITKVETERQCLUYTGGTFSEGTISTILSYVMGNDGKVCTWTVECQNNCSHKK         Two peptide           C. boulinams         MKNNEKKARESEDUKL/DECDITKVETERQCLUYTGGTFSEGTISTILSYVMGNDGKVCTWTVECQNNCSHKK         HP           strain CDC41370         MKNNEKKARESEDUKL/DEUNDISGGTAASIATVASATAVSALPTVTSACTKKCK         HP           MKNNEKKARESEDUKL/DEUNDISGGTAASIATVASATAVSALPTVTSACTKKCK         Two peptide           MKNNEKKARESEDUKL/DEUNDISGGTAASIATVASATAVSALPTVTSACTKKCK         Two peptide           MKNNEKKARESEDUKL/DEUNDISGGTAASIASTVASATAVSALPTVTSACTKKCK         Transposase           MSKNEFEBLOLQNEKIJNAASENVERTTWOLVASSIFNCYTLKOYTKVVLVCQPPKPVNTKSQCSSTASCKTTPKK         Transposase           MSKNEFEBLOLQNEKIJNAASEENVERTTWOLVASSIFNCYTLKOYTKVVLVCQPPKPVNTKSQCSSTASCKTTPKK         1P           MSKNEFEBLOLQNEKIJNAASEENVERTTWOLVASSIFNCYTLSPTIKTFREGQCVSVFFPTTGTSACCKKGGTDVEPQCVP         HP           MSKNEFEBLOLQNEKIJNAASEENVERTTWOLVASSIFNCYTLSPTIKTFREGQCVSVFFPTTGTSACCKKGGTDVEPQCVP         HP           MSSCTAASTPONTESSELDUKLSVFTUTTTSKKTKKABANNN         HP           MUSCTAASTPONTESSELDULDUKVGGTVTVSCGTTVTSACGTLSKSCKGUPVNN         HP           MSSCTAASTPONTESSELDUKLSVFTUTTVSKTVTSEGGCC         HP           MSSCTAASTPONTESSELDUKLSVFTUTTVSKTVTSEGGCCC         HP           MSYSCTAASTPONTESSELDUKLSVFTUTTVSKTVTSEGGCCCCVFTNECKKGGCTOMACCC         HP           MSYSCTAASTPONTESSELDUKLSVFTUTVTSGGTTVSSCATTPTSKTTSKGGCGCVTNECKGGC         HP <t< th=""><th>C. botulinum</th><th>MKNNEVCKNAGFISEDELVELVDNSDISGGTAASAAAVSATVASATAVSALFTVTSACTTKCK</th><th>HP</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C. botulinum                   | MKNNEVCKNAGFISEDELVELVDNSDISGGTAASAAAVSATVASATAVSALFTVTSACTTKCK                            | HP                   |
| C. boulinum<br>strain CDC41370         Inthibitic<br>MINNINGCURAGTISEDBULLEUNDNDISGGTAALISATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAVASATAV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H04402 065                     | MIKNPIKRQSEDVKLPCGDTKVEITENQGLDVTGGTFSEGTISITLSVYMGNDGKVCTWTVECQNNCSHKK                    | Two peptide          |
| C. Doullands         HP           Straht CDC41370         MKNNECKALGUEKCIDIKKETENGLOUNDISGGT ASIANTVASATAVSALFTVTSACTKKCK         HP           MKNNECKALGRESEDEJKLEUDENDISGGT ASIANTVASATAVSALFTVTSACTKKCK         HP           MKNNECKALGRESEDEJKLEUDENDISGGT ASIANTVASATAVSALFTVTSACTKKCK         Trao periadie           MKNNECKALGRESEDEJKLEUDENDISGGT ASIANTVASATAVSALFTVTSACTKKCK         Trao periadie           MKNNECKALGRESEDEJKLEUDENDISGGT ASIANTVASATAVSALFTVTSACTKKCK         Transposate           MKNNECKALGREVYQEST KKYKKVGLISKYVNESSTEPKYNVKIS         Transposate           MKNECKALGREVYQEST KKYKKVGLISKYVNESSTEPKYNVKIS         HP           MCMMDDPUDLBRIARINGKANASASOMTSEEDISCHTTRTFREGQC/SYETPTTGMTSACCKKGGTDVEPQCP         HP           MCMMDDPUDLBRIARINGKANASCHEPFYNYWE         HP           MCSINKEREGEVYETTSSCHEFYNYWE         HP           MCSINKEREGEVYETTSSCHEFYNYWE         HP           MCSINKEREGEVYETTSSCHEFYNYWER         Trao periadie           MCSINKEREGEVYETTSSCHEFYNYWER         Trao periadie           MCSINKEREGEVYETTSSCHEFYNYWER         HP           MCSINKEREGEVYETTSSCHEFYNYWER         Trao periadie           MCSINKEREGEVYETTSSCHEFYNYWER         Trao periadie           MCSINKEREGEVYETTSSCHEFYNYWERTSCHEFTSKEREGEVYTTSSCHEFYNKERT         HP           MCSINKERTSCHERVERSEDUNGSGKTCTSTYSCHEFTSKURGUNGTSCHEFTSKARCKY         HP           MCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                                                                            | lantibiotic          |
| C. botalaam<br>strain CDC41370<br>MIKNERKAAGE/SBEDUKE/CGT/WEITERQGL2VFGEGCT3SAISATVAAATAYSALE/TVTSAC/TKKCK HP1<br>MIKNERKAAGE/SBEDUKE/CGT/WEITERQGL2VFGEGCT3SAISATVAAATAYSALE/TVTSAC/KKCK HP1<br>MIKNERKAAGE/SBEDUKE/CGT/WEITERQGL2VFGEGCT3SAISATVAAATAYSALE/TVTSAC/KKCK<br>MIKNERKAAGE/SBEDUKE/CGT/WEITERQGL2VFGEGCT3SAISATVAAATAYSALE/TVTSAC/KKGC/KKCK<br>MIKNERKAAGE/SBEDUK/WEITERQGL2VFGEGCT3SAISATVAAATAYSALE/TVTSAC/KKGC<br>MIKNERKAAGE/SBEDUK/WEITERQGL2VFGEGCT3SAISATVAAATAYSALE/TVTSAC/KKGC<br>MIKNERKAAGE/SBEDUK/WEITERQGL2VFGEGCT3SAISATVAAATAYSALE/TVTSAC/KKGC/KKGCT/VFEQC/NCS/HKK<br>MIKNERKAAGE/SBEDUK/WEITERQGL2VFGEGCT3SAISATVAAATAYSALE/TVTSAC/KKGC/KKGCT/VFEQC/NCS/HKK<br>MIKNERKAAGE/SBEDUK/SKCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCT/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGC/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK/KKGCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | MYFNFYRVVFGFLCYLHCIDIEKDYIYIIKSQK                                                          | HP                   |
| Near COV-13/A         MINPLEX/CED/TK/ETTEX/CLU/TKG/TESECTS/STM2/MGD/GK/CTW/TK2Q/NKS/IKK         Two pepidde<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/biol/<br>inat/ | C. botulinum                   | MKNNEICKNAGFISEDELVELVDNNDIS <b>GG</b> TASAISATVASATAVSALFTVTSACTKKCK                      | HP                   |
| MRTRYTQGEDNETYMLSHDALDRSHD YHMKPRCESEDVIELTDKGLIGRGWCNKTYYKN         III           HULLCRLFIDISLAU,QVYTPTEALLIKBOLDRYHTSSERKEVINRVLN         Transposase           MSNPNEPELDLQNEKIQNAVQTTFTALLIKBOLDRYNTSSERKEVINRVLN         Transposase           MEDKAQFGEMRAASPRLQRKVYGSTAKTNRVCHSEWYNRYSDTWHQAERVKTYQLVLCMPKKQICST         Transposase           MEDKAQFGEMRAASPRLQRKVYGSTAKTNRVCHSEWYNRYSDTWHQAERVKTYQLVLCMPKKQICST         HP           MISTARPVVARSIGLAVFLJTTTRKTKUCHSEWYNRYSDTWHQAERVKTYQLVLCMPKKQICST         HP           MISTARPVVARSIGLAVFLJTTTRKTKUCHSEWYNRYSDTWHQAERVKTYQLVLCMPKKQICST         HP           MISTARPVVARSIGLAVFLJTTTRKTKUKMBENNE         HP           MISTARPVVARSIGLAVFLJTTTRKTKUKMBENNE         HP           MISTARPVVARSIGLAVFLJTTRKTKUKMBENNE         HP           MINTKIGOTFEQKNTEMASGUJAGUTFYTUTIVE         HP           MINTKIGOTFEQKNTEMASGUJAGUTFYTUTIVE         HP           MINTKIGOTFEQKNTEMASGUJAGUTFYTUTIVE         HP           MINTKERDUDLIDUGUGINNEEFLYLGGUSKGKLDUVGSYNUNSKURGYTNECKTYNECKTYNE         Iahtibiotic           JISS3         HQREEKNYEFTGUSSLEFKENGGUSGUSGASAISINTUTUGUTVRCHTYTYSERGCC         HP           MYNKPEDLDINNEKKKURDERFEYSTEKOKGUSGASAISINTUTUGUTVRCHTYTSERGCC         HP           MYNKPEDLDINNEKKKURDERFEYSTEKOKGUSGASAISINTUTUGUTVRCHTYTYSERGCC         HP           MYNKPEDLDINNEKKKURDERFEYSTEKOKGUSGASAISINTUTUGUTVRCHTYTYSERGCC         HP           MYN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | strain CDC41370                | MIKNPIKRQSEDVKLPCGDTKVEITENQGLDVTGGTFSEGTISITLSVYMGNDGKVCTWTVECQNNCSHKK                    | Two peptide          |
| LDILCLRAFIDISLALQAVQTPTEAULIISDLTQUTSSSFREYINRVLN Transposae MSNPREFELDLQNEKQURAASERVKFTTWDCVASSIFNCYLRVVN MSNPREFELDLQNEKQURAASERVKFTTWDCVASSIFNCYLRVVN MSNPREFELDLQNEKQURAASERVKFTTWDCVASSIFNCYLRVVLQUFQPFRVNTKSQCSSTASCRTFKK Transposae MSNPREFELDLQNEKQURAASERVKFTTWDCVASSIFNCYLRVVLQUFQPFRVNTKSQCSSTASCRTFKK FP MCKNDPD/DLLAKLARENSANASSOMTSEISKYTTTTRFKCQCVSVETPTTGMTSACCKKGGTUVEPQCVP HP MKSTDADFYRKISDRSUPFYTTYNSKKTUKKMENNF Transposae C. aduoronae DSM MQREENVERGESUPFYTINE MSNPREFELDQUEGENGESUPFYTINE MSNPRFELDQUEGENGESUPFYTINE MSNPRFELDQUEGENGENGENGESUPFYTINE MSNPRFELDQUEGENGENGENGENGESUPFYTINE MSNPRFELDQUEGENGENGENGENGEGEGUPTESCAGESCHEESAW HP MSNPRFEDDQUEGENGENGENGESUPFYTSUSAACHTVEKTHETDSCNEGCESCHTENSACHUE MSNPRFELDQUEGENGENGENGENGESCHEESCHERGUEGUP MSNNRFELDQUEGENGENGENGENGENGENGENGENGENGENGENGENGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | MRYRYIOCEDKEIYMI SIIDAI DRSIIDYHMKERCESEDVIEI TDKCI ICRCWCNKTYYKN                          | НР                   |
| C. colladorovana     Monitorial and construction of the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | LDILCLRLFIDISLALOAVOTPTEALILHSDLEYOHTSSSFKEYINRVLN                                         | Transposase          |
| MSNFNEFELDLQNEKIQNEAASERVKETTWDCVASSIFNCFTLKCPTKGVLVCPQPE/VNTKSQCSSTASCRTTEKK         Fransposase           MEGKADFGGIREGAASERUQNKVPGTAKYEKYGGISKWVNEYDTPWHQAERVKTVQLVLCMFKRQFECKI         HP           MGKMDDDDLDKRANSONSAMIASSADTERSISKYTETITERTFKGQCVSVETPTGMTSACCKKGGTDVEPQCVP         HP           74381         MISTCTAAFWVAFSIGLAVELYTYNKKKKKMENNN         HP           MISTCTAAFWVAFSIGLAVELYTYNKKKKKMENNN         HP           MATNIKGQTEEQKNYEEMASQVAGDGFFTTNQTVSYCPTLTPHIPTITTPKLTQ         HP           MATNIKGQTEEQKNYEEMASQVAGDGFVTVTSPQTLSCCTIVTIFSLTV         HP           MATNIKGGTEEQKNYEEMASQVAGDGFVTVTSPQTLSCCTIVTIFSLTV         HP           MANTNEGAFERSENEDEDEXNITVGGATTPYCALINGTSACSKCDVENN         Toopeptde           MQNEXKAGETSEMELDEDEXNITVGGATTPYCTAASSLLGCVGSYVLGNKGYGCTVTNECMSNCR         Lantibiotic           15053         HQTLSVCGGISHGGTAIVWKCGGRSKKLPEE         HP           C. Junni JAPS         MPNYKDPDDLQNNNKCGKRSKLPEE         HP           MPNYKDPDDLQNNNKLSKKYESVNRCNKTYNDCGYTYPTSYTSWSACATTFFTILCC         HP           MPNYKDPDDLQNNNKLSKKYESVNRCNKTYNDCGYTYPTYCHYTYCNCGSCAGGGGGGATHOCAL         HP           MPNYKDPDDLQNNNKLSKKYESVNRCNKTYNDCGYTYTYCNCGSCAGGGGGGGATHOCAL         HP                MPNYKDPDDLQNNNKLGWKSSNSKLGWGGGACTYTYCCTYCNCGSCAGCAGACHTCAL         HP                MPNYKDPDLDLQNNNKSKNKSKLGWGGGCACHYTYTYCNTCAGGCAGACHTCAL         HP               MPNYKDPDLDLQNNKKKSKLGWGGGICACHYTYTYCNTCAGSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                                                                            | s                    |
| MEDKAQFGGHRGAASPKLQRKVPQSTAKYRKVGHSEWYNEYSDTPWHQAERVKTVQLVLGMPKKQIFCKI         S           MEGKADDFDLDLRKALENCNSANALSASDMITSEILSKYTETTRTFREGQCVSVETPTTGMTSACCKKGGTDVEPQCVP         IHP           C. cellulovroms         MVSETCALPWVASSIGLAVPLITYNSKTKKKMENNE         IHP           MUSCYCKPEDAPTWLSSNSGVPFOTPTING         IHP           MATVHGGAIFEQUXIPENASSOVAGOGFTYPTSICTTSPOTTSCOTTWTISKLTUP         IHP           MATVHGGAIFEQUXIPENASSOVAGOGFTYPTSICTUSCTWTISKLTUP         IHP           MATVHGGAIFEQUXIPENASSOVAGOGFTYPTSICTUSCTWTISKLTUP         IHP           MATVHGGAIFEQUXIPENASSOVAGOGFTYPTSICTUSCTWTISKLTUP         IHP           MATVHGGAIFEQUXIPENASSOVAGOGFTYPTSICTUSCTWTISKLTUP         IHP           MATVHGGAIFEQUXIPENASSOVAGOGFTYPTSICTUSCTWTISCTWTISCALSUSCTWTISKLTUP         IHP           MATVHELDLDDDPGCIGGIGGTATIVCTIAQSLLGCVGSVLGANGYGCTVTNECMSNCR         Lanthibitic           INGLIKKTLINLSDDDDPGLOKINKKKKCGRISKLDUSCHSWINSKNINGPGITTINRTFRYTKYTYSERGCC         IHP           MGDLKKLNLSDDDDMQVGEINEEFINGEDSKKLDUSCHSWINSKNINFRYTTRRVTKYTYSERGCC         IHP           MGDLKKLNLSDDDDDQVGEINEEFINGEDSKKLDUSCKSTNALDUSCKTHEOSCANCTFFALCONA         IHP           MGREINKKENSKNIKKKCGRISKLDGC         INPYKEPDDDINKKKCGRISKLDGC           MPYKEPDDDDQUNKKKKCGRISKLDGCSKTCKCKCTHEOSCANCCKTHEDSCANCCKTHEOSCANCH         IHP           MPYKEPDDDDQUNKKSKNSKKCGRISKLDGCCYCYCCCCKTHEOSCANCHTOCAL         IHP           MPYKEPDDDQUNKKSKNSKKCGRISKLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | MSNFNE <b>FELDLQN</b> EKIQNEAASERVKFTTWDCVASSIFNCPTLKCPTKGVLVCPQPPKPVNTKSQCSSTASCRTTFKK    | Transposase          |
| MEGKAQFEGURICASPELQEKKPQ57AKYEK/GISEW/YNEYSDTP/WIQAER/KYCU/LUCMYKQGTCKI         HP           MGKMDDPDLDURALRENCHANALASSAMTISES         HP           C. cellulovarnas         MYSCTAAFEW/ANSIGLAVELUTYNSYKTK/KKMEINNY         HP           TA'SB 1         MUCSYMKEPLAPHILUSSUSGLYFFYTIYE         HP           MUCSYMKEPLAPHILUSSUSGLYFFYTYE         HP           MANYIGAIFEQKNYEEMASCQVAGOE/FITTNQUT/SCUTUTIPENLTIP         HP           MANYIGAIFEQKNYEEMASCQVAGOE/FITTNQUT/SCUTUFIEMSILTY         HP           MANYIGAIFEQKNYEEMASCQVAGOE/FITTNQUT/SCUTUFIEMSILTY         HP           MANYIGAIFEQKNYEEMASCQVAGOE/FITTNQUT/SCUTUFIEMSILTY         HP           MANYIGAIFEQKNYEEMASCQVAGOSIATTIVCTIAQSLLGCVGSYULGNKGYGCTVTNECMSNCR         Lantibiotic           MUCYKENKAGEISEMELDELSNKTVGGATTIVCTIAQSLLGCVGSYULGNKGYGCTVTNECMSNCR         Lantibiotic           15053         HQDLKKINN.SDLDJANGKKINDEGKOPTSVTSKACTTFITICC         HP           MONKKENKTTOLSLEKKENKAKSKENSGGCTCYYSCCCCTNECNSCGKCGTTABCONSC         HP           MPYKEPDDLDINKNKINNERKYESVKRONTYNNDCGYKTHEPDSCGNCGTSAKCOWA         HP           MPYKEPDDLDINKNKKINSKENSKENKESVKRONTYNNDCGYKTHEPDSCGNCGCTSAKCOWA         HP           MPYKEPDDLDINKNKKNKSSNSKRUPTSTEPSYENKUSEGUCARPYTCROSCGGGGGGATSAKCOWA         HP           MPYKEPDDLDINKNKKNKSSNSKRUPTSTEPSYENKUSEGUCARPYTCROSCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                                            | S                    |
| C cellulovorus<br>743B 1 MVSECTAPPWAFSICLARAENOSANALSASDMITSEIISKYTETITREFKGQUSVEEPPTIGMTSACCKKGGTDVEPQCPP HP<br>C cellulovorus<br>743B 1 MVSECLARPPWAFSICLARAENOSANALSASDMITSEIISKYTETITREFKGQUSVEEPPTIGMTSACCKKGGTDVEPQCPP HP<br>MUSVIKGAFEQURVEEMASQUATGGEFTFVUTIVE<br>MUSVIKKEPLDAPYHKLSSMISIGLYFFVUTIVE<br>MUSVEKAGFISEMELDELVSNKTVGGATTVFCALAIGITLSAGLCPTSACSKDCPWN   hP<br>MUSVEKAGFISEMELDELVSNKTVGGATTVFCALAIGITLSAGLCPTSACSKDCPWN   hantbiotic<br>mGSLKKT1EDLDLDPQIGDNNEEPIJLCGDSKGKLDLVGSPSVISSLNFIQFTKATYTSERGCC HP<br>MGDLKKNLSDLDLDMQVGEINEEPINVSGGKGDVSGSASAINYSMMTLGQVKRGTTAKYTYSERGCC HP<br>MGDLKKNLSDLDLDMQVGEINEEPINVSGGKGDVSGSASINYSMMTLGQVKRGTTAKYTYSERGCC HP<br>C Liptemone DSM<br>MQREEKNVEITGDLSLEFKEMQKLDDEVGVPYSTWSKACTFFFTIICC HP<br>MQREEKNVEITGDLSLEFKEMQKLDDEVGVPYSTWSKACTFFFTIICC HP<br>MPNYKEPDLDQNNKKKVESYNKRONFUNDEGGKKFPSE<br>C Linumi APS<br>MPNYKEPDLDQNNKKKVESYNKRONFUNDEGGKKFPSE<br>C Linumi APS<br>MPNYKEPDLDQNNKKKVESYNKRONFUNDEGGKKFPSEGKGFSGASAINYSMTLGQVKKTDVCGTDPDGR HP<br>MPNYKDPDLDQNNKKKVESYNKRONFUNDEGGKKFPSEGKGCFXGKCGCMVA HP<br>MPNYKDPDLDQNNKKKVESYNKRONFUNDEGGKKFPSEGKGCFXGKCTDVXGTDPDGR HP<br>MPNYKDPDLDQNNKKKVESYNKRONFUNDEGGKKFPSEGKGCSAPKTAGANYMA HP<br>MPNYKDPDLDQNNKKSVKESYNKRONFUNDEGGKKFPSEGKGCSAPKTAGATYONGSCNQHTDCAL HP<br>MPNYKDPDLDQNNKKSVKESYNKRONFUNDEGGKKFPTQCATHGSGSAPKTAGATYONGSCNQHTDCAL HP<br>MPNYKDPDLDQNNKSVKITTMYFPTSEVRDQSGCVCKKFPCGTCAHGSGAPKTRGAV<br>MPYKDPDLDQNNKSVKITTMYFFFSTPKTDQSGCVCKKFPCGTCAHGSGAPKTRGAV<br>MPYKDPDLDQNNKSVKITTMWFFFSTPKTRDQSGCVCKKFPCGTCAHGSGAPKTRGAV<br>MPYKDPDLDQNNKSVKITJMWFFFSTPKTRUKTVGCXGSGGAAAATYSTHCY<br>MPYKDPDLDQNNKSVKITJMWFFFSTDXSECKGAPKTTGCAHTGSSAVTKTVKSKCC<br>C jootriggens D<br>MSVKDPDLDQNNKSVKITJMWFFFSTDXSECKGAPKTTYRKLKTONVEGCKN<br>MSVKDPDLDQNNKSVKITJMWFFFSTDXSECKGAPKTYFTKRLKTONKGCAN<br>MPYKDPDLDQNKSKSKTGVYQVASDKELLLVGGAAGFIKTLTKDCPEVSQVCGSFGVVSACKNC<br>C jootriggens D<br>MSVKDPDLDLKKSKTGVYQVASDKELLLVGGAAGFIKTLTKDCPEVSQVCGSFGVVSACKNC<br>C jootriggens D<br>MSVKDPDLDLKKSKTGVYQVASDKELLUGGAAGFIKTLTKDCPEVSQVCGSFFGVVSACKNC<br>C jootriggens D<br>MSVKDPDLDLKKKSKTGVYQVASDKELLUGGAAGFIKTLTKDCPEVSQVCGSFFGVVSACKNC<br>C jootriggens D<br>MSKTGTRGSNAMAAASASMITSEISKVTETTIT                                                                                                                                                                                                                                                                                                                                                                                                               |                                | MEDKAQFGGHRGAASPKLQRKVPQSTAKYRKVGHSEWYNEYSDTPWHQAERVKTVQLVLGMPKKQIFCKI                     | HP                   |
| C. cellulovorans       MYSPCTAAPPVVASIGLAVFLTYNSKTKLKKMEINNF       HP         74381       MLCSWWFELDAYFIKLSWSKIGUFFPVUIVIE       HP         MNYNKIGQTFEQKNYEEMASQVAGDGFFTTNQTYSYCPTLTIPHIPTITTRLTQ       HP         MANYKIGQTFEQKNYEEMASQVAGDGFFTTNQTYSYCPTLTIPHIPTITTRLTQ       HP         MANYKIGAFEQKNYEEMASQVAGDGFFTTNQTYSYCPTLTIPHIPTITTRLTQ       HP         MANYKIGAFEQKNYEEMASQVAGDGFFTNQTYSYCPTLTIPHIPTITTRLTQ       HP         MQYESKAGFISEMELDELVSNKTVGGATTVPCAIAIGITLSAGICFTSACSKDCPWNN       Iantibiotic         alpha       MGOLKKLNLSDLOLDMQVEEINEEFLYLGGDSKGKLDLVGSPSVINSSLNFIQFIKTNRPVTKYTSERGCC       HP         15053       IIQTILSVCGGISIGGTGAIVWKCGRRSKLPSE       HP         C. humil APS       MPYRKDPDLDRVKNUKLNSSNSKRSDGCTYYSCGGCTTRECNSGCKVCFTDTVVGTDPDGR       HP         MPYNKDPDLDRVKNUKLNSSNSKRSDGCTYYSCGGCTTRECNSGCKVCFTDTVVGTDPDGR       HP         MPYNKDPDLDRVKNUKLSKYSSNRGRNSTVNRDGCKYKTHEPDSCGSCGSGSGSGSGSTSAKCDWA       HP         MPYNKDPDLDRVKNUKLNKRRYFISIKKDOMSMCVCKKTDVCKTHECNSGCRVKTHCDAU       HP         MPYNKDPDLDRVKNUKLKKTDGCYTCRGSCRFTSAKCDWA       HP         MPYNKDPDLDRVKNUKLKKTRGSSRVKPDFCKTHECNSGCRVTCMSCACKTVCCKTHETSSCHUPA       HP         MPYNKDPDLDRVKNUKLKKKTGSSRVKUPPTTSYSYSKLSGCRPKTQTCATHCSSATYCNSCORHTDCAL       HP         MPYNKDPDLDRVKNUKLKKKTGSSSRVKPARKTDGCYTCGNSSCHVTMSACKTDVCKTHETSSCHVTCLA       HP         MPYNKDPDLDRVKNUKKKKKTDSKKKTGGVGKKTDWSKKTMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | MGKMD <b>DFDLDL</b> RKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP    | HP                   |
