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Abstract

Cooperative pathfinding research studies coordination algorithms ad-
dressing congestions, deadlocks, and collisions in multi-agent systems. In
typical algorithms individual agents have no say in resolving conflicts. We
propose algorithms in which agents engage in an argumentative dialogue
in case of local conflicts, leading to the transparent and fast construction
of global solutions. We combine ideas from computational argumentation,
multi-agent coordination and continual planning. From computational ar-
gumentation we use argumentative deliberation dialogues in which agents
discuss and resolve conflicting local plans. From the study of multi-agent
coordination we use partial global planning, a distributed method to incre-
mentally create a global plan. Using ideas from continual planning we ob-
tain an online algorithm in which planning and execution are interleaved.
We show that our algorithms generally solve cooperative pathfinding prob-
lems faster than a state of the art complete and optimal algorithm, at the
cost of slightly longer path lengths and gaining the explanatory power of
argumentation dialogues. An online version of our algorithm is the fastest
with the trade-off that it has the lowest quality paths.
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1 Introduction

When multiple agents have to find their way through a shared space they have
to find paths around obstacles while they also need to ensure that they do not
collide with each other. This problem is considerably more complex than finding
a path for a single agent [14]. Even when agents can prevent collisions then it is
still possible that congestions or even deadlocks may occur. Agents need to be
able to get to their destination as soon as possible so congestions and deadlocks
are undesirable. To avoid them there is a need for coordination between the
agents. Cooperative cooperative pathfinding finds its application in robotics,
aviation, road traffic management, crowd simulations, and video games [30].

The most straightforward approach to the cooperative pathfinding prob-
lem is to search the Cartesian product of the state spaces of all agents. This
approach is computationally inefficient [14, 27] as the time to find a solution
grows exponential in the number of agents. A common approach to speed up
the search is to impose a hierarchy on the agents by assigning them a unique
priority. Agents plan a path to their destination in descending order of prior-
ity. When it is an agent’s turn to plan their path they have to consider agents
with a higher priority as a moving obstacle. This means that they have to avoid
planning any movements that conflict with those of higher priority agents. Both
of these approaches result in abstract solutions; there is often no clear reason
why a particular solution was the one arrived at. The algorithm has found a set
of conflict free paths that work as a solution but it doesn’t give any indication
about the considerations of why it is a good plan.

These two common approaches to solving the cooperative pathfinding prob-
lem both rely on a central processor [7]. The first is a category of centralized
methods that use a central processor to create a plan for all the agents. The
other category requires that a central processor determines a priority ordering
that the agents have to adhere to. After this has been done then the calculation
of the plans for the agents can be decoupled. This allows the agents to make
their individual plan on their own processor. During this decoupled planning
they need to communicate with each other about their paths but they do not
require a central point of communication to do so. Next to the centralized and
decoupled methods there are also fully decentralized approaches. With these
there is no central processor that can be a single point of failure. As a trade-off
these methods usually have no global view of the problem. This means that
agents can make decisions early on that will lead to congestions or deadlocks at
a later point in time without any agent noticing at the time that the decision
was made.

Methods of decentralized coordination have been developed by the field of
computational argumentation. Formal models of argumentation have been used
in Artificial Intelligence in expert systems, multi-agent systems and law [32, 26].
An important concept in computational argumentation is that of defeasible rea-
soning [9]: the conclusion that can be drawn from a set of premises does not
need to hold when additional premises are added. This is in contrast with clas-
sical logic where adding additional premises will never invalidate a conclusion.
Defeasible reasoning allow arguments to be made for or against a conclusion.
Arguments can also support or attack each other and thereby strengthen or
weaken a case for a conclusion.

Commonly computational argumentation in a multi-agent systems is mod-



elled as a dialogue game. In such a dialogue game the agents represent the
players and the game rules prescribes how the dialogue should occur [33]. There
are rules about what arguments agents can put forward, when they are allowed
to do so, and there can be rules about which agent gets to speak when. Most
forms of dialogue games also have rules about when the dialogue is finished and
which agent(s) have won if applicable. These dialogues can be used to give rea-
sons about why a group of agents decided to take a certain course of action. So
they can be used to remove some of the abstractness of cooperative pathfinding
algorithms by showing why a solution is preferred over other solutions. Con-
ventional algorithms deliver a solution without indicating why that solution is
preferred over others.

Global cooperation between agents without a central processor is a difficult
task. There are methods that do achieve a global plan without any single agent
being vital to create it. Partial global planning has been used in distributed
sensor networks to distribute and coordinate tasks among the nodes that make
up the network [11]. The nodes create their individual plans without regard for
each other. They will then exchange information on their plans and adapt them
to better coordinate their activities. Nodes can even take over each others tasks
to spread the computational load. Coordination is not rigid and nodes have
some freedom in how they execute their plan if circumstances change without
having to re-coordinate with the other nodes. None of the involved nodes ever
has a global view but the end result is a plan that is globally coordinated with
each node holding a part of the global plan.

This method of constructing a global plan from local views can also be
applied to cooperative pathfinding. Agents only have to coordinate with those
agents that they have a conflicting path with. The freedom in planning allows
agents to find an alternative path without having to update all other agents.
Other agents that have previously been coordinated with don’t need to update
their plan as a response. This is only necessary when new conflicts arise because
of the alternative path. This allows for a truly decentralised approach where
agents only communicate with other agents when they have to. There is also
no need to wait for a central processor to tell agents what to do. At the same
time plans are well coordinated and there is a global view, something that other
decentralized cooperative pathfinding algorithms lack.

Dialogues can be used in cooperative pathfinding by applying techniques
from partial global planning. When agents have a conflict then they need to
cooperate to avoid conflicts. They can do so by starting a dialogue in which
they share and evaluate different hypothesis to solve the conflict. A hypothesis
consists of a priority ordering for the agents that are involved in a conflict. The
hypotheses offered will be discussed and evaluated in the dialogue and the agents
will give their preference for each proposal. The proposal which is most preferred
is used as the solution to the conflict. All agents involved in the dialogue adapt
the hypothesis. Next they update their plans so that there are no conflicts
between them any more. This means that there are many small local changes
to an agent’s position in the hierarchy and therefore also in their plans. The
end result is a global solution to the cooperative pathfinding problem without
any agent having known it explicitly. There is also no single agent which has
been vital to its calculation like in a centralized approach.

By combining deliberation dialogues and partial global planning we can de-
velop an algorithm that is able to overcome the weaknesses which other coop-
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Figure 1: A small space shared by some agents. Obstacles are black, agents are
circles inscribed with the agent’s number (a;). The destination for agent a; is
given by g;.

erative pathfinding algorithms have. Using the decoupled method as a starting
point we employ partial global planning to remove the reliance on a central
processor to determine the hierarchy. This also prevents a common pitfall of
decentralized methods which are not able to coordinate plans on a global level.
So we essentially achieve a decentralized algorithm that is able to create a global
plan. To enable the use of partial global planning we use deliberation dialogues
so that agents can determine a hierarchy in a decentralized fashion. Another
benefit of using deliberation dialogues is that it is possible to get reasons why
agents settled on a particular hierarchy. This makes it possible to explain to
an end-user why the solution is the best solution. This is not possible with
conventional cooperative pathfinding algorithms because they only compute a
solution according to an algorithm without having any explanatory power.
The rest of this thesis is structured as follows. First, a formal description
of the cooperative pathfinding problem is given in Section 2. Previous work in
cooperative pathfinding, argumentation and partial global planning is discussed
in Section 3. A new method to find conflict-free paths is proposed in Section 4.
The method is evaluated and compared to other algorithms in Section 5. Final
remarks on the proposed method and its implications are discussed in Section 6.
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Figure 2: Examples of conflicting actions. Agents are circles inscribed with a;.
Their movements are indicated by the arrows starting in the cell they occupy,
the action ends in the cell that the arrow points to.

2 Problem formulation

The problem of cooperative pathfinding can be defined as follows. A shared
space is divided into discrete cells such that it forms an 8-connected grid. Some
of the cells in this grid are static obstacles while the other cells are open. A set
of k agents {ay,...,ar} occupy cells within the grid, the agents have respective
goal positions g¢i,...,gkx. A set of paths need to be found, one for each agent,
such that each agent gets to its goal position without colliding with any of the
other agents. A path consists of a series of actions. An action can either be
to move to one of the eight neighbouring cells or wait at the current location.
Each time step an agent must do exactly one of these actions. All actions take
exactly one time step to execute. An example initial configuration is shown in
Figure 1.

The goal is to find one path for each agent so that it reaches its destination
in as few actions as possible. The agents can not enter cells with static obstacles
nor should agents collide with each other. Each action in a path has unit cost,
with the exception of waiting in the goal position. The cost function is then

COST(P.Q) = {o ifP=Q=G
1 otherwise

where P is the node where the agent is located, @ is the node where the agent

moves to, and G is the agent’s goal node. A single agent’s path has a cost that

is the sum of the costs of all its actions. The cost of a solution is defined as the

sum of the costs of the paths of the agents. The most appropriate solution to

the problem is a solution with minimal cost.

The paths of two agents are not in conflict if and only if at no time step
the agents occupy the same cell, agents move along the same edge (swap posi-
tions), or agents move along crossing edges. Obstacle cells can be considered
as stationary agents. Examples of each of these conflicts are given in Figure 2,
it shows that conflicts involving agents moving along the same edge or moving
along crossing edges can only occur when agents are in neighbouring cells. A
conflict in which agents move to the same cell can happen whenever the agents
are at most two actions away from each other. A single action can result in an
agent having multiple conflicts at the same time. If Figure 2a had an agent a3 in
the top right cell moving to the bottom middle cell then as would have a conflict



with both a; and ag at the same time but a; would only have a conflict with
as. Agents are allowed to move along a diagonal even when the two cells on the
opposing diagonal are blocked, i.e. as in Figure 1 can move to its destination in
a single time step. An agent a; can move to a cell occupied by agent a; given
that a; will move to a different cell at the same time. Agents a1, ag, as and
a4 in Figure 1 can reach their respective destinations by “rotating” clockwise.
They can do this in a single time step without requiring any additional empty
cells. Agents a7 and ag cannot move to their destinations in a single time step
because that would mean that they move along crossing edges at the same time.
They can also not swap places because then they would be travelling along the
same edge.

3 Related Work

The following sections discuss previous work into cooperative pathfinding, ar-
gumentation and coordination. The cooperative pathfinding problem requires
that agents are able to coordinate their movement. Several different approaches
that achieve this will be discussed below. Computational argumentation has
been used in various domains. One of these domains is the construction of a
plan for agents, this application of argumentation is known as practical reason-
ing. It can also be used to make plans in a multi-agent system which allows the
agents in such a system to coordinate. Argumentation has not yet been used
to find solutions for cooperative pathfinding but research in argumentation has
been generic enough that it can be applied to a specific application such as
cooperative pathfinding. Work in coordination is also discussed to help bridge
the gap between argumentation and cooperative pathfinding. We also discuss
work in coordination that can be used to achieve greater speed performance.

3.1 Cooperative pathfinding

In the grid world of Figure 1 each agent can take one of b+ 1 actions, where b is
the current number of neighbouring cells without static obstacles. There is also
a wait action where an agent does not move. All cells that are adjacent to the
agents current cell are considered to be neighbouring. This includes cells that
can be reached by moving diagonally. The naive approach to finding conflict free
paths takes the Cartesian product the state spaces of all k agents and searches
the new combined state space with a search algorithm like A*. This is also
known as the Standard Algorithm [29]. This results in a branching factor of
(b+ 1)*, the branching factor grows exponentially in the number of agents and
the problem quickly becomes intractable even with efficient search algorithms
like A* [27].

