
Master’s Thesis

Towards Classifying Bootstrap Percolation
on Cayley Graphs

Author: Bart Marinissen BSc
Supervisor: prof. dr. Gerard R. Renardel de Lavalette
Supervisor: Daniel Rodrigues Valesin, PhD

Abstract

𝑘-threshold bootstrap percolation is a very simple model of infection processes. We
study how this model behaves on Cayley-graphs of amenable graphs. This is guided by
the conjecture that on these graphs, either complete infection is guaranteed or impossible
depending on the threshold 𝑘. To this end, we prove this conjecture holds for abelian
groups of rank 2. We also find at which 𝑘 complete infection is guaranteed. These
results are essentially an extension of methods used in [Sch92] to prove the conjecture for
Cayley-graphs on Z𝑛 using canonical generators. Finally, we outline an approach that
might extend these results to all Cayley graphs of abelian groups. Moreover, we test the
conjecture experimentally on Cayley-graphs of Heisenberg and Lamplighter groups. Here
we find evidence that the conjecture holds for the Heisenberg groups. The results for the
lamplighter groups are inconclusive. However, we do find a very interesting phenomenon
with the lamplighter group. The number of final infected nodes in these graphs seems to
cluster around tenths of the total number of nodes in the graph.

Sunday 25th March, 2018

Contents

1 Introduction 2
1.1 Aim of this thesis . 4

2 Theoretical Work 6
2.1 First theoretical steps . 6

2.1.1 Basics of discrete geometry . 7
2.1.2 Using the abelian structure theorem . 10

2.2 Free abelian case . 12
2.2.1 Facet growth . 16
2.2.2 An upper bound on 𝜋𝑐 for 𝛽𝑆 . 22

2.3 The seed argument in Z2 . 23
2.4 Renormalization . 29
2.5 Conclusion for theoretical work . 37

2.5.1 Extending result to arbitrary abelian groups . 38

3 Experimental Work 41
3.1 Computing bootstrap percolation . 42

3.1.1 Implementation . 46
3.1.2 Potential distributed algorithm . 47

3.2 Tested graphs . 48
3.2.1 The Heisenberg group . 48
3.2.2 Lamplighter groups . 49

3.3 Results . 50
3.3.1 Abelian 4D . 51
3.3.2 Heisenberg . 52
3.3.3 Lamplighter . 54

3.4 Performance analysis . 58
3.4.1 Profiling results . 59
3.4.2 Comparison with an earlier algorithm . 59

3.5 Conclusion for experimental work . 60
3.5.1 Further work . 61

4 Conclusion 62
4.1 Conclusion . 62
Acknowledgments . 63

Bibliography 64

A C++ code 65

1

Chapter 1

Introduction

Take a locally finite graph 𝐺 = (𝑉,𝐸). That is, a graph where every node has finitely many neighbors. A
vertex in this graph can either be occupied (value 1) or vacant (value 0). We then consider the following
increasing discrete time dynamics. At time step 𝑡, a vacant vertex with more than 𝑘 occupied neighbors
becomes active in step 𝑡+ 1. This process is called 𝑘-threshold bootstrap percolation. Formally, we take
𝐴 to be the set of occupied points at a given time step. We then define a single step by the following
function:

𝛽𝑘(𝐴) = 𝐴 ∪ {𝑥 ∈ 𝑉 | #𝐸 ∩ ({𝑥} ×𝐴) ≥ 𝑘} (1.0.1)
We are then interested in the behaviour of this system as we let time go to infinity. That is, we are
interested in 𝛽𝑘

∞(𝐴) =
⋃︀∞

𝑖=1 𝛽𝑘
𝑖.

This model was first studied in [CLR79] as a low temperature approximation to the Ising model, which
models magnetic spins in a solid. In general, bootstrap percolation is a simple model for any infectious
process. For example, the spread of disease through a population, the firing of neurons in a brain, the
spread of opinions in a social network, or the seeping of water through coffee grounds against pressure.
We will study what happens when the process is started from a random uniform configuration of occupied
vertices 𝐴0. That is, we pick some density 𝑝 ∈ [0, 1]. Then, for any vertex 𝑣 ∈ 𝑉 we have P(𝑣 ∈ 𝐴0) = 𝑝
and this is independent of all other vertices. We say an initial condition percolates if 𝛽𝑘

∞(𝐴0) = 𝑉 .

In [CLR79] the studied graphs were the 2𝑛-ary trees. Not much later, Van Enter [Ent87] studied this
process on the 2D grid Z2 with 𝑘 = 2. He found that for any positive density, percolation occurs with
probability 1. This result sparked our interest, eventually leading to this thesis.

Besides 𝑘-threshold bootstrap percolation, there are other processes also referred to as bootstrap percola-
tion. These are all increasing processes where vacant vertices become occupied as an increasing function
of their neighborhood. We say one percolation process dominates another whenever the growth function
of the former dominates the growth function of the latter. If a process 𝐴 dominates another process 𝐵
and 𝐵 percolates, then this guarantees that 𝐴 also percolates. This will mostly be used by defining a
new form of percolation, proving results for the new form, and then using domination to apply those
results to 𝑘-threshold bootstrap percolation.

Both kinds of graphs we mentioned before (the grids Z𝑑 and the 2𝑛-ary tree) are examples of Cayley
graphs. In this paper, we will study bootstrap percolation on Cayley graphs of amenable groups. Before
we explain what an amenable group is, we first explain Cayley graphs. They are defined as follows:
Definition 1.0.1 (Cayley graph). Given a group 𝐺 with operation ∘ and a finite set 𝑆 ⊆ 𝐺 (called the
generating set) we define the Cayley graph on 𝐺 using generating set 𝑆 as Γ(𝐺,𝑆) = (𝑉,𝐸) taking:

𝑉 = 𝐺

𝐸 = {(𝑥, 𝑥 ∘ 𝑠) | 𝑠 ∈ 𝑆, 𝑥 ∈ 𝐺}

One can take a Cayley graph to be directed or undirected. We say a generating set 𝑆 is a symmetric set
if it is closed under inversion. That is if:

𝑥 ∈ 𝑆 =⇒ 𝑥−1 ∈ 𝑆

2

CHAPTER 1. INTRODUCTION

If the generating set of a Cayley graph is symmetric, the directed and undirected graphs are essentially
the same.

Cayley graphs are vertex transitive (defined below). This property together with their constructive
nature really helps when studying these graphs. This is part of why we chose to study Cayley graphs.
Definition 1.0.2 (Vertex Transitive graphs). Given a graph 𝐺 = (𝑉,𝐸) we say 𝐺 is vertex transitive
if 𝐴𝑢𝑡(𝐺) acts transitively on 𝑉 . That is, given any 𝑥, 𝑦 ∈ 𝑉 there exists an 𝛼 ∈ 𝐴𝑢𝑡(𝐺) such that
𝛼(𝑥) = 𝑦. Or equivalently, the image of any vertex 𝑥 under 𝐴𝑢𝑡(𝐺) is all nodes 𝑉 .

Here, 𝐴𝑢𝑡(𝐺) is the group of all graph automorphisms of 𝐺. That is:

𝐴𝑢𝑡(𝐺) = {𝐹 : 𝑉 → 𝑉 | (𝑥, 𝑦) ∈ 𝐸 ⇐⇒ (𝐹 (𝑥), 𝐹 (𝑦)) ∈ 𝐸}

Lemma 1.0.3. All Cayley graphs are vertex transitive

Proof. Given a Cayley graph Γ(𝐺,𝑆) we have the following group of automorphisms:

{𝑥 ↦→ 𝑔𝑥 | 𝑔 ∈ 𝐺}

One can see these are automorphisms because given any 𝑔 ∈ 𝐺 an edge (𝑥, 𝑥𝑠) ∈ 𝐸 with 𝑠 ∈ 𝑆 has
image:

(𝑥, 𝑥𝑠) ↦→ (𝑔𝑥, 𝑔𝑥𝑠)
This pair (𝑔𝑥, 𝑔𝑥𝑠) is again an edge since 𝑠 ∈ 𝑆. Now, given an arbitrary pair 𝑎, 𝑏 ∈ 𝐺 we have the
automorphism 𝑥 ↦→ 𝑏𝑎−1𝑥 such that 𝑎 ↦→ 𝑏. �

So given a graph 𝐺 and a bootstrap percolation process 𝛽 : 2𝑉 → 2𝑉 we are interested in the behavior
of 𝛽 when applied iteratively to some initial condition 𝐴0 with density 𝑝. To this end, we introduce
some variables that describe this behavior. Whenever we refer to the variables, it will be clear from
context which graph 𝐺 and bootstrap process 𝛽 are meant. Here, we presume that 𝛽 is an increasing
and extensive function.

• 𝑇 , the stopping time. This is a random variable, defined as:

𝑇 = inf{𝑡 ≥ 0 | 𝑖 ∈ 𝛽𝑡(𝐴0)} (1.0.2)

Where 𝑖 is the group identity.

• 𝑝𝑐, the critical point for 𝑇 :

𝑝𝑐 = inf{𝑝 ∈ [0, 1] | P𝑝(𝑇 < ∞) = 1} (1.0.3)

• 𝛾(𝑝), the exponential growth rate:

𝛾(𝑝) = sup{𝛾 ≥ 0 | ∃𝐶 < ∞ ∀𝑡 : P𝑝(𝑇 > 𝑡) ≤ 𝐶𝑒−𝛾𝑡} (1.0.4)

• 𝜋𝑐, the critical point for exponential growth:

𝜋𝑐 = inf{𝑝 ∈ [0, 1] | 𝛾(𝑝) > 0} (1.0.5)

Now, there are some simple relations between these variables: 𝛾(𝑝) is increasing in 𝑝; the expectation of
𝑇 is decreasing in 𝑝; if 𝛾(𝑝) > 0 then P𝑝(𝑇 < ∞) = 1 and thus 𝜋𝑐 ≥ 𝑝𝑐. We say percolation is exponential
when 𝛾(𝑝) > 0.

Throughout this paper we will often use sequences. For these, we introduce some notation. By [𝑥𝑖] we
mean a sequence 𝑥0, 𝑥1 Such a sequence can be either finite or infinite. The difference will be clear
from context. Moreover, given a set 𝐴, we define [𝐴] as the set of sequences with elements in 𝐴. For
example, we would denote the sequence of all sums of squares as:

[𝑥𝑖] ∈ [N] :
𝑥0 = 0

𝑥𝑖+1 = 𝑥𝑖 + (𝑖+ 1)2

3

1.1. AIM OF THIS THESIS CHAPTER 1. INTRODUCTION

We also define the idea of a subset of nodes being internally spanned. Intuitively, this means we take
the set of nodes as our full graph, and ask whether the set gets filled. Formally we have:
Definition 1.0.4 (Internally spanned sets). Take a bootstrap process 𝛽 : 2𝑉 → 2𝑉 and an initial
condition 𝐴0 ⊆ 𝑉 .

We then say a set 𝑋 ⊆ 𝑉 is internally spanned by 𝐴0 if 𝑋 ∩ 𝐴0 percolates using 𝛽 on the graph
(𝑋,𝐸 ∩ (𝑋 ×𝑋)).

1.1 Aim of this thesis

As stated earlier, we mean to study Cayley graphs of amenable groups. An amenable group is defined
as follows:
Definition 1.1.1 (Amenable group). A discrete group 𝐺 is amenable if there exists a Følner sequence
for 𝐺.

That is, we have a sequence of finite subsets [𝐹𝑖] ∈
[︀
2𝐺
]︀

such that:

∀𝑔 ∈ 𝐺 ∃𝑖 ∀𝑗 ≥ 𝑖 : 𝑔 ∈ 𝐹𝑗

lim
𝑖→∞

#(𝑔𝐹𝑖 M 𝐹𝑖)
#𝐹𝑖

= 0

Where M is the symmetric difference operator.

There are many other equivalent definitions as can be seen in [BPP06]. Informally, one could consider
amenable groups as those that do not ‘grow too quickly’.

We are interested in amenable groups due to the following conjecture from [BPP06]:
Conjecture 1.1.2. A group 𝐺 is amenable if and only if, for every finite symmetric 𝑆 ⊆ 𝐺 and 𝑘 ∈ N
we have 𝑝𝑐 ∈ {0, 1} on Γ(𝐺,𝑆) for 𝑘-threshold bootstrap percolation.

We will seek to make progress towards this conjecture in two ways. The first is a theoretical approach,
contained in Chapter 2. The second approach is experimental, covered in Chapter 3.

In the theoretical approach we will look at abelian groups, these are guaranteed to be amenable. There,
we will work towards the following conjecture:
Conjecture 1.1.3. Let 𝐻 be a finitely generated abelian group 𝐻 and 𝑆 ⊆ 𝐻 be a symmetric set with
0 /∈ 𝑆. Then set 𝑘𝑆 equal to half the number of non-periodic elements in 𝑆. That is, we set:

𝑘𝑆 = #{𝑠 ∈ 𝑆 | ∀𝑛 ∈ N+ : 𝑛× 𝑠 ̸= 0}
2

Then for 𝛽𝑘 on Γ(𝐻,𝑆) we have:

𝜋𝑐 = 𝑝𝑐 =
{︃

0 if 𝑘 ≤ 𝑘𝑆

1 if 𝑘 > 𝑘𝑆

The main result of this paper is Theorem 2.5.1 which states the above conjecture holds when 𝐻 has rank
2 (the rank of an abelian group is defined in Theorem 2.1.8). We also have Theorem 2.2.12 which states
the above conjecture holds for arbitrary abelian groups in the case 𝑘 > 𝑘𝑆 . In Section 2.5.1 we outline
an idea for extending the methods of the proof of Theorem 2.5.1 to work for all finitely generated abelian
groups. This would then prove Conjecture 1.1.3.

Most important to our theoretical work is [Sch92]. That paper proves a sub case of Conjecture 1.1.3.
Specifically, it proves the case where 𝐻 = Z𝑛 and 𝑆 = {𝑒1 . . . 𝑒𝑛} where [𝑒𝑖] are the canonical generators
for Z𝑛. Our method uses the proof form that paper as a template. That paper was preceded by [AL88]
and dealt with finite subsets (hypercubes) of Z𝑑 rather than looking at the full space Z𝑑.

Important to the conjecture itself is the paper in which it was posed: [BPP06]. That paper looks explicitly
at non-amenable groups. For these groups, it seems that 𝑝𝑐 takes intermediate values for 𝑘-threshold
bootstrap percolation regardless of 𝑘. This contrasts sharply with the results known for specific amenable
groups. Moreover, their results depend explicitly on groups being non-amenable.

4

1.1. AIM OF THIS THESIS CHAPTER 1. INTRODUCTION

The second approach is experimental. Here we intend to compute 𝛽𝑘 on finite subgraphs of Cayley graphs
of amenable groups. Specifically, we will be looking at the Heisenberg and lamplighter groups. Note
that for any finite subgraph, we have 𝑝𝑐 = 1 since the probability that 𝐴0 = ∅ is technically positive.
However, we hope to see (and do see) some form of critical behavior in these subgraphs. That is, at
certain densities we see almost no growth from the initial condition. Then, for densities higher than some
‘critical density’, we see growth continues until almost the entire graph is occupied. Next, we study how
this ‘critical density’ changes when we take ever larger subgraphs. If this ‘critical density’ converges to
0 that suggests that 𝑝𝑐 = 0 for the full infinite graph.

Experiments like these were run previously for Z2. In these experiments they took squares and increased
their side length. They ran simulations up to 350 × 350 squares. The critical point then seemed to
converge to some small but positive value. Later, in [Hol03] we got theoretical results showing this is
actually not the case. This was an expansion of the work done in [AL88]. The results show that the
critical point converges to 0 as the side length 𝐿 goes to infinity. However, convergence is very slow. In
the case of Z2 it is 𝑂(1/log 𝐿) and in the case of Z3 it converges at a rate of 𝑂(1/log log 𝐿). In fact, from
[Bal+12] we know that in Z𝑑 the critical point converges to 0 with order:

𝑂

(︂
1

log𝑑−1 𝐿

)︂
(1.1.1)

where log1 = log and log𝑛 = log log𝑛−1. That is, log𝑛 is log iterated 𝑛 times. As such, finding results
congruent with such convergence would suggest we have similar convergence.

For the Heisenberg group, our experiments found evidence for 𝑂
(︁

1
log3 𝐿

)︁
convergence. For the lamp-

lighter group, our experiments were inconclusive. We did find a rather interesting phenomenon with the
lamplighter group. On the binary lamplighter group, the size of the stable sets 𝛽𝑘

∞(𝐴0) seems to cluster
around tenths of the full subgraph.

5

Chapter 2

Theoretical Work

2.1 First theoretical steps

In the section, we will lie the foundation for the remainder of this chapter. First, we define the 𝑘-fort
and introduce the 0-1 law. After that, we define some basic concepts of discrete geometry and derive
some propositions regarding these concepts; this will be instrumental in Section 2.4. Finally, we make
use of the abelian structure theorem (2.1.8). This yields Theorem 2.1.13, which allows us to focus solely
on free-abelian groups.

A very useful tool in analyzing 𝑘-threshold bootstrap percolation is the 𝑘-fort, introduced by [BPP06]:
Definition 2.1.1 (𝑘-fort). Given a graph 𝐺 = (𝑉,𝐸), we call a subset 𝐴 ⊆ 𝑉 a 𝑘-fort if it is connected
and each vertex in 𝐴 has fewer than 𝑘 connections outside of 𝐴. Formally:
𝐴 is connected and:

∀𝑎 ∈ 𝐴 : #
(︀
𝐸 ∩ ({𝑎} × (𝑉 ∖𝐴))

)︀
< 𝑘

Note that other papers often use ≤ 𝑘 instead of < 𝑘 in the above definition. These are useful due to the
following lemma
Lemma 2.1.2. 𝑘-threshold bootstrap percolation fills the entire graph if and only if no 𝑘-fort is entirely
vacant in the initial condition.

Proof. Take 𝐴0 to be an initial condition with density 𝑝 > 0 and take 𝑉 to be the set of vertices of our
Cayley graph.

Now suppose that 𝐴∞ = 𝛽𝑘
∞(𝐴0) ̸= 𝑉 . Then we can find a connected component in 𝐴∞

𝐶 . This
connected component must be a 𝑘-fort, as any vertex with 𝑘 or more connections to the outside would
not remain vacant. Now, since bootstrap percolation is an increasing process, this vacant 𝑘-fort must
have been vacant in 𝐴0.

What remains to show is that percolation implies that all 𝑘-forts were entirely vacant. We do this via
contraposition. So, suppose we start with a vacant 𝑘-fort. Then, by definition of 𝛽𝑘, that 𝑘-fort will
remain vacant. �

Now consider what happens when we have a finite 𝑘-fort. If we have a density 𝑝 < 1 then this finite
𝑘-fort has positive probability of being vacant. Thus, the probability of percolation is less then 1. The
converse need not be true. If all 𝑘-forts are infinite, the probability that a given 𝑘-fort is vacant is 0,
but if there are uncountably many 𝑘-forts, the probability that we could find a vacant one might still be
positive.

We also have the following theorem, called the 0-1 law. This theorem follows from: [LP16, Prop. 7.3];
Cayley graphs being vertex transitive; the probability of complete percolation being invariant under the
automorphisms of our Cayley graphs; and the event of complete occupation being translation invariant.

6

2.1. FIRST THEORETICAL STEPS CHAPTER 2. THEORETICAL WORK

Theorem 2.1.3 (0-1 Law). For any infinite Cayley graph 𝑘-threshold bootstrap percolation we have

P𝑝(Complete occupation) ∈ {0, 1}

We can use this theorem to deduce the following result about the existence of finite 𝑘-forts.
Lemma 2.1.4. If a Cayley graph Γ generated by a finite 𝑆 has finite 𝑘-forts then, for 𝑘-threshold
bootstrap percolation, 𝑝𝑐 = 1. Otherwise, it has 𝑝𝑐 ≤ 1 − 𝑞 where 𝑞 > 0 is the critical probability for site
percolation on Γ.

Proof. These results are due to [BPP06].

First, we consider the case where finite 𝑘-forts exist. In this case, unless the initial density 𝑝 = 1,
the probability that a given finite 𝑘-fort is vacant is positive. Therefore, the probability of complete
occupation is lower than 1. By the 0-1 law, it must then be 0.

For the case of no finite 𝑘-forts existing, if we have no complete occupation, there must exist a vacant
𝑘-fort. Since this 𝑘-fort is connected and infinite, this can only occur when the density of vacant sites is
at least 𝑞. This follows directly from the definition of 𝑞. Moreover, as 𝑆 is finite, 𝑞 > 0. �

Having looked at 𝑘-forts, we now consider the effect of growing 𝑆.
Lemma 2.1.5. Let 𝐻 be a finitely generated abelian group, and let 𝑆, 𝑇 ⊆ 𝐻 be finite symmetric subsets
of 𝐻.

Now, if 𝑆 ⊆ 𝑇 it follows that 𝛽𝑘 on Γ(𝐻,𝑆) dominates 𝛽𝑘 on Γ(𝐻,𝑇).

Proof. Let 𝛽𝑘,𝑆 be 𝛽𝑘 on Γ(𝐻,𝑆) and let 𝛽𝑘,𝑇 be 𝛽𝑘 on Γ(𝐻,𝑇). Both 𝛽𝑘,𝑆 and 𝛽𝑘,𝑇 are of the type:
2𝐺 → 2𝐺.

We need to show that 𝛽𝑘,𝑆(𝐴) ⊇ 𝛽𝑘,𝑇 (𝐴) for any 𝐴 ⊆ 𝐺. Now, let 𝐸𝑆 be all edges of Γ(𝐻,𝑆) and 𝐸𝑇

be all edges of Γ(𝐻,𝑇). It follows from 𝑆 ⊆ 𝑇 that 𝐸𝑆 ⊆ 𝐸𝑇 . Thus, given any 𝑥 ∈ 𝐴 we have:

𝐸𝑆 ∩ ({𝑥} ×𝐴) ⊆ 𝐸𝑇 ∩ ({𝑥} ×𝐴) �

We will use this lemma to ignore periodic generators in 𝑆. Specifically, to prove Conjecture 1.1.3 in the
case 𝑘 ≤ 𝑘𝑆 it now suffices to prove the conjecture holds when 𝑆 contains no periodic elements. In this
case we have 𝑘𝑆 = #𝑆

2 .

2.1.1 Basics of discrete geometry

Our proofs will often concern convex polytopes and other discrete geometry. Here, we introduce the
discrete geometry we need for our proves.

We start with the most basic operations. Given a set 𝐴 ⊆ R𝑛 a point 𝑥 ∈ R𝑛 and a scalar 𝛼 ∈ R we
define the following operations:

𝑥+𝐴 = {𝑥+ 𝑎 | 𝑎 ∈ 𝐴} = 𝐴+ 𝑥

𝛼𝐴 = {𝛼𝑎 | 𝑎 ∈ 𝐴}
−𝐴 = −1𝐴

𝐴− 𝑥 = 𝐴+ (−𝑥)
𝑥−𝐴 = 𝑥+ (−𝐴)

The main subject of this section is the convex polytope. Convex polytopes have many different descrip-
tions. We will use the following three:

• A set of the form
{𝑥 ∈ R𝑛 | 𝑀𝑥 < 𝑏}

for some 𝑀 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚. Here, comparison of vectors is component-wise and we require
all components to satisfy the inequality.

7

2.1. FIRST THEORETICAL STEPS CHAPTER 2. THEORETICAL WORK

• A finite intersection of shifted half-spaces ⋂︁
𝑖

𝐻(𝑢𝑖) + 𝑏𝑖

Here, we define a half-space as:
𝐻(𝑢) = {𝑥 ∈ R𝑛 | 𝑥 · 𝑢 ≤ 0}

where 𝑢 ̸= 0. We do not define 𝐻(0) as that would not be a half-space. This later saves us from
needing to exclude the special case 𝑢 = 0.

For the shifts we take: 𝑏𝑖 ∈ R𝑛. So we take a finite intersection of half spaces with normal 𝑢𝑖

shifted so their border contains the point 𝑏𝑖.

• Bounded polytopes can be written as: Conv(𝑉) for some finite set 𝑉 ⊆ R𝑛. That is, the convex
hull of some finite set of points. Here, the convex hull is defined as follows:

Conv(𝐴) =
{︃∑︁

𝑎∈𝐴

𝛼(𝑎)𝑎
⃒⃒⃒⃒
⃒ (∀𝑎 ∈ 𝐴 : 𝛼(𝑎) ≥ 0) ∧

∑︁
𝑎∈𝐴

𝛼(𝑎) = 1
}︃

Besides the half-space 𝐻(𝑢) we also define the border of that half space, also known as the normal
complement:

𝑁(𝑢) = {𝑥 ∈ R𝑛 | 𝑥 · 𝑢 = 0}
where 𝑢 ̸= 0. Again, we exclude 𝑢 = 0 to prevent needing to treat it as a special case every time we use
𝑁(𝑢) or 𝐻(𝑢). It should be noted that for shifted half-spaces of the form 𝐻(𝑢) + 𝑏 different values of 𝑏
can give the same shifted half-space. If we take some 𝑑 ∈ 𝑏+𝑁(𝑢) then 𝐻(𝑢) + 𝑑 = 𝐻(𝑢) + 𝑏.

We then define the faces of a polytope 𝑃 as follows. A set 𝐹 ⊆ R𝑛 is a face of 𝑃 if there exist some 𝑢
and 𝑏 such that

𝐹 = 𝑃 ∩ (𝐻(𝑢) + 𝑏) = 𝑃 ∩ (𝑁(𝑢) + 𝑏)
Every such face 𝐹 has a dimension, this is defined as dim(span(𝐹 − 𝑏)) where 𝑏 is the base of the shifted
half-space that defines 𝐹 . We call the faces with dimension 𝑛− 1 the facets of 𝑃 . The union of all facets
forms the boundary of 𝑃 .

We then also consider the polytope 𝑃 and ∅ to be faces with dimension 𝑛 and −1 respectively. In this
case, the faces form a lattice. That is, they form a partial order (under set inclusion) where any two
elements have a unique least upper bound and greatest lower bound.

There is a special case of an unbounded polytope called the conical sum. It is defined as:

Coni(𝐴) =
{︃∑︁

𝑎∈𝐴

𝛼𝑎𝑎 | ∀𝑎 ∈ 𝐴 : 𝛼𝑎 ≥ 0
}︃

One can see this as the union of all scaled versions of Conv(𝐴). The conical sum is closed under addition
and positive scaling. Note that unlike the convex hull, the conical sum is not invariant under affine
transformations. If a conical sum is not equal to the full space, it can be written in either of the
following forms:

• {𝑥 ∈ R𝑛 | 𝑀𝑥 ≤ 0} for some 𝑀 ∈ R𝑚×𝑛

•
⋂︀

𝑖 𝐻(𝑢𝑖)

These are convex polytopes with a single vertex at the origin.

Finally, we have the Minkowski sum and difference. These are also known as dilation and erosion. The
Minkowski sum ⊕ has three equivalent definitions.

𝐴⊕𝐵 = {𝑎+ 𝑏 | 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵}

=
⋃︁

𝑏∈𝐵

𝐴+ 𝑏

=
⋃︁

𝑎∈𝐴

𝑎+𝐵

8

2.1. FIRST THEORETICAL STEPS CHAPTER 2. THEORETICAL WORK

One key property of the Minkowski sum is that it commutes with taking the convex hull. That is:
Conv(𝐴⊕𝐵) = Conv(𝐴) ⊕ Conv(𝐵). Moreover, the Minkowski sum of two convex sets is itself convex.

The Minkowski difference ⊖ is defined as:

𝐴⊖𝐵 = {𝑥 ∈ 𝐴 | 𝑎+𝐵 ⊆ 𝐴}

Note that ⊖ is not the inverse of ⊕. Moreover, if 𝐴 and 𝐵 are convex, so is 𝐴 ⊖ 𝐵. In fact, this holds
even if 𝐵 is not convex. To see this, consider that 𝑎 + 𝐵 ⊆ 𝐴 implies that Conv(𝑎 + 𝐵) ⊆ 𝐴 as 𝐴 is
convex.

Now, let𝐴 and𝐵 be convex polytopes with 0 ∈ 𝐵. Then any 𝑥 ∈ 𝐴⊕𝐵 has many different decompositions
𝑥 = 𝑎+ 𝑏 with 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. However, we will define a unique one:

𝑥′ = arg min ‖𝑏‖ : 𝑏 ∈ (𝑥−𝐴) ∩𝐵

�̃� = 𝑥− 𝑥′

𝑥 = 𝑥′ + �̃�, 𝑥′ ∈ 𝐵, �̃� ∈ 𝐴

(2.1.1)

To see this is unique, (𝑥 − 𝐴) ∩ 𝐵 is clearly a convex polytope. Then, the following proposition proves
𝑥′ is unique, from which �̃� must be unique.
Proposition 2.1.6. Given a convex polytope 𝑃 , the following is uniquely defined:

arg min
𝑥∈𝑃

‖𝑥‖

Proof. Suppose we have two distinct points 𝑥, 𝑦 ∈ 𝑃 with ‖𝑥‖ = ‖𝑦‖. Then, by the triangle inequality
and 𝑥 ̸= 𝑦 we have: ⃦⃦⃦𝑥

2 + 𝑦

2

⃦⃦⃦
< ‖𝑥‖

and by convexity we have:
𝑥

2 + 𝑦

2 ∈ 𝑃

Thus, the above arg min must be unique. �

Now, given any polytope 𝐵 with a facet 𝐹 we define

𝑢(𝐹) = 𝑢 ∈ R2 such that ∀𝑏 ∈ 𝐹 : 𝐹 = 𝑏+𝐻(𝑢) ∩𝐵

This is unique up to scaling by positive real numbers. With this, we can introduce the following lemma:

Lemma 2.1.7. Given 𝐴, 𝐵 convex polytopes with 0 ∈ 𝐵, let ℱ be the set of facets of 𝐴 then:

𝐴⊕𝐵 = 𝐴 ∪
⋃︁{︃

𝐹 ⊕𝐵

⃒⃒⃒⃒
⃒ 𝐹 ∈ ℱ ∧ 𝑢(𝐹) ∈

⋃︁
𝑣∈𝐵

𝐻(𝑣)𝐶

}︃

Proof. It is trivial to see that the right-hand side is a subset of the left-hand side. This follows from
0 ∈ 𝐵 and 𝐹 ⊆ 𝐴 for all 𝐹 ∈ ℱ .

Given any 𝑥 ∈ 𝐴⊕ 𝐵, take the unique decomposition 𝑥 = �̃�+ 𝑥′ from Equation 2.1.1. This has �̃� ∈ 𝐴,
𝑥′ ∈ 𝐵 and 𝑥′ is the smallest element in 𝑏 that allows such a decomposition. Clearly, if 𝑥′ = 0 then
𝑥 ∈ 𝐴 ⊆ 𝐴⊕𝐵.

Now, suppose 𝑥′ ̸= 0. Then 𝑥 = �̃�+ 𝑥′ /∈ 𝐴. Moreover we know that:

Conv(�̃�, �̃�+ 𝑥′) ∩𝐴 = {�̃�}

For otherwise, 𝑥′ would not be minimal. But then �̃� must lie on the border of 𝐴, and thus lies in some
facet 𝐹 ∈ ℱ . Thus if 𝑥′ ̸= 0 we have:

𝑥 = �̃�+ 𝑥′ ∈ 𝐹 ⊕𝐵

Moreover if �̃� ∈ 𝐹 then 𝑢(𝐹) ∈ 𝐻(𝑥′)𝐶 . This is again a consequence of the minimality of 𝑥′.

As such, every 𝑥 ∈ 𝐴⊕𝐵 either lies in 𝐴 or lies in 𝐹 ⊕𝐵 for some 𝐹 ∈ ℱ with 𝑢(𝐹) ∈
⋃︀

𝑣∈𝑉 𝐻(𝑣)𝐶 . �

9

2.1. FIRST THEORETICAL STEPS CHAPTER 2. THEORETICAL WORK

The above lemma means that when taking the Minkowski sum, we only need to ‘dilate’ at the facets.
Note that in some cases, our extra requirement on the facet 𝑢(𝐹) ∈

⋃︀
𝑣∈𝐵 𝐻(𝑣)𝐶 means we can leave

out some of the dilated facets.

2.1.2 Using the abelian structure theorem

As we focus on finitely generated abelian groups, the abelian structure theorem will be used often. We
state it here for the sake of completeness:
Theorem 2.1.8 (Abelian structure theorem). Any finitely generated abelian group is isomorphic to a
product of the form Z𝑟 × 𝑇 where 𝑇 is a finite abelian group. 𝑇 is called the ‘toroidal component’ of the
group and 𝑟 is called the ‘rank’.

Note that in this decomposition all periodic elements lie in 𝑆 ∩ {0} × 𝑇 . Furthermore, as each subgroup
of an abelian group is normal, we have the quotient group (Z𝑟 × 𝑇)/({0} × 𝑇) ≃ Z𝑟. This means there
exists a surjective group homomorphism 𝜑 : Z𝑟 × 𝑇 → Z𝑟. Such homomorphisms can be seen as just
discarding the part in 𝑇 .

