
 

Bachelor research project Physics - 2017-2018 

 
On the optimal orientation of a thin cylindrical 
germanium detector for Compton imaging of 

high-energy gamma rays. 

 
Leon de Jong 

 
May 2018 

 
 
 
First examiner: Dr. Peter Dendooven 
 
Second exmainer: Dr. Emiel van der Graaf 



- 2 - 
 

 



- 3 - 
 

Table of Contents 
1 Introduction       3 
2  Theory        4-6 

2.1 Photon interactions     4-6 
2.1.1 Photoelectric effect    4 
2.1.2 Pair Production    4-5 
2.1.3 Coherent scattering    5 
2.1.4 Compton scattering    5-6 

 2.2 Proton therapy      7-10 
  2.2.1 Proton therapy vs photon therapy  7-9 
  2.2.2 Alternatives to protons    9 
  2.2.3 Dose control     9-10 
  2.2.4 Energies of interest    10 
 2.3 Compton Imaging     11-15 
  2.3.1 Compton Camera    11-12 
  2.3.2a Two Stage Compton Camera   12 
  2.3.2b Multistage Compton Camera   12 
  2.3.2c Single Stage Compton Camera   12 
  2.3.3 Cones      13-14 
  2.3.4 Conic Sections     14 
  2.3.4a Circle      14 
  2.3.4b Ellipse      14-15 
  2.3.4c Hyperbola     15 
  2.3.4d Parabola     15 
  2.3.5 Detector Material    15 
3 Materials and methods     16-30 
 3.1 Monte Carlo Simulations    16-17 
 3.2 Detector size and material    17 
 3.3 Matlab       17 
 3.4 Cones and ellipses     18-19 
 3.5 Grids       20 
 3.6 Newton-Raphson Method    20-21 
 3.7 Intersections      21-24 
 3.8 Tracking      25 
 3.9 Image Creation      25-27 
 3.9a The distance d travelled through a pixel  27-28 
 3.9b Matching d with the correct pixel   28-29 
 3.10 Full Width at Half Maximum    30 
4 Results        31-34 
5 Discussion       35-36 
 5.1 Optimal orientation     35 
 5.2 Code Improvements     35-36 
6 Conclusion       37 
7 References       38-39 
  



- 4 - 
 

 
1. Introduction 

 At the moment, proton therapy is a rapidly growing method for the treatment of cancer. 

Instead of photons, high-energy protons are employed to battle tumors that arise in human bodies. 

During one session, multiple beams of these positively-charged particles are fired in the direction of 

the designated target area. However, a lot of elements can be improved to maximize the efficiency of 

proton therapy.  

 A large improvement would be the ability to monitor the energy deposit in human tissue of 

every beam in real-time and to be able to change the energies of the subsequent beams of protons 

accordingly. Compton Cameras are a promising piece of technology to fulfill this role. Their function 

is to catch Prompt Gammas(PGs) that get emitted by the tissue excited due to the irradiation. The 

collected data can be used to create an image of the location of the excited tissue, showing which 

location in the body was traversed by the protons. To create a reliable and accurate image, the 

Compton Camera should be able to catch enough PGs. The challenge lies in the quest to find a 

Compton Camera with a high enough efficiency to do so. At the moment, a lot of semiconductors 

and scintillators are being tested to check whether they are suitable for this job. This paper  

researches the properties of a germanium-based Compton Camera. 

The focus of this study lies in comparing two different setups for a Germanium(Ge) detector. 

The detector is cylindrical, with a diameter of 91 mm and a thickness of 11 mm. The first setup has 

the side of the cylinder facing the PG source, while the second setup has the detector facing the 

source with one of its two circular areas.  

Another goal for the study is to create a script in the scientific programming tool MATLAB, 

with the goal to be usable in the future to compare other detectors. To test other detectors, with any  

other shapes and made of any suitable material, the only data needed to run the script is the data 

out of Monte Carlo simulations for these detectors.  

The main question the paper is trying to answer is:  

In which orientation, sideways or frontal, does a thin cylindrical germanium detector perform 

better for Compton imaging of high-energy gamma rays? 
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Figure 2: Pair production(https://www.quora.com/If-antimatter-and-
matter-combine-together-energy-is-released-and-no-matter-is-left-
Does-this-violate-the-law-of-conservation-of-mass)  

Figure 1: The photoelectric effect Figure 1: the photoelectric effect (source: 
http://ecetutorials.com/wp-
content/uploads/2014/01/170450_46502_68.jpg) 

2. Theory 
2.1 Photon interactions 

Since the focus of the study lies on photons, it is a good start to know the influence matter 

can have on photons. When a photon travels through matter, there are several processes that can 

occur that either absorb or scatter the photon.  

 

2.1.1 Photoelectric effect 

In the photoelectric effect,, an photon 

gets completely absorbed by an atom. 

Subsequently, the atom gets ionized due to the 

ejection of a photoelectron. A necessity for this 

effect is that the photon energy has to be higher 

than the binding energy of one of the electrons 

of the atom. This can be seen in figure 1. The 

ejected photoelectron will have an energy equal 

to the energy of the photon minus the binding 

energy of the electron:  

𝐸𝑝ℎ𝑜𝑡𝑜𝑛 = ℎ𝑣 

𝐸𝑒 = ℎ𝑣 − 𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔 

This interaction has the highest probability to 

happen if the binding energy is a fraction smaller 

than the photon energy, so most of the time the energy of the ejected electron will be small. 

However, if the photoelectron energy is high enough, the photoelectron can be the cause of the 

occurrence of another photoelectric effect. This effect is mostly associated with relatively low photon 

energies and high atomic number Z. The probability of photoelectric absorption, 𝜏, depends on the 

atomic number and photon energy as follows: 

 3hv

Z n

  with n ranging from 3 to 4 over the gamma-ray energy spectrum. 

τ stands for the probability of photoelectric absorption. This is why gamma-ray shields mostly contain 

elements with high atomic numbers, like lead(Z=82).(How photons interact with matter n.d., 

Interactions of Photons with Matter The probability of an interaction per g cm -2 of material 

traversed. Units of cm 2 g n.d., PHYS 352 Photon Interactions Photon Interactions in Matter n.d.) 

 

2.1.2 Pair Production 

 Another interaction that can 

occur when a photon travels through 

matter is called pair production. Figure 2 

shows the interaction. When the photon 

travels close to the nucleus of an atom or 

an electron, the photon interacts with 

the particle, forming an electron and 

positron pair. This process is driven by 

the presence of an electromagnetic field. 

The lower photon energy limit for this 

https://www.quora.com/If-antimatter-and-matter-combine-together-energy-is-released-and-no-matter-is-left-Does-this-violate-the-law-of-conservation-of-mass
https://www.quora.com/If-antimatter-and-matter-combine-together-energy-is-released-and-no-matter-is-left-Does-this-violate-the-law-of-conservation-of-mass
https://www.quora.com/If-antimatter-and-matter-combine-together-energy-is-released-and-no-matter-is-left-Does-this-violate-the-law-of-conservation-of-mass
http://ecetutorials.com/wp-content/uploads/2014/01/170450_46502_68.jpg
http://ecetutorials.com/wp-content/uploads/2014/01/170450_46502_68.jpg
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Figure 3: Coherent scattering (source: https://studentradiographer.com/?p=420) 

procedure is the rest mass energy of the created pair, but since they both have the same mass, this is 

equal to two times the rest mass energy of an electron, 2mec2: 

𝐸𝑝ℎ𝑜𝑡𝑜𝑛 ≥ 2𝑚𝑒𝑐
2 = 1.022 𝑀𝑒𝑉 

The total kinetic energy of the electron and positron pair equals the photon energy minus the photon 

energy lower limit. 

022.1 hvEE positronelectron MeV 

Pair production probability grows with increasing photon energy and with atomic number. 

  𝜅 ∝ 𝑍2 

 

 

2.1.3 Coherent scattering 

 Coherent scattering, also known as elastic scattering, is known as the interaction during 

which the photon hits a particle and bounces off, leaving the photon energy unchanged. Examples 

are Thomson scattering and Rayleigh scattering. This can be seen in figure 3. 

Thomson scattering is the interaction during which a photon collides with a charged particle. 

Subsequently, because a photon is an electromagnetic wave, a Lorentz force arises and the charged 

particle is accelerated. This leads to the emission of radiation by the particle at the expense of energy 

of the initial photon. This radiation comes in the form of a new photon, sent into a random direction. 

As a simplification this can be seen as the ‘scattering’ of the incident photon. It is mostly associated 

with photons with low energies, orders of magnitudes smaller than mec2. (Thomson Scattering n.d.) 
2cmhv e   

 

The effect is frequently seen when dealing 

with plasma’s. 

During Rayleigh scattering, photons 

scatter off of atoms as large as a tenth of the 

wavelength of the photon. The intensity I of 

the scattered photon is very dependent of 

wavelength. T 

 

𝐼 ∝  
1

𝜆4
 

 

Shorter waves get scattered with higher efficiency. Blue photons get scattered more regularly than 

all other photons in the visible spectrum. The light emitted by the sun contains a spectrum of colors, 

but the shorter wavelengths get scattered down to earth more efficiently.  A consequence is that the 

sky looks blue for humans. (Blue Sky and Rayleigh Scattering n.d.) 

 

2.1.4 Compton scattering 

 Compton scattering is an interaction between a high-energy photon and a free electron in 

matter. This can be seen in figure 4. When dealing with  bound electrons in matter, the energy of the 

photon is magnitudes larger than the binding energy of the electron. This leads to the assumption 

that the binding energy of the electron is insignificant and that the electron can be seen as a free 

electron. The electromagnetic wave clashes with the electron and the electron and photon scatter. 

https://studentradiographer.com/?p=420
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During the collision, some photon energy goes to the electron. The transferred energy can range 

from almost nothing to a large amount of the photon energy.  

The scatter angle of the photon can be calculated 

using the following formula: 

 

cos𝜃1 = 1 +𝑚𝑒𝑐
2 (
1

𝐸0
−

1

𝐸0 − Δ𝐸1
) 

In the formula,  𝐸0 is the initial PG energy, Δ𝐸1 is the 

energy deposited in the electron by the photon 

and 𝜃1 is the Compton angle, which will be discussed 

in the section Compton Cones.  

 This scattering is interesting for medical 

purposes since it is the most seen interaction in soft 

tissue in the energy range from 100 keV to 10 MeV. 

