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Abstract

In this thesis, strong structural controllability of networks on graphs is studied. In the study
of strong structural controllability it is often assumed that the parameters appearing in the
pattern matrix of the qualitative class are independent. In this thesis, we allow appearances
of the same parameter in different locations, which leads to a constrained qualitative class.
Networks with this underlying structure are represented by so-called colored graphs. Suf-
ficient conditions for strong structural controllability of the systems associated with these
colored graphs are given, by means of perfect matchings and balancing sets.

Keywords: Strong structural controllability, qualitative class, zero forcing, colored graph,
perfect matching
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Chapter 1

Introduction

Recently, the study of networks of dynamical systems became a very popular topic in the
systems and control community. A network of dynamical systems can be seen as a dynamical
system itself ([1], [2]). Often, the network structure is represented using graphs. To study
structural properties of the network, the topology of the associated graph is then used. Ex-
amples of networks of dynamical systems include chemical and engineering networks, power
grids and robotic networks ([3], [4]).

In the study of controllability of systems defined on graphs, often linear input/state sys-
tems of the following form are considered:

ẋ = Ax+Bu, (1.1)

where x ∈ Rn is the state and u ∈ Rm is the input. Here, the system matrix A is associated
to the graph and represents the graph structure, while the input matrix B encodes the con-
trol nodes, by which we mean that we can apply external inputs through these nodes ([5]).
Sometimes, these input nodes are called the leaders of the network, and (1.1) is refered to
as a leader/follower system ([6]).

One line of research focuses on specific dynamics of the network. In this case, the system
matrix A is a constant matrix with all entries being fixed values. The nonzero off-diagonal
entries represent the weights of the edges in the graph. Examples of this are adjacency ma-
trices and (the negative of) the Laplacian matrix ([7], [8], [9], [10]). There is, however, one
downside to this approach and that is that the study of controllability is not very robust.
For example, results of controllability do not take into account small deviations that might
occur on the edges of the graph.

Therefore, another line of research has erected where the weights of the edges can be arbi-
trary. As such, the system matrix A is not a fixed matrix anymore. Sometimes this matrix
A is referred to as a pattern matrix ([11]). In this case, the family of system matrices as-
suming a certain structure is studied in the controllability analysis. This thread is known as
structural controllability ([12]). Structural controllability studies controllability of a family
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of pairs (A,B), as opposed to a particular instance. Two types of structural controllability
can be distinguished. Weak structural controllability asks whether there exists a controllable
pair in the family, while strong structural controllability deals with the question whether all
members of the family are controllable.

Weak structural controllability was first introduced by Lin, [12], for single input systems.
In that paper, also a graph theoretic test is given to study weak structural controllability,
by means of cacti. The results of Lin were extended to multi-input systems by Shields and
Pearson, [13]. Other references on weak structural controllability can be found in [14], [15]
and [16].

Strong structural controllability was first introduced by Mayeda and Yamada, [17]. Re-
cently, in [18] a necessary and sufficient condition for strong structural controllability of the
network is given by investigating its underlying graph topology. This is done by representing
the network as a bipartite graph, and then by looking at the perfect matchings in this graph.
Another tool in the study of strong structural controllability is by means of zero forcing,
see Monshizadeh et al., [19]. In that paper again a family of matrices, called the qualitative
class, is assigned to the given network. A necessary and sufficient condition on the graph
topology is then given for strong structural controllability of this family. Other references
for this line of research are [20], [21], [22], [23] and [24].

A basic assumption in the study of structural controllability is that the nonzero parameters
appearing in the pattern system matrix A are independent. In practice this is however not
always satisfied. For example, if the underlying graph of the network is an undirected graph,
the system matrix A is an adjacency matrix that is always symmetric. Another example
is a power grid, in which often some outflows or power supplies are equal to each other ([25]).

In a recent paper by Morse and Liu ([26]), weak structural controllability is studied with
the distinguishing feature that the same parameter can appear on multiple locations in the
system matrix. In this paper a necessary and sufficient condition for weak structural con-
trollability is given based on the graph topology, by looking at so-called colored subgraphs.

The purpose of the present thesis is now as follows. Inspired by [26], we also consider
families of matrices where the same parameter can appear in multiple occasions. This in-
duces a constrained qualitative class. For this constrained qualitative class, we aim to find
graph theoretic conditions for strong structural controllability.

The remainder of this thesis is now organized as follows. First, in Chapter 2 the mathe-
matical preliminaries are explained. In Chapter 3 the problem is formulated. In Chapter 4
we will investigate and extend the results of [19]. The ideas obtained in that chapter can
then be used to solve the main problem, which is done in Chapters 5 and 6. Finally, the
conclusion is presented in Chapter 7.
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Chapter 2

Mathematical Preliminaries

In this chapter we will introduce some preliminaries from graph theory and systems theory.

2.1 Graph theory

A directed graph G = (V,E) is a pair of sets, the node set V = {1, 2, . . . , n} and the edge
set E, which consists of ordered pairs (i, j) ∈ V × V . The cardinality of the node set is
denoted by |V | = n. An undirected graph is a graph whose edge set consists of unordered
pairs {i, j} ∈ E, that is, both (i, j) and (j, i) are in E. A graph is called a simple graph if
we do not allow self loops, i.e., (i, i) /∈ E for all 1 ≤ i ≤ n.

Let G = (V,E) be a simple directed graph. For a node i ∈ V , we say that the node j
is an out-neighbor of i if (i, j) ∈ E. Furthermore we call i a mother node of j. The neighbor
set of a node i, denoted as Ni, is defined as the set of nodes Ni = {j ∈ V | (i, j) ∈ E}. If we
consider an undirected graph, we simply say that i and j are neighbors if {i, j} ∈ E.

Let G = (V,E) be a simple directed graph. To this graph we associate the following set of
matrices

W(G) = {W ∈ Rn×n | Wi,j 6= 0 ⇐⇒ (j, i) ∈ E}.

Any matrix W ∈ W(G) is called a weighted adjacency matrix of the graph G. For a given
weighted adjacency matrix, the nonzero entry Wi,j is called the weight of the edge (j, i).
Note that the diagonal entries of W are always zero, since the graph is simple. For a given
W ∈ W(G), we call G = (V,E,W ) a weighted graph.

A graph G′ = (V ′, E ′) is called a subgraph of a graph G = (V,E), denoted as G′ ⊆ G,
if V ′ ⊆ V and E ′ ⊆ E.
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Consider now an undirected graph G = (V,E). This graph is called a bipartite graph if
there exists two nonempty disjoint subsets of nodes S, T ⊂ V such that S ∪ T = V and for
any edge {i, j} ∈ E we have that i ∈ S and j ∈ T . Sometimes we also write E = ES,T to
emphasize that all edges are between the node sets S and T . We denote the bipartite graph
by either G = (S, T,E) or G = (S, T,ES,T ).

Let G = (S, T,E) be a bipartite graph, and denote the node sets by S = {s1, s2, . . . , sp} and
T = {t1, t2, . . . , tq}. To this bipartite graph we can assign a set of matrices, called a pattern
matrix, as follows

P(G) = {A ∈ Cq×p | Aj,i 6= 0 ⇐⇒ {si, tj} ∈ E}.

Note that, contrary to the set of adjacency matrices, we now allow complex matrices. Let
X ⊆ S and Y ⊆ T be two subsets of nodes. The submatrix AY,X is the matrix obtained
by keeping the columns with indices corresponding to nodes in X, while the row indices
correspond to nodes in Y .

Let G = (V,E) be an undirected graph and let X, Y ⊂ V denote two nonempty disjoint
subsets of nodes. Let EX,Y denote the subset of edges between X and Y , so EX,Y = {{i, j} ∈
E | i ∈ X, j ∈ Y }. A matching between X and Y is a subset of edges of EX,Y , with no com-
mon nodes. We say that a node is matched if it appears in one of the edges. A d-matching
is a matching that consists of d edges. A maximum matching is a matching with maximum
cardinality. For |X| = |Y | = k, any k-matching is also called a perfect matching. We say
that X and Y are perfect neighbors if there exists a perfect matching between X and Y .

Let G = (V,E) now be a simple directed graph. Consider any two nonempty disjoint
subsets of nodes, X, Y ⊂ V . Let EX,Y denote the set of pairs {i, j} such that (i, j) is an
edge going from X to Y , so

EX,Y = {{i, j} | (i, j) ∈ E, i ∈ X, j ∈ Y }.

Then (X, Y,EX,Y ) is a bipartite graph. For any two nonempty disjoint subsets of nodes
X, Y ⊂ V , we say that (X, Y,EX,Y ) is the associated bipartite graph.

In the remainder of this thesis, unless stated otherwise, if we talk about a graph G = (V,E),
we mean that the graph is simple and directed.
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2.2 Systems theory

Consider the following linear time-invariant (LTI) system:

ẋ = Ax+Bu, (2.1)

where x ∈ Rn represents the state, u ∈ Rm is the input, and A ∈ Rn×n is the system matrix
and B ∈ Rn×m is the input matrix. We say that the pair (A,B) is controllable if the system
(2.1) is controllable. To check if the system is controllable, we can apply one of the following
tests.

Theorem 2.1 (Kalman, [2], [27]). (A,B) is controllable if and only if C = [B,AB, ..., An−1B]
has full row rank.

Theorem 2.2 (Hautus, [28]). (A,B) is controllable if and only if for all λ ∈ C, [A− λI,B]
has full row rank.

Theorem 2.3 (Popov-Belevich-Hautus, [29, 30, 28]). (A,B) is controllable if and only if for
all left eigenvectors v of A, i.e., v 6= 0 and vTA = λvT for some λ ∈ C, we have vTB 6= 0.

2.3 Systems on graphs

Consider a network of agents. The structure of a network can be captured mathematically
in a simple directed graph G = (V,E). Here, each agent is represented by a node, and
whenever there is a link between two agents this is represented by an edge between the
nodes representing these agents. To study the behavior of the network we consider again the
following LTI system:

ẋ = Ax+Bu, (2.1)

where the input matrix B ∈ Rn×m corresponds to the input nodes. To this end, we write
VL ⊆ V for the leader (input) nodes. The matrix B = B(V ;VL) is then given by

Bi,j =

{
1 if i = vj,

0 otherwise.
(2.2)

For the given graph G = (V,E), we consider a class of matrices, called the qualitative class
of G, as follows

Q(G) = {A ∈ Rn×n | for i 6= j,we have Ai,j 6= 0 ⇐⇒ (j, i) ∈ E}.

Note that the off-diagonal entries of A ∈ Q(G) correspond to the edges in G: an entry is
nonzero if and only if there is a corresponding edge. There are no restrictions on the diagonal
entries of A ∈ Q(G), they can take any real value. The system matrix A appearing in (2.1)
is now allowed to be any A ∈ Q(G). Any particular choice of such A ∈ Q(G) is called a
realization.
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Let the graph G = (V,E) and the set of input nodes VL be given. This then determines Q(G)
and B = B(V ;VL). For a realization A ∈ Q(G), we can test if the pair (A,B) is controllable
by either the Kalman test, the Hautus Lemma or the Popov-Belevitch-Hautus test. With
slight abuse of notation, we say that (A, VL) is controllable if (A,B) is controllable. We say
that (G, VL) is weakly structurally controllable if there exists A ∈ Q(G) such that (A, VL) is
controllable. It has been shown that if there exists such A, then (G, VL) is controllable for
almost all A ∈ Q(G) ([14]). We say that (G, VL) is strongly structurally controllable if (A, VL)
is controllable for all A ∈ Q(G). In the latter case, we also say that (G, VL) is controllable.

We will now state the following fact, taken from [19]:

Theorem 2.4. Let G = (V,E) be a graph and VL ⊆ V be the leader set. Then, (G, VL)
is controllable if and only if the matrix [A,B] has full row rank for all A ∈ Q(G), where
B = B(V ;VL).

2.4 Zero forcing

In minimal rank problems, the concept of zero forcing is often encountered [19]. In this sec-
tion, we will explain what zero forcing is and how it can be applied to study controllability
of the graph G = (V,E) with leader set VL ⊆ V .

To that end, consider the graph G = (V,E) with leader set VL ⊆ V . Every node i ∈ V
is either colored black or white. Initially, all nodes i ∈ VL are colored black and all nodes
i ∈ V \ VL are set to be white. We consider now the following coloring rule:

Color change rule: If i is a black node and j is the only white out-neighbor of i, we
color j black.