One application of the abelian structure theorem is the following result.
Theorem 2.1.9. Given a finitely generated abelian group 𝐻 and a finite symmetric set 𝑆 ⊆ 𝐻 ∖ {0} we
set:

𝑘𝑆 = #{𝑠 ∈ 𝑆 | ∀𝑛 ∈ N+ : 𝑛× 𝑠 ̸= 0}
2

Then, all 𝑘𝑆-forts in Γ(𝐻,𝑆) are infinite.

Proof. First, we name the set of all non-periodic elements in 𝑆

𝑄 = {𝑠 ∈ 𝑆 | ∀𝑛 ∈ N+ : 𝑛× 𝑠 ̸= 0}

Note that #𝑄 = 2𝑘𝑆 . By the abelian structure theorem there exists a surjective homomorphism:

𝜑 : 𝐻 → Z𝑑

We know that for any 𝑥 ∈ 𝑄 we have 𝜑(𝑥) ̸= 0 because 𝑥 is not periodic.

Now, we can create a weak ordering (total order allowing for ties) on 𝐻 by simply extending a lexico-
graphical ordering on Z𝑑. That is, if 𝑥, 𝑦 ∈ 𝐻 then 𝑥 ≥ 𝑦 if and only if 𝜑(𝑥) ≥ 𝜑(𝑦). Where we write
𝑥 ≡ 𝑦 if 𝑥 ≥ 𝑦 ∧ 𝑦 ≥ 𝑥. This only occurs if 𝑥 − 𝑦 ∈ 𝑇 . To see this, consider how the generators are
ordered. Notably, our ordering is well behaved w.r.t. addition. That is, if 𝑠 > 0 then 𝑥+ 𝑠 > 𝑥. This is
because addition on Z𝑛 also has this property under the lexicographical ordering.

As 𝑆 is symmetric, 𝑄 is also symmetric . This, combined with the fact that no elements in 𝑄 are ordered
equally with 0, means that exactly half of 𝑄 is larger than 0. We shall call this half 𝑄+. Note that
#𝑄+ = 𝑘𝑆 . Now, consider any finite subset 𝐴 ⊆ 𝐻. We wish to show that such an 𝐴 cannot be a
𝑘𝑆-fort.

As 𝐴 is finite, it has ‘maximal’ points with respect to our order. Formally, there exist 𝑚 ∈ 𝐴 such
that for all 𝑎 ∈ 𝐴 𝑚 ≥ 𝑎. Now, take such an 𝑚 and consider the set of points 𝑚 + 𝑄+. These are all
neighbours of 𝑚, because 𝑄+ ⊆ 𝑆. Moreover, all of 𝑚 + 𝑄+ is larger than 𝑚 in our ordering and thus
lies outside 𝐴. Therefore 𝑚 ∈ 𝐴 has at least #𝑄+ = 𝑘𝑆 neighbors outside of 𝐴. As such 𝐴 cannot be a
𝑘𝑆-fort. �

This immediately allows us to apply Lemma 2.1.4 to get the following corollary:
Corollary 2.1.10. Given a finitely generated abelian group 𝐻 and a symmetric set of generators 𝑆 pick:

𝑘 = 𝑘𝑠 = #{𝑠 ∈ 𝑆 | ∀𝑛 ∈ N+ : 𝑛× 𝑠 ̸= 0}
2

Then 𝑘-threshold bootstrap percolation on Γ(𝐻,𝑆) has 𝑝𝑐 ≤ 1 − 𝑞 where 𝑞 > 0 is the critical probability
for site percolation.

10

2.1. FIRST THEORETICAL STEPS CHAPTER 2. THEORETICAL WORK

To better make use of the abelian structure theorem, we define a new form of bootstrap percolation
called modified bootstrap percolation.
Definition 2.1.11 (Modified bootstrap percolation). Let 𝐺 be an abelian group and take 𝑆 ⊆ 𝐺 ∖ {0}
to be a finite symmetric subset. We call a set 𝑋 ⊆ 𝑆 a symmetric half of 𝑆 if 𝑋 ∪ −𝑋 = 𝑆. Modified
bootstrap percolation is then defined by the following discrete step, based on symmetric halves:

𝜇𝑆(𝐴) = 𝐴 ∪ {𝑥 ∈ 𝐴 | ∃𝑋 ⊆ 𝑆 : 𝑥+𝑋 ⊆ 𝐴 ∧ 𝑋 ∪ −𝑋 = 𝑆}

Simply stated, in order for 𝑥 to become occupied by 𝜇𝑆 , each symmetric pair 𝑥+ 𝑠, 𝑥− 𝑠 given an 𝑠 ∈ 𝑆
has to have at least one occupied node. Now compare modified bootstrap percolation to 𝑘-threshold
bootstrap percolation with 𝑘 = #𝑆

2 . We see that modified bootstrap percolation is a lot like 𝑘-threshold
bootstrap percolation, only we have some more geometric requirements. Instead of allowing any half of
the neighbors of a point to be occupied, we require a symmetric half to be occupied. Note that the 0-1 law
(Theorem 2.1.3) still holds for modified bootstrap percolation. The underlying probability distribution
remains ergodic, and the event of percolation under modified bootstrap percolation is also translation
invariant.

For now, we wish to show that modified bootstrap percolation is dominated by 𝑘-threshold bootstrap
percolation when 𝑘 = #𝑆/2. This follows quite readily from the fact that 0 /∈ 𝑆. For then, if 𝑋 is a
symmetric half of 𝑆 then #𝑋 ≥ #𝑆/2. This yields:

𝜇𝑆(𝐴) ⊆ 𝛽#𝑆/2(𝐴) (2.1.2)

Thus if we prove that modified percolation leads to complete percolation, then we also prove that 𝑘-
threshold bootstrap percolation leads to complete percolation at 𝑘 = #𝑆/2.

We can combine the above with Lemma 2.1.5 to get the following proposition:
Proposition 2.1.12. Let 𝐻 be a finitely generated abelian group, and 𝑆 ⊆ 𝐻 ∖{0} be a finite symmetric
subset. Moreover, set 𝑇 to be all non-periodic elements of 𝑆.

Then it follows that 𝑘𝑆 = #𝑇
2 and:

𝜇𝑇 (𝐴) ⊇ 𝛽𝑘𝑆
(𝐴)

Next, we introduce a theorem that takes modified bootstrap percolation without periodic generators on
any abelian group and reduces it to modified bootstrap percolation on a free abelian group (i.e. a group
with no toroidal part).
Theorem 2.1.13. Let 𝐻 be any abelian group isomorphic to Z𝑟 × 𝑇 where 𝑇 is finite. Let 𝑆 ⊆ 𝐻 be
a finite symmetric set that does not include periodic elements. Finally, let 𝜑 : 𝐻 → Z𝑟 be a surjective
homomorphism.

In that case, if 𝑝𝑐 = 0 for modified bootstrap percolation on Γ(Z𝑟, 𝜑(𝑆)) then 𝑝𝑐 = 0 for modified bootstrap
percolation on Γ(𝐻,𝑆). The same holds for 𝜋𝑐.

Proof. The basis of this proof is to show that modified bootstrap percolation on 𝐻 dominates modified
bootstrap percolation on Z𝑟 in some sense.

Note that, if 𝐻 = Z𝑟 × 𝑇 we can simply take:

𝜑 : (𝑧, 𝑡) ↦→ 𝑧

Any other surjective homomorphism 𝜓 : 𝐻 ↦→ Z𝑟 can be factored as 𝜓 = 𝑓 ∘𝜑 ∘ 𝑔 where 𝑓 : 𝐻 → Z𝑟 × 𝑇
and 𝑔 : Z𝑟 → Z𝑟 are isomorphisms. Nowhere in the proof do these isomorphisms affect the reasoning.
As such, once can essentially presume the above form of 𝜑 for the entire proof.

Now, given an initial condition 𝐴0 ⊆ 𝐻 we will transform it to an initial condition 𝐵0 ⊆ Z𝑟 as follows:
𝐵0 = {𝑥 ∈ Z𝑟 | 𝜑−1(𝑥) ⊆ 𝐴0}. That is, 𝐵0 corresponds to all totally occupied translates of 𝑇 in 𝐴0.
Now for any 𝑥 ∈ Z𝑟 we have 𝑃𝑝(𝑥 ∈ 𝐵0) = 𝑝#𝑇 and these are fully independent of any other points.
Thus 𝐵0 can be seen as an initial condition with density 𝑝#𝑇 .

11

2.2. FREE ABELIAN CASE CHAPTER 2. THEORETICAL WORK

We then define a second generating set 𝑆′ = 𝜑(𝑆). Note that the requirement that no generators be
periodic means that no generator lies in 𝑇 so 0 /∈ 𝜑(𝑆). We then define two sequences [𝐴𝑖] and [𝐵𝑖]:

𝐴𝑖 = (𝜇𝑆)𝑖(𝐴0)
𝐵𝑖 = (𝜇𝑆′)𝑖(𝐵0)

Now, we want to show that [𝐴𝑖] dominates [𝐵𝑖] in some sense, but they are sequences in different spaces.
So instead we will prove the following:

𝜑−1(𝐵𝑖) ⊆ 𝐴𝑖

We still call this ‘domination’ because as 𝐵𝑖 grows, this also require 𝐴𝑖 to grow. Moreover, if 𝐵𝑖 = Z𝑟

then it follows that 𝐴𝑖 = 𝐻. We will prove this using induction on 𝑖. By definition of 𝐵0 this holds for
𝑖 = 0. What remains is to show that:

𝜑−1(𝐵𝑖) ⊆ 𝐴𝑖 =⇒ 𝜑−1(𝐵𝑖+1) ⊆ 𝐴𝑖

To this end, it suffices to show that:

𝑥 ∈ 𝐵𝑖+1 ∖𝐵𝑖 =⇒ 𝜑−1(𝑥) ⊆ 𝐴𝑖+1 (2.1.3)

By definition of modified bootstrap percolation, the left hand side of (2.1.3) implies there exists a
symmetric half 𝑋 ′ of 𝑆′ such that:

𝑥+𝑋 ′ ⊆ 𝐵𝑖

Now take 𝑦 to be any point in 𝜑−1(𝑥). Moreover, take 𝑋 = 𝑆 ∩ 𝜑−1(𝑋 ′). Note that 𝑋 is a symmetric
half of 𝑆. Then the above implies:

𝑦 +𝑋 ⊆ 𝜑−1(𝐵𝑖) ⊆ 𝐴𝑖

Thus, by definition of 𝜇𝑆 we have 𝑦 ∈ 𝜇𝑆(𝐴𝑖) = 𝐴𝑖+1. �

Now, suppose that modified bootstrap percolation on Γ(Z𝑟, 𝑆) has 𝑝𝑐 = 0 for any finite symmetric 𝑆.
Then the above theorem means we have 𝑝𝑐 = 0 for modified bootstrap percolation on any Γ(𝐻,𝑄) as
long as 𝐻 has rank 𝑟 and 𝑄 does not contain periodic generators. Now, by Proposition 2.1.12 we know
that modified bootstrap percolation on Γ(𝐻,𝑄) dominates 𝑘𝑄-threshold bootstrap percolation on the
same graph. Moreover, if we take 𝑆 = 𝑄 ∪ 𝑃 where all elements in 𝑃 are periodic, we have 𝑘𝑄 = 𝑘𝑆 .
Moreover, the graph Γ(𝐻,𝑆) is an extension of Γ(𝐻,𝑄). Thus 𝛽𝑘𝑆

on Γ(𝐻𝑆) dominates 𝛽𝑘𝑄
on Γ(𝐻,𝑄).

Now, suppose we have some abelian group 𝐻 with rank 𝑟. Next take 𝑆 ⊆ 𝐻 to be a finite symmetric
subset and set 𝑄 ⊆ 𝑆 to contain all non-periodic elements in 𝑆. This means that 𝑘𝑄 = 𝑘𝑆 . Moreover,
we know that 𝛽𝑘𝑆

on Γ(𝐻,𝑆) dominates 𝛽𝑘𝑄
on Γ(𝐻,𝑄).

Then by the above theorem, if 𝑝𝑐 = 0 for modified bootstrap percolation on all Cayley graphs Γ(Z𝑟, 𝑆′)
for finite symmetric 𝑆′, then we also have 𝑝𝑐 = 0 for 𝑘𝑄-threshold bootstrap percolation on Γ(𝐻,𝑄). By
the domination we derived above, this also means 𝑝𝑐 = 0 for 𝑘𝑆-threshold percolation on Γ(𝐻,𝑆).

Thus, to prove the case 𝑘 ≤ 𝑘𝑆 in Conjecture 1.1.3 for groups of rank 𝑟 it suffices to only deal with
modified bootstrap percolation on the free abelian group Z𝑟. As such, we now focus on modified bootstrap
percolation on free abelian groups.

2.2 Free abelian case

Theorem 2.1.13 shows that to prove Conjecture 1.1.3 for 𝑘 ≤ 𝑘𝑆 we need only consider Cayley graphs
over the free abelian groups Z𝑛. In this section, we get some general results for such graphs. These
represent first steps towards proving we have 𝑝𝑐 = 0 for modified bootstrap percolation. Sadly, later we
need steps that only work in Z2 but in this section.

Our results here are inspired by the proofs in [Ent87] and [Sch92]. These proofs are for Cayley graphs
of Z2 and Z𝑛 using a minimal generating set, we will call these the canonical graphs. We also take some
inspiration from [GG93], though we consider the proofs from that paper to be suspect. First, we sketch
the ideas behind these proofs.

12

2.2. FREE ABELIAN CASE CHAPTER 2. THEORETICAL WORK

(2.1-a) the first step of growth (2.1-b) final state

Figure 2.1: How an edge grows by adding one point adjacent to the edge.

The proofs for the canonical graphs depend on rectangles or more generally, boxes. These are stable
shapes at 𝑘 = 𝑛 ≥ 2 (𝑛 is the dimension). That is they are sets 𝐵 that satisfy:

𝐵 = 𝛽𝑘(𝐵)

For any point outside a box has at most 1 connection to a point inside the box, and 𝑘 > 1.

However, in some sense such boxes are only barely stable. To see this, first consider the 2D case of a
rectangle of occupied points. Then, add a single occupied point along one of the edges. This activates
the points along the edge adjacent to this one extra point. These added points then repeatedly activate
their neighboring points until we reach the end of the edge. Once this process has finished, the edge has
grown by one line. This is illustrated in Figure 2.1 The proof from [Sch92] extends this reasoning to
𝑛-dimensional boxes in their lemma 3.1. Summarized, the reasoning is as follows: consider again a box
of occupied points. We now take a facet of this box and ask, “what does it take for this facet to grow”.
Here, by growing we mean occupying all points adjacent to this facet. This set of vacant points forms a
𝑛− 1 dimensional box. Moreover, these points all already have 1 occupied neighbor. As such, the facet
will grow when this 𝑛− 1 dimensional box would fill itself under (𝑘 − 1)-threshold percolation.

Our idea is to apply the proof ideas sketched above to modified bootstrap percolation. To this end, we
introduce even more geometry by viewing Z𝑛 as a subset of R𝑛. This embedding plays a key role in
this paper. It allows us to use norms (euclidean unless stated otherwise), inner-products, and discrete
geometry as described in Section 2.1.1.

We then use this embedding in R𝑛 to introduce a new form of bootstrap percolation on our free abelian
Cayley graphs: convex bootstrap percolation. Recall that in modified bootstrap percolation, a point
became occupied when a symmetric half of it’s neighbors were occupied. In convex bootstrap percolation,
we replace the ‘symmetric half’ with a ‘convex half’.
Definition 2.2.1 (Convex Half). Given a finite symmetric set 𝑆 ∈ Z𝑛 ∖ {0} we say 𝐶 is a convex half
of 𝑆 if:

∃𝑢 ∈ R𝑛 : 𝐶 = 𝑆 ∩𝐻(𝑢)

A single step of convex bootstrap percolation is then defined as follows:

𝛽𝑆(𝐴) = 𝐴 ∪ {𝑥 ∈ Z𝑛 | ∃𝑢 ∈ R𝑛 : 𝑥+ (𝑆 ∩𝐻(𝑢)) ⊆ 𝐴} (2.2.1)

Note that it is possible that a convex half contains more than half of all points from 𝑆. This will be
resolved when we define ‘minimal convex halves’ (Definition 2.2.4).

Convex halves of 𝑆 are all symmetric halves of 𝑆. Thus, 𝜇𝑆 dominates 𝛽𝑆 . In the case of canonical
generators, convex and modified bootstrap percolation coincide. For convex bootstrap percolation, like
modified bootstrap percolation, a necessary condition for growth of a point 𝑥 is as follows. For every
𝑠 ∈ 𝑆 either 𝑥+ 𝑠 or 𝑥− 𝑠 needs to be occupied.

Now, we will only use generating sets with a few reasonable properties. To prevent needlessly repeating
these properties, we define a generating set as a set that has the properties we want.

13

2.2. FREE ABELIAN CASE CHAPTER 2. THEORETICAL WORK

Definition 2.2.2 (Generating set). We say a set 𝑆 ⊆ Z𝑛 is a generating set if it has all the following
properties:

• 𝑆 is finite
• 𝑆 = −𝑆 (i.e. 𝑆 is symmetric)
• 0 /∈ 𝑆

We call a half-space 𝐻(𝑢) stable if:
𝛽𝑆 (𝐻(𝑢)) = 𝐻(𝑢)

We then ask which half-spaces are stable. In the canonical case for Z2 under 2-threshold bootstrap per-
colation, the only half-spaces that are stable are 𝐻 ((1, 0)) and 𝐻 ((0, 1)) and their negative counterparts.
This is why rectangles are stable shapes in the canonical case. They are intersections of such (shifted)
half-spaces. In arbitrary dimension, the same holds when 𝑆 consists only of the canonical basis vectors
and their negative counterparts. This is why, in that case, boxes are stable shapes.

We will see later that stable half-spaces are only barely stable in a sense similar to how the facets of
boxes are barely stable. This is the subject of Section 2.2.1 which forms the basis of Section 2.3.

First though, we want to classify which half spaces are stable. To this end, we define 𝑉𝑆 as the set of all
stable directions:

𝑉𝑆 = {𝑢 ∈ R𝑛 | 𝛽𝑆 (𝐻(𝑢)) = 𝐻(𝑢)}

We then have the following alternate description for 𝑉𝑆 .
Proposition 2.2.3. Given a generating set 𝑆 ⊆ Z𝑛, we have:

𝑉𝑆 = {𝑢 ∈ R𝑛 | 𝑁(𝑢) ∩ 𝑆 ̸= ∅}

For the proof of this proposition we need a definition we will use throughout this section:

𝜎𝑆(𝑢) = min{𝑥 · 𝑢 | 𝑥 ∈ (𝑆 ∖𝐻(𝑢))} (2.2.2)

This is the ‘shift’ of a direction 𝑢. Note that by the symmetry of 𝑆 we have 𝜎𝑆(𝑢) = 𝜎𝑆(−𝑢). Moreover,
as 𝑆 is finite we know that 𝜎𝑆(𝑢) > 0.

Proof. We will prove the set equality by proving mutual inclusion.

First, we prove the inclusion ⊇.
To this end, suppose we have a direction 𝑢 ∈ R𝑛 such that:

𝑁(𝑢) ∩ 𝑆 ̸= ∅

Then, we can find a pair points: 𝑠,−𝑠 ∈ 𝑁(𝑢) ∩𝑆. Moreover, if 𝐶 is a convex half of 𝑆 then either 𝑠 ∈ 𝐶
or −𝑠 ∈ 𝐶 (or both). Now, take any point 𝑥 /∈ 𝐻(𝑢), then by definition of 𝑢 it follows that:

𝑥+ 𝑠 /∈ 𝐻(𝑢) ∧ 𝑥− 𝑠 /∈ 𝐻(𝑢)

So, for any convex half 𝐶 ⊆ 𝑆 we have:
𝑥+ 𝐶 * 𝐻(𝑢)

Thus, we can conclude that 𝑥 /∈ 𝛽𝑆(𝐻(𝑢); which means that 𝑢 ∈ 𝑉𝑆 .

Next we prove the inclusion ⊆.
This will be done using contraposition, so suppose that we have a direction 𝑢 ∈ R𝑛 for which:

𝑁(𝑢) ∩ 𝑆 = ∅

Then note that 𝐻(𝑢) ∪ 𝐻(−𝑢) = R𝑛 and 𝐻(𝑢) ∩ 𝐻(−𝑢) = 𝑁(𝑢). We can combine that with our
assumption on 𝑢 to get the following convex half 𝐶:

𝐶 = 𝑆 ∩𝐻(𝑢) = 𝑆 ∖𝐻(−𝑢)

14

2.2. FREE ABELIAN CASE CHAPTER 2. THEORETICAL WORK

Now, take 𝑥 = 𝜎𝑆(𝑢)𝑢 noting that 𝑥 /∈ 𝐻(𝑢). Further, pick any 𝑦 ∈ 𝐶 Then, by the above equation for
𝐶 and the definition of 𝜎𝑆 we know that:

0 < 𝑥 · 𝑢 ≤ −𝑦 · 𝑢
(𝑥+ 𝑦) · 𝑢 ≤ 0
(𝑥+ 𝑦) ∈ 𝐻(𝑢)

Therefore, 𝑥+𝐶 ⊆ 𝐻(𝑢) and thus 𝑥 ∈ 𝛽𝑆(𝐻(𝑢)) whilst 𝑥 /∈ 𝐻(𝑢). This means 𝑢 is not a stable direction:

𝑁(𝑢) ∩ 𝑆 = ∅ =⇒ 𝑢 /∈ 𝑉𝑆

𝑉𝑆 ⊆ {𝑢 ∈ R𝑛 | 𝑁(𝑢) ∩ 𝑆 ̸= ∅} �

Thus, we can view 𝑉𝑆 as the union of all orthogonal complements to some 𝑠 ∈ 𝑆. In this sense, 𝑉𝑆 has
dimension 𝑛− 1.

Our set 𝑉𝑆 finds another use in the following definition of minimal convex halves:
Definition 2.2.4 (Minimal convex half). Given a generating set 𝑆 we call 𝐶 ⊆ 𝑆 a minimal convex half
of 𝑆 if:

∃𝑢 /∈ 𝑉𝑆 : 𝐶 = 𝑆 ∩𝐻(𝑢)

We define the family of all minimal convex halves of 𝑆:

𝒞𝑆 = {𝐶 ⊆ 𝑆 | ∃𝑢 /∈ 𝑉𝑆 : 𝐶 = 𝑆 ∩𝐻(𝑢)}

The following proposition explains why these specific convex halves are called minimal:
Proposition 2.2.5. Given a generating set 𝑆 and any convex half 𝐶 = 𝑆∩𝐻(𝑢), there exists a minimal
convex half 𝑀 ∈ 𝒞𝑆 such that 𝑀 ⊆ 𝐶.

Moreover, given any minimal convex half 𝑀 ∈ 𝐶𝑆 there exists no other convex half 𝐶 = 𝑆 ∩𝐻(𝑢) such
that 𝐶 (𝑀 .

Proof. We first prove the second claim. Let 𝑀 = 𝑆 ∩𝐻(𝑢) ∈ 𝒞𝑆 be a minimal convex half. So 𝑢 /∈ 𝑉𝑆 .
Then, by Proposition 2.2.3 we have: 𝑀 ∩ −𝑀 = 𝑆 ∩𝑁(𝑢) = ∅. Therefore, #𝑀 = #𝑆

2 . This means that
if we leave out any point from 𝑀 we have too few elements to be a convex half. So 𝑀 cannot have a
convex half as a proper subset.

Now, for the first claim, consider an arbitrary convex half 𝐶 = 𝑆 ∩𝐻(𝑢). If 𝑢 /∈ 𝑉𝑆 then 𝐶 is a minimal
convex half and we are done. So we only need to consider the case where 𝑢 ∈ 𝑉𝑆 . In that case, we know
that 𝑆 ∩𝑁(𝑢) ̸= ∅. Now set:

𝐵 = (𝑆 ∩𝐻(𝑢)) ∖𝑁(𝑢)

We will extend 𝐵 to a minimal half of 𝑆 by adding a minimal convex half of 𝑆 ∩𝑁(𝑢). To this end, pick
some

𝑢′ ∈ 𝑁(𝑢) ∖ 𝑉𝑆∩𝑁(𝑢)

Then 𝑆 ∩𝑁(𝑢) ∩𝐻(𝑢′) is a minimal convex half of 𝑆 ∩𝑁(𝑢).

Next, as 𝑆 is finite, there exists some 𝜖 > 0 such that 𝑆 ∖ 𝐻(−𝑢) = 𝑆 ∖ 𝐻(−𝑣) whenever ‖𝑢− 𝑣‖ < 𝜖.
We can then find a factor 0 < 𝛼 < 𝜖 such that 𝑣 = 𝑢+ 𝛼𝑢′ /∈ 𝑉𝑆 . It then follows that

𝑆 ∩𝐻(𝑣) = 𝐵 ∪ (𝑆 ∩𝑁(𝑢) ∩𝐻(𝑢′)) ⊆ 𝐶

Thus, 𝐶 contains a minimal convex half. �

Corollary 2.2.6. We have the following equivalent definition for convex bootstrap percolation:

𝛽𝑆(𝐴) = 𝐴 ∪ {𝑥 ∈ Z𝑛 | ∃𝐶 ∈ 𝒞𝑆 : 𝑥+ 𝐶 ⊆ 𝐴} (2.2.3)

15

2.2. FREE ABELIAN CASE CHAPTER 2. THEORETICAL WORK

Next, we define a finite set related to 𝑉𝑆 that contains the ‘most stable’ directions:

𝑈𝑆 = {𝑢 | ‖𝑢‖ = 1 ∧ span(𝑁(𝑢) ∩ 𝑆) = 𝑁(𝑢)}

That is, 𝑈𝑆 contains all unit vectors 𝑢 for which 𝑁(𝑢) ∩ 𝑆 spans a hyper-plane. Given a 𝑢 ∈ 𝑈𝑆 ,
consider the half space 𝐻(𝑢). We say this half-space is ‘most stable’ because if 𝐴0 = 𝐻(𝑢) then any
point 𝑥 /∈ 𝐻(𝑢) has vacant neighbours in a set of directions that span a full hyperplane.

Now, as 𝑆 is finite, it can only span finitely many hyper-planes. Therefore, 𝑈𝑆 is finite. Like 𝑉𝑆 was the
union of all points that are orthogonal to some 𝑠 ∈ 𝑆, 𝑈𝑆 consists of all points that are orthogonal to
𝑛− 1 linearly independent elements from 𝑆.

Below we give a quick recap of newly introduced names. Here, we presume that 𝑆 is a generating set
(Definition 2.2.2).

• The set of all stable directions:
𝑉𝑆 = {𝑢 ∈ R𝑛 | 𝛽𝑆(𝐻(𝑢)) = 𝐻(𝑢)}

= {𝑢 ∈ R𝑛 | 𝑁(𝑢) ∩ 𝑆 ̸= ∅}

• The set of the most stable directions:
𝑈𝑆 = {𝑢 | ‖𝑢‖ = 1 ∧ span(𝑁(𝑢) ∩ 𝑆) = 𝑁(𝑢)}

• The shift of a direction 𝑢 ∈ R𝑛:
𝜎𝑆(𝑢) = min{𝑥 · 𝑢 | 𝑥 ∈ (𝑆 ∖𝐻(𝑢))}

• The set of all minimal convex halves:
𝒞𝑆 = {𝐶 ⊆ 𝑆 | ∃𝑢 /∈ 𝑉𝑆 : 𝐶 = 𝑆 ∩𝐻(𝑢)}

• The convex bootstrap percolation process in terms of minimal convex halves:
𝛽𝑆(𝐴) = 𝐴 ∪ {𝑥 ∈ Z𝑛 | ∃𝐶 ∈ 𝒞𝑆 : 𝑥+ 𝐶 ⊆ 𝐴}

• We also introduce a new definition, the radius of 𝑆:
𝑅𝑆 = max{‖𝑥‖ | 𝑥 ∈ 𝑆}

2.2.1 Facet growth

Now that we have a nice overview of what constitutes a stable direction, we start looking at what it
takes for growth to occur in such a stable direction. Specifically, we look at this in the context of facets
of polytopes. Note that half-spaces are just a special case of polytopes. The idea here is that we might
replaces boxes in the proof of the canonical case with polytopes.

To proceed, we want a nice way to refer to polytopes with facet normals in 𝑈𝑆 . To this end, we take
some enumeration of 𝑈𝑆 , which yields:

𝑈𝑆 = {𝑢1 . . . 𝑢𝑚} (2.2.4)
We then use this to define a matrix 𝑀𝑆 . Considering each 𝑢𝑖 to be a column vector we define:

𝑀𝑆 = (𝜎(𝑢1)𝑢1 | 𝜎(𝑢2)𝑢2 | . . . | 𝜎(𝑢𝑚)𝑢𝑚)

Where the vertical bars are just visual separation of the columns. Our polytopes can then by defined as
solutions to 𝑀𝑆 𝑥 ≤ 𝑏 for some 𝑏. Our scaling by 𝜎(𝑢𝑖) for 𝑀𝑆 means that integer choices for 𝑏 correspond
to polytopes whose bounding hyperplanes are supported by points from Z𝑛. We then identify vectors 𝑏
with polytopes as follows:

Poly𝑆(𝑏) = {𝑥 ∈ R𝑛 | 𝑀𝑆 𝑥 ≤ 𝑏}

As these polytopes are the intersection of stable sets and 𝛽𝑆 is increasing, these polytopes are stable as
well.

Now, to generalize the proof ideas from the canonical case, we need some way of describing a ‘grown’
facet. We then define the growing function 𝐺 and the ‘facet’ that gets added 𝐹 . These functions take a

16

2.2. FREE ABELIAN CASE CHAPTER 2. THEORETICAL WORK

(2.2-a) An example of a polygon
that is degenerate because it has
a corner that is ‘too sharp’. Thus,
that vertex will never fit a convex
half

(2.2-b) With this polygon, every
vertex fits a convex half. How-
ever, it is degenerate due to the
mid-point of the edge. The cho-
sen minimal convex half does not
fit, neither does its vertical mirror
image.

(2.2-c) Finally, this polygon is
non-degenerate. It is essentially a
scaled-up version of the previous
case.

Figure 2.2: Various polygons and whether or not they are degenerate. We take 𝑆 containing all points
within a 1 × 1 square (excluding 0). The polytopes are shown in light-gray. The minimal convex half is
shown in (translucent) black. The origin of the convex half is the open circle, whilst the actual elements
are shown as full circles. Note that all minimal convex halves of this 𝑆 are rotated and mirrored versions
of the shown minimal convex half.

polytope 𝑃 = Poly𝑆(𝑏) and a direction 𝑢𝑖 ∈ 𝑈𝑆 (we take the index of 𝑢 so we can find the corresponding
canonical basis vector 𝑒𝑖).

𝐺(𝑃, 𝑢𝑖) = Poly𝑆(𝑏+ 𝑒𝑖)
𝐹 (𝑃, 𝑢𝑖) = 𝐺(𝑃, 𝑢𝑖) ∖ 𝑃

(2.2.5)

We call 𝐹 (𝑃, 𝑢) the facet in direction 𝑢 ∈ 𝑈𝑆 . Note that technically, 𝐹 has volume and thus is not a
facet of 𝑃 .

Next, we introduce the concept of degeneracy.
Definition 2.2.7 (Degenerate Polytope). Given a generating set 𝑆, we say a polytope 𝑃 is degenerate
(with respect to S) if

∃𝑥 ∈ 𝑃 : ∀𝐶 ∈ 𝒞𝑆 : 𝑥+ 𝐶 ̸⊆ 𝑃

If a polytope is not degenerate, we say it is non-degenerate.

The issue with degenerate polytopes is that they contain points that cannot be activated without help
from outside the polytope. The concept is illustrated in Figure 2.2.

Using the growth functions from (2.2.5) and the concept of degeneracy, we can introduce the following
lemma:
Lemma 2.2.8. Take 𝑃 = Poly𝑆(𝑏) to be fully occupied. Take 𝑢 ∈ 𝑈𝑆 and presume 𝐺(𝑃, 𝑢) is non-
degenerate.

Then 𝐺(𝑃, 𝑢) is internally spanned by 𝑆 if 𝐹 (𝑃, 𝑢) is internally spanned by 𝑆.

Proof. Our proof is based on the decomposition 𝐺(𝑃, 𝑢) = 𝑃 ∪ 𝐹 (𝑃, 𝑢). We set 𝐴 ⊆ Z𝑑 to be the set of
active points and then define 𝐴 = 𝐴 ∩ 𝐹 (𝑃, 𝑢), which is the set of active points inside the facet.

Now, suppose we have a point 𝑥 ∈ 𝐹 (𝑃, 𝑢) that gets activated by the dynamics using generating set
𝑆 ∩𝑁(𝑢). That is,

𝑥 ∈ 𝛽𝑆∩𝑁(𝑢)
(︀
𝐴
)︀

If we then show that this implies 𝑥 ∈ 𝛽𝑆(𝐴) the proof can be finished with a trivial inductive argument,
as 𝐹 (𝑃, 𝑢) was internally spanned.

17

2.2. FREE ABELIAN CASE CHAPTER 2. THEORETICAL WORK

If 𝑥 ∈ 𝐴 it follows immediately that 𝑥 ∈ 𝛽𝑆(𝐴). So we proceed under the assumption that 𝑥 /∈ 𝐴. Then,
we need to find some convex half 𝐶 ∈ 𝒞𝑆 such that 𝑥+ 𝐶 ⊆ 𝐴.

