faculty of science
and engineering

university of
groningen

LEARNING TO PLAY PAC-XON USING DIFFERENT KINDS

OF Q-LEARNING

Bachelor’s Project Thesis

Jits Schilperoort, s2788659, j.j.schilperoort@student.rug.nl,
Ivar Mak, s2506580, s.i.mak@student.rug.nl,
Supervisor: dr. M.A. Wiering

Abstract: When reinforcement learning (RL) is applied in games, it is usually implemented
with Q-learning. However, it has been shown that Q-learning has its flaws. A simple addition to
Q-learning exists in the form of double Q-learning, which has shown promising results. In this
study, it is investigated whether the advantage double Q-learning has shown in other studies also
holds when combined with a multilayer perceptron (MLP) that uses a feature representation of
the game state (higher order inputs). Furthermore we have set up an alternative reward function
which is compared to a conventional reward function, to see whether presenting higher rewards
towards the end of a level increases the performance of the algorithms. For the experiments,
a game called Pac-Xon is used. Pac-Xon is an arcade video game in which the player tries
to fill a level space by conquering blocks while being threatened by enemies. We found that
both variants of the Q-learning algorithms can be used to successfully learn to play Pac-Xon.
Furthermore double Q-learning obtains higher performances than Q-learning and the progressive
reward function does not yield significantly better results than the regular reward function.

Keywords: Reinforcement Learning, Q-Learning, Double Q-Learning, Multi-layer Perceptron,

Pac-Xon

1 Introduction

”Pure logical thinking cannot yield us any knowl-
edge of the empirical world; all knowledge of reality
starts from experience and ends in it.”

- Albert Einstein.

When humans are born, they have very little
knowledge about the world. As they grow older,
they have endeavoured many different actions that
have led to many different situations. Whenever
a new situation occurs, a good action can be ap-
proximated based on experiences in similar previ-
ous situations. This can be seen as learning by trial
and error. This way of learning is the foundation
of reinforcement learning (Wiering and Van Ot-
terlo, [2012), an artificial computational approach of
learning by trial and error. Games can provide suit-
able environments to model an agent that is trained
using reinforcement learning (Laird and VanLent),
2001). In this approach, the agent plays the game

in order to learn to distinguish desirable from un-
desirable actions.

1.1 Previous Work

Because of their nature, games have provided en-
vironments for reinforcement learning numerous
times. This has been done in both board games like
backgammon (Tesaurol [1995) and more graphical
intensive video games such as Ms. Pac-Man (Bom
et al.,[2013)), regular Pac-Man (Gallagher and Led-
wich, 2007)) and multiple Atari games (Mnih et al.,
2013).

In the previously named video games the widely
used variant of reinforcement learning, Q-learning
(Watkins and Dayan| [1992) was applied. In the
classical way, Q-learning makes use of a table to
store its state-action pairs. Watkins and Dayan
have proven that this method of reinforcement
learning converges to optimal action-values under

the condition that all actions are repeatedly sam-
pled in all states. However, when Q-learning is ap-
plied in video games with a huge state space, this
method becomes unfeasible since it would take too
long to repeatedly sample over all individual state-
action pairs. This is why the previously named
games were trained using an artificial neural net-
work to approximate Q-values for state-action pairs
rather than a lookup table that stores these Q-
values. In the Ms. Pac-Man and Pac-Man papers
a multilayer perceptron (MLP) is used, while the
Atari games were trained using Deep Q-Networks
(DQN). With these methods, less states are re-
quired to be presented to the learning agent, and
less data is needed to be stored in order to obtain
good playing behavior. The experiments in (Bom
et al., 2013) and (Gallagher and Ledwich, 2007
have shown promising results, often leading to play-
ing behavior as good as that of average human
players. In the case of the Atari games, in three
of the seven games included in the experiments it
even surpasses the playing behavior of human ex-
pert players (Mnih et al., [2013).

The learning agents in the Atari games were
trained using raw pixel input as a state representa-
tion that is presented to the agent. The Ms. Pac-
Man agent was trained using higher order inputs,
requiring only 22 input values as a representation
of its game state. The regular Pac-Man agent uses
several grids as input which were converted from
raw pixel data. Using the raw pixel input has as an
advantage that a better distinction between states
can be made since every individual game state
presented to the algorithm is unique. When us-
ing higher order input variables, less unique states
can be represented, so it can happen that differ-
ent states appear similar to each other to the algo-
rithm. The drawback of using raw pixel input data
is that it requires enormous amounts of computa-
tional power while an average personal computer
should be able to train an algorithm that makes
use of higher order inputs.