A single application of the color change rule is called a forcing. We also say that i forces j,
and we write i→ j. Suppose we have a subset of black nodes C of the node set V and there
exists an i ∈ C such that i forces j for some j ∈ V \ C. The updated set of black nodes
is now C ∪ {j}. If we apply the color change rule repeatedly until no more changes can be
made, we arrive at a subset of V denoted by Dzf (C). This set is called the derived set. If
Dzf (C) = V we say that C is a zero forcing set (ZFS) of the graph G.

Zero forcing is a very powerful tool for the study of strong structural controllability. In
[19] a necessary and sufficient condition for strong structural controllability is given.

Theorem 2.5. Let G = (V,E) be a graph and let VL ⊆ V . Then (G, VL) is controllable if
and only if VL is a zero forcing set.

Consider the following example as depicted in Figure 2.1. It is a graph consisting of 5 nodes
and the leader set is VL = {1, 2}.
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2 4

1 3 5

Figure 2.1: Example of zero forcing.

Any matrix A ∈ Q(G) of the qualitative class is of the following form:

A =


? ∗ 0 0 0
∗ ? 0 0 0
∗ 0 ? ∗ ∗
∗ ∗ 0 ? 0
0 0 ∗ ∗ ?

 ,
where the stars ∗ denote nonzero free parameters, and the diagonal entries can take any real
value. We also write:

A =


ξ1 x12 0 0 0
x21 ξ2 0 0 0
x31 0 ξ3 x34 x35
x41 x42 0 ξ4 0
0 0 x53 x54 ξ5

 ,
where the xij’s are nonzero free parameters, and the ξi’s are allowed to take any real value
(including zero). Note that the variable xij correspond to edge (j, i).

We claim that the leader set, VL = {1, 2}, is a zero forcing set. To see this, note that
node 2 has only one white out-neighbor, namely 4. Hence, 2 → 4. After that, node 1 has
only one white out-neighbor, namely node 3, so we color 3 black. Then, node 3 forces node
5, and we see that Dzf (VL) = V . The sequence of forcings is depicted in Figure 2.2.
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2 4

1 3 5

2 4

1 3 5

2 4

1 3 5

2 4

1 3 5

Step 0 Step 1

Step 2 Step 3

Figure 2.2: The sequence of forcings of the network depicted in Figure 2.1, with leader set
VL = {1, 2}.

Since D(VL) = V , by Theorem 2.5 we have that (G, VL) is controllable. Finally we would
like to remark that this could also be concluded from Theorem 2.4, since the matrix

[A, B] =


ξ1 x12 0 0 0 1 0
x21 ξ2 0 0 0 0 1
x31 0 ξ3 x34 x35 0 0
x41 x42 0 ξ4 0 0 0
0 0 x53 x54 ξ5 0 0

 ,
has full row rank for any A ∈ Q(G). To see this, note that the top two rows are always
linearly independent. In the bottom three rows we can find a nonsingular submatrix:x31 0 ξ3

x41 x42 0
0 0 x53

 ,
since this matrix has determinant equal to x31x42x53, which is always nonzero since the xij’s
are nonzero free parameters.
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2.5 Zero extension

Let us now consider a directed weighted graph G(W ) = (V,E,W ). We assign to it the
following set of matrices:

QW (G) = {A ∈ Rn×n | Ai,j = Wi,j for all i 6= j}.

That is, each off-diagonal entry is either zero or equal to the given nonzero fixed weight, and
the diagonal entries can take any value and are free. Suppose we are also given a set of leaders
VL. To study controllability of (G(W ), VL), i.e., whether the pair (A,B) is controllable for
all A ∈ QW (G) and B = B(V ;VL), we make use of the concept known as zero extension.
Before introducing that, we have the following intermediate result.

Theorem 2.6. Let G(W ) = (V,E,W ) be a weighted graph and let VL ⊆ V be the leader set.
Then, (G(W ), VL) is controllable if and only if [A, B] has full row rank for all A ∈ QW (G),
where B = B(V ;VL).

Proof. The proof is heavily inspired by the proof of Theorem 2.4, taken from [19]. Note that
the only difference between the theorems is that in Theorem 2.4 the qualitative class Q(G)
is considered, while we consider QW (G) now in Theorem 2.6. The proof is as follows.

The ‘only if’ direction is straightforward. Suppose (G(W ), VL) is controllable. This means
that (A, VL) is controllable for all A ∈ QW (G). Hence, by the Hautus Test (Theorem 2.2),
the matrix [A− λI, B] has full row rank for all λ ∈ C. In particular, take λ = 0. Then the
result follows.

Next, we will prove the ‘if’ direction. Suppose [A, B] has full row rank for all A ∈ QW (G).
We will now prove that (A, VL) is controllable for any A ∈ QW (G). To do so, we need to
prove that [A− λI, B] has full row rank for all λ ∈ C. Let λ ∈ C and z ∈ Cn be such that
zH [A−λI, B] = 0 for some A ∈ QW (G). Here, zH denotes the Hermitian transpose of z. If
we can now prove that this implies z = 0, we are done.

To do so, we write z = p + jq, where j denotes the imaginary unit and p, q ∈ Rn. We
construct now the vector x = p+ αq, where α ∈ R is such that

α /∈
{
−pi
qi
| qi 6= 0, 1 ≤ i ≤ n

}
.

Here, pi and qi denote the ith element of the vectors p and q, respectively. We now have that
xi = 0 if and only if zi = 0. To see this, note that if zi = 0, then pi = qi = 0 and hence
xi = 0. On the other hand, if xi = 0, then we have that pi + αqi = 0, and by construction
of α, we have that this implies that qi = 0 and pi = 0. Consequently, zi = 0. Furthermore,
the following implication is true:

xi = 0 =⇒ (xTA)i = 0.
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To see this, suppose xi = 0. Then also zi = 0 by the previous reasoning. We assumed
that zH [A − λI, B] = 0 so in particular we have zHA = λzH . Since zi = 0, we also have
(zHA)i = 0. Recall that z = p+ jq, so furthermore we have that (pTA)i = 0 and (qTA)i = 0.
Since x = p+ αq, we find that (xTA)i = 0 as well.

We now define the following matrix: D = diag(d1, . . . , dn), where each di is given by

di =

{
0 if xi = 0,
(xTA)i
xi

otherwise .

Note that D is a real matrix. Now suppose that xi = 0. Then we have that (xTA)i = 0
by the previous implication. Also, if xi = 0, then (xTD)i = xidi = 0 as well. On the other
hand, suppose that xi 6= 0. Then by definition of di, we have that (xTD)i = xidi = (xTA)i.
In either case, we have that (xTA)i = (xTD)i, so we derive xTA = xTD.

Let now Ā be given by Ā = A−D. Clearly Ā ∈ QW (G). Note that xT Ā = xT (A−D) = 0.

Furthermore, from zH [A − λI, B] = 0 we have in particular that zHB = 0. This in turn
implies that both pTB = 0 and qTB = 0, and consequently, xTB = 0.

Combining these two facts, we see that xT [Ā, B] = 0. Since we assumed that [A, B]
has full row rank for all A ∈ QW (G), this implies that x = 0. This in turn implies that
z = 0, which completes the proof.

The concept of zero extension is now as follows. Let us assign a variable xi to each node i.
Suppose we set xi = 0 for all nodes i ∈ C, where C is some subset of V called the set of zero
nodes. For each node i ∈ C, we now consider the balance equation∑

j∈Ni\C

xjWj,i = 0.

If this system of |C| balance equations implies that xk = 0 for all k ∈ Y , we say that C
forces Y and we add the nodes in Y to the set of zero nodes C. The new set of zero nodes is
now C ∪ Y . Note that zero extension has a very elegant linear algebraic representation. Let
AV \C,C denote the submatrix of A ∈ QW (G) whose columns are the columns of A indexed
by nodes in C, and whose rows are indexed by nodes in V \ C. Then the set of balance
equations can be written as the matrix equation xTV \CAV \C,C = 0 and if this equation implies

xTY = 0 for some Y ⊆ V \C, we add the nodes of Y to our set of zero nodes. We repeat the
application of zero extension and this process is known as the zero extension process. If we
can not add any more zero nodes, we arrive at a set of nodes called the derived set Dze(C).
We say that C is a balancing set if Dze(C) = V . In [22] the following theorem was proven
for undirected graphs:

Theorem 2.7. For a given weighted undirected graph G(W ) = (V,E,W ) and leader set
VL ⊆ V , (G(W ), VL) is controllable if and only if VL is a balancing set.
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Since only undirected graphs are considered in [22] while we study directed graphs in this
thesis, we now wish to extend the result of Theorem 2.7 to directed graphs. Before stating
the main theorem, we first state and prove the following intermediate result:

Lemma 2.8. Let G(W ) = (V,E,W ) be a weighted simple and directed graph, and let C ⊆ V
be the set of zero nodes. Suppose the balance equations imply that Y ⊆ V \ C becomes zero
as well. Then, (G(W ), C) is controllable if and only if (G(W ), C ∪ Y ) is controllable.

What this lemma shows is that by applying zero extension, controllability is preserved. We
will now give the proof.

Proof. First, we prove the ‘only if’ direction. Suppose (G(W ), C) is controllable. By Theo-
rem 2.6, we know that the matrix [A, B] has full row rank for all A ∈ QW (G), where B is
given by B = B(V ;C). Let now B′ = B(V ;C ∪ Y ), then clearly [A, B′] has full row rank
for any A ∈ QW (G) as well, since we simply added a couple of columns and that does not
lower the row rank. Then, by Theorem 2.6, also (G(W ), C ∪ Y ) is controllable.

We will now prove the ‘if’ direction. Suppose that (G(W ), C ∪ Y ) is controllable. Then
we want to prove that (G(W ), C) is controllable. To do so, by Theorem 2.6, we need to show
that the matrix [A, B] has full row rank for all A ∈ QW (G) and where B = B(V ;C). So
we want to prove that if xT [A, B] = 0 for some vector x ∈ Rn, this implies that x = 0. We
make the following partition of xT [A, B] = 0:

(xTC , x
T
Y , x

T
V \(C∪Y ))

A11 A12 A13 I
A21 A22 A23 0
A31 A32 A33 0

 = 0. (2.3)

Where the first block row of A corresponds to nodes in C, the second block row corresponds
to nodes in Y and the third block row corresponds to nodes in V \ (C ∪ Y ). Since A is a
square matrix, the block columns are indexed in the same way as the block rows. Now we
want to prove that (2.3) implies that xT = (xTC , x

T
Y , x

T
V \(C∪Y )) = 0. To do so, we make use

of the fact that (G(W ), C ∪ Y ) is controllable and that the balance equations of C imply
that the nodes in Y are zero as well. Controllability of (G(W ), C ∪Y ) gives by Theorem 2.6
that xT [A, B′] = 0 implies x = 0, where B = B(V ;C ∪ Y ) now. Using the same partition
as in (2.3), we get:

(xTC , x
T
Y , x

T
V \(C∪Y ))

A11 A12 A13 I 0
A21 A22 A23 0 I
A31 A32 A33 0 0

 = 0, (2.4)

and these equations imply (xTC , x
T
Y , x

T
V \(C∪Y )) = 0. Taking a closer look at the equations

of (2.4), we see immediately that xC = 0 and xY = 0 by xTB′ = 0. Then, we also have the
following implication:

xTV \(C∪Y )[A31, A32, A33] = 0 =⇒ xTV \(C∪Y ) = 0. (2.5)
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We also have that the balance equations of C imply that the nodes of Y are zero. Writing
down the balance equations as a homogeneous system of equations, we get that xTV \CAV \C,C =

0 implies xTY = 0. Taking a closer look at this implication, we can see that the matrix AV \C,C
can be partitioned using the same labels as in (2.3), and we obtain

xTV \CAV \C,C = (xTY , x
T
V \(C∪Y ))

[
AY,C

AV \(C∪Y ),C

]
= (xTY , x

T
V \(C∪Y )

[
A21

A31

]
= 0.

Thus we also have the following implication:

(xTY , x
T
V \(C∪Y )

[
A21

A31

]
= 0 =⇒ xTY = 0. (2.6)

Let us now consider the equations xT [A,B] = 0 as in (2.3) again. We see immediately that
xTC = 0 since xTB = 0. Looking at the first block column of equations of (2.3), which is
xTCA11 + xTYA21 + xTV \(C∪Y )A31 = 0, we see that this reduces to xTYA21 + xTV \(C∪Y )A31 = 0.