Furthermore is the probability of the effect occurring 

almost independent of atomic number Z and the 

highest probability can be found in the photon energy range 50-100 keV. It also scales with the 

number of electrons per gram.(Johns and Cunningham n.d.; Pajevic n.d.; PHYS 352 Photon 

Interactions Photon Interactions in Matter n.d.) 

 

 

  

 

Figure 4: Compton scattering(source: 
https://www.physics.queensu.ca/~phys352/lect17.pdf) 

https://www.physics.queensu.ca/~phys352/lect17.pdf
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2.2 Proton Therapy 

 

2.2.1 Proton therapy vs photon therapy 

Proton therapy offers some advantages over photon therapy. A big benefit of proton therapy 

over photon therapy is the existence of a ‘Bragg Peak’ in the case of protons. This can be seen in 

figure 5 and 6. When looking at ionizing radiation, like protons, and plotting the distance travelled 

through matter, for example, human tissue, versus the energy loss of the radiation, the place with 

the highest energy loss is called the Bragg peak. The plot is known as the Bragg curve. In case of 

proton and photon therapy, the traversed matter is human tissue. A beam consisting of the massless 

and uncharged photons penetrates any quantity of tissue quite easily while steadily depositing 

energy. Highest energy deposition is found in the first few centimeters, increasing in depth for higher 

energies, as seen in figure 5.  

A downside of photon irradiation is the damage done to tissue surrounding the tumor. 

Usually, the tumor is found several centimeters under the surface of the skin. (Abril et al. 2013)(Why 

is proton therapy a preferable option, and what is the Bragg peak? | Proton Therapy Today n.d.) 

Since the largest dose is delivered in the first few centimeters that get transversed by a photon beam 

coming from one direction, most damage is done in these regions, and not in the tumor. Also, the 

regions behind the tumor are affected by the beam of high-energy photons. A way to transport less 

energy to healthy tissue and a way to shift the Bragg peak more precisely to the location of the 

tumor would be major improvements in the effective treatment of cancer. 

Proton therapy is found to be a step in the right direction. When these high-energy ions 

enter tissue, they quickly start losing velocity continuously as they dig deeper into the body due to 

interaction with the human 

tissue. (Mohan and Grosshans 

2016) When looking more 

precisely at the process, three 

types of interaction can be 

distinguished. First of all, there 

is a Coulomb interaction 

between protons and atomic 

electrons. Secondly, the 

protons undergo Coulomb 

interactions with nuclei. 

Thirdly, nuclear interactions 

occur. Meanwhile, the energy 

they deliver increases for lower 

velocities. The Bragg curve is 

almost flat for this process. For 

protons, the energy deposition 

per travelled distance has its 

peak it almost comes to a stop. 

This is seen in the Bragg curve 

as a fast climb of the curve, resulting in a 

peak. After the peak, the energy deposition 

plummets to zero almost immediately. This 

Figure 5: Energy deposition per cm for photons of different energy 
levels(source: Y. Zhang) 
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Figure 7: a comparison of dose distribution during 
radiotherapy(first row) and two different forms op proton 
therapy(second and third row)(image: E. Merchant) 

Figure 6: energy deposition per cm for 150 MeV protons(solid), deuterons(dashed) 
and alpha particles(dashed). Dose multiplied by 0.01(black), (Source: D. Jette) 

process can be seen in figure 6 as the solid line. 

The most obvious benefit of the proton beam is 

the possibility to target most of the dose of the 

particle beam on a specific spot. 

However, when using an mono-energetic proton beam, the Bragg peak is too narrow to 

combat a tumor effectively. A remedy for this 

problem is to use protons with a range of 

energies. The peak will become wider using this 

technique. This is called a spread-out Bragg 

Peak(SOBP). (Jette and Chen 2011) Figure 7 

shows a comparison of dose distribution in 

photon and proton therapy. 

A formula for the energy dose lost as a 

charged particle travels through matter, also 

known as stopping power, was made by the 

famous nuclear physicist Hans Albrecht Bethe, 

known as one of the greatest physicists of the 

twentieth century. He did a lot of great work for astrophysics, quantum electrodynamics and solid-

state physics, and he won a Nobel prize for his 

work on energy production in stars.  He is also 

known for his big contributions to the creation 

of the hydrogen bomb during World War II. (Lee and Brown 2007; Narins 1995)  

The Bethe stopping formula takes the following form: 
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With 𝑒 the electron charge, 𝑍1 the atomic number of the particle, 𝑍2 the atomic number of the 

matter, 𝑁 the Avogadro number, 𝑐 the speed of light, 𝑚𝑒 the mass of an electron, 𝑣 the velocity of 

the particle, and 𝐼 the mean ionization potential  

As discussed earlier, the energy dose delivered by a particle per distance travelled in a 

medium increases when the velocity of the particle decreases. Looking at the Bethe formula, one can 

see that this energy deposition per unit length is inversely proportional with  2, confirming this 

statement.   

During the treatment, protons with energies in the range of 70 to 250 MeV are used. The 

higher the energy, the higher the maximum depth in tissue. To get the proton energies to this level, 

cyclotrons, synchrotrons and synchro-cyclotrons are used.(Mohan and Grosshans 2016) 

 

2.2.2 Alternatives to protons 

Beside protons, other ions are also investigated for their potential to replace photon therapy.  

Contenders with possibly suitable characteristics are deuterium(H2+),Helium-3(He1+),  alpha 

particles(He2+)(Azizi and Mowlavi 2013; Bernal-Rodríguez and Liendo 2013; Bichsel 2013), and carbon 

ions(C6+). (Bernal-Rodríguez and Liendo 2013; Bichsel 2013) The use of heavier ions offers the benefit 

of less scattering(Mohan and Grosshans 2016) and sharper Bragg peaks. (Degiovanni and Amaldi 

2015) Some differences in Relative Biological Effectiveness(RBE) were also found. RBE is a 

measurement tool to compare the effectiveness of different forms of ionizing radiation, when the 

same amount of energy is absorbed. For Carbon-ions it was found that the RBE could be three times 

higher for some types of cells in comparison to protons. As a downside, heavier ions have to be 

accelerated to significantly higher energies to reach the same depth in tissue than protons. For 

example, a C6+-ion needs an energy of 4800 MeV to travel through 28cm of water, while a proton 

only needs 210 MeV. This is more than 22 times as much. (Degiovanni and Amaldi 2015)  

 This does, however, not mean that it is not a feasible option. At the moment, there are 

multiple functional carbon ion facilities in the world.  

 

2.2.3 Dose control 

Most of the time, multiple sessions of therapy are needed to completely destroy the tumor. 

However, the dose of the dosage beam has to be corrected in subsequent sessions, depending on the 

dose deliveries of the earlier sessions. Even with the technology of proton therapy constantly 

evolving and the ability to create correct proton dose distributions more precisely to minimize 

damage to normal tissue, there is a problem. No body is the same, so even with extensive 

simulations and calculations, uncontemplated events, like a large dose deposition in an organ, can 

take place.(McCleskey et al. 2015) Deviations due to the unforeseen effects occur, and succeeding 

dose deliveries have to be altered to take these anomalies into account. A patient can undergo a CT 

scan again, but this exposes the patient to extra radiation dose, damaging healthy tissue again. 

Luckily, techniques have been found to deal with this issue. 

Different ways to solve this problem have been suggested. A distinction can be made 

between direct and indirect methods. Direct methods involve direct dose measurement. Examples 

are an implantable dosimeter which can be read off from a distance and proton radiography and 

tomography. (Knopf and Lomax 2013)  
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Figure 8: PG emission spectrum during proton therapy (sourc: 
H. Rohling) 

Indirect measurements are also possible, these methods use secondary particles that get 

released due to the irradiation of tissue. At the moment, the two main approaches are positron 

emission tomography(PET) and prompt gamma imaging(PGI). (Perali et al. 2014)  

PET takes advantage of coincident gammas. These originate from pair annihilation, the 

opposite of pair production. When a proton travels through tissue, a possible interaction is the 

creation of 11C, 13N and 15O. These isotopes emit positrons, and when these positrons interact with an 

electron of the surrounding tissue, two annihilation photons are emitted at the expense of the 

positron-electron pair.  

On the other hand, PGI makes use of prompt gammas(PGs). These PGs originate from the 

tissue that gets irradiated. During the dose delivery, the nuclei in the tissue get excited subsequently 

PGs are emitted in the decay of the excited nuclei. A PGI detector tries to ‘catch’ these PGs and then 

creates an image of the origins of the PGs. One of these imaging techniques will be treated in the 

next chapter. In theory, this technique should lead to a reliable portrait of the route of the proton 

beam, but a reliable enough imaging system still does not exist (Knopf and Lomax 2013). All methods 

come with different advantages and disadvantages, but those will not be discussed in this report. The 

focus lies on the Compton Camera. 

   

2.2.4 Energies of interest 

During proton therapy, some PGs occur 

more than others. Most PG energies 

emitted by human tissue range from 2 – 

15 MeV(Knopf and Lomax 2013). When 

checking the energy spectrum, some 

notable peaks in occurance rate can be 

seen. In figure 8, which is based on a 

simulation in GEANT4 with proton 

energies ranging from 100.83 MeV to 

121.20 MeV, 4 peaks stand out.  

- 0.511 MeV, which is released 

due to positron-annihilation 

- 2.223MeV(Hydrogen), which can be 

explained as the photon emitted 

during neutron capture of 

hydrogen(Downey and Sandy 1986; Krimmer et al. 2018) 

- 4.438MeV(Carbon) originates from excited 12C returning to the ground state(Azizi and 

Mowlavi 2013; Kelleter et al. 2017; Krimmer et al. 2018; Perali et al. 2014). 

- 6.129MeV(Oxygen)originates from excited 16O returning to the ground state(Azizi and 

Mowlavi 2013; Kelleter et al. 2017; Krimmer et al. 2018; Perali et al. 2014). 

 

Notable is that these last three elements are also the atoms that contribute most to the mass of 

human tissue. When looking at weight, the human body consists for 65% oxygen, 18.5% carbon and 

9.5% hydrogen. This makes for a total of 92.5% of total human weight. If Nitrogen, the fourth biggest 

element, is added to the list, a total average of 96% of the weight of human tissue is reached(Saeed 

et al. 2016). The most common photons emitted by excited nitrogen are the ones with energies of 

10.829 MeV. The underlying process is neutron capture by the particle (Chung, Wei, and Chen 1993). 
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2.3 Compton Imaging 
 

2.3.1 Compton Camera 

A Compton Camera(CC) is a detector specially made to detect Compton scattering, as its 

name already suggests. The fields of astronomy, solid-state physics(Knopf and Lomax 2013), 

homeland security, nuclear medicine(Jan, Lee, and Huang 2017) and factory safety(Park et al. 2014; 

Sinclair et al. 2014) use Compton cameras already for a range of reasons, some even for a few 

decades already. However, its employability in proton therapy has only been proposed in 2006(Knopf 

and Lomax 2013) and there is still a lot to be improved. 