Now, by definition of 𝑥, we know there exists some minimal convex half 𝐶 ∈ 𝒞𝑆∩𝑁(𝑢) such that 𝑥+𝐶 ⊆
𝐴. Moreover, as 𝐺(𝑃, 𝑢) is non-degenerate, there exists some minimal convex half 𝐷 ⊆ 𝑆 such that
𝑥+𝐷 ⊆ 𝐺(𝑃, 𝑢). Now, we take:

𝐶 = (𝐷 ∖𝑁(𝑢)) ∪ 𝐶

Now, by definition 𝑥+ 𝐶 ⊆ 𝐴 ⊆ 𝐴. Moreover, by 𝑥 ∈ 𝐹 (𝑃, 𝑢) and the assumption that 𝑃 ⊆ 𝐴 we get:

𝑥+ (𝐷 ∖𝑁(𝑢)) ⊆ 𝑃 ⊆ 𝐴

Thus indeed we have 𝑥+𝐶 ⊆ 𝐴. All that remains is to show that 𝐶 is indeed a convex half of 𝑆. To see
this we set �̄� to be the direction that creates 𝐶 and 𝑢 to be the direction that creates 𝐷. That is, pick
�̄� ∈ 𝑁(𝑢) such that 𝐶 = 𝑆 ∩𝑁(𝑢) ∩𝐻(�̄�) and 𝑢 ∈ R𝑛 ∖ 𝑉𝑆 such that 𝐷 = 𝑆 ∩𝐻(𝑢).

Next, as 𝑆 is finite, there exists some 𝜖 > 0 such that 𝑆 ∖ 𝐻(−𝑢) = 𝑆 ∖ 𝐻(−𝑣) whenever ‖𝑢− 𝑣‖ < 𝜖.
We can then find a factor 0 < 𝛼 < 𝜖 such that 𝑣 = 𝑢+ 𝛼 �̄� /∈ 𝑉𝑆 . It then follows that

𝑆 ∩𝐻(𝑣) = (𝐷 ∖𝑁(𝑢)) ∪ 𝐶 = 𝐶

Thus, 𝐶 contains a minimal convex half. �

This lemma is very useful, but it depends on non-degenerate polytopes. Thus, we are interested in
determining whether a polytope is non-degenerate. To help determine this, we introduce some new
functions. Given a polytope 𝑃 , let ℱ be its face lattice. We then define the following set given a face
𝐹 ∈ ℱ :

𝒯 (𝐹) = {𝐺 ∈ ℱ | 𝐹 ⊆ 𝐺 ∧ dim𝐺 = 𝑛− 1}

This is the family of all facets that contain the face 𝐹 . Then given a point in a face 𝑥 ∈ 𝐹 ∈ ℱ , we
define the margin of that point in that face as:

𝜖𝐹 (𝑥) = inf
{︁

‖𝑥− 𝑦‖
⃒⃒⃒
𝑦 ∈

⋃︁(︀
ℱ ∖

(︀
{𝑃} ∪ 𝒯 (𝐹)

)︀)︀}︁
This captures how far 𝑥 lies from the nearest facet not in 𝒯 (𝐹). Then, let 𝑂 : ℱ → R𝑛 be a function
that selects a point from every face. That is, 𝑂(𝐹) ∈ 𝐹 . Associated with this selection 𝑂 is the margin:

𝜖𝑂 = min{𝜖𝐹 (𝑂(𝐹)) | 𝐹 ∈ ℱ ∧ dim𝐹 > 0}

Note that, if we pick every 𝑂(𝐹) to lie in the interior of 𝐹 we have 𝜖𝑂 > 0. Moreover, we can say that 𝜖𝑂
scales linearly with 𝑃 . To be precise, if we scale 𝑃 by factor 𝛼 and define the scaled selection function
𝛼𝑂 as 𝐹 → 𝛼𝑂(𝐹) then we have:

𝜖𝛼 𝑂 = 𝛼𝜖𝑂

Using these definitions we then introduce the following theorem. Note that this theorem has no require-
ments on the face normals of our polytope. That is, it works for all polytopes, not just those of the form
Poly𝑆(𝑏).
Theorem 2.2.9. Let 𝑆 ⊆ Z𝑛 be a generating set and let 𝑃 ⊆ R𝑛 be a convex polytope. Set 𝑉 to be the
vertices of 𝑃 .

Now assume there is a function 𝐶 : 𝑉 → 𝒞𝑆 such that 𝑣 + 𝐶(𝑣) ⊆ 𝑃 . Moreover, suppose we have a
selection of points from facets 𝑂 such that 𝜖𝑂 > 𝑅𝑆.

Then 𝑃 is non-degenerate with respect to 𝑆.

To prove this, we first introduce a lemma. The proof of this lemma relies heavily on the face lattice as
defined in Section 2.1.1.
Lemma 2.2.10. Let 𝑃 be a convex polytope with vertices 𝑉 and face lattice ℱ . Now, assume there is a
function 𝐶 : 𝑉 → 𝐶𝑆 such that 𝑣 + 𝐶(𝑣) ⊆ 𝑃 .

Then, for any 𝐹 ∈ ℱ and 𝑥 ∈ 𝐹 we have:

𝜖𝐹 (𝑥) > 𝑅𝑆 =⇒ ∀𝑣 ∈ 𝐹 ∩ 𝑉 : 𝐶(𝑣) + 𝑥 ⊆ 𝑃

18

2.2. FREE ABELIAN CASE CHAPTER 2. THEORETICAL WORK

That is, if the margin of a point 𝑥 in a facet 𝐹 is large enough, the convex halves that fit at vertices of
𝐹 fit at 𝑥.

Proof. First, given any face 𝐹 ∈ ℱ except 𝐹 = 𝑃 we define 𝑢(𝐹) and 𝑏(𝐹) as the direction vector and
shift vector that create 𝐹 . That is:

𝐹 = (𝑁(𝑢(𝐹)) + 𝑏(𝐹)) ∩ 𝑃

Using this description, we define the ‘cone’ of a face:

𝑇 (𝐹) =
⋂︁

𝐺∈𝒯 (𝐹)

𝐻(𝑢(𝐺))

This is the smallest cone that ‘fits over’ a face. Specifically, given any 𝑏 ∈ 𝐹 we have 𝑏+𝑇 (𝐹) ⊇ 𝑃 . If 𝐹
is a facet, 𝑇 (𝐹) is just 𝐻(𝐹). In general, for a face of dimension 𝑛− 𝑘 𝑇 (𝐹) is an intersection of 𝑘 − 1
half-spaces. For example, if 𝐹 is an edge in R3 then 𝑇 (𝐹) is an intersection of two half spaces that hug
the two facets on either side of the edge.

So, if we take a vertex 𝑣 ∈ 𝐹 ∩ 𝑉 we have:

𝑣 + 𝐶(𝑣) ⊆ 𝑃 ⊆ 𝑣 + 𝑇 (𝐹)

From this it follows that for any 𝑣 ∈ 𝐹 ∩ 𝑉 we have 𝐶(𝑣) ⊆ 𝑇 (𝐹).

Now we fix a face 𝐹 ∈ ℱ , and pick a point 𝑥 ∈ 𝐹 such that 𝜖𝐹 (𝑥) > 𝑅𝑆 . Then, we pick a vertex 𝑣 ∈ 𝐹 .
We will then show by contradiction that 𝑥+ 𝐶(𝑣) ⊆ 𝑃 .

Suppose there exists a 𝑎 ∈ 𝐶(𝑣) such that 𝑦 = 𝑥+ 𝑎 /∈ 𝑃 . Then, draw a line between 𝑥 and 𝑦. As 𝑥 ∈ 𝑃
and 𝑦 /∈ 𝑃 there must exist a 𝑧 ∈ Conv(𝑥, 𝑦) that lies on the border of 𝑃 . Since the border of 𝑃 is the
union of all facets of 𝑃 , there must then be some facet 𝐺 such that 𝑧 ∈ 𝐺. Formally, we take

𝑧 ∈ Conv(𝑥, 𝑦) ∩
⋃︁

(ℱ ∖ {𝑃})

𝐺 ∈ {𝐹 ∈ ℱ | 𝑧 ∈ 𝐹 ∧ dim(𝐹) = 𝑛− 1}

Now, we know 𝐺 /∈ 𝒯 (𝐹) because 𝑎 ∈ 𝐶(𝑣) ⊆ 𝑇 (𝐹) and so 𝑥 + 𝑎 ∈ 𝑥 + 𝑇 (𝐹). But this leads to a
contradiction:

‖𝑥− 𝑧‖ ≥ 𝜖𝐹 (𝑥) > 𝑅𝑆 (By 𝐺 /∈ 𝒯 (𝐹) and choice of 𝑥)
‖𝑥− 𝑧‖ ≤ ‖𝑥− 𝑦‖ = ‖𝑎‖ ≤ 𝑅𝑆 (by 𝑎 ∈ 𝐶(𝑣) ⊆ 𝑆)

�

Now, with this lemma proven we can proceed to prove Theorem 2.2.9. This proof will use a construction
similar to 𝑧 and 𝐺 used above.

Proof of Theorem 2.2.9. By the assumption 𝜖𝑂 > 𝑅𝑆 and Lemma 2.2.10 we have:

∀𝑣 ∈ 𝐹 ∩ 𝑉 : 𝑂(𝐹) + 𝐶(𝑣) ⊆ 𝑃 (2.2.6)

Now, we fix some 𝑥 ∈ 𝑃 . We will then produce some 𝑣 such that 𝐶(𝑣) + 𝑥 ∈ 𝑃 . Or equivalently, some 𝑣
such that 𝑥 ∈ 𝑃 ⊖ 𝐶(𝑣). Note that as 𝑃 is convex, 𝑃 ⊖ 𝐶(𝑣) is also convex.

Now, we define 2 sequences recurrently. [𝑋𝑖] will be a sequence of points and [𝐹𝑖] will be a sequence of
facets containing 𝑋𝑖. The dimension of [𝐹𝑖] will be decreasing.

𝑋0 = 𝑥, 𝑋𝑖+1 = 𝐿(𝑂(𝐹𝑖), 𝑋𝑖) ∩
⋃︁

{𝐺 ∈ ℱ | 𝐺 ⊆ 𝐹𝑖}

𝐹0 = 𝑃, 𝐹𝑖+1 ∈ max{𝐺 ∈ ℱ | 𝐺 ⊆ 𝐹𝑖 ∧𝑋𝑖+1 ∈ 𝐺}

Here 𝐿(𝑎, 𝑏) is a half line through 𝑏 originating at 𝑎. That is, 𝐿(𝑎, 𝑏) = {𝑎+𝛼(𝑏− 𝑎) | 𝛼 ∈ [0,∞)}. So at
every step, we take 𝑋𝑖 and project it from 𝑂(𝐹𝑖) onto the border of 𝐹𝑖 to get 𝑋𝑖+1. We then set 𝐹𝑖+1
equal to a facet of 𝐹𝑖 in which 𝑋𝑖+1 lies.

19

2.2. FREE ABELIAN CASE CHAPTER 2. THEORETICAL WORK

Note that the sequences stop when 𝐹𝑖 is a vertex because then 𝑋𝑖+1 is no longer defined. This happens
at 𝑖 = 𝑛 because dim(𝐹𝑖) = 𝑛−𝑖. Also, note that the definition of 𝑋𝑖+1 is abuse of notation. Technically,
the right hand side is a singleton set, not an element from R𝑛. That it is a singleton set follows from
𝜖0 > 0.

Next, we define a derived sequence of convex hulls [𝐷𝑖]:

𝐷𝑖 = Conv({𝑂(𝐹0) . . . 𝑂(𝐹𝑖), 𝑋𝑖})

And claim the following invariant:
𝑗 ≤ 𝑖 =⇒ 𝐷𝑗 ⊆ 𝐷𝑖

We will prove this by induction. The base case of 𝑖 = 0 is vacuously true. Now presume that for some 𝑘
we have 𝑗 ≤ 𝑘 =⇒ 𝐷𝑗 ∈ 𝐷𝑘. Then, from the definition of 𝑋𝑘+1 we have

𝑋𝑘+1 ∈ Conv(𝑂(𝐹𝑘), 𝑋𝑘) ⊆ 𝐷𝑘+1

By definition of 𝐷𝑘+1 we have 𝑂(𝐹𝑗) ⊆ 𝐷𝑘+1 for all 𝑗 ≤ 𝑘 so we can conclude that 𝐷𝑘 ⊆ 𝐷𝑘+1. This
finishes the inductive proof of the invariant.

Since 𝑋0 ∈ 𝐷0 the invariant gives us:
𝑥 ∈ 𝐷𝑛

We know that the face 𝐹𝑛 is a vertex. Thus, we set 𝑣 = 𝑋𝑛 ∈ 𝑉 and can conclude that: 𝐹𝑛 = {𝑣} and
𝑂(𝐹𝑛) = 𝑣. Thus we have:

𝐷𝑛 = Conv(𝑂(𝐹1) . . . 𝑂(𝐹𝑛))

Moreover, from 𝐹𝑖+1 ⊆ 𝐹𝑖 and then applying Equation 2.2.6 we get:

∀𝑖 ≤ 𝑛 : 𝑣 ∈ 𝐹𝑖

∀𝑖 ≤ 𝑛 : 𝑂𝑖 + 𝐶(𝑣) ⊆ 𝑃

By the previous two equations, 𝑥 ∈ 𝐷𝑛 and the convexity of 𝑃 we thus have:

𝑥+ 𝐶(𝑣) ⊆ 𝐷𝑛 ⊕ 𝐶(𝑣) ⊆ 𝑃 �

Next, given any generating set 𝑆 we will construct a polytope 𝑃𝑆 that allows a function 𝐶(𝑣) as above.
We could then scale this polytope sufficiently to get a non-degenerate polytope. This polytope is defined
as:

𝑃𝑆 = Conv
(︁∑︁

{𝐶 ∪ {0} | 𝐶 ∈ 𝒞𝑆}
)︁

(2.2.7)

That is, we take 𝑃𝑆 to be the Minkowski sum of all minimal convex halves of 𝑆 ∪ {0}. For this, we have
the following lemma:
Lemma 2.2.11. For every vertex 𝑣 of 𝑃𝑆 there exists some convex half 𝐶(𝑣) ∈ 𝒞𝑆 such that

𝑣 + 𝐶(𝑣) ⊆ 𝑃𝑆

Proof. Take 𝑣 to be any vertex of 𝑃𝑆 . Then there exists some 𝑢𝑣 such that 𝑃𝑆 ∩ (𝑁(𝑢𝑣) + 𝑣) = {𝑣}.
This is also the unique solution to:

𝑣 = arg max
𝑥∈𝑃𝑆

𝑥 · 𝑢𝑣

From the definition of 𝑃𝑆 we can write the above arg max as a sum of unique arg max expressions:

𝑣 =
∑︁{︃

arg max
𝑥∈𝐶∪{0}

𝑥 · 𝑢𝑣

⃒⃒⃒
𝐶 ∈ 𝒞𝑆

}︃

From this, it follows that 𝑢𝑣 /∈ 𝑉𝑆 . For otherwise, one of the elements of the above sum would not be
unique. Now, we set

𝐶(𝑣) = 𝐻(𝑢𝑣) ∩ 𝑆

20

2.2. FREE ABELIAN CASE CHAPTER 2. THEORETICAL WORK

We just showed 𝑢𝑣 /∈ 𝑉𝑆 so it is given that 𝐶(𝑣) ∈ 𝒞𝑆 . That is 𝐶(𝑣) is a minimal convex half. We then
need to show that 𝑣 + 𝐶(𝑣) ⊆ 𝑃𝑆 . To this end, define:

𝑄 =
∑︁{︀

𝐶 ∪ {0} | 𝐶 ∈ 𝒞𝑆 ∖ {𝐶(𝑣)}
}︀

That is, we take the Minkowski sum that defines 𝑃𝑆 , but leave out the minimal convex half 𝐶(𝑣). It
follows that 𝑄⊕ 𝐶(𝑣) ⊆ 𝑃𝑆 . Thus, it suffices to show that 𝑣 ∈ 𝑄. By definition of 𝐶(𝑣) we have

arg max
𝑥∈𝐶(𝑣)∪{0}

𝑥 · 𝑢𝑣 = 0

Thus, we can leave out the component from 𝐶(𝑣) in the sum that defines 𝑣. This yields:

𝑣 =
∑︁{︃

arg max
𝑥∈𝐶∪{0}

𝑥 · 𝑢ℎ

⃒⃒⃒
𝐶 ∈ 𝒞𝑆 ∖ {𝐶(𝑣)}

}︃
= arg max

𝑥∈𝑄
𝑥 · 𝑢𝑣

Thus, it follows that 𝑣 ⊆ 𝑄. �

Interestingly, when scaled up sufficiently Theorem 2.2.9 implies this polytope forms a (#𝑆
2 +1)-fort. This

allows us to prove the case 𝑘 > 𝑘𝑆 in Conjecture 1.1.3.
Theorem 2.2.12. Let 𝐻 be a finitely generated abelian group of rank 𝑟 and let 𝑆 ⊆ 𝐻 be a finite
symmetric set with 0 /∈ 𝑆. We set 𝑘𝑆 as follows:

𝑘𝑆 = #{𝑠 ∈ 𝑆 | ∀𝑛 ∈ N+ : 𝑛× 𝑠 ̸= 0}
2

Then, if 𝑘 > 𝑘𝑆 we have 𝜋𝑐 = 𝑝𝑐 = 1 for 𝛽𝑘 on Γ(𝐻,𝑆).

Proof. Since 𝜋𝑐 ≥ 𝑝𝑐 it suffices to show that 𝑝𝑐 = 1 for 𝑘 > 𝑘𝑆 . Now from Lemma 2.1.4 we know that
𝑝𝑐 = 1 for 𝛽𝑘 if there exist finite 𝑘-forts. So it suffices to produce a finite 𝑘-fort (where 𝑘 > 𝑘𝑆).

As 𝐻 has rank 𝑟, there exists a surjective group homomorphism 𝜑 : 𝐻 ↦→ Z𝑟. We use this to set
𝑄 = 𝜑(𝑆) ∖ {0} and consider 𝑃𝑄 ⊆ Z𝑟 as defined in Equation 2.2.7. Next we pick 𝑛 ∈ N large enough
that Theorem 2.2.9 ensures 𝑛𝑃𝑄 is non-degenerate. We will then show that the set 𝐹 = 𝜑−1(𝑛𝑃𝑄) ⊆ 𝐻
is a 𝑘-fort.

As 𝑛𝑃𝑄 is non-degenerate we know that for every element 𝑦 ∈ 𝑛𝑃𝑄 there exists a convex half 𝐶(𝑦) ∈ 𝒞𝑄

such that 𝑦 + 𝐶(𝑦) ⊆ 𝑛𝑃𝑄. Now consider any point 𝑥 ∈ 𝐹 . From the above we can conclude that:

𝜑(𝑥) +
(︀
{0} ∪ 𝐶(𝜑(𝑥))

)︀
⊆ 𝑛𝑃𝑄 (2.2.8)

In order to make use of the above, we define a new set 𝐷𝑥 ⊆ 𝑆:

𝐷𝑥 = 𝑆 ∩ 𝜑−1(︀{0} ∪ 𝐶(𝜑(𝑥))
)︀

Then, based on (2.2.8) we can conclude that:

𝑥+𝐷𝑥 ⊆ 𝐹

As we wanted a 𝑘-fort, we want an upper bound on #(𝑆 ∖𝐷𝑥). Since 𝐶(𝜑(𝑥)) is a convex half of 𝑄, we
know that 𝐷𝑥 contains a symmetric half of 𝑆. (See Definition 2.1.11 for the meaning of a symmetric half.)
Moreover, 𝜑−1(0) contains all periodic elements in 𝐻. Thus 𝐷𝑥 also contains all periodic generators in
𝑆. As such, we know that:

#(𝑆 ∖𝐷𝑥) ≤ 𝑘𝑆 < 𝑘

�

21

2.2. FREE ABELIAN CASE CHAPTER 2. THEORETICAL WORK

2.2.2 An upper bound on 𝜋𝑐 for 𝛽𝑆

For Cayley graphs on Z𝑟, we can actually use a so called ‘Peierls estimate’ to prove an upper bound on
𝜋𝑐 for 𝛽𝑆 . Through domination, this also holds for modified and 𝑘-threshold bootstrap percolation. We
make the argument for convex bootstrap percolation, but through domination it also holds for modified-
and 𝑘-threshold bootstrap percolation. The methods of the proof are somewhat disjoint from the rest of
this paper.

Later, we will combine this theorem with a process called renormalization to prove that 𝜋𝑐 = 0 when
working in Z2.
Theorem 2.2.13. For any generating set 𝑆 ∈ Z𝑛 using 𝛽𝑆 as our bootstrap process, we have:

𝜋𝑐 ≤ 1 − 1
#𝑆 − 1

Proof. First, we need to construct a norm 𝑝𝑉 on Z𝑛. To this end, we define 𝜎′(𝑥) as the minimal positive
inner product of 𝑥 with an element from Z𝑛:

𝜎′(𝑥) = inf{𝑥 · 𝑦 | 𝑦 ∈ Z𝑛 ∖𝐻(𝑥)}

For 𝑥 ∈ Z𝑛 it follows that 𝜎(𝑥) > 0. Then, we pick 𝑛 linearly independent vectors 𝑣𝑖 . . . 𝑣𝑛 /∈ 𝑉𝑆 . We
then define the set:

𝑉 = {𝜎′(𝑣0)𝑣0, . . . , 𝜎
′(𝑣𝑛)𝑣𝑛}

As 𝑣𝑖 ∈ Z𝑛 we know that 𝜎(𝑣𝑖) > 0 so 0 /∈ 𝑉 . We can then define the norm 𝑝𝑉 and the corresponding
radius 𝑟𝑉 as follows:

𝑝𝑉 (𝑥) = max
𝑣∈𝑉

|𝑣 · 𝑥|

𝑟𝑉 (𝐴) = max
𝑎∈𝐴

𝑝𝑉 (𝑎)

Note that due to our scaling by 𝜎′ for 𝑥 ∈ Z𝑛 we always have 𝑝𝑉 (𝑥) ∈ N. Moreover, as all elements from
𝑉 are linearly independent, we know that 𝑝𝑉 (𝑥) = 0 implies 𝑥 = 0.

Now, take 𝐴 to be the cluster of vacant vertices connected to the origin in some configuration 𝐵 ⊆ Z𝑛.
Moreover set 𝐴′ to be the same cluster in the configuration 𝛽𝑆(𝐵). That is, 𝐴′ is what remains of 𝐴
after a single step of convex bootstrap percolation.

Then we claim our choice of 𝑉 gives the following:

𝑟𝑉 (𝐴′) ≤ 𝑟𝑉 (𝐴) − 1 (2.2.9)

If 𝐴 is infinite, this is trivially true. To see this for finite 𝐴, pick 𝑥 ∈ 𝐴 and 𝑣𝑥 ∈ 𝑉 such that
|𝑣𝑥 · 𝑥| = 𝑟𝑉 (𝐴). As 𝐴 is the connected cluster of vacant points it follows that all points in

𝑥+ (𝑆 ∖𝐻(𝑣𝑥))

are occupied. After all, any vacant point 𝑦 in the above set would be part of the connected cluster, and
have 𝑝𝑉 (𝑦) > 𝑝𝑉 (𝑥) = 𝑟𝑉 (𝐴). Moreover, as 𝑣𝑥 /∈ 𝑉𝑆 it follows that

𝑆 ∖𝐻(𝑣𝑥) ∈ 𝒞𝑆

Therefore, by definition of convex bootstrap percolation, 𝑥 /∈ 𝐴′. This shows that 𝑟𝑉 (𝐴′) < 𝑟𝑉 (𝐴)
because every point 𝑥 ∈ 𝐴 with 𝑝𝑉 (𝑥) = 𝑟𝑉 (𝐴) becomes occupied. The full from of (2.2.9) follows from
𝑟𝑉 (𝐴) ∈ N.

Now, from Equation 2.2.9 we can conclude that:

𝑟𝑉 (𝐴) ≥ 𝑇 (2.2.10)

(𝑇 is the stopping time as defined in equation 1.0.2). Thus, an exponential bound for 𝑟𝑉 (𝐴) gives an
exponential bound for 𝑇 . We can get such a bound via the radius of 𝐴 in terms of the graph-distance
from the origin.

22

2.3. THE SEED ARGUMENT IN Z2 CHAPTER 2. THEORETICAL WORK

Specifically, let 𝑙(𝑥) be the length of the shortest path from 𝑥 to the origin. And let 𝐿(𝐴) be the radius
of 𝐴 with respect to 𝑙(𝑥). That is:

𝐿(𝐴) = max{𝑙(𝑥) | 𝑥 ∈ 𝐴}

Now, we want a relation between 𝐿(𝐴) and 𝑟𝑉 (𝐴). To this end we set:

𝛼 = max
{︀

|𝑣 · 𝑠| | 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆
}︀

Now, let 𝑏1 . . . 𝑏𝑙(𝑥) ∈ 𝑆 form such a shortest path to 𝑥. That is, 𝑥 =
∑︀𝑙(𝑥)

𝑖=1 𝑏𝑖. We then get the bound:

𝛼 𝑙(𝑥) ≥ max
𝑣∈𝑉

𝑙(𝑥)∑︁
𝑖=1

|𝑣 · 𝑏𝑖|

≥ max
𝑣∈𝑉

⃒⃒⃒⃒
⃒⃒𝑣 ·

𝑙(𝑥)∑︁
𝑖=1

𝑏𝑖

⃒⃒⃒⃒
⃒⃒ = 𝑝𝑉 (𝑥)

From the bound above, the definition of 𝐿(𝐴) and 𝑟𝑉 (𝐴) and Equation 2.2.10 we then get:

𝛼𝐿(𝐴) ≥ 𝑟𝑉 (𝐴) ≥ 𝑇

Writing the above bound in terms of probabilities, we get:

P𝑝(𝑇 > 𝑡) ≤ P𝑝

(︂
𝐿(𝐴) > 𝑡

𝛼

)︂
We can then use a Peierls-estimate to get an exponential bound on 𝐿(𝐴). By definition of 𝐿(𝐴) if we
have 𝐿(𝐴) > 𝑡 then there is at least one non-backtracking path of length larger than 𝑡. Now, the number
of non-backtracking paths with length 𝑙 is at most #𝑆(#𝑆 − 1)𝑙−1. Thus, we get:

P𝑝(𝐿(𝐴) ≥ 𝑡) ≤
∞∑︁
𝑙=𝑡

(1 − 𝑝)𝑙+1#𝑆(#𝑆 − 1)𝑙−1 ≤ 𝐶𝑒−𝛾𝑡 (2.2.11)

Now, presume:
𝑝 > 1 − 1

#𝑆 − 1
In that case, in Equation 2.2.11 we have 𝐶 < ∞ and 𝛾 > 0. Thus, we have:

P𝑝(𝑇 > 𝑡) ≤ P𝑝

(︂
𝐿(𝐴) > 𝑡

𝛼

)︂
≤ 𝐶 exp

(︁
−𝛾

𝛼
𝑡
)︁

Which means we have 𝛾(𝑝) ≥ 𝛾/𝛼 > 0 (with 𝛾(𝑝) as defined in Equation 1.0.4). From this we can conclude
that:

𝜋𝑐 ≤ 1 − 1
#𝑆 − 1 �

2.3 The seed argument in Z2

Next, we use the general results from Section 2.2 to get stronger results in the specific case of Z2. The
2D case is more easier than the general case. This is mostly due to the ease of describing polygons and
their facets (that is, their edges). In this section, we first introduce the ‘seed’ argument, and use it to
show we have 𝑝𝑐 = 0. In the next section, we will combine results from this section with a process called
renormalization and the upper bound on 𝜋𝑐 from Theorem 2.2.13 to show that, in fact we also have
𝜋𝑐 = 0. (𝑝𝑐 and 𝜋𝑐 are defined in (1.0.3) and (1.0.5).)

23

2.3. THE SEED ARGUMENT IN Z2 CHAPTER 2. THEORETICAL WORK

Our first step is to make non-degeneracy of polygons easy to determine. Given a polygon 𝑃 = Poly𝑆(𝑏)
let 𝐸(𝑃) be the shortest edge of 𝑃 . Formally:

𝐸(𝑃) = min{‖𝑣1 − 𝑣2‖ | ∃𝑢 ∈ 𝑈𝑆 : Conv(𝑣1, 𝑣2) = 𝑃 ∩ (𝑣1 +𝐻(𝑢))}

If 𝑣1 ̸= 𝑣2 in the above expression then (𝑣1, 𝑣2) is an edge of 𝑃 orthogonal to 𝑢 ∈ 𝑈𝑆 . If 𝑣1 = 𝑣2, it
means that 𝑣1 = 𝑣2 is a vertex of 𝑃 and there is no edge normal to 𝑢 ∈ 𝑈𝑆 . Thus 𝐸(𝑃) = 0 if and only
if there is some 𝑢 ∈ 𝑈𝑆 such that 𝑃 does not have any edge normal to 𝑢.

Next, we call a polygon obtuse if all internal angles are greater than 90∘. If 𝐸(𝑃) > 0 we can always find
a linear (skewing) transform 𝑓 such that 𝑓(𝑃) is obtuse. This follows from #𝑈𝑆 ≥ 4 and the symmetry
of 𝑈𝑆 . We can then get the following result for degeneracy:
Lemma 2.3.1. Let 𝑃 = Poly𝑆(𝑏) ⊆ R2 be obtuse. Then 𝑃 is non-degenerate if 𝐸(𝑃) > 2𝑅𝑆.

Proof. We will prove this using Theorem 2.2.9. To do this, need to prove two things:

• For every vertex 𝑣 ∈ 𝑃 , there exists a convex half 𝐶(𝑣) such that 𝑣 + 𝐶(𝑣) ⊆ 𝑃 .

• We can find a function 𝑂, which selects an element for every face of 𝐹 such that 𝜖𝑂 > 𝑅𝑆 .

For the first requirement, given any vertex 𝑣 there exists a 𝑢𝑣 /∈ 𝑉𝑆 such that 𝑣 +𝑁(𝑢𝑣) ∩ 𝑃 = {𝑣}. We
then take the convex half:

𝐶(𝑣) = 𝑆 ∩𝐻(𝑢𝑣)
Then, let 𝑢𝑙, 𝑢𝑟 ∈ 𝑈𝑆 be the closest elements to the left and right of 𝑢𝑣. This gives us

Coni(𝐶(𝑣)) = 𝐻(𝑢𝑙) ∪𝐻(𝑢𝑟)

Moreover, 𝑢𝑙 and 𝑢𝑟 are the edge normals of the edges incident on 𝑣. If we combine that with 𝐸(𝑃) >
2𝑅𝑆 > 𝑅𝑆 we get:

𝑣 + (𝐵(𝑅𝑆) ∩𝐻(𝑢𝑙) ∩𝐻(𝑢𝑟) ⊆ 𝑃 (2.3.1)
Where, 𝐵(𝑟) = {𝑥 ∈ R2 | ‖𝑥‖ ≤ 𝑟} is the ball of radius 𝑟. From the conical sum expression above we
get:

𝐶(𝑣) = 𝑆 ∩ Coni(𝐶(𝑣))
= 𝑆 ∩𝐻(𝑢𝑙) ∩𝐻(𝑢𝑟)
⊆ 𝐵(𝑅𝑆) ∩𝐻(𝑢𝑙) ∩𝐻(𝑢𝑟)

Combining the above equation with (2.3.1) gives us the first requirement.

Now, for the second claim, let ℱ be the face lattice of 𝑃 . Then ℱ consists of 𝑃 , all edges of 𝑃 and all
vertices of 𝑃 . We will explicitly construct our selection function 𝑂.

• For 𝑂(𝑃) let (𝑣1, 𝑣2) be an edge with length 𝐸(𝑃). Then, pick 𝑂(𝑃) ∈ 𝑃 such that {𝑣1, 𝑣2, 𝑂(𝑃)}
forms an isosceles right triangle, with the right angle at 𝑂(𝑃). As 𝑃 is obtuse, and all edges are
longer than 2𝑅𝑆 , no edge is closer to 𝑂(𝑃) than (𝑣1, 𝑣2). The distance to that edge is

√
2𝑅𝑆 > 𝑅𝑆 .

So 𝜖𝑃 (𝑂(𝑃)) > 𝑅𝑆 .

• For 𝑂(𝐹) where 𝐹 is an edge set 𝑂(𝐹) to be the middle of that edge. Then 𝜖𝐹 (𝑂(𝐹)) > 𝑅𝑆 . Thus,
we have constructed a selection 𝑂 such that 𝜖𝑂(𝑃) > 𝑅𝑆 .

• For 𝑂({𝑣}) where 𝑣 is a vertex, we have no option but to set 𝑂({𝑣}) = 𝑣.

It then follows that 𝜖𝑂(𝑃) > 𝑅𝑆 . �

With such an easy description of non-degeneracy, we look towards making use of Lemma 2.2.8. In
2D, our growth sets 𝐹 (𝑃, 𝑢) are 1-dimensional, as is the corresponding generating set. Specifically, our
generating set is 𝑆 ∩𝑁(𝑢). We then take 𝑔(𝑢) to be the smallest element in 𝑆 ∩𝑁(𝑢) (which is unique
up to sign). Moreover we also define 𝑚(𝑢) as the ‘radius’ of 𝑆 ∩𝑁(𝑢). Formally we set:

𝑚(𝑢) = #𝑆 ∩𝑁(𝑢)
2

𝑔(𝑢) = arg min
𝑥∈𝑆∩𝑁(𝑢)

‖𝑥‖

24

2.3. THE SEED ARGUMENT IN Z2 CHAPTER 2. THEORETICAL WORK

Figure 2.3: Illustration of 𝑙𝑢. It is the difference in length between the two horizontal lines.

