faculty of science
and engineering

university of
groningen

HIERARCHICAL REINFORCEMENT LEARNING IN
MULTIPLAYER BOMBERMAN

Bachelor’s Project Thesis

Remco Pronk, s2533081, r.pronk.1@student.rug.nl
Supervisor: dr. M.A Wiering

Abstract: Experiments have been conducted to compare winrates of an agent obtained with
hierarchical reinforcement learning and flat reinforcement learning on the multiplayer mode of
the videogame Bomberman. The performance between a single network, two networks and four
networks have been compared. Four bombermen are placed together in an arena. This arena con-
tains walls, which are always placed in the same location at the start of each game. Bombermen
and some of these walls can be destroyed by exploding bombs. These bombs are placeable by
the bombermen. Multilayer perceptrons are used to approximate the utility of each state-action
pair used in Q-learning. The exploration strategies used are Error-Driven-¢, which is a variant
on Diminishing e-Greedy, and Max-Boltzmann. Each trial consisted of a hundred generations
of 10,000 training games with 100 test games. A significant difference in results has been found
with both exploration strategies. The winrate during the first twenty generations is higher for
both the two networks and four networks experiments. After this, the winrate becomes lower in

comparison to flat reinforcement learning.

1 Introduction

In recent years, research has been done on rein-
forcement learning in digital games (Shantia, Be-
gue, and Wiering, 2011; Bom, Henken, and Wier-
ing, 2013). Some of the resulting agents outper-
form human behaviour (Mnih, Kavukcuoglu, Sil-
ver, Graves, Antonoglou, Wierstra, and Riedmiller,
2013). This opens the road for more experimenta-
tion in different games.

This thesis builds on a previous bachelor’s thesis
(Kormelink, 2017). This previous work compares
different exploration methods in the multiplayer
mode of the game Bomberman. The same frame-
work for the game and learning methodology is
used in this research project. This allows for a di-
rect comparison between the data sets collected. A
similar research project has been done on the sin-
gleplayer mode of this game (Timmers and Mulder,
2014).

The aim of the research project is to compare
the results of regular reinforcement learning versus
hierarchical reinforcement learning in multiplayer
Bomberman. The variable of most importance is

the winrate, which will be used to determine the
success of the agent. By increasing the complexity
of the system through adding extra artificial neural
networks for specific stages of the game, the expec-
tation is that winrates would increase.

Two experiments will be run for each exploration
method. The first experiment uses two multilayer
perceptrons, whereas the second experiment uses
four. This allows for specialised networks for differ-
ent stages of the game. These results will be com-
pared with the data collected from the original ex-
periment.

Winrates and points accumulated will be com-
pared over multiple generations, which consist of
training and test games. Training games are used
to train the network. During the test games, ex-
ploratory actions are no longer performed by the
agent. From these test games, data will be collected.
Paired t-tests will be used on the collected data to
test for significant differences in both winrate and
points between generations.

The question that this thesis tries to answer is
whether hierarchical reinforcement learning proves
to perform better with regards to winrate in multi-

player Bomberman as opposed to flat reinforcement
learning.

In section 2, Bomberman will be explained, in-
cluding the implementation of the game. This sec-
tion also describes how the experiments are per-
formed. Section 3 discusses the results gathered
from the experiments. This includes comparisons
between the different sets of experiments. In sec-
tion 4, comments will be given with regards to the
acquired results. Section 5 contains the final con-
clusion of this research.

2 Methods

2.1 Bomberman

Bomberman is a series of videogames, the first of
which was released in 1983 by Hudson Soft and
Konami. In this game, the player controls a char-
acter called a bomberman. This bomberman is ca-
pable of moving on a 2D grid, and is able to place
bombs. These bombs can destroy enemies and cer-
tain walls. Some walls, however, are indestructible.

For this project, the multiplayer variant of the
game is used. In this gamemode, bombermen are
placed in each of the four corners of the gamemap.
In the initial gamestate, they are surrounded by
walls, and have no direct access to the other players.
This state can be observed in figure 2.1. To defeat
another player, a path has to be cleared first. Once
enemies are reachable, they have to be killed by
putting them in the blast radius of an exploding
bomb.

Each bomberman has six different actions it can
perform. These are move up, move down, move
left, move right, place a bomb and do nothing. The
blast radius of a bomb is two gridspaces in each of
the four cardinal directions. Destructible walls and
bombermen are removed when they are in the blast
radius of an exploding bomb.