| P45B1         MLSSWKH-ELARYHKLSSMSISLE/FFYVITIE         HP           MTYNKGOTFEQKNYEEMASCQVAGGOFTTYDTYSPYTLSCITWTIPSIKLITU         HP           MAYNKIGAIFEQKNYEEMASCQVAGGOFTTYDTSCITWTIPSIKLITU         HP           MQYYESKAGFISEMELDEUSNKTVGGATTVFCALAILGITLSAGICPYSACSKDCPWNN         Two peptide<br>lantbiote           MKNYEELFNEVNENASLQAELNGGSIATTIVCTIAQSLLGCVGSYVLGNKGYGCTYTNSECGCC         HP           MGLSKKHTLEDLDLPGIONNEEFLYLGGDSKCKLDLVGSFWINSSLNFIOFITNREVYTKYTSERGCC         HP           MGLKKUNETGDLSLEFKEMQQLVDEEVGYFSTWSKACTTFFTILC         HP           MQREEKWEITGDLSLEFKEMQQLVDEEVGYFSTWSKACTTFFTILC         HP           MAYNKOGSIGHGGTAVKKCGRRSKKINSDGGTCYYSCGCKTNEGNSCGKSCKGCKDVA         HP           MPYNKEPDLDQNNKKKKVSSWNRKNTNDGGYKTHFPTVCCTDFDGG         HP           MPYNKEPDLDQNNKKKKVSSWNRKNTNDGGYKTHFPTVCCGGSGSGGSKTHEDSAW         HP           MPYNKEPDLDQNNKKKVSSWNRKNTNDGGYKTHFYDYCKTHEDSGCKOPAG         HP           MPYNKEPDLDQNNKKKVSSWNRKNTDNGGYKTHFYDYCKTGGSGSGCSKNDLGEFSGKCTWW         HP           MPYNKEPDLDQNNKKKVSSWNRKTYSDKYTYDKSTHCKGGYCGNSGACHNSCQTRCLFPAD         HP           MPYNKEPDLDQNNKKKVSSWNRKNTTMFYTFYSYPYDYSSEGCKPNTTCATYCNSCQTYCLGSGNCGCQHTDCLL         HP           MPYNKEPDLDQNNKKKSTSLGKELSTTTWEESTYDQYSEGCCKPNTGCGYCKGSGACHPSQTRCLKPAD         HP           MPYNKEPDLDQNNKKSKYSTSLGKELSTTTWYDYDYSEGCCRAPHSQCYRCKCGRCKCNC         Cyclysin           Costridingnsp         MSYNKDPDLDQNNYKSKSTLG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C. cellulovorans               | MVSFCTAAFPWVAFSIGLAVFLTYTNSKTKLKKMENKNF                                                    | HP                   |
| INTERACT PROVIDED IN TRANSPORTATION OF THE TRADUCTION OF THE TRADUCT ON THE TRADUCT OF THE PARABOLIC ADDRESS OF THE OF THE PARABOLIC PROVIDED IN TRADUCT OF THE PARABOLIC PROVIDED IN THE PARABOLIC PROVIDES FOR THE PARABOLIC PROVIDED IN THE PARABOLIC PROVIDED IN THE PARABOLIC PROVIDES FOR THE PARAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /43D 1                         | MLCSVWKFFLUAFYHKLSSMSISGLYFFYVIIYIE                                                        | HP                   |
| International content of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | MTNYKIGQTFEQKNYEEMASCQVAGDGFIFTTNQTTVSYCPTLTIPHIPTTTPKLTIQ                                 | HP                   |
| International and international internatinternatintedinternational international internation internationa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | MANYKIGAIFEQKNYEEMASSQMI GGDGFVIVISPQYILSCCIIWIIPSIKLIV                                    | HP<br>Two poptido    |
| MKNYEELFNEVNENASLQAELNGGSIATTIVCTIAQSLLGCVGSYVLGNKGYGCTVTNECMSNCR         Lantibiotic           alpha         alpha           MGSLKKITLEDLDLDPQIGDNNEEFLYLGGDSKGKLDLVGSPSUINSSLNFIQFIKTNRPVTKYTYSERGCC         HP           G. Jupianome DSM         MQBEKKINIEJOLDMQVGEINEFINVSGEKGKDYSGSASAISYSMMTLGQYWKGDTSTAKYTYSERGCC         HP           ISO53         IIQTILSVCGGSIGGTCANVKCGCRKSKLPSE         HP           G. humil APS         MPNYKEPDLDIRNEKNIKSKNSKKRSGGTCYSGCGKTNEGOSCGKVCFDTTIVCGTDFDGR         HP           MPNYKDPDLDJQINKNKSKNSKKRSGGTCYSGCGKTNEGOSCGKVCFDTTIVCGTDFDGR         HP           MPNYKDPDLDJQINKNKSKNSKKRSDGTCYSGCGKTNEGOSCGCSGSGGGSGKTHEDSAW         HP           MPNYKDPDLDJQINKNKINKINDKRPYPTSYEDKRDMSMCVCKKTDVCKTHEDSCNGCLCFESGKCTVV         HP           MPNYKDPDLDJQINKNKINDKRRPYPTSYEDKRDMSMCVCKKTDVCKTHEDSCNGCLCFESGKCTVV         HP           MPNYKDPDLDJQINKNKINDKRRPYPTSYEDKERDKSMCVCKKTDVCKTHEDSCNGCLCFESGKCTVV         HP           MPNYKDPDLDJQINKSSKINSKENIGGKKTVDGYTGTATHCSCATVCNSCSORQHTDCL         HP           MPNYKDPDLDJQINKSSKINSKENIGGKKTVDGYTGRISGERVFTYTKAKKTCNVKECMY         HP           MPNYKDPDLDJQINKSSKINSKENIGGKKTVDGYTGRISGENEVTYCNSCGCQAGAAASVSTAVLSAVK         Cytolysin           C joerfingens D         MCGVPUPLLIVYTFILSIFPHSFLAVCLLDSEGGVDKECVTSRESENEUCQ         HP           C joerfingens D         MSEIDSKKUCOTFEDSISIEMSETCYTLKOPEVSQVGCSFFGWVSACKNC         Columibicina           G joerdiffme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | MQNTESKAGFISEMELDELVSINKTVOORTTVFCAIAIIOITESAGICFISACSKDCFWINN                             | lantibiotic          |
| MGSLKKITLEDLDLDFQIGDNNEEFLYLGGDSKCKLDLVGSPSVINSSLNFQFIKTNRPVTKYTYSERGCC         HP           C. bytemonae DSM         MQREEKNVEITGOLSLEFKEMQKLVDEEVGVPSTWSKACTTFFTIICC         HP           C. bytemonae DSM         MQREEKNVEITGOLSLEFKEMQKLVDEEVGVPSTWSKACTTFFTIICC         HP           S15053         HQTLXVCGGSIBGTCATAWVKCGRNSKKISPE         HP           C. humil APS         MPNYKEPDLDIRNEKNNLKSMNSKKSUSPE         HP           MPNYKEPDLDIRNEKNNLKSMNSKKSUSPE         HP           MPNYKEPDLDIRNEKNNLKSMNSKKSUSPE         HP           MPNYKEPDLDIRNKVCGRINDERGENSIEVKEGSGLACKERVFGGSASGCHESGSKTUDSAW         HP           MPNYKEPDLDINNKVCKUSSKKU-PESYEVKSISECRERVFTGGSASGCHESGSKTUNG         HP           MPNYKEPDLDINNKVNKUNDKRNYPISDIRADDMSMCVCKKTDVCKTHEDSCANCCINCKOGAGNPHTCL         HP           MPNYKEPDLDINNKVCKOSSKKU-PESYEVKSISECRERVFTGGASATCHSGSATCHACSA         HP           MPNYKEPDLDINNKVKOSSKVSIKTTMPFFSYEVKSISECRERVFTGGASATCHSGSATCHACSA         HP           MPNYKEPDLDINNKKSSYNSIKTTMPFFSYEVKSISECRERVFTGGASATCHSGSATCHACSA         HP           MPNYKEPDLDINNKKOSSKTSIGKEISKTCMYPOPISECRERVFTGASATANCAGA         HP           MPNYKEPDLDINNKKSSKTSIGKEISKTCMYPOPISECRERVFTGASATANCAGA         HP           MPNYKEPDLDINNKKOSSKTSIGKEISKTCMYPOPISECRERVFTTKRLKTCNVKECMY         HP           MPNYKEPDLDINNKKVSSKTSIGKEISKTCMYPOPISECRERVFTTKRLKACA         HP           MPNYKEPDLDINNKKUSKTTINAAATTISANCKEISSKUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | MKNYEELFNEVNENASLOAELNGGSIATTIVCTIAQSLLGCVGSYVLGNKGYGCTVTNECMSNCR                          | Lantibiotic          |
| MGSLKKITLEDLDLDPQIGDONNEEPL/LGEDSKCKLDL/GSPSVINSSLMPQHTKNPVTKYTYSERGCC         HP           MGDLKKLNLSDLDLDMQVGEINEEFL/LGEDSKCKLDL/USSSAAIXTSWINTLGQYWKGDTSTAKYTYSERGCC         HP           L3053         IQTILSVCGGISIGGTGAIVWKCGGRSKLPSE         HP           C.humilAPS         MPNYKDFDLDINKKUCGRSKLPSE         HP           C.humilAPS         MPNYKDFDLDQNKLSKVSESVRGKTYNSDCGYCYSGCCTNEGASCGSVCFTDTVCGTDFDGR         HP           MPNYKDFDLDQNKLSKVSESVRGKTYNRDCGYKTHEPDSCCNSCFTSAKCDWA         HP           MPNYKDFDLDQNKLSKVSESVRGKTYNRDCGYKTHEPDSCCNSCFTSAKCDWA         HP           MPNYKDFDLDQNKKLSKVSESVRGKTYNRDCGYKTHEPDSCCNSCFTSAKCDWA         HP           MPNYKDFDLDQNKKLSKVSESVRGKTYVESVRGGGSGGGGGSKTHEBSAW         HP           MPNYKDFDLDQNKKLGVDSSRKULPTFSYEDVSLSECCCPKTTNSCVTYCGSCNQHTDCAL         HP           MPNYKDFDLDQNKKGNINKGSSKNSKUPTPTSYEDVSLSECCCPKTTNSCVTYCGSCNQHTDCAL         HP           MPNYKDFDDLQNKKKUTYWENDKDKTVCGGTYGGNSCACPNSCQTCRLSKPAD         HP           MPNYKDFDDLQNKKKUTYTEKIDKDFTKUTGGYCNGSCONPTGCT         HP           MPNYKDFDLDQNKKGSKTSLGKELSINTGNYOPLSECCKPKTYTKRLKTCVVKECMY         HP           MPNYKDFDDLDTKKVTTKLTIEVKHKKINGGTYSTAKYSQYTCRLSKREDQQ         HP           C.josufJCM 17988         MCGPWELYLKYTFLSIFPHSFLAVCLLSDESGCVDKIGVSISIVE         Cytolysin           C.josufJCM 17988         MCGPWELYLKYTFLSIFPHSFLAVCLLSDESGCVDKIGVSISIVE         LPY           C.j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                                                                                            | alpha                |
| MGDLKKLNLSDLDLDMQVGEINEEFINVSGEGKGDYSGAASIAYSMMTLGQYWKGDTSTAKYTYSERGCC         HP           C. Aptemone DSM         MGREENWEITGOLSEKEEMGKLVDEEVGVPYSTWSKACTTFFTIICC         HP           C. fiumil APS         MPNYKEPDLDINNEENKEKKSDGGTCYSGCGKTNEGNSGGKVCFTDTIVCGTDFDGR         HP           C. fiumil APS         MPNYKEPDLDINNEKSKYESWKACGGRSKLPSE         HP           MPNYKEPDLDINNEKSKYESWKACGGKSGYKTHEDDSGNCGTSTAKCDWA         HP           MPNYKDPDLDINNEKSKYESWKACGGYSGKYKTHEDDSGNCGTSTAKCDWA         HP           MPNYKDPDLDINNEKSKYESWKACGGYSGGSGGGSKTHEDSAW         HP           MPNYKDPDLDINNEKSKYESWKACGYTEGGGSGGGGGGSKTHEDSAW         HP           MPNYKDPDLDINNEKSKYESWKACGYTENSEVEGSICIACKPKTGGCTATHGSGATYCOGSCNQHTDCAL         HP           MPNYKDPDLDINNSKNCIMKOTYSPAUVPATDGGGKKTYCGGTCNGSGCQCPCIKIRAD         HP           MPNYKDPDLDINNSKNCIMTKUTIVEFSYEYDKISECCCPTATHGSCATYCNGSCNQHTDCTL         HP           MPNYKDPDLDIQNNKSSSYSISICTIVEYHTSYEVDYSECCCYPTINCAY         HP           MPNYKDPDLDIQNNKSSKTSLGKELSNTGNYYDPISECRCKPKTYTKRLYCNKECMY         HP           MPNYKDPDLDIQNNKCSSTSLGKELSNTGNYYDPISECRCKPKTYTKRLYCNKECMY         HP           MPNYKDPDLDIQNNKCSTTALTUSKKKTMATYGPVKSQCYICRISENIEDCQ         HP           C josuf/CM17888         MGCPWELVLKYTTLSSIPPISELAVCLJSDESGGVDKICVISISIVE         HP           C josuf/SM17888         MSEINKKTWQCGSGEMENTSIXUXSAUMASAATGSFSIAVTKTVKGKGC         Cytolysin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | MGSLKKITLE <b>DLDLDF</b> QIGDNNEEFLYL <b>GG</b> DSKGKLDLVGSPSVINSSLNFIQFIKTNRPVTKYTYSERGCC | HP                   |
| C. Jytemonae DSM<br>IUQTESVCGSIUGCTAUWXCCCRSKLPSE       HP         C. Ihumi/AP5       IUQTUSVCGSIUGCTAUWXCCCRSKLPSE       HP         C. Ihumi/AP5       MPNYKEPDLDIRNEKNNLSSMNSKKRSDGTCYYSCGCKTNEGNSCGKVCFDTUVCGTDFDGR       HP         MPNYKEPDLDIRNEKNNLSSMNSKKRSDGGTCYYSCGCKTNEGNSCGKVCFDTUVCGTDFDGR       HP         MPNYKEPDLDIRNEKNNLSSMNSKKRSDGGTCYYSCGCKTNEGNSCGKVCFDTUVCGTDFDGR       HP         MPNYKEPDLDIRNEKNNLSSKNSKRSUPPTSYESVRLGCCKRKTYEDSCGNSCTFSAKCDWA       HP         MPNYKEPDLDIRNEKNNLSKNNSKKRSDGGTCYYSCGCKTHEDSCNNGLCFESGKCTWV       HP         MPNYKEPDLDIRNEKNNLSKNNSKRSTIEVKESVRCALCKERKTQCCTATHCSCATYCOSCNQHTDCAL       HP         MPNYKEPDLDIRNEKNINWCPSAVUPATDGGGKKRTUCGTTCGNSCACMPNSCQTECIKPAD       HP         MPNYKEPDLDIRNESSYNSIKTTTMPPTSYEDQYSECVCKPTRNSCVTYCNGSCNQHTDCTL       HP         MPNYKEPDLDIRNESSKISUKGSSTSUGGESISTENCENTYPDTESSECREKPTYTYRKRKTCAVKECMY       HP         MPNYKEPDLDIRNESSYNSIKTTTMPTTSYEDQYSECVCKPTRNSCVTYCNGSCNQHTDCTL       HP         MPNYKEPDLDIRNESSKISUKGSSTSUKELSENTCOYTYPOHSCACKAPYSCAVKCC       Gytolysin         C. josuf JCM 17888       MSEIDSKKUCDTEEDMSIWEMTWQCSGDWREPNSLTVASAVLMSAAATGSFSIATKTVKKCC       Gytolysin         C. perfringens DE       MKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC       Cytolysin         G. Sardellingen       MKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC       Columbicina         JSST22       MKQLDKKSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | MGDLKKLNLSDLDLDMQVGEINEEFINVSGEGKGDYSGSAASIAYSMMTLGQYWKGDTSTAKYTYSERGCC                    | HP                   |
| 15053     IIQTILSVCGGISIGGTCALVWKCCGRRSKLPSE     HP       C. Bumil APS     MPNYKEPDLINRVKRCGRRSKLPSE     HP       MPNYKEPDLINRVKEPDLANKNIKSNSKRSDGCTCYSGCGKTNEGNSGGKVCFTDTIVCGTDFDGR     HP       MPNYKEPDLINRVKRPQGIDDRPGRTSIEVKEQSICLACKPKTGCSGGGGGKTHEDSAN     HP       MPNYKEPDLINRVKRPQGIDDRPGRTSIEVKEQSICLACKPKTGCSGGGGGCGKTHEDSAN     HP       MPNYKEPDLIQNSKLGVDSSRKVLPPTFSYEVSKLSECGCRFKTGCATHEDSANGLCEESGKCTWV     HP       MPNYKEPDLIQNSKLGVDSSRKVLPPTFSYEVSKLSECGCRFKTTGCATHCSCATYCNGSCQHTDCAL     HP       MPNYKEPDLIQNNKSSVNSIKTTTMPPTFSYEVDSUSECCCKPKTRNSCVTYCNGSCQHTDCTL     HP       MPNYKEPDLIQNNKSSNNSIKTTMPTFSYEVSKLSECGCRFKTTGCATHCSCATYCNGSCQHTDCTL     HP       MPNYKEPDLLIQNNKSSNNSIKTTMPTFSYEVSKLSECGCKPKTYTKLKTCNVKECMY     HP       MPNYKEPDLLINNKVITNEIKKTTQANIARTYGPVSSQYICKLSENIEGQ     HP       C. Josuf JCM 1788B     MCGPWELVLKYTFISJFRISFLAUCLISDESGCVNKGVSKIVE     HP       C. Josuf JCM 1788B     MSEIDSKKIVGDTFEDMSINEMTMVQGSGDMEPNSITVASAVLMSAAATGSFSIAVTKTVKGKC     Cytolysin       C. perfringens D     MSEIDSKKIVGDTFEDMSINEMTMVQGSGDMEPNSITVASAVLMSAAATGSFSIAVTKTVKGKC     Cytolysin       C. perfringens D     MKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC     Columbicina       GS121     LFYKVLLLLGWRDKMKLIRINSGVSIFFIGCAAYGYYSSKTLYLADVILGLIAISVFAPSLKNAM     HP       C. sordelliW10     MSNFNEFEDLLAWKKGINKKKLUCYTSTFGCAYGYSSKTUTLADVILGLIAISVFAPSLKNAMAGAQVQA     HP       C. SordelliW10     MSNFNEFEDEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>C. hylemonae</i> DSM        | MQREEKNVEITGDLSLEFKEMQKLVDEEVGVPYSTWSKACTTFFTIICC                                          | HP                   |
| C. Inumit APS       MPNYKEPDLDURNEKNNLKSKYESVORGYCYCCCTTNGGNSCGKVCTDTVUCGTDFDGR       HP         MPNYKEPDLDURNESKYESVNRCNKTSKREDOGKYTHEGDSGCGNSGFTSAKCDWA       HP         MPNYKDPDLDURNESKYESVNRCNKTSKREDOKSCNSGTSAKCDWA       HP         MPNYKDPDLDURNESKYESVNRCNKTSKREDOKSCNSGTSAKCDWA       HP         MPNYKDPDLDURNESKYESVNRCNKTSKREDOKSCNSGTSAKCDWA       HP         MPNYKDPDLDURNESKYESKEGYSERKYLPTFSYEDYDKSECKCRFKTYCGCANGLCFESGKCTWV       HP         MPNYKDPDLDURNESKNGINMYGPSAVIVPATDGGGKKTVCGRTCAGSACONSCTSAKCDWA       HP         MPNYKDPDLDURNESKNGINMYGPSAVIVPATDGGGKKTVCGRTCAGSACNPNSQTRCIKPAD       HP         MPNYKDPDLDURNKSSVNSIKTTMPPTFSYEDYDKYEGCYCKNETKOSCYTCAGSCAQHTDCTL       HP         MPNYKDPDLDURNKKSVDTYKGONSKNGTYTYPDYSEDCCKXPKTYTKRLKTCNVKECMY       HP         MPNYKDPDLDURNKKSVDTYKGONSKNGTYGANISTGYCKSCYCGLESENIEDQ       HP         C. JosufJCM 17888       MCGPWELVLKYTFLSSIFPHSFLAVCLISDESGGVDKIGVSISIVE       HP         C. JosufJCM 17888       MCGDPWELVLKYTFLSSIFPHSFLAVCLISDESGGDMEINSLTVASAVLMSAAATGSFSIAVTKTVKGKC       Cytolysin         C. JosufJCM 17888       MCGDPWELVLKYTGAGSGKYDEVTSPACVYSVASASSQKCGQAGAGAIASFVSTAVLSAVKC       Cytolysin         C. JosufJCM       MSELDSKKIVGDTFEDMSIAMETUCGSGVDKOVTSVASISVE       Lantibiotic       type II         C. JosufJCM       MKQLDKKSKTGIVVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFGWVSACKNC       Columbicina         JGS1721       MKQL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15053                          | IIQTILSVCGGISIIGGTGAIVWKCCGRRSKLPSE                                                        | HP                   |
| MPYRKDPDLDLQNRKLSKYESVNRGNRYTYNRCGRSTYEVRGSGSGGSKTHEPDSAW HP<br>MPYRKDPDLDIQNSKLGVDSSRKULPPTESYEYDKLSECGSGGGSKTEDSAW HP<br>MPYRKDPDLDQNSKLGVDSSRKULPPTESYEYDKLSECGRCRKTQCGTKCSCATYCOGSCQHTDCAL HP<br>MPYRKDPDLDQNSKLGVDSSRKULPPTESYEYDKLSECGRCRKTQCGTRCSCATYCOGSCQHTDCAL HP<br>MPYRKDPDLDQNNKSSVNSIKTTMPPTESYEYDVKLSECGRCRKTQCGTRCSCATYCNGSCQHTDCAL HP<br>MPYRKDPDLDQNNKSSVNSIKTTMPPTESYEYDVKLSECGRCKFKTGSCATYCNGSCAQHTDCAL HP<br>MPYRKDPDLDQNNKSSVNSIKGELSNTCNYVPDISECRCKFKTRGSCATYCNGSCAQHTDCTL HP<br>MPYRKDPDLDQNNKSSVNSIKGELSNTCNYVPDISESCRCFKFKTRKLKTCNVKECMY HP<br>MPYRDPDLDQLNNKSSKTSLGKELSNTCNYVPDISESCRCFKFKTTKRLKTCNVKECMY HP<br>MPYRDPDLDQLTNKKVTTNEIKDKTQANIARTYGFVKSQQYICRLSENIEDCQ HP<br>C josufJCM17808 MCGPWELYLKYFFLSSIFPHSFLAVCLLSDESGCDVKIGVSISIVE HP<br>C perfrigens B<br>MSEIDSKKVGDTFEDMSILAEMTLVQGSGDWREVTSTPACYYVSVAASRASSQKGGQAAGAIASFVSTAVLSAVKC Cytolysin<br>ATCC 3626 MSEINMKKIKGDTFEDMSILAEMTLVQGSGDWREVTSTPACYYVSVAASRASSQKGGQAAGAIASFVSTAVLSAVKC Cytolysin<br>C perfrigens D<br>MKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC Lantibiotic<br>tisr. F4969 MKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC Clambibicina<br>C senegalense<br>MMRQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC Clambibicina<br>G senegalense<br>MSRVDDFDLDLKMVSENGAQSKGVSDYTVDITSALTCWVKISKALNCTNGRECAMPTKDRPAASCHRAMAGAVQA<br>HP<br>CLStridiumsp.<br>MRTACTRSTTGRICAGQSKGVSDYTVDITSALTCWVKISKALNCTNGRECAMPTKDRPAASCHRAMAGAVQA<br>HP<br>CLStridiumsp.<br>MSTSLYQNLIQTANQFCNQYPSCYDSCSIK<br>MDSFLSPLKISIVLNPFFYTIILRKANGIKNIRKLCWTSAIHINPKTSSTNN HP<br>NLL100 LVLWTYPKVCCGGKLIGYNLRGLPPDVNACHKKTETTRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP HP<br>KLE 1755 LLAKTRKTENNLASASDMTSEIISKVTETTITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP HP<br>KLE 1755 MCCGKLIGYNLRGLPPDVNACHKARGNISKIKLGUTSAINISLLCUTISIINISGVSFFTIGMTSACCKKGGTDVEPQCVP HP<br>KLE 1755 MCCGKLIGYNLRGLPPDVNACHKARGNISKIKLGUTSAINISLICTITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP HP<br>KLE 1755 MCCGKLIGYNLRGLPPDVNACHKARGNISKIKLGUTSAINISLICTITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP HP<br>KLE 1755 MCCGKLIGYNFFNPHIGGALCQREICYTAPKRYGGEVCESD HP<br>COSTICHUMSP.<br>MVSUKABAGA                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>C. ihumii</i> AP5           | MPNYKEFDLDIRNEKNNLKSMNSKKRSDGGTCYYSCGCKTNEGNSCGKVCFTDTIVCGTDFDGR                           | HP                   |