By implication (2.6), we obtain xTY = 0 now. Finally, now that xTC = 0 and xTY = 0, by
implication (2.5) we now get that xV \(C∪Y ) = 0 as well. In other words, x = 0, so [A, B] has
full row rank. Thus (G(W ), C) is controllable, which completes the proof.

Of course this lemma can be applied repeatedly, so that we derive:

Corollary 2.9. Let G(W ) = (V,E,W ) be a weighted directed graph, and let C denote the set
of zero nodes. Then, (G(W ), C) is controllable if and only if (G(W ), Dze(C) is controllable.

We will now establish that also for weighted directed graphs there is a one-to-one relation
between balancing sets and controllability of (G(W ), VL). This is formulated in the following
theorem.

Theorem 2.10. Let G(W ) = (V,E,W ) be a weighted directed graph and let VL ⊆ V denote
the leader set. Then, (G(W ), VL) is controllable if and only if VL is a balancing set.

Proof. First, we will prove the ‘if’ direction. Assume VL is a balancing set, so Dze(VL) = V .
By Corollary 2.9 we have that (G(W ), VL) is controllable if and only if (G(W ), Dze(VL)) =
(G(W ), V ) is controllable. Note that (G(W ), V ) is trivially controllable by Theorem 2.6,
since the matrix [A, I] has always full row rank for any A ∈ QW (G).

We will now prove the ‘only if’ direction. We do that by using reductio ad absurdum.
Suppose that (G(W ), VL) is controllable and assume, for a contradiction, that Dze(VL) 6= V .
Without loss of generality, we label VL = {1, 2, . . . ,m} and Dze(VL) = {1, 2 . . . ,m,m +
1, . . . ,m+ r} with m+ r < n. Then V \Dze(VL) = {m+ r+ 1,m+ r+ 2, . . . , n}. Note that
by Corollary 2.9 we have that (G(W ), Dze(VL)) is controllable, so by Theorem 2.6 we know
that the matrix [A, B] has full row rank for any A ∈ QW (G) with B = (V ;Dze(VL). We
partition [A, B] as follows now:

[A, B] =

[
A11 A12 I
A21 A22 0

]
,
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where the first block row corresponds to nodes in Dze(VL) and the second block row corre-
sponds to nodes in V \Dze(VL). The block columns are indexed in the same way. Note that
A11 ∈ R(m+r)×(m+r) and A22 ∈ R(n−m−r)×(n−m−r). Let now x ∈ Rn be such that xT [A, B] = 0.
We partition xT = (xTDze(VL), x

T
V \Dze(VL)). Then we have

(xTDze(VL), x
T
V \Dze(VL))

[
A11 A12 I
A21 A22 0

]
= 0.

Note that this directly implies that xTDze(VL) = 0. Considering the equations obtained

from the first block column, we see that this now reads xTV \Dze(VL)A21 = 0. Note that

A21 = AV \Dze(VL),Dze(VL). Hence, xTV \Dze(VL)AV \Dze(VL),Dze(VL) = 0 are precisely the balance

equations for every zero node in Dze(VL). Note that these equations imply that every entry
of xTV \Dze(VL) is nonzero, because if it were zero, it would be in the derived set Dze(VL). Since

(xTV \Dze(VL))i 6= 0 for all m+ r+ 1 ≤ i ≤ n, we can always choose the diagonal entries of A22

such that xTV \Dze(VL)A22 = 0. So there exists a matrix A ∈ QW (G) such that

(0, xTV \Dze(VL))

[
A11 A12 I
A21 A22 0

]
= 0,

where xTV \Dze(VL) is nonzero. This violates the fact that [A, B] has full row rank for all

A ∈ QW (G) with B = B(V ;Dze(VL)). We reached a contradiction and this completes the
proof.

Hence, VL being a balancing set for (G(W ), VL) is a necessary and sufficient condition for
strong structural controllability of (G(W ), VL). Note that, obviously,

Q(G) =
⋃

W∈W(G)

QW (G).

Using this equality and the notion of balancing set, we have the following fact:

Fact 2.11. Let G = (V,E) be a directed graph and let VL ⊆ V be the leader set. Then,
(G, VL) is controllable if and only if VL is a balancing set for (G(W ), VL) for all W ∈ W(G).

Note that it is infeasible to check whether VL is a balancing set for all weighted graphs
(G(W ), VL), so a prefered method to study strong structural controllability is by means of
zero forcing sets.

14



Chapter 3

Problem Formulation

Suppose that for a given simple directed graph G = (V,E) and leader set VL the system
(G, VL) is not strongly structurally controllable. It might happen that if we add certain re-
strictions on the qualitative class Q(G), so effectively making the set of matrices we consider
smaller, any system matrix satisfying these additional constraints together with the input
nodes is controllable. For example, suppose a node has two neighbors. Then the correspond-
ing weights of the two edges are arbitrary, and we have two degrees of freedom. But now
suppose that we impose that the two weights of the edges are equal: in a sense the two edges
are then identical. Of course the weight of the first edge can still be anything, as long as it is
nonzero, but now the weight of the second edge is equal to the weight of the first edge. We
have now effectively reduced the degrees of freedom by one. By imposing such restrictions
on the qualitative class of the graph, we obtain a subset of the original qualitative class. It
can happen that this smaller subset yields strong structural controllability, and we will now
give an example of this.

Consider the graph G = (V,E) and leader set VL = {1, 2, 3}, depicted in Figure 3.1.

1

2 3

4 5 6

Figure 3.1: A graph consisting of six nodes with three leader nodes.
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The qualitative class associated with this graph is equal to:

Q(G) = {A ∈ R6×6 | for i 6= j, Ai,j 6= 0 ⇐⇒ (j, i) ∈ E}.

This means that elements A of Q(G) are of the form:

A =


? 0 0 0 0 0
0 ? 0 0 0 0
0 0 ? 0 0 0
∗ ∗ 0 ? 0 0
0 ∗ ∗ 0 ? 0
∗ 0 ∗ 0 0 ?

 ,

where the off-diagional entries are either equal to zero or nonzero free parameters, and the
diagonal entries can take any value. Since VL is not a zero forcing set, which is easily seen
by the fact that every black node has two white out-neighbors, the system (G, VL) is not
controllable by Theorem 2.5.

Suppose now that we impose that some of the edges are identical, by which we mean that
for any realization A ∈ Q(G), the entries in A corresponding to those edges are equal. In
particular, let us consider the subclass of Q(G) consisting of all matrices A of the form:

A =


ξ1 0 0 0 0 0
0 ξ2 0 0 0 0
0 0 ξ3 0 0 0
a b 0 ξ4 0 0
0 b c 0 ξ5 0
a 0 c 0 0 ξ6

 ,

where a, b, c 6= 0 are free nonzero parameters, and the ξi’s denote the diagonal entries that can
take arbitrary real values (including zero). Again, the leader set is given by VL = {1, 2, 3}.
This is depicted in Figure 3.2. Note that we use colors to indicate the edges that are imposed
to have equal weight. Thus the study of controllability of systems on such graphs will use
the notion of colored graph.
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1

2 3

4 5 6

a a

b b c c

Figure 3.2: The graph of Figure 3.1 but now with added constraints, depicted by the use of
colors.

Then we have that for all realizations of this form, (A, VL) is controllable. To see this, we will
use Theorem 2.1. We claim that C = [B,AB, . . . , A5B] has full row rank for any realization
A. To see this, note that

C = [B,AB,A2B,A3B,A4B,A5B] =


1 0 0 ξ1 0 0
0 1 0 0 ξ2 0
0 0 1 0 0 ξ3
0 0 0 a b 0
0 0 0 0 b c
0 0 0 a 0 c

A2B, A3B, A4B, A5B

 .

And clearly the first three rows are always linearly independent. In addition, in the lower
three rows we can find a submatrix of full row rank, since

det

a b 0
0 b c
a 0 c

 = abc+ bac = 2abc,

and this product is nonzero since a, b, c are nonzero free parameters. Since we had not speci-
fied matrix A, we see that rank(C) = 6 for all A, and hence the constrained qualitative class
is strongly structurally controllable.

So, even while the original qualitative class does not yield controllability, if we make re-
strictions and impose that some edges have equal weights, the obtained constrained subclass
can be controllable. In this thesis, we will make this more precise, and try to find a graph
theoretical test for strong structural controllability for this new class.
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Chapter 4

Generalized zero forcing sets

In this chapter, we will study and extend the results of [19], see also Section 2.4. In that
paper, a necessary and sufficient condition for strong structural controllability is given by
using the concept of zero forcing. To check if this condition holds, we look at the graph
topology and use a so-called color change rule. In this chapter, we will generalize this color
change rule and propose another necessary and sufficient condition for strong structural
controllability. To do so, we will first take a closer look at bipartite graphs.

4.1 Bipartite graphs

Consider a bipartite graph G = (S, T,E) and suppose |S| = |T | = k. We will denote
the node sets by S = {s1, . . . , sk} and T = {t1, . . . , tk}. If there exists a k-matching be-
tween S and T , we call that matching a perfect matching. We denote this matching by
M = {{s1, tτ(1)}, {s2, tτ(2)}, ..., {sk, tτ(k)}}, where τ denotes a permutation of (1, 2, . . . , k).

To this bipartite graph G = (S, T,E) with |S| = |T | = k we assign the pattern matrix
P(G) as follows:

P(G) = {A ∈ Ck×k | Aj,i 6= 0 ⇐⇒ (si, tj) ∈ E}.

We have the following two well-known facts ([31],[32]):

Theorem 4.1. Let G = (S, T,E) be a bipartite graph with |S| = |T | = k. Denote the pattern
matrix by P(G). We have the following two statements:

1. There exists a nonsingular matrix A ∈ P(G) if and only if there exists a perfect match-
ing between S and T .

2. All matrices A ∈ P(G) are nonsingular if and only if there exists exactly one perfect
matching between S and T .
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Proof. The main idea of the proof is based on the Leibniz formula for the determinant. We
compute the determinant of any of the matrices A ∈ P(G) as follows:

det(A) =
∑
τ∈Sn

sgn(τ) ·
k∏
i=1

Aτ(i),i, (4.1)

where Sn denotes the set of all permutations of (1, 2, . . . , k), and sgn(τ) denotes the sign of
the permutation τ , i.e., sgn(τ) = (−1)m, where m is the number of transpositions one needs
to make to transform (τ(1), τ(2), . . . , τ(k)) to (1, 2 . . . , k). Note that we have not specified
the matrix A yet, so the entries Aτ(i),i are indeterminates. It turns out that there is a one-
to-one correspondence between a permutation and a perfect matching ([31]). If we denote P
as the set of all perfect matchings in G, we have

k∏
i=1

Aτ(i),i 6= 0 ⇐⇒ {{s1, tτ(1)}, {s2, tτ(2)}, . . . , {sk, tτ(k)}} ∈ P.

We see that (4.1) can be reduced to

det(A) =
∑
M∈P

sgn(M) ·
k∏
i=1

Aτ(i),i, (4.2)

where sgn(M) denotes the sign of the perfect matching, which is defined as the sign of the
permutation τ . We see that if there does not exists a perfect matchingM, i.e. if P is empty,
all products vanish in equation (4.2) and we find that the determinant is equal to zero. On
the other hand, there exists at least one perfect matching if and only if the values of the
entries in A can be chosen in such a way that (4.2) is nonzero, i.e., there exists a matrix A
that is nonsingular. Finally, there is exactly one perfect matching in G if and only if (4.2)
reduces to a single product, equivalently, (4.2) is nonzero for all A ∈ Ck×k. This completes
the proof.

Recall that if in the bipartite graph G = (S, T,E) with |S| = |T | = k there exists a
perfect matching, we call S and T perfect neighbors. Furthermore, we call S and T strong
perfect neighbors if there is exactly one perfect matching in this bipartite graph. The second
statement from Theorem 4.1 together with a result from [32] yield the following theorem:

Theorem 4.2. Let G = (S, T,E) be a bipartite graph and suppose |S| = |T | = k. Let P(G)
be the pattern matrix. Then, the following statements are equivalent:

i. S and T are strong perfect neighbors;

ii. The matrix A is nonsingular for all A ∈ P(G);

iii. The nodes in S and T can be relabeled such that every A ∈ P(G) is a nonsingular
upper triangular matrix.

This theorem can be used to define the concept of generalized zero forcing set, which we will
discuss in the next section.
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4.2 Generalized color change rule

LetG = (V,E) now be a given directed and simple graph. For any two disjoint nonempty sub-
sets X, Y ⊂ V , denoted by X = {x1, x2, . . . , xp} and Y = {y1, y2, . . . , yq}, we consider the as-
sociated bipartite graph, (X, Y,EX,Y ), with EX,Y = {{xi, yj} | (xi, yj) ∈ E, xi ∈ X, yj ∈ Y }.