Not every action can be performed in every
gamestate. A new bomb can only be placed five
gamesteps after that player’s previous bomb has ex-
ploded. Movements can also be invalid if, for exam-
ple, a bomberman attempts to move through walls
or bombs, though bombermen can move through
each other. Each valid movement action only moves
the bomberman one gridspace.

Figure 2.1: The initial state of a game. Brown
walls are destructible. Grey walls are indestruc-
tible.

2.1.1 Game loop

A run of the game is controlled by the game loop.
This loop repeats a set of steps until the game
is ended. Player-specific steps are performed for
each bomberman in the game, such as updating
the bomb cooldown. These steps are:

1. Calculate and add the next move to the move
buffer;

2. Perform the move from the move buffer;

3. Update all bombs and the bomb cooldown;
4. Award points after bomb explosion;

5. Update the weights of the network;

6. Remove dead bombermen;

7. Random bombs can get placed after 150
gamesteps.

The rewards for the agent change according to
the current strategy used. The two strategies used
are named pathfinding and attacking. These strate-
gies determine which reward function and networks

Algorithm 2.1 addMoveToBuffer()

enemyCount < checkPathToEnemies()
if enemyCount > 0 then
changeStrategy Rewards(attacking)
else
changeStrategy Rewards(path finding)
end if
move < calculate Move()
addToM oveBuf fer(move)

are used. The pseudocode for this can be seen in al-
gorithm 2.1. The path calculation is done by the A*
algorithm. The algorithm is modified to return the
amount of enemies that are accessible. The actual
path is not important, since the agent has to find
a path itself.

Move calculation is done by executing a for-
ward pass by feeding the corresponding network
the gamestate. The index of the highest value in
the output layer corresponds with a move. Either
this move, or a semi-random move is performed.
An invalid move will still be tried, but will result
in the agent not performing an action. How the
random move is determined differs between explo-
ration methods, and will be explained in section
2.2. Performing an action will directly result in
its penalty to be subtracted from the agent’s to-
tal points.

Bombs get updated by decrementing their timer.
When the timer reaches zero, the bomb will ex-
plode. The only source for punishments and re-
wards, besides the penalty for performing an action,
are from events occurring after a bomb explodes.
An enemy can die, the agent can die and walls can
be destroyed. After a bomb explodes, these corre-
sponding rewards are awarded to the bomberman
who placed the bomb.

Exploded bombs then get removed from the
game, after which the cooldown for placing a new
bomb is updated for all bombermen.

Weights of the multilayer perceptron are updated
by first saving a copy of the network corresponding
to the current strategy. The output layer of this
network is saved as the target. A forward pass is
then done on the network, and the agent takes its
action. A copy of the output layer of this network is
stored. The node corresponding to the action in the
target set is updated. This is done by adding the

reward and the discounted future reward. This dis-
counted future reward is the highest value found in
the output layer of the resulting network after the
forward pass on the next state, multiplied by the
discount factor. A backward pass is then done by
using the target set with the initially stored net-
work. These values found in the output layer are
Q-values, which are explained in section 2.2.

To prevent stalemates, random bombs can be
placed after 150 gamesteps. This happens as a final
step in the gameloop. The specifics can be found in
algorithm 2.2.

Algorithm 2.2 randomBomb()

Require: gameRound > 150
bombProbability + (gameRound — 150)/(50 =
gameRound)
for all position : positionList do

if emptySpace(position) then
r < random(0,1)
if bombProbability > r then
place Bomb()
end if
end if
end for

2.1.2 Gamestate representation

The arena in which the game is played has a dimen-
sion of seven by seven gridspaces. The gamestate
is represented as a vector. Each coordinate of the
game corresponds to four consecutive values in the
vector. This vector thus holds 196 values.

The first input corresponds to the floortype. Pos-
sible floortypes are hardwall, softwall and empty,
where softwalls are destructible walls. The values
used to represent these types are {—1,1,0} respec-
tively.

The second input holds the danger level. It is cal-
culated as %, with regards to the blastra-
dius of a bomb. To differentiate between bombs set
by the agent and enemies, danger created by owned
bombs is represented as a negative value. Its repre-
sentation is —1 < dangerlevel < 1.

The third input tracks the location of enemies.
If an enemy is present on the current coordinate, it
will be represented with the value 1. Possible values
thus are {0,1}.