| MPYRLDPDLDIAMWRQCQKIDDRPARISEVREUSLIALAPKI GESGEGGEN HEDSAW HP<br>MPYRLDPDLDIAMKMIKINKINKINKERNERVISDKRDDDSMCVCKRTHETDSCNNGLCFESGKCTWV HP<br>MPYRLDPDLDIAMKMIKINKINKINKERVISDKRDDDSMCVCKRTHETDSCNNGLCFESGKCTWV HP<br>MPYRKDPDLDIAMKSSNNSIKTIMPYFSYEYDVLISGCRCRPKTQTCATHCSCATYCNGSCONHTDCAL HP<br>MPYRKDPDLDIAMKSSNNSIKTITMPPTSYEYDVLISGCRCRPKTRNSCVTCNGSCONQHTDCLL HP<br>MPYRKDPDLDQMNKSSNNSIKTITMPPTSYEYDVJSCCVCKPRTRNSCVTCNGSCONQHTDCLL HP<br>MPYRKDPDLDQMNKSSNNSIKTITMPPTSYEYDVJSCCVCKPRTRNSCVTCNGSCONQHTDCLL HP<br>MPYRKDPDLDQMNKSSNNSIKTITTMPPTSYEYDVJSCCVCKPRTRNSCVTCNGSCONQHTDCLL HP<br>MPYRKDPDLDQMNKSSNNSIKTITTMPPTSYEYDVJSCCVCKPRTRNSCVTCNGSCONQHTDCLL HP<br>MPYRKDPDLDQMNKSSNNSIKTITTWPPTSYEYDVJSCVCKSCQVTCNSCGQHTDCLL HP<br>MPYRKDPDLDQMNKSSNNSIKTITTWPTFSYEYDVSCQVICRLSENIEDCQ HP<br>C josufJCM 17888 MCCPWELYLKYTFLSSIFPHSFLAVCLISDESGCVDKIGVSISIVE HP<br>C perfrigens B MSEIDSKKVCOTFEDMSIWEMTWVQGSGDMCPNSLTVASAVLMSAAATCSFSIAVTKTVKGKC Cytolysin<br>ATCC 3626 MSEINMKKIVGDTFEDMSIWEMTWVQGSGDPNGEVTTSPACVVSVAASRASSQKCGQAAGAIASFVSTAVLSAVKC Cytolysin<br>ATCC 3626 MSEINMKKIVGDTFEDMSILEMENTVQGSGDPNGEVTTSPACVVSVAASRASSQKCGQAAGAIASFVSTAVLSAVKC Cytolysin<br>G perfrigens B MSEIDSKKVGDTFEDMSIWEMTWVQGSGDPNGEVTTSPACVVSVAASRASSQKCGQAAGAIASFVSTAVLSAVKC Cytolysin<br>G perfrigens D MKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC Lantibiotic<br>type II<br>C perfrigens D MKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC AC<br>LFYKVLLLLGWRDKMKLIRIISGVVSIFFIGCAAYGYYSSKTLYLADVILGLIAISVFAFSFLKNSKNN HP<br>C sordelliW10 MSNFNEFELDLQNEKAQRSKGVSDYTVDIITSALTCWVKISKALNCTNGRECAMPTKDRPAASCHRAMAGAVQA<br>RC<br>C sordelliW10 MSFNEFELDLQNEKALAPCARDRAGIKRRGVTAQAGSRCQE HP<br>RML305 MT3864 MNYDDFDLDLKKAENCNSANALSASDMTSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP HP<br>LLAKTRKTENNLFSNHNIEGIKLCQREICYTAPKRYGGEVCESD HP<br>Clostridiumsp. MCMDFDLDLRKIAENCNSANALSASDMTSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP HP<br>LLAKTRKTENNLFSNHNIEGIKLCQREICYTAPKRYGGEVCESD HP<br>Clostridiumsp. MEVKEMTTKVTKVKGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTIVGCSGFLTLICC HP<br>KNH2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | MPNYKDFDLDLQNNKLSKKYESVNRGNKTYNRDCGYKTHEPDSCGNSCFTSAKCDWA                                  | HP                   |
| MPNYKDPDLDUQNIKNIKANDKKY/PISUKUDDMSMCVCKA/DVCKATDVCK/TESGKC/TVW         HP           MPNYKDPDLDUQNIKSIKUPTTSYEVDVSKUPTTSYEVTQYSACKACYCOGSCATYCOGSCAPTDCAL         HP           MPNYKDPDLDUQNIKSSKVLPTTSYEVDVSKEVCCRYKTGTCATHCSCATYCOGSCAPTDCAL         HP           MPNYKDPDLDUQNIKSSKVSIKITTMPTFYEVDQYSECVCRYKTRXCATYCOGSCAPTDCAL         HP           MPNYKDPDLDUQNIKSSKVSIKITTMPTFYEVDQYSECVCRYKTRXCAYCOGSCAPTDCAL         HP           MPNYKDPDLDUQNIKSSKVSIKTTMPTFYEVDQYSECVCRYKTRXCAYCOGSCAPTDCAL         HP           MPNYKDPDLDUQNIKSSKVSIKITTMPTFYEVDQYSECVCRYKTRXCAYCOGSCAPTDCAL         HP           MPNYKDPDLDUQNIKSSKVSNENCTTAKTTVKOCCYTYCNGSCAPTDCAL         HP           MPNYKDPDLDUQNIKSSKVSNENCYTYKDVKASCAPTACA         HP           MPNYKDPDLDUTNIKKVITNEIKDKTOQCYTYCPVSCQVCSCYTYTKIKTVKCKC         HP           C.josufjCM 17888         MCGPWELYLKYTFLSSIPPHSFLAVCLLSDESGGVDKICVSISIVE         HP           C.josufjCM 17889         MSEIDSKKIVCDTFEDMSIAEMTLVQGSGDWREVSLTVASAVLMAAATGSFSIAVTKTVKGKC         Cytolysin           C.gerfringens D         MSEIDSKKIVCDTFEDMSIAEMTLVQGSGDVNGEVTSPACVYVSVAASRASSQKCQAAGAIASFVSTAVLSAVKC         Cytolysin           C.perfringens D         MMKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC         Latibioticina           Gerfringens D         MMKQLDKKKKTGIYQQASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC         Columbicina           Gerfringens D         MMKQLDKKKNCURINISCUVSIFFIGCAAYGYSSKTLYLADVILGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | MPNYKDFDLDIRNVRFQGKIDDRPGKTSIEVKEQSICIACKPKTGGSGSGGGSKTHEDSAW                              | HP                   |
| MPNNEDDLARVSLOUDSSKVDURSTEPTISTEDISERVERATINGSACHPISCATICUSGANQHIDEAL         HP           MPNYEEPDLDIRNSKNGINNGVESPAVIPPATDGGGKKTVCGGREINGSACHPISCQTREINFADD         HP           MPNYEDPDLDIRNSKNGINNGVESPAVIPPATDGGGKKTVCGGREINGSACHPISCQTREINFADD         HP           MPNYEDPDLDIRNSKNGINNGUSKKENDGGKKKTDGCYTYGNSSCPRITKAY         HP           MPNYEDPDLDIRNNTVKGNNSKNENIQGKKKTDGCYTYGNSSCPRITKAY         HP           MPRYEDPDLDIRNKTVKGNNSKNENIQGKKKTDGCYTYGNSSCPRITKAY         HP           MPRYEDPDLDIRNKTVKGNSKNENIQGKKKTDGCYTYGNSSCPRITKAK         HP           CjosufjCM 1788         MCGPWELYLKYTISEINENIGNYKVESCYTCRISENIEDCQ         HP           C perfringens B         MCGPWELYLKYTISEINKHTWQCGGDMEPNSLTVASAVLMSAAATGSFSIAVTKTVKGKC         Cytolysin           ATCC 3626         MSEINMKKIVGDTFEDMSIWEMTMVQCGGDMEPNSLTVASAVLMSAAATGSFSIAVTKTVKGKC         Cytolysin           ATCC 3626         MSEIDSKKIVGDYQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC         Lantubiotic           Str. F4969         MMKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC         Columbicina           JGS171         LFYKVLLLGWRDKMKLIRIISGVVSIFFIGCAAYGYYSSKTLYLADVILGLIAISVFAFSFLKNSKNN         HP           C. senegalense         MSNYNDFDLDLKMVSENGAQSKGVSDTYDUTITSALTCWVKISKALNCTNGRECAMPTKDRPASCHRAMAGAVQA         HP           C. Senegalense         MSNYNDFDLQLKMVSENGAQSKGVSDTYDUTITSALTCWVKISKALNCTNGRECAMPTKDRPASCHRAMAGAVQA         HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                                                                            |                      |
| Import Number 2010     Import Number 2010       MENT NUMPER 2010     Import Numper 2010       State 2010     Import Numper 2010<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                                                                            | нр                   |
| International and the product of the produc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | MPNYKDED DDANONNOVATUT AT DOOUNT VOORTONOSNOV NOOTNONNOVATUT                               | НР                   |
| Import Note         Import Note           MPNYKDEPDLDIQNNKGSSKTSLGKELSNTGNYYDPLSECRCKPKTYTRLKTCNVKECMY         HP           MPNYKDEPDLDIQNNKGSSKTSLGKELSNTGNYYDPLSECRCKPKTYTRLKTCNVKECMY         HP           MPNYKDEPDLDITNKKVITHEIKDKTIQANIARTYGPVKSCQTICRISENIEDCQ         HP           C josui JCM 17888         MCGPWELYLKYTFLSSIFPHSFLAVCLLSDESGGVDKIGVSISIVE         HP           C josui JCM 17888         MCGPWELYLKYTFLSSIFPHSFLAVCLLSDESGGVDKIGVSISIVE         HP           C perfringens D         MSEIDSKKIVGDTFEDMSIMEMTMVQCSGDDVRGVTTSPACVYVSVAASRASSQKCGQAAGAIASFVSTAVLSAVKC         Cytolysin           C perfringens D         MKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC         Lantibiotic           str. F4969         MMKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC         Columbicina           G perfringens D         MMKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC         Columbicina           G senegalense         MSNYNDFDLDLKMKLIRIISGVVSIFFIGCAAYGYYSSKTLYLADVILGLIAISVFAFSFLKNSKNN         HP           C socrdelili W10         MSNFNEFELDLQNEKIQNEAASERVKFTTWDCVASSIFNCPTLKCPTKGVLVCPQPPKPVNTKSQCSSTASCRTFFKK         HP           Clostridium sp.         MRTACTRRSSTGRICARNPCARDRAGIRKRHGVTAQAGSRCQE         HP           Clostridium sp.         MSSLSPLKISIVLNPTFYTIILRKANGIKNIRKLCWTSAIHINPKTSSTNN         HP           Clostridium sp.         MSSLSPLKISINVLPTFYTIILRKANGIKNIRKLCWTSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | MPNYKDFDLDLRNNTVKGNNSKNENIOGKKKTDGCYTYGNRSCPNTMCAY                                         | HP                   |
| MPKYNDFNLDIQTDNKNCHTTKLTIEVKHKENKGGNMATWSTHCY         HP           MPNYKDFPLDLTNKKVITNEIKDKTIQANIARTYGPVKSCQVICRLSENIEDCQ         HP           C. Josaf JCM 17888         MCGPWELVLKVYTEJSSIFPHSFLAVCLLSDESGCVDKIGVSISIVE         HP           C. perfringens B         MSEIDSKIVGOTFEDMSIWEMTMVQGSGDMEPNSLTVASAVLMSAAATGSFSIAVTKTVKGKC         Cytolysin           ATCC 3626         MSEIDSKIVGOTFEDMSIAEMTLVQGSGDVNGEVTTSPACVYVSVAASRASSQKCGQAAGAIASFVSTAVLSAVKC         Cytolysin           C. perfringens D         JGS1721         MMKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC         Lantibiotic           Type II         MKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC         Columbicina           JGS1721         MKQLDKKSKTGIYVQVASDKELELLVGGAAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC         Columbicina           G. senegalense         MSNYNDFDLDLKMSENGAQSKGVSDYTVDIITSALTCWVKISKALNCTNGRECAMPTKDRPAASCHRAMAGAVQA         HP           C122         RC         C         Gostridiumsp.         MRTACTRRSSTTGRICARNPCARDRAGIRKRHGVTAQAGSCQE         HP           Clostridiumsp.         MRTACTRRSSTTGRICARNPCARDRAGIRKRHGVTAQAGSCQE         HP          HP           Clostridiumsp.         MSLSLVQNLQTANQFCNQPPSCPVDSCSIK         HP             Clostridiumsp.         MSLVDIPDLDLKKIALENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP         HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | MPNYKD <b>FDLDI</b> QNNKGSSKTSLGKELSNTGNYYDPLSECRCKPKTYTKRLKTCNVKECMY                      | HP                   |
| MPNYKDPDLDL <sup>T</sup> NKKVITNEIKDKTIQANIARTYGPVKSCQYICRLSENIEDCQ         HP           C. josul JCM 17888         MCGPWELYLKYTFLSSIFPHSFLAVCLLSDESGGVDKIGVSISIVE         HP           C. perfringens B         MSEIDSKKIVGDTFEDMSIWEMTMVQGSGDMEPNSLTVASAVLMSAAATGSFSIAVTKTVKGKC         Cytolysin           ATCC 3626         MSEINMKKIVGDTFEDMSIAEMTLVQGSGDVNGEVTTSPACVYVSVAASRASSQKCGQAAGAIASFVSTAVLSAVKC         Cytolysin           C. perfringens CPE         MMKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC         Lantibiotic           str. F4969         MMKQLDKKSKTGIYVQVASDKELELLVGGAGGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC         Columbicina           JGS1721         MMKQLDKKSKTGIYVQVASDKELELLVGGAAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC         Columbicina           G. senegalense         MSNYNDFDLDLKMVSENGAQSKGVSDYTVDIITSALTCWVKISKALNCTNGRECAMPTKDRPAASCHRAMAGAVQA         HP           C. sordelli/W10         MSNFNEFELDLQNEKIQNEAASERVKFTTWDCVASSIFNCPTLKCPTKGVLVCPQPPKPVNTKSQCSSTASCRTTFKK         HP           Glostridium sp.         MSTALTRSSTTGRICARNPCARDRAGIRKRHGVTAQAGSRCQE         HP           ASF502         MSTSLYQNLIQTANQFCNQYPSCPYDSCSIK         HP           Clostridium sp.         MGKMDDPDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP         HP           Clostridium sp.         MGKMDDPDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP         HP           Slostridium sp.         MGKMDDPDLDLRKIAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                | MPKYND <b>FNLDI</b> QTDNKNCHTTKLTIEVKHKENKGGNMATWSTHCY                                     | HP                   |
| C. josui JCM 17888     MCGPWELYLKYTFLSSIFPHSFLAVCLLSDESGGVDKIGVSISIVE     HP       C. perfringens B<br>ATCC 3626     MSEIDSKKIVGDTFEDMSIWEMTMVQGSGDVDREVTSPACVVSVAAASTASSQKCGQAAGAIASFVSTAVLSAVKC     Cytolysin       C. perfringens CPE<br>str. F4969     MMKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC     Lantibiotic<br>type II       C. perfringens D<br>JGS1721     MMKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC     Columbicina<br>A       C. senegalense<br>JC senegalense<br>JC 2     MMKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC     Columbicina<br>A       C. senegalense<br>JC122     MSNYNDFDLDLKMKLIRIISGVVSIFFIGCAAYGYYSSKTLYLADVILGLIAISVFAFSFLKNSKNN     HP       C. senegalense<br>JC122     MRTACTRRSSTTGRICARNPCARDRAGISKGVSDYTVDIITSALTCWVKISKALNCTNGRECAMPTKDRPAASCHRAMAGAVQA<br>RC     HP       Clostridium sp.<br>ASF502     MRTACTRRSSTTGRICARNPCARDRAGIRKRHGVTAQAGSRCQE     HP       MSTSLVQNLIQTANQFCNQYPSCPYDSCSIK     HP       Clostridium sp.<br>MSCMDDFDLDL     MGKMDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP     HP       RC     MGMDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP     HP       Clostridium sp.<br>BR31     MCVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICC     HP       Clostridium sp.<br>BK3164     MRETLLVVLMLLFVILAAAMIFPMPPIIYGAIMSLIILCIIIIISYILIIKKNH     HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | MPNYKD <b>FDLDL</b> TNKKVITNEIKDKTIQANIARTYGPVKSCQYICRLSENIEDCQ                            | HP                   |
| C perfringens B<br>ATCC 3626MSEIDSKKIVGDTFEDMSIWEMTMVQGSGDMEPNSLTVASAVLMSAAATGSFSIAVTKTVKGKCCytolysinATCC 3626MMKQLDKKSKTGIVQQASDKELELLVQGAGAGFIKTLTKDCPEVVSQVGGSFGWVSACKNCLantibioticC perfringens CPE<br>str. F4969MMKQLDKKSKTGIVVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNCLantibioticJGS1721MKQLDKKSKTGIVVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNCColumbicina<br>AJGS1721ALFYKVLLLGWRDKMKLIRIISGVVSIFFIGCAAYGYYSSKTLYLADVILGLIAISVFAFSFLKNSKNNHPC senegalense<br>IC122RCMSNYNDFDLDLKMVSENGAQSKGVSDYTVDIITSALTCWVKISKALNCTNGRECAMPTKDRPAASCHRAMAGAVQA<br>RCHPC sordelliiW10MSNFNEFELDLQNEKIQNEAASERVKFTTWDCVASSIFNCPTLKCPTKGVLVCPQPPKPVNTKSQCSSTASCRTTFKKHPClostridium sp.<br>ASF502MRTACTRRSSTTGRICARNPCARDRAGIRKRHGVTAQAGSRCQEHPClostridium sp.<br>MTSLLSPLKISIVLNPTFYTIILRKANGIKNIRKLCWTSAIHINPKTSSTNNHPClostridium sp.<br>RKLE 1755MCKMDDPDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVPHPClostridium sp.<br>R811MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICCHPClostridium sp.<br>R811MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICCHPDSM 13864MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICCHP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>C. josui</i> JCM 17888      | MCGPWELYLKYTFLSSIFPHSFLAVCLLSDESGGVDKIGVSISIVE                                             | HP                   |
| ATCC 3626MSEINMKKIVGDTFEDMSIAEMTLVQGSGDVNGEVTTSPACVYVSVAASRASSQKCGQAAGAIASFVSTAVLSAVKCCytolysinC perfringensCPE<br>str. F4969MMKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNCLantibiotic<br>type IIC perfringensD<br>JGS1721MMKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNCColumbicina<br>ALFYKVLLLLGWRDKMKLIRIISGVVSIFFIGCAAYGYYSSKTLVLADVILGLIAISVFAFSFLKNSKNNHPC senegalense<br>JC122RCC sordelliiW10MSNFNEFELDLQNEKIQNEAASERVKFTTWDCVASSIFNCPTLKCPTKGVLVCPQPPKPVNTKSQCSSTASCRTTFKKHPASF502MRTACTRRSSTTGRICARNPCARDRAGIRKRHGVTAQAGSRCQEHPClostridium sp.<br>MSTSLVQNLIQTANQFCNQYPSCPYDSCSIKHPClostridium sp.<br>MSLSPLKISIVLNPTFYTILRKANGIKNIRKLCWTSAIHINPKTSSTNNHPClostridium sp.<br>MGKMDDFDLDLKKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVPHPClostridium sp.<br>MGKMDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVPHPClostridium sp.<br>RS11MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTIVGCSGFLTLICCHPClostridium sp.<br>RS11MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTIVGCSGFLTLICCHPClostridium sp.<br>RN11864MRETLLVVLMLLFVILAAAMIFPMPPIIYGAIMSLIILCIIIIISIYILIIKKNHHP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C. perfringens B               | MSEIDSKKIVGDTFEDMSIWEMTMVQGSGDMEPNSLTVASAVLMSAAATGSFSIAVTKTVKGKC                           | Cytolysin            |