Even though Q-learning has shown great suc-
cesses, it does have its flaws. Because of its opti-
mistic nature, it sometimes overestimates action-
values. As an alternative to Q-learning van Has-
selt proposed a variant to Q-learning called double
Q-learning (van Hasselt} 2010). Because of the de-
crease of the optimistic bias in double Q-learning,
this variant has shown improvements in many Atari

games (van Hasselt et al., [2016).

1.2 Contributions

In this research the video game Pac-Xon is used as
an environment. This game has a large game state
space and many different levels. Each new level that
is encountered by the agent is a little more difficult
than the previous one, giving the game high scala-
bility. This provides a situation in which the agent
has to constantly adapt to new situations. When-
ever the agent has obtained a policy with which it is
capable of completing a certain level, it encounters
a new, more complex level. The full explanation of
the game can be found in Section [2]

We present a research in which we use tech-
niques used in the previously named researches on
Ms. Pac-Man and Atari games. It is investigated
whether the advantage of double Q-learning, as ob-
served in the Atari games, also holds in combina-
tion with higher order inputs and an MLP as ap-
plied in the Ms. Pac-Man paper. The double Q-
learning algorithm has not been implemented be-
fore with the use of higher order inputs (a game
state feature space), which makes it interesting to
see whether its performance differs from regular Q-
learning.

Another aspect that makes the performed ex-
periments an interesting new challenge, is the fact
that the nature of this particular game requires the
agent to take more risk as it progresses through a
level. At the start of a level it is quite easy to ob-
tain points, but as the agent progresses, the risk
that has to be taken to obtain the same amount
of points becomes increasingly higher. To deal with
this, two different reward functions are tested. One
of them gives a reward proportional to the obtained
score, the other one also takes level progress into ac-
count, giving a higher reward to points obtained in
a later stage of the level.

Outline

Section [describes the framework we constructed
to simulate the game and the extraction of the
game state features. Section [3] discusses the theory
behind the reinforcement learning algorithms com-
bined with an MLP. Section {4|describes the experi-
ments that were performed and the parameters we
used. Section [B describes and discusses the results

that were acquired, and in Section [6] we present our
conclusions and give suggestions for future work.

2 Pac-Xon

2.1 Game Setup

Pac-Xon is a computer game, of which the name
is a contraction of Pac-Man and Xonix. The game
itself implements parts of the gameplay of Xonix,
which is derived from Qix (released in 1981 by Taito
Corp.), combined with some gameplay and graphics
of Pac-Man.

The game starts in an empty rectangle with
drawn edges. The level can be viewed as a grid
space with 34 x 23 tiles, with a player initiated on
the edge and a number of enemies initiated in the
level space. In Figure[2.1] a screen shot of the game
is depicted, in which the player is moving to the
right while dragging a tail. The player can move in
four directions (north, east, south, west), and can
stand still, as long as is it not moving over empty
space.

- omEm

L2 Pac-Xon

Score: 844

Figure 2.1: Screenshot of the game, in which the
following objects can be viewed: player (yellow),
tail (cyan), normal enemies (pink), eater enemy
(red), solid tiles and edges (dark blue).

2.2 Gameplay

The main goal for the player is to claim empty
space, while avoiding the enemies. This is done by
dragging temporary tiles, from now on addressed

with tail, from edge to edge, which become solid
tiles after reaching a solid tile. In Figure the
tail is depicted in cyan. When enclosing an empty
space (i.e. there are no enemies apparent), the space
and the tail will convert to solid tiles, scoring a
point for each tile. If the tail did not enclose empty
space, solely the tail will convert to solid tiles. Af-
ter claiming 80 percent of the total area, the player
completes the level and advances to the next.

There are two options for failing the level, which
are related to the enemies moving around in the
level space. When the player collides with an enemy,
the player dies. Each time the player dies, the game
ends in a loss and restarts. This as opposed to the
original game, in which the player would lose a life
and restart on the edge as long as it has lives left.
We chose this implementation to simplify the game.
In order to achieve better training results using our
MLP, we eliminate the extra variable for lives which
would influence decision making.

The second option for a fail is when the enemy
collides with the tail of the player. The tail will
break down with a speed of 1% that of the player’s
speed. This means the player will have a certain
amount of time to reach a solid tile in order to
complete its tail and survive. If the player does not
reach a solid tile in due time (i.e. gets caught up by
the breaking tail), the player dies.

There is a third way in which the player can fail
the level, which is not related to the enemies. When
the player runs into its tail, the player dies.