The fourth input is used to track the agent’s lo-
cation. As with the previous value, possible values
are {0, 1}, where a 1 represents the current location
of the agent.

2.1.3 Opponents

All enemy bombermen follow a set of rules to de-
termine their movement. The same preprogrammed
enemies have been used in the previous experiment.
This serves as a baseline that allows comparison
over games played.

Moves are determined using algorithm 2.3 (Ko-
rmelink, 2017). Utility is calculated using equation
2.1. The x and y represent coordinates, where x,,qx
and Ypman represent the coordinates of the bomber-
man after the move would have been made.

Utility = \/|($man - mbomb)' + \/|(yman - ybomb)‘
(2.1)

Algorithm 2.3 Move calculation opponents

possibleActions < returnPossible Action()
bombList < surroundingBombs()
if bombList.notEmpty() then
utilityList[] < possible Actions.size()
for all a : possibleActions do
for all b : bombList do
possible Position < makeAction(a)
currentUtility —
distance(b, possible Position)
utility List|a] +— wutilityListla] +
currentUtility
end for
end for
bestUtility < index M ax(utility List)

Table 2.1: Rewards/punishments in points, for
both strategies

Event/Strategy ‘ Pathfinding Attacking
Action performed | -1 -1

Player death -300 -300

Wall destruction 30 0

Enemy kill 0 100

Table 2.2: Parameters used in both experiments

Parameter ‘ Value
Exploration rate | 0.3
Learning rate 0.0001
Discount factor 0.9

ments uses the exploration method Error-Driven-e,
the second set uses Max-Boltzmann. All other pa-
rameters for each experiment are identical. Each
set consists of two experiments, which use a dif-
ferent amount of networks. In the first experiment,
two networks are used. One network is used dur-
ing the pathfinding strategy, the other during the
attacking strategy. The other experiment uses four
networks. The first network is again used during the
pathfinding strategy. The remaining three networks
are used in the case of one, two or three enemies
being accessible, respectively.

Each strategy uses its own set of rewards. These
can be seen in table 2.1. Although the rewards
change between strategies, the reward function re-
mains the same. When, for example, a wall gets
destroyed by a bomb of the agent during the at-
tacking strategy, the agentis simply rewarded with
zero points, but gets points for the gathered points
statistic, which will be reported in the experiments.

return indexMax(possibleActions[bestUtility])Gathered points are set back to zero at the start of

end if

if surrounded ByThreeWalls() then
return place Bomb()

end if

return randomAction()

2.2 Experiment

Two sets of experiments on hierarchical reinforce-
ment learning have been run. The first set of experi-

each game. The parameters used in both experi-
ments can be seen in table 2.2.

A hundred generations have been run for each ex-
periment. All individual experiments have been run
ten times. A generation consists of training games
and test games. Training games are used to train
the network. Test games are used to gather results.
The agent is not able to make exploratory moves
during these test games. Each generation consists
of 10,000 training games and 100 test games.

All networks used in a set of experiments share
the same properties. The exploration method used

in the first set of experiments is Error-Driven-e,
which is a variant on Diminishing e-Greedy (Ko-
rmelink, 2017). The implementation can be seen in
algorithm 2.4. The exploration rate is determined
by the error of the two previous generations. After
two generations, the exploration chance becomes
the lowest value between the exploration rate and
the relative error. The exploration rate parameter
is thus a maximum exploration chance.

Algorithm 2.4 semiRandomMove()

r + random(0, 1)
if generation < 3 then
relative Error < explorationRate
else
errory_1 < getGenError(generation;_1)
errori_o — getGenErmr(generationt,g)
if errori_1 > error;—_, then
relative Error < errory_s/errors_q
else
relative Error < errory_1/errory_o
end if
relativeError +—
mazx(explorationRate, relativeError)
end if
if relativeError > r then
move < randomM ove()
end if

The second set of experiments uses the Max-
Boltzmann exploration method (Wiering, 1999).
This exploration method uses the Boltzmann dis-
tribution to assign probabilities, based on the Q-
value, to each action. The Boltzmann distribution
function can be seen in equation 2.2. The param-
eter T is the temperature, which determines the
exploration. A is the set of all actions.

Qs:0)/T
T 3 en €QEAT

The implementation of Max-Boltzmann can be
seen in algorithm 2.5. The temperature parameter
decreases evenly over generations. It starts out at
200, and decreases to 1.