Now suppose |X| = |Y | = k. Recall that we have defined X and Y to be perfect neigh-
bors if there exists a perfect matching between X and Y , i.e., there exists a k-matching
between the two sets. In the sequel, we call X and Y strong perfect neighbors if there exists
a unique perfect matching.

Suppose we color each node in V either black or white. Initially, let C ⊆ V be the set
of black nodes and set V \ C to white. Suppose there exists a subset of black nodes X ⊆ C
and a subset of white nodes Y ⊆ V \ C, such that |X| = |Y |. Then the notion of strong
perfect neighbor leads to the following coloring rule.

Generalized color change rule (1): Let C be the set of black nodes and let X ⊆ C.
Let Y ⊆ V \C be such that |Y | = |X|. If Y is the only white strong perfect neighbor of X,
we color Y black. We say that X forces Y , and we write X → Y .

Note that a subset X of black nodes might have many perfect neighbors, and among those
also many strong perfect neighbors. We force, however, only if there is exactly one strong
perfect neighbor. For example, consider the graph depicted in Figure 4.1.

1 2

3 4 5

Figure 4.1: Example with perfect neighbors and strong perfect neighbors

We see that {1} has two white strong perfect neighbors, namely {3} and {4}. The set {2}
has three white strong perfect neighbors, {3}, {4} and {5}. The set {1, 2} has as perfect
neighbors {3, 4}, {3, 5} and {4, 5}. Among these, {3, 5} and {4, 5} are also strong perfect
neighbors. Since there is no subset of black nodes with exactly one white strong perfect
neighbor, we do not force any of the white nodes to become black.

Note that the above coloring rule is a generalization of the zero forcing rule explained in
Section 2.4, because a single black node i has exactly one white out-neighbor j if and only
if the set {j} is the only white strong perfect neighbor of {i}.
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The above generalized color change rule can also be reformulated in a different way:

(Reformulated) generalized color change rule (2): Let C be the set of black nodes,
and let X ⊆ C. Denote the white neighbor set of X as Y = NV \C(X) = {j ∈ V \C | (i, j) ∈
E, for some i ∈ X}. If Y is a white strong perfect neighbor of X, we color Y black. We say
that X forces Y , and we write X → Y .

We claim that this reformulated generalized color change rule (2) is the same as the general-
ized color change rule (1), in the sense that these two color change rules are equivalent. By
that we mean that if a black set of nodes X forces a white set of nodes Y according to rule
(1), this same set of black nodes X also forces this same set of white nodes Y , according to
rule (2), and vice versa.

As an example, let us consider the graph depicted in Figure 4.1 again, with black node
set {1, 2}. Note that the white neighbor set of {1} is given by {3, 4}. Since this set has
cardinality 2, it can never be a strong perfect neighbor of the set {1}, which has cardinality
1. Likeso the white neighbor set of {2} is {3, 4, 5} and this can also not be a strong perfect
neighbor of {2}. The white neighbor set of {1, 2} is given by {3, 4, 5} and since these car-
dinalities differ too, it can not be a strong perfect neighbor. We see that the reformulated
generalized color change rule can not be applied here, i.e., no white set of nodes is forced to
become black. We have also seen this when we used the first formulation of the generalized
color change rule.

As stated, we claim that these two color change rules are equivalent and the proof will
be given in Section 4.3. For the time being, we assume this is true, so that we can use the
two formulations of the generalized color change rule interchangeably.

Then, any of the two above generalized color change rules leads to a notion of derived
set. For a given graph G = (V,E) and colored set C ⊆ V , the derived set Dgzf (C) is the set
of black nodes obtained by repeated application of the generalized color change rule (1) or
(2), until no more changes are possible. If Dgzf (C) = V , we call C a generalized zero forcing
set (GZFS). We have the following relationship between strong structural controllability and
generalized zero forcing sets:

Theorem 4.3. Let G = (V,E) be a graph and let the leader set be given by VL ⊆ V . Then,
(G, VL) is controllable if and only if VL is a generalized zero forcing set.

Before proving this, we need a couple of preliminary results. Recall from Theorem 2.4 in
Section 2.3 that (G, VL) is controllable if and only if the matrix [A, B] has full row rank for
all A ∈ Q(G), with B = B(V ;VL). This theorem will be used to show that the process of
coloring nodes according to the generalized color change rule does not affect controllability.
This is made concrete in the following lemma.
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Lemma 4.4. Let G = (V,E) be a graph and C ⊂ V the set of black nodes. Suppose X ⊆ C,
Y ⊆ V \C and X → Y . Then (G,C) is controllable if and only if (G,C ∪Y ) is controllable.

Proof. The “only if” direction is trivial. Suppose that [A, B] has full row rank for all
A ∈ Q(G) and B = B(V ;C). Then so will [ A, B′ ] have full row rank for all A ∈ Q(G)
and B′ = B(V ;C ∪ Y ), since we simply added a couple of columns (corresponding to the Y
nodes) and this does not lower the row rank.

We now prove the “if” part. Suppose (G,C ∪ Y ) is controllable, then by a possible re-
labeling of the nodes we get that

[ A, B′ ] =


A11 A12 A13 A14 I 0 0
A21 A22 A23 A24 0 I 0
A31 A32 A33 A34 0 0 I
A41 A42 A43 A44 0 0 0

 (4.3)

has full row rank. Here, the first block row corresponds to nodes in Y , the second block row
corresponds to nodes in X, the third block row corresponds to nodes in C \X and the fourth
block row corresponds to nodes in V \ (C ∪ Y ). Since A is a square matrix, we partition the
columns using the same labels.

Because [A, B′], where B′ = B(V ;C ∪ Y ) has full row rank by controllability of (G,C ∪ Y ),
in particular the last block row of (4.3) has full row rank.

We know that X forces Y . By the second formulation of the generalized color change
rule, we know that the white neighbor set of X, given by NV \C(X) = {j ∈ V \ C | {i, j} ∈
EX,Y , for some i ∈ X} is equal to the set Y . Any white neighbor of X is thus contained in
Y , and this implies that block A42 is zero, since this block corresponds to edges going from
X to V \ (C ∪ Y ).

Furthermore, since X → Y , we also know that X and Y are strong perfect neighbors.
Then, by Theorem 4.2, block A12 is nonsingular for any A ∈ Q(G).

Combining these two facts we see that the submatrix[
A11 A12 A13 A14

A41 A42 A43 A44

]
=

[
A11 A12 A13 A14

A41 0 A43 A44

]
,

has full row rank. Then also
A11 A12 A13 A14 0 0 0
A21 A22 A23 A24 0 I 0
A31 A32 A33 A34 0 0 I
A41 0 A43 A44 0 0 0

 = [ A, B ],

has full row rank, so we find that (G,C) is controllable. This completes the proof.
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Of course we can apply this lemma repeatedly and we find:

Corollary 4.5. Let G = (V,E) be a graph and let C ⊆ V denote the set of black nodes.
Then, (G,C) is controllable if and only if (G,Dgzf (C)) is controllable.

We will now state the main result.

Theorem 4.6. Let G = (V,E) be a graph and let VL ⊆ V denote the leader set. Then,
(G, VL) is controllable if and only if VL is a generalized zero forcing set.

Proof. The “if” direction is straightforward. Indeed, since VL is a generalized zero forcing
set, we have Dgzf (VL) = V . Since (G, V ) is trivially controllable, because [A, I] has full row
rank for any A ∈ Q(G), we get from the previous corollary that (G, VL) is controllable.

To prove the “only if” direction, we use reductio ad absurdum (proof by contradiction).
Suppose VL is not a generalized zero forcing set, so Dgzf (VL) 6= V . Let us label the nodes as
follows: VL = {1, . . . ,m} and Dgzf (VL) = {1, . . . ,m,m + 1, . . . ,m + r} where m + r < |V |.
By the previous corollary, we get that [A, B] with B = B(V ;Dgzf (VL)) has full row rank,
so

[A, B] =

[
A11 A12 I
A21 A22 0

]
,

has full row rank, where the first block row corresponds to nodes in Dgzf (VL) and the second
block row corresponds to nodes in V \Dgzf (VL). We now show that this is a contradiction,
by distinguishing two cases.

First of all, suppose there exists a column of A21 with only one nonzero element. Then,
there exist nodes i ∈ V \Dgzf (VL), j ∈ Dgzf (VL) with {i} being the strong perfect neighbor
of {j}. However, this means that j forces i, which is a contradiction to the fact that Dgzf (VL)
was the derived set.

Secondly, suppose there does not exist a column in A21 with only one nonzero element.
Then each column is either the zero column or has at least two nonzero elements. Then we
can always find a realization A21 such that 1TA21 = 0, where 1T denotes the transpose of
the all-ones vector, 1 = (1, . . . , 1)T ∈ Rm. Since the diagonal elements of A are arbitrary, we
can always choose a realization such that 1TA22 = 0. Define vT = (0, 1T ). Hence, we can
always find a matrix A ∈ Q(G) such that vT [A, B] = 0:

(
0, 1T

) [A11 A12 I
A21 A22 0

]
= 0,

this is a contradiction with the full row rank property for all realizations, so the proof is
completed.
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4.3 The equivalence of two color change rules

In the previous section, we considered two formulations of the same generalized color change
rule. While at first sight the rules might seem different, they are in fact the same. In this
section, we will prove that the two rules are indeed equivalent, by which we mean that a
black set X forces a white set Y to become black using the first formulation of the general-
ized color change rule if and only if the black set X forces the white node set Y using the
second formulation.

To this end, consider again the qualitative class Q(G) of a given graph G = (V,E). Ev-
ery node is either colored black or white, and initially C denotes the set of black nodes and
V \C is set to white. In the previous section, we studied the following two color change rules:

Generalized color change rule (1): Let X ⊆ C be a set of black nodes. If Y is the
only white strong perfect neighbor of X, we color Y black and we say that X forces Y , and
we write X → Y .

The second formulation involved the notion of white neighbor set. For a given set of black
nodes X ⊆ C, we denote the white neighbor set of X as NV \C(X) = {j ∈ V \ C | (i, j) ∈
E for some i ∈ X}. We consider now the following color change rule:

Generalized color change rule (2): For a given set of black nodes X ⊆ C, denote
the white neighbors of X as Y = NV \C(X). If Y is a strong perfect neighbor of X, we color
Y black and we say that X forces Y , and we write X → Y .

We will now prove that the above two color change rules are in fact equivalent. This means
that X forces Y according to (1) if and only if X forces Y according to (2).

Theorem 4.7. X → Y using (1) if and only if X → Y using (2).

Proof. Suppose X → Y according to the second formulation of the generalized color change
rule. Then we know that X and Y are strong perfect neighbors, so in particular |X| = |Y |.
Furthermore NV \C(X) = Y , so this means that Y is the only white neighbor of X. Hence,
Y is also the only white strong perfect neighbor of X. This implies that X → Y according
to (1).

On the other hand, suppose that X → Y using the first formulation of the generalized
color change rule. Then we know that Y is the only white strong perfect neighbor of X.
We will now prove that NV \C(X) = Y . Consider any node j in Y . Because Y is a white
neighbor of X, we have that j ∈ NV \C(X).

Consider now any node v ∈ NV \C(X). We will now show that v ∈ Y . To do so, sup-
pose, for a contradiction, that v /∈ Y . Because X and Y are strong perfect neighbors, we
have that |X| = |Y | = k and we let X = {1, . . . , k} and Y = {k+1, . . . , 2k}. Without loss of
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generality, we can relabel the nodes in such a way that AY,X is a nonsingular upper triangular
matrix, by Theorem 4.2. Suppose this relabeling results in the ordered sets X = {1, . . . , k}
and Y = {k + 1, . . . , 2k}. Because v ∈ NV \C(X), we know that there exists an i ∈ X that
links to v. Furthermore, since X = {1, . . . , k} is an ordered set, let i denote the first node
in X that is a mother node of v.

Replace now the ith row of AY,X by the submatrix A{v},X . Note that A{v},X is a single
row, whose row index corresponds to node v and whose columns are indexed by 1, . . . k.
We see that the first i − 1 entries of this row must be zero, since the ith element was the
first mother node of v. After making this swap, the newly obtained matrix AY ′,X , with
Y ′ = (Y \ {i}) ∪ {v}, is also a nonsingular upper triangular matrix, and hence by Theorem
4.2, X and Y ′ are also strong perfect neighbors. This is a contradiction. This completes the
proof.