 

The main task of the Compton Camera is to acquire the data needed to find the location of a 

PG source. This is done by creating so-called Compton Cones. The surface of such a cone contains all 

the possible trajectories a photon could have taken before entering the Compton Camera. One cone 

does not narrow down the location of the gamma ray source since any place on the surface of the 

cone could be correct. Creating a Compton Cone for a second photon already shrinks down the 

possibilities. Assuming that the photons originate 

from the same source, the source should be located 

at the intersection of the two cones. Adding more 

cones, the location can be narrowed down with even 

better accuracy. The detectors do not create these 

cones by themselves, but they generate the data 

needed to do so.  

 

Compton Cameras are able to detect the 

coordinates and energies of Compton scattering of 

photons. One interaction per photon is not enough 

to create a Compton Cone. In some cases, two 

interactions give enough data, but in most cases 

three interactions are needed. This can be seen in 

figure 9.  First of all, the following formula can be 

used to calculate the initial energy in case three 

interactions are detected:  

 

𝐸0 = Δ𝐸1 +
1

2
(Δ𝐸2 +√Δ𝐸2

2 +
4Δ𝐸2𝑚𝑒𝑐

2

1 − cos 𝜃2
)                      [1] 

 

Δ𝐸1 and  Δ𝐸2 are the energy deposition of the photon during the first interaction with location 𝑝1 =

(𝑥1, 𝑦1, 𝑧1) and the second interaction 𝑝2 = (𝑥2, 𝑦2, 𝑧2). These two energies are directly measured by 

the Compton Camera. cos 𝜃2 can be determined using  𝑝2 and 𝑝3. A visual representation can be 

seen in figure 10. Using the calculated value for 𝐸0, the energy of the incoming PG, the apex angle of 

the cone can be calculated using the following formula:  

 

cos 𝜃1 = 1 +𝑚𝑒𝑐
2 (
1

𝐸0
−

1

𝐸0 − Δ𝐸1
)                                                   [2] 

Figure 9: The necessary data for Compton imaging 
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Figure 10: Creation of a Compton Cone (source: S. Schoene) 

 

 

With the knowledge that the 

apex of a cone can be found at 

the point of first interaction 

with the CC, the cone can be 

created. Repeating this 

process for all data, a number 

of cones is created equal to 

the amount of photons detected 

by the CC. Mapping all cones 

and checking the intersections can give an accurate prediction of the location of the PG source. 

 

2.3.2a Two stage Compton Camera 

As mentioned before, sometimes a PG only has to interact two times with the CC. This is the 

case if the photon is fully absorbed during the second interaction. With this method, the initial PG 

energy can be determined directly, since in this case 𝐸0 = Δ𝐸1 + Δ𝐸2 (MacKin et al. 2013; McCleskey 

et al. 2015; Schoene et al. 2017). Two-Stage CCs try to fully absorb the photons during the second 

interaction. 

Two-stage CCs consist of two detector crystals: a scatterer and an absorber. The functions 

are almost self-explanatory: The role of the scatterer is to catch a Compton scattering interaction and 

registrate its coordinates and energy deposition. The absorber also determines the coordinates and 

energy of the PG, but instead of Compton scattering, the necessary interaction is the photoelectric 

effect, ‘absorbing’ the photon. Formula [2] can then be used to form the Compton Cone. The 

absorber crystal often has a larger thickness than the scatter crystal, to increase the probability of 

photon absorption.  

 

2.3.2b Multistage Compton Camera 

Another widely used type of Compton Camera is the multistage CC. (MacKin et al. 2013; 

McCleskey et al. 2015; Schoene et al. 2017)Instead of a scatterer and an absorber, it has multiple 

scatterers, most often two, and an absorber. An advantage of this model is that the photon does not 

have to be absorbed by the absorber, it just has to have a detectable interaction with the crystal. 

Looking at Formula [1], this is easily seen. On the assumption that the PG Compton scattered in both 

scatterers, Δ𝐸1 and Δ𝐸2 are known. cos 𝜃2 is the last unknown value. However, using p2, p3 and 

trigonometry, 𝜃2 can be found. 

 

2.3.2c Single Stage Compton Camera 

 Another possibility is a Singlestage Compton Camera. It consists of only one crystal. The 

crystal functions as both scatterer and absorber. To get the necessary data, a PG has to undergo 

Compton scattering followed by photoelectric effect, or two Compton scatterings succeeded by 

another detectable interaction. These are the processes needed for twostage CCs and multistage 

CCs, respectively.  

 

 

 



- 14 - 
 

2.3.3 Cones 

 The Merriam-Webster dictionary defines a cone as ‘a solid bounded by a circular or other 

closed plane base and the surface formed by line segments joining every point of the boundary of 

the base to a common vertex’(Cone | Definition of Cone by Merriam-Webster n.d.). This is a great 

way to describe the object, however, for scientific use, completely useless. A better way to describe a 

cone would be a mathematical definition.  

 A good start is a round base, defined by the following formula: 

 

𝑥2 + 𝑦2 = 𝐶 

 

This creates a circle with a constant radius 𝑟 = √𝑥2 + 𝑦2. To create a non-circular base, parameters 

𝑎 and 𝑏 are added: 

𝑥2

𝑎2
+
𝑦2

𝑏2
= 𝐶 

 

Now let us add a third dimension, and place an axis  through 𝑥 = 𝑦 = 0. This axis is perpendicular to 

the 𝑥𝑦-plane. On this axis, choose a point 𝑧, this will be the z-coordinate of the cone. The apex can be 

found at the origin(𝑥 = 𝑦 = 𝑧 = 0). To create the cone, the borders of the round base have to be 

connected to the apex. Now that the cone is complete, it would be interesting to know the apex 

angle. Since 𝑧 and 𝑟 are perpendicular and their value is known, this can be done with a simple 𝑡𝑎𝑛-

relation: 

tan(𝑢) =
𝑟

𝑧
=
√𝑥2 + 𝑦2

𝑧
 

 

In this relation, 𝑢 stands for the apex angle. 𝑥 and 𝑦 are coordinates located on the cone surface and 

and 𝑧 is the corresponding location on the cone axis of the angle. The formula can be rewritten in the 

following way: 

 

𝑥2 + 𝑦2 = tan2(𝑢) ∙ 𝑧2 

 

Angle 𝑢 is also known as the apex angle and has the range 𝑢 = (0,
𝜋

2
). For 𝑢 = 0, tan2(𝑢) = 0 and 

the cone becomes a line. For 𝑢 =
𝜋

2
, tan2(𝑢) = ∞ and the cone turns into a plane. The above 

formula is the basic formula for a cone with an apex at the origin. However, a more global notation is 

possible. If the apex of the circle is found somewhere else than at the origin (𝑥0, 𝑦0, 𝑧0), the formula 

takes the following form: 

 

(𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 = tan2(𝑢) ∙ (𝑧 − 𝑧0)
2 

 

This equation is valid for all ‘right circular’ cones. Right circular means that the basis of the cone is 

circular and the apex is located above the center of the basis. 

Another expansion of the formula will be to look at cones with an elliptic base. The ratio 

between the maximum 𝑥- and 𝑦-values will not be 
𝑥

𝑦
= 1, but it will be equal to some other constant  

𝑥

𝑦
=

𝐴

𝐵
. If the ratio 

𝑥

𝑦
< 1, the maximum in the y-direction is larger than maximum in the x-direction. In 
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Figure 12: A conic section 

this case, 𝑦𝑚𝑎𝑥 − 𝑦0 is called the major axis and  𝑥𝑚𝑎𝑥 − 𝑥0 the minor axis. If 
𝑥

𝑦
> 1, 𝑥𝑚𝑎𝑥 − 𝑥0 is 

called the major axis and  𝑦𝑚𝑎𝑥 − 𝑦0 the minor axis. To take this into account, the cone formula 

transforms to this form: 

 

(𝑥 − 𝑥0)
2

𝐴2
+
(𝑦 − 𝑦0)

2

𝐵2
= tan2(𝑢) ∙ (𝑧 − 𝑧0)

2 

 

Compton Cones are all right circular, so expanding the formula to larger proportions to take 

into account other variations of cones is not necessary.  

 

2.2.4 Conic Sections 

` While researching cones, an interesting phenomenon 

to study is the intersection between a cone and a plane. If 

the crossing occurs at any other place than at the apex, the 

intersection will be a line, but the shape of this line depends 

strongly on the angle between the cone axis and the plane. 

Four different shapes are possible: A circle, an ellipse, a 

parabola and a hyperbola. This can be seen in figure 11. 

 

2.2.4a Circle 

 In case of a circle, the angle 𝛼 between the plane and 

the cone axis equals 𝛼 =
𝜋

2
= 90°. The size of the circle 

representing the conic section equals 

(𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 = tan2(𝜃) ∙ (𝑧 − 𝑧0)
2 

In this equation, 𝜃 stands for the apex angle. In the case of a 

circle, the value of 𝜃 does not matter. 

 

2.2.4b Ellipse 

 Figure 12 shows a conic section forming an 

ellipse. For the conic section to take the shape of an 

ellipse, 𝛼 and 𝜃 both start to play a role. To form an 

ellipse, 0 < 𝛼 <
𝜋

2
 and 𝜃 + 𝛼 <

𝜋

2
. In words, this means 

that after the plane crosses one side of an cone, the 

plane also has an intersection with all other ‘line 

segments’ of the cone. With the above conditions, all 

‘line segments’ of the cone cross the plane, creating the ellipse 

with the formula: 

(𝑥 − 𝑥0)
2

𝐴2
+
(𝑦 − 𝑦0)

2

𝐵2
= tan2(𝜃) ∙ (𝑧 − 𝑧0)

2 

As discussed before, the values of 𝑎 and 𝑏 depend on the ratio between the major and minor axis. 

The formula can be simplified by bringing the right side to the left side. This leads to the following 

ellipse equation: 

 

cone axis 

𝛼 

𝜃 

Figure 11: All four possible conic 
sections(source:https://www.onlinemathlearn
ing.com/conic-parabolas.html) 

plane 
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(𝑥 − 𝑥0)
2

𝑎2
+
(𝑦 − 𝑦0)

2

𝑏2
= 1 

𝑎2 = 𝐴2 ∙ tan2(𝜃) (𝑧 − 𝑧0)
2 

𝑏2 = 𝐵2 ∙ tan2(𝜃) (𝑧 − 𝑧0)
2 

 

This formula is known as a standard ellipse formula. 