2.3 Enemy Description

We have implemented three different types of en-
emies, which we named according to their specific
behavior:

e Normal: Depicted in pink, moving around in
the empty space at a constant speed, bouncing
away from solid tiles and the player’s tail when
they hit them.

e Eater: Depicted in red, moving around in the
empty space at a constant speed which is half
that of the normal enemies. These enemies will
clear away the solid tile they hit before bounc-
ing away, the solid edges of the level and the
player’s tail excluded.

e Creeper: Depicted in green, moving around
on the solid tiles of the level at a constant
speed the same as the normal enemy, bounc-
ing away from the edges of the frame and the
empty space. This enemy is initiated after the
player fills its first block of solid tiles, to avoid
it getting stuck on an edge.

2.4 Enemy Distribution

The amount of enemies is dependent on the game
progress. Starting off with two enemies in level one,
after passing, the number of enemies increases by
one for each subsequent level. The enemies are dis-
tributed differently over the levels according to the
following set of rules:

e If the level number is even: add w of

eater enemies.

e If the level number can be divided by three
(and returns a remainder of zero): add a
creeper enemy, to a maximum of one.

e Add the remaining number of normal enemies.

This means there will always be one enemy more
than the number of the current level. Each level
will contain at least two normal enemies, and there
will never be more than one creeper enemy.

2.5 State Representation

We want to supply the MLP with information
about the game, since the agent needs to link its
feedback in the form of future rewards to a situation
in the game. We have constructed a representation
of the environment which is called the game state,
that contains the information that can be viewed
on the screen. We calculate a total of 42 variables,
which are stored in a vector. In order to use them
as input for the MLP, we normalize these values be-
tween zero and one. There are a number of features
that produce multiple inputs (for example one for
every direction). This means we have a total of 17
features, which are described in Table We have
divided the features into three categories: Tile Vi-
sion, Danger and Other. Furthermore, Figure
depicts some examples of the game state features
and how they relate to the on-screen information.

Note that in Figure the player is about to
enclose an enemy. When this happens, the num-
berOfFields variable (explained in Table will

increase.

“oEm

a Pac-Xon

s,
¢
760’@ | ’
@0& f playerDir

distToFilledTile

tailThreat
tailSize

Lives: 5 Score: 130

Figure 2.2: State representation example, with
the state variables depicted in arrows with their
corresponding labels. The following objects can
be viewed: player (yellow), tail (cyan), normal
enemies (pink), creeper enemy (green), solid
tiles and edges (dark blue).

Table 2.1: State representation features

Number ‘

Feature

Description

Tile Vision

1-4

unFilledTiles

In four directions, the normalized inverted distance to-
wards the closest unfilled tile. If there is none, this value
is set to 0.

5-8

tailDir

In four directions, a binary value determined by whether
there is an active tail within 4 blocks of the player. Set to
1 if there is, set to 0 if not.

9-12

distToF'illedTile

In four directions, the normalized inverted distance to-
wards the closest filled (solid) tile.

13

safeTile

A binary value determined by the current position of the
player. If it is on a filled (safe) tile, this value is set to 1.
If not, it is set to 0.

14-17

unfilledTiles on row/column

In four directions, the normalized inverted distance to-
wards the closest row or column with unfilled tiles.

Danger

18

enemyDir

Determined by the direction of the closest enemy. This
value is either 0= not moving towards player, 0.5=moving
towards player in 1 direction (x or y) or 1=moving towards
player in two directions (x and y).

19-22

enemyDist

In four directions, the normalized inverted distance to-
wards the closest enemy in that direction. Set to zero if
there is none.

23

dist ToClosEnemy

The euclidean distance towards the closest enemy, in-
verted, and normalized through a division by 20.

24

distToCreeper

Euclidean distance towards the creeper (green enemy), in-
verted, and normalized through a division by 20.

25-28

enemyLoc

In four directions, the player has vision in that direction
with a width of 7 blocks. If there is an enemy apparent,
the inverted distance gets normalized such that one enemy
can amount up to 0.5. This means the player can detect
up to two enemies in each direction, and adjust its threat
level accordingly.

29

tailThreat

The inverted euclidean distance from the active tail to-
wards the closest enemy, normalized through a division
by 20. This value is set to zero if there is no active tail.

30

tailHasBeenHit

Binary value determined by whether the active tail has
been hit by an enemy. If there is no active tail, or it has
not been hit, this value is set to zero.

31-34

creeperLocation

Inverted normalized distance towards creeper (green en-
emy) in four directions. If there is no creeper in that di-
rection, the value is set to zero.

Other

35-39

playerDir

Binary value determined by the direction in which the
player is moving, with no direction (standing still) as a
fifth option.

40

numberOfFields (/enemies)

Based on the ratio between between empty spaces and
the number of enemies. (0 when only one field, 1 when all
enemies separated). In Figure [2.1] this variable will have
value 0, but will become 0.5 when the player successfully
encloses the enemy.

41

percentage

The normalized percentage of the level passed (filled with
tiles).