4.4 Zero forcing and generalized zero forcing

From Theorem 4.6 and Theorem 2.5 from Section 2.4, we obtain immediately the following
Corollary:

Corollary 4.8. Let G = (V,E) be a graph and let VL ⊆ V denote the leader set. Then, VL
is a zero forcing set if and only if VL is a generalized zero forcing set.

We will now investigate the relationship between the color change rule corresponding to
zero forcing and the generalized color change rule corresponding to generalized zero forcing.
We have already seen that the generalized color change rule induced by generalized zero
forcing is a generalization of zero forcing, since if a node j is the only white out-neighbor
of a black node i, we also have that {j} is the only white strong perfect neighbor of {i}.
We now claim that by applying the generalized color change rule once, this is equivalent
to a sequence of single node-disjoint zero forcings. To see this, suppose X → Y accord-
ing to the generalized zero forcing rule. Then we know that X and Y are strong perfect
neighbors and the white neighbor set of X is given by Y . We label the nodes in X and
Y in such a way that every realization AY,X in the corresponding pattern matrix is in up-
per triangular form, which is possible by Theorem 4.2. Suppose this relabeling is given by
X = {1, 2, . . . , k}, Y = {k+ 1, k+ 2, . . . , 2k}. Then one sees that instead of using the gener-
alized color change rule, we can also apply the color change rule associated to zero forcing.
We see that 1 → k + 1 since node k + 1 is the only white out-neighbor of the black node
1. We have now 2 → k + 2, since k + 2 is the only white out-neighbor of the black node
2. Repeating this argument, we see that i → k + i for all 1 ≤ i ≤ k. Indeed, if X → Y
using the generalized color change rule, one can regard this as a sequence of node-disjoint
zero forcings 1→ k + 1, 2→ k + 2, . . . , k → 2k.

As an example, consider the graph depicted in Figure 4.2, with leader set {1, 2}.
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2 4

1 3 5

Figure 4.2: Example of generalized zero forcing.

We claim that {1, 2} → {3, 4} by the generalized color change rule. To see this, we consider
the corresponding bipartite graph, depicted in Figure 4.3.

2 4

1 3

Figure 4.3: The bipartite graph (X, Y,EX,Y ) with X = {1, 2} and Y = {3, 4}.

Clearly, there is exactly one perfect matching between the two node sets, so {1, 2} and {3, 4}
are strong perfect neighbors. Furthermore, since the white neighbor set of {1, 2} is precisely
given by {3, 4}, we have that {1, 2} forces {3, 4}. After we have colored nodes 3 and 4 black,
we see that {5} is the only white strong perfect neighbor of {4}, so we color node 5 black
as well. We derived that Dgzf (VL) = Dgzf ({1, 2}) = V , so indeed {1, 2} is a generalized
zero forcing set. In fact, we have already explored this example in Section 2.4, where we
showed that {1, 2} is a zero forcing set. The sequence of zero forcings is depicted in Figure
2.2. Furthermore, we see that {1, 2} → {3, 4} by using the generalized color change rule, is
equivalent to applying the color change rule of zero forcing multiple times. The sequence of
node-disjoint zero forcings is given by 2→ 4, 1→ 3.

Since generalized zero forcing is equivalent to zero forcing, this raises the question why
we consider generalized zero forcing at all. The reason for that is twofold. On the one hand,
the generalized color change rule enables us to color multiple nodes black simultaneously in
one step. This might be useful for computational considerations. On the other hand, the
concept of perfect matchings that we have discussed in great detail in this chapter, will turn
out to be very fruitful to the study of strong structural controllability of systems defined
on colored graphs, which is the main problem of this thesis, and which will be discussed
extensively in the next chapter.
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Chapter 5

Networks on colored graphs

In Chapter 2 we have seen how we can assign a qualitative class of matrices, Q(G), to a given
graph G = (V,E). For any A ∈ Q(G), the off-diagonal entry Ai,j is nonzero if and only if
(j, i) ∈ E. Put differently, with a given graph G, we can associate a set of matrices A whose
off-diagonal entries are either fixed zeros (if there is no edge) or a free nonzero parameter (if
there is an edge), and its diagonal entries can take any value.

We will now define what we mean by a colored graph G = (V,E, π). For a given graph
G = (V,E), we assign to every edge a color. Two edges have the same color, if for every
realization A ∈ Q(G), the two entries in A corresponding to those two edges are equal.
Mathematically, we write G = (V,E, π) for a colored graph, where π = {E1, E2, . . . , EN} is
an edge partition. By that we mean that we introduce a partition of the edge set

E =
N⋃
i=1

Ei, Ei ∩ Ej = ∅,∀i 6= j.

The partition consist of N disjoint subsets Ei, and to each subset Ei we assign a color,
denoted by the symbol αi. Thus the symbols α1, α2, . . . , αN denote the colors. We call
the set {α1, . . . , αN} the color palette of the colored graph. In the sequel we will also use
α1, . . . , αN as independent nonzero variables. Two edges from the same subset Ei have the
same color αi. For a given partition π, we consider the following subset of the original
qualitative class Q(G) :

Qπ(G) = {A ∈ Q(G) | Ai,j = Am,n if (j, i), (n,m) ∈ Er for some 1 ≤ r ≤ N}

Let G = (V,E, π) be a colored graph and VL ⊆ V a leader set. Take A ∈ Qπ(G) and
B = B(V ;VL) as in (2.2), then we can check whether the pair (A,B) is controllable by The-
orem 2.1, 2.2 or 2.3. With slight abuse of notation we also say that (A, VL) is controllable
if (A,B) is controllable. We say that (G, VL) is strongly structurally controllable if (A, VL)
is controllable for all A ∈ Qπ(G). If (G, VL) is strongly structurally controllable, we often
simply say that (G, VL) is controllable.
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The aim of this chapter is now to find conditions for strongly structurally controllable colored
graphs. First of all, let Wπ(G) denote the set of colored weighted adjacency matrices:

Wπ(G) = {W ∈ W(G) | Wi,j = Wm,n if (j, i), (n,m) ∈ Er for some 1 ≤ r ≤ N}.

For any colored weighted adjacency matrix W ∈ Wπ(G), we consider the following associated
family of matrices:

QW (G) = {A ∈ Rn×n | Ai,j = Wi,j for all i 6= j}.

Then, obviously, we have:

Qπ(G) =
⋃

W∈Wπ(G)

QW (G).

Using the above equality and Theorem 2.10, we immediately obtain the following fact:

Fact 5.1. Let G = (V,E, π) be a colored graph and let VL ⊆ V be the leader set. Then,
(G, VL) is controllable if and only if VL is a balancing set for (G(W ), VL) for all W ∈ Wπ(G).

Note that it is infeasible to verify whether VL is a balancing set for all weighted graphs
G(W ) = (V,E,W ) with W ∈ Wπ(G). That is why we hope to establish a graph theoretic
test to conclude strong structural controllability. To this end, let us study colored bipartite
graphs in greater detail now.

5.1 Colored bipartite graphs

Consider a colored bipartite graph G = (S, T,E, π) with S = {s1, . . . , sm} and T =
{t1, . . . , tn}. Here, as in the above, we have a partition of the edge set, π = {E1, . . . , EN}, and
we denote the associated colors by α1, . . . , αN . Suppose for the time being that |S| = |T | = k.
To this bipartite graph we assign a pattern matrix Pπ(G) as follows

Pπ(G) = {A ∈ P(G) | Aj,i = An,m ⇐⇒ {si, tj}, {sm, tn} ∈ Er for some r ∈ {1, . . . , N}}.

Clearly Pπ(G) ⊆ P(G), with equality if and only if |π| = N = |E|, that is, |Ei| = 1 for all
1 ≤ i ≤ N .

Let E ′ ⊆ E be any subset of edges. The spectrum of an edge set, σ(E ′), is the set of
colors (counting multiplicity) of the edges in E ′, and we write σ(E ′) = {αi1 , αi2 , . . . , αi|E′|

}.
Here, any color αil ∈ σ(E ′) is an element of the color palette {α1, . . . , αN}. Note that a color
can appear multiple times in a spectrum. Let ki denote the multiplicity of color αi in σ(E ′),
where ki is zero if it does not appear in σ(E ′). Then to every spectrum of an edge set, σ(E ′),
we can assign a color function, which we denote by XE′(α1, . . . , αN) = αk11 · . . . · α

kN
N . This

color function is a monomial, and the αi’s represent the independent nonzero variables now.
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Consider now the colored bipartite graph G = (S, T,E, π), with |S| = |T | = k. Suppose G
permits a perfect matching, i.e., there exists a k-matching. Let us denote this matching by
M = {{s1, tτ(1)}, {s2, tτ(2)}, . . . , {sk, tτ(k)}}. Here, τ denotes a permutation of (1, 2, . . . , k).
For every perfect matching, we can write down its spectrum, σ(M), and the color function,
XM(α1, . . . , αN).

We say that two perfect matchings are equivalent if they have the same spectrum (equiva-
lently, if they have the same color function). This gives an equivalence relation on the set
of perfect matchings of G. Two perfect matchings M1 and M2 are in the same equivalence
class Pi if and only if σ(M1) = σ(M2). The spectrum of an equivalence class, σ(Pi), is equal
to σ(M), for anyM∈ Pi. For a colored bipartite graph, we can thus partition the set of all
perfect matchings into the disjoint union of equivalence classes. In other words, let P denote
the set of all perfect matchings, then we have

P =
m⋃
i=1

Pi, Pi ∩ Pj = ∅, ∀i 6= j.

To each perfect matchingM, we assign a sign, sign(M), which is equal to (−1)m, with m the
number of swaps one needs to transform (τ(1), τ(2), . . . , τ(k)) into (1, 2, . . . , k). We call a
perfect matching a positive matching if sign(M) = +1, and we call it a negative matching if
sign(M) = −1. The signature of an equivalence class of perfect matchings, sgn(Pi), is equal
to the sum of the signs of the matchings in the class, i.e., the number of negative matchings
subtracted from the number of positive matchings:

sgn(Pi) :=
∑
M∈Pi

sign(M).

We are now in a position to state and prove the following result.

Theorem 5.2. Let G = (S, T,E, π) be a colored bipartite graph with |S| = |T |. Every
A ∈ Pπ(G) is nonsingular if and only if there exists at least one perfect matching, and there
is exactly one equivalence class of perfect matchings with nonzero signature.

Proof. By the Leibniz formula for the determinant, for every realization A ∈ Pπ(G) we have
the following expression

det(A) =
∑
M∈P

sgn(M) ·
k∏
i=1

Aτ(i),i, (5.1)

where P is the set of all perfect matchings in G. If two perfect matchings are equivalent, we
know that they have the same spectrum. Like before, σ(Pi) = σ(M), for any M ∈ Pi. The
color function of an equivalence class is simply the color function of any perfect matching
in that equivalence class, and we write XPi(α1, . . . , αN) = XM(α1, . . . , αN) = αk11 · . . . · α

kN
N .

Using this, and the notion of signature of an equivalence class, equation (5.1) becomes

det(A) =
m∑
i=1

sgn(Pi) · XPi(α1, . . . , αN) (5.2)
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We will now prove the claim. Let us first prove the “if” direction. Suppose there exists at
least one perfect matching and there is exactly one equivalence class of perfect matchings
with signature nonzero. This means that all except one equivalence class of perfect match-
ings has signature zero, and hence the ones corresponding to signature zero will vanish in
the expression of the determinant (5.2). Thus, the sum reduces to a single monomial in the
nonzero variables α1, . . . , αN which is therefore nonzero.

We now prove the “only if” direction. Suppose every matrix A ∈ Pπ(G) is nonsingular.
We have to prove that there exists at least one perfect matching, and there is exactly one
equivalence class of perfect matchings with nonzero signature.

Assume, for a contradiction, that no perfect matching exists. Then the sum in expres-
sion (5.2) is over the empty set, and hence we find that det(A) = 0 for all A ∈ Pπ(G). This
is a contradiction.

Since there exists at least one perfect matching, there also exists at least one equivalence
class of perfect matchings. We will now prove that there is exactly one equivalence class with
nonzero signature. We do that again by reductio ad absurdum. Suppose, for a contradiction,
there is not exactly one equivalence class with nonzero signature. We then distinguish two
cases.

First, suppose that every equivalence class has zero signature. Then equation (5.2) reads
det(A) = 0 for any A ∈ Pπ(G), which is a contradiction.