Each multilayer perceptron has one input layer,
a single hidden layer and an output layer. The in-
put layer has 196 nodes, the hidden layer has 100,
and the output layer has six. The activation func-
tion used for the hidden layer is a sigmoid function

P(als) (2.2)

Algorithm 2.5 Max-Boltzmann(s)

r < random(0,1)
if r > explorationRate then
return highest Activation Action(s)
else
for all a : Actions do
cumulative Probabilities|a] —
cumulate(boltzmann(a, s))
end for
r < random(0,1)
for all e : cumulativeProbabilities do
if checkBetweenBounds(r,e) then
returne
end if
end for
end if

with default parameters (Gurney, 1997), as seen in
equation 2.3.

1

= — 2.
14+e 2 (2:3)

o(x)
The output layer uses a linear output function,
which is defined in equation 2.4.

flz) ==

Markov decision processes (MDPs) are used to
model dynamic systems which are partly stochastic
and partly under control of an agent (Ibe, 2013;
Markov and Schorr-Kon, 1961). MDPs have some
requirements:

(2.4)

e A finite set of states: S;
e A finite set of actions for each state: Ag;

e A probability function that calculates the
probability of state s leading to state s’ after
action a: P,(s,s);

e A reward function that gives the reward after
reaching state s’ after executing action a in
state s: Ry(s,s");

e A discount factor, which is used to determine
the importance of future rewards versus imme-
diate rewards: v € [0, 1];

The implementation of multiplayer Bomberman
is in correspondence to these requirements. It has a

finite set of states and actions in those states. The
reward, probability functions and discount factor
are built into the implementation of reinforcement
learning where Q-learning is used (Watkins, 1989).

The multilayer perceptrons are used to approxi-
mate the Q-values for all state-action pairs. Simply
calculating the Q-values for every state-action pair
induces memory constraints, since the state space
is large. These Q-values represent the expected util-
ity when action a is taken in state s, including ex-
pected future rewards discounted by the discount
factor (Russell and Norvig, 2010). The update rule
of Q-learning can be seen in equation 2.5, wherein
a represents the learning rate.

Q(s1, a1) = Q(84,a¢) + a(ry +ymax Q(se41,)
= Q(st,a1)) (2.5)

The code for these experiments can be found at
https://github.com/Remco32/Bomberman_2.

3 Results

Mean winrates and points have been gathered for
each generation for every run of all experiments.

3.1 Error-Driven-¢

In figure 3.1, the mean winrate of the two network
experiment minus the mean winrate of the single
network experiment is shown. In figure 3.2 this is
done for the four network experiment with regard
to the single network experiment. Winrates gath-
ered from the experiment have a range between 0
and 1, inclusive.

The mean winrates over all runs of the experi-
ments have been plotted in a single plot. This can
be seen in figure 3.3.

Figure 3.4 shows the mean points obtained by the
agent using the two network experiment minus that
of the single network experiment. The mean points
difference between the four network experiment and
the single network experiment is shown in figure
3.5.

Significance has been tested for both experi-
ments. The mean winrates for every generation
have been tested between the two network experi-
ment against the single network, and between the

Winrates two network experiment minus one
network experiment, using Error-Driven-epsilon

o
@ | %
[=1
z
© o]
£«
2 S
C
@
@
£
[-
= o b
[
2
o g
3 ° o= <}
E o] Tp &
o o&& 0, K o o ° ° O%O c? ®C<':>CZJ
o Yo o o
L 0006)000%:90@&0 %Oo 05300000
b °7 s o5 ° o
o - o o Py
v 0
T T T T T T
0 20 40 60 80 100
Generation

Figure 3.1: Difference in winrate between the
two network experiment and previous data, us-
ing Error-Driven-e.

Winrates four network experiment minus one
network experiment, using Error-Driven-epsilon

@
(=T o
&
(e
© ™
w o
£
=
G ®
L5 i
£ = @
c o
@
2 &
o o e o
o [52] (s}
g o o C(vboo ° @ o [e]
[a] & 0o a0 © o
00 %oo@@ oo ¥ 096396)0 OO(ZD ©
o o oo Co Vo of
- o @O
=20 o wo
(e
T T T T T T
0 20 40 60 80 100
Generation
Figure 3.2: Difference in winrate between the

four network experiment and previous data, us-
ing Error-Driven-e.

network experiment, using Error-Driven-epsilon

Mean winrates of all Error-Driven-epsilon experiments

Generation

Ficy uRr. FARgraN
2006 &@b%&ﬁ
= E 11 8
2] 4 e
A
c
£ "
& < | @
> A
S 1 One network
o < Two networks
oé* £ Four networks
T T T T T T
0 20 40 60 80 100

Figure 3.3: Winrates of all experiments, over generations, using Error-Driven-e.