We can then write one convex half of 𝑆 ∩𝑁(𝑢) as:

𝐶𝑢 = {1𝑔(𝑢), 2𝑔(𝑢), . . . ,𝑚(𝑢)𝑔(𝑢)}

The entire generating set can then be expressed as:

𝑆 ∩𝑁(𝑢) = 𝐶𝑢 ∪ −𝐶𝑢

This generating set only has the two convex halves 𝐶𝑢 and −𝐶𝑢. Thus, 𝐹 (𝑃, 𝑢) is internally spanned if
and only if it contains 𝑚(𝑢) consecutive occupied points.

We can then get a lower bound on the probability that 𝐹 (𝑃, 𝑢) is internally spanned by 𝑆 ∩𝑁(𝑢). The
question of a set being internally spanned will come up more often. Hence we introduce the following
definition:

𝑅𝑆(𝑃, 𝑝) = P𝑝(𝑃 is internally spanned)
Our lower bound on 𝑅𝑆∩𝑁(𝑢)(𝐹 (𝑃, 𝑢), 𝑝) will be based on 𝐸(𝑃), the length of the shortest edge of 𝑃 .
Consider any edge 𝐹 (𝑃, 𝑢). This edge contains⌊︂

#𝐹 (𝑃, 𝑢)
𝑚(𝑢)

⌋︂
non-overlapping intervals of length 𝑚(𝑢). If one of these intervals is fully occupied, 𝐹 (𝑃, 𝑢) is internally
spanned. Given such an interval, the probability that it is fully occupied is (1−𝑝𝑚(𝑢)). As these intervals
do not overlap, the events of them being fully occupied are independent. Using ⌊𝑎/𝑏⌋ > 𝑎/𝑏 − 1, we then
get the following lower bound:

𝑅𝑆∩𝑁(𝑢)(𝐹 (𝑃, 𝑢), 𝑝) ≥ 1 − (1 − 𝑝𝑚(𝑢))
#𝐹 (𝑃,𝑢)

𝑚(𝑢) −1 (2.3.2)

We have an estimate here because we did not consider overlapping intervals1. However, what is important
here is the exponential bound in terms of #𝐹 (𝑃, 𝑢). Next, we set:

𝐶𝑒(𝑆) = min{‖𝑔(𝑢)‖ | 𝑢 ∈ 𝑈𝑆}

We can then use this to get a relation between #𝐹 (𝑃, 𝑢) and 𝐸(𝑃):

#𝐹 (𝑃, 𝑢) > 𝐶𝑒(𝑆) (𝐸(𝑃) − 1) (2.3.3)

Next, we consider 𝐸(𝐺(𝑃, 𝑢)). If 𝑃 is obtuse, when we compare the edges of 𝐺(𝑃, 𝑢) to those of 𝑃 only
the edge orthogonal to 𝑢 shrinks. All other edges either grow or are unchanged. Presuming the edge
orthogonal to 𝑢 does not disappear this edge shrinks by a constant amount, we call this amount 𝑙𝑢. We
set 𝜃𝑙 to be the angle between the current edge and the left incident edge, and similarly set 𝜃𝑟 for the
right incident edge. This situation is sketched in Figure 2.3. We then get:

𝑙𝑢 = 𝜎(𝑢)(tan(𝜃𝑙) + tan(𝜃𝑟))

We can thus say:
𝐸(𝐺(𝑃, 𝑢)) > 𝐸(𝑃) − 𝑙𝑢 (2.3.4)

1See stack exchange for an exact formulation: math.stackexchange.com/a/59749

25

2.3. THE SEED ARGUMENT IN Z2 CHAPTER 2. THEORETICAL WORK

On the other hand, for any 𝛼 ∈ [0,∞) we have

𝐸(Poly𝑆(𝛼𝑏)) = 𝛼𝐸(Poly𝑆(𝑏) (2.3.5)

The equation above, (2.3.5) is close to what we need. Specifically, we need edges to grow as we grow the
polytope. However, the second to last equation, (2.3.4), causes some difficulties as it states that some
intermediary steps might have smaller edges. Thus there is some tension between the two equations. In
general though, we can interpret (2.3.4) as stating there is no monotonic growth in edge lengths on the
short term. Whilst (2.3.5) states that in the long term the edge lengths do grow larger. In the canonical
case, treated in [Sch92], we have 𝑙𝑢 = 0 which simplifies the arguments a lot. Not having that luxury,
we will proceed to formalize the idea that edge lengths grow larger in the long term.

To reconcile the two formulas, we take a ‘seed’ of the form Poly𝑆(𝑘𝑏) and then describe how to grow
that seed to something of the form Poly𝑆

(︀
(𝑘+ 1)𝑏

)︀
. For the intermediate stages of this growing, we can

only use (2.3.4), but for the final result we can use (2.3.5). We can then iteratively describe growing
Poly𝑆(𝑘𝑏) to any Poly𝑆

(︀
(𝑘 + 𝑛)𝑏

)︀
.

Now, we fix some 𝑏 such that 𝐸(Poly𝑆(𝑏)) > 0. We then get a sequence 𝑣1 . . . 𝑣𝐽 ∈ 𝑈𝑆 where that
grows Poly𝑆(𝑘𝑏) to Poly𝑆

(︀
(𝑘 + 1)𝑏

)︀
. We set 𝐽 = (1, . . . , 1) · 𝑏. That is, 𝐽 is the element-wise sum of 𝑏.

To formally define what it means for a sequence [𝑣𝑖] ∈ [𝑈𝑆] to grow a polytope, we define two related
sequences:

𝐺′
0(𝑃) = 𝑃

𝐺′
𝑖+1(𝑃) = 𝐺(𝐺𝑖(𝑃), 𝑣𝑖)
𝐹 ′

𝑖+1(𝑃) = 𝐹 (𝐺𝑖(𝑃), 𝑣𝑖+1)
(2.3.6)

Now, given a sequence [𝑣𝑖] ∈ [𝑈𝑆], we define a corresponding sequence [𝑛𝑖] ∈ [N] such that 𝑣𝑖 = 𝑢𝑛𝑖

where we reuse the enumeration of 𝑈𝑆 from Equation 2.2.4. Then, it suffices to find a sequence [𝑣𝑖] such
that:

𝑏 =
𝐽∑︁

𝑖=1
𝑒𝑛𝑖

where 𝑒𝑖 are the canonical basis vectors. It then follows from the definition of 𝐺(𝑃, 𝑢) (Equation 2.2.5)
that:

𝐺′
𝐽(Poly𝑆(𝑘𝑏)) = Poly𝑆

(︀
(𝑘 + 1)𝑏

)︀
Note that we can reorder the sequence [𝑣𝑖] and still get the same end result.

We then set 𝐿 = 𝐽 × (max 𝑙𝑢) and give the very crude bound:

𝐸(𝐺′
𝑖(𝑃)) ≤ 𝐸(𝑃) − 𝐿 (2.3.7)

Note that this bound cannot possibly be tight, as 𝐸(𝐺′
𝐽(𝑃)) > 𝐸(𝑃) by Equation (2.3.5). An actual

tight bound would depend on the ordering of 𝑣𝑖.

Now, pick 𝑘 sufficiently high such that 𝑃 = Poly𝑆(𝑘𝑏) has 𝐸(𝑃) > 2𝑅𝑆 + 𝐿. Then by Lemma 2.3.1 all
of 𝐺′

0(𝑃𝑘) . . . 𝐺′
𝐽(𝑃𝑘) are guaranteed to be non-degenerate. This 𝑃 shall be our ‘seed’. We then set the

expanded polytope 𝑃 ′ = Poly𝑆

(︀
(𝑘 + 1)𝑏

)︀
. We then consider the question: “what is the probability that

a fully occupied 𝑃 grows to 𝑃 ′”. Here, we consider the set 𝑃 ′ ∖𝑃 to be the ‘shell’ of 𝑃 . Now, this shell is
partitioned by 𝐹 ′

𝑖 (𝑃). Moreover, by Lemma 2.2.8 and an induction argument if all 𝐹 ′
𝑖 (𝑃) are internally

spanned, then 𝑃 grows to 𝑃 ′.

First, we get a bound on 𝐹 ′
𝑖 (𝑃) being internally spanned: For this, we set

𝑚 = max
𝑢∈𝑈𝑆

𝑚(𝑢)

26

2.3. THE SEED ARGUMENT IN Z2 CHAPTER 2. THEORETICAL WORK

and then get:

𝑅𝑆∩𝑁(𝑢)(𝐹 ′
𝑖 (𝑃), 𝑝) ≥ (by (2.3.2))

1 − (1 − 𝑝𝑚)
#𝐹 (𝑃,𝑢)

𝑚(𝑢) −1 =

1 − exp
(︂

ln(1 − 𝑝𝑚)
(︂

#𝐹 (𝑃, 𝑢)
𝑚(𝑢) − 1

)︂)︂
≥ (by (2.3.4))

1 − exp
(︂

ln (1 − 𝑝𝑚)
(︂
𝐶𝑒(𝑆)
𝑚

(𝐸(𝐺′
𝑖(𝑃)) − 1) − 1

)︂)︂
≥ (by (2.3.7))

1 − exp
(︂

ln (1 − 𝑝𝑚) 𝐶𝑒(𝑆)
𝑚

(︂
𝐸(𝑃) − 𝐿− 1 − 𝑚

𝐶𝑒(𝑆)

)︂)︂
= 1 − 𝑒𝛾(𝐸(𝑃)−𝐾)

where 𝛾 = ln(1 − 𝑝𝑚) 𝐶𝑒(𝑆)
𝑚 and 𝐾 = 𝐿+ 1 + 𝑚

𝐶𝑒(𝑆) .

Now, we can use the above to get a lower bound on 𝑃 growing to 𝑃 ′:

P𝑝(𝑃 ′ internally spanned | 𝑃 internally spanned) ≥
P𝑝(∀𝑖 ∈ (1 . . . 𝐽) : 𝐹 ′

𝑖 (𝑃) internally spanned) =
𝐽∏︁

𝑖=1
𝑅𝑆∩𝑁(𝑣𝑖)(𝐹 ′

𝑖 (𝑃), 𝑝) ≥
(︁

1 − 𝑒𝛾(𝐸(𝑃)−𝐾)
)︁𝐽

(2.3.8)

Using this approximation we have an easy proof of percolation in 2 dimensions.
Theorem 2.3.2. Let 𝑆 ⊆ Z2 be a generating set. Then 𝛽𝑆 has critical probability 𝑝𝑐 = 0.

Proof. By the 0-1 law (Theorem 2.1.3) all we need to show is that for any initial density 𝑝 > 0 we have
positive probability of percolation.

Like in previous proofs, we take 𝑃 = Poly𝑆(𝑘𝑏) such that 𝐸(𝑃) > 2𝑅𝑆 +𝐿. As 𝑃 is finite the probability
that 𝑃 is internally spanned is positive. Specifically we have the crude lower bound:

P𝑝(𝑃 internally spanned) > 𝑝#𝑃 > 0

Now, we are guaranteed percolation if as 𝑖 → ∞ the polytopes Poly𝑆(𝑖𝑏) remain internally spanned. By
Equation 2.3.8 and 𝐸(Poly𝑆(𝑖𝑏)) = 𝑖𝐸(𝑃) we then get the following estimate:

P𝑝(percolation | 𝑃 internally spanned) ≥
P𝑝(∀𝑖 > 𝑘 : Poly𝑆(𝑖𝑏) internally spanned | 𝑃 internally spanned) ≥

∞∏︁
𝑖=𝑘

(1 − exp(𝛾(𝑖𝐸(𝑃) −𝐾))𝐽
> 0

(2.3.9)
�

The core of any seed argument lies in Equation 2.3.8. Specifically, the exponential form it gives for the
probability that a shell around a seed grows. We can then use that iteratively to bound the probability
of any seed growing to multiple shells. However, seed arguments vary in the estimate of an initial seed
existing. For the above result, we used finiteness of the shell to show the probability was merely positive.
For the lemma below, we will present a proof using ergodicity to estimate the probability of a seed being
internally spanned.

This next lemma is a first step towards using Theorem 2.2.13. We will later combine it with renormal-
ization to show we have exponential percolation for any positive initial density.
Lemma 2.3.3. Working in Z2 given a vector 𝑏 ∈ R𝑚 such that 𝐸(Poly𝑆(𝑏)) > 0 and Poly𝑆(𝑏) is
symmetric we have:

lim
𝑘→∞

𝑅𝑆(Poly𝑆(𝑘𝑏), 𝑝) = 1

for any 𝑝 > 0.

27

2.3. THE SEED ARGUMENT IN Z2 CHAPTER 2. THEORETICAL WORK

Proof. We take the finite sequences [𝑣𝑖], [𝐺′
𝑖], [𝐹 ′

𝑖] from Equation 2.3.6 and extend them to infinity. This
is done by making the sequence [𝑣𝑖] repeat itself. That is, we set:

𝑣𝑖 = 𝑣𝑖 mod 𝐽

We then set 𝑛 to be the smallest number such that 𝑛𝐸(Poly𝑆(𝑏)) > 2𝑅𝑆 +𝐿. We then define the smallest
possible seed 𝑇 = Poly𝑆(𝑛𝑏).

We then set our outer polygon 𝑃 = Poly𝑆(𝑘𝑏) where 𝑘 is sufficiently high to have:

𝑚 =
⌊︂
𝑘 − 𝑛

3

⌋︂
> 𝑛

and use this 𝑚 to define the inner polygon:

𝑄 = Poly𝑆(𝑚𝑏)

This polygon will be our seed. Based on our seed we then define 2 events:

• 𝑄′ is the event that 𝑄 gets filled by the dynamics restricted to 𝑃 . That is, 𝑄′ is the event
𝛽𝑆

∞(𝐴0 ∩ 𝑃) ⊇ 𝑄.

• 𝑊 is the event that all facets 𝐹 ′
𝑗(𝑄) for 𝑗 = 0 . . . 𝐽(𝑘 −𝑚) are internally spanned.

By Lemma 2.2.8 the events 𝑄′ and 𝑊 together imply that 𝑃 is internally spanned. Therefore:

𝑅𝑆(𝑃, 𝑝) ≥ P𝑝(𝑄′) · P𝑝(𝑊)

From Equation 2.3.9 we can deduce that: lim𝑘→∞ P𝑝(𝑊) = 1 We then want to show that this can be
extended to:

lim
𝑘→∞

𝑃𝑝(𝑄′) = 1

To this end, We say the origin is a good site if 𝑇 (the smallest possible seed) is occupied and so are all
sets 𝐹𝑖(𝑇) for 𝑖 ∈ N. In this case, we can immediately apply Equation 2.3.9 to get:

P𝑝(origin is a good site) > 0

Next, we say a point 𝑥 is a good site in 𝐴0 if the origin is a good site in 𝐴0 − 𝑥. By vertex transitivity,
this again has positive probability.

Now we claim that if 𝑄 contains a good site 𝑥 ∈ 𝑄, then 𝑄 gets filled by the dynamics restricted to 𝑃 .
To see this, consider the set:

𝑋 = 𝑥+ Poly𝑆(𝑛+ 2𝑚) = 𝑥+ 𝑇 ⊕𝑄⊕𝑄

By definition of 𝑥 being a good site we know that 𝑋 is internally spanned. Moreover, as 𝑥 ∈ 𝑄 we have:

𝑋 ⊆ 𝑄⊕ 𝑇 ⊕𝑄⊕𝑄 = Poly((3𝑚+ 𝑛)𝑏) ⊆ Poly(𝑘𝑏) = 𝑃

So 𝑋 gets filled by the dynamics restricted to 𝑃 . At the same time, 𝑥 ∈ 𝑄 and 𝑄 = −𝑄 imply that
0 ∈ 𝑥+𝑄. From this we can conclude that:

𝑄 ⊆ (𝑥+𝑄) ⊕𝑄 ⊆ 𝑥+𝑄⊕𝑄⊕ 𝑇 = 𝑋

So indeed, if 𝑄 contains a good site, 𝑄 gets filled by the dynamics restricted to 𝑃 .

Then, by ergodicity we have:

lim
𝑘→∞

P𝑝(There is a good site inside 𝑄) = 1

and thus:
lim

𝑘→∞
P𝑝(𝑄′) = 1 �

28

2.4. RENORMALIZATION CHAPTER 2. THEORETICAL WORK

2.4 Renormalization

In this section, based on Lemma 2.3.3 and the lower bound on 𝜋𝑐 from Theorem 2.2.13 we seek to prove
the following theorem:
Theorem 2.4.1. Given any generating set 𝑆′ ⊆ Z2 we have 𝜋𝑐 = 0 for 𝛽𝑆′ .

In this section, we will first sketch the proof of this theorem to motivate the introduction of the required
propositions, lemmas. After these are all introduced and proven, we proceed to a terse proof of this
theorem based on the rest of this section.

From a bird’s eye view, the proof proceeds as follows: We start by formally defining the renormalization
procedure for which the section is named. This is a mapping Re : 2Z2 → 2Z2 . Then, we show that
convex bootstrap percolation after the renormalization dominates (in a loose sense) convex bootstrap
percolation before the renormalization procedure. Next, we use the bound on 𝜋𝑐 from Theorem 2.2.13
to show that 𝛽𝑆 starting from Re(𝐴) percolates exponentially fast. Then, using the (loose sense of)
domination, we conclude that 𝛽𝑆(𝐴) must also percolate exponentially fast.

Throughout this section, we will often presume 𝑆 to be square. That is, we assume that

𝑆 = (Sq𝑟 ∩ Z2) ∖ {0}
Sq𝑟 = {𝑥 ∈ R2 | ‖𝑥‖∞ ≤ 𝑟}

This is needed in many of our proofs for various reasons. However, this need not be an obstacle, since
for any generating set 𝑄, we can find some square 𝑆 = Sq𝑟 ∩ Z2 ⊇ 𝑄. Thus, 𝛽𝑄 dominates 𝛽𝑆 . So
exponential percolation for square generating sets means exponential percolation for all generating sets.

Now we define the renormalization procedure. Informally, we partition Z2 into a grid of squares. Then,
to apply our work on polygons, we replace each square by a polygon containing that square. This means
we have a covering instead of a partitioning since neighboring polygons may overlap. We call the original
Z2 the ‘base grid’ and the grid of polygons the ‘renormalized grid’. A node in the renormalized grid thus
corresponds to a shifted polygon. We will consider a renormalized node to be occupied whenever the
corresponding polygon in the base grid is fully occupied. The renormalization procedure is parameterized
by a scale factor 𝑚. This simply scales the polygons and underlying grid we use for our covering.

As a base for our covering polygon, we set Sq𝑘 equal to the smallest square that contains the polygon
𝑃𝑆 defined in Equation 2.2.7. That is we take:

𝑘 = min{𝑛 ∈ N | ∀𝑠 ∈ 𝑆 | ‖𝑠‖∞ ≤ 𝑛}

and define our base polygon as 𝑃𝑆⊕Sq𝑘. Our choice for 𝑃𝑚 allows us to use the results from Lemma 2.2.11
regarding 𝑃𝑆 . Then, for a scaling factor 𝑚 ∈ N we define the scaled polygon 𝑃𝑚. In turn, we use that
to define the shifted polygons 𝑃𝑚(𝑥) and those are used to define the renormalization and normalization
maps:

𝑃𝑚 = 𝑚(𝑃𝑆 ⊕ Sq𝑘)
𝑃𝑚(𝑥) = 2𝑘𝑚𝑥+ 𝑃𝑚

Re𝑚(𝐴) = {𝑥 ∈ Z𝑑 | 𝑃𝑚(𝑥) ∩ Z𝑑 ⊆ 𝐴}

Nm𝑚(𝐴) =
⋃︁

𝑥∈𝐴

𝑃𝑚(𝑥) ∩ Z𝑑

Note that Nm𝑚 is a right-inverse of Re𝑚. That is:

Re𝑚(Nm𝑚(𝐴)) = 𝐴

In the following theorem, we provide the ‘loose sense of domination’ we mentioned earlier.
Theorem 2.4.2. Let 𝑆 = (Sq𝑟 ∩ Z2) ∖ {0} for some 𝑟 ∈ N+.

Then, for any 𝑚 ∈ N+ there exists a 𝜏 such that, for any 𝐴 ⊆ Z2:

𝛽𝑆
𝑡(Re𝑚(𝐴)) ⊆ Re𝑚

(︀
𝛽𝑆

𝜏 𝑡(𝐴)
)︀

(2.4.1)

29

2.4. RENORMALIZATION CHAPTER 2. THEORETICAL WORK

Before we can proceed to the proof of this theorem, we need two lemmas. First up is a lemma that
describes how a single convex half of 𝑆 affects growth of entire sets, rather than single points.
Lemma 2.4.3. Given 𝐶 = 𝑆 ∩𝐻(𝑢) a minimal convex half of 𝑆, take a set of occupied vertices 𝐴, and
an arbitrary finite set of vertices 𝐸.

Then
𝐸 ⊕ 𝐶 ⊆ 𝐸 ∪𝐴 (2.4.2)

implies:
𝐸 ∪𝐴 ⊆ 𝛽𝑆

#(𝐸∖𝐴)(𝐴)

Proof. We call 𝐴 the active set, and 𝐸 the extended set. Moreover, we label 𝐵 = 𝐸 ∖𝐴 the inactive set.
Now, given any 𝑏 ∈ 𝐵 we define the rank of 𝑏 recursively:

𝑟(𝑏) =
{︃

0 if 𝑏+ 𝐶 ∩𝐵 = ∅
1 + max𝑥∈𝐶 𝑟(𝑏+ 𝑥) otherwise

For any 𝑏 ∈ 𝐵 the recursive definition above is guaranteed to terminate. For, were it not to terminate,
there would exist an infinite sequence [𝑏𝑖] ∈ [𝐵] with 𝑏0 = 𝑏 and 𝑏𝑖+1 −𝑏𝑖 ∈ 𝐶. Now, recall that 𝜎𝑆(𝑢) > 0
(defined in Equation 2.2.2). So we have:

𝑏𝑖+1 · 𝑢 ≥ 𝑏𝑖 · 𝑢+ 𝜎𝑆(𝑢)

So the sequence [𝑏𝑖] could never repeat. This leads to a contradiction, since 𝐵 is finite. We then get the
bound:

𝑟(𝑏) ≤ #𝐵 = #(𝐸 ∖𝐴)

Using this bound, it suffices to show the following:

𝛽𝑆
𝑛(𝐴) ⊇ {𝑏 ∈ 𝐵 | 𝑟(𝑏) < 𝑛}

We will prove this by induction on 𝑛. The base case 𝑛 = 0 is vacuously true. Now suppose it holds up to
some value 𝑘. Then consider a 𝑏 ∈ 𝐵 with 𝑟(𝑏) = 𝑘. By definition of 𝑟(𝑏) we know that for all 𝑣 ∈ 𝑏+𝐶
we have 𝑟(𝑣) < 𝑛. So by the induction hypothesis 𝑏+ 𝐶 ∈ 𝛽𝑆

𝑘(𝐴). Therefore 𝑏 ∈ 𝛽𝑆
𝑘+1(𝐴). �

For the next lemma we need to define two new sets: quadrants 𝑄 and bounding boxes Bb.

𝑄±1±2 =
{︀

(𝑥, 𝑦) ∈ R2 | ±1𝑥 ≥ 0 ∧ ±2𝑦 ≥ 0
}︀

Bb(𝐴) =
⋂︁

{𝑥+𝑄 | 𝑥 ∈ 𝐴 ∧𝑄 is a quadrant ∧𝐴 ⊆ 𝑥+𝑄}

There are four quadrants: 𝑄++, 𝑄+−, 𝑄−+ and, 𝑄−−. As every rectangle can be written as an intersec-
tion of shifted quadrants, our bounding box of a set 𝐴 is the smallest rectangle that contains 𝐴. We will
often write Bb as a function taking multiple points as an argument as abuse of notation for the bounding
box of those points. That is Bb(𝑥, 𝑦 . . . 𝑧) = Bb({𝑥, 𝑦 . . . 𝑧}).

With these definitions, we can introduce the following lemma. This lemma allows us to say certain
bounding boxes are contained in Nm(𝐶) when 𝐶 is a minimal convex half of a square generating set.
Lemma 2.4.4. Take 𝑆 to be a square generating set, 𝑄 some quadrant, and 𝑢 ∈ 𝑄 ∖ 𝑉𝑆. Then set the
minimal half 𝐶 and normalized minimal half 𝐴:

𝐶 = 𝐻(𝑢) ∩ 𝑆 ∈ 𝒞𝑆

𝐴 = Nm𝑚(𝐶)

Then, if 𝑎′, 𝑏′ ∈ 𝐶 and �̃�, �̃� ∈ 𝑃𝑚 are chosen such that 𝑎′ − 𝑏′ ∈ 𝑄 and Bb(�̃�, �̃�) ∈ 𝑃𝑚. It follows that:

Bb(2𝑚𝑘 𝑎′ + �̃�, 2𝑚𝑘 𝑏′ + �̃�) ⊆ 𝐴

30

2.4. RENORMALIZATION CHAPTER 2. THEORETICAL WORK

Proof. As 𝑎′, 𝑏′ ∈ 𝐶 ⊆ 𝑆 and 𝑆 is square, we have:

Bb(𝑎′, 𝑏′) ∩ Z2 ⊆ 𝑆 ∪ {0}

Furthermore, from 𝑎′ − 𝑏′ ∈ 𝑄 we can conclude that:

Bb(𝑎′, 𝑏′) ⊆ 𝑎′ −𝑄

Moreover, from 𝑎′ ∈ 𝐶 we know 𝑎′ ̸= 0. Then we take 𝑎′ ∈ 𝐶 ⊆ 𝐻(𝑢) and 𝑢 ∈ 𝑄 to conclude that:

𝑎′ −𝑄 ⊆ 𝐻(𝑢) ∖ {0}

This leads us to:
Bb(𝑎′, 𝑏′) ∩ Z2 ⊆ 𝑆 ∩𝐻(𝑢) = 𝐶

And so, finally, we have the following deduction:

𝐴 = Nm𝑚(𝐶)
⊇ Nm𝑚(Bb(𝑎′, 𝑏′) ∩ Z2)
= 2𝑚𝑘Bb(𝑎′, 𝑏′) ⊕ 𝑃𝑚

⊇ 2𝑚𝑘Bb(𝑎′, 𝑏′) ⊕ Bb(�̃�, �̃�)
⊇ Bb(2𝑚𝑘 𝑎+ �̃�, 2𝑚𝑘 𝑏+ �̃�) �

Now that we have shown these two lemmas, we can proceed to prove Theorem 2.4.2:

Proof of Theorem 2.4.2. First, we define the discrete version of 𝑃𝑚:

𝑃𝑚 = 𝑃𝑚 ∩ Z2

It suffices to show that for each minimal convex half 𝐶 ∈ 𝒞𝑆 we can find a 𝜏𝐶 such that for any 𝑋 ⊆ Z2

we have:
𝐶 ⊆ Re𝑚(𝑋) ⇒ 𝑃𝑚 ⊆ 𝛽𝑆

𝜏𝐶 (𝑋)

We can then set 𝜏 = max{𝜏𝐶 | 𝐶 ∈ 𝒞𝑆} and, using translation invariance, conclude that:

𝛽𝑆(Re𝑚(𝐴)) ⊆ Re𝑚(𝛽𝑆
𝜏 (𝐴))

The full form of theorem 2.4.2 then follows by a trivial inductive argument.

Thus, we fix the minimal convex half 𝐶 and set 𝑢𝐶 /∈ 𝑉𝑆 such that 𝐶 = 𝐻(𝑢𝐶) ∩ 𝑆. We also set:

𝐴 = Nm𝑚(𝐶) = 𝑃𝑚 ⊕ 2𝑚𝑘𝐶

So, for any set 𝑋 such that 𝐶 ⊆ Re𝑚(𝑋) we have 𝐴 ⊆ 𝑋. Now, we need to show that

Now, we can proceed in terms of 𝐴 and 𝑃𝑚 and only work in the base grid. Here, we look to apply
Lemma 2.4.3. This means that, in addition to our 𝐴, we need to produce an 𝐸 that meets the following
two requirements:

𝐸 ⊕ 𝐶 ⊆ 𝐸 ∪𝐴 (2.4.3)
𝑃𝑚 ⊆ 𝐸 ∪𝐴 (2.4.4)

Lemma 2.4.3 would then yield:

𝜏𝐶 = #(𝐸 ∖𝐴)
𝑃𝑚 ⊆ 𝐸 ∪𝐴 ⊆ 𝛽𝑆

𝜏𝐶 (𝐴)

Which would prove our theorem.

31

2.4. RENORMALIZATION CHAPTER 2. THEORETICAL WORK

To produce this 𝐸, we now change from discrete to continuous sets by taking the convex hull. That is,
we define the following sets:

𝐴 = Conv(𝐴)
𝐶 = Conv(𝐶, {0})

Next, we define the ‘top’ of 𝑃𝑚:
𝑡𝑚 = arg max

𝑥∈𝑃𝑚

𝑥 · 𝑢𝐶

This is a vertex of 𝑃𝑚 and per Lemma 2.2.11 it follows that 𝑡𝑚 + 𝐶 ⊆ 𝑃𝑚.

Next, we make use of the conical sum of 𝐶. As we are working in 2 dimensions, conical sums are easily
described. We can find two unit vectors 𝑢1, 𝑢2 ∈ 𝑉𝑆 such that:

Coni(𝐶) = 𝐻(𝑢1) ∩𝐻(𝑢2)

We then use this to define ‘border points’ of 𝐶 as:

𝑏1 = arg max
𝑏∈𝐶∩𝑁(𝑢1)

‖𝑏‖ 𝑏2 = arg max
𝑏∈𝐶∩𝑁(𝑢2)

‖𝑏‖

Now we pick 𝑐, 𝑐𝑡 ∈ Z2 such that:

Bb(𝑏1, 𝑏2) = Conv(𝑏1, 𝑐, 𝑏2, 𝑐𝑡)

As 𝑆 is square, we have 𝑐, 𝑐𝑡 ∈ 𝑆. Moreover, one of 𝑐, 𝑐𝑡 lies inside Coni(𝐶). We call this one 𝑐 and the
other 𝑐𝑡.

Now, we can finally define our 𝐸. This is based on the convex polygon �̄�.

�̄� = 𝑡𝑚 + (2𝑚𝑘Bb(𝑏1, 𝑏2) ∩ Coni(𝐶))
= 𝑡𝑚 + 2𝑚𝑘Conv(𝑏1, 0, 𝑏2, 𝑐)

𝐸 = �̄� ∩ Z2

Note that all vertices of �̄� are the ‘top’ of some 𝑃𝑚(𝑥).

Now, to prove Equation 2.4.3 we change to a continuous form. The discrete form follows simply by
taking the intersection with Z2. Thus, we seek to prove:

�̄� ⊕ 𝐶 ⊆ �̄� ∪𝐴

Now, note that by definition of 𝑢1, 𝑢2 we have: 𝑢1, 𝑢2 /∈
⋃︀

{𝐻(𝑢)𝐶 | 𝑢 ∈ 𝐶}. Moreover, we have 0 ∈ 𝐶.
Then, by Lemma 2.1.7 it follows that:

�̄� ⊕ 𝐶 = �̄� ∪ 𝑡𝑚 +
(︀(︀

2𝑚𝑘Conv(𝑏1, 𝑐) ⊕ 𝐶
)︀

∪
(︀
2𝑚𝑘Conv(𝑏2, 𝑐) ⊕ 𝐶

)︀)︀
(2.4.5)

Now, by definition of 𝑐 we know that Conv(𝑏1, 𝑐) is either vertical or horizontal. Therefore, Conv(𝑏1, 𝑐) =
Bb(𝑏1, 𝑐). Moreover, if we take 𝑄 to be the quadrant such that 𝑢𝑐 ∈ 𝑄 we have: 𝑐− 𝑏1 ∈ 𝑄. Finally, we
have 𝑡𝑚 + 𝐶 ⊆ 𝑃𝑚 and 𝑏1, 𝑐 ∈ 𝐶. Then, by the definition of ⊕ and Lemma 2.4.4 we get:

(𝑡𝑚 + 𝐶) ⊕ 2𝑚𝑘Conv(𝑏1, 𝑐) =
⋃︁

�̃�∈𝑡𝑚+𝐶

�̃�+ 2𝑚𝑘Conv(𝑏1, 𝑐)

=
⋃︁

�̃�∈𝑡𝑚+𝐶

Bb(�̃�+ 2𝑚𝑘 𝑏1, �̃�+ 2𝑚𝑘 𝑐)

⊆ 𝐴

The same argument holds when we replace 𝑏1 by 𝑏2. Combining the above with Equation 2.4.5 we get:

�̄� ⊕ 𝐶 ⊆ �̄� ∪𝐴

32

2.4. RENORMALIZATION CHAPTER 2. THEORETICAL WORK

Thus, we have proven Equation 2.4.3.