Secondly, suppose there is more than one equivalence class of perfect matchings with nonzero
signature. The equivalence classes are denoted by P1,P2, . . ., and there are at least two equiv-
alence classes. Since at least two of them have nonzero signature, there exists at least one
color that does not occur in σ(P1) and σ(P2) with the same multiplicity. Without loss of
generality we denote this color by α1 and we let the multiplicities be k1 and j1, respectively.
The formula of the determinant, equation (5.2), becomes

det(A) =
m∑
i=1

sgn(Pi) · XPi(α1, . . . , αN)

= sgn(P1)XP1(α1, ..., αN) + sgn(P2)XP2(α1, ..., αN) +
m∑
i=3

sgn(Pi)XPi(α1, ..., αN)

= sgn(P1) · αk11 · αk22 · . . . · α
kN
N + sgn(P2) · αj11 · α

j2
2 · . . . · α

jN
N + f(α1)

= sgn(P1) · αk11 · a1 + sgn(P2) · αj11 · a2 + f(α1), (5.3)

where both a1 = αk22 ·. . .·α
kN
N and a2 = αj22 ·. . .·α

jN
N are monomials that depend on α2, . . . , αN

and f(α1) is a polynomial in α1. This polynomial f(α1) corresponds to the remaining
equivalence classes. It can happen that there exist spectra of equivalence classes with nonzero
signature that also contain color α1 with multiplicity k1 or j1. Then, in expression (5.3), we
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move those corresponding monomials to the first two terms, and (5.3) becomes

det(A) = b1 · αk11 + b2 · αj11 + f ′(α1), (5.4)

where b1 and b2 depend on α2, . . . , αN . The first term in (5.4) now corresponds to all
equivalence classes that have color α1 with exactly multiplicity k1 in their spectrum. The
second term in (5.4) corresponds to all equivalence classes that have color α1 with exactly
multiplicity j1 in their spectrum. Finally, the remaining polynomial f ′(α1) does not contain
monomials with αk11 or αj11 anymore. It is easily see that we can always choose nonzero
complex values of α2, . . . , αN such that both b1 and b2 are nonzero. For this particular choice
of α2, . . . , αN , the expression (5.4) can be viewed as a complex polynomial in the variable
α1. By the Fundamental Theorem of Algebra, the equation b1 ·αk11 + b2 ·αj11 + f ′(α1) = 0 has
always at least one nonzero root. Hence, there is a choice of α1, α2, . . . , αN such that (5.2)
equals zero. This is a contradiction.

Note that, if we only allow real matrices A ∈ Pπ(G), Theorem 5.2 still gives a sufficient
condition for nonsingularity. That is, if there exists at least one perfect matching and
exactly one equivalence class of perfect matchings has nonzero signature, any real matrix
A ∈ Pπ(G) is nonsingular.

5.2 A first look at a colored color change rule

Consider a colored graph G = (V,E, π), where the partition of the edge set is given by
π = {E1, E2, . . . , EN}. Recall that to every subset Ei a color αi is assigned. Consider now
any two nonempty disjoint subsets of nodes X, Y ⊂ V . Associated with this, we have a
colored bipartite graph (X, Y,EX,Y , πX,Y ), where EX,Y = {{i, j} | (i, j) ∈ E, i ∈ X, j ∈ Y }.
Here, πX,Y denotes the partition of the edges in EX,Y . We define

Er
X,Y = {{i, j} ∈ EX,Y | (i, j) ∈ Ei}, 1 ≤ r ≤ N

Note that for some r, the edge set Er
X,Y might be the empty set. Removing these empty sets,

the partition is now given by πX,Y = {Eh1
X,Y , E

h2
X,Y , . . . , E

hl
X,Y }, where l ≤ N . The associated

colors are now αh1 , αh2 , . . . , αhl . Without loss of generality, we relabel αh1 , αh2 , . . . , αhl as
α1, α2, . . . , αl. Edges in Er

X,Y have now color αr.

Suppose |X| = |Y | = k. We say that X and Y are color perfect neighbors if there exists a
perfect matching between X and Y , and exactly one equivalence class of perfect matchings
has nonzero signature.

We now color each node in V either black or white. Let C ⊆ V denote the set of black
nodes, initially. The white nodes are V \ C. A color change rule, once applied, enables us
to color some white nodes black. Based on Chapter 4, one would expect the following color
change rule. (The first adjective ‘colored’ refers to the fact that we are dealing with a colored
graph.)
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Wrong colored color change rule: Let C ⊆ V be the set of black nodes, and let the
white nodes be V \ C. For some X ⊆ C and Y ⊆ V \ C, we say that X forces Y , denoted
as X → Y , if Y is the only white color perfect neighbor of X.

Let G = (V,E, π) be a colored graph and let C ⊆ V be the set of nodes initially col-
ored black. Apply the above color change rule to this set of black nodes repeatedly, until no
more changes are possible. The obtained set of nodes is the derived set, denoted as Dw(C).
(The superscript ‘w’ stands for ‘wrong’ or ’worthless’, since this color change rule will turn
out to be of no use to determine controllability.)

For controllability of the colored graph G = (V,E, π) with given leader set VL ⊆ V , we
would like to find a necessary and sufficient condition. Based on the previous chapters, we
expect that this condition is Dw(VL) = V .

It turns out that the fact that the derived set, using the above color change rule, of VL
is equal to the entire node set V , says nothing about strong structural controllability. (This
is because the motivation behind this color change rule is completely lost, i.e., the relation-
ship with zero forcing or zero extension is gone. See also Section 6.1)

We will now show that, indeed, if Dw(VL) = V , we can not conclude controllability of
the colored network. In other words, Dw(VL) = V is not a sufficient condition for controlla-
bility. For this, consider the following counterexample.

We consider the network depicted in Figure 5.1, a colored network representing 7 nodes
with leader set VL = {1, 2, 3}.

1

2

3

4

5

6

7

a

a

a
b

b

c

c
d

e

f

Figure 5.1: An example to show that the wrong colored color change rule does not give a
sufficient condition for controllability.
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Again the input matrix is B = B(V ;VL). The system matrices A ∈ Qπ(G) are of the form:

A =



ξ1 0 0 0 0 0 0
0 ξ2 0 0 0 0 0
0 0 ξ3 0 0 0 0
a a a ξ4 0 0 0
0 b b 0 ξ5 0 0
c c 0 0 0 ξ6 0
d e f 0 0 0 ξ7


, B =



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0


,

where a, b, c, d, e, f are nonzero free parameters, and the ξi’s can take any real value. We
will now show that {4, 5, 6} is a color perfect neighbor of {1, 2, 3}. To do so, we consider the
associated colored bipartite graph (X, Y,EX,Y , πX,Y ) with X = {1, 2, 3} and Y = {4, 5, 6}.
There are three perfect matchings in this bipartite graph, which are depicted in Figure 5.2.
We also computed the spectrum and signature of every perfect matching, see Table 5.1.

3-matching spectrum signature

M1 {(1, 4), (2, 6), (3, 5)} {a, c, b} −1
M2 {(1, 6), (2, 4), (3, 5)} {c, a, b} +1
M3 {(1, 6), (2, 5), (3, 4)} {c, b, a} −1

Table 5.1: Perfect matchings between X = {1, 2, 3} and Y = {4, 5, 6} in the colored bipartite
graph (X, Y,EX,Y , πX,Y ).

We see that all three perfect matchings are equivalent, since they have the same spectrum,
and this equivalence class has nonzero signature. By definition then, {4, 5, 6} is a color per-
fect neighbor of {1, 2, 3}.

Equivalently, we could have considered the following submatrix and its determinant:

det(A{4,5,6},{1,2,3}) = det

a a a
0 b b
c c 0

 = −abc+ abc− abc = −abc.

What this computation shows, is that the submatrix A{4,5,6},{1,2,3} is nonsingular for any
choice of nonzero variables a, b, c. By Theorem 5.2 we can then also conclude that {1, 2, 3}
and {4, 5, 6} are color perfect neighbors.
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Figure 5.2: All three color perfect matchings in the colored bipartite graph (X, Y,EX,Y , πX,Y )
with X = {1, 2, 3} and Y = {4, 5, 6}, see also Table 5.1.
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We will now show that {4, 5, 6} is the only color perfect neighbor of {1, 2, 3}, by showing
that {4, 5, 7}, {4, 6, 7}, {5, 6, 7} are not color perfect neighbors of {1, 2, 3}. For example, to
show that {4, 5, 7} is not a color perfect neighbor of {1, 2, 3}, we consider again all perfect
matchings between these two node sets. This is done in Table 5.2.

3-matching spectrum signature

M1 {(1, 4), (2, 5), (3, 7)} {a, b, f} +1
M2 {(1, 4), (2, 7), (3, 5)} {a, e, b} −1
M3 {(1, 7), (2, 4), (3, 5)} {d, a, b} +1
M4 {(1, 7), (2, 5), (3, 4)} {d, b, a} −1

Table 5.2: Perfect matchings between X = {1, 2, 3} and Y = {4, 5, 7} in the associated
colored bipartite graph (X, Y,EX,Y , π).

Equivalently, one could compute the following determinant:

det(A{4,5,7},{1,2,3}) = det

a a a
0 b b
d e f

 = abf − abe+ abd− abd = abf − abe.

In either case, we see that there are three equivalence classes, but two of them have nonzero
signature. So {4, 5, 7} and {1, 2, 3} are not color perfect neighbors.

To show that {4, 6, 7} and {5, 6, 7} are not color perfect neighbors, we compute:

det(A{4,6,7},{1,2,3}) = det

a a a
c c 0
d e f

 = acf − acf + ace− acd = ace− acd,

det(A{5,6,7},{1,2,3}) = det

0 b b
c c 0
d e f

 = −bcf + bce− bcd.

Since there are always at least two equivalence classes with nonzero signature, none of these
neighbor sets are color perfect neighbors.

Hence, by the above colored color change rule, we color {4, 5, 6} black, since it is the only
white color perfect neighbor of {1, 2, 3}. After that, we see that {7} is the only white color
perfect neighbor of {3}, so we color it black. We see that Dw(VL) = Dw({1, 2, 3}) = V .
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However, the network G = (V,E, π) with leader set VL = {1, 2, 3} is not strongly structurally
controllable. To see this, we take the following realization A ∈ Qπ(G):

A =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 1 1 0 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0


.

Then we compute:

B =



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0


, AB =



0 0 0
0 0 0
0 0 0
1 1 1
0 1 1
1 1 0
1 1 1


, A2B =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


, A3B = A4B = A5B = A6B = 0.

Clearly, rank([B,AB,A2B, . . . , A6B]) 6= 7 since there are only six nonzero columns. By
Theorem 2.1 then, we conclude that (A, VL) is not controllable. Since we found a realization
A ∈ Qπ(G) for which the pair (A, VL) is not controllable, we conclude that (G, VL) is not
controllable.

In fact, one can also show that this color change rule does not give a necessary condition
for controllability (so it really is a useless rule!). More specific, if (A, VL) is controllable for
any A ∈ Qπ(G), we can not conclude that Dw(VL) = V . We will now give an example of this.

Let any A ∈ Qπ(G) be of the following form:

A =


ξ1 0 0 0 0
0 ξ2 0 0 0
a a ξ3 0 0
a a 0 ξ4 b
0 b 0 b ξ5

 , B =


1 0
0 1
0 0
0 0
0 0

 .
The corresponding network is depicted in Figure 5.3.
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Figure 5.3: An example to show that the wrong colored color change rule does not give a
necessary condition for controllability.

We will now show that (G, VL) is controllable, by using Fact 5.1. To that end, consider an
arbitrary weighted graph G(W ) = (V,E,W ) for any W ∈ Wπ(G). We will now show that
VL = {1, 2} is a balancing set for this graph. To do so, we assign a variable xi to every node
i ∈ V , and we set xi = 0 initially for all i ∈ VL. The balance equations for the two zero
nodes 1 and 2 now read:

ax3 + ax4 = 0

ax3 + ax4 + bx5 = 0,

and solving this homogeneous system of equations, we see immediately that x5 = 0. So, we
add node 5 to our zero nodes. The zero nodes are now 1, 2 and 5. The balance equation for
zero node 5 reads

bx4 = 0,

and hence x4 = 0 as well. The zero nodes are now 1, 2, 4 and 5. Writing down the balance
equation for node 1, we get

ax3 = 0,

which obviously implies that x3 = 0. We see that the derived set is V , and since we took
W ∈ Wπ(G) arbitrary, we see that VL = {1, 2} is a balancing set for any G(W ) = (V,E,W )
with W ∈ Wπ(G). By Fact 5.1, we can now conclude that (G, VL) is controllable, as desired.