42

tailSize

Normalized length of the tail, set to 1 if is larger than 40
blocks. Set to zero if there is none.

3 Reinforcement Learning

The process of making decisions based on obser-
vations can be seen as a Markov Decision Process
(MDP) (Bellmanl |1957). To deal with the dynamic
environment of the game, reinforcement learning
was applied. Such a system can be divided into
five main elements: the learning agent, the envi-
ronment, a policy, a reward function, and a value
function (Sutton and Bartol [1998).

The policy can be seen as the global behavior of
the learning agent. It represents the function of, at
time ¢, deciding on an action (a;) based on a certain
state (s¢).

When the process starts, the learning agent runs
through the training stage. Initially the learning
agent has no information of its environment and
therefore its policy will be random. As time passes
the agent will learn about its environment and ob-
tain a policy that is based on rewards it has en-
countered in previous situations.

3.1 Q-Learning

The Q-learning algorithm (Watkins and Dayan)
1992) is used to tackle this MDP. This is a form
of temporal difference learning, which implies that
we try to predict a quantity that depends on future
values of a given signal. The quantity in this case
is a measure of the total amount of discounted re-
wards expected over the future. Equation [3.1]states
the Q-learning update rule in its general form.

Q(st, at) < Q(st,at) + afry + ymax, Q(st41,a) — Q(st, ar)]
(3.1)

There are two constants that affect the equation.
The constant « represents the learning rate, which
influences the extent to which the Q-values are al-
tered following an action, this is a value between 0
and 1. The constant y represents the discount fac-
tor, which is also a value initiated between 0 and
1. This value determines how much influence the
future rewards have on the updates of the Q-value.
The future rewards get discounted according to this
value. This means that a discount factor close to 0
means the agent focuses on rewards in the near fu-
ture. Using a discount factor closer to 1, rewards in
the more distant future will have a larger influence.
s¢+1 represents the new state after having taken ac-
tion a; in state s;. r; represents the observed reward

at time t.

The algorithm uses state-action pairs to store
and use information, these consist of a state rep-
resentation explained in the previous section and a
game action (i.e. move) that can be chosen. Each
state-action pair is associated with a Q-value that
expresses the quality of the decision. The algorithm
calculates these values, based on the reward that is
received for choosing that action plus the maximal
expected future reward.

This equation is applied for updating Q-values
stored in a table. Our state-action space is too large
to store all Q-values in a table, so we implemented a
different approach by combining Q-learning with a
function approximator, which is explained in detail

in Section 3.3

3.2 Reward Function

The reward function is used to represent the desir-
ability of choosing an action (i.e. transitioning to
some state following that particular move). This is
done by using values that refer to specific events
in the game. This value could either be positive,
or negative, the latter of which can be seen as a
penalty for an action that is undesirable. The re-
wards that are yielded after a state transition are
a short term feedback, but due to the fact that the
algorithm includes future rewards in its action eval-
uation, it could be the case that an action is linked
to a high Q-value while returning a low immediate
reward.

We have implemented two types of reward func-
tions, which we are going to compare in terms of
performance. The first is a 'regular’ (fixed) reward
function, which yields rewards that are static in
terms of the level progress. This function is de-
scribed in Table[3.1] The reward for capturing tiles
is dependent on the number of tiles that are cap-
tured, and this number is scaled to the other re-
wards by dividing it by 20. We have implemented
a positive reward for movement over empty space
(i.e. unfilled tiles) in order to encourage the agent
to move there. Furthermore, a number of negative
rewards have been implemented to ensure the agent
does not get stuck in a local maximum, moving over
tiles that do not increase the progress and score.

The second approach is a progressive reward
function that takes the level progress into account
in the reward that is generated for capturing tiles.

Table 3.1: Regular (static) reward function with
a = number of tiles captured.

Event Reward
Level Passed 100
Tiles Captured ((a /20) + 1)

Movement in empty space | 2

Died -100
No movement -2
Movement in direction 9
opposite from previous
Movement over solid tiles | -1

This level progress is expressed in the percentage
of the level space that is filled with tiles. Since the
player has to fill only 80 percent in order to pass
the level, this is the denominator used in calculating
the level progress. This alternative reward function
is shown in Table [3.21

The aim of this reward function is to incline the
agent to take more risk, the further it progresses
through the level, by returning a higher reward
for capturing tiles. The rewards yielded for other
events are equal to the regular reward function.