All that remains is to prove Equation 2.4.4. To do this, we again change to a continuous form. Thus,
we seek to prove:

𝑃𝑚 ⊆ �̄� ∪𝐴

The discrete form follows simply by taking the intersection with Z2.

First, note that as 𝑃𝑆 ⊆ Sq𝑘 we have 𝑃𝑚 ⊆ Sq2𝑚𝑘. Moreover, we have 𝑃𝑚 ⊆ 𝑡𝑚 + Coni(𝐶). Thus:

𝑃𝑚 ⊆ Sq2𝑚𝑘 ∩ (𝑡𝑚 + Coni(𝐶))

We will construct an intermediate set 𝐷. Without loss of generality, we assume that 𝑢𝑐 ∈ 𝑄++. Then
we set:

𝑣1 = 𝑡𝑚 + 2𝑚𝑘 𝑏1

𝑣2 = 𝑡𝑚 + 2𝑚𝑘 𝑏2

𝑧 = −2𝑚𝑘 𝑟 (1, 1)

Where 𝑟 is the presumed ‘radius’ of our generating set. That is: 𝑆 = (Sq𝑟 ∖ {0}) ∩Z2. Note that we can
write 𝑧 = 2𝑚𝑘 𝑧′ with 𝑧′ = (−𝑟,−𝑟) ∈ 𝐶. That is, 𝑧 is the center of the farthest translate of 𝑃𝑚 in 𝐴.
Then we set:

𝐷 = 𝐸 ∪ Bb(𝑣1, 𝑧) ∪ Bb(𝑣2, 𝑧)
= (𝑡𝑚 + Coni(𝐶)) ∩ Bb(𝑣1, 𝑣2) ∪ Bb(𝑣1, 𝑧) ∪ Bb(𝑣2, 𝑧)
⊇ (𝑡𝑚 + Coni(𝐶)) ∩ Bb(𝑣1, 𝑣2, 𝑧)

Note that by square symmetry of 𝑃𝑚 we have Bb(𝑡𝑚, 0) ⊆ 𝑃𝑚. Moreover, we have 𝑧 − 𝑣1 ∈ 𝑄++ and
𝑧 − 𝑣1 ∈ 𝑄++. Then, by Lemma 2.4.4 it follows that Bb(𝑣1, 𝑧) ⊆ 𝐴 and Bb(𝑣2, 𝑧) ⊆ 𝐴, and thus:

𝐷 ⊆ 𝐸 ∪𝐴

Next we will show that

𝐷 ⊇ (𝑡𝑚 + Coni(𝐶)) ∩ Bb(𝑣1, 𝑣2, 𝑧)
*
⊇ Sq2𝑚𝑘 ∩ (𝑡𝑚 + Coni(𝐶)) ⊇ 𝑃𝑚 (2.4.6)

Everything except for the inclusion marked by * is already known. Now recall 𝑐𝑡 was the vertex opposite
𝑐 in Bb(𝑏1, 𝑏2). We can then write:

Bb(𝑣1, 𝑣2, 𝑧) = Bb(𝑡𝑚 + 2𝑚𝑘 𝑐𝑡, 𝑧) = (𝑡𝑚 + 2𝑚𝑘 𝑐𝑡 −𝑄++) ∩ (𝑧 +𝑄++)

Note that, by definition of 𝑧, we always have: (−1,−1) ∈ 𝑧 −𝑄++.

Now we distinguish two cases. Either 0 lies on the interior of 𝑐𝑡 −𝑄++ or 0 lies on an edge of 𝑐𝑡 −𝑄++.
It is not possible that 0 lies outside 𝑐𝑡 − 𝑄++ or 0 = 𝑐𝑡 because 𝑆 is square, and so conical angle of
Coni(𝐶) is larger than 90∘.

In the first case, as 𝑐𝑡 ∈ Z2 we must have:

(1, 1) ∈ 𝑐𝑡 −𝑄++

and thus:

Bb(𝑣1, 𝑣2, 𝑧) = (𝑡𝑚 + 2𝑚𝑘 𝑐𝑡 −𝑄++) ∩ (𝑧 +𝑄++)
⊇ Bb

(︀
2𝑚𝑘(1, 1) , −2𝑚𝑘(1, 1)

)︀
= Sq2𝑚𝑘

which proves Equation 2.4.6 in the first case.

33

2.4. RENORMALIZATION CHAPTER 2. THEORETICAL WORK

In the second case, one of 𝑏1 or 𝑏2 is vertical or horizontal. Without loss of generality, we presume
𝑏1 ∈ 𝑁(𝑒1). Where 𝑒1 is either of the normal basis vectors. Then, 𝑐𝑡 ∈ Z2 yields the first equation below,
and the definition of 𝑡𝑚 yields the second.

𝑒2 ∈ 𝑐𝑡 −𝑄++

𝑡𝑚 ∈ 𝑁(𝑒1)

And thus:

Bb(𝑣1, 𝑣2, 𝑧) = (𝑡𝑚 + 2𝑚𝑘 𝑐𝑡 −𝑄++) ∩ (𝑧 +𝑄++)
⊇ Bb

(︀
2𝑚𝑘 𝑒2 , −2𝑚𝑘(1, 1)

)︀
= Sq2𝑚𝑘 ∩ (𝑡𝑚 +𝐻(𝑒1))

Furthermore, note that from 𝑏2 ∈ 𝑁(𝑒1) we can conclude that:

Coni(𝐶) ⊆ (𝑡𝑚 +𝐻(𝑒1))

We can then combine the above two equations to get:

Bb(𝑣1, 𝑣2, 𝑧) ∩ Coni(𝐶) = Sq2𝑚𝑘 ∩ Coni(𝐶)

Which proves Equation 2.4.6 in the second case. Thus, we have proven Equation 2.4.6 in either case. �

So, now we have proven our loose form of domination. Now, we still need to conclude the dominating
percolation is exponential, and use that to conclude the dominated percolation is also exponential.

To that end we define the starting time 𝑡0 as:

𝑡0 = #𝑃𝑚 (2.4.7)

We then use that to define an initial condition and use Theorem 2.4.2 to get:

𝐴𝑡0 = 𝛽𝑆
𝑡0(𝐴0)

𝛽𝑆
𝑡(Re𝑚(𝐴𝑡0)) ⊆ Re𝑚(𝛽𝑆

𝜏 𝑡+𝑡0(𝐴0))

Now suppose that bootstrap percolation starting from the stochastic initial condition Re𝑚(𝐴𝑡0) percolates
exponentially, say with exponent 𝛾 > 0. We could then reason as follows:

𝐶𝑒−𝛾𝑡 ≥ P𝑝(0 /∈ 𝛽𝑆
𝑡(Re𝑚(𝐴𝑡0)) (2.4.8)

≥ P𝑝(0 /∈ Re𝑚(𝛽𝑆
𝜏𝑡+𝑡0(𝐴0)

≥ P𝑝(0 /∈ 𝛽𝑆
𝜏𝑡+𝑡0(𝐴0)

Then, looking at equations (1.0.4) and (1.0.5) for the definition of 𝛾(𝑝) and 𝜋𝑐, we would have the
following:

𝛾(𝑝) = 𝛾

𝜏
𝜋𝑐 < 𝑝

As we only had the restriction 𝑝 > 0 this would actually show 𝜋𝑐 = 0. So, we wish to prove that indeed
there is a 𝛾 > 0 for which the reasoning in (2.4.8) holds. Note that both 𝛾 and 𝜏 may depend on 𝑚.

Now we define events 𝐼𝑥 given 𝑥 ∈ Z2, and the corresponding set 𝐼 ⊆ Z2:

𝐼𝑥 : 𝑃𝑚(𝑥) is internally spanned by 𝐴0

𝐼 = {𝑥 ∈ Z2 | 𝐼𝑥}

Then by definition of the starting time 𝑡0 we have:

𝐼 ⊆ Re𝑚(𝐴𝑡0)

34

2.4. RENORMALIZATION CHAPTER 2. THEORETICAL WORK

So now we want to show that convex bootstrap percolation starting from 𝐼 percolates exponentially fast.
We mean to show this using Theorem 2.2.13. Recall that this gave:

𝜋𝑐 ≤ 1 − 1
#𝑆 − 1

Now, by definition of 𝑅𝑆 we have:
𝑃𝑝(𝐼𝑥) = 𝑅𝑆(𝑃𝑚(𝑥), 𝑝)

Naively, we might then argue that by Lemma 2.3.3 we can simply pick 𝑚 sufficiently large that:

𝑅𝑆(𝑃𝑚, 𝑝) >
1

#𝑆 − 1 > 𝜋𝑐

and thus claim exponential growth. There are two obstacles to this line of reasoning. First of all, we do
not know if we can write 𝑃𝑚 in the form Poly𝑆(𝑚𝑏) for some integer vector 𝑏. Therefore we cannot yet
apply Lemma 2.3.3 to 𝑃𝑚. This will be solved by Lemma 2.4.5. The second obstacle is more insidious.
The result regarding 𝜋𝑐 does not apply because our polygons overlap and thus the events 𝐼𝑥 are not
independent.

Before we deal with the dependence of 𝐼𝑥 we first want to prove that Lemma 2.3.3 actually applies to
𝑃𝑚(𝑥). To that end, we prove the following lemma:
Lemma 2.4.5. If 𝑆 = (Sq𝑟 ∩ Z2) ∖ {0}, then 𝑃𝑚 can be written as Poly𝑆(𝑏) for some 𝑏 ∈ Z#𝑈𝑆 .

Proof. We will prove that there exists some 𝑏 ∈ R𝑛 such that 𝑃𝑚 = Poly𝑆(𝑏). It then follows that this 𝑏
is restricted to the integers because the vertices of 𝑃𝑆 all lie in Z2. This is a property of Poly𝑆 . To show
this 𝑏 exists, we need to show all edges of 𝑃𝑚 are normal to some vector in 𝑈𝑆 .

Notably, scaling does not matter, so it suffices to only treat 𝑃1. Recall this was defined as:

𝑃1 = Sq𝑘 ⊕ 𝑃𝑆

= Sq𝑘 ⊕
∑︁

{Conv(𝐶 ∪ {0}) | 𝐶 ∈ 𝒞𝑆}

Now, a Minkowski sum has an edge normal 𝑥, if and only if 𝑥 is an edge normal of at least one of the
summands. Thus, we need to show all summands only have edge normals in 𝑈𝑆 . It is clear that the edge
normals of Sq𝑘 lie in 𝑈𝑆 . The remaining summands are all of the form:

𝐶 = Conv(𝐶 ∪ {0}) where 𝐶 ∈ 𝒞𝑆

We need to show that these convex polygons have all edge-normals in 𝑈𝑆 . To this end, consider the
vertices of an arbitrary 𝐶. Without loss of generality, presume that 𝐶 = 𝑆∩𝐻(𝑢) for some 𝑢 ∈ 𝑄++ ∖𝑉𝑆 .

It is guaranteed 0 is a vertex of 𝐶. Moreover, given our restriction on 𝑢 we can find 3 more guaranteed
vertices. Firstly, there is the corner 𝑐 = (−𝑟,−𝑟). This corresponds to direction −𝑢. This corner has
two edges running along the edges of Sq𝑟. Their edge normals clearly lie in 𝑈𝑆 . Moreover, these edges
terminate at two vertices 𝑑1 = (𝑎,−𝑟) and 𝑑2 = (−𝑟, 𝑏) with 𝑎 ≥ 0 and 𝑏 ≥ 0.

The existence of vertices 0, 𝑑1, 𝑐, 𝑑2, combined with 𝐶 being convex, restrict where the remaining vertices
can occur. Consider such a remaining vertex 𝑣, we then know the following three things:

• 𝑣 ∈ 𝐶 ⊆ Sq𝑟

• 𝑣 /∈ 𝑄++ because 𝑣 ∈ 𝐶 ⊆ 𝐻(𝑢) and 𝑄++ ∩𝐻(𝑢) = {0}.

• 𝑣 /∈ Conv(0, 𝑑1, 𝑐, 𝑑2) ⊇ 𝑄−− because it is a vertex of 𝐶.

From this, we can conclude that:

𝑣 ∈ (Sq𝑟 ∩𝑄−+) ∪ (Sq𝑟 ∩𝑄+−)

Moreover, no vertices in 𝑄−+ can have an edge to another vertex in 𝑄+−. For, such an edge would mean
0 is not a vertex. Thus, all remaining edges occur between points in a quadrant.

35

2.4. RENORMALIZATION CHAPTER 2. THEORETICAL WORK

Now, suppose we have an edge (𝑥, 𝑦) in Sq𝑟 ∩ 𝑄+−. Then 𝑥 − 𝑦 ∈ Sq𝑟 and thus, we have the parallel
edge (𝑥− 𝑦, 0). This edge is normal to some vector in 𝑈𝑆 , and thus the same holds for the edge (𝑥, 𝑦).

The above line of reasoning also works for an edge in Sq𝑟 ∩𝑄−+. As such, every edge in 𝐶 is normal to
some vector in 𝑈𝑆 . �

Now, we still have to deal with the dependence of the events 𝐼𝑥. Luckily, there is a limit to the dependence.
Given ‖𝑥− 𝑦‖∞ large enough, we know that 𝑃𝑚(𝑥) and 𝑃𝑀 (𝑦) do not overlap. Thus for these 𝑥 and 𝑦
the events 𝐼𝑥 and 𝐼𝑦 are independent. The following lemma allows us to use this limit in the dependence.

The lemma below is a simplified version of Theorem B26 from [Lig13, p. 27]. For a proof, we also refer
to that book.
Lemma 2.4.6 (Stochastic domination). Fix 𝑘 ≥ 1 and set 𝛿 = #{𝑦 ∈ Z2 | ‖𝑦‖∞ < 𝑘} = (2𝑘 + 1)2.
Now, if 𝑋𝑥 | 𝑥 ∈ Z2 are random events, with 𝑋𝑥 independent from 𝑋𝑦 whenever ‖𝑥− 𝑦‖∞ > 𝑘 and, for
all 𝑥 ∈ Z2 we have

P(𝑋𝑥) ≥ 1 − (1 − √
𝑞)𝛿

Then, we set 𝑋 = {𝑥 ∈ Z2 | 𝑋𝑥} and let 𝑌 be an initial condition with density 𝑞.

Finally, take 𝒜 ∈ 2Z2 to be any increasing family of sets. Then we have:

P(𝑋 ∈ 𝒜) ≥ P(𝑌 ∈ 𝒜)

In order to make use of this lemma, we set 𝑚 large enough that:

1 − (𝑅𝑆(𝑃𝑚, 𝑝) − 1)𝑘′
= 𝑞 > 1 − 1

#𝑆 − 1 (2.4.9)

Where 𝑘′ depends on how much our 𝑃𝑚(𝑥)s overlap. That is:

𝑘′ = 1 + max{‖𝑥‖∞ | 𝑃𝑚(𝑥) ∩ 𝑃𝑚 ̸= ∅} < ∞

Next, we define the family of initial conditions that do not occupy the origin before some time 𝑡:

ℬ𝑡 = {𝐵 ⊆ Z2 | 0 ∈ 𝛽𝑆
𝑡(𝐵)}

At any fixed 𝑡 this is clearly an increasing family in the sense defined in the stochastic domination
lemma. Then, we apply 𝐼 ⊆ Re𝑚(𝐴𝑡0), the stochastic domination lemma, Theorem 2.2.13, and (2.4.9)
to conclude that:

P𝑝

(︀
0 ∈ 𝛽𝑆

𝑡(Re𝑚(𝐴𝑡0))
)︀

= P𝑝(Re𝑚(𝐴𝑡0) ∈ ℬ𝑡)
≥ P𝑝(𝐼 ∈ ℬ𝑡)
≥ P𝑞(𝐴0 ∈ ℬ𝑡)
≥ 1 − 𝐶𝑒−𝛾(𝑝)𝑡

(2.4.10)

Where we take 𝐴0 to be a random initial condition. The corresponding density is 𝑞, hence the switch
from P𝑝 to P𝑞.

We now have everything we need to prove Theorem 2.4.1:

Proof of Theorem 2.4.1. Recall the statement we want to prove:
Given any generating set 𝑆′ ⊆ Z2 we have 𝜋𝑐 = 0 for 𝛽𝑆′ .

Fix some 𝑝 > 0 and let 𝐴0 be an initial condition with density 𝑝. We then need to show we have
exponential percolation when starting from this density.

First, we take a new square generating set 𝑆 that encloses 𝑆′. Specifically, we take the smallest square
Sq𝑟 such that 𝑆′ ⊆ Sq𝑟.

𝑆 = (Sq𝑟 ∩ Z2) ∖ {0} ⊇ 𝑆′

From 𝑆′ ⊆ 𝑆 it follows that 𝛽𝑆′ dominates 𝛽𝑆 . Hence it suffices to show that we have exponential
percolation using 𝑆.

36

2.5. CONCLUSION FOR THEORETICAL WORK CHAPTER 2. THEORETICAL WORK

Next we pick a target density:
𝑞 > 1 − 1

#𝑆 − 1
Then, fix 𝑚 according to Equation 2.4.9, and 𝑡0 according to Equation 2.4.7. Now, by the renormalization
Theorem (2.4.2) and definition of Re𝑚 we get:

0 ∈ 𝛽𝑆
𝑡(𝑅𝑒𝑚(𝐴0)) → 0 ∈ Re𝑚(𝛽𝑆

𝜏𝑡+𝑡0(𝐴0)) → 0 ∈ 𝛽𝑆
𝜏𝑡+𝑡0(𝐴0)

We can then combine the above with equation 2.4.10 to get:

P𝑝

(︀
𝑇 ≤ 𝜏𝑡+ 𝑡0

)︀
≥ P𝑝

(︀
0 ∈ 𝛽𝑆

𝑡(Re𝑚(𝐴𝑡0))
)︀

≥ 1 − 𝐶𝑒−𝛾(𝑞)𝑡

This can be rewritten to:
P𝑝(𝑇 > 𝑡) ≤ 𝐶𝑒−𝛾(𝑞) 𝑡−𝑡0

𝜏

From this, we can conclude that:
𝛾(𝑝) ≥ 𝛾(𝑞)

𝜏
> 0 �

2.5 Conclusion for theoretical work

Finally, with the result of Theorem 2.4.1 we can produce the main result of this paper. The proof is
mostly stringing together previous results.
Theorem 2.5.1. Conjecture 1.1.3 holds for abelian groups of rank 2. That is, let 𝐻 be a finitely
generated abelian group of rank 2 and let 𝑆 ⊆ 𝐻 be a finite symmetric set with 0 /∈ 𝑆. Moreover we set
𝑘𝑆 as follows:

𝑘𝑆 = #{𝑠 ∈ 𝑆 | ∀𝑛 ∈ N+ : 𝑛× 𝑠 ̸= 0}
2

Then for 𝛽𝑘 on Γ(𝐻,𝑆) we have:

𝜋𝑐 = 𝑝𝑐 =
{︃

0 if 𝑘 ≤ 𝑘𝑆

1 if 𝑘 > 𝑘𝑆

Proof. The case 𝑘 > 𝑘𝑆 is proven in Theorem 2.2.12.

So all that remains is the case 𝑘 ≤ 𝑘𝑆 . Since 𝐻 has rank 2, there exists a surjective group homomorphism:

𝜑 : 𝐻 → Z2

Now, we know that 𝜋𝑐 ≥ 𝑝𝑐. Thus it suffices to show that 𝜋𝑐 = 0. To this end, we set 𝑇 ⊆ 𝑆 to be all
non-periodic elements of 𝑆. From Proposition 2.1.12 we then know that:

𝜇𝑇 (𝐴) ⊆ 𝛽𝑘(𝐴) (2.5.1)

Next, we take 𝑄 = 𝜑(𝑇). By Theorem 2.4.1 we know that 𝜋𝑐 = 0 for 𝛽𝑄. By domination, the same must
then hold for 𝜇𝑄. Then, by Theorem 2.1.13 it follows that 𝜋𝑐 = 0 for 𝜇𝑇 . From this and the domination
from (2.5.1) it finally follows that 𝜋𝑐 = 0 for 𝛽𝑘 on Γ(𝐻,𝑆). �

Behind this result lie 3 versions of bootstrap percolation that dominate each other. Specifically, we have:

𝛽𝑘 ≥ 𝜇𝑆 ≥ 𝛽𝑆

Where 𝛽𝑘 is 𝑘-threshold bootstrap percolation (Equation 1.0.1) taking 𝑘 = #𝑆
2 , 𝜇𝑆 is modified boot-

strap percolation (Definition 2.1.11), and 𝛽𝑆 is convex bootstrap percolation (Equation 2.2.1). Modified
bootstrap percolation is only used in Section 2.1.2. We cannot use convex bootstrap percolation there
because it doesn’t make sense to talk about half planes in abelian groups with a toroidal part. Note that
in the canonical case of Z𝑛 with 𝑆 = {𝑒1 . . . 𝑒𝑛} modified and convex bootstrap percolation are the same.

37

2.5. CONCLUSION FOR THEORETICAL WORK CHAPTER 2. THEORETICAL WORK

Below we have a brief overview of the structure of the results supporting the main result for the case
𝑘 > 𝑘𝑆 . We list the most relevant lemmas and theorems, and show their dependence by indentation.

Theorem 2.1.13: For modified bootstrap percolation on any Cayley graph of a finitely generated
abelian group 𝐻, we can discard the toroidal part of 𝐻.

Theorem 2.1.8: The abelian structure theorem.
Theorem 2.4.1: Z2 has 𝜋𝑐 = 0 for convex bootstrap percolation.

Theorem 2.4.2: The renormalization theorem.
Lemma 2.4.3: Sufficient condition for a set being internally spanned, and an upper bound
on the number of steps require to get there.

Lemma 2.4.6: Stochastic domination.
Theorem 2.2.13: Peierls estimate gives upper bound on 𝜋𝑐.
Lemma 2.3.3: 𝑅𝑆(Poly𝑆(𝑘𝑏), 𝑝) goes to 1 as 𝑘 goes to infinity.

Lemma 2.2.8: Growth of a polytope through facets.
Equation 2.3.9: Equation for the probability that all ‘shells’ around a polytope are inter-
nally spanned.

This structure closely follows the argument used by [Sch92], which got the result for any dimension,
but using the canonical generators rather than an arbitrary set of generators. Our more general case
added some significant difficulties. This was most noticeable with the renormalization theorem. Here,
we covered the plane with overlapping polygons, whereas in [Sch92] it was possible to partition the space
into hypercubes. This makes proving the actual theorem more difficult, and is also why we require the
stochastic domination theorem.

Another difficulty of our case as compared with the case of canonical generators lies with Lemma 2.3.3.
In the canonical case, our sets Poly𝑆(𝑏) are boxes. This means that when we grow a facet, that facet
doesn’t change. In our case, growing a facet changes that facet. This makes it much harder to use
inductive arguments. In the 2D case, we saw that growing an edges shrinks the edge. In the general
case, the changes to a facet can be more complicated.

2.5.1 Extending result to arbitrary abelian groups

The case 𝑘 > 𝑘𝑆 in Conjecture 1.1.3 is proven for all finitely generated abelian groups in Theorem 2.2.12.
The case 𝑘 ≤ 𝑘𝑆 remains unproven for abelian groups of rank above 2. To fully prove the conjecture it
would suffice to show that convex bootstrap percolation on Z𝑑 has 𝜋𝑐 = 0 for arbitrary dimension 𝑑 and
generating set 𝑆.

It should be noted that we do have some weaker results that apply to the case 𝑘 ≤ 𝑘𝑆 in arbitrary
dimension. They are listed below.

• From [Sch92] we know that 𝜋𝑐 = 0 on Γ(Z𝑑, {𝑒1 . . . 𝑒𝑑} for convex, modified, and 𝑘𝑆-threshold
bootstrap percolation. Here we take 𝑒1 . . . 𝑒𝑑 to be the canonical basis vectors.

• By domination, the above result means that 𝜋𝑐 = 0 on Γ(Z𝑑, 𝑆) for 𝑑-threshold bootstrap percola-
tion. This presumes that 𝑆 is a generating set as per Definition 2.2.2. Moreover, it presumes that
𝑆 actually generates Z𝑑, so that Γ(Z𝑑, 𝑆) is connected.

• From Theorem 2.2.13 we know that:

𝜋𝑐 ≤ 1
#𝑆 − 1 < 1

for convex bootstrap percolation on Γ(Z𝑑, 𝑆) for any generating set 𝑆. By domination this extends
to modified and 𝑘𝑆-threshold bootstrap percolation. It is interesting to compare this to the result
of Lemma 2.1.4. This lemma means that:

𝑝𝑐 ≤ 1 − 𝑞

where 𝑞 is the critical threshold for site percolation. However, the best bound on 𝑞 we could find
is actually the same: 𝑞 > 1

#𝑆−1 based on the exact same argument as Theorem 2.2.13.

38

2.5. CONCLUSION FOR THEORETICAL WORK CHAPTER 2. THEORETICAL WORK

• From Theorem 2.1.9 we know that all 𝑘-forts are infinite.

These results combined really support the conjecture.

Furthermore, we have an idea for how one might extend our argument for Z2 to Z𝑟. Most of our
intermediary results already are formulated and proven for arbitrary dimension. However, a few key
results are specific to Z2. Notably, there are two big hangups: the renormalization theorem, and the
seed argument.

Of these, the renormalization theorem is the hardest to extend. Currently, the supporting Lemma 2.4.4
is formulated in 2D, but the proof generalizes to any dimension. One only needs to generalize quad-
rants to their higher dimensional equivalent of Orthants and define higher dimensional bounding boxes
analogously.

The biggest obstacle with renormalization lies in the proof of Theorem 2.4.2 itself. An idea for extending
this proof to arbitrary dimension is to show that:

Nm𝑚(𝐶 ∪ {0}) = Conv(𝑚𝐶) ⊕ 𝑃𝑚

for any minimal convex half 𝐶 ∈ 𝒞𝑆 . This seems to be true or at least achievable by tweaking the definition
of 𝑃𝑚 based on our cursory examination. We would then need to combine this with Lemma 2.4.3 to
show that Nm𝑚(𝐶) grows to Nm𝑚(𝐶 ∪ {0}). We suspect this approach would also greatly simplify the
proof of Theorem 2.4.2.

In the seed argument, at some point we want to describe the following scenario. We have a polytope
𝑃 = Poly𝑆(𝑘𝑏) and wish to grow it to 𝑃 ′ = Poly𝑆((𝑘 + 1)𝑏). As per Lemma 2.2.8 this can be done by
growing a finite sequence of facets. This growth occurs when these facets are internally spanned. Since
the facets have a lower dimension, the probability of them being internally spanned is easier to describe.
However, we need some way to describe the intermediate polytopes. Or rather, we need some way to
describe these intermediate facets we need to be internally spanned. In 2D, these facets are edges, and
we were able to describe them sufficiently with Equation 2.3.7. Combining that equation with the know
probability of a line being internally spanned yields Equation 2.3.8. This is of the form:

P𝑝(𝑃 ′ internally spanned | 𝑃 internally spanned) ≥
(︁

1 − 𝑒𝑓(𝑃)
)︁𝐽

(2.5.2)

where 𝑓(Poly𝑆(𝑘𝑏)) = 𝑂(𝑘).

The remainder of the seed argument is based on the above equation. Presuming (2.5.2) holds in dimension
𝑑− 1, one can generalize the proof of Theorem 2.3.2 to yield 𝑝𝑐 = 0 in dimension 𝑑. Similarly, the proof
of Lemma 2.3.3 generalizes to yield:

lim
𝑘→∞

𝑅𝑆(Poly𝑆(𝑘𝑏), 𝑝) = 1

in dimension 𝑑 presuming (2.5.2) holds in dimension 𝑑 − 1. Thus, if we can get something of the form
Equation 2.5.2 for higher dimensions, that would extend our results.

To do this in dimension 𝑑, it would be very useful to have a bound of the following form for polytopes
of dimension 𝑑− 1:

𝑅𝑆(Poly𝑆(𝑘𝑏), 𝑝) ≥ 1 − 𝑒𝑓(𝑘) (2.5.3)

where 𝑓(𝑘) = 𝑂(𝑘). This would take the role of Equation 2.3.2 which gives such a bound for 1-dimensional
polytopes. Note that it is possible to adapt Proposition 3.2 in [Sch92] to conclude a bound like above
from 𝜋𝑐 = 0. This is done much like our Lemma 2.3.3 is adapted from Lemma 3.2 in [Sch92]. Since we
have 𝜋𝑐 = 0 for 2D, this would yield the desired bound for 3D.

Next, we sketch an approach for proving Equation 2.5.2 in dimension 𝑑 assuming we have Equation 2.5.3
in dimension 𝑑 − 1. The challenge here is to describe the intermediate facets 𝐹 ′

𝑖 (𝑃) (defined in Equa-
tion 2.3.6), given only 𝑃 . So, let 𝐹1 be the facet normal to 𝑢𝑖 in polytope 𝑃 = Poly𝑆(𝑘𝑏) and let 𝐹2 be
the facet 𝐹 ′

𝑖 (𝑃). Our idea is to rewrite 𝐹2 as follows:

𝐹2 = (𝐹1 ⊖𝐴) ⊕𝐵

39

2.5. CONCLUSION FOR THEORETICAL WORK CHAPTER 2. THEORETICAL WORK

for some masks 𝐴 and 𝐵. Using this expression we can get a crude bound:

𝑅𝑆∩𝑁(𝑢)(𝐹2, 𝑝) ≥ 𝑅𝑆∩𝑁(𝑢)(𝐹1 ⊖𝐴)#𝐵 (2.5.4)

Because, if for every 𝑏 ∈ 𝐵 the set 𝑏 + 𝐹1 ⊖ 𝐴 is internally spanned then 𝐹2 is internally spanned. We
then simply ignore the dependence of these events. This is not an issue because these are all increasing
events.

The idea is then to pick a mask 𝐴 that can be used universally for all intermediary facets 𝐹 ′
𝑖 (𝑃),

1 ≤ 𝑖 ≤ 𝐽 . We use that to get a lower bound on:

𝑅𝑆∩𝑁(𝑢)(𝐹 ′
𝑖 (𝑃) ⊖𝐴)

We then consider all 𝐵s needed given our fixed 𝐴. This gives a finite upper bound on #𝐵. Then, we get
a lower bound on Equation 2.5.4 that holds for all 𝐹 ′

𝑖 (𝑃). Notably, we need these bounds on 𝐴 and 𝐵
to be independent of the scaling factor 𝑘. We believe this, combined with Equation 2.5.3 for the facets
would then lead to Equation 2.5.2.

Our approach for the 2D case was very similar to what is outlined above. However, there we did not
need the power #𝐵. Instead, for 𝐹1 and 𝐹2 line segments, we had the much simpler bound:

𝑅𝑆∩𝑁(𝑢)(𝐹2, 𝑝) ≥ 𝑅𝑆∩𝑁(𝑢)(𝐹1 ⊖𝐴)

Now suppose that the above outline holds, and the renormalization argument holds in arbitrary dimen-
sions, and we can conclude Equation 2.5.3 from 𝜋𝑐 = 0. In that case, we could make an inductive
argument on the dimension 𝑑 to conclude 𝜋𝑐 = 0 for Z𝑑. The base case would be 𝑑 = 1 which holds
trivially. Then, we use the above outline to conclude that for 𝑑 + 1 we have 𝑅𝑆(Poly𝑆(𝑘𝑏), 𝑝) → 1.
We then use the renormalization theorem, together with stochastic domination and Theorem 2.2.13 to
conclude that 𝜋𝑐 = 0 for 𝑑+ 1. Finally, we can conclude Equation 2.5.3 from 𝜋𝑐 = 0. This would finish
the inductive argument. Since Theorem 2.1.13 holds in arbitrary dimension, we would then be able to
confirm Conjecture 1.1.3!

40

Chapter 3

Experimental Work

In the previous sections, we have progressed towards exploring Conjecture 1.1.2 by mathematical meth-
ods. Here, we take a more empirical approach. This comes at the cost of rigour, but allows us to explore
much more difficult problems.

Recall that the conjecture states that for undirected Cayley graphs of amenable groups with degree 2𝑘 we
have 𝑝𝑐 = 0 for 𝑘-threshold bootstrap percolation. To test this, we will compute bootstrap percolation
on an increasing sequence of finite subgraphs of these Cayley graphs. It should be noted that by working
with finite graphs, we lose a lot of our previous theoretical properties. For example, the 0-1 law no
longer holds. Moreover, for our original definition of the ‘critical point’ 𝑝𝑐 we always have 𝑝𝑐 = 1. For
any initial density 𝑝 < 1 the probability that the entire graph (of size 𝑛) is completely unoccupied is
(1 − 𝑝)𝑛 > 0 so P𝑝(𝑇 = ∞) < 1.

We hope to see some form of critical behavior in these finite subgraphs. That is, given a finite subgraph
𝐺, we hope that there is some critical density 𝑞𝐺 such that initial densities slightly above 𝑞𝐺 lead to
occupying almost the entire graph, and initial densities slightly below 𝑞𝐺 show very little growth. The
range around 𝑞𝐺 where we transition from one form of behavior to the other form is called the ‘phase
transition’. Then, if the conjecture holds, one would expect that this critical point 𝑞𝐺 converges to 0
when we let the subgraph 𝐺 increase in size.

