
rationally

Software Architecture Specification
by Ronald Kruizinga and Ruben Scheedler

1 Introduction 4

2 Glossary 5

3 System Context 6

4 Requirements 7
4.1 Architectural Vision 7
4.2 Stakeholders 7
4.2.2 Consumption Stakeholders 7
4.3 Use-Cases 8

UC0 - Documenting the decision detail viewpoint of a decision. 8
UC1 - Manipulate the decision sheet via the wizard 8
UC2 - Add components to the decision sheet using drag-n-drop functionality 9
UC3 - Manipulate the decision sheet using context menus 10

4.4 Functional requirements 11
4.4.1 Constraints 11
R0 - General requirements 11
R1 - General information of a decision 11
R2 - Description of a decision 12
R3 - Alternatives 12
R4 - Forces 12
R5 - Related Documents 13
R6 - Stakeholders 13
R7 - Planning 13
R8 - Wizard 13
R9 - Drag-n-drop functionality 14
R10 - Undo/Redo behavior 14

4.5 Non-functional requirements 15
Metrics 15

4.6 Evolution Requirements 16

5 Software Architecture 16
5.1 Assumptions 16
5.2 Architectural Views 17

5.2.1 Logical View 17
5.2.1.1 Package Overview 17

5.2.1.2 Class Diagrams 18
5.2.1.3 Sequence Diagrams 22

SD0 - Creating a decision with general information 23
SD1 - Changing the state of an alternative 26
SD2 - Creating an alternative 27

5.2.2 Decision Detail Views 27
Software design decisions 28

SD0 - Choosing a development language 29
SD1 - Serializing objects 29
SD2 - Logging actions and events 29
SD3 - Choosing an add-in architecture 30
SD4 - Handling events 30
SD5 - Registering event handlers 31
SD6 - Interacting with the Visio API 31
SD7 - Representing Visio shape composition 32
SD8 - Representing Visio shapes 32
SD9 - Providing an user interface 32
SD10 - Ensuring wizard operations are atomic 33
SD11 - Rebuilding the view tree 33
SD12 - Managing component layout 34
SD13 - Handling Custom Styling of rationally Components 35

User experience decisions 37
UX0 - Providing an user interface 38
UX1 - Manipulating the content of the decision view 38
UX2 - Provide functionality on file creation 39
UX3 - Provide the user with access to the wizard and add-in options 39
UX4 - Handling multiple of the same containers 40

Development process decisions 41
DD0 - Choosing an IDE 42
DD1 - Enforcing code style 42
DD2 - Version management 43
DD3 - Hosting Git 43
DD4 - Communicate within the team 43
DD5 - Manage tasks and deadlines 44
DD6 - Hosting documentation on a website 44
DD7 - Automatically building the codebase 44
DD8 - Exporting the codebase to an installer 44

6 Verification and Validation 45
6.1 Performance Tests 45
6.2 Metric Results 45

6.2.1 Maintainability Index 46

6.2.2 Cyclomatic Complexity 46
6.2.3 Class Coupling 48
6.2.4 Recommendations 50
6.2.5 Stability 51

7 Future Improvements 52
7.1 Server 52

7.1.1 Architecture 52
7.1.2 Benefits 53
7.1.3 Implications 53
7.1.4 Discussion 53

7.2 Flexibility 54
7.3 Refactoring 54

8 Conclusions 55
References 56

1 Introduction
Within the context of software intensive systems (SIS), knowledge management is inherently
a part of their development [1]. In this same context, architects from different disciplines will
work on one system. Knowledge about the design of the system and design decisions that
are being made while creating it are divided amongst these architects. What makes
architecting SIS difficult is this partitioning of knowledge. Architects of SIS are required to
collaborate closely and share this knowledge to create a properly working system.
rationally ​intends to be a tool that makes the process of knowledge sharing more
efficient and effective.

Besides streamlining the knowledge sharing process between architects, ​rationally
makes the architectural knowledge (design decisions + design) explicit and visualizes it in a
systematic manner. That is, it visualizes it in an architecture decision viewpoint.
rationally ​views can thus be used as a work of reference for meetings and it can be
iterated over, to capture the design process of architecting the system.
Furthermore, ​rationally ​allows for knowledge personalization: making explicit which
person holds what knowledge by documenting this information.

A part of the architectural knowledge (AK) of the system is thereby being codified.
rationally ​is capable of​ ​providing a snapshot or overview of certain design (design AK)
related to an AD (reasoning AK).
This codification process is also made easier for architects by ​rationally​: it was built as
an add-in for Microsoft Visio, which is widely used throughout the industry[2] and offers the
flexibility that a multidisciplinary team requires, due to the many different approaches to the
problem, through its large collection of visual components. With these components,
diagrams can be constructed quickly that capture the AK in a visual way.

This architecture document consists of the following sections. We explain what ​rationally
is required to do, what decisions were made in the process of creating it, and explain the
rationale behind those decisions. In section 3, we will place ​rationally​ in a context,
describing its relations to actors and other related systems. Next, in section 4, we state our
vision, we list relevant stakeholders and work out the main use cases of our product (section
4.3). After this, we go into the functional and non-functional technical requirements of
rationally​ (section 4.4).
The software architecture of ​rationally​ is set out in section 5. It entails assumptions that
were made, a logical view of our application and finally an overview of the decisions that
were made during the creation of ​rationally​ .
After the software architecture section, we go into verification and validation (section 6) of
our application, we describe possible improvements that can be made to ​rationally​ in the
future, and we summarize our work.

2 Glossary
Context Menu - ​Shapes in Visio can be right-clicked to show a menu with options for that
shape. The Visio API offers developers to extend these menus with custom options. Context
menus can be unique per shape.
Decision Sheet - ​The area within Microsoft Visio onto which users can drag shapes.
Enhanced Container​- A container shape that offers tailored operations to the user to
optimize the processing of information into it. For example: the ​Forces​ view offers the ​“add
force”​ operation that automatically creates a row with all required cells and force values.
Enhanced Item​ - A shape that is a direct child of an enhanced container that offers tailored
operations to the user to optimize manipulation of it, like the list the operations “add”,
“delete”, “move up” and “move down”. These items often consist of several shapes but are
offered as atomic entities to user.
Enhanced Shape​ ​A shape that is part of an enhanced item that offers tailored operations to
the user to optimize manipulation of it. For example, force values change background
according to their value and allow users to move up/down the force of which it is a part.
Shape​ Visible object in Visio that is completely customisable.
Shapesheet​ Table-like object that stores a shape’s properties.
View ​- work product expressing the architecture of a system from the perspective of specific
system concerns. [6]
Viewpoint ​ work product establishing the conventions for the construction, interpretation and
use of architecture views to frame specific system concerns. [6]

3 System Context

Figure 1:​ System context diagram for ​rationally​.

rationally​ extends the functionality of Microsoft Visio​TM​ in a way that allows an easy
documentation of decisions made during the creation and maintenance of software-intensive
systems. Software architects are therefore the main actor in the context of our application.
They use Visio together with ​rationally​ during the creation of the architecture of a
system.

The created decision documentation has one main purpose: it preserves architectural
knowledge. This knowledge/documentation on itself has several purposes. It allows sharing
between architects in a format, understandable for architects in different disciplines and can
also be used by developers to understand the reasoning behind the design they are to
implement in a software product. Finally architects can base new decisions on old ones,
relating them to each other, which gives rise to a collection of related decisions that capture
the process of creating an architectural design of a system.

4 Requirements

4.1 Architectural Vision
rationally ​intends to be a useful tool for software architects that have adopted or want to
adopt the viewpoint-based approach regarding design decisions. It should combine
information relevant to several known viewpoints (detail viewpoint, the chronological
viewpoint, the forces viewpoint, the decision relationship viewpoint and the stakeholder
involvement viewpoint) into one view: a decision view.

rationally ​will offer a sheet that contains areas to enter information relevant to each
viewpoint. All these areas come with tailored operations that allow for fast and clear
documentation of decisions. Furthermore, relations between views are implemented and, in
the future, relations between decisions as a whole will be documentable as well.

4.2 Stakeholders
The stakeholders of our product can be split into two groups. The first group has to do with
the production of the decision views. The second group are related to the consumption of the
decision views.

4.2.1 Production Stakeholders
System Architects
Software architects require a way of documenting their reasoning behind a certain design.
When making design decisions, they consider various viewpoints and they want to be able to
document views for all of them in an efficient manner.

Development Company
The Architectural Knowledge that is created using ​rationally ​can help new architects of
a system to understand it faster and better, yielding a product earlier that might even work
better. This benefits the company developing systems that uses ​rationally​, since it can
shorten development time and increase the maintainability of those systems.

4.2.2 Consumption Stakeholders
Developers
Developers do not only benefit from a detailed software design, but can also benefit from
knowing the reasoning behind it.

4.3 Use-Cases

● UC0 - Documenting the decision detail viewpoint of a decision.
● UC1 - Manipulate the decision sheet via the wizard
● UC2 - Add components to the decision sheet using drag-n-drop functionality
● UC3 - Manipulate the decision sheet using context menus

UC0 - Documenting the decision detail viewpoint of a decision.
A user wants to document the decision detail viewpoint of a decision, using ​rationally​.
This entails giving a description for the decision, defining various alternatives and arguments
for or against the arguments. The user also marks the states of all the alternatives.