There are a few common strategies that are used to tackle this problem.
Centralised methods use one single processor to calculate the paths for all agents.
They are often complete: a solution to the problem will be found if one exists.
This also means that they are slow. An alternative strategy is to decouple
the agents from each other. Each agent plans its own path and a hierarchy is
enforced on the agents. Agents with a lower priority need to give way to agents
with a higher priority. Decoupled methods sacrifice completeness for speed.
They often calculate the priorities at a central processor but can exploit the



Table 1: Comparison of several cooperative pathfinding algorithms.

Method Category Complete | Priority | Comm. | Online
OD+ID [29, 30] | Centralized Yes No All No
ICTS |27] Centralized Yes No All No
ADPP [5] Decoupled No Yes All No
WHCA* [28] Decoupled No Yes Window | Yes
DMRCP [35] Decentralized | No No 2 nodes | Yes
DiMPP [7] Decentralized | Yes Yes Ring No
ORCA [3]] Decentralized | No No None Yes

inherent parallelism in multi-agent systems to calculate the paths. There are
also decentralized methods that will only solve conflicts when they occur during
plan execution. These decentralized methods are often reactive in nature and
are not always able to plan far enough into the future to avoid deadlocks and
congestions.

An overview of several cooperative pathfinding algorithms is shown in Ta-
ble 1. It summarises the properties of the algorithms. Each algorithm is dis-
cussed in more detail below. Some other aspects than the category, completeness
and the assignment of priorities are also discussed. Among these properties is
the communication range which may limit which agents are allowed to coordi-
nate with each other. Some of the algorithms create a plan before executing it
while other algorithms interleave planning and execution. The latter category
of algorithms allow agents to move even though there is not a full solution yet.
These methods are known as online algorithms.

One centralized method called Operator Decomposition (OD) deals with the
intractability of the problem by considering the possible moves of each agent
separately [29, 30]. Instead of taking the Cartesian product of the agents’ state
spaces it assigns actions to agents individually. This leads to two different kind of
states: in standard states no agent has been assigned an action; in intermediate
states some of the agents have been assigned an action. When all agents are
assigned an action it results in a new standard state. Because intermediate states
are considered individually the algorithm is less likely to continue searching
the intermediate states that result in longer paths and thus fewer states are
generated. The result of this is that the branching factor becomes (b + 1)
instead of (b+ 1)*. However the depth of the solution in the search tree grows
with a linear factor k. This trade-off makes finding a solution with an algorithm
like A* more tractable. OD is a complete and optimal algorithm, meaning that
it will always find a solution if one exists and it will find the best solution.

On its own OD is not always very efficient so an additional algorithm called
Independence Detection (ID) was introduced [29]. Before planning k groups are
created, one for each agent, each agent is then placed in its respective group.
Each group makes a plan without considering the other groups. When the
paths for two groups conflict then each group in turn is tasked with finding a
new set of conflict free paths. The groups have to avoid conflicts with each
other during this replanning. If both groups fail to resolve the conflict then
the groups are merged and a new plan is formed for the new merged group
using OD. This process is repeated until a set of conflict free paths for all
agents has been found. Combining OD and ID yields an algorithm that has the



completeness and optimality benefits of OD while also gaining an increase in
speed. Several variants on ID+OD have been proposed, leading to the Optimal
Anytime algorithm [30] which will quickly find a solution and can then spend
more time on improving the solution. Because ID is an extension that can
be applied to any cooperative pathfinding algorithm OD-+ID is still complete.
Although there is implicit priority in which order the agents are assigned actions.
This has no influence on the ability to find a solution or the quality of the
solution. The plan is completed before agents start executing it so there is no
need to update the plan during execution.

Another centralized method is called the Increasing Cost Tree Search (ICTS)
which is a two-fold search method [27]. It consists of a high-level search on an
Increasing Cost Tree (ICT) which has a root node that contains the cost of
the optimal path for each individual agent. Each child node increases the path
cost for a different agent by one. So each level in the tree increases the sum of
the path costs by one. This tree is searched using breadth-first search. When
a node in the ICT is expanded a low-level search is invoked. This low level
search generates all possible paths for all agents that are equal to the cost in
the current ICT node. It will then try to find a conflict free combination of
these paths. If such a set of paths exists then the algorithm is done. Otherwise
the high-level search will continue to the next node in the ICT. Pruning can
be used to decrease the amount of duplicate nodes in the ICT. It is possible to
use ID with ICTS as well. The ICTS is a complete algorithm like OD+ID. It
is faster than OD+ID in situations when the number of agents relative to the
number of nodes is high.

The above algorithms both fall into the centralized category of algorithms.
These methods can become very slow because of the state-space explosion. De-
coupled methods reduce the required calculation time by considering each agent
separately. They generally use the same three step approach:

1. Find optimal paths for each agent independent of each other.

2. Impose a hierarchy on the agents, often this is done by assigning them a
unique priority.

3. Make new plans for all the agents. This time an agent has to consider all
agents with a higher priority as a moving obstacle. Agents with a lower
priority are ignored.

This often leads to a set of conflict free plans. Finding the optimal priority
ordering is a combinatorial problem [1]. A common algorithm of assigning
priorities first calculates a dependence graph based on the paths found in the
first step. Then priorities can be assigned such that agents have a priority that
is higher than that of agents that may block them. Circular dependencies may
mean that multiple priority orderings have to be evaluated. The total costh of
the final solution depends highly on the priority ordering employed. Some of
the possible priority orderings may not even lead to a solution. This category of
algorithms is not complete because it may be the case that none of the possible
priority orderings lead to a solution while a solution to the problem does exist.

Most proposals for decoupled methods don’t mention whether a central pro-
cessor must make the plans for all agents or whether the agents can do it them-
selves. Determining the priority ordering is often centralized since a single



processor needs to determine all dependencies [1]. One method called Asyn-
chronous Decentralized Prioritized Planning (ADPP) [5] exploits the inherent
parallelism of a multi-robot team during the planning stages. The algorithm
allows agents to make their individual plans. After an agent has found a path
it will notify all agents with a lower priority of its (new) path. These lower
priority agents will then update their plans if conflicts arise. They will in turn
notify lower priority agents of their new plan. These agents will then update
their plans etc. The benefit of this method is that agents can make a new plan
as soon as any one higher priority agent has send a conflicting plan. There is
no need for agents to wait for each other to finish their plans. This means that
agents can plan simultaneously and that some agents may finish planning before
higher priority agents if their paths are conflict free.

Windowed Hierarchical Cooperative A* (WHCA*) is a decoupled algorithm
that has been very successful in the video-game industry [28, 2]. It uses a
reservation table to denote where agents plan to be and thus prevent other
agents from entering the same space at the same time. It requires that agents
have been assigned a priority ordering in which they plan so that they can take
each other’s reservations into account. The amount of computation required
depends on the quality of the heuristic used during A* planning. Hierarchical
Cooperative A* (HCA*) uses an abstraction of the search space to obtain perfect
distance estimates. The reservation table and time dimension are ignored for
this abstract space so that the heuristic distance is the same as an agent’s
optimal path. Agents still use the reservation table to find the conflict free
paths. The search by the above algorithm can be limited by using a window. The
reservation table is only used in the window and the rest of the path is planned
using the same abstract space as HCA*. This effectively ignores the other
agent’s actions outside of the window. The window is moved at regular intervals
and the agent’s plan is updated when this happens. When the window moves
the priority ordering is recalculated so that the agents have no fixed hierarchy.
The priority ordering thus varies based on the current window. Computation is
spread out over the time it takes for agents to get to their destination. There
is no need to calculate the entire path before execution, instead they can be
updated regularly during execution. Agents still ensure that they take the
most optimal path to their destination by consulting the abstract space during
planning. Usually with decoupled algorithms agents will stop cooperating when
they their destination because they have reached their individual goal. This can
block other agents from reaching their respective goals. WHCA* solves this by
forcing agents to keep planning and coordinating for the length of the window
even if the agent has already reached its goal.

The window of WHCA* limits the size of the reservation table that the
agents use. In turn this limits the communication range of the agents to the
size of the window. Agents share their reservation table with the agents that fall
within their window. The other algorithms discussed do not include a limit on
the communication range, so far only WHCA* does. Instead those algorithms
allow (and often require) all agents to communicate with each other to find
a solution. Centralised algorithms use a single processor to find the solution.
This means that all agents communicate indirectly with each other through the
central processor.

One model of completely decentralized cooperative pathfinding called DM-
RCP has been proposed by [35]. Agents move towards their destination and
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only communicate with other agents that are at most two grid cells away. They
can give each other commands like move out of the way, follow me, wait etc.
Agents are altruistic which means that they are willing to make concessions dur-
ing conflicts even if that means that they will be at a disadvantage. Agents use
various strategies to deal with different conflict situations. Because of the lim-
ited communication range and the various strategies employed the agents often
need to recalculate the optimal path to their destination during the execution of
their old plan. This approach works well. It requires slightly less computation
time than OD+ID and on average the agents only need two thirds of the num-
ber of movement steps to reach their goal positions. Although completeness is
not discussed the algorithm is based on decoupled methods which are generally
not complete. Some of the conflict resolving strategies used by the agents are
able to solve situations in which other decoupled methods would not find a solu-
tion. Because agents only communicate in a limited range there is no indication
whether agents will have conflicts at a later point in time. This lack of a global
overview means that agents must include strategies to resolve deadlocks when
they occur. There is no way to prevent deadlocks from happening.

Another method that doesn’t use a central processor is Distributed Multi-
agent Path Planning (DiMPP) [7]. This is a distributed algorithm that is com-
plete, it is guaranteed that it will find a solution. To find a solution all agents
are only allowed to communicate in a unidirectional ring: agent a; receives mes-
sages from a;_; and will send messages to a;11. Counting is modulo n so agent
a, will send its messages to a;. Sending and receiving messages is done by all
agents at the same time. The algorithm finds a solution by evaluating different
priority orders. Naively doing so would require the algorithm to evaluate n!
priority schemes for n agents. Instead of this naive search the algorithm will
only evaluate the orderings

(a1, a2,...,05_1,0ak)

<a27a37 .. -;ak:7a1>

(ag,a1,...0k—2,ak_1)

The algorithm now only has to evaluate n orderings instead of all possible n!
permutations. The algorithm finds the priority ordering by letting a; find its
optimal path. It will then send its path to as which will find an optimal path
that does not conflict with the path of a;. After this as will send the global plan
(the paths from a; and as) to as. This process of calculating the optimal path
for an agent considering the constraints imposed by the paths of the algorithm
continues around the ring. If an agent a; is not able to find a path that has
no conflicts with the paths that are already in the global plan then it will reset
the global plan to contain no paths. It will now start this procedure again by
calculating an optimal path to its destination and putting this as the only path
in the global plan and passing the global plan on to a;+1. When an agent a;
receives a global plan in which it already has a path then it knows that all agents
have found a conflict free path and the algorithm has found a solution to the
problem. In the case that all agents have reset the global plan but no agent ever
receives a global plan that includes a path for itself then the algorithm has failed
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to find a solution. DiMPP has been proven to be a complete algorithm, it will
evaluate all n priority orderings which is sufficient to find a solution if one exists.
Proof for the completeness of the algorithm are given in [7, subsection 5.1]. The
main idea is that an ordering that starts with a; will never lead to a solution if
any agent is not able to find a conflict free path, it doesn’t matter which agents
will always have conflicting paths. So when the algorithm evaluates

(a1,a2,...,65-1,0ak)

and fails to find a solution it will not have to consider the (n—1)! other orderings
where a; has the highest priority. The algorithm requires no central processor
but it does not fully exploit the distributed nature of multi-agent systems. Be-
cause agent a;;1 has to wait for a; to finish planning there is a dependency
between agents that means that they will have to wait until other agents fin-
ish their calculations. This algorithm is also not online like most decentralized
algorithms because the global plan will be constructed before it is executed.