It is of course possible this convergence is so slow it is unnoticeable. Conversely, convergence to a suffi-
ciently small positive value is indistinguishable from convergence to 0. Moreover, it is not inconceivable
that 𝑝𝑐 = 0 whilst 𝑞𝐺 does not converge to 0. Finally, there are many different increasing sequences of
finite subgraphs; the choice of this sequence could affect the convergence of 𝑞𝐺. The choice could also
affect the speed of convergence, the value 𝑞𝐺 converges to, or whether we have convergence at all. As
such, the aim of this experiment is not to give certainty. Instead, it is meant to give guidance for further
research.

An issue of approximating by finite subgraphs is the introduction of a ‘border’. The border of a subgraph
is the set of edges with exactly one vertex inside the subgraph. Formally, given a graph (𝑉,𝐸) and a
subgraph 𝐹 ⊆ 𝑉 we define the border 𝛿(𝐹) as:

𝛿(𝐹) = 𝐸 ∩ (𝐹 × (𝑉 ∖ 𝐹))

A vertex 𝑣 ∈ 𝐹 lies on the border of 𝐹 if it is a vertex of any edge in 𝛿(𝐹). These vertices are essentially
missing one of their neighbors. This is a simple issue with vertices on the border. Having fewer neighbors
makes it harder to activate using bootstrap percolation. Another issue is that vertices on the border are
locally different from the Cayley graph. That is, around these points the sub-graph ‘looks’ different from
the Cayley graph. Since we are looking to approximate the Cayley graph, this is undesirable.

A potential solution is to not take subgraphs of the Cayley graphs, but instead take Cayley graphs of
finite groups that are locally similar. One can take a sequence of such graphs that ‘converges’ to the
infinite Cayley graph. However, it is less evident that behavior of such locally similar graphs informs us
about behavior of the full graph.

41

3.1. COMPUTING BOOTSTRAP PERCOLATION CHAPTER 3. EXPERIMENTAL WORK

3.1 Computing bootstrap percolation

To do our experiments, we need to actually compute bootstrap percolation. Moreover, as we want to
simulate graphs of increasing size, we aimed for an efficient algorithm. Throughout this section, we take
(𝑉,𝐸) to be a finite graph. We also set 𝑛 = #𝑉 and take 𝐴 to be the adjacency matrix of our graph.
From this adjacency matrix we have an implicit enumeration of 𝑉 . Finally, 𝑘 is the threshold we use for
bootstrap percolation.

Recall that 𝑘-threshold bootstrap percolation on the graph (𝑉,𝐸) is defined as iterated steps of the
following function:

𝛽𝑘 : 2𝑉 → 2𝑉

𝛽𝑘(𝐴) = 𝐴 ∪ {𝑥 ∈ 𝑉 | #𝐸 ∩ ({𝑥} ×𝐴) ≥ 𝑘}

Where we call 𝐴 our set of active points.

Now, as our graph is finite, the adjacency matrix 𝐴 has implicitly enumerated the nodes 𝑉 . Thus we can
encode any subset 𝑋 ⊆ 𝑉 as a vector of 0s and 1s. That is, we identify such a subset 𝑋 as an element
of {0, 1}𝑛. We can then get an equivalent formulation based on the threshold function 𝑡𝑘 : N𝑛 → {0, 1}𝑛

that does pointwise greater-than-or-equal comparison with 𝑘. That is, consider ≥ a Boolean operator
N × N → {0, 1}, then we have:

𝑡𝑘((𝑥1 . . . 𝑥𝑛)) = (𝑥1 ≥ 𝑘 . . . 𝑥𝑛 ≥ 𝑘)

Similarly, we let the logical or operator ∨ operate pointwise on {0, 1}𝑛. We then get:

𝛽𝑘 : {0, 1}𝑛 → {0, 1}𝑛

𝛽𝑘(𝑋) = 𝑋 ∨ 𝑡𝑘(𝐴𝑋)

Where 𝐴𝑋 denotes matrix multiplication. This multiplication yields a vector storing for each vertex how
many of its neighbors are in 𝑋. Thus, we see 3 basic operations: a matrix-multiplication, a thresholding,
and a logical or.

We can thus compute bootstrap percolation by the following naive recurrent sequence [𝑋𝑖] ∈ [{0, 1}𝑛]

𝑋𝑖+1 = 𝑋𝑖 ∨ 𝑡𝑘(𝐴𝑋𝑖)

Which we iterate until we reach a fixed point. We are guaranteed to reach a fixed point because 𝑋𝑖 is
increasing and bounded.

If we were to implement an algorithm based on this, it is important to use the sparsity of 𝐴. For 𝐴
contains 𝑛 × 𝑛 entries, of which at most 𝑑 × 𝑛 are nonzero. (taking 𝑑 to be the maximal degree of any
node in 𝑉). Notably, 𝑑 is constant whilst we take 𝑛 → ∞. However, we are better off storing the vector
𝑋𝑖 as a full vector. For if we have percolation, 𝑋𝑖 will eventually contain very few 0s.

We can improve on the naive algorithm by memoizing the calculation of 𝐴𝑋𝑖. This is based on the
increasingness of [𝑋𝑖]. We create a new sequence of the memoized matrix multiplications [𝑌𝑖] ∈ [N𝑛]
with 𝑌𝑖 ⊆ N𝑛. This vector 𝑌𝑖 stores how many neighbors of a vertex are active. We also define a sequence
[Δ𝑖] ∈ [{0, 1}𝑛] storing the points added to 𝑋𝑖:

𝑌𝑖 = 𝐴𝑋𝑖

Δ0 = 𝑋0

Δ𝑖+1 = 𝑋𝑖+1 −𝑋𝑖

We can then derive the following expression:

𝑌𝑖+1 = 𝐴𝑋𝑖+1 = 𝐴𝑋𝑖 +𝐴(𝑋𝑖+1 −𝑋𝑖) = 𝑌𝑖 +𝐴Δ𝑖+1

This allows us to derive the following recurrent expressions for calculating 𝑋𝑖:

𝑋𝑖+1 = 𝑋𝑖 ∨ 𝑡𝑘(𝑌𝑖)
Δ𝑖+1 = 𝑋𝑖+1 −𝑋𝑖

𝑌𝑖+1 = 𝑌𝑖 +𝐴Δ𝑖+1

(3.1.1)

42

3.1. COMPUTING BOOTSTRAP PERCOLATION CHAPTER 3. EXPERIMENTAL WORK

Note that here, we can store Δ𝑖 as a sparse vector. Because, unlike 𝑋𝑖, Δ𝑖 does not have an increasing
number of nonzero entries. Then, computing 𝑌𝑖 becomes a sparse-vector sparse-matrix multiplication,
which is a lot faster than the full-vector sparse-matrix multiplication we had with the previous approach.
An easy way to analyze the resulting speed up is to consider how often we need to query the neighbors
of a point (i.e. a column of matrix 𝐴). In the previous approach, we need the neighbors of a point at
every step after the point was activated. But in the new formulation we only need the neighbors of an
active point once, at the step after it was activated.

This is a step in the right direction, but there is more to be gained. It turns out there is a lot of duplicated
information between 𝑋𝑖 and 𝑌𝑖. We have the following lemma:
Lemma 3.1.1. With 𝑋𝑖 and 𝑌𝑖 as defined above we have:

𝑋𝑖 = 𝑋0 ∨ 𝑡𝑘(𝑌𝑖)

Proof. The case 𝑖 = 0 follows from the first line of Equation 3.1.1. We then proceed by induction. So
suppose the lemma holds for 𝑖. Then for 𝑋𝑖+1 we have the following, by again using Equation 3.1.1.

𝑋𝑖+1 = 𝑋𝑖 ∨ 𝑡𝑘(𝑌𝑖) = 𝑋0 ∨ 𝑡𝑘(𝑌𝑖−1) ∨ 𝑡𝑘(𝑌𝑖)

Now, note that the sequence [𝑌𝑖] is increasing and 𝑡𝑘 is an increasing function. Thus we have:

𝑡𝑘(𝑌𝑖−1) ∨ 𝑡𝑘(𝑌𝑖) = 𝑡𝑘(𝑌𝑖) �

Paraphrasing the lemma: a node is active if and only if it had more than 𝑘 active neighbors in the
previous step, or it was active in the initial condition.

To make this even simpler, we define a new sequence [𝑍𝑖] ∈ [N𝑛] that is just [𝑌𝑖] plus a constant vector.

𝑍𝑖 = 𝑌𝑖 + 𝑘𝑋0

where 𝑘𝑋0 just denotes scalar multiplication by 𝑘. By Lemma 3.1.1 and definition of 𝑡𝑘 and ∨ we then
get:

𝑋𝑖 = 𝑡𝑘(𝑍𝑖) (3.1.2)

This is the basis of our final recurrent form:

𝑍0 = 𝑘𝑋0

Δ0 = 𝑋0

𝑍𝑖+1 = 𝑍𝑖 +𝐴Δ𝑖

Δ𝑖+1 = 𝑡𝑘(𝑍𝑖+1) − 𝑡𝑘(𝑍𝑖)

(3.1.3)

If we ever need 𝑋𝑖 we can simply use Equation 3.1.2 to derive it from 𝑍𝑖.

Note that, since we only ever need a column of 𝐴 once, it does not make sense to actually pre-compute
the matrix if we can just generate the columns on the fly. In practice we constructed all our adjacency
matrices one column at a time. This makes it rather easy to simply compute these columns on the fly. A
downside is that this fixes our enumeration of 𝑉 to one in which it is easy to compute the neighbors on
the fly. This might not be the enumeration that is best for performance. Because the enumeration chosen
affects the memory-access pattern of the algorithm. Due to modern CPU caching, accessing memory
‘close’ to previously accessed memory is much faster. Thus, it might help for the enumeration to give
nodes that are close in the graph indices that do not differ too much. When implementing an algorithm,
care could then be taken to try and keep subsequent access be to nodes that are ‘close’.

We started with an implementation based on Equation 3.1.1. This actually stored Δ𝑖 as a full vector
for the benefit of sequential memory access and stored the matrix 𝐴 as a sparse CSC matrix. The final
implementation, based on Equation 3.1.3, was a massive improvement in running time, and a smaller
but still very significant improvement in memory use.

Now based on our final recurrent form (3.1.3) we get the following algorithm in pseudo-code. This
algorithm is based around lists, which comes with some notation. By 𝐴* we mean lists with elements

43

3.1. COMPUTING BOOTSTRAP PERCOLATION CHAPTER 3. EXPERIMENTAL WORK

from 𝐴. To construct a list, we have a function 𝑙𝑖𝑠𝑡 that takes 0 or 1 arguments and returns a list
containing its arguments. We denote list concatenation using .. as an infix operator. That is, given two
lists 𝑋,𝑌 ∈ 𝐴* we define the 𝑋..𝑌 to be 𝑌 concatenated to 𝑋. Finally, the function length: 𝐴* → N
returns the length of a list.

Algorithm 1: BootstrapPercolation
1 define Boots t rapPreco la t i on (𝑋0 , 𝑘 , ne ighbs)
2 input : 𝑋0 ∈ {0, 1}𝑛

3 # v ec t o r o f po in t s t a t e s in i n i t i a l cond i t i on
4 𝑘 ∈ N
5 # the t h r e s h o l d
6 neighbs : N→ N*

7 # given the index o f a node , t h i s r e tu rns a l i s t o f
8 # i n d i c e s o f the ne i ghbor ing nodes .
9 output : numActive # Fina l number o f nodes a c t i v e

10 stepsTaken # The number o f s t e p s taken
11

12 declare counts∈ N𝑛

13 declare Δ ⊆ N
14 declare newCounts∈ N*

15 declare stepCount ∈ N
16

17 Δ← ∅
18 stepCount ← 0
19 counts ← 𝑘𝑋0 # s c a l a r v ec t o r m u l t i p l i c a t i o n i s po in tw i s e
20 f o r a l l vertexIdx ∈ 0 . . . (n − 1)
21 i f 𝑋0 [v e r t ex Id] = 1
22 Δ← Δ ∪ {vertexIdx}
23

24 declare occupied ∈ N
25 declare l a s tOccupied ∈ N
26 occupied ← l ength (Δ)
27 l a s tOccupied ← 0
28

29 while occupied ̸= lastOccupied
30

31 newCounts ← l i s t ()
32 f o r a l l newVertex ∈ Δ
33 newCounts ← newCounts . . ne ighbs (newVertex)
34

35 Δ ← ∅
36 f o r a l l newNeighbor ∈ newCounts
37 counts [newNeighbor] ← counts [newNeighbor] + 1
38 i f counts [newNeighbor] = k
39 Δ← Δ ∪ {newNeighbor}
40

41 l a s tOccupied ← occupied
42 occupied ← occupied +#Δ
43

44 stepCount ← stepCount + 1
45

46 return (numActive : occupied , stepsTaken : stepCount)

Here, Δ and counts from the algorithm correspond to Δ𝑖 and 𝑍𝑖 from Equation 3.1.3. The variable
newCounts is an intermediate value storing 𝐴Δ𝑖. Note that we are storing newCounts as a multi-set
using a list. This list contains all indices of non-zero elements. The multiplicity of the index encodes the
value at that index. So the vector (1, 0, 0, 4) could be encoded as [0, 3, 3, 3, 3] or [3, 0, 3, 3, 3]. This means
that incrementing an entry in newCounts is done by simply appending the appropriate index to the
list. The vector counts is stored as a full vector because in the case of percolation, this vector contains
increasingly many nonzero elements.

44

3.1. COMPUTING BOOTSTRAP PERCOLATION CHAPTER 3. EXPERIMENTAL WORK

This algorithm is easy to parallelize in a shared memory model. The parallelized version of the algorithm
is below. Notationally, we introduce new keywords prefixed by ||: that deal with the parallelization. Of
these, there are three. ||:parallel is a keyword that modifies the subsequent for loop to run in parallel.
This keyword takes certain variables as arguments. These variables are shared among the threads, so
one thread’s modifications are visible to the other threads. For all other variables, each thread gets a
local copy. Then we have ||:Barrier. This operation waits until all other threads have hit this barrier,
and only then continues. This is used for synchronizing the threads. Finally, we have the ||:atomic
modifier to a declaration. This modifier signifies that increments to these variables are done atomically.
For an array, this applies to each element individually. Thus, one can concurrently increment two distinct
elements of the array. We then get the following algorithm.

Besides adding the parallel features, the only difference between this algorithm and Algorithm 3.1 is
termination of the outer loop. Due to synchronization requirements, we change to a while true with a
conditional break statement.

Algorithm 2: BootstrapPercolationParallel
1 define B o o t s t r a p P r e c o l a t i o n P a r a l l e l (𝑋0 , 𝑘 , ne ighbs)
2 input : 𝑋0 ∈ {0, 1}𝑛

3 # v ec t o r o f po in t s t a t e s in i n i t i a l cond i t i on
4 𝑘 ∈ N
5 # the t h r e s h o l d
6 neighbs : N→ N*

7 # given the index o f a node , t h i s r e tu rns a l i s t o f
8 # i n d i c e s o f the ne i ghbor ing nodes .
9 output : numActive # Fina l number o f nodes a c t i v e

10 stepsTaken # The number o f s t e p s taken
11

12 declare counts ∈ N𝑛 | | : atomic
13 declare Δ ⊆ N
14 declare newCounts∈ N*

15 declare stepCount ∈ N
16

17 Δ← ∅
18 stepCount ← 0
19 counts ← 𝑘𝑋0 # s c a l a r v ec t o r m u l t i p l i c a t i o n i s po in tw i s e
20 f o r a l l vertexIdx ∈ 0 . . . (n − 1)
21 i f 𝑋0 [v e r t ex Id] = 1
22 Δ← Δ ∪ {vertexIdx}
23

24 declare occupied ∈ N | | : atomic
25 declare l a s tOccupied ∈ N
26 occupied ← l ength (Δ)
27 l a s tOccupied ← 0
28

29 | | : paral le l (counts , occupied)
30 while t rue
31 | | : barrier
32 i f occupied = lastOccupied
33 break
34 l a s tOccupied ← occupied
35 stepCount ← stepCount + 1
36 | | : barrier
37

38 newCounts ← l i s t ()
39 f o r a l l newVertex ∈ Δ
40 newCounts ← newCounts . . ne ighbs (newVertex)
41

42 Δ ← ∅
43 f o r a l l newNeighbor ∈ newCounts
44 counts [newNeighbor] ← counts [newNeighbor] + 1
45 i f counts [newNeighbor] = k

45

3.1. COMPUTING BOOTSTRAP PERCOLATION CHAPTER 3. EXPERIMENTAL WORK

46 Δ← Δ ∪ {newNeighbor}
47

48 occupied ← occupied + #Δ
49

50 return (numActive : occupied , stepsTaken : stepCount)

We see that each thread has shared access to the array counts and the value occupied. Not coinciden-
tally, these are the two variables that are made atomic. Beyond that, we have added two ||:Barriers.
To see that this algorithm remains correct, consider the lists newCounts and Δ in the non-parallel case
at any step. Next, consider the concatenation of all local versions of those lists at the same step. The
concatenated lists contain the same elements as the lists from the non-parallel case. Thus counts is the
same at each step, and so is occupied.

Due to the first barrier, all threads are always running the same step of bootstrap percolation. Moreover,
the two barriers combined ensure that we check occupied against lastOccupied only after all threads
have properly updated occupied. Finally, the barriers also ensure that no other thread modifies occupied
before we save it in lastOccupied.

In the parallel algorithm we get some indeterminism when reading from a shared variable. This is relevant
when we read from counts. For occupied this is not an issue because during the reads we have either
atomicity, or synchronization via barrier to prevent indeterminism. As explained, this indeterminism
does not affect the correctness of the algorithm. However, it does have an effect on performance, for it
might lead to unbalanced work amongst the threads. It might happen that one thread gets a really big
Δ (and thus newCounts) whereas other threads have very little. Due to the synchronization of the while
loop, this leads to the threads with less work waiting on the other threads.

This could be solved by rebalancing the vector Δ. That is, by moving a part of a large local version Δ to
another, small, local version of Δ. Many different versions of rebalancing is possible. One might rebalance
every step, every few steps, or only when the difference are very big (either absolutely or relatively). The
downside to rebalancing is constant overhead and the rather complex interaction between threads that
is needed. In practice, it would require extensive benchmarking to determine which method, if any, is
better. Due to time limitations we did not do this benchmarking.

One might note that in our algorithm the list newCounts is redundant. We could merge the first and
second for loops in the main loop, essentially dealing with each new neighbor as it comes up, rather than
first storing it. We chose not to do this for reasons of extensibility. For example, the above mentioned
rebalancing requires the list newCounts. It is also very useful if one wants to create a distributed version
of the algorithm, as will be explained in Section 3.1.2.

3.1.1 Implementation

We implemented Algorithm 3.2 in C++. The code can be found in Appendix A.

We used a std::vector to store Δ and newCounts. The type std::vector is a dynamically resized
array. This is quite fast for appending values, which is constant time unless the array needs to be resized.
It is also optimal for iterating over all values, because that is just sequential memory access. The multi-
threading and corresponding synchronization and variable sharing was done using OpenMP. For atomic
access, we made use of the atomic intrinsic in C++. This compiles to code using assembly-level lock
instructions. This is a lot faster than doing the required synchronization at a higher level. Specifically,
the array counts was an array of atomic chars, and the variable occupied was an atomic 64-bit integer.

Now, let us consider the memory usage of our implementation. Here, we take 𝑁 to be the number of
nodes in our graph, 𝐾 to be the maximal degree of our graph and 𝐷 to be the initial density.

For the array counts we simply need 𝑁 bytes. Next, we have the list Δ. This is a list of 64-bit integers.
We cannot use 32-bit integers because we want to handle cases where 𝑁 > 232. Due to the dynamic
resizing, we can have at most a factor 2 between the amount of elements in the list, and the amount of
memory reserved. In this analysis, we ignore that factor. Now, we know the list contains 𝐷𝑁 elements in
the first iteration. For subsequent iterations, the exact value is hard to qualify. In practice, we sometimes

46

3.1. COMPUTING BOOTSTRAP PERCOLATION CHAPTER 3. EXPERIMENTAL WORK

see this list grow significantly, though it never seems to exceed 2𝐷𝑁 . Finally, we have the list newCounts.
Presuming that the border is small, we can approximate every node in Δ to have degree 𝐾. Thus for
every element in Δ we have approximately 𝐾 elements in newCounts. This yields a lower bound of:

𝑁 + 8 (𝐷𝑁 +𝐾𝐷𝑁) = (1 + 8 × (𝐾 + 1) ×𝐷) 𝑁 (3.1.4)

and an upper bound based on our observations on the size of Δ and the potential factor 2 overhead of
our dynamic arrays of:

2 (1 + 8 × (𝐾 + 1) × 2𝐷) 𝑁

Notably, we see that the initial density matters quite a bit. For graphs with degree 4, the density has
a multiplier of at least 40 and at most 160. So at a density of only 0.025 we would already use more
memory to store the ‘sparse’ vectors than we use to store the full vector counts. However, it should
be noted that this is about peak memory usage. For computations with a very long tail of steps with
minimal growth, the sparsity becomes very useful.

3.1.2 Potential distributed algorithm

Our parallelized Algorithm 3.2 depends on shared memory. This means the algorithm is limited by the
amount of memory available to any single machine. In practice, we had access to machines with up to
2TB of RAM. This gives an upper bound of around 239 nodes in our graphs (based on Equation 3.1.4
with 𝐾 = 4 and 𝐷 ≈ 0.1). In practice, this was the limiting factor to our simulations.

To get past this limit, we would need to go to a distributed algorithm. That is, one that is run on
multiple different computers (as opposed to multiple different threads). A Distributed global address
space is the obvious way to go about this. In essence, this transparently joins the memory space of
multiple computers into a single address space, and allows it to be accessed as if it were contiguous local
memory. However, this comes with the disadvantage of much more memory latency. For random access,
the difference is multiple orders of magnitude. This is unacceptable for our use case.

As such, we can no longer store the counts array in shared memory. We suggest the following alternative
method for storing and modifying counts:

• Each server is responsible for a specific subset of vertices of the graph. For these vertices, it stores
counts and Δ.

• Each server computes newCounts based on Δ as in the normal algorithm.

• When newCounts contains vertices for which the current server is not responsible, the current
server communicates this to the correct server.

• Servers calculate new Δ based on their local newCounts and based on received communications of
other servers’ newCounts.

The big question is how the servers communicate changes in newCounts. This could be done syn-
chronously, at the end of every step. However, that comes with significant overhead. Moreover, we incur
the full cost of latency every step, and every step takes as long as the slowest server.

Luckily, we do not actually need to synchronize the loops. By giving up synchronization we can no
longer get an accurate count of how many steps of 𝛽𝑆 were needed to reach the final state, but that is
not very important. However, there is another downside. It becomes very hard to determine when we
have actually reached the final state. For example, it is possible that each server has no nodes in either
Δ or newCounts, but there are still messages about new nodes in newCounts in flight.

Beyond the stopping problem, just stating ‘we send messages asynchronously’ is not specific. Instead, we
need a way to batch messages to keep down overhead. However, batching too much might leave servers
idling because they are waiting for a batch update. There is no obvious right way to batch, and we expect
getting an acceptable level of performance to require much trial and error. For these reasons, we did not
design a proper distributed algorithm. We did write and run a synchronized distributed algorithm using
the MPI framework, but performance was abysmal.

47

3.2. TESTED GRAPHS CHAPTER 3. EXPERIMENTAL WORK

3.2 Tested graphs

We did our experiments on Cayley graphs of two classes of amenable groups: Heisenberg groups and
lamplighter groups. As a benchmark, we did the same experiments on abelian graphs. For our experi-
ments, the way we choose the finite subgraphs matters. It is easy to find ‘adversarial’ examples of ever
growing subgraphs with very low probability of percolation. In general, since the border of our subgraph
is where we differ locally from the full graph, we wish to minimize this border. Recall that given a graph
(𝑉,𝐸) and a subgraph 𝐹 ⊆ 𝑉 we defined the border of 𝐹 as:

𝛿(𝐹) = 𝐸 ∩ (𝐹 × (𝑉 ∖ 𝐹))

The size of the border is the cardinality of the above set.

As our graphs are amenable, they admit Følner sequences (see Definition 1.1.1). These are guaranteed
to have a vanishingly small border. That is by definition of a Følner sequence, if [𝐹𝑖] is a Følner sequence
we have:

lim
𝑖→∞

#𝛿(𝐹𝑖)
#𝐹𝑖

= 1

As such, we will let these sequences guide our choice of subgraph.

Below, we treat each class of groups separately. For both, we first define the group and give some
exposition as to why we chose it. Then, we move on to its Følner sequences, and the specific subgraphs
we chose in the end. Finally, we discuss locally similar finite groups that converge to the full group.

3.2.1 The Heisenberg group

The Heisenberg group is the group of upper triangular 3 × 3 matrices under multiplication over some
ring. In our case, we looked at all upper triangular matrices over Z. That is, all matrices of the form:

𝑥, 𝑦, 𝑧 ∈ Z⎛⎝1 𝑥 𝑧
0 1 𝑦
0 0 1

⎞⎠
We will often denote an element of this group by the tuple (𝑥, 𝑦, 𝑧). In this notation, the group operation
is as follows:

(𝑥, 𝑦, 𝑧) ∘ (𝑥′, 𝑦′, 𝑧′) = (𝑥+ 𝑥′, 𝑦 + 𝑦′, 𝑧 + 𝑧′ + 𝑥𝑦′)

We see that this is almost an operation group except for the third coordinate. This is part of the reason
why we chose this group, because it is close to an abelian group, and we have theoretical results about
abelian groups. Specifically, we know from [Sch92] that abelian groups with canonical generators have
𝑝𝑐 = 0. Moreover, we know from [Bal+12] that cubes of size 𝐿 in the abelian group Z𝑛 have a critical
point at 𝑂

(︁
1

log𝑛 𝐿

)︁
(see Equation 1.1.1). Another reason for choosing the Heisenberg group is because

it is one of the simplest finitely generated infinite amenable groups.

The group can be generated by (1, 0, 0) and (0, 1, 0). These are the generators we use for our Cayley
graphs. This means the four neighbors of a point (𝑥, 𝑦, 𝑧) are:

(𝑥+ 1, 𝑦, 𝑧) , (𝑥, 𝑦 + 1, 𝑧 + 𝑥) ,
(𝑥− 1, 𝑦, 𝑧) , (𝑥, 𝑦 − 1, 𝑧 − 𝑥)

(3.2.1)

Easy to describe subsets of this group are the equivalents of boxes in Z3. By a box with dimensions
(𝑎, 𝑏, 𝑐) we mean all elements corresponding to tuples of the form:

(𝑥, 𝑦, 𝑧) such that |𝑥| ≤ 𝑎

2 ∧ |𝑦| ≤ 𝑏

2 ∧ |𝑧| ≤ 𝑐

2 (3.2.2)

48

3.2. TESTED GRAPHS CHAPTER 3. EXPERIMENTAL WORK

We then have an easy Følner sequence indexed by 𝑖 in boxes with dimensions (𝑖, 𝑖, 𝑖2). Note that simple
cubes, or boxes with fixed proportions, will not work. To see this, suppose we take boxes of the form
(𝑖, 𝑎𝑖, 𝑏𝑖) for 𝑎, 𝑏 ∈ R (ignoring rounding). Then the element (0, 𝑏, 0) is a counter-example to this being a
Følner sequence. We really need the 𝑧 dimension to grow asymptotically faster than the other dimensions.

In choosing our subgraph, we do not just want any Følner sequence, we want one that minimizes the
border of our box for our specific generators. Now given a box with dimensions (𝑥, 𝑦, 𝑧) it is easy to
calculate the size of the border. Our box has 6 faces, we consider 1 face in each direction and see which
edges cross these faces.

For the 𝑥𝑧 face and the 𝑦𝑧 face, if we look at Equation 3.2.1 we see neighbors only ever differ by 1 unit
in the 𝑦 or 𝑧 direction respectively. Thus, we have 𝑥× 𝑧 elements for the 𝑥𝑧 face and similarly 𝑦 × 𝑧 for
the 𝑦𝑧 face.

The 𝑥𝑦 face is a bit trickier. A point (𝑥′, 𝑦′, 𝑧′) moves 𝑥′ units in the 𝑧 direction. As such, we cross
the 𝑥𝑦 face when 𝑧′ + 𝑥′ > 𝑧. This occurs for 𝑦

4𝑥
2 points. Note that we have now counted some edges

twice. Some edges cross both the 𝑥𝑦 face and the 𝑥𝑧 face. We can exclude these duplicates from our
count which yields 𝑦−2

4 𝑥2 points. The error caused by including the duplicates is small, and including
the duplicates gives an easier expression. Thus we get a total border size of:

𝑥𝑧 + 𝑦𝑧 + 𝑦 − 2
4 𝑥2 ≈ 𝑥𝑧 + 𝑦𝑧 + 𝑦

4𝑥
2

If we fix the total number of nodes 𝑥 × 𝑦 × 𝑧 = 𝑁 , we find a minimum of the approximate border at a
box with dimensions: (︁

4
√
𝑁, 2 4

√
𝑁, 1

2

√
𝑁
)︁

(3.2.3)

These are not guaranteed to be integers, we just round and consider the errors introduced by this
rounding small enough to ignore.

If we want to eliminate the border by taking locally similar finite groups, we can simply take the
matrix over the ring Z/𝑛Z. This is actually isomorphic to a quotient group of our full Heisenberg
group. This follows from the simple mapping (𝑥, 𝑦, 𝑧) ↦→ (𝑥 mod 𝑛, 𝑦 mod 𝑛, 𝑧 mod 𝑛) being a group-
homomorphism. The corresponding kernel is generated by (𝑛, 0, 0) and (0, 𝑛, 0).

3.2.2 Lamplighter groups

The standard lamplighter group (also known as the binary lamplighter group) can be seen as all possible
states of a Turing machine tape, including the head position. That is, the elements can be encoded as
(𝑛, 𝑇) where 𝑛 ∈ Z and 𝑇 : Z → Z/2Z. Here 𝑛 encodes the position of the head over the tape, and
𝑇 encodes the tape itself. The identity element is (0, 𝑥 ↦→ 0), that is, the empty tape with the head at
position 0. Finally, the group operation is:

(𝑛, 𝑇) ∘ (𝑛′, 𝑇 ′) = (𝑛+ 𝑛′, 𝑥 ↦→ 𝑇 (𝑥) + 𝑇 ′(𝑥+ 𝑛+ 𝑛′))

note that because the addition 𝑇 (𝑥) + 𝑇 (𝑦) above happens in the codomain of 𝑇 here, that is Z/2Z.
Later, we will see cases where 𝑇 has a different codomain. The group is generated by the following two
elements:

(1, 𝑥 ↦→ 0) , (0,1{0})

where 1𝐴 is the indicator function of the set 𝐴. These two elements can be seen as ‘move the head right’
and ‘toggle the bit under the head’ respectively. The group operation can then be interpreted as follows.
An element (𝑛, 𝑇) of the group represents a combination of head movements and bit flips that leads to
tape state (𝑛, 𝑇) from an empty tape. Applying (𝑛′, 𝑇 ′) to (𝑛, 𝑇) is then applying the head movements
and bit flips for (𝑛′, 𝑇 ′) only from the starting tape (𝑛, 𝑇) instead of from an empty tape.

One can generalize this from a binary tape to a tape with 𝑁 values per position. Essentially all that
changes is that elements on the tape are then of the form (𝑛, 𝑇) with 𝑛 ∈ Z and 𝑇 : Z ↦→ Z/𝑁Z.
We have the same expression for our group operation and the same generators. Only now the addition
𝑇 (𝑥) + 𝑇 (𝑦) happens in Z/𝑁Z.

49

3.3. RESULTS CHAPTER 3. EXPERIMENTAL WORK

For the lamplighter group, a Følner sequence indexed by 𝑖 is:

{(𝑛, 𝑇) | |𝑛| ≤ 𝑖 ∧ ∀𝑚 ∈ Z : 𝑇 (𝑚) ̸= 0 → |𝑚| ≤ 𝑖}

That is, instead of taking a bi-infinite tape we take a tape that has positions from 𝑖 to −𝑖. It is somewhat
surprising that the lamplighter group admits a Følner sequence, because it has an exponential growth
rate. That is, if we take the sequence of sets indexed by 𝑖:

{𝑥 | path length to 𝑥 from the origin ≤ 𝑖}

where we count path length based on a Cayley graph. Then the cardinality of those sets grows exponen-
tially in 𝑖. Most amenable groups have a polynomial growth rate while all non-amenable groups have an
exponential growth rate. For example, the Heisenberg group has growth rate of order 𝑂(𝑖4). This makes
the lamplighter group an edge case as it is ‘almost non-amenable’.

For our Cayley graphs of the lamplighter group, we do not want periodic generators. Thus, we do not
take the generators given above, but we take:

(1, 𝑥 ↦→ 0) , (1,1{0})

That is, we add a head-shift to the generator that flips the bit under the head. For our subgraphs, we
take something very close to the Følner sequences above, but also add tapes that have positions from
𝑖 − 1 to −𝑖. This allows us to have tapes of odd length, doubling the number of subgraphs we can
examine. This is important because a tape with length 𝐿 has 𝐿2𝐿 nodes (presuming a binary tape).
This very quick growth means there are not a lot of tape-lengths we can actually run computations for
due to memory limitations. For such a subset with tape-length 𝐿 the border has size 4 × 2𝐿 (again,
presuming a binary tape). To see this, consider that the only way to leave the sub-graph via a generator
is by moving the head position. If the head is at one end, the two generators that increment the head
position exit the subgraph. At the other end, the inverses of those generators exit the subgraph.