Points two network experiment minus one

Points four network experiment minus one

network experiment, using Error-Driven-epsilon

b=
= o0 o
o
o <]
o (=T
[rs]
s o | p] o o
£ w = oo
]]
[} (o8
c @ c o O
@ (=P @ o
@ o TR,
E 4 o £
c 5] c 5
c N c
@) o
[5] [s] (5] [
5 o S P o oo °
o o @ o @ o o Yo
a o
(o] =] (=] — [o
?5 © o o0, O oo ¢ o Co o 00 E =] 0% s 000 o o
NIV s Lo B @ 0t o © 0 90 § a0 9@
o o o o
a s} [2] @ o o @ o
@ @ Ooo%o% o&oo% 0@ 07 O o O)
o 0 00% o [! 2% = o .
o} H o [}
8 e o |o o® ege %
- o
! T T T T T T s T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Generation Generation

Figure 3.4: Difference in points between the two
network experiment and previous data, using
Error-Driven-e.

Figure 3.5: Difference in points between the four
network experiment and previous data, using
Error-Driven-e.

Table 3.1: Mean results from the final genera-
tion between experiments with standard error,
using Error-Driven-c.

Winrate SE
Single network | 0.856 0.026
Two networks 0.800 0.024
Four networks | 0.763 0.027

Points SE
Single network | 32.2 15.1
Two networks | -29.9 9.0
Four networks | -51.4 14.4

four network experiment against the single network
experiment. A significant difference between the
sets have been found in both experiments. The two
network experiment shows a significant difference
with ¢(1,99) = —3.7153,p =~ 0.0003. The four net-
work experiment also shows a significant difference
with ¢(1,99) = —3.9492, p ~ 0.0001.

A significant difference has also been found when
comparing accumulated points. The two network
experiment compared to the data from the sin-
gle network experiment shows a significant differ-
ence between the data (¢(1,99) = —14.455,p <
2.2¢ — 16). The same shows when comparing the
four network experiment with the original data
(t(1,99) = —14.874,p < 2.2¢ — 16).

The single network experiment shows better per-
formance in both winrate and points accumulated
over both experiments, as will be discussed further
in section 4.

A table comparing the mean winrates, mean
points and standard error over the last generation
between the experiments is shown in table 3.1.

3.2 Max-Boltzmann

Results have been compared for the Max-
Boltzmann experiments in the same way as de-
scribed in the previous section. The compared win-
rates between the multiple experiments can be seen
in figures 3.6, 3.7 and 3.8.

The points are compared between the multiple
experiments, and can be seen in figures 3.9 and
3.10.

Significant results have been found for winrate
when compared to the one network experiment
with p = 3.892e—10 and p = 2.614e—05 for the two

Winrates two network experiment minus
one network experiment, using Max-Boltzmann

< | @
o
©
@ O |
"(—U‘ =]
£ «
2 o 7 o
@
b [+
£ s °
£ o]
= °
puss or
£ o o%ébo%oj%%oo)
= o]
£ = e O &3 @O)
=) <@ O@ O, oo
oDy %900%
o o oo Wy &
< 7 o %
[+
@
T T T T T T
0 20 40 60 80 100
Generation

Figure 3.6: Difference in winrate between the
two network experiment and previous data, us-
ing Max-Boltzmann.

Winrates four network experiment minus
one network experiment, using Max-Boltzmann

[Te]
| (=)
— [s]
2
@
= 4 °
=
C [a]
g o
£ ° o
c
o o
g ° £
o >
= =]
g QO OQ)OO
&) WL T Saay o &
°%.85 SaD%Q) @%o%uo%oo%oo So
[=T Fog o0 g
' ° 8° 0 ?Q&c?@
B
T T T T T T
0 20 40 60 80 100
Generation

Figure 3.7: Difference in winrate between the
four network experiment and previous data, us-
ing Max-Boltzmann.