| C. perfringens CPE<br>str. F4969       MMKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC       Lantibiotic<br>type II         C. perfringens D<br>JGS1721       MMKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC       Columbicina<br>A         LFYKVLLLLGWRDKMKLIRIISGVVSIFFIGCAAYGYYSSKTLYLADVILGLIAISVFAFSFLKNSKNN       HP         C. senegalense<br>JC122       MSNYNDFDLDLKMVSENGAQSKGVSDYTVDIITSALTCWVKISKALNCTNGRECAMPTKDRPAASCHRAMAGAVQA<br>RC       HP         C. sordeliiiW10       MSNFNEFELDLQNEKIQNEAASERVKFTTWDCVASSIFNCPTLKCPTKGVLVCPQPPKPVNTKSQCSSTASCRTTFKK       HP         MRTACTRRSSTTGRICARNPCARDRAGIRKRHGVTAQAGSRCQE       HP         Clostridium sp.<br>BNL1100       MSTSLSPLKISIVLNPTFYTIILRKANGIKNIRKLCWTSAIHINPKTSSTNN       HP         Clostridium sp.<br>BNL1100       MGKMDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP       HP         Clostridium sp.<br>BR31       MGKMDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP       HP         BR31       MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICC       HP         Clostridium sp.<br>KNHs205       MRETLLVVLMLLFVILAAAMIFPMPPIIYGAIMSLIILCIIIIISIYILIIKKNH       HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATCC 3626                      | MSEINMKKIVGDTFEDMSIAEMTLVQGSGDVNGEVTTSPACVYVSVAASRASSQKCGQAAGAIASFVSTAVLSAVKC              | Cytolysin            |
| str. F4969       type II         C perfringens D<br>JGS1721       MKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC       Columbicina<br>A         LFYKVLLLLGWRDKMKLIRIISGVVSIFFIGCAAYGYYSSKTLYLADVILGLIAISVFAFSFLKNSKNN       HP         C senegalense<br>JC122       MSNYNDFDLDLKMVSENGAQSKGVSDYTVDIITSALTCWVKISKALNCTNGRECAMPTKDRPAASCHRAMAGAVQA       HP         C sordellii W10       MSNFNEFELDLQNEKIQNEAASERVKFTTWDCVASSIFNCPTLKCPTKGVLVCPQPPKPVNTKSQCSSTASCRTTFKK       HP         Clostridium sp.       MRTACTRRSSTTGRICARNPCARDRAGIRKRHGVTAQAGSRCQE       HP         ASF502       MSTSLYQNLIQTANQFCNQYPSCPYDSCSIK       HP         Clostridium sp.       MSTSLSPLKISIVLNPTFYTIILRKANGIKNIRKLCWTSAIHINPKTSSTNN       HP         BNL1100       LVLWTVPKVCCGGKLIGYNLRGLFPDVNKACFHK       HP         Clostridium sp.       MGKMDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP       HP         RC       ILLAKTRKTENNLFSNHNIEGIKLCQREICYTAPKRYGGEVCESD       HP         Clostridium sp.       MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTTVGCSGFLTLICC       HP         KNHs205       MRETLLVVLMLLFVILAAAMIFPMPPIIYGAIMSLIILCIIIIISIYILIIKKNH       HP         DSM 13864       MRETLLVVLMLLFVILAAAMIFPMPPIIYGAIMSLIILCIIIIISIYILIIKKNH       HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C. perfringens CPE             | MMKQLDKKSKTGIYVQVASDKELELLVGGAGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC                            | Lantibiotic          |
| C. pertrugeus D       IMMRQLDRKSKTGTTVQVASDKELELLVGGAGAGPTKTLTERDCPEVVSQVCGSPFGWVSACKNC       Columbicina         JGS1721       A         LFYKVLLLLGWRDKMKLIRIISGVVSIFFIGCAAYGYYSSKTLYLADVILGLIAISVFAFSFLKNSKNN       HP         C. senegalense       MSNYNDFDLDLKMVSENGAQSKGVSDYTVDIITSALTCWVKISKALNCTNGRECAMPTKDRPAASCHRAMAGAVQA       HP         JC122       RC       NSNYNDFDLDLKMVSENGAQSKGVSDYTVDIITSALTCWVKISKALNCTNGRECAMPTKDRPAASCHRAMAGAVQA       HP         Clostridium sp.       MRTACTRRSSTTGRICARNPCARDRAGIRKHGVTAQAGSRCQE       HP         ASP502       MSTSLYQNLIQTANQFCNQYPSCPYDSCSIK       HP         Clostridium sp.       MTSLLSPLKISIVLNPTFYTIILRKANGIKNIRKLCWTSAIHINPKTSSTNN       HP         BN11100       LVLWTVPKVCCGGKLIGYNLRGLFPDVNKACFHK       HP         Clostridium sp.       MGKMDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP       HP         R1755       LLAKTRKTENNLFSNHNIEGIKLCQREICYTAPKRYGGEVCESD       HP         Clostridium sp.       MDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP       HP         R871             Clostridium sp.       MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP       HP         Saccharobutylicum       MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICC       HP         Saccharobutylicum <th>str. F4969</th> <th></th> <th>type II</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | str. F4969                     |                                                                                            | type II              |
| JONTALInLFYKVLLLLGWRDKMKLIRIISGVVSIFFIGCAAYGYYSSKTLYLADVILGLIAISVFAFSFLKNSKNNHPC. senegalense<br>JC122MSNYNDFDLDLKMVSENGAQSKGVSDYTVDIITSALTCWVKISKALNCTNGRECAMPTKDRPAASCHRAMAGAVQA<br>RCHPC. sordellii W10MSNFNEFELDLQNEKIQNEAASERVKFTTWDCVASSIFNCPTLKCPTKGVLVCPQPPKPVNTKSQCSSTASCRTTFKKHPClostridium sp.<br>ASF502MRTACTRRSSTTGRICARNPCARDRAGIRKRHGVTAQAGSRCQEHPClostridium sp.<br>BNL1100MTSLLSPLKISIVLNPTFYTIILRKANGIKNIRKLCWTSAIHINPKTSSTNNHPClostridium sp.<br>BNL1100MGKMDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVPHPClostridium sp.<br>BNL1100MGKMDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVPHPClostridium sp.<br>BR31MDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVPHPClostridium sp.<br>BR31MREVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTIVGCSGFLTLICCHPClostridium sp.<br>BR31MRETLLVVLMLLFVILAAAMIFPMPPIIYGAIMSLIILCIIIIISIYILIIKKNHHPDSM 13864DSM 13864HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C. permingens D<br>IGS1721     | MMKQLDKKSKIGIYVQVASDKELELLVGGAGAGFIKILIKDCPEVVSQVCGSFFGWVSACKNC                            |                      |
| C. senegalense       MSNYNDFDLDLKMVSENGAQSKGVSDYTVDIITSALTCWVKISKALNCTNGRECAMPTKDRPAASCHRAMAGAVQA       HP         JC122       RC       HP         C. sordellitW10       MSNYNDFDLDLKMVSENGAQSKGVSDYTVDIITSALTCWVKISKALNCTNGRECAMPTKDRPAASCHRAMAGAVQA       HP         C. sordellitW10       MSNYNDFDLDLKMVSENGAQSKGVSDYTVDIITSALTCWVKISKALNCTNGRECAMPTKDRPAASCHRAMAGAVQA       HP         Clostridium sp.       MRTACTRRSSTTGRICARNPCARDRAGIRKRHGVTAQAGSRCQE       HP         ASF502       MSTSLYQNLIQTANQFCNQYPSCPYDSCSIK       HP         Clostridium sp.       MTSLLSPLKISIVLNPTFYTIILRKANGIKNIRKLCWTSAIHINPKTSSTNN       HP         BNL1100       LVLWTVPKVCCGGKLIGYNLRGLFPDVNKACFHK       HP         Clostridium sp.       MGKMDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP       HP         KLE 1755       LLAKTRKTENNLFSNHNIEGIKLCQREICYTAPKRYGGEVCESD       HP         Clostridium sp.       MODFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP       HP         BR31       HD       Clostridium sp.       MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTIVGCSGFLTLICC       HP         Clostridium sp.       MREVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTIVGCSGFLTLICC       HP         Saccharobutylicum       MRETLLVVLMLLFVILAAAMIFPMPPIIYGAIMSLIILCIIIIISIYILIIKKNH       HP         DSM 13864       KRETLLVVLMLLFVILAAAMIFPMPPIIYGAIMSLIILCIIIIIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ju31721                        | LEYKVLLLLGWRDKMKLIRIISGVVSIFFIGCAAYGYYSSKTLYLADVILGLIAISVFAESFLKNSKNN                      | HP                   |
| JC122RCImage: RCC. sordellifW10MSNFNEFELDLQNEKIQNEAASERVKFTTWDCVASSIFNCPTLKCPTKGVLVCPQPPKPVNTKSQCSSTASCRTTFKKHPClostridium sp.<br>ASF502MRTACTRRSSTTGRICARNPCARDRAGIRKRHGVTAQAGSRCQEHPClostridium sp.<br>BNL1100MTSLLSPLKISIVLNPTFYTIILRKANGIKNIRKLCWTSAIHINPKTSSTNNHPClostridium sp.<br>BNL1100MGKMDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVPHPClostridium sp.<br>KLE 1755MGKMDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVPHPClostridium sp.<br>BR31MDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVPHPClostridium sp.<br>KNHs205MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICCHPDSM 13864MRETLLVVLMLLFVILAAAMIFPMPPIIYGAIMSLIILCIIIIISIYILIIKKNHHP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C. senegalense                 | MSNYNDFDLDLKMVSENGAOSKGVSDYTVDIITSALTCWVKISKALNCTNGRECAMPTKDRPAASCHRAMAGAVOA               | HP                   |
| C. sordellif W10       MSNFNEFELDLQNEKIQNEAASERVKFTTWDCVASSIFNCPTLKCPTKGVLVCPQPPKPVNTKSQCSSTASCRTTFKK       HP         Clostridium sp.       MRTACTRRSSTTGRICARNPCARDRAGIRKRHGVTAQAGSRCQE       HP         ASF502       MSTSLYQNLIQTANQFCNQYPSCPYDSCSIK       HP         Clostridium sp.       MTSLLSPLKISIVLNPTFYTIILRKANGIKNIRKLCWTSAIHINPKTSSTNN       HP         BNL1100       UVLWTVPKVCCGGKLIGYNLRGLFPDVNKACFHK       HP         Clostridium sp.       MGKMDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP       HP         KLE 1755       LLAKTRKTENNLFSNHNIEGIKLCQREICYTAPKRYGGEVCESD       HP         Clostridium sp.       MODFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP       HP         KL8 1755       MDDFDLDRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP       HP         Clostridium sp.       MRVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICC       HP         Clostridium sp.       MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICC       HP         Clostridium sp.       MREVLLVVLMLLFVILAAAMIFPMPPIIYGAIMSLIILCIIIIISIYILIIKKNH       HP         DSM 13864       MRETLLVVLMLLFVILAAAMIFPMPPIIYGAIMSLIILCIIIIISIYILIIKKNH       HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JC122                          | RC                                                                                         |                      |
| Clostridium sp.     MRTACTRRSSTTGRICARNPCARDRAGIRKRHGVTAQAGSRCQE     HP       ASF502     MSTSLYQNLIQTANQFCNQYPSCPYDSCSIK     HP       Clostridium sp.     MTSLLSPLKISIVLNPTFYTIILRKANGIKNIRKLCWTSAIHINPKTSSTNN     HP       BNL1100     LVLWTVPKVCCGGKLIGYNLRGLFPDVNKACFHK     HP       Clostridium sp.     MGKMDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP     HP       KLE 1755     LLAKTRKTENNLFSNHNIEGIKLCQREICYTAPKRYGGEVCESD     HP       Clostridium sp.     MODFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP     HP       RR31      HP       Clostridium sp.     MREVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICC     HP       Clostridium sp.     MREVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICC     HP       Saccharobutylicum     MRETLLVVLMLLFVILAAAMIFPMPPIIYGAIMSLIILCIIIIISIYILIIKKNH     HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>C. sordellii</i> W10        | MSNFNE <b>FELDL</b> QNEKIQNEAASERVKFTTWDCVASSIFNCPTLKCPTKGVLVCPQPPKPVNTKSQCSSTASCRTTFKK    | HP                   |
| ASF502     MSTSLYQNLIQTANQFCNQYPSCPYDSCSIK     HP       Clostridium sp.<br>BNL1100     MTSLLSPLKISIVLNPTFYTIILRKANGIKNIRKLCWTSAIHINPKTSSTNN     HP       Clostridium sp.<br>KLE 1755     MGKMDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP     HP       Clostridium sp.<br>BR31     MDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP     HP       Clostridium sp.<br>BR31     MDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP     HP       Clostridium sp.<br>BR31     MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICC     HP       Clostridium sp.<br>BR34     MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICC     HP       MRETLLVVLMLLFVILAAAMIFPMPPIIYGAIMSLIILCIIIIISIYILIIKKNH     HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Clostridium sp.                | MRTACTRRSSTTGRICARNPCARDRAGIRKRHGVTAQAGSRCQE                                               | HP                   |
| Clostridium sp.<br>BNL1100       MTSLLSPLKISIVLNPTFYTIILRKANGIKNIRKLCWTSAIHINPKTSSTNN       HP         BNL1100       LVLWTVPKVCCGGKLIGYNLRGLFPDVNKACFHK       HP         Clostridium sp.<br>KLE 1755       MGKMDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP       HP         Clostridium sp.<br>BR31       MDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP       HP         Clostridium sp.<br>KNHs205       MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICC       HP         C       MRETLLVVLMLLFVILAAAMIFPMPPIIYGAIMSLIILCIIIIISIYILIIKKNH       HP         DSM 13864       J       HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ASF502                         | MSTSLYQNLIQTANQFCNQYPSCPYDSCSIK                                                            | HP                   |
| INILIUU     LVLWTVPKVCCGGKLIGYNLRGLFPDVNKACFHK     HP       Clostridium sp.     MGKMDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP     HP       KLE 1755     LLAKTRKTENNLFSNHNIEGIKLCQREICYTAPKRYGGEVCESD     HP       Clostridium sp.     MDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP     HP       BR31     MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICC     HP       Clostridium sp.     MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICC     HP       Saccharobutylicum     MRETLLVVLMLLFVILAAAMIFPMPPIIYGAIMSLIILCIIIIISIYILIIKKNH     HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Clostridium sp.                | MTSLLSPLKISIVLNPTFYTIILRKANGIKNIRKLCWTSAIHINPKTSSTNN                                       | HP                   |
| Clostriatum sp.       MGKMDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP       HP         KLE 1755       LLAKTRKTENNLFSNHNIEGIKLCQREICYTAPKRYGGEVCESD       HP         Clostridium sp.       MDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP       HP         BR31       MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICC       HP         Clostridium sp.       MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICC       HP         Saccharobutylicum       MRETLLVVLMLLFVILAAAMIFPMPPIIYGAIMSLIILCIIIIISIYILIIKKNH       HP         DSM 13864       L       HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BNL1100                        | LVLWTVPKVCCGGKLIGYNLRGLFPDVNKACFHK                                                         | HP                   |
| Num 1753     LLAK I KK I ENNLFSNHINIEGIKLUQKEICY I APKKYGGEVCESD     HP       Clostridium sp.<br>BR31     MDDFDLDLRKIAENGNSANALSASDMITSEIISKVTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP     HP       Clostridium sp.<br>KNHs205     MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICC     HP       C     MRETLLVVLMLLFVILAAAMIFPMPPIIYGAIMSLIILCIIIIISIYILIIKKNH     HP       DSM 13864     ME     HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ciostridium sp.                | MGKMDDPDLDLKKIAENGNSANALSASDMITSEIISKVTETTTRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP             | HP                   |
| Clostridium sp.       MDDTDLDLKKIAENGNSANALSASDMITSENSKVTETTTKIFKQQCVSVETPTTGMTSACCKKGGTDVEPQCVP       HP         BR31       Clostridium sp.       MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICC       HP         KNHs205       MRETLLVVLMLLFVILAAAMIFPMPPIIYGAIMSLIILCIIIIISIYILIIKKNH       HP         saccharobutylicum       DSM 13864       HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Clostridium m                  | LLAN I NN I ENNLFONTINIEUINLUUKEIU I I APKKY UUEVUEDU                                      | HP                   |
| Clostridium sp.     MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICC     HP       KNHs205     MRETLLVVLMLLFVILAAAMIFPMPPIIYGAIMSLIILCIIIIISIYILIIKKNH     HP       saccharobutylicum     DSM 13864     HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BR31                           | MUDUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU                                                     | пг                   |
| KNHs205     Image: Constraint of the saccharobutylicum       Saccharobutylicum     HP       DSM 13864     HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Clostridium sp.                | MEVKEMTTKVTRVKTGNQFNHPAGDIPAEISEIVSLRESKNPDAIYTITVGCSGFLTLICC                              | НР                   |
| C MRETLLVVLMLLFVILAAAMIFPMPPIIYGAIMSLIILCIIIIISIYILIIKKNH HP<br>saccharobutylicum<br>DSM 13864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KNHs205                        |                                                                                            |                      |
| saccharobutylicum<br>DSM 13864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | С.                             | MRETLLVVLMLLFVILAAAMIFPMPPIIYGAIMSLIILCIIIIISIYILIIKKNH                                    | HP                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | saccharobutylicum<br>DSM 13864 |                                                                                            |                      |