Main actor:​ Software architect
Stakeholders:

● Software Architect - ​Documenting a description of and the alternatives for a certain
decision can become very useful. A tempting, but bad, alternative can be marked as
so using arguments and better alternatives.

Flow 0 (sunny day scenario):
1 The user opens Visio.
2 The user creates a ​decision sheet​.
3 The user makes a description for the decision, using Visio shapes.
4 The user adds an alternative, using the context menu on the alternatives area.
5 The user fills in a title (“Alternative A”) and a state (“Accepted”).
6 The user adds a description to the alternative, using Visio shapes.
7 The user adds a second alternative, using the context menu on the alternatives area.
8 The user fills in a title (“Alternative B”) and a state (“Discarded”).
9 The user adds a description to the second alternative, using Visio shapes.
10 The user adds arguments for and against the alternatives, in the ​arguments​ area.

UC1 - Manipulate the decision sheet via the wizard
rationally ​offers various ways of manipulating the decision view. One of these is via a
wizard. This use case describes some frequently occurring flows from the user perspective.

Main actor: ​Architect
Stakeholders:

● Architect - ​Although ​rationally ​offers context menus to add elements to the view,
this is not a fast way to add/remove many items at once. The wizard offers a more
pleasant more of entering text as well, besides offering faster add and remove
options.

Flow 0 (sunny day scenario):
1 The user opens the wizard, or creates a new decision, and is prompted with the wizard.
2 The user fills in the general information tab (title, author, date, version)

3 The user adds elements on various tabs (e.g. alternatives, forces and stakeholders)
4 The user clicks the “create/update decision” button.
5 The view is updated to represent the wizard’s information.

Flow 1 (rainy day scenario “invalid data”):
1 The user opens the wizard, or creates a new decision, and is prompted with the wizard.
2 The user fills in the general information tab (title, author, date, version)
3.1 The user adds elements on various tabs (e.g. alternatives, forces and stakeholders), but
did not fill in all required fields
3.2 The user is prompted with a message stating what fields are filled in incorrectly or not at
all.
3.3 The user fixes the incorrectly filled in fields.
4 The user clicks the “create/update decision” button.
5 The view is updated to represent the wizard’s information.

Flow 2 (rainy day scenario “no general information”):
1 The user opens the wizard, or creates a new decision, and is prompted with the wizard.
2.1 The user does not fill in general information tab (title, author, date, version)
3 The user adds elements on various tabs (e.g. alternatives, forces, stakeholders)
4 The user clicks the “create/update decision” button.
5 The view is updated to represent the wizard’s information.

Flow 3 (rainy day scenario “premature close”):
1 The user opens the wizard, or creates a new decision, and is prompted with the wizard.
2 The user fills in the general information tab (title, author, date, version)
3 The user adds elements on various tabs (e.g. alternatives, forces and stakeholders)
3.1 The user closes the wizard, discarding the filled in information.

UC2 - Add components to the decision sheet using drag-n-drop
functionality
rationally ​offers a stencil to the user that contains the shapes that are used in the
decision view. All enhanced containers are, together with their content shapes, included in
rationally​’s stencil (see requirement 9.3 and 9.4). These shapes can be dragged from
the stencil on to the view and are placed in the correct area. This allows architects to quickly
add new elements to the view.

Main actor:​ Architect
Stakeholders:

● Architect - ​Drag-n-drop allows for faster adding of elements to the view, benefiting the
architect that is creating the document.

Flow 0 (sunny day scenario):
1 User selects a shape from the ​rationally ​stencil and drags in onto the view.
2. The shape is added to the appropriate enhanced container.

Flow 1 (rainy day scenario “shape requiring user input”):
1 The user selects a shape from the ​rationally​ stencil and drags in onto the view.
1.1 The user is prompted with a dialogue, to enter the relevant properties of the selected
shape (like a title for an alternative, or a source file for a related document).
1.2 The user fills in the required information.
2 The shape is added to the appropriate enhanced container.
Flow 2 (rainy day scenario “required user input not given”):
1 The user selects a shape from the ​rationally ​stencil and drags in onto the view.
1.1 The user is prompted with a dialogue, to enter the relevant properties of the selected
shape (like a title for an alternative, or a source file for a related document).
1.2 The user does not fill in the required information.
1.3 The shape is not added to the decision sheet.
Flow 3 (rainy day scenario “no container for the selected shape”):
1 The user selects a shape from the ​rationally ​stencil and drags in onto the view.
1.2 The appropriate container is not present on the decision sheet.
1.3 The shape is not added to the decision sheet.

UC3 - Manipulate the decision sheet using context menus
rationally ​is a Visio add-in and will likely be used by architects that are already familiar
with Visio. One of the traditional ways that Visio offers to manipulate a sheet is by the
offering of context menus on shapes. ​rationally ​has implemented these menus on its
shapes as well.

Main actor: ​Architect
Stakeholders:

● Architect - ​This actor might benefits from a familiar way of manipulating the decision
sheet.

Flow 0 (sunny day scenario):
1 The user right clicks an enhanced container or enhanced item, opening a context menu.
2 The user selects a desired operation (add, delete, move up, etc.)
3 The requested desired operation is executed.
Flow 1 (rainy day scenario “shape requiring user input”):
1 The user right clicks an enhanced container or enhanced item, opening a context menu.
2 The user selects a desired operation (add, delete, move up, etc.)
2.1 The user is shown a pop-up, requesting additional information (like a title for an
alternative that will be added)
2.2 The user fills in the required information.
3 The requested operation is executed.
Flow 2 (rainy day scenario “required user input not given”):
1 The user right clicks an enhanced container or enhanced item, opening a context menu.
2 The user selects a desired operation (add, delete, move up, etc.)
2.1 The user is shown a pop-up, requesting additional information (like a title for an
alternative that will be added)
2.2 The user does not fill in the required information.
2.3 The requested operation is cancelled.

4.4 Functional requirements
In this section we will go into the functional requirements for ​rationally​. The decision
sheet of ​rationally ​consists of various views (alternatives, forces, etc.). All these views
have some tailored requirements, but also share some general required functionality. This
last part is described in ​R0 - General view requirements​. After that, we describe the specific
requirements for each view on the decision sheet and the requirements for the wizard.

4.4.1 Constraints
1. All enhanced containers are present once or not at all on the decision sheet.
2. Attempts of the user to change the layout of the enhanced views may be overwritten

by ​rationally​.
3. The user is not allowed to use the grouping functionality offered by Visio on shapes

that are managed by ​rationally ​(part of enhanced containers).
4. The user is only allowed to have one instance of the wizard open at a time per

running instance of Microsoft Visio.

R0 - General requirements
All views that offer special functionality (alternatives, stakeholders, but not description) are
basically lists. To manipulate lists, several operations are to be offered to the user, in order
to manipulate ​rationally ​views.

R0.1 A list item should always be addable via a context-menu.
R0.2 A list item should always be deletable via a context-menu.
R0.3 It should be possible to move a list item up one place in the list via a context-menu.
R0.4 It should be possible to move a list item down one place in the list via a
context-menu.
R0.5 It should ​not​ be possible to move up the top list item.
R0.6 It should ​not​ be possible to move down the bottom list item.
R0.7 All views must be addable at all times.
R0.8 All views must be deletable at all times.
R0.9 The template should contain all views by default.

R1 - General information of a decision
The user should be able to document some general information regarding the decision. A
topic, a version, an author and a date should be asked of the user on creation of a decision.
This information is useful in establishing a relation between decisions and creates something
to refer at, when discussing a decision. The version helps creating a timeline of the evolution
of the decision.

R1.1 The topic of the decision must be shown at the top of the view.
R1.2 The topic field should be optionally deletable.

R1.3 The author of the sheet must be shown at the top of the view.
R1.4 The author field should be optionally deletable.
R1.5 The date of creation of the decision must be shown at the top of the view.
R1.6 The date of creation field should be optionally deletable.
R1.7 The version number of the decision must be shown at the top of the view.
R1.8 The version number must be optionally deletable.

R2 - Description of a decision
One of the important parts of a decision is the description, which is a brief problem statement
that conveys the context of a decision. This can possibly be done with flowcharts of the
implementation of this decision. Therefore, there must be a component in which the user can
provide this information. No explicit functionality is added to the component, since the user
must be completely free to decide how to provide the description.

R3 - Alternatives
In the decision-making process, architects usually consider multiple alternative solutions that
could solve the problem. Eventually, one of these solutions is chosen. Documenting not only
the chosen solution but also the considered solutions is important, because it provides
important rationale that is particularly helpful during maintenance and evolution, e.g.,
whether a certain solution was considered before or whether we need to investigate it. It can
also be useful to know why a solution was not selected and whether the same reasons still
apply. This way the user can always see which alternatives have already been discussed
and which might still provide a new approach.