Table 3.2: Progressive reward function with
a = number of tiles captured
b = percentage of the level passed

Event Reward

Level Passed 100
Tiles Captured (v axb/0.8 + 1)
Movement in empty space | 2

Died -100
No movement -2
Movement in direction 9
opposite from previous
Movement over solid tiles | -1

3.3 Multi-Layer Perceptron

To show the relevance of using an MLP rather than
a table with Q-values, an estimation of the number
of game states in the first level is made. Any tile
can contain the player (but only one). Furthermore
there are two normal enemies that can exist on any
tile that is not the border (32 x 21 possible tiles)
and any tile that is not the border can either be

empty, conquered or contain the tail of the player.
This results in an estimation of (34 x 23) x (32 x
21)2 x 3032x21) & 1032 possible game states in the
first level.

Note that this estimation also contains some
game states that are in practice not possible but it
gives a general idea of the scale. Furthermore this
estimation is of the first level and each level the
complexity increases because there are more ene-
mies and different kinds of enemies.

Using a table to store the Q-values of all state-
action pairs is not feasible in games with a huge
state space such as Pac-Xon, because there exist
too many different game states to keep track of.
This is why a combination of Q-learning with an
MLP is applied. An MLP is an artificial neural net-
work which acts as a function approximator. Be-
cause of this, less data is required to be stored
since not all individual state-action pairs have to
be stored. A pseudo code version of the algorithm
used for implementing Q-learning combined with
the MLP is shown in Algorithm

Algorithm 3.1 Q-Learning algorithm. The explo-
ration algorithm is fully explained in section

initialize s and @
repeat
if explore() then
a < randomMove()
else
a « argmax, Q(s,a)
end if
s* + newState(s, a)
Q9% (s, a) + ry + ymax, Q(s*, a)
update(Q(s, a), Q"9 (s, a))
until end

The used MLP consists of an input layer, a hid-
den layer and an output layer. Between the layers
a set of weights exists. A simplified version of the
network is shown in Figure [3.1

3.3.1 Input

As its input, the MLP gets all state representation
variables which are explained in Section 2.5} They
add up to a total of 42 values which are all normal-
ized between 0 and 1. These values are multiplied
by the input weights and sent to the hidden layer.

Input layer Hidden layer

(State)

Output layer
(Q-value for action)

CK LA SO
S ORI

y w D Vaavd

‘\\iglllf\

Wo

Figure 3.1: Multilayer Perceptron

3.3.2 Hidden Layer

The hidden layer consists of an arbitrary number
of nodes. Each node receives the input of all input
nodes multiplied by their weights. These weighted
inputs are added together with a bias value and sent
through an activation function, for which a sigmoid
function (Equation is used.

f) =

This results in values in the hidden nodes be-
tween 0 and 1. It was also considered to apply a
variant of an exponential linear unit (ELU) rather
than a sigmoid activation function, which was
shown to result in better performances in (Knegt
et al., 2018]) but we decided to leave that for future
research.

(3.2)

3.3.3 Output Layer

The output layer consists of five nodes and re-
ceives its input from the hidden layer multiplied by
the corresponding weights. The activation function
used in this layer is linear (f(z) = z). Each node in
this layer represents a Q-value for a specific action.
Whenever an action is picked, it is either random

(exploration, explained in Section [4)) or the action
with the highest Q-value from the network is cho-
sen.

3.3.4 Backpropagation

The network makes use of data that is acquired
dynamically while playing the game. Therefore it
is considered online learning (Bottou, [1998). Up-
dating the network is done by backpropagation
(Rumelhart et al. {1988). The error required for
backpropagation is the difference between the tar-
get Q-value (Equation and the perceived Q-
value. Whenever a terminal state is reached, i.e.
the agent either died or passed a level, Equation
[34is used since there are no future values to take
into account.

Q"9 (s, ar) = 1 +ymax Q(sit1,0) (3.3)

Qtarget(st’ at) — T (34)

3.4 Double Q-Learning

When calculating target Q-values, Q-learning al-
ways uses the maximal expected future values.
This can result in Q-learning overestimating its Q-
values. Double Q-Learning was proposed in (van
Hasselt,, [2010) because of this possible overestima-
tion. The difference with regular Q-Learning lies in
the fact that two agents (MLPs) are trained rather
than one. Whenever an agent is updated it uses the
maximal Q-value of the other agent. This should
reduce the optimistic bias since chances are small
that both agents overestimate on exactly the same
values. The new equation for the target Q-value
is shown in Equation Note that the equation
contains both a @ 4 and a Q. These represent the
individual trained networks. A pseudo code version
of the algorithm is shown in Algorithm [3.2]

target

A (s¢,ap) <1y + 7 max Qp(sir1,a) (3.5)

Algorithm 3.2 Double Q-Learning algorithm.

initialize s, Q, and Q)
repeat
pickrandom(A, B)
if A then
if explore() then
a < randomM ove()
else
a + argmax, Q (s, a)
end if
s* < newState(s, a)
r9et (s, a) < ¢ + ymax, Qp(s*, a)
update(Qa(s,a), @57 (5,a))
else if B then
if explore() then
a + randomM ove()
else
a + argmax, Qp(s,a)
end if
s* < newState(s, a)
1919 (5, a) < 14 +ymax, Qa(s*,a)
update(QB (S, a)a %Wget(s’ a))
end if
until end

4 Experiments

4.1 Training the Agent

When an agent is initialized in the environment
it has absolutely no knowledge of the game. The
weights of the MLP are all randomly set between
—0.5 and 0.5. In total each agent is trained for 106
epochs. One epoch consists of the agent playing the
game until it reaches a terminal state, which in the
training stage means that it either dies or passes a
level.