Table.5. List of putative lantibiotic genes discovered in the genus of *Clostridium* 

| Name        | Source                                   | Core peptide                                | MW      | pI   | GRAVY | S+T | C |
|-------------|------------------------------------------|---------------------------------------------|---------|------|-------|-----|---|
| Clos2       |                                          | YLSLTPKCTSLCPTNVFVCISKRCK                   | 2805.42 | 9.21 | 0.34  | 6   | 4 |
| Clos4       | <i>C.beijerinckii</i><br>HUN142          | ITSRILCTSSCYTQFIQCHDRV                      | 2574.97 | 7.97 | 0.15  | 6   | 3 |
| Clos5       |                                          | VTSYSACTPGCATSLFRTCLTRSCKGC                 | 2817.28 | 8.80 | 0.27  | 9   | 5 |
| Clos12      |                                          | TCYYSCGCKTNEGNSCGKVCFTDTIVCGTDFDGR          | 3649.04 | 4.68 | -0.28 | 7   | 6 |
| Clos14      |                                          | ISDKRDDMSMCVCKKTDVCKTHETDSCNNGLCFESGKCTWV   | 4619.26 | 5.57 | -0.58 | 8   | 6 |
| Clos15      | <i>Clostridium</i><br><i>ihumii</i> AP5  | TFSYEYDKLSECRCRPKTQTCATHCSCATYCNGSCNQHTDCAL | 4844.38 | 6.60 | -0.67 | 10  | 8 |
| Clos16      |                                          | ATDGGGKKTVCGRTCNGSACNPNSCQTRCIKPAD          | 3414.82 | 8.78 | -0.73 | 6   | 5 |
| Clos17      |                                          | TFSYEYDQYSECVCKPKTRNSCVTYCNGSCNQHTDCTL      | 4392.82 | 5.45 | -0.81 | 9   | 6 |
| Clos22      | <i>C. perfringens</i><br>D JGS1721       | AGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC          | 3554.13 | 7.91 | 0.45  | 5   | 4 |
| Clos24      | <i>Clostridium</i><br><i>sp.</i> BR31    | VTETITRTFKGQCVSVETPTTGMTSACCKKGGTDVEPQCVP   | 4291.91 | 6.20 | -0.23 | 11  | 4 |
| Clos25      | <i>Clostridium</i><br><i>sp.</i> KNHs205 | ESKNPDAIYTITVGCSGFLTLICC                    | 2548.97 | 4.37 | 0.65  | 5   | 3 |
| ClosDP<br>1 | <i>C.botulinum</i><br>H04402 065         | TAASAAAVSATVASATAVSALFTVTSACTTKCK           | 3062,5  | 8,88 | 0,96  | 12  | 2 |
| ClosDP<br>2 |                                          | TFSEGTISITLSVYMGNDGKVCTWTVECQNNCSHKK        | 3982,49 | 6,42 | -0,33 | 9   | 3 |