R3.1 The alternatives section must be deletable at all times.
R3.2 It must be possible to add the alternatives section at all times.
R3.3 The alternatives section should be available by default on the template.
R3.4 The must only be one instance of the alternatives list at a time.
R3.5 All updates to the list of alternatives must update the forces table (R4).
R3.6 Alternatives must be editable using a context menu.
R3.7 The state of an alternative must changeable using a context menu.
R3.8 Attempting to add more than three alternatives should prompt the user with a
warning.

R4 - Forces
When making a decision, there are multiple concerns/forces, such as performance or
ease-of-use, influencing the decision. Therefore, a forces overview is provided on the sheet,
allowing the user to quickly enter or see the benefits of certain decisions in relation to the
alternatives.

R4.1 There must only be one instance of the forces table at a time.
R4.2 Every row in the forces table must contain a name, a description and a value for
each alternative currently present in the alternatives view.
R4.3 The user must be able to change a value at any time.
R4.4 Changing a value may automatically update the total.

R4.5 Changing a value should automatically update the color of the cell in question and its
total cell.
R4.6 Columns must be ordered according to the order of the alternatives.

R5 - Related Documents
No decision is taken in a vacuum, which means that there are often documents or webpages
related to the decision, containing information or argumentation. These files and links are
therefore also provided on the page in order to easily view and access this information.

R5.1 The list operations described in R0 should work for files as well as links.
R5.2 It must only be possible to enter valid hyperlinks.
R5.3 A link-document also contains an url-component displaying the exact url that was
entered.
R5.4 It must only be possible to add existing files to the view.
R5.5 Both document types should be accompanied by a name when added to the view.
R5.6 All properties of a document on the sheet must be editable.
R5.7 Deletion of a document is an atomic operation, except when an url-component is
deleted on its own.

R6 - Stakeholders
In the end, knowledge also remains in the heads of the people involved with a decision. It is
generally not possible or viable to document all knowledge, which means that it is very
useful to personalize knowledge relevant to a decision. This way, knowledge and rationale
can easily be traced back to a person.

R6.1 A stakeholder, when added, consists of a name and a role. The role of the
stakeholder describes how the stakeholder was involved in the decision-making process.

R7 - Planning
Since ​rationally ​documents can be used in meetings and for capturing the architecting
process of a system, maintaining a planning of things to do and things that have been done
is a useful addition to ​rationally​.

R7.1 A planning item, when added, consists of a text describing the planning item and a
checkbox.
R7.2 The checkbox can be clicked, toggling the state of the planning item (​finished​ or
unfinished​).
R7.3 A planning item that is in the ​finished​ state is struck through.
R7.4 A planning item that is in the unfinished state is not struck through.

R8 - Wizard
The information of the decision sheet should be manipulatable is several ways. One of
which, is a wizard. It offers a way of entering text that might be preferable over the way that
Visio offers when editing the text of shapes.

R8.1 The wizard should be a separate window.
R8.2 The wizard can be closed at all times.
R8.3 The wizard opens when the user creates a ​rationally ​document.
R8.4 The wizard can be reopened via a button in the ​rationally ​ribbon.
R8.5 Only one instance of the wizard can be open at a time.
R8.6 The wizard has a button that, when clicked, updates the decision sheet according to
the data present in the wizard.
R8.7 The button described in R8.6 should say “create decision” when the user has just
created a ​rationally ​document. Otherwise, it should be “update decision”.
R8.8 The wizard has a navigation menu with an item for all enhanced containers.
R8.9 Every enhanced container is represented by a page in the wizard, that can be
accessed by the corresponding item in the navigation menu.
R8.10 Every page should offer the list operations described in R0, ​except for reordering​.
R8.11 A navigation item should be present in the menu for the general information about a
decision.
R8.12 A page should be present in the wizard for the general information about a decision,
with fields for its title, its author, its creation date and its version.
R8.13 Every page should validate its content when the user clicks the button from R8.6. The
validation should be similar to the one that happens during decision sheet manipulation via
context menus of drag-n-drop.

R9 - Drag-n-drop functionality
The information of the decision sheet should be manipulatable is several ways. One of
which, is drag-n-drop. This way allows ​rationally ​users to drag a shape from the
rationally ​stencil on the view. This is particularly useful for experienced Visio users,
since it is Visio’s conventional way of adding Shapes to the sheet.

R9.1 All enhanced containers can be filled using drag-n-drop shapes.
R9.2 The drag-n-drop shapes can be dropped anywhere on the sheet and are
automatically placed in the correct enhanced container.
R9.3 All enhanced containers are included in the stencil of ​rationally​.
R9.4 All atomic sub-elements of enhanced containers are included in the stencil of
rationally​.

R10 - Undo/Redo behavior
Visio offers its users undo and redo operations. These operations are available on all actions
that a user can perform in Visio. This includes adding and removing shapes, styling shapes,
modifying shapesheet properties of a shape and moving shapes. ​rationally ​should offer
similar functionality.

R10.1 All ​rationally ​operations that appear atomic for the user should be undoable on
their own.
R10.2 All ​rationally ​operations that appear atomic for the user should be redoable on
their own.

R10.3 rationally ​undo operations should not interfere with unrelated other Visio
operations performed by the user.
R10.4 rationally ​redo operations should not interfere with unrelated other Visio
operations performed by the user.
R10.5 Every Visio undo/redo should leave ​rationally ​in a consistent state.

4.5 Non-functional requirements
Performance
Performance is an important requirement for our product, since it’s goal is make the process
of documenting decisions easier, which means faster. Below, we list the performance goals
of various operations in ​rationally​.

Operation Avg time (ms)

Add an alternative 1000

Remove an alternative 500

Add a force 1000

Remove a force 500

Create a decision with title and general information 5000

Metrics
Besides performance, there are several non-functional requirements for ​rationally ​that
can be measured using metrics. We will list the metrics to be measured with their possible
values and an interpretation of those values. [3] We choose metrics that are part of the
Microsoft Visual Studio 2015 Metrics Tool, since ​rationally ​was developed using Visual
Studio.

Maintainability Index
Calculates an index value between 0 and 100 that represents the relative ease of
maintaining the code.[3] The scale used to rate this metric is logarithmic.

Score Interpretation

0-9 low maintainability

10-19 moderate maintainability

20-100 good maintainability

We aim for ​rationally ​to score between ​20-100​.

Cyclomatic Complexity
Measures the structural complexity of the code. It is created by calculating the number of
different code paths in the flow of the program. [3]

For this metric, we aim for a value between ​2-15​ per method/module. Microsoft does not
offer an interpretation of this metric besides stating that lower values are better than higher
values. However, research has shown that a value lower than 10 or even lower than 15 yield
successful systems.[4] Note that this metric has no maximum value, because one can
theoretically reference an infinite amount of types.

Class Coupling
Measures the coupling to unique classes through parameters, local variables, return types,
method calls, generic or template instantiations, base classes, interface implementations,
fields defined on external types, and attribute decoration.

Research has shown that class coupling can be used to predict software failure and is thus
an important metric to take into account.[5] We aim for a score lower than ​10​ for our classes
in ​rationally​.[5]

4.6 Evolution Requirements

There are multiple factors that could lead to new requirements or can affect how current
requirements are met.
The first factor is a change in the environment in which ​rationally ​is developed and
deployed. New versions of Windows, C#, Microsoft Visio or Visual Studio can affect the ease
of application development and may include improvements that make it easier to satisfy
requirements, for example performance optimizations.
Another factor would be the development of a server, to store ​rationally ​decisions and
easily relate them to each other. This would lead to new requirements, such as being able to
synchronize documents, serialize data efficiently and being able to select ​rationally ​as
related documents.

5 Software Architecture

5.1 Assumptions
1. It is assumed that architects rarely discuss more than three alternatives in detail.

Therefore, ​rationally ​supports only up to three alternatives. The layout might
break if more alternatives are added.

5.2 Architectural Views

5.2.1 Logical View

5.2.1.1 Package Overview

Figure 2:​ A high-level overview of relations between packages within ​rationally​.

rationally ​consists of various packages that interact with each other. The AddIn
package contains the main class of ​rationally​. It registers event handlers via the Visio
API and maps custom event handlers to them, that are defined in the ​EventHandlers
package. The classes in this package are responsible for handling events for specific
shapes.

The event handlers make changes to the model, encapsulated in the ​Model​ package. The
model represents the data present on the decision sheet. All this sheet-data is spread out
over various shapes on the decision sheet, that are embedded into other shapes. The
relations between model data and shapes are maintained in the ​View​ package. The classes
in this package are used in maintaining a tree that captures the composition structure of

shapes on the decision sheet (Visio’s perspective of the data) and connects it to our model,
which is an interpretation of the decision’s sheet state.

Finally, there is package containing all classes relevant to the wizard. This package interacts
with the model package in two ways. It retrieves data from it to show a correct state of the
decision sheet to the user when showing the wizard and it manipulates the model according
to the changes that the user is requesting in the wizard.

5.2.1.2 Class Diagrams

Figure 3:​ Class diagram of important components of the view package.