Optimal Reciprocal Collision Avoidance (ORCA) [31] is a decentralised coop-
erative pathfinding algorithm that requires no communication between agents.
ORCA firs quite well with human behaviour and is most often used in crowd
simulation. The algorithm requires that all agents use the same method of
collision avoidance. Agents observe each other’s position and velocity and use
that to construct a velocity obstacle (VO) to predict where the agent goes in
the next 7 seconds. VOs can also be used to describe the static objects in the
environment. An agent will calculate the collision-avoiding velocities that pre-
vent the agents colliding within 7 seconds. Multiple VOs can be combined to
limit the possible collision-avoiding velocities even further to prevent colliding
with multiple agents. ORCA assumes that all agents use the same method of
avoiding collisions. Because agents only observe the positions and velocities of
nearby agents the algorithm is purely reactive, it requires no communication
between agents. Congestions are possible and become common when there are
many agents moving in different directions. It can be used together with a
global planning algorithm that will determine what the preferred direction for
the agent is. ORCA will try to match this as closely as possible. Calculating
VOs is so computationally inexpensive that the algorithm can handle hundreds
or even thousands of agents in real-time. Most other cooperative pathfinding
algorithms are not able to calculate paths for such large numbers of agents in
real-time.

3.2 Computational Argumentation

Multi-agent pathfinding can be seen as an instance of a resource sharing prob-
lem. From this perspective a conflict occurs when two agents try to access the
same resource at the same time. One way of dealing with this resource sharing
dispute is by constructing an argument with the goal of determining which agent
gets to access the resource at what time. Argumentation has long been studied
by philosophers, and in recent decades it has also been extensively researched in
the field of Artificial Intelligence as well. In Al it has been studied in the fields of
legal argumentation (Al & Law), defeasible reasoning and multi-agent systems.
One pillar of argumentation is non-monotonic logic. A logic is non-monotonic
when a conclusion that follows based on the premises does not necessarily hold
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any more when additional premises are added [32, 21, 26]. A classic example
of this is that birds can fly, so when you see a bird you assume that it can
fly. However when you are told that the bird is a penguin and that penguins
can’t fly then you will no longer conclude that the bird can fly. A argument is
defeasible when it can be defeated by other arguments, in the previous example
the fact that the bird can fly is defeasible.

Pollock distinguishes two different types of defeating arguments [23]. Re-
butting defeaters attack an argument directly and give a reason for an opposite
argument. Undercutting defeaters do not attack an argument directly. Instead
they attack the relation between an argument and its support. The standard
example given by Pollock is about an object that looks red: "The ball looks red
to John" is a support for John to believe that the ball is red, but there may be
a red light shining on the ball. This is a undercutting defeater because it does
not attack the conclusion directly, instead it attacks the relation between the
observation and the conclusion that the ball is red. After all a white object with
a red light shining on it will also look red. Other researchers have formulated
additional forms of defeaters, but they can be distilled into three main forms
[32]:

Undermining defeaters attack the premises or assumptions of an argument.

Undercutting defeaters attack the connection between a set of reasons and
the conclusion in an argument.

Rebutting defeaters raise an argument in favour of an opposite conclusion,
thereby attacking an argument.

3.2.1 Dialogues

Multiple agents can have an argument through a dialogue. Walton and Krabbe
[33] proposed a typology of the main dialogues that humans partake in. They
distinguish six main types of dialogues. It should be noted that the list of
dialogue types is not exhaustive. In information seeking dialogues some of the
participating agents aim to gather information from another agent that knows
the answer. In inquiry dialogues a group of agents collectively seeks an answer
to a question to which none of the participating agents knows the answer on its
own. Deliberation dialogues are about what course of action to take in a given
situation. A persuasion dialogue occurs when an agent tries to convince one or
multiple other agents of its position. It is successful when the other agent(s)
adopt its position. Participants of negotiation dialogues try to find a division of
a scarce resource that all agents can be satisfied with. Finally eristic dialogues
are a verbal substitute for fighting. Note that during most human dialogues
there can (temporarily) be switched between these types.

Dialogues are often analysed in a game-theoretic sense. The utterances that
agents can make are analogous to the moves in a game. Which utterances are
appropriate at each moment is defined by the rules of the game. Most of the
research into dialogues follows this approach [25, 24]. Most dialogue systems
have a two language set-up. The first is the topic language which is about what
agents are discussing and is typically a formal logic. It defines the context of the
dialogue. The second language is the communication language which specifies
which utterances can be made, what effects they have and the rules of outcome.
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This latter language is at the core of dialogue games. Most dialogue systems
have the following syntax in common [25, 24, 20].

Commencement rules Rules that concern when and how a dialogue can start
and what its context is.

Locution rules Which utterances are permitted are known as the locution
rules. They may also define when an utterance is obligatory. Common lo-
cutions include asserting propositions, questioning or contesting assertions
and justifying previous assertions after they have been questioned.

Commitments Some locutions incur commitments on an agent which are sub-
sequently put into the agent’s commitment store. A dialogue system may
limit which utterances an agent can make based on what is in its commit-
ment store.

Speaker order Most dialogue systems specify an order in which agents can
speak, this can range from agents alternating turns to each agent being
allowed to make an utterance at any time.

Outcome rules These determine what the outcome of the dialogue is. Some
systems define an outcome but allow the dialogue to continue so that it
can arrive at a different outcome at a later point in time.

One model of deliberation dialogues is presented in [19], it is also known as the
MHP model. It consists of eight stages. It starts with an Open stage and ends
with a Close stage. The other stages form what is called the argumentation
phase. Each of those stages can occur multiple times during a dialogue as long
as they occur following the rules of the dialogue game. During the dialogue
agents will collect the preferences, goals and other constraints that need to be
considered. Agents will then propose common plans of action. When multiple
plans have been proposed agents can specify which they prefer. In one stage
an agent can recommend a plan after which all agents will vote for that plan.
The dialogue requires unanimity before the recommended plan is adopted but it
allows for any voting mechanism to pick the most preferred plan among many.
By gathering the requirements of all agents during the dialogue their local views
combine into a single global view that can be used to create a plan. One variant
called TEAMLOG [10] requires fewer stages. Besides the opening and closing
stages there are only a proposal and evaluation stage. During these stages
agents can still put arguments for or against proposals forward. The TEAMLOG
model has the same expressiveness as the MHP model.

There are also some problems with the MHP model when modelling deliber-
ation dialogues. The model does not have an easy method of integrating addi-
tional information into the deliberative process. It also doesn’t have a method
of dealing with failures to find a course of action. The closing stage can only be
reached when the agents have settled on a specific plan. It may be the case that
it is not possible to find a satisfactory solution. This makes it impossible for
the dialogue to reach the closing stage. These two shortcomings are raised and
addressed by [34]. The problem of integrating additional information into the
dialogue is addressed by adding a knowledge base that is specific to the dialogue
which is initially filled with information in the opening phase. It is possible to
extend the knowledge base in the information seeking stage of the dialogue. The
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extended model lists ten criteria for when a dialogue can be closed. Some of
these reasons are: all proposals were discussed, the quality of the arguments in
support/attack of a proposal, whether agents followed procedural rules, and the
accuracy of the knowledge base.

Other approaches to distributed deliberation dialogues in cooperative multi-
agent systems based on DeLP and MAPOP have been proposed [12, 22]. In these
systems agents make partial ordered plan proposals and argue for or against
them. Agents share information that they have about the world and their ob-
jectives. During dialogues agents share their plans and they are allowed to argue
for or against a plan, this can be on the level of individual actions. The dialogues
prescribe a turn order for agents such that during each round of argumentation
each agent gets the opportunity to submit plans, threats or arguments. During
each round the global plan will become more refined. The agents collectively
search for the most appropriate plan with an algorithm analogous to A*.

3.3 Multi-agent coordination

Argumentation can be used to allow coordination between agents by letting
them deliberate in a dialogue. Cooperative pathfinding is a particular instance
of a coordination problem. Before we can combine cooperative pathfinding with
practical reasoning we have to consider the argumentative method of building
plans for a single agent that was introduced by Pollock [23]. An agent starts out
by making a global plan consisting only of coarse steps. This saves computation
time and it defers planning specific actions to a later time when more information
about the problem becomes available. When the agent reaches a step in a plan
that is not concrete enough yet it will start constructing a sub-plan for that step.
It may also start sub-planning this when another planning process depends on
it. This is done in multiple levels leading to a hierarchical plan. The lowest
level consists of basic actions that are inherent in the agent (like lifting an arm).
At the same time the agent also keeps track of whether it is still possible to
execute the future steps in the plan. The agent will have to adapt its plans once
it notices that it is not possible to execute the remainder of the plan any more
for any reason. This allows an agent to adapt to a changing environment and
changing desires. Although this design focusses on planning actions for a single
agent it can easily be extended to planning for groups of agents.

Coordination in a multi-agent system can be done through Partial Global
Planning (PGP) [11, 8, 36, pp. 202-204]. The goal is to let agents cooperate
without any one of them formulating a global plan. Instead agents will coordi-
nate with other agents only when they need to. This leads to the construction
of many small local plans which can be communicated to other agents as well.
The result is that eventually there will be a global plan that covers all agents.
The agents themselves will only know the part of the global plan that is relevant
to them. The global plan is implied by these partial global plans. Key to partial
global planning is that no agent needs to know the global plan, it only needs
to know which parts of the plan it is affected by. This approach is similar to
that of decoupled cooperative pathfinding because they use a similar planning
structure. Partial global planning starts out with letting each agent make their
individual goals. Next agents communicate information on where plans interact.
Finally they will alter their plans such that their actions are better coordinated
and there are no negative influences. Generalized PGP [8] extends this with
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real-time planning, negotiation, and coordination relationships between goals.
This allows the framework to be used in settings other than the multi-sensor
network that PGP was originally developed for.

Continual Planning [3, 4] aims to achieve coordination in a multi-agent set-
ting where the environment can be partially observable and is highly dynamic.
Here plan creation and execution are interleaved so that agents are better able
to respond to changes in their environment. This is similar to Pollock’s OSCAR
[23] but Continual Planning specifies when switching between planning and
executing should happen and it is designed to work in a multi-agent system.
Assertions are used as preconditions to switch between planning and execu-
tion. During the planning phase an agent will postpone creating a plan for a
sub-problem and create an assertion instead. The agent can start executing
the plan when it has created these assertions. When the assertion is satisfied
then the agent will stop executing and the planner will resume planning and
find a way to achieve the sub-goal for which planning was originally postponed.
Agents can also ask each other to achieve certain goals or execute actions. Often
agents will request of another agent to reach a sub-goal instead of executing a
multi-step plan. The agent can then determine its own plan to achieve this new
sub-goal and its other goals. This allows for flexibility in cooperation as agents
are able to plan according to other constraints that may have been imposed.
Continual Planning has been applied to the cooperative pathfinding problem.
One of the main finds was that a full view of the problem does not necessarily
lead to a better solution. Agents with a limited sensing and communication
range are often able to find a solution in the same time while the length of their
paths is about equal. This is attributed to the difficulty of finding a plan with
full observability is often hard to do and slow while finding a partial plan, exe-
cuting it and finding a new partial plan when new conflicts arise is faster. This
comes at the trade-off that agents may get stuck during the execution and reach
a state in which no plan can be found that successfully solves the cooperative
pathfinding problem. These findings are similar to those of using a window to
restrict cooperation to a limited temporal range in WHCA* [28].

4 Family of algorithms

Decoupled algorithms are able to solve cooperative pathfinding problems while
requiring only minimal computational resources. The agents calculate paths to
their destination individually so this is inherently distributed. A hierarchy is
imposed on the agents by assigning them a priority order. This order allows
agents to avoid conflicts without a central processor making a plan. However
a central processor is still needed to determine the priority order. A central
processor is used to find dependencies between agents to determine possible
priority orderings that can be used to solve the problem [16, 1]. This means that
decoupled methods are mostly distributed with a single centralized bottleneck.
All agents will have to halt calculating a solution while the priority ordering is
determined by the central processor. The central processor in its turn has to
wait for all agents to calculate and communicate their optimal paths before it
is able to calculate the priority order.