Table.6. Characteristic of core peptides from selected lantibiotic gene candidates

Genes represented in this work were based on the number of observed genes, except for putative class II two-component lantibiotic which described as ClosDP. From 12 putative lantibiotic genes observed, eight genes were identified as putative Class I lantibiotics group, and four genes were identified as putative Class II lantibiotics. Characteristic of selected core peptides was analyzed by ProtParam Tool (ExPASy) (Gasteiger et al., 2005) and putative leader cleavage manually identified according to other putative cleavage sites (Table.5). Furthermore, for expression system, all putative genes were fused into the common nisin leader sequence and cloned into *L. lactis* NZ9000 by USER cloning approach (Bitinaite & Nichols, 2009).

Theoretical molecular weight of each peptide could be predicted and used as references when doing mass spectra analysis. Theoretical molecular weight is important to be known in case of novel peptides analysis since renowned molecular weight references about them are still unknown. Based on molecular weight prediction, all of the putative lantibiotics observed in this study could be considered as small peptides which have a molecular weight less than 5kDa (McAuliffe et al., 2001) with Clos25, had the lowest molecular weight while Clos15 had the highest amount. Next, the theorical isoelectric point of each peptide also could be estimated by this tool. In general, most of the lantibiotics are cationic antimicrobial peptides which dominantly assembled by positively charges amino acid residues, and thus they usually have high pI value, but there are lantibiotics which considered as negatively charged such as the type-B lantibiotics such as mersacidin (Islam et al., 2012). In case of lantibiotics, the information about pI is not just related to the purification process, but also can give the insight about mode of action from lantibiotics, for example, the positive charges in lantibiotics play a vital role for binding on targeted membranes with high affinity (Hasper et al., 2004). From the data shown in Table.6, most of putative lantibiotic candidates have high pI value while a few of them have low pI value due to the excess amount of negatively charged amino acids in their core sequences. Another valuable property of putative peptides is their interaction with water molecules. The term that been used to know this property is GRAVY (Grand Average of Hydropathicity), the more positive the value, the more hydrophobic are the peptides. Hydrophobicity could affect how peptides will interact with targeted cell membranes. In case of nisin, hydrophilic residues of peptide will bind to phospholipid groups of cell membranes and followed with penetration of hydrophobic side chains of peptide into hydrophobic core of membranes leading to pore-formations (Weidemann et al., 2001). Nevertheless, hydrophobicity of each putative lantibiotic in this study shown in Table.6. In addition, the number of serines/threonines/cysteines residues of each peptide are also important to be known, because the number of these residues representing the theoretical dehydration level or modification that may emerge for each peptide (Table.6).