However, the derived set of VL = {1, 2} using the wrong colored color change rule, is unequal
to V . To see this, note that {1} has two white color perfect neighbors, namely {3} and {4}.
The black node {2} has three white color perfect neighbors, namely {3}, {4} and {5}. The
black set of nodes {1, 2} has also more than one white color perfect neighbor, since both
{3, 5} and {4, 5} are white color perfect neighbors of {1, 2}. To see this, we consider the
associated colored bipartite graphs depicted in Figure 5.4.

37



1 2

3 5

a a

b

1 2

4 5

a a

b

Figure 5.4: Two color perfect neighbors of VL = {1, 2}.

We see that in both bipartite graphs there is exactly one perfect matching between {1, 2}
and the white neighbor set, so indeed {3, 5} and {4, 5} are both white color perfect neighbors
of {1, 2}. In either case, we have shown that there does not exist a subset of black nodes
X ⊆ {1, 2} that forces any white set of nodes. We derived Dw(VL) = {1, 2} 6= V , and hence
the condition Dw(VL) = V is not a necessary condition for controllability of (G, VL).

We showed that the condition that the derived set (using the wrong colored color change
rule) of VL is equal to the entire node set V , is neither a sufficient nor a necessary condition
for controllability of (G, VL). In the next section, we will discuss a color change rule that
does give a sufficient condition for controllability of (G, VL).

5.3 Color generalized color change rule

Consider again a colored network G = (V,E, π). Again, we color each node either black or
white. Initially, let C ⊆ V denote the subset of black nodes, and let V \ C be white. The
color change rule we consider is now the following:

Color generalized color change rule: Let X ⊆ C be a subset of black nodes. If Y
is the only white neighbor set of X, and X and Y are color perfect neighbors, we color Y
black. We say that X forces Y and we write X → Y .

Given is a colored graph G = (V,E, π). Initially, let C ⊆ V denote the set of black nodes,
and let V \C be white. The derived set Dcgzf (C) is the set of black nodes that we obtain by
repeated application of this color generalized color change rule, until no more changes are
possible. We call a set C ⊆ V a color generalized zero forcing set (CGZFS) if Dcgzf (C) = V .
We now state the main theorem.

Theorem 5.3. Let G = (V,E, π) be a colored graph and VL ⊆ V be a leader set. Then,
(G, VL) is controllable if VL is a color generalized zero forcing set.
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Proof. We know that VL is a color generalized zero forcing set. Hence, there exists a sequence
of forcings

X1 → Y1, X2 → Y2, . . . , Xw → Yw, (5.5)

with the following properties. Each Xi is a subset of black nodes and each Yi is a subset of
white nodes. For the first step we have X1 ⊆ VL and Y1 ⊆ V \ VL. Since X1 forces Y1 to
become black, we have in the second step of (5.5) that X2 ⊆ VL ∪ Y1, and so on. In general
we have Xi ⊆ VL ∪

⋃i−1
j=1 Yj. Finally, since VL is a color generalized zero forcing set, we have

VL ∪
⋃w
j=1 Yj = V .

We will now prove that (G, VL) is controllable. To do so, consider any A ∈ Qπ(G). We
claim that VL is also a balancing set, in the sense that the sequence of forces (5.5) also holds
if one were to consider the process of zero extension (Section 2.5). By Fact 5.1 we can then
conclude controllability.

Consider one step in (5.5), i.e., Xf → Yf . Since Xf forces Yf we have that Xf and Yf
are color perfect neighbors, and we have that the set of white neighbors of Xf is precisely
the set Yf . Consider now the process of zero extension. We assign to each node i a variable
xi, and initially we set xi = 0 if i is a black node. For a black node i ∈ Xf we have the
following balance equation: ∑

j∈Yf

Aj,ixj = 0,

because Yf is the set of white neighbors (we do not care about black neighbors, since the
corresponding values of the variable are already zero). The above equation can be rewritten
as

xTYfAYf ,{vi} = 0,

where AYf ,{vi} is a submatrix of A, and it is a single column matrix whose column index
corresponds to node i. The vector xYf is the vector consisting of all the variables xj, corre-
sponding to nodes j ∈ Yf . If we consider the balance equations for all black nodes i ∈ Xf ,
we obtain the following system of balance equations:

xTYfAYf ,Xf = 0.

Recall that Xf and Yf are color perfect neighbors, so in particular we have that in the
associated colored bipartite graph (Xf , Yf , EXf ,Yf , πXf ,Yf ) there exists a perfect matching
and there is exactly one equivalence class with nonzero signature. Then, by Theorem 5.2,
we conclude that the matrix AYf ,Xf is invertible. The above homogeneous system of balance
equations then implies that xYf = 0, which means that we have indeed Xf → Yf according
to zero extension. Since we considered an arbitrary step in the sequence of forcings (5.5), we
can conclude by using Theorem 2.7 that (A, VL) is controllable. Because we took A ∈ Qπ(G)
arbitrary, it follows that (G, VL) is controllable by Fact 5.1, which completes the proof.
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We will now look at an example and study how the color generalized color change rule can
be applied. Consider the colored graph G = (V,E, π) depicted in the figure below, which is
equal to Figure 3.2. The leader set is VL = {1, 2, 3}.

1

2 3

4 5 6

a a

b b c c

Figure 5.5: The graph of Figure 3.2.

We already showed in Chapter 3 that (G, VL) is controllable. We will now show that this also
follows from Theorem 5.3. To do so, we will apply the color generalized color change rule.
Initially, VL = {1, 2, 3} is the set of black nodes and V \ VL = {4, 5, 6} is the set of white
nodes. To apply this color change rule, we need to take a set of black nodes X and look at
the white neighbor set of X, denoted by Y . If X and Y are color perfect neighbors, we color
the nodes in Y black. Note that in order to be color perfect neighbors, the cardinalities of
X and Y must be the same. In other words, if the cardinalities of X and Y differ we can
already conclude that X and Y are not color perfect neighbors. Suppose the subset of black
nodes is {1}. Since the white neighbor set of {1} is equal to {4, 6}, which has a different
cardinality, they can not be color perfect neighbors. Likeso, if we let our subset of black
nodes equal {2}, the white neighbor set is given by {4, 5} and these sets are also not color
perfect neighbors. If we let X = {3} we can also not color any white nodes black. Let us
now consider subsets of black nodes with cardinality 2. Let X be {1, 2}, {1, 3} or {2, 3}. In
either case we see that the white neighbor set is equal to {4, 5, 6}. This set has a different
cardinality so they can not be color perfect neighbors. Finally, let now X = {1, 2, 3}. The
white neighbor set is then given by Y = {4, 5, 6}. These sets have the same cardinality so
we look at the associated colored bipartite graph (X, Y,EX,Y , πX,Y ) which is depicted in the
figure below.
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Figure 5.6: The colored bipartite graph (X, Y,EX,Y , πX,Y ) with X = {1, 2, 3} and Y =
{4, 5, 6}.

There are two perfect matchings in this colored bipartite graph, depicted in Figure 5.7. The
first perfect matching is given by {{1, 4}, {2, 5}, {3, 6}}. The spectrum is {a, b, c} and the
sign of this perfect matching is (−1)0 = +1, since there are zero transpositions needed to
transform (4, 5, 6) to (4, 5, 6). The second perfect matching is given by {{1, 6}, {2, 4}, {3, 5}}.
The spectrum of this perfect matching is {a, b, c}. The sign is (−1)2 = +1, since there are 2
transpositions needed to transform (6, 4, 5) to (4, 5, 6).

3 6

1 4

2 5

a

b

c 3 6

1 4

2 5
a
b

c

Figure 5.7: The two perfect matchings in the bipartite graph (X, Y,EX,Y , πX,Y ) with X =
{1, 2, 3} and Y = {4, 5, 6}, depicted in Figure 5.6.

Since both spectra are {a, b, c}, the two perfect matchings are equivalent. The signs are both
+1. We see that there is only one equivalence class of perfect matchings. The signature of
this equivalence class is 2. Hence, X and Y are color perfect neighbors by definition. By the
color generalized color change rule, we color the nodes in Y = {4, 5, 6} black. We see that
Dcgzf (VL) = V , so VL is a color generalized zero forcing set. By Theorem 5.3, we can now
conclude that (G, VL) is controllable, as desired.

This color generalized color change rule does however not give a necessary condition for
controllability. To see this, we consider the following example. Let any A ∈ Qπ(G) be of the
following form:

A =


ξ1 0 0 0 0
0 ξ2 0 0 0
a a ξ3 0 0
a a 0 ξ4 b
0 b 0 b ξ5

 , B =


1 0
0 1
0 0
0 0
0 0

 .
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The corresponding network is depicted in Figure 5.3. We have already showed on page 37
that (G, VL) is controllable.

However, {1, 2} is not a color generalized zero forcing set. To see this, note that there
does not exist a black node that has exactly one white out-neighbor. Also the set {1, 2} has
a white neighbor set of cardinality 3, and hence can not be a color perfect neighbor. We see
that there does not exists a subset of black nodes X ⊆ VL = {1, 2} that forces any white set
of nodes, so Dcgzf (VL) = {1, 2} 6= V . Hence, Dcgzf (VL) = V is not a necessary condition for
controllability.
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Chapter 6

Colored zero extension

In the previous chapter, we found a sufficient condition for controllability of systems defined
on a colored graph G = (V,E, π) with leader set VL ⊆ V . We showed that if VL is a color
generalized zero forcing set, i.e., Dcgzf (C) = V , we can conclude that (G, VL) is controllable.
The color generalized color change rule we studied to compute Dcgzf (C) involved the notion
of color perfect neighbor.

Furthermore we showed that a colored color change rule based on color perfect neighbors
without taking into account whether a white set is the only neighbor set of a black set, was
not of any use to conclude controllability of (G, VL). We referred to that rule as the wrong
colored color change rule. The reason that this rule is worthless, is because the mathemat-
ics behind zero extension is lost. To make this more precise, we will study the concept of
zero extension in more detail in this chapter, and eventually we will find another sufficient
condition for controllability of (G, VL).

6.1 A colored color change rule using zero extension

We first explain the motivation behind the process that we will later call colored zero exten-
sion. Let G = (V,E, π) be a colored graph. Again we color each node either black or white,
and initially let C ⊆ V be the set of black nodes, and let V \ C be the set of white nodes.
For any realization A ∈ Qπ(G) we partition A as

A =

[
A11 A12

A21 A22

]
,

where the first block row corresponds to nodes in C, and the second block row corresponds
to nodes in V \ C. The indices of the columns are in the same order as the indices of the
rows. In this way, A11 ∈ R|C|×|C| and A22 ∈ R(n−|C|)×(n−|C|).
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We now assign to each node i ∈ V a variable xi, and we set xi = 0 if i is a black node. The
values of the white nodes are not known a priori. We now consider the homogeneous system
of equations xTA = 0, with xT = (x1, . . . , xn). We partition xT = (xTC , x

T
V \C), such that

the first set of variables xi of x correspond to the black nodes in C, and the second set of
variables xj correspond to the set of white nodes in V \C. This linear system of n equations
then reads:

xTA =
(
xTC , xTV \C

) [A11 A12

A21 A22

]
= 0.

In particular, this yields:

xTCA11 + xTV \CA21 = 0, (6.1)

where xC ∈ R|C| corresponds to black nodes and xV \C ∈ Rn−|C| corresponds to the white
nodes. Note that we set xC = 0, so (6.1) becomes:

xTV \CA21 = 0. (6.2)

Note that (6.2) is a homogeneous system of |C| linear equations in n − |C| unknowns.
Furthermore, recall that A21 is the submatrix whose entries correspond to edges going from
C to V \C, since the rows of A21 are indexed according to nodes in V \C and the columns
of A21 are indexed according to nodes in C. If we consider a node j ∈ V \ C and the
corresponding row in the matrix A21, we see that this row is nonzero if and only if j ∈
NV \C(C). Equivalently, this row, corresponding to the node j ∈ V \ C, is a zero row if and
only if j does not have a mother node i in C. Since zero rows do not add any constraints to
the solution set of the homogeneous system of equations (6.2), this system can be simplified
to:

xTYAY,C = 0, (6.3)

where C is the set of black nodes, and Y = NV \C(C) is the set of white neighbors of C. Note
that (6.3) are precisely the balance equations we studied in Section 2.5.