In this first class diagram, the lowest level of view classes are shown. VisioShape is a
wrapper classes for the ​Shape​ class that the Visio API offers. This class may not be
instantiated or inherited from, so we created a wrapper class for it.
RationallyContainer​ forms a composite pattern together with ​VisioShape​. All ​rationally
Shapes inherit (indirectly) from one of these classes. Containers also have a ​LayoutManager
property. This is an object that is responsible for the layout of the content of a
(container)shape and is typically used during a ​Repaint​ procedure. ​TextLabel​ forms a base
class for shapes that only contain text. Visio does not offer such a shape itself, so
functionality like automatic size-scaling according to text size had to be implemented here
manually. ​RationallyView​ forms the root node of the view tree that is maintained in
rationally​.

Figure 4:​ overview of the classes in the model of ​rationally​.

The model of ​rationally ​contains the general information that is shown on the top right
of the decision sheet and the data present in all enhanced containers on the decision sheet.
Alternatives and Forces have a special relationship, since every alternative is represented in
each force by a force value, which contains a score of an alternative on a force.

One of the challenges that comes with ​rationally ​is synchronizing this model with what
is shown on the decision sheet (stored in shapes, behind the Visio API). In a typical MVC
structured application, the view adapts according to what the model contains. In
rationally​, the view itself can be modified by the user, which requires the model to
change according to the view. In the future, it might be possible to combine model and view
by making the view tree components responsible for managing their own data. An example
of that can be found in the following class diagram.

Figure 5:​ Overview of the classes representing alternatives on the decision sheet.

In Figure 5, most classes that are responsible for representing alternatives on the decision
sheet are shown. Their base classes have been left out for compactness. Instead of
including the base classes of the shown classes in Figure 5, we included some of their
properties that are relevant in the context of this diagram, namely the ​Shape​ property and
the ​Repaint​ method.

The ​AlternativesContainer​ is one of ​rationally​’s​ ​enhanced containers. It contains
AlternativeShape​ objects in its ​Children​ list property. ​AlternativeShape​ on its turn, is a
container itself, containing one of each child types in its ​Children​ property.

The ​AlternativeStateShape​ is different from the other alternative child shapes. Instead of
(public) constructors, this class uses factory methods. This is to avoid invoking functionality
in the constructor before the object has been fully initialized. As hinted to in the previous
section, this class is the first one to be responsible for managing its own data. This is done in
the ​State​ property. It hides mapping from and to string values and is responsible for updating
its own context menu. Ideally, all view classes will be refactored to this structure, making the
model obsolete, which would remove complexity such as the described synchronization in
the previous section from the project.

All enhanced containers of ​rationally ​are designed in a similar structure such as the one
described in the class diagram above: an enhanced container class that is a direct child of
RationallyView​, a class representing one list item of the enhanced container and child
classes representing components of the list item.

Figure 6: ​Class diagram of the of the part of the wizard dealing with alternatives.

This final class diagram shows the required classes for managing the content of an
enhanced container in the wizard. ​ProjectSetupWizard​ represents the whole wizard. The
menu is managed by ​MenuPanel, ​containing a ​MenuButton​ for each enhanced container. A
content area connected to each menu item is implemented in a class implementing the
IWizardPanel​. This interface defines some mandatory operations for content panels of the
wizard. One content area lets the user manage the content of one enhanced container. In
this class diagram, we took the alternatives as an example.

TableLayoutMainContentAlternatives​ is such a content panel. Just like
AlternativesContainer​, it offers a list of items (represented by ​FlowLayoutAlternative​) to the
user and some list operations.
The synchronization between wizard and model takes place via ​IWizardPanel​ interface,
which allows the wizard to extract data from a content panel and place it into the model.

5.2.1.3 Sequence Diagrams
There a few objects that often occur in the following sequence diagrams. We will give a brief
explanation of them here.

Application
The Application object is the technical representation of Visio, for add-ins. The API available
for developers is implemented foremostly in this object. We treat is as a black-box for all
actions that the user performs in the visio sheet. For example, when a user deletes a shape
from the sheet, we treat this as an action on the Application object. This not only simplifies
our sequence diagrams, but is also makes sense since the Application object raises the
events that we listen to.

Registry
For most events, ​rationally ​maintains a registry of event handlers. Each handler is
responsible for dealing with the same event, but with a different origin or action. A
markerevent can be raised by dozens of different shapes and can be of various types: “add”,
“change”, “delete” etc. The logic for deciding which handler to chose is left out of sequence
diagrams in this document to improve readability.

Handler
A Handler object in a sequence diagram in this document is a certain eventhandler that is
subscribed to a specific event in a registry as described above. We choose to not always
include the full name of the event handler to keep the diagrams compact in size.

Wizard
The wizard object represents the wizard and its components. In ​rationally​, it is not just
one object, but a composition of several types of classes that all interact with each other to
maintain a model of the data in the wizard. In most sequence diagrams, this complexity is
hidden to focus more on the flow of events happening outside the wizard.

SD0 - Creating a decision with general information

The sequence diagram for this use case has been split out into three parts. The first
describes what happens when a user opens Visio and creates a ​rationally ​decision
sheet. The second describes the key initialization operation of showing the wizard. The third
shows what happens after the user has entered some general information in the wizard and
want to create a decision sheet with that information.

Figure 7:​ sequence diagram for creating a decision sheet.

Figure 8:​ sequence diagram of showing the wizard.

Figure 9:​ Sequence diagram showing the flow following entering general information in the
wizard.

What becomes clear from the first sequence diagram is that ​rationally ​interacts with
Visio’s API via events. ​rationally ​subscribes handlers to events and Visio invokes these
handlers when the events occur. In this case, when an architect selects the ​rationally
template, a DocumentCreatedEvent is raised. Our handler for this event creates an empty
Model object and shows the wizard to the user.

The wizard’s purpose is to represent the decision sheet and allow the user to modify its
content in a faster way than Visio’s traditional way. When showing the wizard, we make a
copy of the Model (which holds the data of the view) and lay out the data of that copy in the
wizard. All changes that are made in the wizard (see SD0.2, entering general information)
are made in the model copy as well. When the user is done, the original model is replaced
by the updated model copy and the view is repainted according to it.

SD1 - Changing the state of an alternative

Figure 10:​ Sequence diagram for changing an alternative’s state.

The architect selects one of the available states via the context menu offered by a
state-component. A MarkerEvent is raised by Visio and handled by our AddIn object. The
appropriate handler locates the relevant alternative (for example, by finding the shape in the
view tree, and see what alternative is connected to the alternative container shape), and

changing the state of it. Now that the model is updated, a repaint can be performed to bring
the view up-to-date with the model. Note that only the alternatives area needs to be
repainted.

SD2 - Creating an alternative

Figure 11:​ Sequence diagram for adding an alternative.

In figure 11, a simplified version of the process of creating an alternative is displayed. Note
that the especially the ​Application​ related messages are simplified and moreover not part of
rationally​, but rather part of Visio itself. In this flow, the user is asked to chose a title and
state for the alternative and these are used in the creation of an ​Alternative​ object (​a​), which
is then added to the model. Note that forces are dependent on alternatives, because each
alternative has a column in a force row. Therefore, the repaint operation should add a
column to the forces table when an alternative is created.

5.2.2 Decision Detail Views
In this section, we will describe what decisions were made during the process of developing
rationally​. We will do so according to the decision detail viewpoint as described by Van
Heesch et al. [7]. We give a description of the decisions and the alternatives that were
considered.

Software design decisions

Figure 12:​ Decision relationship view for software design decisions.

Name
SD0 - Choosing a development language

Description: ​In order to develop our add-in, we need to choose a language in which we
will be developing the add-in.

Considered Alternatives:

C#: ​In order to write an add-in for Microsoft Visio, C# is the only up-to-date language that
allows us to develop the add-in.

Name
SD1 - Serializing objects

Related Requirements: ​R8.6

Description: ​In order to communicate with a server or in order to make a deep copy of an
object, we need a way to serialize objects.

Considered Alternatives:

Newtonsoft Json.NET: ​Json.Net is easy to install using the NuGet manager. It allows for
easy serialization using just a few methods. It is the most commonly used package to
serialize objects.

Name
SD2 - Logging actions and events

Description: ​To keep track of what the application is doing, we need a way to log actions,
events and debug statements.

Considered Alternatives:

Log4Net: ​Log4Net is very easy to setup and allows us to start logging in just a few
statements. It supports good exception logging tools, which make it easy to trace errors.

NLog: ​NLog is also very easy to setup, again allowing us to start logging in a few
statements. It is updated quite often and therefore bugs are quickly fixed.

Decision:
Both options are easy to use and satisfy our requirements. We have previous experience
with Log4Net and therefore decided to use Log4Net.

Name
SD3 - Choosing an add-in architecture

Description: ​We need to decide upon an architecture using which we will develop our
add-in.

Considered Alternatives:

COM-based: ​COM-based add-ins are low-level add-in that provide a small layer to
interact with visio properties.

VSTO-based: ​VSTO-based add-ins also make use of COM architecture, but in addition,
provide functionality which makes it easy to design more complex visio components, such
as the ribbon.

Decision:
VSTO-based architecture offers a lot more functionality and is therefore the way to go.

Name
SD4 - Handling events

Description: ​Visio functionality forces us to constrain ourself to event-driven
programming, so we need a way to handle events.

Considered Alternatives:

Event Registry: ​Create a registry that stores event handlers and can easily map an event
to the right handler. This handler is Singleton, to make it accessible from everywhere in
the application.