# 3.1.3) The Organization Of Gene Operon From Selected Putative Lantibiotics

*In silico* analysis of each selected putative lantibiotics also uncovered their gene clusters organization. In case of putative lantibiotics from C. beijerinckii HUN142, observed genes designated as *clos2*, *clos4*, and *clos5* in this study. There are complete set of biosynthetic genes including putative modification enzymes, ABC Transporters, and regulator proteins (Fig.6). Also, putative immunity protein observed in this gene cluster showing similarity to the typical class I lantibiotic biosynthetic genes cluster, in this case, gallidermin/nisin like family based on BlastP homology (NCBI) analysis. Putative class I lantibiotic genes also discovered in *C. ihumii* AP5. clos12, clos14, clos15, clos16, and clos17 are positioned adjacent to each other and organized together with putative modification enzymes, ABC Transporter and putative regulation protein. Additionally, *clos*14 showed peculiar characteristic as lantibiotic since it has two methionine residues in the core sequence and also it is an anionic peptide. One single component lantibiotic from Class II lanthipeptides also found in *C. perfringens* D JGS1721 coded as *clos*22 and identified as type A(II) lantibiotic which known has two domains, a linear N-terminal region, and globular C-terminal region. This type of lantibiotics show slightly different mode of action to the type A(I) lantibiotic which is only could bind lipid II and inhibit cell wall synthesis. Notable example of this group is Nukacin ISK-1 (Asaduzzaman et al., 2009) and most of lantibiotics in this group are unable to execute pores formation (Islam et al., 2012) or just create unstable pores such as streptococcin A-FF22 (Jack et al., 1994). Other putative lantibiotic genes also found in *Clostridium* sp. BR31 and *Clostridium sp.* KNHs205 these genes coded as *clos*24 and *clos*25 respectively. Taken from the newest study about *Clostridium sp.* BR31, this species previously was known as novel species in the genus of *Clostridium* as it still listed in *Clostridium* genome database when this study started, but recently it had a new order in taxonomy and declared as a new genus in

*Clostridium* cluster XIVa, in the family *Lachnospiraceae*. This species now is designated as *Merdimonas faecis gen. nov., sp. nov* (Seo et al., 2017). Interestingly, the genome mining in this study also could observe the putative class II lantibiotic, a unique two-component lantibiotic found in one organism, *Clostridium botulinum* H04402 065. Both of these genes coded as *clos*DP in this work.

### 3.2. Peptides Purification Result



Fig.7. The HPLC profile of all twelve novel clostridia lantibiotics Red lines are negative control

After the initial purification step with C18 and sephadex, finally the peptides were purified to homogeneity by HPLC. This step resulting high purity of each peptide, and the negative control generated from the same strain but without any genes of interest or empty expression vector (*L. lactis* NZ9000 pTLR-BTC-pNZ8048). The peptides production level varies for each peptide which most of them were produced in low amount with 200ml cultures except for Clos4,Clos5 and Clos14, the HPLC graphs also showed different typical motifs for each peptides meaning that twelve putative clostridia lantibiotics were successfully produced (Fig.7).

# 3.3. Antimicrobial Assay



Fig.8. Antimicrobial assay against *L.lactis* NZ9000 (A) and *M.flavus* (B) strain using HPLC purified peptides from 200ml cultures positive control : *L. lactis* NZ9000 pIL3-BTC pNZ8048-*nis*A peptide negative control : *L.lactis* NZ9000 with empty pNZ8048 expression vector peptide

Based on antimicrobial assay against *L.lactis* NZ9000, eleven novel lantibiotics produced in this study displayed antimicrobial activity after cleavage of leader peptide (except Clos16). Both positive control and negative control worked properly in this experiment. In case of ClosDP antimicrobial activity, the release of nisin leader peptide was necessary since the negative result without NisP. Despite some activity showed on the side without NisP, the activity of purified peptides were better after cleavage of leader peptide.

Furthermore, for antimicrobial activity against *M.flavus* (Fig.8B) Clos4, Clos22, ClosDP (and to a lesser extent Clos12) also displayed potent antimicrobial activity. In case of assay against *C. sporogenes*, there were no significant inhibition from the samples that produced in 200ml cultures. Additionally, the potent activity against the two indicator strains might indicate that the lanthionine rings formed in eleven peptides, except for Clos16. The lanthionine rings are essential in mode of action especially for lipid-II binding and also the stability of peptides against protease (Hsu et al., 2004; Kluskens et al., 2005).

# 3.4. Characteristics Of Novel Lantibiotics Based on MALDI-TOF and LC-MS/MS analysis



Fig.9. The MALDI-TOF spectra analysis of all the purified peptides

To confirm novel lantibiotics production, MALDI-TOF mass spectra analysis were applied. Despite almost all of purified peptides showed antimicrobial activity but only five novel clostridia lantibiotic were detected (Clos2, Clos4, Clos5, Clos22 and ClosDP marked with a red star in Fig.9). Furthermore, to achieve more accurate peptide mass analysis, also used in this study. LC-MS/MS technique could increase sensitivity LC-MS/MS therefore resulting high throughput and high confidence in data quality. Recently, LC-MS/MS is gaining more attraction from the scientist primarily in the discovery of new drugs (Espada et al., 2008). In this study, this technique has been chosen to reveal dehydration level of these novel lantibiotics. The principle of this method is similar with MALDI-TOF by analyzing the mass of each peptide. Technically, one dehydration of serinethreonine resulted -18 Dalton of the mass peptide. Otherwise, the presence of methionine residues could increase the peptide mass by 16 Dalton (van Heel et.al, 2016). Methionine residues also may affect to peptides, because this amino acid could be oxidized, thus changed peptide forms. Nevertheless, oxidation also could weaken the peptide antimicrobial activity. Based on the LC-MS/MS analysis these five novel clostridia lantibiotics showed different characteristic each other against the negative control. The negative control was purified peptide generated from L. lactis NZ9000 pTLR-BTCpNZ8048 empty expression vector (Fig.10 & Fig.11)



Fig.10. Chromatogram of five novel clostridia lantibiotics showed in LC-MS/MS.



Fig.11. Masss spectra of five novel clostridia lantibiotics in LC-MS/MS graph. Red graph indicated the negative control.

Moreover, dehydration levels of 5 known novel lantibiotics in this study described in Table 7. The presence of dehydration levels varied in Clos2, Clos4, Clos5, Clos22, and ClosDP. The percentage showed in Table 7. represented the proportion of peak area from each dehydration level respect to the total of all peak areas. As shown in the Table 7., all of the novel lantibiotics produced in this study modified by NisB enzyme sufficiently.

Two of five possible dehydrations observed as the highest entity in Clos22. Other peptides reached the complete dehydration levels, but just in low amount. In Clos2, 3 dehydration levels are the highest entity, while in Clos4, 3 or 4 dehydrations, Clos5 6 dehydrations, ClosDP-1 9 dehydrations, and ClosDP-2 8 dehydrations respectively. Regarding to the number of cysteines, dehydration levels that observed in this study are still enough for the peptide to execute lanthionine ring formation. This study revealed that NisB enzyme could modify the core peptides at least 50-80% degree of modifications. The presence of dehydroamino acids following by lanthionine rings formation was essential for structural feature of lantibiotics. The structure of lantibiotic is strongly correlated to antimicrobial activity, especially in the fully modified lantibiotic (Kastin, 2013). In general, Ser-Thr dehydrations were influenced by the flanking amino acids (Moll et al., 2010). The residue positioned at the N-side of Ser/Thr residues seemed to be more governing on the extent of dehydration rather than the C-side. Therefore the dehydration started from N-terminal region after leader peptide (Rink et al., 2007; Khusainov et al., 2011). The more hydrophobic amino acid flanking to Ser-Thr is positively contribute to dehydration, while in contrast, a Ser-Thr residue which flanked by two hydrophilic residues could not be dehydrated. In fact, Ser residue is more difficult to be dehydrated than Thr residue (Rink et al., 2005). Based on core sequences of five novel lantibiotics, most of Ser-Thr residues were flanked to the hydrophobic amino acids that helped in achieving a mid-to-high degree of modifications for each peptide.

The unmodified peptides which had no dehydration of Ser and Thr residues also observed in Clos2, Clos5, Clos22, and ClosDP-1 (first part of the two components lantibiotic). Nevertheless, the unmodified peptides still can be obtained after purification due to the capability of NisT enzyme which could export both unmodified or partially and fully posttranslational modified forms of lantibiotic or non-lantibiotic peptides (Kuipers et al., 2004).

| Peptide Sequence                     | S+T    | Dehy   | Expected           | Observed           | %              |
|--------------------------------------|--------|--------|--------------------|--------------------|----------------|
|                                      |        | Levels | Mass               | Mass               |                |
| Clos2                                | 6(3)   | 0      | 5136,63            | 5136,61            | 12,72          |
| YLSLTPKCTSLCPTNVFVCISKRCK            |        | 1      | 5118,62            | 5118,60            | 3,69           |
|                                      |        | 2      | 5100,61            | 5100,59            | 4,49           |
|                                      |        | 3      | 5082,60            | 5082,59            | 44,22          |
|                                      |        | 4<br>5 | 5064,59            | 5064,58            | 19,90          |
|                                      |        | 6      | 5028,57            | 5028,56            | 3,02           |
| Clos4                                | 6(3-4) | 1      | 4887,40            | 4887,37            | 0,38           |
| ITSRILCTSSCYTQFIQCHDRV               |        | 2      | 4869,39            | 4869,39            | 10,24          |
|                                      |        | 3      | 4851,38            | 4851,38            | 37,50          |
|                                      |        | 4      | 4833,37            | 4833,37            | 37,10          |
|                                      |        | 5      | 4815,36            | 4815,36            | 14,60          |
|                                      |        | 6      | 4797,35            | 4797,34            | 0,18           |
| Clos5                                | 9(6)   | 0      | 5148,47            | 5148,42            | 1,48           |
| VTSYSACTPGCATSLFRTCLTRSCKGC          |        | 1      | 5130,46            | 5130,42            | 1,80           |
|                                      |        | 2      | 5112,45            | 5112,41            | 1,05           |
|                                      |        | 3      | 5094,44            | 5094,41            | 1,29           |
|                                      |        | 4      | 5076,42            | 5076,40            | 3,74           |
|                                      |        | 5      | 5058,41            | 5058,40            | 11,67          |
|                                      |        | 6<br>7 | 5040,40            | 5040,39            | 63,/5<br>12.00 |
|                                      |        | /<br>0 | 5022,39            | 5022,38            | 12,89          |
|                                      |        | 0      | 3004,30<br>4086 27 | 3004,30<br>4086 27 | 1,10           |
|                                      |        | 7      | 4900,37            | 4900,37            | 1,14           |
| Clos22                               | 5(2)   | 0      | 5883,86            | 5883,79            | 1,70           |
| AGAGFIKTLTKDCPEVVSQVCGSFFGWVSACKNC   |        | 1      | 5865,85            | 5865,80            | 20,39          |
|                                      |        | 2      | 5847,84            | 5847,80            | 77,91          |
| ClosDP-1                             | 12(9)  | 0      | 3060,54            | 3056,84            | 1,82           |
| TAASAAAVSATVASATAVSALFTVTSACTTKCK    |        | 1      | 3042,53            | 3039,23            | 0,94           |
|                                      |        | 2      | 3024,52            | 3026,46            | 0,53           |
|                                      |        | 3      | 3006,51            | 3008,25            | 0,61           |
|                                      |        | 4      | 2988,50            | 2989,12            | 0,27           |
|                                      |        | 5      | 2970,49            | 2970,46            | 0,56           |
|                                      |        | 6      | 2952,48            | 2954,08            | 2,71           |
|                                      |        | /<br>0 | 2934,47            | 2937,42            | 18,47          |
|                                      |        | 0<br>Q | 2910,40            | 2919,31            | 28 28          |
|                                      |        | 10     | 2890,45            | 2901,05            | 30,30          |
|                                      |        | 10     | 2862.43            | 2864 51            | 0.45           |
|                                      |        | 12     | 2844,42            | 2845,44            | 0,39           |
|                                      | 0(0)   | 4      | 20(1.00            | 2015 40            | 10.11          |
| ClosDP-2                             | 9(8)   | 1      | 3961,80            | 3965,18            | 10,11          |
| IF5EGIISIILSVYMGNDGKVCTWTVECQNNCSHKK |        | 2      | 3943,79            | 3944,59            | 8,14           |
|                                      |        | 5<br>1 | 3725,/0<br>2007 77 | - 3001 10          | -<br>10.00     |
|                                      |        | ч<br>5 | 388976             | 3886 31            | 20,00<br>8 5 1 |
|                                      |        | 6      | 3871 75            | 3869 48            | 10.58          |
|                                      |        | 7      | 3853.74            | 3854.43            | 8.04           |
|                                      |        | 8      | 3835,73            | 3837,92            | 34,83          |
|                                      |        | 9      | 3817,72            | 3817,90            | 8,91           |
|                                      |        |        |                    |                    |                |

Table.7. Modifications in novel clostridia lantibiotics analyzed by LC-MS/MS. A number in bracket indicating the most abundant form of dehydration levels for each lantibiotic.

### 3.5. Remarks

The production system with 500ml batch cultures was performed to Clos2, Clos14 and ClosDP lantibiotics in the previous experiment of this study. The maturation process for each peptide was done by mixing NisP supernatant from *L.lactis* NZ9000 pIL3-253 pNZ-*nis*P8H strain and the supernatants of each peptide production directly after centrifugation in proportion 1:10 (NisP: Peptide SNs), and subsequently incubated at  $30^{\circ}$ C for 18h. The purification steps were the same as described previously in Chapter 2. Antimicrobial assay was done by overlay assay using HPLC purified peptides resuspended with 500 µl of MQ water, against *M.luteus* and *C.sporogenes* C22/10 as sensitive strains. MALDI-TOF mass spectra were applied to check the presence of modifications by NisB enzyme and to confirm the production of the novel lantibiotics. In fact, the MALDI-TOF analysis could reveal the characteristic of Clos14 (Fig.14). Based on the mass analysis, Clos14 had two levels of dehydration which showed the highest peak of relative intensity and the presence of oxidized form due to methionine residues in this peptide were confirmed (Table 8. and Fig.14).

| Peptide Sequence      | S+T  | Dehy     | Expected  | Observed  | Expected  | Observed  | Expected  | Observed  |
|-----------------------|------|----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                       |      | Level(s) | Mass      | Mass      | Mass With | Mass With | Mass With | Mass With |
|                       |      |          | Without   | Without   | 1         | 1         | 2         | 2         |
|                       |      |          | Oxidation | Oxidation | Oxidation | Oxidation | Oxidation | Oxidation |
| Clos14                | 8(2) | 0        | 4615,97   | 4613,10   | 4631,97   | 4632,99   | 4647,97   | 4647,60   |
| ISDKRDDMSMCVCKKTDVCKT |      | 1        | 4597,96   | 4596,33   | 4613,96   | 4613,09   | 4629,96   | -         |
| HETDSCNNGLCFESGKCTWV  |      | 2        | 4579,95   | 4581,91   | 4595,95   | 4596,33   | 4611,95   | 4613,09   |
|                       |      | 3        | 4561,94   | 4561,61   | 4577,94   | 4576,19   | 4593,94   | -         |
|                       |      | 4        | 4543,93   | 4545,15   | 4559,93   | 4561,61   | 4575,93   | 4576,19   |
|                       |      | 5        | 4525,92   | 4526,46   | 4541,92   | 4540,25   | 4557,92   | 4556,83   |
|                       |      | 6        | 4507,91   | -         | 4523,91   | -         | 4539,91   | -         |
|                       |      | 7        | 4489,90   | -         | 4505,9    | -         | 4521,9    | -         |
|                       |      | 8        | 4471,89   | -         | 4487,89   | -         | 4503,89   | -         |

 Table 8. Modifications in Clos14 lantibiotic analyzed by MALDI-TOF which confirmed the presence of 2 dehydration

 levels as the most abundant form observed.