 

2.2.4c Hyperbola 

Another potential shape for a conic section is a hyperbola. In this case, 0 < 𝛼 <
𝜋

2
, just like with the 

ellipse, but the difference is that 𝜃 + 𝛼 >
𝜋

2
. This means that after the plane intersects with one side 

of a cone, the plane diverges with the other side of the cone, meaning they will never intersect. The 

resulting shape is a parabola. However, in the case of a double cone, like in figure 9, there will be 

another intersection, since the plane will also cross the opposite cone. This intersection will have the 

same shape. Together they form an hyperbola.  

 

2.2.4d Parabola 

Another potential shape for a conic section is a single parabola. This conic section is a special case 

and only occurs when the  𝜃 + 𝛼 =
𝜋

2
. After the plane intersects with a part of the cone, the plane 

lies parallel to the opposite part of the cone, meaning they will never intersect. Up to this point, it 

looks a lot like a hyperbola. However, the difference is that the plane also lies parallel to the second 

cone in the case of a double cone. The plane will never intersect with this cone since it also lies 

parallel to the closest side of the cone. This means they will also never intersect. 

 

2.2.5 Detector Material 

Many semiconductors are potentially suitable to be used as detector crystals in a Compton 

Camera. Scientists are still figuring out which material is most suitable for which situation, since 

every crystal comes with its own positive and negative sides. However, there are some guidelines for 

finding the correct detector materials. These guidelines also help to immediately know if a 

semiconductor is not suitable. 

Parameters include the effective atomic number(the amount of protons an electron ‘sees’ for 

a material) of the semiconductor in the detector, the effective electron density, and the mass 

attenuation coefficient(the interaction probability per unit length)(Singh and Badiger 2016), but the 

detectors also need to be suitable for the energy range (In  the case of medical application, 2-15 

MeV(Knopf and Lomax 2013))  

The more photons a detector is able to catch, the more data can be generated. The Lambert-

Beer law is an useful tool to investigate the ability of a medium to do so. The law describes the rate 

at which the intensity of a beam of photons decreases when travelling through matter, also known as 

the attenuation of a beam. The relation is shown in the following formula: 

𝐼 = 𝐼0𝑒
−𝜇𝑚𝑡 

In this relationship, 𝐼0 is the incident photon intensity, 𝐼 is the attenuated photon intensity, 

 𝜇𝑚  =  𝜇/𝜌(𝑐𝑚
2𝑔−1) is the mass attenuation coefficient and 𝑡 =  𝜌𝑥(𝑔 ∙ 𝑐𝑚−2) is the mass per 

unit area. (Singh and Badiger 2016). 
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3. Materials and methods 
3.1 Monte Carlo Simulations 

For the research, data was gathered by another student. For the Monte Carlo simulations, 

Monte Carlo N-Particle eXtended(MCNPX) was used. This software can be used to simulate various 

processes involving photons, electrons, neutrons, or combinations of these three fundamental 

particles.(Los Alamos National Laboratory: MCNP Home Page n.d.) 

The function of the code most relevant for our research was the one called PTRAC(Particle 

TRACk). The code was used to create a PG source and subsequently simulate the interactions in a 

detector. After translation of the created data file, the fate of every  individual photon can be seen. 

As mentioned before, a photon can undergo various processes while interacting with matter: 

Compton scattering, the photoelectric effect, pair production and elastic scattering. The occurrence 

of these four events can be counted, while simultaneously determining the location of the event in 

three dimensions. The data can be used to study the effectiveness of the interactions of various 

photons in detectors.  

 In our case, PTRAC was used to test the efficiency of a few models of Compton Camera’s 

over a range of different energies. This was done by simulating a single point source of gamma 

radiation and a Compton Camera with the desirable shape. The distance between the radiation 

emitter and the center of the crystal was set to 2 meters. The simulations were set up in such a way 

that the point source only emitted photons that directly hit the detector, forming a conical beam. 

Every simulation consisted of 10,000 photons.  

The simulations were done with two different setups. During the first setup, the photons 

entered the detector on the circular surface. Afterwards, simulations were done with the beam 

aimed at the side of the detector. This can be seen in figure 13. 

 

 
Figure 13: Setup 1(left) and Setup 2(right) 

 There was, however, a small difference between the data acquired for the two setups 

relevant for this paper. For the simulations done for the second setup, the coordinates of 𝑝3 were 

recorded. For setup 1, they were not. More details and information can be found in (Pilarski 2017). 

The amount of useful data generated per simulation is shown in table 1. 
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3.2 Detector size and material 

 The dimensions of the detector studied are 

based on the GeGI detector manufactured by PHDS. 

(GeGI Info Sheet - PHDS Co. - Germanium Gamma Ray 

Imaging Detectors n.d.) The crystal in this detector is 

cylindrical, with a diameter of 91mm and a thickness of 

11mm. The used material was Germanium(Ge). The 

detector has a spatial resolution of Δ𝑥 = 1.5 𝑚𝑚 and 

an energy resolution of Δ𝐸 = 2.1 𝑘𝑒𝑉. 

 

3.3 Matlab 

 To investigate the efficiency of the two setups 

by analyzing the data simulated by Pilarski(Pilarski 

2017), some tools had to be created. The choice was made to create these tools in Matlab, a 

programming language especially focused on numerical computing. It offers a lot of options that 

could come in handy during this research project. While Matlab offers the ability of manipulate 

matrices, has multiple plotting options for data, and has the possibility to test algorithms 

immediately, it also has an active community that shares a lot of handy programs for free and that 

tries to help you when you run into some trouble. 

The biggest goal for the research was to see if it was possible to backtrack the path of the 

simulated photons and to create an image of the gamma source. First of all, since the location of the 

gamma source was known, it was not necessary to simulate all Compton cones. Instead, the conic 

sections with the xy-plane at 𝑧 = 𝑧0 were programmed. This resulted in one ellipse for every triple 

Compton scattered PG. A plot of the ellipses can be shown on a grid with variable size. In this paper, 

everything is done in a ‘area of interest’ with 𝑥 = [−25 25] and 𝑦 = [−25 25], divided into a 

window of pixels. The used length-scale was centimeter. The size of the pixels can also be changed. 

Subsequently, a program was created that filters out every ellipse that does not show up in the grid. 

The next program on the list was able to track the curves of the ellipses and calculate the distance it 

covered in every pixel. And finally, a code was written to create an image of the intersections of the 

ellipses, with the value of every pixel equal to the distance covered in that pixel, revealing the highest 

probable location of the PG source. While it was thought that the Matlab community already created 

some tools to make the path a little easier, none were found, so everything had to be coded by hand.  

Another goal of the codes was that the codes are able to treat the data as one complete 

matrix 𝐷, in the form of 𝐷 =  [𝑥1 𝑦1 𝑧1 𝑥2 𝑦2 𝑧2 𝑥3 𝑦3 𝑧3 𝛥𝐸1 𝛥𝐸2]. [𝑥1] stands for the vector 

consisting of all values of 𝑥1 for that particular simulation, [𝑦1] stands for the vector containing all 

values of 𝑦1, and so on.  

 

3.4 Cones and ellipses 

 With the data from the Monte Carlo Simulations, consisting of 𝑝1 = (𝑥1 𝑦1 𝑧1), 𝑝2 =

(𝑥2 𝑦2 𝑧2), 𝑝3 = (𝑥3 𝑦3 𝑧3), 𝛥𝐸1, 𝛥𝐸2, it was possible to take two different routes to find the 

Compton angle. 

Since the data was acquired due to a simulation, the exact E0 was known, so this value could just be 

plugged in into formula [2]. However, it would also be interesting to see what would happen if E0 

 Energy (MeV) # of caught PGs 

Setup 

1 

2.223 191 

4.438 112 

6.129 82 

10.829 51 

Setup 

2 

2.223 1014 

4.438 588 

6.129 422 

10.829 236 

   

 Table 1: The amount of suitable PGs for every simulation 
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would be calculated with formula [1] and subsequently compare the results. This is only possible if 𝜃2 

is known. This is the angle between the photon trajectory between the first and second interaction 

(D1->D2) and the photon trajectory between the second and third interaction(D2->D3). With some 

calculations and the coordinates of p1, p2 and p3, this angle can be determined with formula [3].

  

𝑢̂ =
𝑢

|𝑢|
→ 𝑥1̂ =

𝑥2 − 𝑥1
𝑟1

 𝑤𝑖𝑡ℎ 𝑟1 = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2          

cos 𝜃2 =
𝑥1̂ ∙ 𝑥2̂ + 𝑦1̂ ∙ 𝑦2̂ + 𝑧1̂ ∙ 𝑧2̂

1
                                       [3] 

 

 The next point on the list was to make a plot of the ellipses created by the conic section 

between the Compton Cone and the 𝑥𝑦-plane at 𝑧 = −200𝑐𝑚. A possible way to do this is to first 

find the location of the middle of the ellipse and to next build the ellipse around this point. To form  

the conic section, the middle of the ellipse and the lengths of the major and minor axes need to be 

determined. This was done by first determining 𝜑𝑧, the angle between the photon trajectory and the 

z-axis at D1->D2, and 𝜑𝑥, the angle of the photon trajectory with respect to the 𝑥𝑦-plane at D1->D2. 

This can be seen in figure 14. 

 

cos𝜑𝑧 =
𝑧2 − 𝑧1
𝑟1

                                                  [4] 

cos𝜑𝑥 =
𝑥2 − 𝑥1

√(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2
              [5] 

 

 

 With these values, it is achievable to calculate the 𝑥-  and 𝑦 −coordinates of the middle of 

the ellipse, 𝑥0 and 𝑦0.   