To overcome this bottleneck the calculation of the priority ordering can also
become distributed. The decoupled method can be altered to allow for this.
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The first step where each agent plans its optimal path without regard for the
other agents remains the same. Next agents share the paths that they found with
each other. Each agent can now determine where its path and the paths of other
agents have conflicting moves that would lead to a collision. The agents will then
be able to solve the conflicts that occur without having to wait for slower agents
to calculate and communicate their optimal paths. To solve conflicts agents will
start a dialogue where possible solutions are proposed, evaluated and adapted.
The proposals made consist of a priority order for the agents involved in the
conflict. Agents will only need to solve the first conflict that occurs in their path
because solving it may have the side-effect of solving or causing later conflicts.
After a conflict has been successfully solved then the agents involved can work
on solving the next conflict. Below are the details of three different versions of
this algorithm. Each version of the algorithm has some improvements over the
previous version.

Three algorithms build upon a more general search algorithm Cooperative
A* (CA*). This algorithm is a variation on A* [13] that allows teams of agents
to cooperate. Each agent searches for a path individually, but they can take
each other’s actions into account. The algorithm searches both the space and
time dimensions to ensure that paths are conflict free. To be able to do this an
agent needs to know the paths of the other agents that can potentially conflict
with its own path. The algorithm works like regular A* with the addition that
it has to consider the moves that other agents make. It does this by not taking
actions that would cause a conflict with the path of an agent of higher priority.
This results in a path which leads the agent to its destination and it does not
collide with other agents during the execution of this plan. Because CA* is
based on A* it will find the optimal path which does so.

4.1 Partial Cooperative A* (PCA*)

The heart of the algorithm is the conflict resolution step. The most straight-
forward approach to solving conflicts is by going through all possible agent
orderings. An ordering determines which agent has priority over another agent.
The ordering a; > as indicates that a; can plan freely while as has to consider
a1 as a moving obstacle. Usually decoupled methods use a permutation of the
priority ordering a; > ag > ... > ai that all agents have to adhere to. Our al-
gorithm Partial Cooperative A* (PCA*) does this for smaller groups of agents,
it is outlined in Algorithm 1. Initially agents find their optimal paths without
considering the presence of other agents (line 1 and line 2) and communicate the
result with each other (line 3). The function FINDPATH() finds a path for an
agent with the constraints of the priority orderings given as its sole argument.
COMMUNICATEPATH() sends this path to all other agents so that they can find
conflicts. HASCONFLICT() will return true when an agent has conflicts along
its path or false otherwise. When agents detect that there is a conflict in their
individual plans then they will try to find a priority ordering between them that
will solve the conflict. Agent will always try to find a solution to the conflict
that is closest to their current position first (line 5) given by the function EAR-
LIESTCONFLICT(). This is because the solution to earlier occurring conflicts
may have the side-effect of solving or creating later conflicts. There is no need
to waste computational resources on solving a conflict that will be solved by
implication when an earlier occurring conflict is solved.
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Algorithm 1 Partial Cooperative A*

1: Permanent < ()

2: Path < FINDPATH(Permanent)
3: COMMUNICATEPATH(Path)

4: while HAsSCoNFLICT() do

5: conflict < EARLIESTCONFLICT()

6: Orderings <— PRIORITYORDERINGS(con flict)

7: Cost + ()

8: for all ordering € Orderings do

9: Path < FINDPATH(Permanent U ordering)

10: Costlordering] < PATHCOST(path)

11: end for

12: Permanent < Permanent U {arg min,, j.,.;,, Cost}
13: Path + FINDPATH(Permanent)

14: COMMUNICATEPATH(Path)

15: end while

To find the most suitable priority ordering all possible orderings between the
agents that are involved in the conflict are evaluated (line 6-11 in Algorithm 1).
A conflict with two agents will result in the orderings a; > as and as > a3
being evaluated. The function PRIORITYORDERINGS() will give the set of all
possible priority orderings permutations for the agents involved in the conflict.
The agents temporarily adapt the first ordering and plan new paths with the
constraints it introduces (line 9). The agents measure the length of the paths
that they found using the PATHCoOST() function (line 10). They do this for each
priority ordering that is possible. The priority ordering with minimal increase
in sum of path lengths is permanently adapted by the agents (line 12). A
new path is calculated and communicated with all other agents (line 13 and
line 14). Because the solution with the lowest sum path length is used there
is no consideration for the effects that the solution has on conflicts that occur
later.

Only the agents that occur in a priority ordering adapt it. This means that
an agent az does not know about the ordering that agents a; and as have settled
on, say that they picked as > a;. When a3 and a; have a conflict then PCA*
will also have to find a solution for it. If they settle on the solution a; > ag
then only a; knows as > a; > as, the other two agents only know their partial
priorities. In this case a; holds all information to obtain the global priority
ordering. Often it is not the case that a single agent knows the full global
priority ordering. The global ordering is implied by the local partial orderings
that the agents do know about. This is similar to how plans are constructed in
partial global planning where no agent knows what the global plan is either.

The orderings that are found do not need to be unambiguous, if a; and a3 had
used the solution ag > a; then a; would have orderings as > a1 and a3 > a1 but
as > az or ag > ag is not known. This leaves as and ag free to use any priority
ordering in the event that they also have a conflict in their paths. This also
allows for circular priority orderings, something which conventional decoupled
algorithms do not support [1]. This is possible because the circular ordering
is implicit in all the partial orderings that individual agents know about. The
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Figure 3: Five stages of resolving a conflict using PCA*. Agents are circles in-
scribed by a;, their respective goals are g;. Paths that are followed are indicated
by the arrows. The circles indicate where agents have conflicting moves in their
paths.

implied global priority also doesn’t need to be complete: not every agent needs
to be present in it. This is easiest to see when considering only agents a; and as
in Figure 1. For this example the other agents are not relevant. There is no need
to establish an ordering for these two agents since their paths don’t intersect.
This has the effect of implied Independence Detection [29] because these agents
will never have to communicate beyond sharing the paths that they have found
with each other. There is no need for them to coordinate because their plans
never interact.

4.1.1 Example of conflict resolution

Consider the configuration of agents shown in Figure 3a. It shows a 4 x 4
grid that contains the agents a1, as, and a3z with goal positions g1, g2, and gs
respectively. The optimal paths to their destinations are shown as arrows. Agent
a1 has a path that consists of three south moves, p,, 1 = {south, south, south},
while both as and a3 have paths that consist of three consecutive east moves,
Pas,1 = Pas,1 = {east, east, east}. None of the agents has a wait action in their
path. After the agents have calculated and shared their optimal paths they find
that a; and ag have a conflict after their first action.
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Before discussing the details of how the agents resolve the conflict in this
situation some definitions are needed. A proposal where agent a; has prior-
ity over agent a; is represented as a; > a;. To resolve this conflict they
evaluate the priority ordering proposals a; > as and as > a;. The situa-
tion after adapting a; > ao is shown in Figure 3b, it shows that as has a
new path pg, 2 = {south east, east, north east}. The situation after adapt-
ing as > ap is shown in Figure 3c, it shows that a; has a new path p,, o =
{south east, south, south west}. Both of these paths have an equal length so
neither of them is strictly better. In this example ties are broken in favour
of the lower numbered agent, so the priority ordering a; > ay is permanently
adopted by a; and as. Agent a3 does not adapt the priority ordering.

The situation is now as shown in Figure 3b where the paths p,, 2 and pg, 1
have two conflicts. Agent a; is not involved in these conflicts because it visits
the first conflict location after as and as leave it. To resolve this conflict the
agents evaluate the priority orderings as > as and asz > as. The situation
after adopting as > ag is shown in Figure 3d, it shows that asy still has path
Da,,2 because a; > ap still applies while a3 has now adapted the path p,, > =
{south east, east, north east}. The situation after adopting a3z > as is shown in
Figure 3e, it shows that as has a new path p,, 3 = {north east, east, south east}
while a3 has its original path p,, 1. Both of these paths have length 3 so the
conflict is settled in favour of the lower numbered agent, as and a3 permanently
adopt the ordering as > as.

As a result of the above conflict resolution process each agent now holds
part of the implied global priority ordering. Agent a; knows a; > ao, agent as
knows a1 > as and as > as, and ag knows as > a3. There is a global priority
ordering a; > ag > ag which can only be derived by ag, the other two agents
have insufficient knowledge to construct the global priority ordering.

4.2 Dialogue-based Partial Cooperative A* (DPCA¥)

PCA¥* evaluates all possible partial priority orderings for a conflict to obtain
the most appropriate solution. Doing so can be computationally expensive even
when only a small number of agents need to be considered. These permutations
are only evaluated on their increase of solution cost, while they may also have
other effects on the global state. Some improvements can be made to PCA*
so that it does not exhaustively search all partial priority orderings while also
considering their side-effects. Deliberation dialogues can be utilized to achieve
this. Agents take part in a dialogue of which the goal is to find a solution to the
conflict that works for all agents involved in the conflict. This dialogue consists
of several stages that are summarised in Table 2. There is a separate dialogue
for each conflict. The agents work through the conflicts in chronological order,

Table 2: Stages of a conflict resolution dialogue.

Stage ‘ Goal ‘ Next stage
Opening Exchange information Proposal
Proposal Make (incomplete) priority proposals | Evaluation
Evaluation | Vote on suitability of proposals Proposal, Closing
Closing Permanently adapt best proposal
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Algorithm 2 Dialogue-based Partial Cooperative A* (DPCA¥*)

Require: topic: conflict that is to be solved by the dialogue
1: Permanent « ()
2: Path < FindPath(Permanent)
3: Communicate Path(Path)
4: Conflicts < FINDCONFLICTS()

5. for all conflict € Conflicts do > Stage 1: Opening
6: if conflict # EARLIESTCONFLICT() then
7: PuTDIALOGUEONHOLD(con flict)
8: continue
9: end if
> Stage 2: proposal
10: repeat
11: PROPOSE()
> Stage 3: evaluation
12: for all proposal € unevaluatedProposals do
13: path < FINDPATH(permanent U proposal)
14: vote, expand < EVALUATE(path)
15: CASTVOTE(vote)
16: end for
17: until —expand
> Stage 4: closing
18: permanent < permanent U arg min y , votes
19: Path < FINDPATH(Permanent)
20: COMMUNICATEPATH(Path)
21: Conflicts <+ FINDCONFLICTS()
22: end for

they solve conflicts that occur early before solving conflicts that occur later.
The dialogue replaces lines 6-12 of Algorithm 1. A more complete outline of the
dialogue-based algorithm is given in Algorithm 2. There are several additional
functions in Algorithm 2 that were not found in Algorithm 1. The function
FINDCONFLICTS() returns the set of all conflicts that an agent is involved in.
PurDI1ALOGUEONHOLD() will tell the other agents in a conflict to wait until
the agent is willing to continue. Finally CASTVOTE() allows agents to vote on
a proposal. All of these processes will be discussed in the remainder of this
section.

Each dialogue starts with an opening stage, during this stage the agents
notify each other if they are taking part in any dialogues for conflicts that
occur earlier than the current conflict being discussed. If there is such a prior
dialogue then the current dialogue will be put on hold until all earlier dialogues
are completed, this achieved by lines 6-9 of Algorithm 2. If the conflict of the
dialogue is the conflict that occurs the earliest for all involved agents then the
dialogue moves on to the proposal stage.