Mean winrates of all Max-Boltzmann experiments

o | W@%ﬁé\sskﬁgﬂ & o
[an] Oéo
. i O{%} o "‘\‘ac%ﬂg% ﬂ%&ﬂaﬁ‘fﬂﬂé‘a W
o & o ooo@o @o N
o %o o 0P Op, o
© [s] [2, 05 o
a g & o
m
c
£ A
i
=
iy
[s]
g _ One network
. & Twao netwaorks
éf.};-p £ Four networks
T T T T T T
0 20 40 60 80 100
Generation

Figure 3.8: Winrates of all experiments, over generations, using Max-Boltzmann.

Points two network experiment minus Points four network experiment minus
one network experiment, using Max-Boltzmann one network experiment, using Max-Boltzmann
o
[+] w — o]
[=] 1 =
g |
o (o]
s 4
o -— =]
m D [=Fs) i)
[[
2 ©° 284 °°
o
£ o &2 £ o —
c "‘D? n CQ%)OO %0‘% ° C?oo = o
= - o =
o o o ° 0(ib &g% 3 (=] %)&GDO O
c o _| o G o [~ o 5 %, S &
g % 0 o g om0 o,
g OOO %Cgm g (=] a Oo %o %)O Jo &O
] - o a 2+ FoC oy
o & T <] =
Q [elate
8 | e 2 o
o oo 3 %?b
o !
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Generation Generation

Figure 3.9: Difference in points between the two Figure 3.10: Difference in points between the
network experiment and previous data, using four network experiment and previous data, us-
Max-Boltzmann. ing Max-Boltzmann.

Table 3.2: Mean results from the final genera-
tion between experiments with standard error,
using Max-Boltzmann.

Winrate SE
Single network | 0.885 0.015
Two networks 0.668 0.033
Four networks | 0.740 0.038

Points SE
Single network | 96.3 2.9
Two networks | -123.7 18.9
Four networks | -74.3 18.1

network and four network experiments respectively.

A significant difference has also been found when
comparing accumulated points. p < 2.2e — 16 be-
tween both the two network experiment and the
four network experiment as compared with the one
network experiment.

The single network experiment shows better per-
formance again in both winrate and points accumu-
lated over both experiments.

The table comparing the mean winrates, mean
points and standard error over the last generation
between the experiments is shown in table 3.2.

4 Discussion

4.1 Error-Driven-e

The results show that there is a significant dif-
ference between the single network experiment as
compared with both the two and four network ex-
periments.

When looking at the data on the winrate, as vi-
sualised in figures 3.1 and 3.2, a trend can be seen.
During the first approximately twenty generations,
performance is higher than that of a single network.
This holds for both the two and four network ex-
periments. This could be explained by the fact that
each network is specialised. The single network has
to account for both stages of the game: pathfinding
and attacking, whereas the multiple networks can
specialise themselves for a certain strategy. During
training this is observable by the increased perfor-
mance.

After these approximately twenty generations,
the multiple networks perform worse. When these
last generations are looked at in isolation and com-

pared to the single network, the results are still sig-
nificantly different (¢(1,80) = —17.363,p < .2e—16
and t(1,80) = —15.699,p < .2e — 16, for two and
four networks respectively). The significance found
shows a significant decrease in winrate over these
generations.

The final winrates for the multiple network
strategies are lower as well, as seen in table 3.1.

When looking at the points gathered instead of
the winrates, the same pattern can be seen emerg-
ing. The first approximately twenty generations
show more points accumulated, after which it drops
of. Oscillation can be seen after these initial gen-
erations more clearly in figures 3.4 and 3.5, which
show the difference in points gathered. This can be
explained by the characteristics of the exploration
strategy. The chance of performing an exploratory
move is unstable, since it is based on the error of
the network. When this error doesn’t stabilise, the
exploration chance will become unstable as well as
a result.

4.2 Max-Boltzmann

A significant difference has been found between the
one network experiment compared to the two and
four network experiments. When looking at the last
eighty generations, a significant difference is still
found in both experiments (p < 2.2e — 16).

As with the Error-Driven-e exploration method,
the hierarchical networks performs better with re-
gards to winrate during the first approximately
twenty generations, after which performance drops
of. However, using the Max-Boltzmann exploration
method, winrate continues to decline over genera-
tions, as seen in figure 3.8. This could be explained
by the characteristics of Max-Boltzmann. As ex-
plained in section 2.2, a distribution is used to de-
termine the probabilities of actions being taken. It
is possible that through repeatedly selecting sub-
par actions, a (local) optima is never reached.