Figure 14:Determination of 𝜑𝑧 and 𝜑𝑥 
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𝑥0 = 𝑥1 + |𝑧1 − 𝑧0| ∗ tan(𝜑𝑧) ∗ cos(𝜑𝑥)                          [6] 

𝑦0 = 𝑦1 + |𝑧1 − 𝑧0| ∗ tan(𝜑𝑧) ∗ sin(𝜑𝑥)                           [7] 

 

Of course, an ellipse has a major axis and a minor axis. To find the lengths of the 

major axis, 𝑎, and the minor axis, 𝑏, the following formulas were used: 

 

 𝑎 = |𝑧1 − 𝑧0| ∗ (tan(𝜑𝑧) − tan|𝜑𝑧 − 𝜃1|)  [8] 

 𝑏 = |𝑧1 − 𝑧0| ∗ |tan 𝜃1|     [9] 

  

  

Now that all necessary angles and lengths are known, the ellipses can be plotted as a function of 𝑡, 

the azimuthal angle. t is introduced to follow the ellipse line. This gives the following equations: 

 𝑋 = 𝑥0 + 𝑎 ∗ cos(𝜑𝑥) ∗ cos(𝑡) − 𝑏 ∗ sin(𝜑𝑥) ∗ sin(𝑡) [10] 

 𝑌 = 𝑦0 + 𝑎 ∗ sin(𝜑𝑥) ∗ cos(𝑡) + 𝑏 ∗ cos(𝜑𝑥) ∗ sin(𝑡) [11] 

𝑡 𝑐𝑎𝑛 𝑏𝑒 𝑎𝑛𝑦 𝑣𝑎𝑙𝑢𝑒, 𝑏𝑢𝑡 0 =  𝑡 = 2𝜋    

When plotting functions in Matlab, the program calculates the values for(in this case) X and Y 

and puts these values into a graph. However, in contrast with a normal plot, a computer cannot 

make the plot continuous, but calculates a number of values for(in this case) X and Y and puts these 

in a graph. Matlab will draw lines between these points and this will be the shown image. Since every 

value for 𝑡 gives a 𝑋- and a 𝑌-value, the amount of steps taken between 0 and 2𝜋 is important. When 

the amount of steps is too small, the plot will not be very realistic since curves will not be smooth 

due to too many visible edges, but when the amount of t-values is too large, the calculation will be 

slower than necessary, while not significantly improving the graph. In this paper, t is a vector with a 

length of 100, ranging from 0 to 2𝜋. The size of the steps is constant. 

One hundred steps should be enough to make a reliable image, as can be seen in figure 15. 

The image on the left shows the creation of one ellipse, the image in the middle shows all ellipses for 

a particular energy and setup, and the last image is the same as the one in the middle but the image 

size is 25 by 25 centimeters. It is clearly visible that the hotspot for the ellipses is around the point 

[0,0]. This is as expected, since the source was chosen to be at this location. 

 

 

3.5 Grids 

To track the ellipses while they cross the grid, it is important that a good starting point on the 

ellipse is used. The ideal starting point is a place where an ellipse enters the grid, since the only thing 

that has be done after finding this point, is following the line in one direction until it leaves the grid. 

Figure 15: A plot op all elliptic conic sections for setup 2, with energy 2.223 MeV 
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In this section, a method is discussed to find these coordinates. The code could be used for another 

nifty feature. Since it finds all ellipses with intersections with the grid, it can also find the ellipses that 

do not cross the area of interest. Creating another data matrix without all the data that does not 

show up in the plot is a way to increase computing speed. A decrease of data leads to less 

calculations, which leads to faster image creation. In case of this simulation, the ellipses of almost all 

data points cross the square with x = [-25 25] and y = [-25 25]. For simulations, a lot of detected 

photons not originating from the source of interest, this can cut out a lot of unnecessary data. While 

just plotting ellipses takes almost no time, the tracking of the ellipses(treated later) is more time-

intensive and decreasing the amount of ellipses can significantly increase the computing speed. 

 

 In our case, a method was used that tries to find the intersection of an ellipse with the 

borders of the image, 𝑥 = 𝑥𝑚𝑖𝑛 = −25, 𝑥 = 𝑥𝑚𝑎𝑥 = 25, 𝑦 = 𝑦𝑚𝑖𝑛 = −25, or 𝑦 = 𝑦𝑚𝑎𝑥 = 25.  

For example, to determine if the ellipse crosses 𝑥 = 𝑥𝑚𝑎𝑥 = 25, the following equation has to be 

solved: 

 

𝑋 = 𝑥𝑚𝑎𝑥           [12] 

𝑥0 + 𝑎 ∗ cos(𝜑𝑥) ∗ cos(𝑡) − 𝑏 ∗ sin(𝜑𝑥) ∗ sin(𝑡) = 𝑥𝑚𝑎𝑥           [13] 

 

Written in the form 𝑓(𝑥) = 0, this becomes: 

 

𝑓𝑥𝑚𝑎𝑥(𝑡) = 𝑥0 + 𝑎 ∗ cos(𝜑𝑥) ∗ cos(𝑡) − 𝑏 ∗ sin(𝜑𝑥) ∗ sin(𝑡) − 𝑥𝑚𝑎𝑥 = 0         [14] 

  

  

 

The other three equations are: 

 

𝑓𝑥𝑚𝑖𝑛(𝑡) = 𝑥0 + 𝑎 ∗ cos(𝜑𝑥) ∗ cos(𝑡) − 𝑏 ∗ sin(𝜑𝑥) ∗ sin(𝑡) − 𝑥𝑚𝑖𝑛 = 0         [15] 

𝑓𝑦𝑚𝑎𝑥(𝑡) = 𝑦0 + 𝑎 ∗ sin(𝜑𝑥) ∗ cos(𝑡) + 𝑏 ∗ cos(𝜑𝑥) ∗ sin(𝑡) − 𝑦𝑚𝑎𝑥 = 0        [16] 

𝑓𝑦𝑚𝑖𝑛(𝑡) = 𝑦0 + 𝑎 ∗ sin(𝜑𝑥) ∗ cos(𝑡) + 𝑏 ∗ cos(𝜑𝑥) ∗ sin(𝑡) − 𝑦𝑚𝑖𝑛 = 0         [17] 

 

 

3.6 Newton-Raphson Method 

Since Matlab does not have a built-in function to solve these kinds of equations , other root-

finding techniques have to be used to find the solutions. This does not give the exact answer, but an 

approximation is found as a result of numerical analysis. In this case, the Newton-Raphson Method is 

used. The method is based on a Taylor series(Otto 2015). For the method, an estimated guess of the 

the location of the root is needed. Let us call this location 𝑓(𝑥). Let us say that the actual root can be 

found at 𝑥 + 𝜖, so 𝑓(𝑥 + 𝜖) = 0. We find that the Taylor expansion for 𝑓(𝑥 + 𝜖) looks as follows: 

 

𝑓(𝑥 + 𝜖) = 𝑓(𝑥) + 𝑓′(𝑥)𝜖 + 𝑓′′(𝑥)𝜖2 +⋯     [18] 

 

Since the technique requires a guess close to the actual root, this means that 𝜖 is small. This makes 

second- and higher order terms almost insignificantly small, so the expansion can be reduced to: 

 

𝑓(𝑥 + 𝜖) ≈ 𝑓(𝑥) + 𝑓′(𝑥)𝜖       [19] 
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Since 𝑓(𝑥 + 𝜖) = 0, this can be rewritten as: 

 

𝜖 = −
𝑓(𝑥)

𝑓′(𝑥)
                                                                                                                           [20] 

    

 

As a result, a 𝑛-iterative scheme can be formed: 

 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥)

𝑓′(𝑥)
 ,        𝑛 = 0,1,2,…                                                                            [21] 

     

    𝑤𝑖𝑡ℎ 𝑓′(𝑥) = lim
𝛿→0

𝑓(𝑥 + 𝛿) − 𝑓(𝑥)

𝛿
                                                                                           [22] 

 

The value of 𝛿 that is generally suitable is 𝛿 = 10−6 (Otto 2015), for our problem this also is usable 

value. With enough iterations, this method should give an accurate enough value for the root. In this 

case, five iterations are more than enough to find an value of 𝑡 with an error smaller than 10-2. 

Keeping this in mind and plugging formula [22] into formula [21] gives the following equation: 

 

𝑥𝑛+1 = 𝑥𝑛 −
10−6 ∗ 𝑓(𝑥)

𝑓(𝑥 + 10−6) − 𝑓(𝑥)
,        𝑛 = 0.1,2,3,4                                                          [23] 

 

Plugging in the derivatives and formula [14] - [17] in formula [23] gives the following equations: 

 

𝑥𝑚𝑎𝑥𝑛+1 = 𝑥𝑚𝑎𝑥𝑛 −
10−6 ∗ 𝑓𝑥𝑚𝑎𝑥(𝑡)

𝑓𝑥𝑚𝑎𝑥(𝑡 + 10
−6) − 𝑓(𝑡)

,        𝑛 = 0.1,2,3,4                                  [24] 

𝑥𝑚𝑖𝑛𝑛+1 = 𝑥𝑚𝑖𝑛𝑛 −
10−6 ∗ 𝑓𝑥𝑚𝑖𝑛(𝑡)

𝑓𝑥𝑚𝑖𝑛(𝑡 + 10
−6) − 𝑓(𝑡)

,          𝑛 = 0.1,2,3,4                                  [25] 

𝑦𝑚𝑎𝑥𝑛+1 = 𝑦𝑚𝑎𝑥𝑛 −
10−6 ∗ 𝑓𝑦𝑚𝑎𝑥(𝑡)

𝑓𝑦𝑚𝑎𝑥(𝑡 + 10
−6) − 𝑓(𝑡)

,        𝑛 = 0.1,2,3,4                                  [26] 

𝑦𝑚𝑖𝑛𝑛+1 = 𝑦𝑚𝑖𝑛𝑛 −
10−6 ∗ 𝑓𝑦𝑚𝑖𝑛(𝑡)

𝑓𝑦𝑚𝑖𝑛(𝑡 + 10
−6) − 𝑓(𝑡)

,          𝑛 = 0.1,2,3,4                                  [27] 

 

3.7 Intersections 

The amount of intersections between an ellipse and one side of the square can be zero, one, 

or two. The total number of intersections with all four sides of the square can be zero, two, four, six 

or eight. For four, six and eight intersection points, 𝑎 ≈
1

2
∗ (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) and 𝑏 ≈

1

2
∗ (𝑦𝑚𝑎𝑥 −

𝑦𝑚𝑖𝑛). See figure 14. For six and eight crossings of the grid borders the coordinates [𝑥0, 𝑦0] have to 

be close to the middle of the roster in comparison to the grid size. Since the ellipses’ major axes and 

minor axes are almost always significantly larger than the size of the area of interest, zero or two 

intersections are most common. This can also be seen in figure 16. 
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Table 3: The twelve  intersections found  
for one ellipse after filtering out all 
coordinates that do not lie into the grid 

Table 2: All twelve found 
intersection coordinates 
with the grid for one 
ellipse. Column 1 stands for 
the x-coordinate and 
column 2 the y-coordinate 

For the program to work, an estimation of the value for 𝑡 

for the intersection was needed. If the value is too far from the 

actual intersection, the program gives an wrong value for 𝑡. Since it 

would be very time-intensive to estimate the 𝑡-value for every 

intersection, another method was used. Three initial guesses were 

taken, all three evenly distributed between the range of 𝑡(=

[1, 1 + 2𝜋)). The values chosen were 

 

𝑡 = (1 +
2𝜋𝑛

𝑔
) ,𝑤𝑖𝑡ℎ 𝑛 = 1,2,3,   𝑔 = 3                           [28] 

 

The 1 could be replaced by any other number. After determining 

values for 𝑡, the program calculates the matching X- and Y-

coordinates immediately, putting them in a matrix 𝑈. For one point 

of data/ellipse/photon, this looked like table 2. Column 1 is the x-value and 

column 2 is the y-value. The program searches the intersection with 

𝑥𝑚𝑎𝑥/𝑥𝑚𝑖𝑛/𝑦𝑚𝑎𝑥/𝑦𝑚𝑖𝑛 around 3 different 𝑡-values, so 12 rows per 

ellipse makes sense. So Matrix 𝑈 was of the size  [12 ∗

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑙𝑖𝑝𝑠𝑒𝑠, 2] . 