During the proposal stage each agent can enter a new ordering proposal
that is to be evaluated. Agents can make only one single proposal during each
proposal stage. There can be multiple of these stages during a dialogue so it is
possible for agents to make multiple proposals before the dialogue has concluded.
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The proposed priority can be partial, if there are three or more agents taking
part in the dialogue then a; > as > ag is a valid proposal but a; > as,as is
as well. In the latter case a; has priority over both as and a3, but there is no
established priority ordering between as and as yet and this may be decided
upon later during the dialogue, or during a future dialogue. Agents will always
propose that they get a higher priority over the other agents that are part of the
conflict. So in a dialogue that involves two agents a4 and a5 each agent gets to
make a proposal, a, will propose a4 > as while as will propose a5 > a4. Agents
also have the option to not make a proposal during this stage.

The third stage is the evaluation stage which is reached when all agents
have made a proposal or declined to make one. Each of the new proposals
will be evaluated in turn. To evaluate a proposed priority ordering the agents
temporarily adapt it and update their plans. During this replanning agents
have to take into account the constraints imposed by both the ordering in the
proposal, and the ordering imposed by previously solved conflicts. Once an agent
has updated its plan then it will cast a vote based on how suitable the proposal
is. When an agent finds that it is unable to plan a path to its destination
under a certain proposal then it will notify the other agents of this. In this
case the proposal is rejected by all agents and not voted on, it can also not be
expanded on during an extra proposal stage. If it is not the case that an agent is
blocked from reaching its destination then all agents will show their preference
by voting on the proposals. Each vote consists of a real number that represents
how suitable the proposal is. This number is based on the increase of the length
of the path, and whether the new plan solves or causes more conflicts at later
time steps. Both of these factors are weighted to result in the final vote. All
agents cast a vote on each acceptable proposal. The proposal with the lowest
sum of the votes is accepted as the solution to the conflict. The votes of each
agents are weighted equally so there is no agent which has a stronger vote.

After all the proposals have been evaluated there is room for agents to claim
to want to expand on previous proposals. If an agent does so then the dialogue
goes through another proposal and evaluation stage. If no agent wants to make
additional proposals the dialogue can be completed in the closing stage. Dur-
ing the closing stage each agent will permanently adapt the priority ordering
with the highest sum of votes. The priority ordering in this proposal is always
considered when making new proposals and plans during future dialogues. This
completes the dialogue, the agents can now work on conflicts that still occur.
The entire above process is repeated for all conflicts until they are all solved.

In conflicts that involve three or more agents it is not always the case that a
priority ordering will solve the conflict for all agents. In some conflicts involving
agents a1, a9, as it may be the case that a partial ordering a; > as,as means
that a1 will not have a conflict with as and a3 any more, but that as and az will
still have a conflict at another position and/or time. In this case either agent can
make a request for an additional proposal round. During this proposal round
the agents can make new proposals or expand on additional proposals. Agents
do not need to make proposals so a; might not make any new proposals because
it already has the highest priority in the proposal a; > as,a3. On the other
hand as and a3 will propose a; > as > a3 and a; > a3 > ao respectively. After
all three agents have entered a proposal or declined to make one the dialogue
moves to the evaluation stage again. This time only the new proposals are
evaluated. Any duplicate proposals are rejected.
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Conflicts that involve more than two agents can be solved in two different
ways. The first is to let agents solve the conflict in pairs, this approach is known
as Dialogue-based Partial Cooperative A* (DPCA*). In a conflict between the
agents ai, ag and ag at time ¢ then there would be three dialogues: one between
a1 and ao, one between a; and a3, and one between as andaz. Say that a;
and ay are the first to hold a dialogue which finishes with the priority a; > as,
meaning that a; has priority over as. Agent as will have found a path that
does not go through the location of the conflict at ¢. This has the effect of also
solving the conflict between as and a3. Now only a; and ag still have a conflict
at t and they will have to hold a dialogue about which agent gets priority over
the other. When this dialogue would end with the priority ordering a; > as
then the multi-agent conflict at ¢ is solved. It may be the case that as and ag
now have another conflict at a different position and/or time that they will have
to resolve. For this conflict there will be at least two dialogues that need to lead
to a conclusion, and at most three conflicts if as and az do have a conflict at a
different location.

The other approach to solving conflicts in which more than two agents are
involved is to have a single dialogue in which all agents participate, this is
known as Dialogue-based Partial Cooperative A* Plus (DPCA*+). Having
multiple agents in a dialogue will require that the dialogue supports partial
priority orderings and that it allows for multiple rounds of making proposals and
evaluating them. DPCA* does not need to have this complexity in dialogues.
Evaluations are also more complex because agents have to weigh whether a
proposal solves the conflict for just a subset of the involved agents. This is
effectively a penalty for a proposal that only partially solves the conflict under
discussion. DPCA*+ may be more complex than DPCA*, but it also requires
fewer dialogues to find a set of conflict free paths and therefore it may be faster
than DPCA*.

Each time that agents evaluate a proposal they have to compute paths that
satisfy the constraints imposed by the priority orderings. This often means that
agents have to recompute the same paths when their priority doesn’t change
between proposals. Te reduce the amount of computation required agents can
store the paths that they have calculated. When agents need to calculate a path
to evaluate a proposal they can consult their path cache. This allows them to
use a path that has been found earlier and use that as a solution. The only
restriction is that the cached path does not have a conflict with the paths of
agents that have a higher priority. Some cached paths may cause new additional
conflicts with lower priority agents. This should not stop agents from using this
path because they can solve these conflicts in a later dialogue. Using a cache
should reduce the overall amount of time that is required to find a conflict free
set of paths for all agents.

4.2.1 Example of dialogue-based conflict resolution

The cooperative pathfinding problem in Figure 3 can also be solved using
DPCA*. This process is outlined using Figure 4. The problem and the ini-
tial paths are equal. After agents share their initial path they will find where
their paths conflict. Agents a; and ao discover that they collide after their first
action. This means that they will have to resolve this conflict to prevent the
collision. To allow agents to evaluate proposals to solve the conflict we define
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Figure 4: Five stages of resolving a conflict using DPCA*. Agents are circles
inscribed by a;, their respective goals are g;. Paths that are followed are indi-
cated by the arrows. The circles indicate where agents have conflicting moves
in their paths.

vote,, (a; > a;) as the vote of agent a,, on the proposal a; > a;. This represents
how suitable an agent thinks that a particular proposal is. The evaluation is
based on two effects which can be weighted differently. The first effect is the
difference in path length before and after a proposal has been adopted. The sec-
ond effect is the change in the number of conflicts that an agent is involved in,
this effect is weighted three times heavier than the former effect. Qualitatively
this means that vote,, (a; > a;) = 1- Al + 3 - Ac where Al is the difference in
path cost and Ac is the difference in the number of conflicts. The value of the
weights have been arbitrarily picked for demonstration purposes. Their value
should be set empirically in an implementation. Agents only communicate their
final vote and not how they arrived at it.

Continuing with the example, after the agents have determined that they
have a conflict they start a new dialogue. The dialogue starts in its initial
stage; the opening. All messages are broadcast to all agents in the conflict
dialogue, in this case a; and as:

a1: no earlier conflicts
as: no earlier conflicts

Because both agents don’t have any conflicts that occur at an earlier time
(this is the first time step) the dialogue can move on to the proposal stage. Both
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agents make a proposal in which they go first:
ai: propose aj > as
ag: propose ag > aj

Both agents have made a proposal to resolve the conflict. The dialogue can
move to the evaluation stage. Proposals are evaluated in numerical order of the
agent that made the proposal so ai’s proposal will be evaluated first. In this
proposal a; has the highest priority so it doesn’t need to update its plan and its
path remains p,, 1. It updates ag of the fact that its path hasn’t changed and
still consists of three consecutive south actions:

a1: new path
Day 1 = {south, south, south}

Agent ao does have to yield to a; so it will have to consider possible con-
flicts that arise with p,, 1 and plan around them. It finds a new path p,, o =
{south east, east, north east} which is shown in Figure 4b. After finding the
new path as will evaluate its quality so that it can send its vote to a;. After
adopting the proposal as now has two conflicts with a3z so Ac = 1. There is no
difference in the length of the paths before and after temporarily adopting the
constraints of the proposal so Al = 0. This means that as can send the vote to
a1. It will send its new path along with the evaluation:

as: new path
Day,2 = {south east, east, north east}
as: voteg, (a1 > ag) =3

Now that a; knows the new path of agent ay after adopting to a; > as it
can also vote on the proposal. This happens in a similar vein as as’s evaluation.
Agent a; has no more conflicts while it had one previous conflict so Ac = —1.
The vote for this proposal can then be cast:

ay: voteg, (a1 > ag) = —3

Now that this proposal has been evaluated by both agents they can find
the sum score of the proposal which is eval(az > a1) = eval(aj,a1 > a2) +
eval(ag,a; > az) = 0. Next the agents can evaluate agz > a;. When agent a;
goes to evaluate this conflict if finds that it will have to wait for as to send a
new path because ap currently has a temporary path. Agent as can use the
path pg, 1 which is stored in its cache, it sends this information to a;:

az: new path
Pay,1 = {east, east, east}

Next a; can evaluate the proposal. First it needs to make a new plan
that does not conflict with the path that as has just sent. It finds the path
Day.2 = {south east, south, south west}. This new situation is shown in Fig-
ure 4c. Agent a; can immediately evaluate it, the lengths of p,, 1 and p,, 2 are
equal and there is an equal amount of conflicts. The new path and the evalua-
tion are communicated with as:

a1: new path
Day .2 = {south east, south, south west}
ay: voteg, (az > a1) =0

Now that as knows a1’s new plan it can also send its evaluation which has
one fewer conflict than its original path:

ag: voteg,(az > al) = =3
Now both agents have evaluated the proposal as > a; they can find the sum
of the evaluations which is vote(az > a1) = vote,, (a2 > a1) + voteg, = —3. All

proposals have been evaluated so the agents can notify each other if they want
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to make further proposals:
a1: no further proposals
as: no further proposals

Neither agent wants to make more priority ordering proposals. This is be-
cause there are no more possible priority orderings to make with these two
agents. The dialogue can then move to the closing stage. In the closing stage
agents will pick the best proposal, in this case that is the proposal with minimal
sum score which is the proposal as > a1 (Figure 4c¢). To adapt this proposal
agents will need to use the respective paths that they used during the evaluation
of the proposal. So a;’s path will be pg, 2 and as’s path will be pg, 1. They
also need to keep track of which agents have a higher priority than themselves.
Agent a; must now store that as has a higher priority while ay does not have
to store anything. Both agents also communicate their new path with all other
agents, in Figure 4 this is only agent as.

After the new path have been evaluated a; and asg notice that they have a
conflict. Their dialogue is as follows:

Opening stage

a1: no earlier conflicts
as3: no earlier conflicts

Proposal stage

a1: propose a; > as
ag: propose as > ap

Evaluation stage, starting with a; > a3, new paths are shown in Figure 4d

a1: new path

Day.2 = {south east, south, south west}
as: new path

Das,2 = {south east, east, north east}
as: voteg, (a1 > az) = —3
ap: voteg, (a1 > az) = =3

Evaluation of a3 > a1, new paths are shown in Figure 4e

az: new path
Das.1 = {east, east, east}
a1: new path
Pay,3 = {south west, south, south east}
ay: voteg, (az > ay) = =3
as: voteg, (as > a1) = —3

Both proposals have a sum score of —6 so we break the tie in favour of a,
a; > as is permanently adapted by both agents. The final paths p,, 2 and pg, 2
are communicated with as and there are no more conflicts. A valid solution as
been found: a; > a3 and as > a;.