Name
SD5 - Registering event handlers

Description: ​In order to utilise our event registry, we need a way to register event
handlers.

Considered Alternatives:

Register handler on object initialisation: ​We can register a new eventhandler when an
object is initialized. This eventhandler is then coupled to the right object, which saves us
from finding the relevant objects.

Register handlers on application start: ​It is possible to register all event handlers at the
start of the application and have the handlers be responsible for interacting with the right
objects. This approach is easy to implement, but is state-sensitive.

Decision:
At first we initialised the event handlers on the start of the application, as the
consequences and complications at that point were yet unclear. However, since that
approach does not benefit the maintainability of the application, it is now a challenged
approach and registering on object initialisation is now the proposed solution.

Name
SD6 - Interacting with the Visio API

Description: ​The Visio ShapeSheet treats every shape in the same way. Shapes with no
actions offer the same interface as Shapes with many actions. The same is true for
containers, that offer the same interface as non-container shapes. Not only do all shapes
offer the same interface, all rows in their ShapeSheet hide their internal unit. This means
that the API offers no type safety. The problem with this lack of type safety and
uncertainty of the actual available interface, is that the developer needs a lot of additional
logic (e.g. existence checks, type checks) to interact with the ShapeSheet.

Considered Alternatives:

Direct interaction with the Visio API: ​One possible way to go is to not do anything
about the api and perform all relevant type and existence checks whenever an interaction
occurs. This is the simplest way, but leads to a lot of unmaintainable and duplicate code.

Create a wrapper layer around the visio API: ​We implement a wrapper around the API
that is responsible for type and existence checking. It offers more type safety and similar
constraints as the actual API by validating values and fields before updating the
ShapeSheet.

Decision: ​A wrapper layer is way more maintainable and easier to extend than direct
interaction. It is also less error-prone than doing it by hand.

Name
SD7 - Representing Visio shape
composition

Description: ​In order to easily interact with shapes, we need a way to represent them in
C#.

Considered Alternatives:

Use a composite pattern to represent Visio shape composition: ​Visio represents all
shapes the same way, with certain properties specifying whether they are containers, or
contained in a different shape. Using a composite pattern is a very close way to represent
that structure in the C#.

Name
SD8 - Representing Visio shapes

Description: ​We need a way to represent the properties of a Visio shape using C#
classes.

Considered Alternatives:

MVC pattern: ​The classic separation of concerns. Separate model and view classes, with
event handlers representing the controllers. This way is easy to implement, but not easy
to maintain.

View classes are responsible for managing their own data: ​Make view classes
responsible for registering their own event handlers (#SD5) , which allows the class to
also manipulate the relevant parts of the model easily. This is slightly harder to
implement, but in time is really beneficial to the maintenance and extendibility of the
application.

Decision: ​At first we used to MVC pattern to represent Visio shapes. However, since that
approach does not benefit the maintainability of the application, it is now a challenged
approach and making the view classes responsible is now the proposed solution.

Name
SD9 - Providing an user interface

Description: ​Related to (#UX0). We need a tool to provide an user interface to users,
consisting of multiple windows and popups.

Considered Alternatives:

Windows forms: ​Windows forms is the default way of developing windows and forms for
the user to use. It is very flexible, has a WYSIWYG editor and integrates well in Visio.

Name
SD10 - Ensuring wizard operations are
atomic

Related Requirements: ​R8.6

Description: ​In order ensure the robustness of our wizard, we need to ensure that
operations are atomic

Considered Alternatives:

Operate on a copy of the model: ​In order to ensure changes to the model caused by the
wizard are atomic, we perform all operations on a deep copy of the model (#SD1), with
which we replace the old model when wizard changes are submitted.

Name
SD11 - Rebuilding the view tree

Description:
When an existing Visio file is opened or a switch between two open documents occurs, a
tree needs to be constructed representing the state of the decision sheet, with all its
shapes. To do this, we depend on the interface that Visio provides for this. It offers the
Shapes​ property, implemented in the ​Page​ object, that returns a ​flat​ list of all shapes (of
type ​Shape​) present on the sheet. We want a more realistic representation of the decision
sheet, in which shapes can be embedded into other shapes, giving rise to a composite
structure, that can be represented using the tree data structure.
We want our solution to score high on several quality attributes: complexity, flexibility
(support for different tree composition), extensibility (support for new components) and
implementability.

Considered Alternatives:
A0 - Do not sort the list
This is our current implementation. It requires very little complexity during the creation and
modification of shapes, but it yields a lot of logic and switching during the rebuilding of the
tree.

A1 - Sort the list using layer and order properties.
We assign every class a layer value, representing the layer of the tree that the class
occurs. We also assign an order property to every shape, that defines the order of sibling
shapes within one parent shape. This solution allows us to sort the list in a way this
satisfies two properties:

The parent of a shape is always placed before that shape in the shape-list.
Sibling shapes are placed next to each other, in the correct order, in the shape-list.

These properties yield some advantages. The first one is that we can only have to
traverse the list once, because we don’t have to search for the child shapes, for every
shape. This means an improvement in time complexity of the problem: O(n^2) => O(n).

The other advantage is that we solve a problem that arises very frequently in the rebuild
procedure, namely that we try to add a child shape to the three, while the parent shape is
not yet placed in the tree. We now solve this by placing a stub shape in the tree and
replacing it with the parent when we add that parent to the tree.

A2 - Sort the list using the shape’s name property.
We currently have use a composite pattern (#SD7) to represent Visio shapes, in a way
that a certain type of shape always occurs in the same level of the tree. That is,
RationallyView​ is always the root node of the tree (layer 0) and an ​AlternativeShape
always occurs in layer 2 (​RationallyView > AlternativesContainer > AlternativeShape​).

A3 - Sort the list using dynamic layer and order properties
We assign every shape a layer value, which is simply the layer value of it’s parent plus the
order property can also be defined on creation of a shape, by the parent shape.

A3 - Sort the list using a timestamp property and an order property
We assign every shape a timestamp on it’s creation, or use an existing property of the
shape interface that does this for us. Given that a parent shape will always be defined
before it’s child shapes, this gives a way of moving parents in front of children in the shape
list. The order property is implemented similar to the other alternatives.

A5 - Do not sort, and rebuild direct children recursively
We start by locating the root node and initiate a rebuild procedure on it. The procedure will
locate the direct children in the flat list and add these as its children (thereby building a
part of the tree we desire to end up with). After that, we initiate the same procedure on our
just found children.

Besides this, we still need an ​order​ property to sort the siblings.

Decision:
At this point, we are still using A0 as our approach to this problem. However, it is not
sufficient with respect to flexibility and maintainability and so an alternative solution must
be searched for.

Name
SD12 - Managing component layout

Description:
Visio shows a page,on which shapes can be positioned and customized, to the user. The
shapes are also ordered in a composite-fashioned way. Visio offers various sets of simple
shapes, that is, they are single-layer singular objects. Creating and maintaining a

hierarchical structure is left to the user, and so is the positioning of the shapes. Only
aligning tools are offered.
Our project, on the other hand, offers a set of relatively complex multi-component
multi-layered shapes. The problem that occurs is that we have to programmatically
structure and position shapes. Because this is generally the responsibility of the user, the
visio API does not offer any layout managing.

Considered Alternatives:

Make our components responsible for layout managing their content: ​We implement
the layout managing in each component that requires it, and tailor that code to the specific
component.

Create layout managers: ​ We create generic layout managers that can manage the
layout of any component. Each manager implements its own type of layout managing, for
example by stacking all elements vertically, or placing them in a horizontal line. By using a
composition of these generic managers, more complex layouts can be defined.

Decision:
Making the components responsible is a quick solution. Because every component is
responsible for its own layout management, it allows for very tailored code. Using
component-specific constants, a layout is easily created. However, the constants are
magic numbers which are not flexible at all. The code tends to become complex with a lot
of long mathematical additions and subtractions of constants and factors.This solution
neither offers any reusability, and is not easy to extend.

On the other hand, the layout managers require quite some work to create. They should
be incredibly flexible, making their creation relatively hard. Once they are created,
however, they bring extensibility and usability, in the sense that you only need to define a
certain manager, instead of writing the layout code for every component. Therefore we
decide to go with the managers.

Name
SD13 - Handling Custom Styling of
rationally ​Components

Description:
The ​rationally ​add-in generates (groups of) shapes for the user to make the process
of decision documentation faster and more structured. Which shapes are displayed on the
view to the user depends on the model that is maintained in the add-in. A model change
leads to a repaint of the view, to make the view up to date.

A repaint of the model generally only considers the state of the model and nothing else. In
Visio, it is possible for the user to style components, even the ones generated by the
add-in. The problem that would occur is that the style added by the user to a component
generated by ​rationally ​is discarded when a repaint takes place, because the
representation of the model data (the styled shape) is not part of the model.

Considered Alternatives:

Disable styling on ​rationally ​components:
Components that are generated by the add-in can not be styled in any way. No styling can
be lost this way.

Include the style of components in the mode:
Besides the data of model components, we store the styling of the component that
represents that data. We would fire events at every styling action and update the model
accordingly.