4.1.1 Exploration

Each training epoch, the agent chooses to pick an
action from the network or perform a random move
for exploration. The exploration method used is
a decreasing e-greedy approach (Groot Kormelink
et al,[2018). This means that the agent has a prob-
ability of € to perform a random action and a prob-
ability of 1 — € to choose the action from the net-
work which is expected to be the best. The value of

€ decreases over the epochs. The algorithm for ex-
ploration is shown in Algorithm The value of €
is initialized at 1, but decreases as the training pro-
gresses. The value of € is determined by a function
over the epochs. The formula €(F), with E as the
current training epoch is shown in Equation 4.1

— 09E if) < E < 50,000
(E) = % if 50,000 < E < 750,000

0 if 750,000 < E < 1,000,000

(4.1)

Whenever an agent has failed to obtain any

points in 100 moves, also a random move is per-

formed. This is done in order to try to speed up

the training as the agent cannot endlessly wander

around the level or just stay in a corner without
obtaining points.

Algorithm 4.1 e-greedy exploration

r <= randomDouble(0, 1)
if » > € then
move <= best Expected M ove()
else
move < randomM ove()
end if
per formM ove(move)

A total of 40 agents are trained. The agents are
divided into four groups. Each group of 10 agents
is trained using a unique combination of one of the
reward functions and either double Q-learning or
regular Q-learning. After a search through param-

eter space, we decided to use the hyperparameters
as described in Table E.11

Table 4.1: Parameters used for the experiments

Discount factor 0.98

Learning Rate 0.005

Number of hidden layers | 1

Nodes per hidden layer 50

4.2 Testing the Agent

The testing stage consists of 10% epochs. In every
epoch each trained agent plays the game until it ei-
ther dies or gets stuck (performs 100 actions with-
out obtaining points). Both the total score of each

epoch as the level the agent died or got stuck in are
stored.

With this data, both algorithms and reward func-
tions will be compared to each other.

5 Results

In Figure and the training stage of the
agents is plotted. Figure shows the average
level the agents reached with the reward function
that is not related to the level progress. Figure [5.2]
shows the average level that the agents that made
use of the progressive reward function reached. In
both graphs two lines are plotted representing Q-
learning and double Q-learning. The shapes of the
graphs are related to the exploration variable e of
the agents. The value of this variable decreases from
1 to 0.1 in the first 50,000 epochs, and then gradu-
ally decreases until it reaches 0 in epoch 750,000.

Progress-independent reward: level progress training stage

2.5
Double Q-
2 learning
= -Q-learning
5
< 15
o
5
z 1
0.5

o]
0 100 200 300 400 500 600 700 800 900
Epoch (¥1000)

Figure 5.1: Graphs of the training stage using
the regular reward function. Both lines are av-
eraged over 10 trials.

The results of the testing phase are shown in Fig-
ure Note that in the testing phase there is no
exploration and learning, so all decisions made by
the agents are chosen from the network and the
network is not updated anymore.

To compare the algorithms and reward functions
t-tests were performed. The values used for these
tests are shown in Table [£.1] and A more elab-
orate summary of the results can be found in Table
[6.3] The performed t-test for the comparison be-
tween the scores of the algorithms with a difference
in mean of 177 in favor of double Q-learning yielded
a p-value of 0.04. This indicates that, according to

Progress-dependent reward: level progress training stage

2.5
Double Q-
2 learning

_ =Q-learning
1<
& 15
D
50
©
) 1

0.5 //”

)
o
0 100 200 300 400 500 600 700 800 900

Epoch (*1000)

Figure 5.2: Graphs of the training stage using
the progressive reward function. Both lines are
averaged over 10 trials.

conventional criteria (o« = 0.05) a significant differ-
ence in means exists.

The difference in mean of the reward functions is
39 in favor of the regular reward function with a p-
value of 0.66, which is higher than the conventional
«, indicating that this difference in means is not
significant.