If we want to remove the border by taking locally similar finite groups, we can take a ‘wrapped tape’.
For a tape-length 𝐿 an element of our group is then: (𝑛, 𝑇) with 𝑛 ∈ Z/𝐿Z and 𝑇 : Z/𝐿Z → Z/2Z. The
group operation remains the same, noting that the additions involving 𝑛 now happen modulo 𝐿. This is
a quotient group of the full lamplighter group. To see this, consider the homomorphism:

(𝑛, 𝑇) ↦→
(︁
𝑛 mod 𝐿, 𝑥 ↦→

∑︁
{𝑇 (𝑦) | 𝑦 mod 𝐿 = 𝑥}

)︁

3.3 Results

As described in the previous section, we now have interesting sequences of increasing finite graphs, and
know how to compute bootstrap percolation on these graphs. Given such a finite subgraph 𝐺, we are
interested in the relation between the initial density 𝑝 and the expected final density, denoted by 𝐵𝐺.
Formally, we define the function 𝐵𝐺 : [0, 1] → [0, 1] as:

𝐵𝐺(𝑝) = E𝑝

(︃
#
(︀
𝛽𝑘

∞(𝐴0)
)︀

#𝐺

)︃

Where 𝐴0 is an initial condition with density 𝑝. That is, for any vertex 𝑣 ∈ 𝐺 we have P(𝑣 ∈ 𝐴0) = 𝑝 and
this is independent of any other vertices in 𝐺. Our goal is to approximate the function 𝐵𝐺 for various
subgraphs 𝐺. We can easily derive the following properties of 𝐵𝐺 regardless of 𝐺.

𝐵𝐺(0) = 0
𝐵𝐺(1) = 1
𝐵𝐺(𝑝) ≥ 𝑝

𝐵𝐺 is an increasing function

(3.3.1)

50

3.3. RESULTS CHAPTER 3. EXPERIMENTAL WORK

Besides the final density, we are also interested in the density growth. Given an initial density 𝑝 and a
final density 𝑓 , this is defined as:

𝑓 − 𝑝

1 − 𝑝

The advantage of the density growth is that no growth occurring shows a density growth of 0, whereas
the final density is 𝑝. We divide by 1 − 𝑝 so that occupying all nodes gives a density growth of 1. The
density growth gives the fraction of inactive nodes that were activated. We also define the expected final
density:

𝐵′
𝐺(𝑝) = 𝐵𝐺(𝑝) − 𝑝

1 − 𝑝

Note that this is also an increasing function. To see this, let 𝐴 be an initial condition with density 𝑝.
Then, take 𝐵 = 𝛽𝑘

∞(𝐴). Now, we mean to create an initial condition 𝐴′ with density 𝑝+𝑞 by extending
𝐴. To do this, we take Δ ⊆ 𝑉 ∖𝐴 with density 𝑞

1−𝑝 . We then set:

𝐴′ = 𝐴 ∪ Δ
𝐵′ = 𝛽𝑘

∞(𝐴′) ⊇ 𝐵 ∪ Δ

That last inclusion follows from 𝛽𝑘 being an increasing and extensive function. Then, since Δ was chosen
uniformly, we have the following:

E
(︂

#𝐵′ ∖𝐴′

#𝑉 ∖𝐴′

)︂
≥ E

(︂
#𝐵 ∖ (𝐴 ∪ Δ)
#𝑉 ∖ (𝐴 ∪ Δ)

)︂
= E

(︂
#𝐵 ∖𝐴
#𝑉 ∖𝐴

)︂
What we expect to see is 𝐵′

𝐺 showing critical behavior. That is, there is some density 𝑞𝐺 called the
critical density. For 𝑝 << 𝑞𝐺 we would have 𝐵′

𝐺(𝑝) take a low value. Similarly, for 𝑝 >> 𝑞𝐺 we would
have 𝐵′

𝐺(𝑝) ≈ 1. Finally, for 𝑝 ≈ 𝑞𝐺 we expect 𝐵′
𝐺 to rise rapidly. For these 𝑝 ≈ 𝑞𝐺 we say 𝐺 undergoes

a phase-transition. Note that this critical point 𝑞𝐺 is a much looser concept than the tightly defined 𝑝𝑐

(in Equation 1.0.3. We are then interested how 𝑞𝐺 behaves when we take 𝐺 through our well-chosen
increasing sequences of subgraphs.

To approximate 𝐵′
𝐺(𝑝) for a given 𝑝 and 𝐺 we simply generate an initial condition 𝐴0 (pseudo-)randomly

multiple times, then run the bootstrap percolation algorithm and record the final density. The mean
of these final densities then approximates 𝐵′

𝐺(𝑝). Given a subgraph 𝐺, we repeat this procedure for
various 𝑝 until we believe we have a good view of 𝐵′

𝐺(𝑝) based on Equation 3.3.1. Then, using our
approximate 𝐵′

𝐺 we derive the critical point 𝑞𝐺. We repeat this for ever increasing subgraphs 𝐺 until
the computations start taking too much resources.

When interpolating our estimated points of 𝐵′
𝐺 we use a piecewise monotonic cubic spline. We want

smoother interpolation that linear, thus we pick a spline. However, a normal spline can ‘overshoot’.
This might yield interpolated values of 𝐵′

𝐺 outside [0, 1]. By using piecewise monotonic splines, this is
avoided. The monotonicity is also expected because 𝐵𝐺 is an increasing function. So it is very unlikely
that 𝐵′

𝐺 is not monotonic. Moreover, the possible local-decreasingness of 𝐵′
𝐺 is very limited. As such,

if our approximations for 𝐵′
𝐺 are locally decreasing we take that to be a statistical aberration. Where

computationally feasible, when we see such an aberration, we smooth it over by increasing the total
number of runs for subgraph 𝐺 at initial density 𝑝 where the aberration occurs.

3.3.1 Abelian 4D

As a benchmark, we first apply our method to the group Z4 using addition. From theory, we already
know that 𝑞𝐺 = 𝑂((ln ln ln𝐿)−1). Our subgraphs were simple cubes of side length 𝐿. For the sake
of resource conservation, we did not push 𝐿 as far as possible here. This limited 𝐿 to 188, with a
corresponding maximal memory consumption of only about 3.2GB.

As theory predicts, we see critical behavior, with the critical point slowly decreasing. In Figure 3.2 we
plot an estimate of 𝑞𝐺 by interpolating 𝐵′

𝐺 and finding the 𝑝 where 𝐵′
𝐺(𝑝) ≈ 0.5. Here we can see that

𝑞𝐺 ≈ 0.000606
ln ln ln𝐿

51

3.3. RESULTS CHAPTER 3. EXPERIMENTAL WORK

(3.1-a) 3D view of 𝐵′
𝐺. The gray lines represent

interpolated estimates of 𝐵′
𝐺(𝑝). The dots on these

lines represent the points through which we inter-
polate.

(3.1-b) Contour lines of the graph to the left, plot-
ted from above.

Figure 3.1: Estimated 𝐵′
𝐺(𝑝) for cubes of length 𝐿 in the group Z4. Each point is estimated by at least

20 runs.

which is congruent with what theory predicts.

When looking at individual runs, we see an interesting dichotomy. A given initial condition either
percolates or has no growth at all. This is evident in Figure 3.3. This is a clear form of critical behavior.

3.3.2 Heisenberg

For the Heisenberg group, we looked at subgraphs based on boxes as described in Equation 3.2.2. We
picked boxes with the following dimensions: (︂

𝐿, 2𝐿, 𝐿
2

2

)︂
(3.3.2)

Here we call 𝐿 the side length of a box. This choice was based on Equation 3.2.3, which minimizes the
border of our subgraph. We look at a sequence of increasing values of 𝐿. Every step, we increased 𝐿

Figure 3.2: The estimation of 𝑞𝐺 as a function
of 𝐿 the side length of 𝐺 (in red). And the
function: 𝐿 ↦→ 0.000606

ln ln ln 𝐿 (in blue)

Figure 3.3: Distribution of the final density
for all individual runs on Z4. Note that there
is not a single run with a final density in the
range 0.02 to 0.98.

52

3.3. RESULTS CHAPTER 3. EXPERIMENTAL WORK

(3.4-a) 3D view of 𝐵′
𝐺. The gray lines represent

interpolated estimates of 𝐵′
𝐺(𝑝). The dots on these

lines represent the points through which we inter-
polate.

(3.4-b) Contour lines of the graph to the left, plot-
ted from above.

Figure 3.4: Estimated 𝐵′
𝐺(𝑝) for various subgraphs 𝐺 of the Heisenberg group indexed by the side

length 𝐿. At a given side length 𝐿 the subgraph 𝐺 is chosen as per (3.3.2). Each point is estimated by
at least 20 runs, except for 𝐿 = 388 which has 15 runs.

such that the number of vertices in the graph (and thus the amount of memory required) doubled every
step.

In Figure 3.4 we plot the resultant approximation of 𝐵′
𝐺(𝑝). We see the ‘critical behavior’ we expected.

That is, there seems to be a rather sharp transition in 𝐵′
𝐺. Moreover, the point at which this transition

occurs decreases as the size of our subgraph increases. Comparing this to the results for Z4 we note that
the critical point 𝑞𝐺 seems to be an order of magnitude higher for the Heisenberg group.

We do see some points where the estimation for 𝐵′
𝐺 is decreasing. As explained earlier, we treat these

as aberrations and tried to correct them. We were not able to correct all of these aberrations by doing
more runs due to the computational costs. As it stands, some points were estimated by more than 140
runs to remove aberrations.

Next, we need to derive the critical points 𝑞𝐺 based on our approximations for 𝐵′
𝐺. As the shape of 𝐵′

𝐺(𝑝)
seems to be rather symmetrical during the transition, we define the critical point by 𝐵′

𝐺(𝑞𝐺) = 0.5. In
Figure 3.5 we plot these critical points as a function of the side length of 𝐺. It then seems we have:

𝑞𝐺 ≈ 0.17
log2 log2 log2

𝐿4

16

Note that a side length of 𝐿 corresponds to a subgraph with 𝐿4 vertices, this could explain the term
𝐿4 in the above function. The 3 logs coincide with the results for Z4. Notably, the Heisenberg group
and Z4 share a quartic growth rate, this might explain the 3 logs. We consider the quality of the
fit combined with the above observations weak evidence that indeed we have an approximation of the
critical point. This translates to weak evidence that indeed the Heisenberg graph has 𝑝𝑐 = 0. What
remains unexplained is the constant 0.17 and the base 2 for the logarithms. It should be noted that our
approximation is still 𝑂((ln ln ln)−1). It should also be noted that the convergence we claim to have is
very slow. Without the correspondence to the abelian case, one would probably conclude this seems to
converge to a positive value.

If we look at the outcome of individual runs, we see very clear evidence of critical behavior for individual
runs. In Figure 3.6 we plot the distribution of all final densities of individual runs. We see that any given
run either finished with almost no new points added, or with nearly the entire graph occupied. It would
be very interesting to know why it is so unlikely to add only an intermediary fraction of our subgraph.
As per Lemma 2.1.2 this informs us about the kind of 𝑘-forts we see in our finite subgraphs.

53

3.3. RESULTS CHAPTER 3. EXPERIMENTAL WORK

Figure 3.5: The estimation of 𝑞𝐺 as a func-
tion of 𝐿 the side length of 𝐺 (in red), and the
function 𝐿 ↦→ 0.17

log2 log2 log2
𝐿4
16

(in blue).

Figure 3.6: Distribution of the final density
for all individual runs on Heisenberg graphs.
Note that there is not a single run with a final
density in the range 0.1 to 0.95.

3.3.3 Lamplighter

For the lamplighter group, we pick our subgraphs on the basis of a tape length 𝐿 as described in
Section 3.2.2. We started at a tape length of 15, and incremented the tape length as RAM permitted.
In Figure 3.7 we plotted the resulting approximations of 𝐵′

𝐺.

Again we see ‘critical behavior’. However, for 𝑝 below the critical point we do not have 𝐵′
𝐺(𝑝) ≈ 0.

Instead, it 𝐵′
𝐺(𝑝) rises slowly as 𝑝 increases, until we get near the critical point. There 𝐵′

𝐺(𝑝) ramps up
to very quick growth until it levels off sharply at 𝐵′

𝐺(𝑝) = 1. This slow rise before the critical point is
nicely illustrated by the contour lines in Figure 3.7-b especially when looking at the distance between
the line 𝐵′

𝐺(𝑝) = 0.1 and the line 𝐵′
𝐺(𝑝) = 0.2. Notably, we see a nice smooth and monotonic function.

This stands in contrast with the same plots for the Heisenberg group.

Next, we want to derive the critical densities 𝑞𝐺 from our approximated function 𝐵′
𝐺. Here, we see that

𝐵′
𝐺 does not behave symmetrically around the critical point. The slow growth and gradual ramp-up

(3.7-a) 3D view of 𝐵′
𝐺. The gray lines represent

interpolated estimates of 𝐵′
𝐺(𝑝). The dots on these

lines represent the points through which we inter-
polate.

(3.7-b) Contour lines of the graph to the left, plot-
ted from above.

Figure 3.7: Estimated 𝐵′
𝐺(𝑝) for various subgraphs of the lamplighter group 𝐺 indexed by their tape-

length 𝐿. Almost every point was estimated by 20 runs. At 𝑝 = 0.7 at 𝐿 = 31 we only had 5 runs and
at 𝐿 = 15 and 𝐿 = 16 some points are estimated by 40 runs due to unintentional duplicate runs.

54

3.3. RESULTS CHAPTER 3. EXPERIMENTAL WORK

Figure 3.8: The critical density 𝑞𝐺 as a func-
tion of 𝐿, the tape length of 𝐺 for the normal
lamplighter group (in red), and the function
𝐿 ↦→ 0.085 + 3𝐿−2 (in blue).

Figure 3.9: The standard deviation of the
density growth over all runs for any given com-
bination of 𝑝 and 𝐿 for the normal lamplighter
group.

before the critical point are very different from the sharp leveling-off after the critical point. Moreover,
the point where we level-off varies much more with the tape length 𝐿 than the point where growth ramps
up. This complicates the decision of how to derive the point 𝑞𝐺 from the approximated 𝐵′

𝐺. This is a
bigger problem for the smaller graphs, because the range in which the phase transition occurs shrinks as
the subgraphs become larger. In the end, we decided to say the point of critically lies at 𝐵′

𝐺(𝑝) = 0.2.
This emphasizes the part of 𝐵′

𝐺 where growth ramps up. In Figure 3.8 we plot the estimated 𝑞𝐺 against
the tape-length 𝐿.

Looking at this graph, we cannot argue for convergence to 0. We could find no ‘sensible’ function that
converges to 0 that fits this graph. That is, we could not fit functions that can be defended on the basis
of known results. Instead it seems we have an asymptote at around 0.085. The fitted line in the figure is
𝐿 ↦→ 0.085+3𝐿−2 where 𝐿 is the tape-length. We do not consider this a meaningful fit; we only included
it to show the graph seems to have an asymptote above at 0.085.

This does not necessarily mean that 𝑝𝑐 ≈ 0.085 for the lamplighter graph. It might be that convergence
is indeed very slow. Moreover, it remains notable that the apparent asymptote is quite low. If the
apparent asymptote were to lie at 𝑞𝐺 = 0.5 that would strongly suggest that 𝑝𝐶 > 0. However, with

(3.10-a) Distribution of the final density for all
runs.

(3.10-b) Distribution of the final density for all
runs with 𝐿 > 25. For a density growth of 1.0 the
count is clipped, it reaches approximately 400.

Figure 3.10: Distribution of the final density for individual runs on lamplighter graphs

55

3.3. RESULTS CHAPTER 3. EXPERIMENTAL WORK

(3.11-a) 3D view of estimated 𝐵′
𝐺. The gray lines

represent interpolated estimates of 𝐵′
𝐺(𝑝). The

dots on these lines represent the points through
which we interpolate.

(3.11-b) The contours of the estimated 𝐵′
𝐺 for the

wrapped-tape lamplighter group as plotted to the
left. Compared to the contours of estimated 𝐵′

𝐺

for the normal subgraphs of the lamplighter group
of the same tape length as plotted in Figure 3.7.

Figure 3.11: Estimated 𝐵′
𝐺(𝑝) for Cayley graphs of wrapped-tape lamplighter groups of tape length 𝐿.

our current apparent asymptote it seems much more likely that we misestimated the asymptote to be
positive.

Also note that, the reasoning that gave us log log log convergence for the Heisenberg group was based
on the growth rate of the Heisenberg group corresponding to the growth rate of Z4. If we extrapolate
Equation 1.1.1 for a growth rate of 𝑂(𝑥𝑛) we would then expect 𝑂

(︁
1

log𝑛−1 𝑥

)︁
convergence of 𝑞𝐺. However,

the lamplighter group has an exponential growth rate. Note that by log𝑛 we mean the logarithm applied
𝑛 times. Thus, the above reasoning would yield 𝑂(log∞−1 𝑥) which is nonsense.

Next, we investigate the behaviour of individual runs. In Figure 3.10-a we plot the distribution of density
growth for individual runs. Here we see an interesting difference with the Heisenberg group and Z4. We
have individual runs with final densities that are neither close to 0 or 1. In fact, it seems like the final
densities cluster around tenths i.e. around the points 1

10 ,
2

10 . . .
10
10 . The relative heights of the peaks here

are meaningless; They are strongly affected by the distribution of tape lengths 𝐿 and initial densities 𝑝
in our runs. For our case, this distribution is very far from uniform.

Beyond looking at the distribution of all final densities for all runs, we can also consider the distribution
of final densities for a given subgraph 𝐺 and initial density 𝑝. Figure 3.7 plots the mean of these
distributions. Now, in Figure 3.9 we plot the standard deviation of these distributions. The peaks in
this plot occur during the phase-transition, as is to be expected. Outside that range 𝐵′

𝐺(𝑝) is roughly
0 or 1. This means there cannot be much variation. Notably, the peaks of the plot are not very high.
This means intermediate values of 𝐵′

𝐺(𝑝) occur because most runs yield a final density close to that
intermediate value. This explains why the approximation of 𝐵′

𝐺 here is smoother than it was for the
Heisenberg group. However, per Figure 3.10-a we know these intermediate densities are not normally
distributed around 𝐵′

𝐺(𝑝); instead, they cluster around tenths. This remains mysterious and definitely
warrants further investigation.

Next, to study the effects of removing the border, and in the hope of seeing convergence of 𝑞𝐺 to zero,
we ran simulations on the wrapped-tape lamplighter groups. For the sake of efficiency, we only ran
simulations up to a tape-length of 𝐿 = 26. These simulations gave essentially identical results as the
normal lamplighter group. In Figure 3.11-b we plot the contours of 𝐵′

𝐺(𝑝) for both types of graphs over
each other. When we study the distribution of final densities, we again see peaks around tenths for the
distribution of final densities for individual runs. As such, we concluded the behavior for the wrapped
tape lamplighter groups is essentially the same as for the subgraphs with the same tape length. This
concluded our investigation into the wrapped tape lamplighter group.

We also ran simulations on the 4-valued lamplighter group. This essentially allows any position on the
tape to have 4 values as opposed to just 2. For a given tape length 𝐿, this tape has quadratically more

56

3.3. RESULTS CHAPTER 3. EXPERIMENTAL WORK

(3.12-a) 3D view of estimated 𝐵′
𝐺. The gray lines

represent interpolated estimates of 𝐵′
𝐺(𝑝). The

dots on these lines represent the points through
which we interpolate.

(3.12-b) The contours of the estimated 𝐵′
𝐺 for the

4-valued lamplighter group as plotted to the left.
Compared to the contours of estimated 𝐵′

𝐺 for the
normal subgraphs of the lamplighter group of the
same tape length.

Figure 3.12: Estimated 𝐵′
𝐺(𝑝) for subgraphs of the 4-valued lamplighter group indexed by their tape

length 𝐿.

nodes. (𝐿×4𝐿 as opposed to 𝐿×2𝐿) As such, we could only run simulations for much shorter tapes. The
results can be found in Figure 3.12-a. For the sake of comparison we also ran simulations of the normal
lamplighter group for the same tape-lengths. In Figure 3.12-b we compare the results for the normal
lamplighter group to the 4-valued lamplighter group at the same tape lengths. Here, we see the 4-valued
lamplighter group has a quicker phase-transition, with a higher critical point 𝑞𝐺 when compared to the
normal lamplighter group with the same tape-length. As such, we conclude this graph is less likely to
have 𝑞𝐺 → ∞ than the normal lamplighter group.

We also looked at the distribution of final densities for the 4-valued lamplighter group. Part of distribution
is shown in Figure 3.13-a. Here we no longer see the clustering around tenths. One could make an
argument for clustering around fractions of 21, but that is a strained argument at best. Next, in
Figure 3.13-b we plot the standard deviation of final densities for any given tape length 𝐿 and initial
density 𝑝. We see this standard deviation is really low, with a maximum around 0.06. Thus, intermediate
values for 𝐵′

𝐺(𝑝) result from essentially all runs given the same final density.

(3.13-a) Distribution of all individual final densi-
ties for runs with a tape length 𝐿 > 10, clipped at
a count of 25.

(3.13-b) The standard deviation of the density
growth for any given combination of 𝑝 and 𝐿 for
the 4-valued lamplighter group.

Figure 3.13: Distribution of final densities for runs on a 4-valued lamplighter group

57

3.4. PERFORMANCE ANALYSIS CHAPTER 3. EXPERIMENTAL WORK

Based on our data for the 4-valued lamplighter group, we cannot see whether there are intermediate final
densities, and if so whether they cluster around tenths. This is because we have very few simulations
that yield these intermediate densities. Due to the very sharp phase-transition, there is a very small
range of initial densities that would produce these intermediate densities.

We did not study any other 𝑛-valued lamplighter groups. It is technically rather difficult to study these
when 𝑛 is not a power of two, which is why we did not try 𝑛 = 3. The next lamplighter group we could
study are the 8-valued lamplighter groups. These get very big very quickly. We could study tape lengths
of at most 8. We consider this to be too short to be worth the effort.

3.4 Performance analysis

Recall that in theory, when we have percolation our algorithm runs in 𝑂(𝑛𝑑) where 𝑛 is the size of our
graph and 𝑑 is the degree of our nodes. This is based on the inner loops of the algorithm. A caveat
here lies with the balance of work between the threads. The 𝑂(𝑛𝑑) bound is the number of operations
needed. Running time is proportional to the amount of operations need only if the work is balanced the
same between all threads. Moreover, we are now ignoring the overhead in a loop, only considering the
time spent on the inner loops. Thus, there amount of steps taken also affects the total run time.

In the following tables we analyze the wall time of various runs on various graphs. The wall time is how
much time elapsed in the ‘real world’ that is, as if one measured the time by looking at a clock hanging
on the wall. This counts time the CPU spent idling, and doesn’t count time two cores were running
double.

In the first table, we have some runs on small lamplighter graphs, based on a large sample size. These
were run with 6 cores of an Intel Xeon E5 2680v3 CPU.

Tape length 𝐿 Density Seconds per Run Seconds per Run per Node
18 0.12 0.0967 2.05 · 10−8

18 0.105 0.1067 2.26 · 10−8

20 0.12 0.4667 2.23 · 10−8

20 0.105 0.4467 2.13 · 10−8

22 0.12 1.7 1.84 · 10−8

22 0.1 1.7 1.84 · 10−8

22 0.09 0.5 5.42 · 10−9

24 0.12 30.6 7.60 · 10−8

24 0.1 33.5 8.32 · 10−8

24 0.09 11.9 2.96 · 10−8

Next, we have data on the biggest lamplighter graph we tested. This is for a tape length of 𝐿 = 31
running on 36 cores spread over 3 Intel Xeon E7 4860v2 CPUs. These 3 CPUs are in the same machine,
and have access to the same memory.

Graph Density Seconds per Run Seconds per Run per Node
Lamp 31 0.09 1140.2 1.71 · 10−8

Lamp 31 0.089 1702.75 2.56 · 10−8

Lamp 31 0.0885 3842.5 5.79 · 10−8

Lamp 31 0.088 1011.05 1.52 · 10−8

First of all, if compare seconds per run per node for the same graphs at different initial densities, we see
an increase that is sometimes followed by a sharp decrease. The decrease are cases where we inadvertently
chose an initial density where percolation is not guaranteed, and can thus be ignored. This means that as
we approach the critical point the running time increases. This approach to the critical point coincides
with needing more steps to percolate. As such, this can be explained by the overhead of a single step.
This effect is most pronounced for the example where 𝐿 = 31. This is simply because the initial densities
chosen there are the result of trying to find the critical density. For the other test, the initial densities
were chosen less carefully.

58

3.4. PERFORMANCE ANALYSIS CHAPTER 3. EXPERIMENTAL WORK

If next we compare the seconds per run per node for different graph sizes, we see again a marked increase.
When comparing the table for 𝐿 = 31 to the other table, take into account that for 𝐿 = 31 we had 6
times as many cores. Thus, naively we would expect a factor 6 improvement in performance. Taking
this into account we see the seconds per run per node increase as we take larger graphs. Again, this can
be explained by needing more runs, and thus suffering more overhead. Moreover, when we have more
nodes, we require more memory. Thus, the probability of incidental cache-hits is higher for the smaller
graphs. This could also contribute to computations on smaller graphs being faster.

3.4.1 Profiling results

Next, we used a sampling profiler (specifically perf record). This allows us to see how much time is
spent in a function and how much time is spent executing any given machine instruction. The goal is to
find out which parts are the bottleneck for our algorithm. We did this for the normal Heisenberg group
and the normal lamplighter group. We picked the size of the graph so computation was quick (about
10s) and we picked the initial density high enough to guarantee percolation.

In the table below we summarize the pertinent results of this profiling. Three values stood out as
pertinent. The first value is the percentage of time spent generating the initial condition. The second
value is the percentage of time spent on reading and modifying the variable counts. The final value is
the percentage of time spent calculating neighbors of a given vertex.

graph type initial density initial condition access counts calculating neighbors
Heisenberg 𝐿 = 50 p=0.1 7% 50 ± 2% 22%
lamplighter 𝐿 = 12 p-0.15 9% 47 ± 2% -

We did not have the percentage of time spent calculating neighbors in the lamplighter graph because
this function was inlined by the compiler. These results were based on an Intel core i5-6300U CPU using
two threads. The profiled binary was compiled with icc -O3 -qopenmp -xHOST.

We see that a very big bottleneck is the array counts. This is the array that stores, for each point, how
many of its neighbors are active. This all happens in Line 44 and the line below it in Algorithm 3.2. In
the actual source code this is line 83 in bootstrap/bootstrap.h which can be found in Appendix A.
One might think this is due to the atomic increment of that value. Specifically, this might be the result
of lock contention. However, the same percentages persist if we remove the atomicity. Instead, we expect
this is the result of cache misses. If we look at what happens in these lines, it is essentially the only
non-sequential memory access in the main loop. Not only is it non-sequential, it is essentially random.
Random access into more than a Gigabyte of memory is rather unlikely to be a cache miss.

The performance penalty of cache misses is why we focus on sequential access in our algorithm and
implementation. However, sequential access is not viable for this specific operation. In a given step, we
are inherently touching only a very small fraction of counts and the locations are fully random. This
is inherent to bootstrap percolation, and thus unavoidable. Beyond incurring cache misses, this is also
why we did not write an algorithm for a GPU. GPUs incur an even worse penalty for random access into
very large arrays.

3.4.2 Comparison with an earlier algorithm

Before we settled on the current implementation, we used another implementation. This older imple-
mentation was based on Equation 3.1.1, storing 𝐴 as a sparse CSC matrix, and storing Δ𝑖 as a full
matrix for the benefit of sequential access. Here, we compare the performance of both implementations
again based on wall time. These comparison tests were run on an Intel core i5-6300U CPU using two
threads. We compared the two algorithms on the Heisenberg group at various side-lengths at two initial
densities, 𝑝 = 0.1 and 𝑝 = 0.09. We chose those densities because percolation is almost guaranteed here.
Both algorithms performed 20 runs. Note that the old algorithm needs the adjacency matrix. This is
calculated once and then used for all 20 runs. The results are in the table below:

59

3.5. CONCLUSION FOR EXPERIMENTAL WORK CHAPTER 3. EXPERIMENTAL WORK

𝐿 𝑝 = 0.1 old 𝑝 = 0.1 new old/new 𝑝 = 0.1 𝑝 = 0.09 old 𝑝 = 0.09 new old/new 𝑝 = 0.09
20 12.74s 2.58s 4.94 20.10s 2.69s 7.47
25 40.80s 6.65s 6.14 56.90s 6.94s 8.20
30 89.04s 14.47s 6.15 112.03s 16.26s 6.89
35 176.68s 28.02s 6.31 251.04s 27.73s 9.05
40 316.32s 49.11s 6.44 410.51s 49.74s 8.25
45 579.65s 86.71s 6.68 710.18s 86.58s 8.20

We see that the new algorithm is faster by at least a factor 6. The speed up seems higher for 𝑝 = 0.09
than 𝑝 = 0.1. We expect this is due to lower initial densities needing more steps. The old implementation,
due to storing the vector Δ𝑖 as a full vector, needs to iterate over that entire vector at each step. Thus,
when there are more steps, each of which add fewer points, the old implementation becomes slower when
handling Δ𝑖.

Another advantage becomes clear when looking at memory usage. This is mostly due to no longer needing
to store the adjacency matrix. The CSC format used required 1 + 𝑑 64-bit integers per node where 𝑑 is
the degree of nodes in our graph. This gives 40 bytes per node of memory for the old algorithm, just for
the CSC matrix. There are another 2 bytes per node to store Δ𝑖 and counts (𝑌𝑖 in Equation 3.1.1.

Taking into account how the memory usage of the new implementation scales with the initial density,
the new implementation still takes a lot less memory. In practice, looking at an initial density of 𝑝 = 0.1
for the Heisenberg group, we see the new algorithm is a factor 5 improvement to memory usage.

3.5 Conclusion for experimental work

We found evidence suggesting that 𝑝𝑐 = 0 for the Heisenberg group and found no such evidence for the
lamplighter groups. It should be noted that our results for the lamplighter group do not suggest that
𝑝𝑐 ̸= 0 for the lamplighter group. The results were simply inconclusive for the lamplighter group. One
interesting thing did pop-up with the lamplighter group: the clustering of final densities around tenths.

Specifically, for the Heisenberg group we found:

𝑞𝐺 ≈ 0.17
log2 log2 log2

𝐿4

16

based on Figure 3.5. This approximation is partly based on a comparison to known results for abelian
groups. (specifically, Equation 1.1.1) Moreover, we also saw that an individual run on the Heisenberg
group will either almost completely percolate or show almost no growth. This is a clear indicator of
critical behavior.

For the lamplighter group, the data suggested an asymptote for 𝑞𝐺 around 0.085. This could still be
a very slow convergence to 0, but the data simply do not show this. We see some other interesting
contrasts between the lamplighter group as compared to both the Heisenberg group and abelian groups.
One such difference is the amount of growth before the critical point. With the lamplighter group, there
seems to be approximately 10% of growth before the critical point which also increased with the initial
density in this regime. For the other groups, there was much less growth for initial densities below the
critical point. Moreover, this amount of growth was almost constant, regardless of the initial density.

Next, we get to the most interesting behavior we see with the lamplighter group. Near the critical point
𝑞𝐺, where 𝐵′

𝐺 is neither close to 0 nor close to 1, we see final densities between 0 and 1. This is already
different to what we see for the other groups. Moreover, specifically for the binary lamplighter groups
(either with wrapped-tape or the normal group) we see these final densities cluster around tenths. This
can be seen in Figure 3.10-b. We do not have an explanation for this, but the phenomena is undeniable.
When changing from the binary lamplighter group to the 4-valued lamplighter group, we no longer see
this behavior. It seems odd that this behavior is unique to the 2-valued lamplighter groups. Thus we
suspect these values also cluster, but perhaps the number of clusters is so high we cannot see them based
on our limited number of runs.

60

3.5. CONCLUSION FOR EXPERIMENTAL WORK CHAPTER 3. EXPERIMENTAL WORK

3.5.1 Further work

The phenomenon of final densities in the lamplighter group clustering around tenths definitely deserves
more attention. Most interesting would be to analyze the subgraphs of active points that correspond to
these final densities. One could for example try to visualize these final states. One might expect that the
graph can be divided into 10 equal sub-parts, each of which either do or do not become active. However,
no such partitioning is obvious here. Especially because the tape-lengths studied aren’t multiples of 10.

Beyond studying the tenths phenomenon, there are other interesting possibilities for further work. Most
obviously would be trying more amenable groups. Similarly obvious would be, getting a distributed
algorithm to look at even bigger subgraphs. Beyond that, we would suggest studying what happens
when we pick a value of 𝑘 that is not half the degree of nodes in our graph. For example, one could add
a generator to the Heisenberg group (element (0, 0, 1) and see what happens at 𝑘 ∈ {2, 3, 4}. Based on
similarity to the abelian groups, one would expect very quick growth for 𝑘 = 2 and almost no growth for
𝑘 = 4. Similar variations could be tried for the lamplighter group.

It might also be possible to find a totally different approach to calculating bootstrap percolation than
our algorithm. For this, one might try to apply methods from the Hashlife algorithm for Conway’s Game
of Life as presented in [Gos84].