Maintain a tree of components generated by our add-in:
Parallel to the model, we maintain a state of the view (i.e. the page the user is working on)
in which we store the components generated by ​rationally​. This state maps model
components to view components (shapes), so that model updates can modify a view
component instead of overwrite it.

Decision:
Disabling styling has many advantages for the developers. It is flexible, easy to extend,
and easy to implement. However, it completely disables all styling options on
rationally ​components, that will make up a large part of the view. Styling is too
important to disable on these components, so this solution is rejected.

The second alternative, including the styling, does not affect any functionality but requires
a lot of work. If every styling option is to be supported on components, all of them have to
be included in the model and should come with event firing and handling.

The third and final available alternative, maintaining a tree of components, also leaves all
functionality intact. However, this solution is easier to implement, because only a structure
containing the shapes is required instead of separate items for each styling property. The
styling is encapsulated in the shape and all that is required is to reuse the shape on
repainting. Because it offers the best functionality to the user and does not require
excessive amounts of work, we decided to implement this solution.

User experience decisions

Figure 13:​ Decision relationship view for user experience decisions.

Name
UX0 - Providing an user interface

Related Requirements: ​R8

Description: ​Related to (#SD9). We need a tool to provide a user interface to users,
consisting of multiple windows and popups.

Considered Alternatives:

Windows forms: ​Windows forms is the default way of developing windows and forms for
the user to use. It provides a clear interface, responsive functionality and many different
options.

Name
UX1 - Manipulating the content of the
decision view

Related Requirements: ​R8, R9, R10

Description: ​In order for the user to use our application, they need a convenient way to
modify the data presented in the decision view.

Considered Alternatives:

Wizard: ​A wizard, as presented in (#SD9), provides a convenient and intuitive way to
manage the content of the decision view. It allows for quick and simple changes to the
content.

Context-menus: ​Context-menus offer context sensitive operations to the users, such as
reordering items in a list. They are easy to access using a simple right click and due to
this are intuitive to use, especially since Visio by default uses context-menus a lot.

Drag-’n-drop: ​A key Visio functionality is to easily add shapes by simply dragging them
onto the sheet. This can easily be extended to ​rationally ​by providing the user with
many enhanced shapes that can be dragged onto the sheet, adding them to the right
containers if relevant.

Keyboard shortcuts: ​Operations such as undo and redo are staple in any application.
They are often utilised using keyboard shortcuts and thus support for them must be
included.

Decision:
All four options provide a different but very useful functionality to the user. Therefore, they
will all be implemented.

Name
UX2 - Provide functionality on file creation

Related Requirements: ​R8

Description: ​When a new decision view is created, it would be useful to provide the user
with some suggestions as to how to use the add-in.

Considered Alternatives:

Showing the wizard on creation: ​The wizard provides a good flow for the user to set up
their decision view. It would therefore be very useful for the user to be presented with the
wizard when the view is created.

Name
UX3 - Provide the user with access to the
wizard and add-in options

Related Requirements: ​R8

Description: ​At any point during use, the user may wish to access the wizard or change
settings of the ​rationally ​add-in.

Considered Alternatives:

Utilizing the file menu: ​Visio related settings are also found in the file menu, which
means that using this file menu is intuitive for the user.

Utilizing the ribbon: ​The ribbon is immediately accessible from the Visio sheet. It allows
us to present all ​rationally ​related settings together, without settings from other
add-ins. Visual studio also provides a WYSIWYG editor for the ribbon.

Decision:
The ribbon provides more flexibility to the developers and more overview to the user.

Name
UX4 - Handling multiple of the same
containers

Related Requirements: ​R0.1, R0.7, R0.9

Description: ​The user can add a second instance of a container to the sheet, such as the
“Related Documents” container. We need a way to handle that event.

Considered Alternatives:

Allowing a single instance of a container: ​Automatically deleting a second container
means that we can always work with the assumption that there is at most a single
container. This means the code is easy to maintain and extend.

Allowing multiple instances of a container: ​Allowing multiple containers means more
flexibility for the user, but also makes the code highly complicated, negatively impacting
the robustness of the system.

Decision:
The robustness and maintenance are more important than a slight increase in flexibility, in
this case, so we only allow a single container.

Development process decisions

Figure 14:​ Decision relationship view for development design decisions.

Name
DD0 - Choosing an IDE

Description: ​In order to develop in C# (#SD0), we need an IDE with widespread support
for the language. We want the IDE to have good debugging tools, integration with
Microsoft Visio and integration with a version management tool. It also needs to have
support for a tool to enforce code style.

Considered Alternatives:

Visual Studio 2015:
Visual studio is the official IDE for C# so our choice for the product was quickly made. VS
2015 has integration with Git and Team Foundation Server, allows for live debugging of
Visio add-ins and has the Resharper Add-in to enforce code style. (#DD1)

Visual Studio 2017:
Visual studio 2017 has improved code optimizations and is faster than 2015. It also has
better support for C# 6.0. However, at the start of the project, it was not yet released.
Porting the code to a newer version is therefore a risk and proper support for Resharper is
not there yet.

Decision:
Since Visual Studio 2015 still satisfies our requirements and porting our code to Visual
Studio 2017 is a risk, we decide to use and keep using Visual Studio 2015.

Name
DD1 - Enforcing code style

Description: ​To be able to maintain our code over the years, a proper code style goes a
long way. Since multiple developers work on the project, a tool to enforce this code style
is required.

Considered Alternatives:

Resharper:
Resharper is one of the most commonly used tools for maintaining code style and quality.
It has good integration with Visual Studio (#DD0) and allows settings to be configured
using Git or TFS.

Name
DD2 - Version management

Description: ​In order to work on the project with a team of developers, we need a tool to
manage code versions, that is capable of handling conflicts in changed code within a file
and offers an online repository to store the code. It also needs to be able to integrate with
Visual Studio.

Considered Alternatives:

Git: ​Git allows us to work in the same file simultaneously, has integration with Visual
Studio and offers many different hosts for our repository.

Team Foundation Server: ​TFS does not allow us to work in the same file and by doing
this, ensures that conflicts can never occur. It is integrated by default in Visual Studio and
a TFS server is easy to host.

Decision: ​Since we often need to work in the same file, Git is the way to go.

Name
DD3 - Hosting Git

Description: ​We need a place to host our Git repository.

Considered Alternatives:

GitHub: ​Github is one of the most used and most stable repository hosts around.​ ​It also
allows us to document and track code issues.

Name
DD4 - Communicate within the team

Description: ​We need a tool or application to communicate within the team and share
files.

Considered Alternatives:

Slack: ​Slack is a commonly used communication application for development teams that
does everything we need it to.​ ​It also integrates with other tools like Github (#DD3), Trello
(#DD5) and TravisCI (#DD7).

Name
DD5 - Manage tasks and deadlines

Description: ​We need a tool or application to manage deadlines, keep track of issues
and track user stories.

Considered Alternatives:

Trello: ​From previous projects we have a lot of experience with using this tool. It also
satisfies all requirements we have and integrates well with Slack (#DD4).

Name
DD6 - Hosting documentation on a website

Description: ​We need a tool or application to easily manage and host the documentation
for ​rationally ​on a website.

Considered Alternatives:

Hugo: ​Hugo integrates well with Github and allows us to easily document our application
and automatically build it using TravisCI (#DD7).

Name
DD7 - Automatically building the codebase

Description: ​We need a tool that automatically builds new commits to the website
repository and updates the website.

Considered Alternatives:

TravisCI: ​TravisCI integrates very well with Github and Hugo (#DD6) and satisfies all our
requirements.

Name
DD8 - Exporting the codebase to an
installer

Description: ​In order to deploy our add-in to an installer, we need a tool that can export
our code to an msi.

Considered Alternatives:

WiX Toolset: ​Wix is a free toolset, that is easy to setup using a visual studio project. The
only thing to configure inside this project is an xml, which is human readable and
therefore easy to understand.

6 Verification and Validation

6.1 Performance Tests
Unfortunately, ​rationally ​can only modify shapes via the Visio API, which creates a lot of
overhead. From the perspective of our add-in, creating and deleting shapes are atomic
operations that can’t be improved, performance wise. Creating a single shape
programmatically takes roughly 1s . Deleting a shape takes roughly half that time. However, 1

a different approach to adding shapes that relies on stencils instead of creating shapes
programmatically might yield some performance improvements.

Create and delete operations in our add-in are mostly operations on composite shapes,
dealing with multiple shapes at once. This means that creating an alternative (composed out
of 5 shapes) will on average take 5 seconds. Most of this time is taken by processing that
the API performs, namely 5 times the creation process of a shape.

All of our enhanced items are composite shapes and thus take multiple seconds to create on
a decision sheet. This means that user will have to wait several seconds for every
add-operation he performs in ​rationally ​(independent of using the wizard, drag and drop
or context menus). The deletion of said components takes half that time. Changes being
made to a shape (changing the text, styling, position, etc) take almost no time (<< 1s) so
those operations perform well.

6.2 Metric Results
In the table below, we list some descriptive statistics with regard to the metric results that
were obtained for the three metrics described in section 4.5: Maintainability Index (MI),
Cyclomatic Complexity (CY) and Class Coupling (CC). The data in this table, together with
some method-specific metric results, are discussed in the following sections.