It is important to note that each of the four tri-
als consists of individually trained instances. Be-
cause of this, they have to be seen as four unique
populations. Therefore a repeated measures analy-
sis of variance (ANOVA) statistical test would not
be valid with our comparison. So instead of this,
additionally to the t-tests, a one-way ANOVA was
performed to ascertain that the differences in per-
formance are not related to the different variations
of the algorithms. The outcomes of this test can
be seen in Table [5.4] and The smallest p-value
that came out of the test is 0.28, which is greater
than the conventional value of . This means that
there is no significant difference in means of the
individual combinations of all four populations.

Table 5.1: Reward mean comparison

Regular reward Progressive reward
N | Mean | SD | N | Mean | SD
Score | 20 | 944 261 | 20 | 905 298

p-value
0.66

Table 5.2: Algorithm mean comparison

Q-learning Double Q-learning
N | Mean | SD | N | Mean | SD p-value
Score | 20 | 836 339 | 20 | 1013 | 162 0.04

10

Passing percentage per level (testing stage)

80%
70%
60%
50%

40%

——

30%

Passed/started ratio

o
i)

20%

AT AT A |

10%

0%

B ()-learning progressive
Double Q-learning progressive
EQ-learning non-progressive

O Double Q-learning non-progressive

& r'{—
8

AT e

(43}

Level

Figure 5.3: Graphs of the testing stage. Each bar shows the average passed/started ratio of 10

trials. The error bars show the standard error.

Table 5.4: ANOVA table

Sum of squares | d.f. | Variance | F P
Between groups | 347794 3 115931 1.57 | 0.21
Within groups 2650201 36 | 73617
Total 2997994 39

Table 5.5: Tukey HSD Post-hoc Test

95% conf interval
Diff | From | To P
Q prog vs Q reg: -4 -331 323 1.02
Q prog vs DQ prog: | 134 | -192 | 461 0.69
Q prog vs DQ reg: 216 | -110 | 543 0.30
Q reg vs DQ prog: 138 | -189 | 465 0.67
Q reg vs DQ reg: 220 | -107 | 547 0.28
DQ prog vs DQ reg: | 82 -245 | 409 0.91

5.1 Discussion

In this research we have examined two different
temporal difference learning algorithms, Q-learning
(Watkins and Dayanl, [1992) and Double Q-learning

(van Hasselt], 2010). These algorithms have been
trained using an input vector of state variables, sim-
ilar to an approach that has been used in previous
research on games (Bom et al., 2013).

We compared these algorithms in terms of per-
formance in playing the game Pac-Xon. From the
results, described in Table[5.2] we can conclude that
Double Q-learning reaches a significantly higher
performance than Q-learning. This suggests that
there is some form of overestimation in the Q-
learning algorithm that is averted by training two
separate MLPs.

Both algorithms were able to reach a satisfactory
performance in passing the first levels, and reaching
levels that have revealed to be difficult for human
standards.

Furthermore, we have examined different imple-
mentations for the reward function, which is a vi-
tal part in these reinforcement learning approaches
(Sutton and Barto| 1998). We made a comparison
between a ’standard’ reward function using fixed
values, and a progressive reward function, increas-

11

Table 5.3: Summary of the results

95% confidence interval
Algorithm | Reward N | Mean | o SE | Lower bound | Upper bound | Min | Max
Q Progressive | 10 | 838 370 | 117 | 608 1067 8 1300
Q Regular 10 | 834 326 | 103 | 632 1036 250 | 1305
DQ Progressive | 10 | 972 203 | 64 | 846 1098 620 | 1187
DQ Regular 10 | 1054 102 | 32 991 1117 927 | 1220

ing the reward pursuant to level progress. Based
on the outcomes of our experiments we can con-
clude that Q-learning does not depend on the re-
ward function in order to cope with the increasing
complexity the game poses as the player progresses
through the individual levels.

6 Conclusion and Future

Work

We have found that the advantage double Q-
learning showed with the DQNs in Atari games
(Mnih et al., [2013]) also holds when applied with
higher order inputs and an MLP. This suggests that
the advantage of double Q-learning is generalizable
to different applications. The double Q-learning al-
gorithm is a relatively simple addition to regular
Q-learning, making it easy to implement while ob-
taining better results. Q-learning has been the stan-
dard in the field of reinforcement learning for quite
a while, but the recent findings combined with this
research make a strong case to suggest that double
Q-learning should replace Q-learning in this posi-
tion.

The comparison between the reward functions
did not yield a significant difference, which can
be seen as an indication that these reinforcement
learning algorithms are already adaptive in such a
way that they recognize situations that are more
dangerous as closer towards the completion of a
level, giving a very high reward.