61

Chapter 4

Conclusion

4.1 Conclusion

Our goal was to make progress towards Conjecture 1.1.2. For this we took a theoretical and an exper-
imental approach. The theoretical approach culminated in Theorem 2.5.1 and Theorem 2.2.12. The
former states the conjecture holds for the specific case of abelian groups of rank 2. The latter states
the conjecture holds in the case 𝑘 > 𝑘𝑆 for all finitely generated abelian groups. Moreover, we have an
approach that might prove the conjecture in the case 𝑘 ≤ 𝑘𝑆 for all finitely generated abelian groups
based. This is outlined in Section 2.5.1. It is an idea for extending the proof of Theorem 2.5.1. It would
be really interesting to see if this outline can be refined into a full proof or whether there is some hidden
obstacle blocking the outlined approach.

When considering whether Conjecture 1.1.3 holds in the case 𝑘 ≤ 𝑘𝑆 for all abelian graphs, consider
Theorem 2.1.9. That theorem states that for these graphs, all 𝑘𝑆-forts are infinite. This contrasts with
the case 𝑘 > 𝑘𝑆 where we have proven the existence of finite 𝑘-forts. As such, we know that 𝑘𝑆 is the
‘critical threshold’ for the existence of finite 𝑘-forts. It then makes a certain amount of sense that this
would also be the ‘critical threshold’ for 𝑝𝑐 = 1. Moreover, Theorem 2.2.13 means that, for 𝑘 ≤ 𝑘𝑆 we
have 𝑝𝑐 ≥ 𝜋𝑐 > 0 on any Cayley graph of a finitely generated abelian group. Furthermore, we know from
[Sch92] that 𝑝𝑐 = 𝜋𝑐 = 0 when 𝑆 = {𝑒1 . . . 𝑒𝑑}. That is, when 𝑆 consists of the canonical basis vectors.
We feel this strongly supports Conjecture 1.1.3.

The experimental approach had varied results. The experiments seem to confirm that indeed 𝑝𝑐 = 0 for
𝑘 = 2 on Cayley graphs of the Heisenberg group. However, for Cayley graphs of lamplighter groups we
were not able to get such results. That said, our results to not show that 𝑝𝑐 ̸= 0 either. The results were
simply inconclusive.

This does suggest an alternative conjecture. Instead of making the conjecture depend on amenability, we
might make it depend on whether the growth rate is exponential. The reason being that the lamplighter
group is amenable but has an exponential growth rate. We still prefer the original conjecture, because
the proofs from [BPP06] depend explicitly on amenability rather than the growth rate.

The experiments also showed a very intriguing phenomenon for binary lamplighter groups. The final
densities seems to cluster around tenths. This definitely warrants further investigation. One might hope
such investigation gives better insight into bootstrap percolation on the binary lamplighter group. Such
insight might even form a basis for theoretical work on the lamplighter group.

It should be noted that Theorem 2.1.13 actually resulted from insights gained by experiments. Specifi-
cally, we ran experiments on Cayley-graphs of the group Z ×Z/𝑛Z. There we saw that using generators
(1, 0 mod 𝑛Z) yielded very little growth at 𝑘 = 2, whilst generators (1, 1 mod 𝑛Z) yielded growth that
was very similar to growth on Z. This illustrates that our theoretical and experimental work weren’t
separate.

62

4.1. CONCLUSION CHAPTER 4. CONCLUSION

Acknowledgments

First and foremost, I owe a debt of gratitude to my supervisors. I am grateful for their guidance when I
was stuck, their help pruning options when I saw many ways forward, their gentleness and constructive
criticism when I made mistakes, and their patience when my estimated timelines proved too optimistic.
Thank you for your help.

Next I wish to thank Dr. Arnold Meijster for his advice on how to parellelize my code. Without his
advice, I might still be waiting for my computations to finish. Similarly, I would like to thank the Center
for Information Technology of the University of Groningen for their support and for providing access to
the Peregrine high performance computing cluster.

Moreover, I want to thank Martijn Kluitenberg for proofreading. He caught many mistakes in texts I
had read and re-read many times. Finally I want to thank my friends who supported me in the face of
slipping deadlines.

63

Bibliography

[Sch92] Roberto H Schonmann. “On the behavior of some cellular automata related to bootstrap
percolation”. In: The Annals of Probability (1992), pp. 174–193.

[CLR79] John Chalupa, Paul L Leath, and Gary R Reich. “Bootstrap percolation on a Bethe lattice”.
In: Journal of Physics C: Solid State Physics 12.1 (1979), p. L31.

[Ent87] Aernout CD van Enter. “Proof of Straley’s argument for bootstrap percolation”. In: Journal
of Statistical Physics 48.3 (1987), pp. 943–945.

[BPP06] József Balogh, Yuval Peres, and Gábor Pete. “Bootstrap percolation on infinite trees and
non-amenable groups”. In: Combinatorics, Probability and Computing 15.05 (2006), pp. 715–
730.

[AL88] Michael Aizenman and Joel L Lebowitz. “Metastability effects in bootstrap percolation”. In:
Journal of Physics A: Mathematical and General 21.19 (1988), p. 3801.

[Hol03] Alexander E Holroyd. “Sharp metastability threshold for two-dimensional bootstrap percola-
tion”. In: Probability Theory and Related Fields 125.2 (2003), pp. 195–224.

[Bal+12] József Balogh et al. “The sharp threshold for bootstrap percolation in all dimensions”. In:
Transactions of the American Mathematical Society 364.5 (2012), pp. 2667–2701.

[LP16] Russell Lyons and Yuval Peres. Probability on Trees and Networks. Vol. 42. Cambridge Series
in Statistical and Probabilistic Mathematics. Available at http://pages.iu.edu/~rdlyons/.
Cambridge University Press, New York, 2016, pp. xv+699. isbn: 978-1-107-16015-6. doi:
10.1017/9781316672815. url: http://dx.doi.org/10.1017/9781316672815.

[GG93] Janko Gravner and David Griffeath. “Threshold growth dynamics”. In: Transactions of the
American Mathematical society (1993), pp. 837–870.

[Lig13] Thomas M Liggett. Stochastic interacting systems: contact, voter and exclusion processes.
Vol. 324. springer science & Business Media, 2013.

[Gos84] R.Wm. Gosper. “Exploiting regularities in large cellular spaces”. In: Physica D: Nonlinear
Phenomena 10.1 (1984), pp. 75–80. issn: 0167-2789. doi: https://doi.org/10.1016/
0167-2789(84)90251-3. url: http://www.sciencedirect.com/science/article/pii/
0167278984902513.

64

http://pages.iu.edu/~rdlyons/
https://doi.org/10.1017/9781316672815
http://dx.doi.org/10.1017/9781316672815
https://doi.org/https://doi.org/10.1016/0167-2789(84)90251-3
https://doi.org/https://doi.org/10.1016/0167-2789(84)90251-3
http://www.sciencedirect.com/science/article/pii/0167278984902513
http://www.sciencedirect.com/science/article/pii/0167278984902513

Appendix A

C++ code

../code/C bootstrap/bootstrap/bootstrap.h
1 #pragma once
2

3 #i f de f ined (OPENMP)
4 #include <omp . h>
5 #else
6 typedef int omp int t ;
7 inl ine omp int t omp get thread num () { return 0 ;}
8 inl ine omp int t omp get num threads () { return 1 ;}
9 #endif

10

11 #include <iostream>
12 #include <vector >
13 #include <atomic>
14 #include <array>
15 #include <random>
16

17 #include ” . . / pcg random/ inc lude /pcg random . hpp”
18

19 std : : vector <long int> i n i t i a l i z e S p a r s e (const f loat dens i ty , const long int
s t a r t Id , const long int endId) ;

20

21 struct boots t rapResu l t {
22 long int i n i t i a l O c c u p i e d , f i na lOccup i ed ;
23 long int nodeCount ;
24 long int stepsTaken ;
25 long int s t e p s O r i g i n ;
26 } ;
27

28 template<typename GraphType>
29 boots t rapResu l t boots t rap (
30 const GraphType graph ,
31 const f loat dens i ty ,
32 const int th r e sho ld
33) {
34 using namespace std ;
35

36 long int nodeCount = graph . numNodes () ;
37 long int o r i g i n = graph . o r i g i n () ;
38 boots t rapResu l t r e s u l t ;
39 r e s u l t . s t ep sO r i g i n = −1;
40 atomic<long int> occupied (0) ;
41 occupied = 0 ;

65

APPENDIX A. C++ CODE

42 atomic<char> ∗ neighborCounts = new atomic<char>[nodeCount] () ;
43

44 r e s u l t . nodeCount = nodeCount ;
45 long int f ina lStepCount = 0 ;
46 #pragma omp p a r a l l e l shared (occupied , neighborCounts)
47 {
48 long int threadId = omp get thread num () ;
49 long int nThreads = omp get num threads () ;
50

51 long int l a s tOccupied = 0 ;
52 vector <long int> newNeighbors ;
53

54 long int nodesPerThread = (nodeCount + nThreads − 1) / nThreads ;
55 vector <long int> newNodes = i n i t i a l i z e S p a r s e (
56 dens i ty ,
57 nodesPerThread ∗ threadId ,
58 min (nodesPerThread ∗ (threadId + 1) , nodeCount)
59) ;
60 for (long int node : newNodes) {
61 neighborCounts [node] = thre sho ld ;
62 }
63

64 occupied += newNodes . s i z e () ;
65 #pragma omp b a r r i e r
66 #pragma omp s i n g l e
67 {
68 r e s u l t . i n i t i a l O c c u p i e d = occupied ;
69 }
70

71 long int stepCount ;
72 for (stepCount = 0 ; true ; stepCount++) {
73 newNeighbors . c l e a r () ;
74 for (long int idx : newNodes) {
75 auto row = graph . getNeighbors (idx) ;
76 for (auto elem : row) {
77 i f (elem >= 0) newNeighbors . push back (elem) ;
78 }
79 }
80

81 newNodes . c l e a r () ;
82 for (auto neighb : newNeighbors) {
83 i f (++neighborCounts [neighb] == thre sho ld) {
84 newNodes . push back (neighb) ;
85 }
86 }
87 occupied += newNodes . s i z e () ;
88

89 // Race cond i t i on does not matter ,
90 // i f they write , they wr i t e at the same time and wr i t e the smae

th ing
91 i f (r e s u l t . s t ep sO r i g in == −1 and neighborCounts [o r i g i n] >= thre sho ld)

{
92 r e s u l t . s t ep sO r i g i n = stepCount ;
93 }
94 #pragma omp b a r r i e r
95 i f (occupied == lastOccupied) {
96 f ina lStepCount = stepCount ;
97 break ;
98 }
99 l a s tOccupied = occupied ;

100 #pragma omp b a r r i e r

66

APPENDIX A. C++ CODE

101 }
102 }
103 r e s u l t . stepsTaken = f ina lStepCount ;
104 r e s u l t . f i na lOccup i ed = occupied ;
105

106 delete [] neighborCounts ;
107

108 return r e s u l t ;
109 }

../code/C bootstrap/bootstrap/initializeState.cpp
1 #include ” boots t rap . h”
2

3 using namespace std ;
4

5 vector <long int> i n i t i a l i z e S p a r s e (const f loat p , const long int s t a r t Id , const
long int endId) {

6 vector <long int> s t a t e ;
7 p c g 3 2 f a s t rng (pcg ex t ra s : : s eed seq f rom <std : : random device >{}) ;
8 b e r n o u l l i d i s t r i b u t i o n b e r n o u l l i (p) ;
9 for (long int idx = s t a r t I d ; idx != endId ; idx++){

10 i f (b e r n o u l l i (rng)) {
11 s t a t e . push back (idx) ;
12 }
13 }
14 return s t a t e ;
15 }

../code/C bootstrap/graphGen/squareHeis.h
1 #pragma once
2

3 #pragma GCC d i a g n o s t i c ignored ”−Wsubobject−l i n k a g e ”
4

5 #include <array>
6 #include ” l i b d i v i d e . h”
7

8 struct Point{
9 int x , y , z ;

10 } typedef Point ;
11

12

13 struct Heisenberg
14 {
15 const int xLength , yLength , zLength ;
16 constexpr stat ic int numGens = 4 ;
17 const long int rectangleXYlength ;
18

19 const l i b d i v i d e : : d iv ide r <long int> rectangleXYdiv ider , xLengthDivider ;
20

21 Heisenberg (int xLength , int yLength , int zLength) ;
22

23 long int numNodes () const ;
24 long int o r i g i n () const ;
25 std : : array<long int , 4> getNeighbors (const long int inputId) const ;
26 void generateCsc (i n t 6 4 t ∗ rowIdxs , i n t 6 4 t ∗ c o l P t r s) const ;
27

28 Point id2po in t (const long int id) const ;
29 long int po in t2 id (const Point po int) const ;
30 bool va l idPo in t (const Point po int) const ;

67

APPENDIX A. C++ CODE

31 private :
32 long int l 2 s (const long int x) const ;
33

34 } ;

../code/C bootstrap/graphGen/squareHeis.cpp
1 #include ” squareHe i s . h”
2

3 Heisenberg : : Heisenberg (int xLength , int yLength , int zLength)
4 : xLength (xLength)
5 , yLength (yLength)
6 , zLength (zLength)
7 , rectangleXYlength (l 2 s (xLength) ∗ l 2 s (yLength))
8 , r ec tang leXYdiv ider (l 2 s (xLength) ∗ l 2 s (yLength))
9 , xLengthDivider (l 2 s (xLength))

10 {}
11

12 long int Heisenberg : : numNodes () const{
13 return (long int) l 2 s (xLength) ∗ l 2 s (yLength) ∗ l 2 s (zLength) ;
14 }
15

16 long int Heisenberg : : o r i g i n () const
17 {
18 return po in t2 id (Point {0 , 0 , 0}) ;
19 }
20

21 long int Heisenberg : : l 2 s (const long int x) const{
22 return (2L ∗ x + 1L) ;
23 }
24

25 // hard−coded gene ra to r s
26 std : : array<long int , 4> Heisenberg : : getNeighbors (const long int inputId) const {
27 Point inputPoint = id2po in t (inputId) ;
28 int x = inputPoint . x ;
29 int y = inputPoint . y ;
30 int z = inputPoint . z ;
31 std : : array<long int , 4> output ;
32

33 /∗ Computing the adjacent e lements accord ing to the gene ra to r s . We use gen x
po int in the he i s enberg group

34 ∗ presuming the po int i s :
35 ∗ 1 x z
36 ∗ 0 1 y
37 ∗ 0 0 1
38 ∗
39 ∗ Hard coded the f o l l o w i n g gene ra to r s in order
40 ∗ 1 1 0 1 0 0 1 −1 0 1 0 0
41 ∗ 0 1 0 0 1 1 0 1 0 0 1 −1
42 ∗ 0 0 1 0 0 1 0 0 1 0 0 1
43 ∗ Note that a l l have the z element equal to 0
44 ∗ This makes the acuta l po int computation easy
45 ∗/
46 output [0] = po in t2 id (Point{x + 1 , y , z }) ;
47 output [1] = po in t2 id (Point{x , y + 1 , z + x}) ;
48 output [2] = po in t2 id (Point{x − 1 , y , z }) ;
49 output [3] = po in t2 id (Point{x , y − 1 , z − x}) ;
50 return output ;
51 }
52

53 Point Heisenberg : : i d2po in t (const long int id) const {

68

APPENDIX A. C++ CODE

54 int z = id / rectang leXYdiv ider ;
55 // c a l c u l a t e remainder g iven d i v i z o r .
56 long int remainder = id − (z ∗ rectangleXYlength) ;
57

58 int y = remainder / xLengthDivider ;
59 int x = remainder − (y ∗ (long int) l 2 s (xLength)) ;
60

61 return Point{x − xLength , y − yLength , z − zLength } ;
62 }
63

64 long int Heisenberg : : po in t2 id (const Point po int) const {
65 return va l idPo in t (po int) ? ((long int) po int . x + xLength) +
66 (po int . y + yLength) ∗ l 2 s (xLength) +
67 (po int . z + zLength) ∗ rectangleXYlength
68 : −1L ;
69 }
70

71 bool Heisenberg : : va l i dPo in t (const Point po int) const {
72 return abs (po int . x) <= xLength &&
73 abs (po int . y) <= yLength &&
74 abs (po int . z) <= zLength ;
75 }
76

77 // Generate the Cscmatrix o f t h i s cayleygraph by e s s e n t i a l l y b u i l d i n g an
adjacency l i s t

78 void Heisenberg : : generateCsc (long int ∗ rowIdxs , long int ∗ c o l P t r s) const {
79

80 // keep track o f rowIdxs l ength f o r c o l P t r s
81 long int to ta lConnec t i ons = 0 ;
82 std : : array<long int , 4> neighbours ;
83 long int numNodesInt = numNodes () ;
84 for (long int nodeId = 0 ; nodeId < numNodesInt ; nodeId++){
85 c o l P t r s [nodeId] = tota lConnec t i ons ;
86

87 neighbours = getNeighbors (nodeId) ;
88 for (int neighbIdx = 0 ; neighbIdx < 4 ; neighbIdx++){
89 i f (ne ighbours [neighbIdx] >= 0) { // ne ighbours that f a l l ou t s id e the

domain get id −1
90 rowIdxs [to ta lConnec t i ons++] = neighbours [neighbIdx] ;
91 }
92 }
93 }
94 // f i n a l l y , ’ c l o s e ’ c o l P t r s
95 c o l P t r s [numNodesInt] = tota lConnec t i ons ;
96 }

../code/C bootstrap/graphGen/lampLighter.h
1 #pragma once
2

3 #include <array>
4

5 struct LampLighter {
6 stat ic constexpr int numGens = 4 ;
7

8 const long int p o s i t i o n s ;
9

10 LampLighter (const long int p o s i t i o n s) ;
11

12 long int numNodes () const ;
13 long int o r i g i n () const ;

69

APPENDIX A. C++ CODE

14 std : : array<long int , numGens> getNeighbors (const long int elem) const ;
15 void printTape (long int node , std : : ostream &out) ;
16 } ;

../code/C bootstrap/graphGen/lampLighter.cpp
1 #include ” lampLighter . h”
2 #include <iostream>
3 using namespace std ;
4

5 LampLighter : : LampLighter (const long int p o s i t i o n s) : p o s i t i o n s (p o s i t i o n s) {}
6

7 array<long int , LampLighter : : numGens> LampLighter : : getNeighbors (const long int
elem) const{

8 array<long int , numGens> r e s u l t ;
9 long int headPos = elem >> p o s i t i o n s ;

10

11 i f (headPos < p o s i t i o n s − 1) {
12 // move r i g h t
13 r e s u l t [0] = elem + (1L << p o s i t i o n s) ;
14 // togg le , then move r i g h t
15 r e s u l t [1] = (elem ^ (1L << headPos)) + (1L << p o s i t i o n s) ;
16 } else {
17 r e s u l t [0] = r e s u l t [1] = −1;
18 }
19 i f (headPos > 0) {
20 // move l e f t
21 r e s u l t [2] = elem − (1L << p o s i t i o n s) ;
22 // move l e f t , then t o g g l e
23 // Note order r e v e r s a l as opposed to r e s u l t [1] .
24 // Otherwise , t h i s i s not an i n v e r s e
25 headPos = headPos − 1 ;
26 r e s u l t [3] = (elem ^ (1L << headPos)) − (1L << p o s i t i o n s) ;
27 } else {
28 r e s u l t [2] = r e s u l t [3] = −1;
29 }
30

31 return r e s u l t ;
32 }
33

34 long int LampLighter : : numNodes () const{
35 return p o s i t i o n s << p o s i t i o n s ;
36 }
37

38 long int LampLighter : : o r i g i n () const{
39 return (p o s i t i o n s / 2) << p o s i t i o n s ;
40 }
41

42 void LampLighter : : printTape (long int node , ostream &out) {
43 long int headPos = node >> p o s i t i o n s ;
44 for (long int idx = p o s i t i o n s ; idx−− != 0 ;) {
45 out << (idx == headPos ? ” ” : ” ”) ;
46 }
47 out << ’ ∖n ’ ;
48

49 for (long int idx = p o s i t i o n s ; idx−− != 0 ;) {
50 out << ((node >> idx) & 1) << ’ ’ ;
51 }
52 out << ’ ∖n ’ ;
53 }

70

APPENDIX A. C++ CODE

../code/C bootstrap/graphGen/wrapLighter.h
1 #pragma once
2

3 #include <array>
4

5 struct LampLighter {
6 stat ic constexpr int numGens = 4 ;
7

8 const long int p o s i t i o n s ;
9

10 LampLighter (const int p o s i t i o n s) ;
11

12 long int numNodes () const ;
13 long int o r i g i n () const ;
14 std : : array<long int , numGens> getNeighbors (const long int elem) const ;
15 void printTape (long int node , std : : ostream &out) ;
16 } ;

../code/C bootstrap/graphGen/wrapLighter.cpp
1 #include ” lampLighter . h”
2 #include <iostream>
3 using namespace std ;
4

5 LampLighter : : LampLighter (const long int p o s i t i o n s) : p o s i t i o n s (p o s i t i o n s) {}
6

7 array<long int , LampLighter : : numGens> LampLighter : : getNeighbors (const long int
elem) const{

8 array<long int , numGens> r e s u l t ;
9 long int headPos = elem >> p o s i t i o n s ;

10

11 i f (headPos < p o s i t i o n s − 1) {
12 // move r i g h t
13 r e s u l t [0] = elem + (1L << p o s i t i o n s) ;
14 // togg le , then move r i g h t
15 r e s u l t [1] = (elem ^ (1L << headPos)) + (1L << p o s i t i o n s) ;
16 } else {
17 // wrap around
18 r e s u l t [0] = elem & ((1L << p o s i t i o n s) − 1) ;
19 // togg le , wrap
20 r e s u l t [1] = r e s u l t [0] ^ (1L << headPos) ;
21 }
22 i f (headPos > 0) {
23 // move l e f t
24 r e s u l t [2] = elem − (1L << p o s i t i o n s) ;
25 // move l e f t , then t o g g l e
26 // Note order r e v e r s a l as opposed to r e s u l t [1] .
27 // Otherwise , t h i s i s not an i n v e r s e
28 headPos = headPos − 1 ;
29 r e s u l t [3] = (elem ^ (1L << headPos)) − (1L << p o s i t i o n s) ;
30 } else {
31 // wrap
32 r e s u l t [2] = elem | ((p o s i t i o n s − 1) << p o s i t i o n s) ;
33 // move l e f t , then t o g g l e
34 // Note order r e v e r s a l as opposed to r e s u l t [1] .
35 // Otherwise , t h i s i s not an i n v e r s e
36 headPos = p o s i t i o n s − 1 ;
37 r e s u l t [3] = (elem ^ (1L << headPos)) | ((p o s i t i o n s − 1) << p o s i t i o n s) ;
38 }
39

40 return r e s u l t ;

71

APPENDIX A. C++ CODE

41 }
42

43 long int LampLighter : : numNodes () const{
44 return (long int) p o s i t i o n s << p o s i t i o n s ;
45 }
46

47 long int LampLighter : : o r i g i n () const{
48 return (long int) p o s i t i o n s / 2 << p o s i t i o n s ;
49 }
50

51 void LampLighter : : printTape (long int node , ostream &out) {
52 long int headPos = node >> p o s i t i o n s ;
53 for (long int idx = p o s i t i o n s ; idx−− != 0 ;) {
54 out << (idx == headPos ? ” ” : ” ”) ;
55 }
56 out << ’ ∖n ’ ;
57

58 for (long int idx = p o s i t i o n s ; idx−− != 0 ;) {
59 out << ((node >> idx) & 1) << ’ ’ ;
60 }
61 out << ’ ∖n ’ ;
62 }

../code/C bootstrap/graphGen/lampExtend.h
1 #include <array>
2 #include <iostream>
3 #include <stdexcept >
4

5 template<int baseLog2>
6 struct LampExtend {
7 stat ic constexpr int numGens = 4 ;
8 stat ic constexpr int base = 1 << baseLog2 ;
9

10 const long int p o s i t i o n s ;
11 const long int maxOffset ;
12

13 LampExtend(const long int p o s i t i o n s) ;
14

15 long int numNodes () const ;
16 long int o r i g i n () const ;
17 std : : array<long int , 4> getNeighbors (const long int elem) const ;
18 void printTape (long int node , std : : ostream &out) ;
19 } ;
20

21 /∗ A node in t h i s graph i s a head p o s i t i o n and a tape o f l ength
22 ∗ $ p o s i t i o n s $. Each p o s i t i o n on the tape tak ing $base = 2^ baseLog2$ va lue s
23 ∗ with modular a r i thmet i c .
24 ∗
25 ∗ This i s encoded in a long int , s t o r i n g p o s i t i o n $ i$ on the tape in b i t s

$baseLog2 i $
26 ∗ u n t i l $baseLog2 (i + 1) $. Those are appended by the head p o s i t i o n in b i t s
27 ∗ $base log2 ∗ p o s i t i o n s $ u n t i l l the end .
28 ∗
29 ∗ That i s , we encode the tape in the lower b i t s , and the head p o s i t i o n

a f t e rwards .
30 ∗/
31

32 template<int baseLog2>
33 LampExtend<baseLog2 > : : LampExtend(const long int p o s i t i o n s)
34 : p o s i t i o n s (p o s i t i o n s)

72

APPENDIX A. C++ CODE

35 , maxOffset (p o s i t i o n s ∗ baseLog2)
36 {
37 // p o s i t i o n s ∗ baseLog2 f o r tape data
38 // 5 = l o g 2 (64) f o r head l o c a t i o n data
39 // f i n a l l y another baseLog2 + 1 to prevent over f l ow a f t e r adding minusOne
40 // (the +1 i s because long i n t i s s igned)
41 i f (p o s i t i o n s ∗ baseLog2 + 5 + baseLog2 + 1 >= s izeof (long int) ∗ 8) {
42 throw std : : inva l id argument (”To many p o s i t i o n s , might not f i t in long i n t

”) ;
43 }
44 }
45

46 /∗ Calcu la te ne ighbors based on 4 gene ra to r s :
47 ∗ − move head r i g h t
48 ∗ − increment value under cur rent head and move head r i g h t
49 ∗ − move head l e f t
50 ∗ − decrement value under cur rent head and move head l e f t
51 ∗ (l e f t i s de c r ea s ing pos i t i on , r i g h t i s i n c r e a s i n g p o s i t i o n)
52 ∗ When head i s at maximal l e f t po s i t i on , the f i n a l two gene ra to r s do not apply
53 ∗ S i m i l a r l y at maximal r i g h t p o s i t i o n the other two gene ra to r s do not apply
54 ∗ (our tape does not wrap arround)
55 ∗/
56 template<int baseLog2>
57 std : : array<long int , 4> LampExtend<baseLog2 > : : getNeighbors (const long int elem)

const
58 {
59 std : : array<long int , 4> r e s u l t ;
60 const long int headPos = (elem >> maxOffset) ;
61 const long int headOf f set = baseLog2 ∗ headPos ;
62 // 1 s except at the b i t s cor re spond ing to head
63 const long int mask = ˜(((1L << baseLog2) − 1L) << headOf f set) ;
64

65 i f (headPos < p o s i t i o n s − 1) {
66 // move head r i g h t
67 r e s u l t [0] = elem + (1L << maxOffset) ;
68

69 // increment then move head r i g h t
70 long int incremented = elem + (1L << headOf f set) ;
71 // mask out p o t e n t i a l over f l ow
72 incremented = incremented ^ ((elem ^ incremented) & mask) ;
73 r e s u l t [1] = incremented + (1L << maxOffset) ;
74 } else {
75 r e s u l t [0] = r e s u l t [1] = −1;
76 }
77 i f (headPos > 0) {
78 // move head l e f t
79 r e s u l t [2] = elem − (1L << maxOffset) ;
80

81 // move head Left , then decrement
82 // Create −1 mod base by tak ing base − 1
83 // This prevents underf low in the case o f 0 at a p o s i t i o n
84 constexpr long int minusOne = (1L << (baseLog2)) − 1 ;
85

86 // Decrement element l e f t o f head
87 long int decremented = elem + (minusOne << (headOf f set − baseLog2)) ;
88 // mask out over f l ow
89 decremented = decremented ^ ((elem ^ decremented) & (mask >> baseLog2)) ;
90 r e s u l t [3] = decremented − (1L << maxOffset) ;
91 } else {
92 r e s u l t [2] = r e s u l t [3] = −1;
93 }

73

APPENDIX A. C++ CODE

94 return r e s u l t ;
95 }
96

97 template<int baseLog2>
98 long int LampExtend<baseLog2 > : : o r i g i n () const{
99 // s e t head in the middle , tape remains at 0

100 return (p o s i t i o n s / 2) << p o s i t i o n s ∗ baseLog2 ;
101 }
102

103 template<int baseLog2>
104 long int LampExtend<baseLog2 > : : numNodes () const{
105 return p o s i t i o n s << p o s i t i o n s ∗ baseLog2 ;
106 }
107

108 template<int baseLog2>
109 void LampExtend<baseLog2 > : : printTape (long int node , std : : ostream &out) {
110 long int headPos = node >> maxOffset ;
111 i f (baseLog2 > 3)
112 out << headPos << ’ ’ ;
113 else {
114 for (long int idx = p o s i t i o n s ; idx−− != 0 ;) {
115 out << (idx == headPos ? ” ” : ” ”) ;
116 }
117 out << ’ ∖n ’ ;
118 }
119 constexpr long int mask = (1L << (baseLog2)) − 1 ;
120 for (long int idx = p o s i t i o n s ; idx−− != 0 ;) {
121 out << ((node >> (baseLog2 ∗ idx)) & mask) << ’ ’ ;
122 }
123 out << ’ ∖n ’ ;
124 }

../code/C bootstrap/graphGen/abelian.h
1 #pragma once
2

3 #include <c s td in t >
4 #include <cmath>
5 #include <c s t d l i b >
6 #include <array>
7

8 using namespace std ;
9

10 template<int dimension> struct Abel ian
11 {
12 const long int s ideLength ;
13 stat ic const int numGens = 2 ∗ dimension ;
14

15 Abel ian (i n t 6 4 t s ideLength) ;
16

17 long int numNodes () const ;
18 long int o r i g i n () const ;
19 std : : array<long int , 2 ∗ dimension> getNeighbors (const long int inputId)

const ;
20 void generateCsc (i n t 6 4 t ∗ rowIdxs , i n t 6 4 t ∗ c o l P t r s) const ;
21

22 std : : array<long int , dimension> i d2po in t (long int id) const ;
23 long int po in t2 id (const std : : array<long int , dimension> point) const ;
24 bool va l idPo in t (const std : : array<long int , dimension> point) const ;
25 } ;
26

74

APPENDIX A. C++ CODE

27 template<int dimension>
28 Abelian<dimension > : : Abel ian (long int s ideLength) :
29 s ideLength (s ideLength)
30 {}
31

32 template<int dimension>
33 long int Abelian<dimension > : : numNodes () const{
34 return std : : pow(s ideLength , dimension) ;
35 }
36

37 template<int dimension>
38 long int Abelian<dimension > : : o r i g i n () const{
39 return numNodes () / 2 ;
40 }
41

42 template<int dimension>
43 std : : array<long int , 2 ∗ dimension> Abelian<dimension > : : getNeighbors (const long

int inputId) const{
44 std : : array<long int , dimension> inputPoint = id2po in t (inputId) ;
45 std : : array<long int , 2 ∗ dimension> output ;
46

47 std : : array<long int , dimension> modi f i edPoint ;
48 for (int coorIdx = 0 ; coorIdx < dimension ; coorIdx++){
49 // Even indexed po in t s in output get incremented at coorIdx
50 modi f i edPoint = inputPoint ;
51 modi f i edPoint [coorIdx] += 1 ;
52 output [2 ∗ coorIdx] = po in t2 id (modi f i edPoint) ;
53 // Odd indexed po in t s in output get decremented at coorIdx
54 modi f i edPoint = inputPoint ;
55 modi f i edPoint [coorIdx] −= 1 ;
56 output [2 ∗ coorIdx + 1] = po in t2 id (modi f i edPoint) ;
57 }
58 return output ;
59 }
60

61 template<int dimension>
62 std : : array<long int , dimension> Abelian<dimension > : : i d2po in t (long int id) const{
63 std : : array<long int , dimension> point ;
64

65 for (int idx = dimension ; idx−−;) {
66 point [idx] = id % sideLength ;
67 id /= sideLength ;
68 }
69 return point ;
70 }
71

72 template<int dimension>
73 long int Abelian<dimension > : : po in t2 id (const std : : array<long int , dimension> point

) const{
74 i n t 6 4 t id = 0 ;
75 i f (! va l i dPo in t (po int)) {
76 id = −1;
77 return id ;
78 }
79 for (int idx = 0 ; idx < dimension ; idx++){
80 id ∗= sideLength ;
81 id += point [idx] ;
82 }
83 return id ;
84 }
85

75

APPENDIX A. C++ CODE

86 template<int dimension>
87 inl ine bool Abelian<dimension > : : va l i dPo in t (const std : : array<long int , dimension>

point) const{
88 for (int idx = 0 ; idx < dimension ; idx++){
89 i f (po int [idx] >= sideLength | | point [idx] < 0)
90 return fa l se ;
91 }
92 return true ;
93 }

76