The next step was the selection process. First of all, the process looked through rows of 𝑈 

and if the following requirements were met, the two values in the row were placed In the first two 

columns of matrix 𝑇.  

 

𝑥𝑚𝑖𝑛 ≤ 𝑥𝑛,1 ≤ 𝑥𝑚𝑎𝑥    [29] 

𝑦𝑚𝑖𝑛 ≤ 𝑥𝑛,2 ≤ 𝑦𝑚𝑎𝑥    [30] 

 

Matrix 𝑇 had the dimensions [12 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑙𝑖𝑝𝑠𝑒𝑠, 3]. If 

none of the intersection points could be found in the grid, the 

first two columns of T were empty. The last column contained 

the t-value belonging to the x- and y-values that were now put 

in the columns. The part of the matrix representing the first 

ellipse can be seen in table 3. Keeping the 𝑡-value comes in 

handy during the tracking process, so keeping this in a matrix 

with the X- and Y-values of an intersection point gives a starting 

point for the tracking and an initial guess point for 𝑡. More 

Figure 16: All possibilities for conic sections. From left to right: zero intersections, two intersections, four intersections,six 
intersections and eight intersections 
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Table 4: All relevant intersections 
found in the grid, sorted in 
ascending order. Column 1 is the 
x-xoordinate and column 2 the y-
coordinate. Their t-value is also 
added in column 3. 

about this can be found up ahead in the Tracking section. 

Secondly, a matrix 𝐸 was created to be an 1-to-1 copy of the original data matrix 𝐷 =

 [𝑥1 𝑦1 𝑧1 𝑥2 𝑦2 𝑧2 𝑥3 𝑦3 𝑧3 𝛥𝐸1 𝛥𝐸2]. Subsequently, if the following statement was true, the 

corresponding row of 𝐸 was deleted. 

 

∑∑|𝑇(𝑛+𝑘),𝑙|

2

𝑙=1

12

𝑘=1

≤ 0, 𝑓𝑜𝑟 𝑛 = 12,24,36,… , 𝑝 − 12       [31] 

𝑤𝑖𝑡ℎ 𝑝 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝐺𝑠/𝑐𝑜𝑛𝑖𝑐 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠/𝑒𝑙𝑙𝑖𝑝𝑠𝑒𝑠 

 

In words, if the first two columns of 𝑇 were empty for all twelve rows, meaning that for that 

particular ellipse, no crossings with the borders of the grids were found on the basis of three 

different initial guess points, the representing row of data is deleted in 𝐸. The treated section of 𝑇 is 

also deleted when it contains only zeros in the first two columns. This makes sure that all data in 𝐸 is 

useful for the image creation of the area of interest.  

 In the last few sections, matrix U, T and E were created, each via their own functions. It 

would be easier to combine these matrices to one matrix with all relevant information again. Since 

𝐸 contains all data for ellipses that travel through the area of interest, let us use this matrix as a 

basis. The other relevant numbers are the 𝑋- ,𝑌- and 𝑡-values, these can all be found in matrix 𝑇. 

Since all useless data is also removed from matrix 𝑇, the # 𝑜𝑓 𝑟𝑜𝑤𝑠 𝑖𝑛 𝑇 = 12 ∗ # 𝑜𝑓 𝑟𝑜𝑤𝑠 𝑖𝑛 𝐸. 

Since for every 12 rows, 𝑇 included at least one set of coordinates of a point on the border of the 

area of interest and the accompanying 𝑡. The only thing that was left to do was extract these values 

and place them with their matching dataset in matrix 𝐸.  

 This was done by treating every set of 12 rows with data in 

matrix 𝑇 separately. First of all, the rows in the set were sorted in 

ascending order based on the value in the first column. This is 

visible in table 4. If the conic section crossed xmin or entered the 

grid through ymin or ymax while x was negative, this coordinate 

would show up on in the first row, or at least above the rows that 

were set to zero. If this was not the case, the intersection happened 

when X was positive and the data would show up in the last row(s) 

of the set.  Subsequently, after sorting, the code checked the 

following statement: 

 

∑|𝑇1,𝑛| ≤ 0

2

𝑛=1

                                          [32] 

 

If the statement was true, it meant that the first row of 𝑇 contained coordinates of an intersection 

point. If the statement was not true, this meant there were no points of intersection with negative X-

values, meaning the intersection happened in the positive-X region. Coordinates for a location at 

which the ellipse entered the grid could then be found in the bottom row. So if the statement was 

true, the first row of T would be added to form three new columns in matrix E, if the statement was 

false, the bottom row would be added to E. Since the first 12 rows of 𝑇 all represented the first row 

in 𝐸, the second twelve rows of 𝑇 represented the second row of 𝐸, and so on, the first extracted 

row of 𝑇 could be added to the first row of 𝐸, the second row of 𝑇 to the second extracted row of 𝐸, 
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and so on until the end of the matrix was reached. Now E has all data that is needed for any relevant 

calculation, ellipse plots, tracking of the curve and image creation. An example can be seen in table 5. 

 

 
Table 5:A part of matrix E. 

  The amount of 𝑡-values was set to three, but this could also be set to an integer of choice. 

However, when increasing the amount of guesses from 3 to 4 or higher, the program could not find 

any more ellipses that would cross the grid, so increasing this number would only increase computing 

time. Setting it to two would decrease the amount of correctly found intersections. Sometimes, it 

was only able to find one of the two intersections, however, this does not matter. For tracking, it is 

only necessary to find one root for every ellipse. This will be treated in the next section. The rest of 

the intersections can be found by tracking the function until another border of the grid is reached.  
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Figure 17: A visualization of the tracking script. 
(source: X. Lojacono) 

Figure 18:Viaualisation of the first step of the tracking script. The green star is the 
starting location 

3.8 Tracking 

 In this part of the paper, a method to determine the highest probable location of the source 

of the PGs is discussed. To do so, a technique called ‘conic section tracking’ is used. The code I wrote 

is based on the method described by X. Lojacono in one of his papers (Lojacono 2014).  

 The code follows a conic section as it traverses the grid. The grid is split up in pixels, creating 

a roster. For the initial image creation, the pixel size was set to 2mm by 2mm, so 0.2 by 0.2. Once the 

Full Width at Half Maximum(FWHM) of the image of the source point is known, the size of the pixels 

can be increased or decreased if the FWHM is much larger or smaller than the pixel size. It is 

unnecessary to take a pixel size smaller than a twentieth part of the FWHM. 

Since the grid lies in the range 𝑥 =  [−25 25] and 𝑦 =  [−25 25], the total size of the grid is 

50 𝑐𝑚 ×  50 𝑐𝑚. The amount of pixels is 250 ×  250.  

The conic section tracking code follows the curve of the 

ellipse as it enters the grid, travels from pixel to pixel, and 

finally leaves the grid. This can be seen in figure 17.First of all, a 

brief summary is given. The code first takes the starting 

coordinates out of matrix E. This starting point is on the edge of 

pixel in the edge of the grid. Subsequently, the program finds 

out which pixel border the curve crosses and what the 

corresponding 𝑋- and 𝑌-values are. and the distance travelled 

through the pixel is calculated. Using the new coordinates, this 

process is repeated until another edge of the area of interest is 

reached. Then the method moves on to the next ellipse, until all 

ellipses are treated. All values are put in a 𝑚× 5-matrix 𝐼 =

[𝑥 𝑦 𝑑 𝑡 ∆𝑡 ] with  

 

𝑚 = 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙 𝑒𝑑𝑔𝑒𝑠 𝑐𝑟𝑜𝑠𝑠𝑒𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒𝑙𝑙𝑖𝑝𝑠𝑒𝑠 

𝑥 =  𝑎 𝑣𝑒𝑐𝑡𝑜𝑟 𝑤𝑖𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑚 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑣𝑒𝑟𝑦 𝑥 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑜𝑓 𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

𝑦 = 𝑎 𝑣𝑒𝑐𝑡𝑜𝑟 𝑤𝑖𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑚 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑣𝑒𝑟𝑦 𝑦 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑜𝑓 𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

𝑑 = √(𝑥𝑛 − 𝑥𝑛−1)
2 + (𝑦𝑛 − 𝑦𝑛−1)

2,   𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑝𝑖𝑥𝑒𝑙 𝑛 

 

𝑑 is useful for the first step of the tracking code, but it also plays a big role in the image creation. 

Since the conic section is large for most PGs, the curvature is barely visible when looking at it in a  

0.2 × 0.2 𝑝𝑖𝑥𝑒𝑙, so treating it as a straight line comes close to the real line. The importance of 𝑑 will 

be discussed in the part Image Creation. Matrix 𝐼 is also used again to create an image of the PG 

source in the next section. 

 Using the last three 

columns of 𝐸, containing the 

coordinates and 

corresponding t-value of an 

intersection with the edge of 

grid, as a starting point, the 

first step to successful 

tracking was set. Since the 

program could not know the 
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Figure 20: A visualisation of a possible problem that could occur 

direction the curve would take intro the grid, the following step involved investigating the 

surrounding pixel edges. No distinction could be made between the border at which the curve 

entered the area of interest, so all four directions were checked. For example, if the ellipse entered 

the grid at the location [x y]=[-25 12.28]. With a pixel size of 0.2 × 0.2, Calculations were done to find 

the intersections with 𝑥 = −25.2000, 𝑥 = −24.8000, 𝑦 = 12.2000 and 𝑦 = 12.4000.  