 MI CY CC

mean 79.78717 2.460285 5.172098

median 84 1 4

mode 90 1 0

standard deviation 16.98677 3.950038 5.592211

minimum 29 1 0

maximum 100 44 32

Table x: ​Descriptive statistics regarding ​rationally​.

1 On a computer with an Intel i7 4720HQ CPU @ 2.6Ghz

6.2.1 Maintainability Index
We calculated the MI for all members in all classes of the ​rationally ​project. We aimed
for our members to score between 20-100. All members in the project scored this high.
However, some members scored relatively low. An overview of those lesser scoring
members (a score lower than 30) is shown below.

Namespace Class Method MI Score

Rationally.Visio RationallyAddIn Application_CellChangedEvent
(Cell) : void

29

Rationally.Visio.For
ms.WizardCompone
nts

TableLayoutMain
ContentGeneral

Init() : void 29

Rationally.Visio.View RationallyView AddToTree(Shape, bool) : void 29

The maintainability index is relatively low for these methods for several reasons. First of all,
cyclomatic complexity plays a role in the calculation of this metric and as is discussed in the
next section, the CY metric value for these methods is quite bad. Secondly, the amount of
operands and operators plays a role in calculating the value of this metric.
Application_CellChangedEvent​ and ​AddToTree​ contain a lot of logic, which consists of
operators and operands. The third method, ​Init​, initializes a view component of the wizard
and performs many assignments to properties, hence the lower score on this metric.

6.2.2 Cyclomatic Complexity
In the table below, the methods in ​rationally ​that scored higher than 15 on the
Cyclomatic Complexity metric are listed. They did not meet the requirement of scoring
between 2-15. The rows that are highlighted have an exceptionally high (bad) score.

Project Namespace Method Cyclomatic
Complexity Score

Rationally.Visio RationallyAddIn Application_CellCh
angedEvent(Cell) :
void

44

Rationally.Visio RationallyAddIn Application_QueryC
ancelSelectionDelet
e(Selection) : bool

18

Rationally.Visio RationallyAddIn Application_ShapeA
ddedEvent(Shape) :
void

26

Rationally.Visio.Ev
entHandlers.Marke
rEventHandlers

MoveUpAlternative
Handler

Execute(Shape,
string) : void

34

Rationally.Visio.Ev
entHandlers.Marke
rEventHandlers

MoveDownAlternat
iveHandler

Execute(Shape,
string) : void

34

Rationally.Visio.Eve
ntHandlers.MarkerE
ventHandlers

AddForceHandler Execute(Shape,
string) : void

17

Rationally.Visio.Vie
w

TextLabel Repaint() : void 19

Rationally.Visio.Vi
ew

RationallyView AddToTree(Shape,
bool) : void

38

Rationally.Visio.Vie
w.Forces

ForceHeaderRow Repaint() : void 26

Rationally.Visio.Vie
w.Forces

ForceTotalsRow Repaint() : void 27

Rationally.Visio.Vie
w.Forces

ForceContainer Repaint() : void 27

Rationally.Visio.Vie
w.Forces

ForcesContainer ForcesContainer(Pa
ge, Shape)

23

Rationally.Visio.Vie
w.Forces

ForcesContainer Repaint() : void 20

Rationally.Visio.Vie
w.Forces

ForcesContainer AddToTree(Shape,
bool) : void

20

Rationally.Visio.Vie
w.Forces

ForceTotalCompone
nt

Repaint() : void 18

Rationally.Visio.Vie
w.Documents

RelatedDocumentC
ontainer

RelatedDocumentC
ontainer(Page,
Shape)

18

The two most interesting results in this table are the methods
RationallyAddIn.Application_CellChangedEvent ​and ​RationallyView.AddToTree.​ These
methods score 44 and 38 respectively on the Cyclomatic Complexity metric, but they are
also two of the three methods that came close to failing the requirement set for the MI
metric.

The first mentioned method is responsible for handling the event of a ShapeSheet-cell
changing value. For almost all other event handlers, we created a registry object that
redirects each different type of a certain event to a specific handler, embedding the logic for
different cases in different classes. For the ​CellChanged​ event, however, this has not been
done yet. The large amount of unextracted logic explains the bad score of this method.

The second mentioned method (​AddToTree​) is part of the class that represents the root
node of the view tree. The method is currently responsible for evaluating an incoming ​Shape
and deciding where and as what the shape needs to be placed into the view tree. Again, the
large amount of unextraced logic is a problem with this method.

6.2.3 Class Coupling
As described in the requirements section, we aimed for all our methods to score a value of
10 or lower on the class coupling metric. Unfortunately, a lot of methods did not pass this
requirement. 152 methods scored 11 or higher on the class coupling method and some of
them event scored 20 or higher. This last category is listed in the table below.

Namespace Class Method Class
Coupling
Score

Rationally.Visio RationallyAddIn Application_CellChangedEv
ent(Cell) : void

32

Rationally.Visio
.View.Informati
on

InformationContainer InformationContainer(Page,
Shape)

27

Rationally.Visio RationallyAddIn RegisterMarkerEventHandle
rs() : void

25

Rationally.Visio
.View.Forces

ForceContainer ForceContainer(Page,
Shape)

25

Rationally.Visio RationallyAddIn Application_QueryCancelSel
ectionDelete(Selection) :
bool

24

Rationally.Visio RationallyAddIn RationallyAddIn_Startup(obj
ect, EventArgs) : void

24

Rationally.Visio
.View.Forces

ForceContainer Repaint() : void 24

Rationally.Visio
.View.Forces

ForcesContainer ForcesContainer(Page,
Shape)

24

Rationally.Visio
.EventHandlers

DeleteAlternativeEventHa
ndler

Execute(RationallyModel,
Shape) : void

24

.DeleteEventHa
ndlers

Rationally.Visio
.Forms.Alternat
iveStateConfig
uration

TableLayoutAlternativeSt
ates

Save() : void 24

Rationally.Visio
.View.Forces

ForceHeaderRow Repaint() : void 23

Rationally.Visio
.View.Forces

ForceTotalsRow Repaint() : void 23

Rationally.Visio
.View.Alternativ
es

AlternativeShape AlternativeShape(Page,
Shape)

23

Rationally.Visio
.View.Documen
ts

RelatedDocumentContain
er

RelatedDocumentContainer(
Page, Shape)

23

Rationally.Visio RationallyAddIn Application_ShapeAddedEv
ent(Shape) : void

22

Rationally.Visio
.EventHandlers
.MarkerEventH
andlers

MoveUpAlternativeHandle
r

Execute(Shape, string) :
void

22

Rationally.Visio
.EventHandlers
.MarkerEventH
andlers

MoveDownAlternativeHan
dler

Execute(Shape, string) :
void

22

Rationally.Visio
.View

RationallyView AddToTree(Shape, bool) :
void

22

Rationally.Visio
.Forms

ProjectSetupWizard submit_Click(object,
EventArgs) : void

22

Rationally.Visio
.EventHandlers
.DeleteEventHa
ndlers

DeletePlanningItemEvent
Handler

Execute(RationallyModel,
Shape) : void

21

Rationally.Visio
.EventHandlers
.DeleteEventHa
ndlers

DeleteStakeholderEventH
andler

Execute(RationallyModel,
Shape) : void

21

Rationally.Visio DeleteForceEventHandler Execute(RationallyModel, 21

.EventHandlers

.DeleteEventHa
ndlers

Shape) : void

Rationally.Visio
.EventHandlers
.DeleteEventHa
ndlers

DeleteRelatedDocumentE
ventHandler

Execute(RationallyModel,
Shape) : void

21

Rationally.Visio
.EventHandlers
.MarkerEventH
andlers

EditRelatedFileHandler Execute(Shape, string) :
void

20

Rationally.Visio
.Forms

ProjectSetupWizard InitializeComponent() : void 20

Rationally.Visio
.View.Alternativ
es

AlternativesContainer AlternativesContainer(Page,
Shape)

20

Rationally.Visio
.View.Documen
ts

RelatedDocumentsContai
ner

RelatedDocumentsContaine
r(Page, Shape)

20

Rationally.Visio
.View.Planning

PlanningContainer PlanningContainer(Page,
Shape)

20

Rationally.Visio
.View.Planning

PlanningItemComponent PlanningItemComponent(Pa
ge, Shape)

20

Rationally.Visio
.View.Stakehol
ders

StakeholdersContainer StakeholdersContainer(Pag
e, Shape)

20

After taking a closer look at the methods in the table above, a pattern emerges. Most
methods fall in 1 of 2 categories: container constructors and delete handlers. Both types of
methods deal with a complex operation on a composition structure: either creating one or
deleting one. Secondly, they have to perform this operation on the model of our program and
the view of our program. Because most child components are different types and most
containers contain around 4 childs (of different types) this quickly adds up to the score on
the class coupling method. Since the child classes only exist within their parent container,
this coupling does not have many potential side effects to other classes in the future.