The balance equations (6.3) give rise to a color change rule. For a given realization A ∈
Qπ(G) and set of black nodes C, let Y = NV \C(C) and consider the equations xTYAY,C = 0.
If these equations imply that xj = 0 for all xj ∈ Y ′ ⊆ Y , we say that the nodes Y ′ are
forced to become black for this realization A. Recall that this is ordinary zero extension,
see also Section 2.5. Instead of looking at the balance equations corresponding to a single
realization, we now consider all systems of balance equations for every A ∈ Qπ(G). This
leads to the notion of color generalized zero extension, and the colored color change rule we
consider is the following. (The first adjective ’colored’ refers to the fact that we consider a
colored graph G = (V,E, π).)

44



Colored color change rule: Let G = (V,E, π) be a colored graph and let C ⊆ V be the set
of black nodes. Let Y = NV \C(X). For a given realization A ∈ Qπ(G), suppose xTYAY,C = 0
implies xY ′ = 0 for some Y ′ ⊆ Y (note that Y ′ depends on the given realization). The set
of black nodes C is then updated in the following way

C(new) = C(old) ∪
⋂

A∈Qπ(G)

Y ′.

This colored color change rule also leads to the notion of derived set. The derived set,
Dcgze(C), is the set of black nodes obtained after repeated application of the colored color
change rule, until no more changes are possible. IfDcgze(C) = V , we call C a color generalized
balancing set (CGBS). We state the following theorem:

Theorem 6.1. Let G = (V,E, π) be a colored graph and VL ⊆ V be a leader set. Then,
(G, VL) is controllable if VL is a color generalized balancing set.

Proof. Suppose VL is a color generalized balancing set, so Dcgze(VL) = V . Then there exists
a sequence of updates

C0 = VL;

C1 = VL ∪ Y1;
C2 = VL ∪ Y1 ∪ Y2;

...

Ck = VL ∪ Y1 ∪ . . . ∪ Yk;

such that Yi denotes the set of white nodes forced to become black in the ith step, using the
colored color change rule. Finally, since VL is a color generalized balancing set, we have that
Ck = V , for some k.

Consider now any realization A ∈ Qπ(G). Then, VL is also a balancing set for this par-
ticular realization A, by using the same sequence of forcings. To see this, note that in the
first step C0 = VL are the black nodes, and we consider the corresponding balance equations.
For this particular choice of A, these equations imply that some set, let us say Y

′
1 ⊆ V \C0,

becomes black. We know now that by the colored color change rule explained above, we
must have Y1 ⊆ Y

′
1 . More explicitly, we know that at least the nodes in Y1 are forced to

become black. There might be more nodes that are forced to become black, since the set
Y

′
1 \ Y1 can be nonempty, however, for the time being we neglect those nodes. So, for this

particular choice of A, the zero nodes are now extended to VL ∪ Y1. We can now write down
the balance equations corresponding to the black nodes VL∪Y1, and for this particular choice
of A, these equations imply that some subset of white nodes, let us say Y

′
2 , are forced to

become black. Note that Y2 ⊆ Y
′
2 . Again, we only color the nodes in Y2 black now, and we

ignore the nodes in Y
′
2 \ Y2. Repeating this argument, we see that the sequence of forcings

also yield that Dze(VL) = V , for this particular choice of A, and hence (A, VL) is controllable
by Theorem 2.10. Since we chose A ∈ Qπ(G) arbitrary, we see that (G, VL) is controllable
by Fact 5.1 which completes the theorem.
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Figure 6.1: A counterexample to the necessity of the colored color change rule

We will now show that VL being a color generalized balancing set is only a sufficient condition
for controllability of (G, VL). To show that it is not a necessary condition, we consider the
graph depicted in Figure 6.1. Let the qualitative class be given by all matrices of the form:

A =

(
A11 A12

A21 A22

)
=



ξ1 0 0 0 0 0 0 0 0 0 0 0
0 ξ2 0 0 0 0 0 0 0 0 0 0
0 0 ξ3 0 0 0 0 0 0 0 0 0
0 0 0 ξ4 0 0 0 0 0 0 0 0
0 0 0 0 ξ5 0 0 0 0 0 0 0
0 0 0 0 0 ξ6 0 0 0 0 0 0
a a 0 0 0 0 ξ7 0 0 b 0 0
0 a b 0 0 0 0 ξ8 0 0 b 0
b 0 b 0 0 0 0 0 ξ9 0 0 b
0 0 0 a a b a 0 0 ξ10 0 0
0 0 0 0 a 0 0 a 0 0 ξ11 0
0 0 0 b 0 b 0 0 a 0 0 ξ12



∈ Qπ(G),

where the a and b denote nonzero free parameters, and all ξi’s denote the diagonal entries
which can take arbitrary real values, including zero. The leader set is VL = {1, 2, 3, 4, 5, 6}.
To every node i we assign a variable xi. Initially, x1 = . . . = x6 = 0 since they correspond
to the black nodes. The set of white nodes is V \ VL, which we have labeled {7, . . . , 12}.
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We introduce the notation X = VL = {1, . . . , 6} and Y = {7, . . . , 12}. Note that Y is in this
example also equal to the neighbor set of X. Consider the balance equations xTYAY,X = 0:

xTYAY,X =
(
x7, x8, x9, x10, x11, x12

)

a a 0 0 0 0
0 a b 0 0 0
b 0 b 0 0 0
0 0 0 a a b
0 0 0 0 a 0
0 0 0 b 0 b

 = 0,

which yield the following balance equations:

ax7 + bx9 = 0

ax7 + ax8 = 0

bx8 + bx9 = 0

ax10 + bx12 = 0

ax10 + ax11 = 0

bx10 + bx12 = 0

We will now solve this homogeneous system of equations. The second and third equation can
be rewritten as x7 = −x8 and x8 = −x9, respectively. This implies that x7 = x9. Combining
this with the first equation, we obtain (a+b)x7 = 0. Looking at the fifth and sixth equation,
we obtain x10 = −x11 and x10 = −x12. These two identities imply x11 = x12. Furthermore,
substituting x10 = −x12 into the fourth equation, we obtain (b − a)x12 = 0. We will now
consider three different cases:

Case I: a 6= b and a 6= −b;

Case II: a = b;

Case III: a = −b.

The qualitative class Qπ(G) can be partitioned into three subclasses:

Qπ(G) = Q(I)
π (G) ∪Q(II)

π (G) ∪Q(III)
π (G), (6.4)

where the subclasses are given by:

Q(I)
π (G) = {A ∈ Qπ(G) | a 6= b, a 6= −b},

Q(II)
π (G) = {A ∈ Qπ(G) | a = b},

Q(III)
π (G) = {A ∈ Qπ(G) | a = −b}.
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We will now investigate what happens if we apply the colored color change rule once. To
do that, we need to look at every possible system of balance equation. First of all, suppose
A ∈ Q(I)

π (G). Then the above equations imply that x7 = 0 and x12 = 0, and consequently

x8 = x9 = 0 and x10 = x11 = 0. So for all A ∈ Q(I)
π (G) we see that the balance equations

imply that x7 = x8 = x9 = x10 = x11 = x12 = 0. We denote Y I := {7, 8, 9, 10, 11, 12}.

Secondly, suppose A ∈ Q(II)
π (G). Then the above equations only imply that x7 = x8 =

x9 = 0. We denote Y II := {7, 8, 9}.

Thirdly, suppose A ∈ Q(III)
π (G). Then the balance equations imply that x10 = x11 = x12 = 0.

We denote Y III := {10, 11, 12}.

From this it follows that
⋂
A∈Qπ(G) Y = Y (I) ∩ Y (II) ∩ Y (III) = ∅, so the colored color

change rule gives Dcgze(X) = Dcgze(VL) = VL. Hence, VL is not a color generalized balancing
set.

On the other hand, we can show that (G, VL) is controllable. To do so, we use Fact 5.1, by
showing that VL is a balancing set for any realization A ∈ Qπ(G). To see that, we consider
three different cases and use the partition (6.4) again.

For any realization A ∈ Q(I)
π (G), we saw that the balance equations imply x7 = x8 =

x9 = x10 = x11 = x12 = 0. Hence, Dze(VL) = V for all A ∈ Q(I)
π (G).

Now consider a realization A ∈ Q(II)
π (G). Then the balance equations imply x7 = x8 =

x9 = 0. The new set of black nodes are {1, 2, . . . , 9} = X2. For these new black nodes,
we can write down the balance equations xTV \X2

AV \X2,X2 = 0, where AV \X2,X2 is now a

9× 3 matrix. By applying zero extension again we see that {10, 11, 12} is forced, and hence

Dze(VL) = V for all realizations A ∈ Q(II)
π (G).

Finally, one can also show that for any A ∈ Q(III)
π (G), we have that Dze(VL) = V . First of

all, we saw that the balance equations imply x10 = x11 = x12 = 0. The new set of black
nodes is then {1, 2, 3, 4, 5, 6, 10, 11, 12}. Applying zero extension again, the balance equations

imply that x7 = x8 = x9 = 0. Hence, Dze(VL) = V for all A ∈ Q(III)
π (G).

Because Qπ(G) = Q(I)
π (G) ∪ Q(II)

π (G) ∪ Q(III)
π (G), we see that Dze(VL) = V for any re-

alization A ∈ Qπ(G) using the balance equations. The system (G, VL) is thus controllable
by Fact 5.1, however, as we showed, VL is not a color generalized balancing set.
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Chapter 7

Conclusions

In this thesis, we studied controllability of systems defined on graphs. When we study the
controllability of a network of dynamical systems, the topology of the network is represented
by a graph. The nodes through which we can apply external inputs are often called the
leaders of the network or simply the input nodes. The graph topology gives rise to a family
of matrices, called the qualitative class. Each nonzero off-diagonal entry of any matrix from
the qualitative class represents the weight of an edge. Every matrix from this qualitative
class thus carries the underlying graph structure of the network. The network together with
the input nodes is called strongly structurally controllable if for any matrix from the quali-
tative class the system is controllable.

In previous literature, it has already been shown that there is a one-to-one correspondence
between sets of leaders that render a network strongly structurally controllable and zero forc-
ing sets. In the concept of zero forcing, nodes are either colored black or white. A so-called
color change rule is given, which can change the color of a single white node to black. A set
of input nodes is then called a zero forcing set if all nodes are eventually colored black, by
consecutive application of the color change rule. Note that zero forcing only depends on the
graph structure itself, and not on a particular choice of the system matrix from the quali-
tative class. Zero forcing sets give hence a graph theoretic condition for strong structural
controllability.

First, we took a closer look at this concept of zero forcing. Previously, the associated color
change rule was only able to color a single white node black. We have improved the color
change rule and formulated a generalized color change rule, that can color multiple white
nodes black simultaneously. In order to do so, our generalized color change rule involved the
concept of perfect matchings in bipartite graphs.

We then formulated and solved the main problem considered in this thesis, which is the
following. Commonly, an important assumption is made on the qualitative class. This
assumption is that every nonzero off-diagonal element of any of the matrices from the qual-
itative class is independent from the other entries. This is, however, in practice not always
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satisfied. Therefore we looked at qualitative classes where the same parameter can appear
on multiple locations. This constrained qualitative class gave rise to the concept of a colored
graph, by which we mean that every edge has now a color. Two edges have the same color if
the two corresponding parameters in the constrained qualitative class are the same. We then
aimed at finding conditions for strong structural controllability of systems with underlying
network a colored graph.

For two disjoint nonempty subsets of nodes, we were able to write down a correspond-
ing colored bipartite graph. Then, we established a necessary and sufficient condition for
the nonsingularity of every complex matrix from the pattern matrix of this colored bipartite
graph. This theorem was then used to formulate a colored color change rule, which used the
notion of color perfect neighbor. We showed that this gave only a sufficient condition for
strong structural controllability of systems defined on colored graphs, and not a necessary
condition. For the latter case, we gave an example to illustrate that.

Finally, we looked at another colored color change rule that uses the concept of general-
ized zero extension. This colored color change rule can also be used to determine strong
structural controllability of colored networks. However, again, this condition was only a
sufficient condition. We gave an example to illustrate that it is not a necessary condition.

So far, the colored color change rule that uses generalized zero extension is purely alge-
braic. While generalized zero extension also gave a sufficient condition for strong structural
controllability of colored graphs, it is not easy to check if this condition holds. In the future,
it might be worthwhile to take a closer look at generalized zero extension and see if it can
be interpreted as a graph theoretic tool, since conditions that can be verified by looking at
the graph topology are easier to verify.
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