The calculations were done using the Newton-Raphson method again, with equations looking like 

formula [24]-[27] but with the above values instead of 𝑥𝑚𝑎𝑥, 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛. A visual 

representation of the four calculated points can be seen in figure 18. This led to a 𝑋, 𝑌, 𝑑,  and ∆𝑡 = 

𝑡2 − 𝑡1 for all four intersections.  

The program then took the crossing with the lowest value for 𝑑, while not taking account 

points that were located outside of the grid. This led to the location of the second point. With the 

data, the change in 𝑡 was also calculated. This was a handy tool for error free determination of all 

other points, since for the tracking of one ellipse, 𝑡 would always increase, or it would always 

decrease. Taking the value with the lowest increase/decrease in 𝑡 would always give the intersection 

closest to the last one. The selection process can be seen in figure 19. 

The next step in the process was easier, since it was known from which side the new pixel 

was entered,  the code only had to check three intersections instead of four. All three were done at 

the same time. Subsequently, 𝑑 was also determined for all three possible crossings.  

However, determining the shortest distance did not do the trick in this case. The reason for this is 

that sometimes, the distance to the crossing before the current intersection point is smaller than the 

real next border. This becomes clearer 

when looking at figure 20. It is a part of 

figure 16, but imagine that this time, the 

ellipse is tracked in the other direction. The 

green star indicates the current location. 

The code calculates the locations of 

intersection with 𝑦 = 12.2000(down), 

y=12.4000(up) and 𝑥 = −25.0000(left). For 

the determination of the intersection value 

Figure 19: The selection process for tracking 
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at the opposite side of the pixel, 0.2 was added or subtracted from the current value. The automatic 

determination of borders with pixel lengths of 0.2 was done by using the built-in Matlab tools 

𝑐𝑒𝑖𝑙(𝑥), which rounds 𝑥 up to the nearest integer, and 𝑓𝑙𝑜𝑜𝑟(𝑥), which rounds down 𝑥 to the 

nearest integer. To round up/down to the correct 1/5th integer, the following formulas were used:  

𝑋𝑛 = 𝑐𝑒𝑖𝑙 (
𝑥𝑛−1
𝑠
) ∗ 𝑠                                                         [33] 

𝑋𝑛 = 𝑓𝑙𝑜𝑜𝑟 (
𝑥𝑛−1
𝑠
) ∗ 𝑠                                                     [34] 

𝑌𝑛 = 𝑐𝑒𝑖𝑙 (
𝑌𝑛−1
𝑠
) ∗ 𝑠                                                          [35] 

𝑌𝑛 = 𝑓𝑙𝑜𝑜𝑟 (
𝑌𝑛−1
𝑠
) ∗ 𝑠                                                      [36] 

 

However, there was another problem. While the correct new point should be the one to the 

left, the distance to the point with y=12.200 is shorter. If nothing else was done, the code would get 

stuck in an infinite loop between these two points, since the next step for the program would be to 

pick the location of the green star again.  

To make sure this infinite loop would not occur, 𝑡 comes into the picture. Since 𝑡 will only 

increase or decrease while following a particular curve in the same direction, the following 

requirement had to be met to be eligible for the next coordinate in the tracking program: 

 

∆𝑡 = 𝑡𝑛 − 𝑡𝑛−1 > 0,                 𝑖𝑓 𝑡2 − 𝑡1 > 0                [37] 

∆𝑡 = 𝑡𝑛 − 𝑡𝑛−1 < 0,                 𝑖𝑓 𝑡2 − 𝑡1 < 0                [38] 

𝑛 = 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑐𝑜𝑛𝑖𝑐 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 

 

Out of the remaining possibilities, the option with the smallest ∆𝑡 was chosen. Assuming no bugs in 

the calculations showed up, this should always lead to the correct intersection. 

 The process was repeated until the curve left the area of interest again. For every ellipse, the 

code only checks one possible curve that crosses the area of interest. However, there could be 

multiple curves belonging to the same ellipse that cross the edges of the grid, but these are not taken 

into consideration by the script. This is something that could be improved. More information about 

this problem can be found in Code improvements.  

Subsequently, the process was repeated for all other ellipses that crossed the grid. As 

mentioned above, all relevant data was placed in a matrix 𝐼 = [𝑥 𝑦 𝑑 𝑡 ∆𝑡 ]. Now all data was 

collected that was needed to create an image of the PG source. With help of these images we were 

finally able to compare the two different detector setups. 

 

3.9 Image creation 

The last step to create the image of the PG source using the data of the Compton Camera was to 

convert the values in matrix 𝐼 = [𝑥 𝑦 𝑑 𝑡 ∆𝑡 ] to points in the image. Before treating the method used 

for this process, the importance of 𝑑 is first explained. 

 

3.9a The distance 𝒅 travelled through a pixel 

 When converting multiple continuous shapes to images, one has to choose how to handle 

the color of pixels. The color changes depending on the size of the value allocated to the pixel. Two 

options were considered: 
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- Adding the same value to all crossed pixels. For example, to stay in theme, picture two 

intersecting ellipses in a grid. All pixels start with a value of 0. While plotting the first ellipse, all 

crossed pixels get the value +1. When plotting the other ellipse in the same grid, +1 is added to the 

value of all pixels that contain this ellipse. Now all pixels without a ellipse on them have value 0, 

pixels which contain a part of a ellipse have value +1, and the pixels holding the intersections have 

value (+1) + (+1) = +2. 

- Giving pixels value proportional to the distance the function travels through the pixel. Let us 

use the same example as above. Instead of giving a pixel a +1 every time an ellipse crosses it, the 

value of pixels containing a larger part of one of the ellipses increases more than the value of pixels 

with only a small part of one of the ellipses in them. If multiple conic sections cross a pixel, the value 

of the pixel equals the sum of all values allocated to it. 

In our case, the second option seems like the best pick. The image created should give an 

impression of the location of the gamma ray source. As discussed before, the location of the PG can 

be found at an intersection of the surfaces of Compton Cones. Translating this to the conic section, 

taking the correct 𝑧(the z-coordinate of the gamma source, 𝑧 = −200), which is luckily known in our 

case, the PG can be found on the intersection of the ellipses. The conclusion can be drawn that the 

probability of a pixel containing the PG increases if a larger part of a curve traverses it, since the 

chance that the pixel contains an intersection also increases. Giving pixels a value according to the 

sum of all 𝑑 should be the best option to create an more precise image.  

To match every 𝑑 with its correct location, the only thing left to do is to convert 𝑋 and 𝑌 to 

the coordinates of the matching pixel. 

 

3.9b Matching 𝒅 with the correct pixel 

Since the range of the area of interest was [𝑥𝑚𝑖𝑛 𝑥𝑚𝑎𝑥] = [−25 25] and [𝑦𝑚𝑖𝑛 𝑦𝑚𝑎𝑥] =

[−25 25] and the pixel coordinates start at [1 1], X and Y had to be converted suitable coordinates in 

the image plot. Since pixels of size 𝑠 × 𝑠 = 0.2 × 0.2 were initially used, the image pixel dimensions 

would become 

 

𝑖𝑚𝑎𝑔𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 = [
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

𝑠
,
𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛

𝑠
] = [

50

0.2
,
50

0.2
] = [250,250]         [39] 

 

Converting the coordinates 𝑦 and 𝑦 to pixels also meant that a range of values were appointed to the 

same pixel. For example: 

 

[𝑥] = [−25] → [𝑙] = [1], 𝑏𝑢𝑡 𝑎𝑙𝑠𝑜 [𝑥] = [−24.81] → [𝑙] = [1]  

[𝑦] = [24.81] → [𝑛] = [250], 𝑏𝑢𝑡 𝑎𝑙𝑠𝑜 [𝑦] = [25] → [𝑛] = [250]  

𝑙 = 𝑐𝑜𝑙𝑢𝑚𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙 

𝑛 = 𝑟𝑜𝑤 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙 

[𝑥, 𝑦] = [−25,25] → [𝑛, 𝑙] = [250, 1] 

 

Notice that the X-value corresponds to the second value, 𝑙, in the pixel coordinate system. 

This can be explained by noticing that Matlab reserves the first input, represented as a 𝑛 here, for 

the row number, and the second input, 𝑙, as the column number. This is the opposite of the generally 

used representation of an two-dimensional graph. In the latter, the value for the horizontal axis is 

listed first, and the value for the vertical axis is listed second. 
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Figure 21: An example of a pixelated image. In this case, setup 2 was used and the 
PGs had an energy of 10.829 MeV 

The next action to be taken was to convert all 𝑥- and 𝑦-values matrix 𝐼 = [𝑥 𝑦 𝑑 𝑡 ∆𝑡] to the 

correct pixel coordinates [𝑛, 𝑙]. First of all, let us introduce a function in Matlab to round up inputs 

called 𝑐𝑒𝑖𝑙(𝑥). For example, 𝑐𝑒𝑖𝑙(1.9) = 2. Using 𝑐𝑒𝑖𝑙(𝑥) again, the following formula was made: 

 

 

(
𝑛𝑘
𝑙𝑘
) =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
(
𝑐𝑒𝑖𝑙 (

𝐼𝑘,2
𝑠
+ 10−8) + 125

𝑐𝑒𝑖𝑙 (
𝐼𝑘,1
𝑠
+ 10−8) + 125

),          
∆𝑥 ≤ 0

∆𝑦 ≤ 0

(
𝑐𝑒𝑖𝑙 (

𝐼𝑘,2
𝑠
− 10−8) + 125

𝑐𝑒𝑖𝑙 (
𝐼𝑘,1
𝑠 + 10−8) + 125

),          
∆𝑥 ≥ 0

∆𝑦 ≤ 0

(
𝑐𝑒𝑖𝑙 (

𝐼𝑘,2
𝑠
+ 10−8) + 125

𝑐𝑒𝑖𝑙 (
𝐼𝑘,1
𝑠
− 10−8) + 125

),          
∆𝑥 ≤ 0

∆𝑦 ≥ 0

(
𝑐𝑒𝑖𝑙 (

𝐼𝑘,2
𝑠 − 10−8) + 125

𝑐𝑒𝑖𝑙 (
𝐼𝑘,1
𝑠
− 10−8) + 125

),          
∆𝑥 ≥ 0

∆𝑦 ≥ 0

                   [44] 

 

Since ∆𝑥 and ∆𝑦 are never 0 at the same time, it is safe to use the ≤ or ≥ for every requirement. The 

value 10−8 is taken because it is small enough that it will not influence the results. Taking the 

example based on figure 15 again, with ∆𝑥 ≤ 0 and ∆𝑦 ≥ 0, the result is as follows: 

 

𝑙 = 𝑐𝑒𝑖𝑙 (
𝑥3

𝑠
+ 10−8) + 125 = 𝑐𝑒𝑖𝑙 (

−25

0.2
+ 10−8) + 125 = −124 + 125 = 1 

 

𝑙 = 1, as it should be. All three other options 

can be checked easily using the same logic.  