DPCA* finds a different solution than PCA* because it takes the number of
conflicts in a partial solution into account. Because of this it finds a different so-
lution to the conflict between a; and as. DPCA* also added more transparency
to the process by showing why agents picked a certain solution to a conflict. In
contrast PCA* is opaque, the result was mainly determined by how ties between
equal priority orderings are broken.
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4.3 Windowed Dialogue-based Partial Cooperative A* (WD-
PCA¥*)

DPCA* and DPCA*+ have to compute the entire solution before it can be
executed. Planning and execution both take time without requiring the same
resources making it possible to do them at the same time. This means that the
plan can be executed while it is still being constructed. One way of doing this is
by applying a window to restrict how far away from an agent’s location DPCA*
will be used to solve conflicts. A window w determines that agents will use the
above algorithm to solve all conflicts that occur within w time steps from their
current position. Agents will not cooperate past the boundary of the window,
solving conflicts that happen beyond that border is deferred to a later point in
time. Periodically the agents will update the conflicts that occur within their
window and solve them. Because agents only coordinate in the window it is not
necessary for them to plan a path past the window boundary as well. Instead
agents can plan a path for the next w time steps so they get closer to their
goal. To achieve this the graph can be changed so that the nodes at the window
boundary connect directly to the goal node. This can be achieved by changing
the cost function defined in Section 2 between adjacent nodes P and Q [28]

0 fP=Q=Gt<w
cosT(P,Q) = ¢ HEURISTICDISTANCE(P,G) ift=w
1 otherwise

where HEURISTICDISTANCE is a function that returns the cost of the shortest
path between P and G as if there are no other agents on the graph.

Using the window spreads out the computation over the course of execution,
but it has other benefits as well. Exchanging optimal paths between agents
after the first step may take a long time in large multi-agent systems. By
limiting the search using a window agents only need to coordinate with a limited
number of other agents. This reduces the initial planning time, as well as
for each subsequent window. Agents that are never in each other’s window
will never have to communicate with each other, saving a lot of unnecessary
communication and conflict detection overhead. Windowing the search also has
benefits in systems where agents can change their destination during execution.
Instead of recalculating the entire plan when this happens, only agents within
the window of the agent changing destination have to update their plan. Agents
that are not affected by the change in destination do not have to update their
plan. When there would be no window all agents would have to recalculate
and solve all conflicts again, even if they would not need to update their plan,
leading to wasted computational resources.

An online algorithm like WDPCA* has the implied effect of forcing agents to
abide the consequences of interleaving planning and execution. It is not desirable
for agents to backtrack long distances to solve a conflict that occurs late in
execution because it would drastically increase the solution cost. Instead agents
will have to deal with the consequences when they occur. This fits with the
philosophy of partial global planning where a solution is incrementally arrived
at. By employing a window agents will set parts of their plan in stone while
keeping future actions flexible. This is similar to how partial global planning
enforces agreed upon coordination but allows agents flexibility in the details of
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their plan.

4.3.1 Example of dialogue-based conflict resolution

The same situation as in Figure 3 and Figure 4 can also be solved by WDPCA*.
This process is shown in Figure 5. For this example the window size is set to
two (w = 2), agents always make plans of two steps. Initially agents a; and ag
have a conflict, their dialogue:
Opening stage
aq: no earlier conflict
as: no earlier conflict
Proposal stage
ai: propose ai > asg
ag: propose as > ap
Evaluation stage, starting with a; > a2, new paths are shown in Figure 5b
a1: new path
Day 1 = {south, south}
az: new path
Pay,2 = {south east, east}
az: voteg, a1 > az =3
a1: voteq, a1 > ag = —3
Evaluation of as > a1, new paths are shown in Figure 5c
az: new path
Pay,1 = {east, east}
ai: new path
Day,2 = {south east, south}
ai: voteajas >ay; =0
ao: voteasas > ayp = —3
The solution to the conflict in Figure 5a is as > a;. The new conflict between
a1 and ag is solved with the following dialogue:
Opening stage
a1: no earlier conflict
as: no earlier conflict
Proposal stage
ai: propose aj > as
ag: propose as > ap
Evaluation stage, starting with a; > as, new paths are shown in Figure 5d
a1: new path
Day .2 = {south east, south}
az: new path
Pas,2 = {south east, east}
az: voteq, a1 > az = —3
ai: votey, a; > az = —3
Evaluation of az > a1, new paths are shown in Figure 5e
a3: new path
Pas,1 = {east, east}
a1: new path
Day,3 = {south west, south}
ai: voteajas > ayp = —3
as: voteasas > ayp = —3
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Figure 5: Seven stages of resolving a conflict using WDPCA*. Agents are
circles inscribed by a;, their respective goals are g;. Paths that are followed
are indicated by the arrows. The circles indicate where agents have conflicting

moves in their paths.
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Table 3: Comparison of proposed cooperative pathfinding algorithms. The com-
munication and online columns are the same as those in Table 1.

Algorithm ‘ Communication ‘ Online ‘ Dialogues

PCA* All No No
DPCA* All No Yes
WDPCA* | Window Yes Yes

Both proposals have been evaluated equally so we break the tie in favour
of a;. The priority orderings for the first time step are as > a1 and a7 > as.
The agents now execute half of their plan, in this case that is one time step
(w/2). After executing half of their plan the agents discard the priority orders
as > a1 and a; > az and they make new plans for the next 2 time steps. These
new plans are shown in Figure 5f. There are no conflicts so no dialogues need
to bee held. Agents execute the first step of their plans and make new plans.
The situation at the next time step is shown in Figure 5g. There are again no
conflicts. After all agents execute the first action in their plan they have all
reached their goal and this instance of the cooperative pathfinding problem has
been solved.

4.4 Summary

An overview of all proposed algorithms is given in Table 3, the categories shown
the same as those in Table 1. Some of the columns from Table 1 are missing in
Table 3 because these have the same values for all proposed algorithms. Each
algorithm is decentralized since they do not rely on a central processor at any
time. The algorithms are heavily influenced by the decoupled approach where
agents first calculate optimal routes, then find a priority ordering and finally
plan a route to their destination that adhere to the constraints that are imposed
by the priority ordering. None of the methods is complete because they belong
to categories that generally do not include complete algorithms. The meaning
of the “communication” and “online” columns is the same as in Table 1. The
“dialogues” column is new, it indicates whether agents can propose solutions,
argue about them and share evaluations on the proposals.

5 Experimental results

The three proposed algorithms are tested and compared against the complete
algorithm OD-+ID and the fully decentralized algorithm DiMPP. To do this we
compare them on a large set of problem instances. The exact size of the problem
set depends on the experiment. Each instance in the set consists of a 16 x 16
8-connected grid. Each grid cell has a 20% chance of containing an impassable
obstacle. Agents cannot enter these grid locations, but the obstacles do not block
agents from moving along diagonals as explained in Section 2. Agents are placed
randomly in the grid such that no two agents have the same starting position.
Each agent is also given a randomly chosen destination location. These are also
picked in such a way that no two agents have the same destination. Note that
it is possible that the starting position of one agent might be the destination of

30



another. All experiments were implemented in Python 3.6 and run on a single
core of an AMD FX-8120 clocked at 3.1GHz.

Several experiments are done that compare the proposed algorithms to OD+I1D
and DiMPP. Before running these experiments the weights that determine the
evaluation of proposals during dialogues need to be set. The empirically found
weights are discussed in Subsection 5.1. The main experiments are carried out
in Subsection 5.2. The main hypothesis for that section is that the proposed
algorithms are able to solve more problem instances and are able to solve them
faster than OD+ID. It is expected that OD-+ID finds better quality solutions.
The quality of a solution is primarily quantified as the cost of the solution. The
number of loops that occur within an agent’s path is used as a secondary mea-
surement of the quality of a solution. We expect that the proposed methods
perform on an equal or slightly worse level than DIMPP on all of these aspects.
The number of agents in a problem instance may also influence the ability of the
algorithms to find a solution within a reasonable time limit so we also measured
this. Finally the effect of using a path cache on the time to find a solution is
also recorded. This is not compared to OD-+ID or DIMPP because these do not
support similar techniques.

5.1 Evaluation weights

DPCA* and WDPCA* both need to evaluate proposals made by agents. The
evaluation of a proposal is based on the effects that they have on an agent’s plan
and how many conflicts the agent will have to solve in the future. This is in
turn used to cast a vote on the suitability of a proposal. To be able to evaluate
a proposal properly there are several weights that need to be set so that each
effect is taken into account sufficiently without having an exaggerated effect on
the final evaluation. To set the weights simulated annealing [15] is used with
an initial temperature of 100 which drops to 1 in unit steps. Each iteration of
the simulated annealing process consists of 200 problem instances which contain
between 2 and 50 agents. The number of agents in the problem instances forms
a uniform distribution. For each drop in temperature a new unique set of 200
problem instances is generated to avoid overfitting to a certain set of problems.
There is a time limit of 2000ms to solve each instance. Note that the time limit
is arbitrary, it was picked to show results that can be expected in an application
while not spending too much time on very complex instances that require a lot
of computation.

The results of the simulated annealing process are shown in Table 4. The
path length weight refers to the increase in path length that lower priority agents
suffer when they have to take a new longer path. The weight is multiplied with
the number of steps that the new path is longer than the path before solving
a conflict. Some proposals have the side effect of creating or solving additional
conflicts which is weighted by the conflicts solved weight. Each additional con-
flict increases the evaluation by this number while each solved conflict reduces
the vote by this number. Each proposal is expected to reduce the number of
conflicts by one, this is the conflict that is currently being discussed. The par-
tial solved weight is used in cases where multiple agents take part in a dialogue
and the proposal that is being evaluation only assigns a priority to some of the
agents in the conflict but this doesn’t solve the conflict for all agents involved.

31



Table 4: Evaluation weights as determined by simulated annealing. Empty
fields mean that the weight is not used by that algorithm.

Path length | Conflicts solved | Partial solution
DPCA* 4.744 5.291
DPCA*+ 0.312 5.570 2.677
WDPCA*-2 3.113 9.464
WDPCA*-4 8.736 7.9143
WDPCA*-8 9.352 22.874
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Figure 6: Comparison of performance of various algorithms on 10000 problem
instances.

5.2 Experimental evaluation

To compare the algorithms they are all given a large set of cooperative pathfind-
ing problems that have to be solved. Each instance is constructed following the
same procedure as used to find the optimal evaluation weights. Each instance
has between 2 and 40 agents, the number of agents still forms a uniform distribu-
tion. The time it takes to solve each instance in the set of problems is recorded.
There is a time limit of 2000ms to calculate a solution for each instance. This
is the same tile limit as that was used to find optimal evaluation weights.

When the instances are sorted in ascending order by the time it requires
to solve them then they can be plotted in a performance graph as shown in
Figure 6. The z-axis shows the index of the sorted instance while the y-axis
shows the time it takes an algorithm to solve that instance. This sorting is
done for each algorithm independently. Because of this it is not necessarily the
case that the nth instance for one algorithm is the same as the nth instance for
a different algorithm. The graph shows several different types of information.
The first is a comparison of run times for the different algorithms. A lower line
means that an algorithm was able to solve problem instances quicker. At the
same time the graph also shows how many instances an algorithm can solve
within the 2000 ms time limit. Instances that were not solved are not included
in the graph, so how far a plot extends along the z-axis indicates how many
problem instances were solved by an algorithm. A plot that extends further to
the right indicates that an algorithm was able to solve more instances than a
plot that does not extend as far.
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Figure 7: Proportion of instances that were solved by each algorithm.

The performance graph in Figure 6 shows that only the PCA* is generally
slower than the complete algorithm OD-+ID. When looking at individual in-
stances we can see that 60% of the instances that were solved by both PCA*
and OD+ID solved the latter was faster. All other methods are faster than
OD-+ID and are able to find a solution to more instances. The performance
of DIMPP is similar to that of DPCA* and DPCA*+. Up to 2200 instances
DiMPP is faster than the two proposed algorithms. After that point the al-
gorithm is slower and it is not able to solve as many problem instances. The
DPCA* and DPCA*+ versions of the algorithm have an almost equal perfor-
mance. DPCA* is slightly faster on each individual instance by 34 ms as shown
by a one-sided paired t-test (¢(5979) = —22.96,p = 3.95 x 1071!2). They are
able to solve about the same number of instances, DPCA* solves 62.6% of in-
stances while DPCA*+ is able to solve 60.3%. This indicates that the added
complexity in DPCA*+ does not decrease the time required to solve a problem
instance.