This research provides suggestions for future re-
search in a couple of ways. First off, we used quite
a large number of input variables in our state
representation. It might be possible to decrease
the size of this, by eliminating variables that add
marginally to the overall performance. Secondly,
in our testing stage, both by the gathered data
and visualizing the playing performance, we came

across agents that have flaws. Occasionally there is
a combination of factors that constrains the agent
in such a way that it stays idle, and does not
move anymore. This could be improved, to reach
a higher performance in playing the game. Fur-
thermore, an interesting opportunity for further re-
search might be another variation of the reward
function, in which there is no large reward for com-
pleting the level. This way, the agent will solely
train on the positive reward achieved by claiming
tiles. It could also be tested whether experiments
using different activation functions, apart from the
sigmoid function that we have been using, influence
the performance of double Q-learning relative to Q-
learning. Finally, more studies should be performed
on the comparison between Q-learning and dou-
ble Q-learning in as many different environments
as possible, enabling to confidently state that dou-
ble Q-learning performs better than Q-learning.

12

References

R. Bellman. A markovian decision process. Indi-
ana Univ. Math. J., 6:679-684, 1957. ISSN 0022-
2518.

L. Bom, R. Henken, and M. Wiering. Reinforce-
ment learning to train Ms. Pac-Man using higher-
order action-relative inputs. In 2013 IEEE Sym-
posium on Adaptive Dynamic Programming and
Reinforcement Learning (ADPRL), pages 156—
163, April 2013.

L. Bottou. Online algorithms and stochastic ap-
proximations. In Online Learning and Neu-
ral Networks. Cambridge University Press, Cam-
bridge, UK, 1998. revised, oct 2012.

M. Gallagher and M. Ledwich. Evolving Pac-Man
players: Can we learn from raw input? In 2007
IEEE Symposium on Computational Intelligence
and Games, pages 282-287, April 2007.

J. Groot Kormelink, M. Drugan, and M. Wier-
ing. Exploration methods for connectionist Q-
learning in Bomberman. In Proceedings of the
10th International Conference on Agents and
Artificial Intelligence, ICAART 2018, Volume
2, Funchal, Madeira, Portugal, pages 355-362,
2018.

S. Knegt, M. Drugan, and M. Wiering. Opponent
modelling in the game of Tron using reinforce-
ment learning. In Proceedings of the 10th In-
ternational Conference on Agents and Artificial
Intelligence, ICAART 2018, Volume 2, Funchal,
Madeira, Portugal, pages 29-40, 2018.

J. Laird and M. VanLent. Human-level AD’s killer
application: Interactive computer games. Al
magazine, 22(2):15, 2001.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning.
NIPS Deep Learning Workshop, 2013.

D. Rumelhart, G. Hinton, and R. Williams. Neuro-
computing: Foundations of research. pages 696—
699. MIT Press, Cambridge, MA, USA, 1988.

R. Sutton and A. Barto. Reinforcement Learning:
An Introduction. A Bradford book. 1998.

G. Tesauro. Temporal difference learning and TD-
gammon. Communications of the ACM, 38(3):
5868, 1995.

H. van Hasselt. Double Q-learning. In Advances in
Neural Information Processing Systems 23, pages
2613-2621. Curran Associates, Inc., 2010.

H. van Hasselt, A. Guez, and D. Silver. Deep re-
inforcement learning with double Q-learning. In
AAAI volume 16, pages 2094-2100, 2016.

C. Watkins and P. Dayan. Q-learning. Machine
learning, 8(3-4):279-292, 1992.

M. Wiering and M. Van Otterlo. Reinforcement
Learning: State of the Art. Springer, 2012.

13

A Appendix

A.1 Full test results

Table A.1: All members of the populations

Q-learning

Double Q-learning

Regular reward

Progressive reward

Regular reward

Progressive reward

Mean score | High score | Mean score | High score | Mean score | High score | Mean score | High score
1305 5166 8 3918 962 4837 713 4767
406 3222 666 4740 1161 4803 996 4757
986 4805 1122 4650 987 4691 851 5180
884 4802 732 4995 1064 4733 1031 4738
994 4741 581 4791 1001 4746 1187 4687
250 4454 999 3952 1171 5114 1166 4808
1109 5739 1300 4741 1220 4773 1154 5053
988 4760 914 4677 927 4744 853 5021
596 3631 889 4773 961 4798 1149 4783
820 4146 1163 5052 1085 4777 620 4774

14

	Introduction
	Previous Work
	Contributions

	Pac-Xon
	Game Setup
	Gameplay
	Enemy Description
	Enemy Distribution
	State Representation

	Reinforcement Learning
	Q-Learning
	Reward Function
	Multi-Layer Perceptron
	Input
	Hidden Layer
	Output Layer
	Backpropagation

	Double Q-Learning

	Experiments
	Training the Agent
	Exploration

	Testing the Agent

	Results
	Discussion

	Conclusion and Future Work
	Appendix
	Full test results