Interestingly, Clos14 also displayed potent antimicrobial activity against *M.luteus* and *Clostridium sporogenes* C22/10 (Fig.14). On the other hand, Clos2 and ClosDP lantibiotics which produced in 500ml culture also showed potent antimicrobial activity against *Clostridium sporogenes* C22/10 and *M.luteus* (Fig.12 & Fig.13).



Fig.12 Antimicrobial activity of Clos2 from 500ml batch against *M.luteus* (green) and *Clostridium sporogenes* C22/10 (red)



Fig.13 Antimicrobial activity of ClosDP from 500ml batch against *M.luteus* (green) and *Clostridium sporogenes* C22/10 (red)



Fig14. The MALDI-TOF mass spectra of Clos14, all oxidation forms of this peptide were observed. Antimicrobial activity of Clos14 against *M.luteus* (green box) and *C.sporogenes* (red box)

# **Chapter 4. Conclusions and Future Perspective**

The current situation of antibiotic resistance in pathogenic bacteria which threat the global health urgently needs to be solved using new approaches. The discovery of novel antimicrobial compounds become scientific challenges for academia, since the exodus of pharmaceutical industries due to economic factors. Nonetheless, synthetic biology era opens an excellent opportunity for academia to create new-to-nature antimicrobials by modifying the biological system in nature. Lantibiotics are known having low resistance level due to their multiple mode of actions: lipid II (a precursor for cell wall synthesis) sequestration and pore formations on cell membrane. Nisin controlled gene expression (NICE) in *L. lactis* is a powerful tool to produce new lantibiotics by fusing non-related to nisin lantibiotic gene sequence into normal nisin leader sequence. The promiscuous modification enzymes NisB and NisC will process the biosynthesis and resulted novel compounds. This approach also could be used to re-activate the silent lantibiotic genes in some organism such as in *Clostridium* species.

As the result of this study, genome mining using Anti-SMASH and BAGEL3 discovered 54 putative lantibiotics genes from the total of 563 genomes and 109 plasmids from Clostridium available in NCBI GenBank. 12 putative clostridial lantibiotic genes used as selected candidates and the construction of host production cell for these putative clostridia lantibiotic genes were successfully created using USER cloning approach in *L. lactis* NZ9000, confirmed with DNA sequencing. Based on antimicrobial assay against indicator strain *L. lactis* NZ9000, eleven peptides: Clos2, Clos4, Clos5, Clos12, Clos14, Clos15, Clos17, Clos22, Clos24, Clos25 and ClosDP showed antimicrobial activity after cleavage of leader peptide, except Clos16. Furthermore, *Micrococcus flavus* is also susceptible to Clos4, Clos22, ClosDP and in minus extent Clos12. Regarding to the remarks about previous experiment, Clos2, Clos14, ClosDP which produced from 500ml batch cultures showed activity against *M. luteus* and *C. sporogenes*.

Despite the fact that almost all peptides were active only six novel lantibiotics were able to be characterized using MALDI-TOF and LC-MS/ MS: Clos2 had 3 dehydration levels, Clos4 had 3-4 dehydration levels, Clos5 had 6 dehydration levels, Clos22 had 2 dehydration levels, ClosDP had 9 dehydration levels for the first component and 8 dehydration levels for the second component. However, Clos14 had 2 dehydration levels based on MALDI-TOF mass spectra analysis from the previous experiment. These results confirmed successful production of novel lantibiotics from *Clostridium* species by nisin synthetic machinery.

Additionally, the future development of the lantibiotic bioengineering could explore in how to design special probes that could be used for fishing the active peptide or inactive peptide which commonly mixed up thus make it difficult to sort out. For example, by designing expression vectors with specific multiple tags as investigated by (Pastrana et al., 2017). Two modified expression vectors were used in *L. lactis* with AVI-tag and His<sub>6</sub>-tag combination constructed for purification and fluorescent labelling, while another vector allows removal of N-terminal Strep-or His<sub>6</sub> -tags from expressed proteins. This system could distinguish the peptides by enzyme-linked immunosorbent assay.

# Acknowledgment

Afif Jati is supported by Indonesian Endowment Fund for Education from Ministry of Finance, Republic of Indonesia (LPDP scholarship) for studying master degree in University of Groningen. Prof. Oscar Kuipers and Ruben Cebrian are acknowledged as supervisors for this study and all supports provided. All the member of Molecular Genetic (MOLGEN) group research were thanked for the hospitality, helps, and discussions during this study.

#### References

- 1 Abts, A., Montalban-Lopez, M., Kuipers, O. P., Smits, S. H., & Schmitt, L. (2013). *Nis*C binds the FxLx motif of the nisin leader peptide. *Biochemistry*, *52*(32), 5387-5395.
- 2 Asaduzzaman, S. M., Nagao, J. I., Iida, H., Zendo, T., Nakayama, J., & Sonomoto, K. (2009). Nukacin ISK-1, a bacteriostatic lantibiotic. *Antimicrobial agents and chemotherapy*, *53*(8), 3595-3598.
- Banin, E., Hughes, D., & Kuipers, O. P. (2017). Bacterial pathogens, antibiotics and antibiotic resistance.
   *FEMS Microbiology Reviews*, *41*(3), 450-452.
- 4 Bitinaite, J., & Nichols, N. M. (2009). DNA cloning and engineering by uracil excision. *Current protocols in molecular biology*, 3-21.
- 5 Bitinaite, J., Rubino, M., Varma, K. H., Schildkraut, I., Vaisvila, R., & Vaiskunaite, R. (2007). USER™ friendly DNA engineering and cloning method by uracil excision. Nucleic acids research, 35(6), 1992-2002.
- 6 Delcher, A. L., Bratke, K. A., Powers, E. C., & Salzberg, S. L. (2007). Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics, 23(6), 673-679.
- 7 Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S. E., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). *Protein identification and analysis tools on the ExPASy server* (pp. 571-607). Humana Press.
- 8 Gelband, H., Molly Miller, P., Pant, S., Gandra, S., Levinson, J., Barter, D., ... & Laxminarayan, R. (2015). The state of the world's antibiotics 2015. Wound Healing Southern Africa, 8(2), 30-34.
- 9 Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. *Nucleic acids research*, *33*(suppl\_2), W526-W531.
- Hasper, H. E., de Kruijff, B., & Breukink, E. (2004). Assembly and stability of nisin-lipid II pores.
   *Biochemistry*, 43(36), 11567-11575.
- 11 Holo, H., & Nes, I. F. (1995). Transformation of Lactococcus by electroporation. *Electroporation protocols for microorganisms*, 195-199.
- 12 Hsu, S. T. D., Breukink, E., Tischenko, E., Lutters, M. A., de Kruijff, B., Kaptein, R., ... & van Nuland, N. A. (2004). The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. *Nature structural & molecular biology*, *11*(10), 963-967.
- Islam, M. R., Nagao, J. I., Zendo, T., & Sonomoto, K. (2012). Antimicrobial mechanism of lantibiotics. *Biochemical Society Transactions*, 40(6).
- 14 Jack, R., Benz, R., Tagg, J. and Sahl, H.-G. (1994) The mode of action of SA-FF22, a lantibiotic isolated from Streptococcus pyogenes strain FF22.Eur. J. Biochem. 219, 699–705
- 15 Kastin, A. J. (2013). *Handbook of Biologically Active Peptides*. San Diego, Calif: Academic Press.
- 16 Kemperman, R., Kuipers, A., Karsens, H., Nauta, A., Kuipers, O., & Kok, J. (2003). Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. *Applied and environmental microbiology*, *69*(3), 1589-1597.
- 17 Khusainov, R., Heils, R., Lubelski, J., Moll, G. N., & Kuipers, O. P. (2011). Determining sites of interaction between prenisin and its modification enzymes *Nis*B and *Nis*C. *Molecular microbiology*, *82*(3), 706-718.

- 18 Kluskens, L. D., Kuipers, A., Rink, R., de Boef, E., Fekken, S., Driessen, A. J., ... & Moll, G. N. (2005). Posttranslational modification of therapeutic peptides by *Nis*B, the dehydratase of the lantibiotic nisin. *Biochemistry*, 44(38), 12827-12834.
- 19 Kuipers, A., de Boef, E., Rink, R., Fekken, S., Kluskens, L. D., Driessen, A. J., ... & Moll, G. N. (2004). *Nis*T, the transporter of the lantibiotic nisin, can transport fully modified, dehydrated, and unmodified prenisin and fusions of the leader peptide with non-lantibiotic peptides. *Journal of Biological Chemistry*, *279*(21), 22176-22182.
- 20 Kuipers, O. P., Beerthuyzen, M. M., de Ruyter, P. G., Luesink, E. J., & de Vos, W. M. (1995). Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. *Journal of Biological Chemistry*, *270*(45), 27299-27304.
- 21 Kuipers, O. P., de Ruyter, P. G., Kleerebezem, M., & de Vos, W. M. (1998). Quorum sensing-controlled gene expression in lactic acid bacteria. *Journal of Biotechnology*, *64*(1), 15-21.
- 22 Majchrzykiewicz, J. A., Lubelski, J., Moll, G. N., Kuipers, A., Bijlsma, J. J., Kuipers, O. P., & Rink, R. (2010). Production of a class II two-component lantibiotic of Streptococcus pneumoniae using the class I nisin synthetic machinery and leader sequence. Antimicrobial agents and chemotherapy, 54(4), 1498-1505.
- 23 Martin, N. I., Sprules, T., Carpenter, M. R., Cotter, P. D., Hill, C., Ross, R. P., & Vederas, J. C. (2004). Structural characterization of lacticin 3147, a two-peptide lantibiotic with synergistic activity. *Biochemistry*, 43(11), 3049-3056.
- 24 McAuliffe, O., Ross, R. P., & Hill, C. (2001). Lantibiotics: structure, biosynthesis and mode of action. *FEMS microbiology reviews*, *25*(3), 285-308.
- 25 Moll, G. N., Kuipers, A., & Rink, R. (2010). Microbial engineering of dehydro-amino acids and lanthionines in non-lantibiotic peptides. *Antonie van Leeuwenhoek*, *97*(4), 319-333.
- 26 Montalbán-López, M., Zhou, L., Buivydas, A., van Heel, A. J., & Kuipers, O. P. (2012). Increasing the success rate of lantibiotic drug discovery by synthetic biology. *Expert opinion on drug discovery*, *7*(8), 695-709.
- 27 Nørholm, M. H. (2010). A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. *BMC biotechnology*, *10*(1), 21.
- 28 O'Neill, J. (2014). Antimicrobial resistance: tackling a crisis for the health and wealth of nations. *Review on antimicrobial resistance*, 1-16.
- 29 Oman, T. J., & Van Der Donk, W. A. (2010). Follow the leader: the use of leader peptides to guide natural product biosynthesis. *Nature chemical biology*, *6*(1), 9-18.
- 30 Ortega, M. A., Hao, Y., Zhang, Q., Walker, M. C., Van Der Donk, W. A., & Nair, S. K. (2015). Structure and mechanism of the tRNA-dependent lantibiotic dehydratase *Nis*B. *Nature*, *517*(7535), 509-512
- 31 Pastrana, F. R., Neef, J., van Dijl, J. M., & Buist, G. (2017). A Lactococcus lactis expression vector set with multiple affinity tags to facilitate isolation and direct labeling of heterologous secreted proteins. *Applied microbiology and biotechnology*, *101*(22), 8139-8149.
- 32 Perez, R. H., Zendo, T., & Sonomoto, K. (2014). Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. *Microbial cell factories*, *13*(1), S3.

- 33 Repka, L. M., Chekan, J. R., Nair, S. K., & van der Donk, W. A. (2017). Mechanistic understanding of lanthipeptide biosynthetic enzymes. *Chemical Reviews*, *117*(8), 5457-5520.
- 34 Rink, R., Kluskens, L. D., Kuipers, A., Driessen, A. J., Kuipers, O. P., & Moll, G. N. (2007). *Nis*C, the cyclase of the lantibiotic nisin, can catalyze cyclization of designed nonlantibiotic peptides. *Biochemistry*, 46(45), 13179-13189.
- 35 Rink, R., Kuipers, A., de Boef, E., Leenhouts, K. J., Driessen, A. J., Moll, G. N., & Kuipers, O. P. (2005). Lantibiotic structures as guidelines for the design of peptides that can be modified by lantibiotic enzymes. *Biochemistry*, *44*(24), 8873-8882.
- 36 Sandiford, S. K. (2014). Advances in the arsenal of tools available enabling the discovery of novel lantibiotics with therapeutic potential. *Expert opinion on drug discovery*, *9*(3), 283-297.
- 37 Seo, B., Yoo, J. E., Lee, Y. M., & Ko, G. (2017). Merdimonas faecis gen. nov., sp. nov., isolated from human faeces. *International journal of systematic and evolutionary microbiology*, *67*(7), 2430-2435.
- 38 Trimble, M. J., & Hancock, R. E. (2017). An alternative approach to treating antibiotic-resistant infections. *Future Medicine*.
- 39 Van der Meer, J. R., Polman, J., Beerthuyzen, M. M., Siezen, R. J., Kuipers, O. P., & De Vos, W. M. (1993). Characterization of the Lactococcus lactis nisin A operon genes *nis*P, encoding a subtilisin-like serine protease involved in precursor processing, and *nis*R, encoding a regulatory protein involved in nisin biosynthesis. *Journal of bacteriology*, *175*(9), 2578-2588.
- 40 van Heel AJ, Mu D, Montalban-Lopez M, Hendriks D, Kuipers OP. 2013. Designing and producing modified, new-to-nature peptides with antimicrobial activity by use of a combination of various lantibiotic modification enzymes. ACS Synth Biol 2:397–404. doi:10.1021/sb3001084
- 41 van Heel, A. J., de Jong, A., Montalban-Lopez, M., Kok, J., & Kuipers, O. P. (2013). BAGEL3: automated identification of genes encoding bacteriocins and (non-) bactericidal posttranslationally modified peptides. Nucleic acids research, 41(W1), W448-W453.
- van Heel, A. J., Kloosterman, T. G., Montalban-Lopez, M., Deng, J., Plat, A., Baudu, B., ... & Kuipers, O. P. (2016). Discovery, production and modification of five novel lantibiotics using the promiscuous nisin modification machinery. ACS synthetic biology, 5(10), 1146-1154.
- Weber, T., Blin, K., Duddela, S., Krug, D., Kim, H. U., Bruccoleri, R., ... & Breitling, R. (2015). antiSMASH
  3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic acids research, 43(W1), W237-W243.
- Wiedemann, . N. V., Breukink, E., van Kraaij, C., Kuipers, O. P., Bierbaum, G., de Kruijff, B., & Sahl, H. A. (2001). Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. The Journal of Biological Chemistry, 276(3),1772-1779. DOI: 10.1074/jbc.M006770200
- 45 Willey, J. M., & Van Der Donk, W. A. (2007). Lantibiotics: peptides of diverse structure and function. *Annu. Rev. Microbiol.*, *61*, 477-501.
- 46 World Health Organization. (2015). Global action plan on antimicrobial resistance.

- 47 Zhao, X.(2016). Antimicrobials of Bacillus species: mining and engineering. University of Groningen
- 48 Zhou, L. (2016). Bioengineering of the Lantibiotic Nisin to Create New Antimicrobial Functionalities. University of Groningen.