The size of the window also has a small influence on the performance. From
Figure 6 we can see that the use of any window means that the algorithm is
faster and is able to solve more problem instances. We can also see that the
graphs for different window sizes are similar to each other. There seems to be a
trade-off between the size of the window and the time to solve instances. A larger
window is able to solve early instances faster, but after about 3500 instances
it takes more time to solve problems than when a smaller window is used. An
analysis of variance test shows that there is a difference in the time to reach
a solution for different window sizes (F(2,24103) = 35.25,p = 5.15 x 10716).
Individual t-tests show that w = 2 differs from both w = 4 and w = 8 in run time
(t(16613) = 2.41,p = 0.0161 and ¢(15540) = 3.69,p = 0.000228) respectively.
There is no difference between w = 4 and w = 8 (¢(15488) = 1.33,p = 0.183).
This confirms that a very limited window show different behaviour from larger
windows. Especially the earlier instances in Figure 6 may have been of influence
on this result. The gain in performance by using WDPCA* over DPCA* seems
to be most important overall effect. The individual differences between various
window sizes are important when considering other effects.

Figure 7 shows how many instances each algorithm can solve within the time
limit for varying number of agents in an instance. It shows that there is indeed
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Table 5: Solution quality of algorithms. Length is the sum of the lengths of the
paths for a single problem instance.

Instances solved | Length
OD+ID 32.6 % 73.56
PCA* 31.1 % 69.74
DPCA* 62.6 % | 121.89
DPCA*+ 60.3 % | 117.58
WDPCA*-2 84.5 % | 172.78
WDPCA*-4 82.1 % | 164.23
WDPCA*-8 74.6 % | 147.52
DiMPP 46.9 % | 101.21

a little difference in performance of WDPCA* when the size of the window is
varied. A smaller window means that instances with more agents are more likely
to be solved. It also shows that there is a trade-off between a smaller window
and the ability to find solutions. WDPCA* with a small window is not able
to solve as many instances with a medium amount of agents as WDPCA* with
a larger window. WDPCA™*-2 is not able to solve all instances from 10 agents
onwards while for WDPCA*-8 this happens from 22 agents, just before there
is a cliff in the percentage of instances solved. The graph also shows a similar
picture as Figure 6 where OD-+ID and PCA* solved only few instances while
DPCA* and its windowed variants are able to solve problems that include more
agents. DIMPP is in between PCA* and DPCA* in terms of the number of
agents it can find a solution for within the time limit. Figure 7 shows that
DPCA* and DPCA*+ have the same overall performance. They both solve the
same fraction of instances for any number of agents. This again suggests that
the added complexity of DPCA*+ does not mean that it is able to solve more
instances of the cooperative pathfinding problem.

As shown by Table 5 PCA* is the only version of the algorithm that solves
fewer instances than OD-+ID and DiMPP. All versions of DPCA* and WDPCA*
are able to solve at least double the amount of instances as OD+ID. A smaller
window means that the algorithm is able to solve more problem instances. This
comes at a trade-off as a smaller window size also results in a larger solution cost.
This can also be seen in Figure 8 where the sum of the path lengths is plotted
as a function of the number of agents in a problem. It shows that WDPCA*
finds longer paths than any other algorithm tested while OD-+ID and DPCA*
calculate shorter routes for the same number of agents in a problem. The graph
for OD+ID shows heavy fluctuation between 20 and 26 agents. This may be
because this algorithm was not able to solve all instances with this number of
agents and is more sensitive to outliers because of this.

The length of the paths alone do not tell the full story of the quality of the
solution. Agents may have a node N in its path multiple times. This can either
be because an agent has a wait action on that node or it can be because there
is a loop in an agent’s path. In this case the agent visits other nodes between
two visits of node N. To analyse the quality of the paths the number of loops
in each problem instance was recorded. Only the loops that occur before the
agent first visits its destination node were counted. After an agent reaches its
goal node there is still the possibility of loops, however these loops mean that
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Figure 8: Mean sum of path length versus the number of agents in the problem
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Figure 9: Number of loops in paths.

the agent has moved off its goal node to allow other agents to pass through.
These loops are desired behaviour that occur when agents cooperate. We also
do not count wait actions as loops, so only the number of unique times that an
agent visits a non-goal node are counted.

The mean number of occurring loops for each number of agents is shown
in Figure 9. Only the results for WDPCA* are shown, no loops were found in
the solutions provided by OD-+ID, DiMPP and other versions of the proposed
algorithm. They plan a path from the starting position to the goal position,
loops can be avoided because agents have full knowledge what their plan will be
before executing it. We can see that there is an increase in the mean number of
loops as the number of agents in a problem instance increases. How many loops
occur depends on the size of the window that has been utilised. A larger window
means that agents have a larger view of the world and are better able to find a
solution where agents get closer to their goal without having to backtrack.

The average number of dialogues that have taken place to find a solution is
shown in Figure 10. It shows that more dialogues are needed when the problem
instance contains more agents. DPCA* and DPCA*+ are very similar again,
so there is little difference in this aspect of the algorithms as well. Figure 10
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solution for instances with n agents.
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Figure 11: Comparison of occurence of different sizes of DPCA*+ dialogues.

also shows that more dialogues take place when a window is applied to conflict
resolution, and with a decreasing size in window there are more dialogues that
take place. One thing that is noticeable is that the number of dialogues required
increases when the number of agents increases. At some point this trend trails
off. Depending on the algorithm this is generally when there are between 25
and 30 agents in a problem instance. There is a peak in the number of dialogues
between 28 and 35 agents.

The similarities in performance of DPCA* and DPCA*+ can be explained
by Figure 11. It shows the number of dialogues that occur depending on the
number of agents in a conflict. The number of conflicts is split by the number of
agents that are part of the conflict. It shows that most conflicts occur between
two agents and that most dialogues thus only have two agents participating.
It is not a given that there are dialogues with more agents involved in any
problem instance. The peak of the number of dialogues with three or more
agents in a single has a value of 0.577. For dialogues with four agents this is
even lower 0.0769 dialogues per instance at most. This means that in most
problem instances there will only be dialogues in which two agents try to solve
a conflict. Only rarely do dialogues with more than two agents occur. DPCA*+
often doesn’t have to solve more complex dialogues, but it uses a more complex
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Figure 12: Comparison of performance of various algorithms with and without
the use of a path cache. Dotted lines indicate that path cache wasn’t used while
solid lines indicate that the cache was used.

strategy to reach a successful conclusion for each dialogue and therefore it is
slightly slower than DPCA*.

The agents make use of a path cache to reduce the amount of calculation
required when they resolve conflicts. If the cache is in use then there should
be a noticeable decrease in the time it takes to solve problems when compared
to when agents don’t cache paths. To measure the effect of caching on solving
cooperative pathfinding problems a separate experiment was conducted. A new
set of 1000 problem instances was generated. Each instance had between 2 and
40 agents in it. Each instance was presented to DPCA* and WDPCA* twice:
once with the path cache disabled and once with the cache enabled. Similar to
other experiments the algorithms had to solve each instance within 2000ms.

The performance graph of this experiment is shown in Figure 12. Only the
effects of the cache on DPCA* and WDPCA* with w = 2 and w = 8 are shown
to reduce visual clutter. The effects on DPCA*+ and WDPCA* with w = 4
were also tested. The solid lines in the plot represent the performance of an
algorithm with caching enabled, while the dotted line shows the performance
with the cache disabled. It shows that using a cache has a large effect on DPCA*,
but not on WDPCA*-2. An analysis of variance shows that caching does have
an effect on the time to solve an instance (F(1,326) = 22.51,p = 3.13 x 107°).
So there is indeed a significant improvement in the performance of an algorithm
when the cache is employed. There is also an interaction between the algorithm
and whether the cache is enabled (F'(4,326) = 4.21, p = 0.00245). This confirms
that the effectiveness of the cache depends on the algorithm that is used. Using
no window or a large window benefit more from employing a cache than when
a small window is used.

6 Discussion
This section will first discuss the experimental results on a more general level.
Next the implications of our algorithm and its relation to the literature presented

in Section 3 will be discussed. Finally we make some suggestions for future
research.
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6.1 Results

We have seen that only PCA* takes more time to solve problem instances and
solves fewer instances than OD-+ID and DiMPP. All other versions of the pro-
posed algorithm can solve more instances and are generally faster than the two
reference algorithms. This comes with the caveat that DPCA* and especially
WDPCA¥* find solutions for which the cost is higher than those found with the
algorithms from the literature. It is expected that the proposed algorithms are
faster than OD+ID since the latter is a centralized algorithm while the proposed
algorithms are all decentralized. Centralized methods are generally slower than
decentralized algorithms because they consider the combined state spaces of all
agents. Decentralized methods only use the state space of a single agent to
create a plan for that agent. This results in a reduction in the complexity of
the problem [1, 27].

Although centralized methods are slower than decentralized methods they
find a solution in which each agent’s path is optimal. They are also complete;
given enough time they will find a solution to the problem if one exists. The
experimental setup limits the amount of time that an algorithm can use to find
a solution which results in complete methods like OD+ID not being able to find
a solution. Instead the experiments are focused on finding a solution in as little
time as possible. We consider being able to find a solution in a reasonable time
to be more important than being able to find an optimal solution when given
hours, days, or even weeks to calculate a solution. In a real-time applications
like video games or groups of autonomous robots it is more important to find any
solution in reasonable time than it is to find an optimal solution [2]. Because
WDPCA* is fully decentralized it is able to find a solution in a reasonable
amount of time while sacrificing the quality of the solution. This means that
WDPCA* is more suitable for real-time applications because it is able to resolve
a problem instance in a minimal amount of time. It is also able to find a solution
to problems with a large amount of agents because of this speed.

WDPCA* is able to solve more problem instances than DPCA* (which does
not use a window), see Table 5 and Figure 7. How many more instances can
be solved depends on the size of the window. As a trade-off the amount of
actions required for agents to reach their destination increases. This effect get
stronger when the window size gets smaller (see Figure 8). When w = 2 most
of the instances were solved, however the sum of the path lengths was also the
highest. The required time of WDPCA*-2 being so low is not surprising. With
a small window the algorithm is reduced to be reactive. There is barely any
global planning any more because agents don’t look far ahead when trying to
find their way to the destination. Agents mainly solve conflicts that will happen
during their next action or the time-step directly after that. Agents will also
determine whether they have conflicts after each time-step. This shows that
it is a valid strategy to create many small plans with low computational effort
instead of a complete global plan. Cooperating in too small a window does have
a negative effect on the quality of the solution.

In several figures there is a clear initial trend which trails off when the num-
ber of agents in the problem instance becomes larger. The number of dialogues
per number of agents in Figure 10 is an example of this. There is an initial
increasing trend which flattens out in the last last quarter of each plot. The
plots for WDPCA* break this trend starting from between 25 agents and 33
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Table 6: Comparison of several cooperative pathfinding algorithms [29, 30, 27,
5, 28, 35, 7]. DPCA* and DPCA*+ are encapsulated by the DPCA* row.