Using formula [44], all distances 𝑑 can 

be linked to the correct pixel (𝑛, 𝑙) for every 

pixel crossing 𝑘, creating a 250 × 250 −

𝑚𝑎𝑡𝑟𝑖𝑥 𝑍𝑛,𝑙. Every element of 𝑍 represented an 

pixel in the image, and the value the element 

contained was proportional to the sum of the 

length traversed through the pixel by all elliptic 

conic sections. Adding an x-axis with range 

[𝑥𝑚𝑖𝑛 𝑥𝑚𝑎𝑥] and y-axis with range 

[𝑦𝑚𝑖𝑛 𝑦𝑚𝑎𝑥] again completed the image. An 

example can be seen in figure 21. 
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3.10 Full Width at Half Maximum(FWHM) 

 A small extra step was needed to determine the FWHM of the point source image. This 

would allow us to see if the pixel size 𝑠 × 𝑠 = 0.2 × 0.2 could be increased or decreased. This was 

done by selecting the row with containing the pixel with the highest value and the two rows next to 

it(𝑛 = 124,125,126) and  summing the values of every column. Plotting these values in the range 

𝑥 = [𝑥𝑚𝑖𝑛 𝑥𝑚𝑎𝑥] gave a profile of the figure. The same was done using the column with the highest 

value-pixel and the columns adjacent to it and plotting these values in the range 𝑦 = [𝑦𝑚𝑖𝑛 𝑦𝑚𝑎𝑥] 

This gave plots looking like figure 20. It also shows how the FWHM is determined. 

For the simulation with the largest amount of collected data, The FWHM was investigated, 

since this should give the lowest influence of statistical fluctuations. The maximum was close to 𝑑 =

25. The FWHM was more than 5cm. This lead to the adjustment to do all calculations using 𝑠 = 0.5 ×

0.5. This decreased the calculation time immensely. 

An calculation time comparison is shown in table 6. A comparison of the resulting plots is shown in 

figure 22. 

 Energy (MeV) Resolution 𝑠 (cm) Calculation time (s) 

Setup 2 10.829 0.2 × 0.2 37.224 

0.5 × 0.5 11.465 

Table 6: An comparison of calculation time for different values of s 

  

Figure 22: The plot used to determine the Full Width at Half Maximum. up is 𝑠 = 0.2 × 0.2 and down is 𝑠 = 0.5 × 0.5. 

Full maximum, d=25 

cm 

Half maximum, d=12.5 cm 

x1 ≈ -4.5cm x2 ≈ 4.5 
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4. Results  
 First of all, in figure 23 and 24, all ellipses and their corresponding image are shown.  
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Figure 23:All 8 created pixelated images using the 
given data Figure 24: A plot of all the ellipses created with the 

written program for both tested setups and all four 
tested energies 
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Figure 25: Vertical cuts of all 8 simulations including Gaussian fit 

Figure 25 displays a Gaussian fit for the values of 𝑑 at the middle of the image, while table 7 shows 

its parameters. 
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Gaussian formula:  

𝑓𝑔𝑎𝑢𝑠𝑠(𝑥) = 𝑎1 ∗ 𝑒
−(
𝑥−𝑏1
𝑐1

)
2

 

 

 𝐸𝑃𝐺  (MeV) 𝑎1 𝑏1 𝑐1 FWHM(cm) 𝑅2 

Setup 1 2.223 15.27 2.556 6.687 11,13 0.6853 

4.438 15.79 0.8068 2.024 3,370 0.7043 

6.129 8.798 1.497 4.171 6,945 0.7344 

10.829 8.892 0.2088 1.760 2,930 0.5853 

Setup 2 2.223 131.9 0.148 4.358 7,256 0.9727 

4.438 78.09 0.1602 4.598 7,656 0.9460 

6.129 59.82 0.008244 4.070 6,777 0.9542 

10.829 33.34 0.1325 4.328 7,206 0.9383 

Table 7:parameters of the Gaussian fit for every simulation and the accuracy R2 
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5.  Discussion 
5.1 Optimal orientation 

Using the code created with Matlab, the given datasets containing information about the PGs 

emitted by the gamma source were transformed. As a result, an image of the Compton cones could 

be made and a map showing the highest probable location of the PG source was created. However, 

there are a few remarks to be made. 

First of all, looking at figure 23, it is immediately visible that setup 2(S2) has a higher 

efficiency when it comes to locating the PG source small number of data points leads to a large 

uncertainty. Reason for this inaccuracy is the fact that the randomness of the Monte Carlo simulation 

plays a bigger role with a smaller number of data. Table 8 shows the efficiency to detect triple 

interaction events for both setups and the four energies.  

 2.223 MeV 4.438 MeV 6.129 MeV 10.829 MeV 

Setup 1 1.9% 1.1% 0.8% 0.5% 

Setup 2 11% 5.9% 4.1% 2.4% 

Table 8:Efficiency of both setups for all four tested energies 

 When comparing the images of setup 1(S1) to those of setup 2(S2), one can notice 

immediately that the images of setup 2 are more reliable when predicting the place of the PG source. 

All images of S2 show the highest probability of the source around the point 𝑥 = 𝑦 = 0, as it should. 

S1 does not have this clear central point, not even for the image that was formed with the largest 

dataset (the one with 𝐸𝑃𝐺 = 2.223𝑀𝑒𝑉).  

 Another reason why S2 is more efficient than S1 is because of the difference in thickness of 

the detectors. Since the thickness of S1 is smaller, the probability of an interaction occurring is also 

smaller. Since for high energies, Compton scattering has a larger chance to occur in a forward 

direction, the probability to catch a consecutive interaction is higher for S2. 

 However, when looking at a gamma source sending  

It would be interesting for a follow-up study to check if this difference is still this big if the 

amount of useable PGs would be larger, for example, taking 100,000 initial PGs instead of 10,000. 

The white dot(high probability) for setup 2 still has a fairly large error. There is no specific maximum. 

The maximum could become more distinguishable for both S1 and S2 if there was more data 

available. Another possible way to the data analysis and image 

reconstruction algorithms. 

 

5.2 Code improvements 

 For the intersection-finding script, three(𝑔 = 3) points 

evenly distributed in the range 𝑡 = [0,2𝜋) were taken. Using   

four or more points did not increase the number of conic 

sections found that crossed the Area of Interest, while 

taking only two or one point did decrease the found 

quantity. An example for S2 with an energy of 𝐸𝑃𝐺 =

2.223 MeV is shown in table 9. However, for a lot of conic 

sections, no intersections were found. This is strange, 

since the origin of all PGs was known, meaning that most PGs should cross an Area of Interest 

containing the PG source. It seems unlikely that almost 25% of the ellipses do not come close to the 

𝑔 ellipses with 

intersections found 

 2 728/1014 

 3 767/1014 

 4 767/1014 

 5 767/1014 

Table 9:A comparison showing that adding more 
than three initial guess points g does not increase 
the amount of ellipse intersections with the grid 
found 
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Table 10: Calculation time for every component of 
the script 

exact location of the PG source. This is probably due to inaccuracy in calculations. Since some ellipses 

had major axes of over 500, an inaccuracy could shift the ellipse. 

The intersection-finding script has some parts that could be done better. Another element of 

the intersection-finding script could be improved. While finding intersection points and tracking the 

line through the grid, the code does not take into account the possibility that an ellipse can enter the 

grid for a second time. It moves on to the next conic section after finding the other crossing with the 

border.  

 

 It also does not track extremely small ellipses 

that are completely included in the Area of Interest. 

Since the tracking software only tracks curves that 

intersect with the border, this special case gets left out. 

However, this occurs rarely, so it influence on the image 

can be seen as negligible. For example, for S2, 𝐸𝑃𝐺 =

2.223 𝑀𝑒𝑉, only 8 out of  1014 ellipses met this 

requirement.  

 

Another point of improvement is the calculation 

time of the program. Using a standard laptop, some 

datasets would take over a minute to make the 

transition from data to pixelated image. For larger 

datasets, this could escalate to extreme calculation 

times for bigger data sets. Table 10 shows examples of 

computing times for all datasets. Table 11 shows an 

example for the total time every part of the code took. 

Especially the command sortrows  and the script right 

took a lot of time. There is a logical explanation for the 

long runtime of right. This script was a part of the 

tracking script and it was opened every time a right 

border of a pixel was crossed. Since tracking was coded 

in such a way that if an conic section had an 

intersection with the left border(𝑥 = 𝑥𝑚𝑖𝑛), it 

would take those coordinates as a starting 

point for the tracking. This meant that most of 

the time, right was the dominant direction for 

most of the tracking. The scripts up and down -

also take up a significant part of the total time. 

Since most curves did not cross the grid in a 

horizontal line, the upper and lower borders of 

pixels were also often crossed. This lead to the 

frequent use of the up- and down-scripts. 

The long wait can maybe be 

remedied by a more efficient tracking 

code. This code could for example use 

some other trick instead of the sortrows command. This could be another follow-up study. 

 𝐸𝑃𝐺  

(MeV) 

# of 

PGs 

Calculation 

Time (𝑠) 

Calculated 

PGs per 

second (𝑠−1) 

S1 2.223 1014 75.266 13,47 

4.438 588 37.265 15,78 

6.129 422 17.645 23,91 

10.829 236 12.544 18,81 

S2 2.223 191 8.052 23,72 

4.438 112 5.453 20,539 

6.129 82 4.505 18,02 

10.829 51 3.399 15,00 

Table 11: A comparison of calculation times for the entire script for all data 
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6. Conclusion 
 Just looking at the graphs presented in the results section shows that using the round side of 

the Ge detector creates an more accurate image of a Prompt Gamma source. If the detector would 

be used for proton therapy, setup 2 would be the best option to create an image of the irradiated 

tissue. The prime reason for this result is the higher efficiency in catching the PGs, which leads to an 

image which predicts the location of the PG source with higher efficiency. 

The script written in MATLAB still has a lot of elements that could be improved. However, it is 

still an useful tool when it comes to comparing the effectiveness of various detectors.  
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