Figure 3.8 also shows that the four network ex-
periment has a less steep downward trend with re-
gards to winrate over generations. This could be
explained by the fact that four networks have to
be trained, instead of just two. These networks
are only trained in specific game situations. By us-
ing more networks, an individual network has less
training time as compared to using less networks.
The cause of the downward trend in winrate would

10

be affecting more networks, resulting in the effect
emerging slower.

A limitation of this research is the absence of
experimentation with more exploration strategies.
Only two exploration strategies have been used to
compare data between the hierarchical and flat re-
inforcement learning approach.

Expected improvement in results has been found.
However, this only applies to the initial generations
of the experiments. Therefore, it can be concluded
that the approach of specialised networks doesn’t
necessarily improve performance in the game of
multiplayer Bomberman, using the aforementioned
exploration methods.

5 Conclusion

In this thesis, an agent has been trained to play
multiplayer Bomberman. Hierarchical reinforce-
ment learning has been used with multilayer per-
ceptrons. These networks are trained to approxi-
mate the Q-values for each state-action pair.

The results show worse performances when us-
ing the approach of multiple networks for different
strategies in the game, for both tested exploration
methods. The winrate and points accumulated are
higher during the first approximately twenty gen-
erations, which translates to approximately 20,000
single training games. After this stage, both win-
rate and points are lower for both the two and four
network experiment.

It can be concluded that using multiple networks
to specialise in strategies used during certain game
stages of Bomberman, result in declined perfor-
mance over time. One reason could be that the
agent with the attacking strategy is forced to fight
other bombermen due to the used reward function.
It could be a better strategy to blow up walls and
let other opponents fight against each other. More
research can therefore be done on the effects of the
reward function on the game-play performance.

More research can also be done examining dif-
ferent exploration strategies, before definitive con-
clusions can be drawn about hierarchical reinforce-
ment learning in Bomberman. The previous thesis
provided other exploration strategies, which could
be tested against the hierarchical reinforcement
learning approach (Kormelink, 2017).

References

L. Bom, R. Henken, and M. Wiering. Reinforce-
ment learning to train Ms. Pac-Man using higher-
order action-relative inputs. In IEEE Sympo-
sium on Adaptive Dynamic Programming and
Reinforcement Learning, ADPRL, pages 156—
163, 2013. ISBN 2325-1824. doi: 10.1109/ad-
prl.2013.6615002.

Kevin Gurney. An Introduction to Neural Net-
works. Taylor & Francis Ltd, 1997. ISBN 0-
203-45151-1. doi: 10.4324/9780203451519.

Oliver C. Ibe. Markov Processes for Stochastic
Modeling., volume 2nd edition. Elsevier, 2013.
ISBN 9780124077959.

Joseph Groot Kormelink. Comparison of explo-
ration methods for connectionist reinforcement
learning in the game Bomberman. Bachelor’s
thesis, University of Groningen, 2017.

A. A. Markov and Jacques J. Schorr-Kon. The-
ory of algorithms. publ. for the National Science
Foundation, Washington, D.C. and the Depart-
ment of Commerce, USA by the Israel Program
for Scientific Translations, Jerusalem, 1961.

Volodymyr Mnih, Koray Kavukcuoglu, David Sil-
ver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari
with deep reinforcement learning. arXiv preprint

arXw:1312.5602, 2013.

Stuart Russell and Peter Norvig. Artificial
intelligence: A Modern Approach. Pearson,
Boston, 3rd ed. edition, 2010. ISBN 0132071487
9780132071482.

Amirhosein Shantia, Eric Begue, and Marco Wier-
ing. Connectionist reinforcement learning for in-
telligent unit micro management in StarCraft.
In The 2011 International Joint Conference on
Neural Networks. Institute of Electrical and
Electronics Engineers (IEEE), jul 2011. doi:
10.1109/ijenn.2011.6033442.

Rik Timmers and Anton Mulder. Using reinforce-

ment learning to play Bomberman. January
2014.

11

Christopher John Cornish Hellaby Watkins. Learn-
ing from delayed rewards. PhD thesis, King’s Col-
lege, Cambridge, 1989.

Marco Wiering. FEzplorations in Efficient Rein-
forcement Learning. PhD thesis, 1999.

12