Category Complete | Priority | Comm. | Online | Dial.
OD+ID Centralized Yes No All No No
ICTS Centralized Yes No All No No
TADPP Decoupled No Yes All No No
WHCA* Decoupled No Yes Window | Yes No
DMRCP Decentralized | No No 2 nodes | Yes No
DiMPP Decentralized | Yes Yes Ring No No
PCA* Decentralized | No Yes All No No
DPCA* Decentralized | No Yes All No Yes
WDPCA* | Decentralized | No Yes Window | Yes Yes

agents per instance. The point where the growth in the number of dialogues
required to solve a problem decreases coincide with the point in Figure 7 where
each algorithm has a cliff in the fraction of instances that have been solved. This
suggests that the effect of the number of dialogues required to find a solution
is caused by the algorithm not being able to find a solution to complex prob-
lem instances within the 2000ms time limit. Complex problems are those that
require many dialogues to find a priority scheme that allows all agents to find
a path to their destination. This in turn suggests that WDPCA* successfully
finding a solution to a problem instance depends on the number of conflicts in
a problem, not the number of agents.

There is an interaction between which algorithm is used and whether previ-
ously found paths were stored in a cache and reused. From Figure 12 it becomes
clear that WDPCA* with a small window also means that the effect is small.
When w is small there are fewer conflicts so agents will not have to participate
in dialogues very often. This means that they will not consult the cache as
often and therefore there is less of a speed-boost. On top of that the paths are
also shorter and easier to calculate. Retrieving a short path which consists of
two or four actions from the cache is not much faster than calculating the path
outright.

6.2 Implications

A complete comparison of the algorithms discussed and evaluated is given in
Table 6, it combines the information found in Table 1 and Table 3. The cate-
gory column indicates the approach the algorithm takes to solve a problem. The
complete column indicates whether an algorithm is guaranteed to find a solution
if one exists. The priority column indicates whether agents are assigned a prior-
ity ordering before calculating a solution. The communication column indicates
which agents are allowed to communicate with each other. All means that there
are no limits on communication, window means that agents can communicate
with each other in a certain range, 2 nodes means that agents communicate in
a 2 graph node radius, ring means that agents communicate in a chain which
forms a ring. The online column indicates whether planning and execution is
interleaved. The dialogues column indicates whether agents can influence the
solution that is found, if the value is ‘no’ then the solutions found are abstract.
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The online algorithms presented in Table 6 are faster than the state-of-the-
art OD+ID [29, 35]. Two of these, WHCA* and WDPCA*, use a window
to interleave planning and pathfinding. By limiting how far into the future
agents cooperate we can speed up the time to find a solution. These results
have also been found by research into Continual Planning [4]. This makes
online algorithms ideal candidates to solve the cooperative pathfinding problem.
Previous research and our results show that this comes at a trade-off: the paths
that are found are often not optimal and the agents may display unintelligent
behaviour like loops in their paths. The cause of the lower quality solution is that
when w is small the algorithm becomes more reactive. Agents will move towards
their goal and notice that they have a conflict for which the best solution is to
backtrack. It may also occur that agents will move back to an earlier position
in their path because they had to move out of the way of another agent. This
kind of behaviour can be prevented by allowing agents to look further ahead so
they can coordinate their actions earlier to prevent backtracking. This shows
that there is a clear trade-off between finding a solution in a low amount of time
and finding a low cost solution with few loops.

Conventional algorithms find an abstract solution for a pathfinding problem
based on minimal cost. DPCA*, DPCA*+ and WDPCA* add transparency to
the solution finding process by the dialogues in which agents can put forward
arguments for or against partial priority orderings. Agents also evaluate and
vote on each proposal based on several criteria. This gives agents some influence
over which solution is picked for a problem instance. For an outside observer,
the agents’ arguments and evaluations provide an explanation why a group of
agents have picked a particular solution. This can be used to explain to a user
why a certain solution is more preferred than any other possible solution.

WDPCA* is based on the A* algorithm [13] but this can be changed to any
pathfinding algorithm. Dialogues result in a priority ordering for agents, which
in turn determines which agents should be considered moving obstacles by other
agents. This is independent from which path planning algorithm is used. There
are only constraints on where an agent can move to. As long as an algorithm is
able to handle moving obstacles or can be modified to handle moving obstacles
then it can be used instead of A* in WDPCA*. This means that our algorithm
can be adapted to work with other discrete space algorithms, or even continuous
space algorithms like RRT* [17, 18, 6].

The proposals of priority orderings are evaluated by the agents to find the
best priority ordering. To do this they weigh different effects of the proposal.
Currently these weights are static. The weights that were found using simulated
annealing are a one-size-fits-all solution. The optimal weights that are found
by simulated annealing are dependent on the lower and upper bound of the
number of agents that can be in a problem instance. This suggests that the
optimal value of the weights depends on the number of agents in the problem.
Future work may look into setting weights as a function of the number of agents
in the problem. WDPCA* could use a set of weights based on the number of
agents in the current window. Instead of basing the weights on the number
of agents the number of conflicts that an agent has can determine their value.
This may make the agents respond appropriately to the complexity of a problem
instance. Instead of using a one-size-fits-all solution the agents will adapt their
heuristics to the problem instance.

The model of deliberation dialogues as proposed by McBurney, Hitchcock
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and Parsons (MHP model) [19] is quite complex. Walton et al. [34] have ex-
panded on this so that the human deliberation dialogues can be modelled more
accurately while addressing some of the shortcomings of the MHP model. The
resulting model is a good explanation of how human deliberation dialogues work.
The complexity of the model is not a good fit for a multi-agent coordination
problem like the one presented in this thesis. Instead the simpler TEAMLOG
model [10] is more appropriate for this setting. The MHP model and the TEAM-
LoG model both consists of an opening part, a closing part, and an argumen-
tation part where all deliberation takes place. The main difference is in the
number of stages in the argumentation part: the MHP model consists of four
stages while TEAMLOG consists of just two stages. These two stages are suffi-
cient to be able to solve the conflicts that occur in the cooperative pathfinding
problem. For WDPCA* we simplified the model even more by allowing agents
to only make proposals and evaluate them. The discussion that might occur in
a more complex model is contained within the evaluation stage. This simplicity
means that WDPCA* is efficient at finding a solution, but it sacrifices richness
in the dialogue.

Richness in dialogues also depends on the domain. Our problem formulation
is very abstract and generic. The only argument that agents can make against a
priority proposal is that there is no valid path to their destination. Applications
like traffic management can impose additional constraints on the problem. In air
and rail traffic management agents may have to keep to a schedule. Agents can
make arguments about keeping to their schedule and weigh the effects of possible
delays. In multi robot systems the agents may need to recharge and they should
be able to make arguments about why they need to have a high priority so that
they can reach a charging station without too much delay. Applications may
have constraints like these which do not fit well in an evaluation function, but
they are well expressed in a logic. This also gives an even greater explanatory
power than that WDPCA* has with its evaluation function and its limited
argumentative capability.

The argumentative methods DeLP-POP and DelLP-MAPOP [22, 12] are gen-
eral approaches to multi-agent coordination that allow agents to discuss indi-
vidual actions in a deliberation dialogue. This makes the method of finding
a solution analogous to OD+ID. This is in contrast to our approach in which
agents deliberate on the level of priorities and paths (sequences of actions). The
benefit of DeLP-MAPOP is that it is distributed, complete and optimal. It can
find an optimal solution without relying on a central processor. However the
deliberation process is quite complex and agents will often have to keep track
of the same information. It is thus not the case that agents will only know
about what influences their paths but also what influences the paths of others,
something which is not the case in WDPCA*.

Cooperative pathfinding is a specific instance of a coordination problem. It
is possible to generalise the findings here to other resource sharing problems.
Instead of agents making moves in a grid world the agents would claim the use
of a resource for some amount of time. Two agents have conflicting claims when
they try to claim the same resource at the same or overlapping times. They
can resolve this conflict in claims by starting a deliberation dialogue and make
arguments about why an agent should be allowed to access the resource before
the other. They could also make proposals about how to resolve the conflict
in claims and agents should be able to argue for or against its adaptation. A
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voting system similar to the priority scheme evaluation used by WDPCA* could
also be employed.

6.3 Future research

The family of algorithms we have presented here show some good results. Some
improvements to our algorithms can be made. It was suggested that the optimal
voting weights may depend on the number of agents present in the problem.
From casual observation it seems that there is no single set of weights that
gives optimal performance. Exploring whether speed performance and path
quality increase when the voting weights depend on the number of agents may
be worthwhile. For WDPCA* there may even be a difference between weights
dependent on the number of agents in the problem or the number of agents in
a window.

Some improvements may be made in which dialogues agents can participate
in and which arguments they can put forward. When agent a; and a; have
coordinated in the past they may want to form an alliance against agent ay, if
either of them would have a conflict with ax. By doing so agents that have
locally well coordinated plans could force other agents to adjust to their plans.
This would avoid the need to readjust plans of multiple agents if one of them
would have to adjust. Contrary ax may also want to weigh in on a dialogue if
certain priority ordering proposals would have a negative impact on its plan. In
Figure 4 agent a3 may want to weigh in on initial the conflict resolution dialogue
between a; and as. This could allow it to determine which proposal would be
accepted during that dialogue.

We have looked at path level argumentation but it is also possible for the
agents to argue about individual actions similar to DeLP-MAPOP. This would in
itself allow for richer dialogues as agents can put arguments forward about why
certain actions in its plan are important. It may also allow agents to negotiate
about their actions. Currently there is not much room for negotiation but
this may change when agents can switch having priority and yielding based on
their circumstances. It would also allow the algorithm to be complete. Certain
situations require agents to alternate yielding and having priority, something
which is almost impossible when a hierarchy is imposed on the agents. Dialogues
about individual actions are more likely to result in a complete algorithm.

Finally a better formalisation would allow some properties of our algorithms
to be proven. This includes the time and space complexity of the algorithms and
whether they are guaranteed to terminate. Currently it is possible to provide
an informal proof of termination at best. A more formal definition would also
allow other improvements, such as completeness, to be made more easily.

7 Conclusion

In this thesis we have combined ideas from partial global planning, continual
planning and computational argumentation and applied them to cooperative
pathfinding. A new novel algorithm called WDPCA* was developed starting
from the decoupled model for cooperative pathfinding. Pairs of agents solve
conflicts in their paths by finding determining a priority order. One agent will
have to give priority to the other and consider it to be a moving obstacle. Par-
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tial global planning is used to allow agents to incrementally build their private
priority order. Doing so means that the agents will coordinate their paths so
that there are no conflicts between them. Resolving conflicts is done in a de-
liberation dialogue. During such a dialogue agents will discuss possible priority
orders that lead to a solution to the conflict. If there is more than one possibil-
ity they will vote on which priority scheme they prefer. The resulting priority
scheme is adapted by both agents that participate in a dialogue.

Generally agents will resolve all their conflicts before they start to execute
their plan. This has several limitations: all computation is done before execu-
tion, and finding a solution may require agents to alternate giving and having
priority. The most important limitation is that agents will stop cooperating
once they reach their goal. This may mean that they block the paths of early
agents and do not cooperate with agents that need to pass them. To address
these limitation a window is applied to the search. This limits the range in
which conflict resolution takes place. It also ensures that agents will continue
to cooperate after they have reached their destination by forcing them to keep
planning even though they have already reached their goal.

We have shown that WDPCA* is able to solve problem instances faster than
the well established algorithm OD-ID and the recent algorithm DiMPP. It is
also able to solve problem instances with a large number of agents where both
of the reference algorithms were not able to solve these instances. As a trade-off
the paths found by WDPCA* are often longer and may contain loops where
agents visit the same grid cell multiple times. Employing a large window results
in fewer of these low quality paths while it does not sacrifice much of the speed
gain that a small window has.

The agents solve conflicts by through a deliberation dialogue. This makes it
possible to retrieve arguments why agents have picked a certain priority order-
ing. These arguments explain why the solution to the cooperative pathfinding
problem was picked. Because WDPCA* uses arguments it is possible to inte-
grate domain specific knowledge into the algorithm. The method we proposed
here is less abstract than conventional cooperative pathfinding algorithms which
only calculate a solution without giving arguments why that solution is the most
appropriate.
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