6.2.4 Recommendations
The performance of ​rationally ​is sufficiently good, but not great. However, there is a
clear way to improve the performance of ​rationally​. ​Therefore, to optimise performance
we suggest to:

1. Optimise delete/create operations.

2. Avoid manually creating shapes and better reuse/configure stencils

As mentioned in section 6.2.2, there are two methods that are clear candidates for
refactoring. The first being, ​Application_CellChangedEvent​. The method can be restructured
to the same registry structure that other event handlers use in ​rationally​.

To optimize maintainability, we suggest to also refactor the ​AddToTree​ method. Its logic
should be extracted to possible classes representing subelements of the tree. This would
improve overall coherence in a way that parent A (child of root) is responsible for validating
its own children and adding itself to the tree instead of the root class being responsible for
that.

To go even further in trying to achieve better coherence, we recommend merging the view
and the model that are now being maintained in ​rationally​. As described in section
5.2.1.2, the class AlternativeState, is responsible for its own state, instead of it being stored
in the model. A good way to reduce complexity and improve coherence would be to further
implement this throughout all view classes, making the model obsolete, as well as the
(complex) synchronization between view and model.

rationally​’s​ ​event handlers perform a lot of list operations on the view, mostly consisting
of searches in that tree. The combined model-view classes allow for tailored properties that
encapsulate this logic. The RationallyView class can have properties for all enhanced
containers that directly return those containers. That means that event handlers do not have
to search the tree for these containers (and check if they even exist), but can just use the
properties. These properties also reduce the amount of casting that is now often required in
event handlers, since the properties can return the correct type.

Another way to reduce complexity in the code is described in SD11 and has to do with
finding a more clever way to rebuild the View tree. It should be possible to make stub
components (shapes that function as parent node for other shapes in the view tree while the
actual parent is not yet included in the view tree) obsolete, reducing the amount of classes
and logic in the project.

6.2.5 Stability
During the whole process of developing ​rationally​, stability has been an underlying
requirement. Evaluating all the functionalities that ​rationally ​offers in its current state, it
can be concluded that exceptions rarely occur: less than 1 exception per session. All typical
flows (CRUD operations on enhanced containers) do not yield errors, nor do undo/redo
operations of those flows. The stability of ​rationally ​can thus be marked as good.

7 Future Improvements
rationally ​could be subject to several types of improvements in the future. Since
rationally​’s​ ​aimed application is being used in companies as a productive tool to
produce documentation on decisions, we believe a server would be good addition to store
decisions on. Since its aimed users work in the embedded system industry, we suggest an
increase in flexibility as well and finally since ​rationally ​might be subject to additions
and changes we suggest to improve the maintainability, stability and performance of
rationally​. In the following sections we will elaborate on these improvements.

7.1 Server
rationally ​would benefit a lot from having a central server on which decisions can be
stored. This section proposes a high-level architecture for such a server, it will describe
benefits of it and finally some foreseeable technical implications of it.

7.1.1 Architecture

In this section, we will briefly describe a possible stack for a
rationally ​server. We propose a lightweight application, that will
offer a REST API that the ​rationally ​add-in can communicate
with. We propose REST because it uses HTTP as it was intended
and because it is very modular and extensible.

The communication between add-in and server should still be
investigated later since it is a complex issue. Maybe entire Visio files
will be sent, but maybe a leaner way of messaging can be found.
What will probably be needed is an (un)marshalling module that will
be responsible for deserializing data (JSON/XML) to objects and the
other way around.

The API would likely offer several operations that would each be
encapsulated in a controller module. These modules will use the
(un)marshalling module on one side and persist objects to/read data
from the database using an ORM. We propose to use an ORM since
it provides an abstraction for communicating with a database.

Figure 15:​ Proposed stack for a ​rationally ​server.

7.1.2 Benefits

A server would allow for different kind of benefits. The first would be version control and
backing up, allowing the user to control the made changes and possibly roll them back if
needed. Since decision making and documenting can be an iterative process, this would be
a very useful feature. This would also allow the user to view the changes made to the
decision, thereby offering a chronological view.

In addition, a server could store a lot of information about possible stakeholders, related
decisions and documents. The list of possible stakeholders could even be collected from the
employees database of the company the user works for, allowing for closer integration of
rationally ​in the workflow. Storing related documents and decisions would make them
selectable from within the ​rationally ​add-in as related information. This way, a decision
relationship view can be made, showing how different decisions influence and affect each
other. It would also allow for the user to search for a certain decision or decisions related to
a subject.

7.1.3 Implications
A server would not only bring benefits to the ​rationally ​project, but also some extra
complexity. Every operation that ​rationally ​offers to manipulate a decision sheet will
also at some point have to be communicated to the server. The model also needs to be
serializable in order to send it to and receive it from the server. New functionality will be
required to set up communication with a specific server from within ​rationally​ and finally
security will start to play a role: not only for communication but also with regard to
(temporary) files that will be stored on a user’s computer and not only on the server.

7.1.4 Discussion
Although a basic idea for a server has been described in this section, some questions still
need to be answered. The communication between server and add-in need a protocol: what
needs to send, when should it be send and what security forms are required.

On top of that, the synchronization is still not thought through. Will it be possible for multiple
users to work on the same decision at a time? This would bring a lot of complexity to the
project and requires clear constraints and conflict handling.

Besides the communication, the functionality of the server is not clearly defined yet. What
operations should be offered to the users? We proposed searching and reusing components
but maybe there are more possibilities.

To summarize, the server has a lot of potential when it comes to offering new features but it
requires a lot of complex questions to be answered first. Even the basic functionality of it will
come with a high workload to develop, but it will yield a very big addition to the ​rationally
project.

7.2 Flexibility

rationally ​would also benefit a lot from an increase in flexibility. Currently, more than 3
alternatives at the same time or grouping shapes together can break the layout provided by
rationally. ​In additional, multiple instances of the same container are not allowed.
In the future, these would be aspects of the add-in that can be changed in order to improve
the flexibility of the application and would make it more convenient to use.

7.3 Refactoring

Finally, as described in section 6.2.4, there are quite a few refactorings still to be done.
Doing these refactorings would improve the stability, performance and maintenance of the
application and should therefore be a priority for the continued development of
rationally.

8 Conclusions
This report provided a detailed description of ​rationally​. It included an overview of the
requirements for ​rationally​, use cases for it and decisions that were made in the process
of developing it. Furthermore, an overview of ​rationally​’s architecture was provided,
requirements were validated using metrics and future improvements for the application were
suggested.

rationally ​is an easy to use tool for architects in various disciplines and it provides a
way for architects to document decisions in a complete yet efficient manner: ​rationally
combined multiple architectural views into one decision view and offers several ways to
efficiently document decisions like a wizard and drag and drop functionality. It also integrates
well in Visio in a way that all the original functions of Visio can still be used properly,
including undo and redo operations. ​rationally ​is thus a complete, flexible and useful
tool for architects.

Although the performance of ​rationally ​is not great, it is sufficient with respect to our
requirements. The results regarding metric scores were good for the maintainability index,
cyclomatic complexity and class coupling. There were, however, certain areas that scored
lower. These areas are the handling of generic frequently occurring events and building the
view tree. The results are thus predominantly good.

Even though our verification and validation yielded good results, there is still room from
improvement in ​rationally​. The two forementioned worse scoring areas can be
refactored, the model and view of the application can be combined and after that event
handling can be moved to event-related model components. Lastly, a server on which
decisions can be stored on would be a good addition to the project.

All in all, ​rationally ​may not be production ready but it is a good example of how
decision sharing can be improved. Throughout developing it, we gained a better
understanding in what a decision consists of, how decisions are shared and how they can be
optimally documented.

We believe that ​rationally ​could be a useful tool for the embedded system industry in a
way that it could improve decision sharing and documentation, but we also suggest to
empirically validate ​rationally ​as part of a case study to validate its value for the
industry.

References
[1] Peng Liang, Anton Jansen, and Paris Avgeriou. Collaborative Software Ar-
chitecting through Knowledge Sharing. Collaborative Software Engineering,
pages 343–367, 2010.

[2] “Microsoft Visio Market Share, Customers and Competitors” - HG Data -
https://discovery.hgdata.com/product/microsoft-visio​ [accessed: 04-jul-2017]

[3] “Code Metrics Values | Microsoft Docs” - Microsoft -
https://docs.microsoft.com/nl-nl/visualstudio/code-quality/code-metrics-values​ [accessed:
05-jul-2017]

[4] A.H. Watson, T.J. McCabe, “Structured Testing: A Testing Methodology Using the
Cyclomatic Complexity Metric” 1996

[5] Shatnawi, R. (2010). A Quantitative Investigation of the Acceptable Risk Levels of
Object-Oriented Metrics in Open-Source Systems (IEEE Transactions on Software
Engineering, Vol. 36, No. 2).

[6] ​ISO/IEC/IEEE 42010:2011 - Systems and software engineering - Architecture
description"

[7] U. van Heesch, P. Avgeriou, and R. Hilliard, “A documentation framework for
architecture decisions,” The Journal of Systems and Software, 2011.

https://discovery.hgdata.com/product/microsoft-visio
https://docs.microsoft.com/nl-nl/visualstudio/code-quality/code-metrics-values
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50508
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50508

