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Abstract  
The project considers the stabilization of a Segway (two-wheeled inverted pendulum). Throughout the 
project, a linearized model of a Segway system is used and assumed to be a true representation of the 
Segway.  The first part of the project consists in the design of a Linear-Quadratic Regulator (LQR), which 
stabilizes the Segway in its upward configuration. In the continuation of the project, a so called 
‘automatic pilot’ is implemented into the systems controller, stabilizing the system at a desired velocity 
moving in a straight line. In the project, the ability of the Segway to turn is not considered. Two 
controllers are proposed for this trajectory tracking. All three controllers are extensively evaluated on 
robustness to disturbances. In the final part of the project, the theoretical results are validated through 
simulations that represents different realistic scenarios. Furthermore, the performance of each control 
approach is evaluated.  
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1. Introduction 

1.1. Motivation 
The Segway is a vehicle for short distance personal transportation. Moving the Segway that is currently 

available on the market is done by the user moving his balance forward and backward. The first patent 

for the Segway was filled in 1994 and granted in 1997 (USA Patentnr. 5,701,965, 1997). After this first 

patent, many patents followed (Segway Inc., 2016). The Segway was first introduced to the public in 

2001, after which the first Segways were delivered to customers in 2002 (Segway Inc., 2006). 

Nowadays, these vehicles are widely used for various applications, for example in patrol purposes, in 

the medical community or in the tourism sector. When first brought to the market, the Segway 

inventor Dean Kamen expected to be selling 10,000 units a week by the end of 2002 (Golson, 2015). 

According to Forbes, however, Segway sold less than 30,000 units in over six years (Schroter, 2007). 

Thus, it appears that the sales numbers of the Segway were rather disappointing. According to 

literature (Golson, 2015), safety issues can mainly be blamed for the failure of the Segway as a product. 

The most notorious example of this is the death of James W. Heselden, the owner of the Segway 

corporation, after he steered his Segway of a cliff in 2010 (Williams, 2010). Another example of an 

accident which made the news was at the 2015 World Championships Athletics, were cameraman Song 

Tao of China’s CCTV drove his Segway into Olympic athlete Usain Bolt (Rubinroit, 2016).  

As mentioned previously, sales of the Segway have been far below expectation in recent years. The 

most likely cause of this, is the high amount of accidents involving Segways. Many websites claim that 

riding a Segway is intuitive and easy to learn (Segway tours Copenhagen, sd). However, when the 

Segway is investigated more closely, it seems that it is not that intuitive at all for new users.  

1.2. Preliminary problem statement 
The Segway system has been under production for years, and the aim of this work will not be to 

reproduce a controller comparable to the controller that is present in current Segways. Because of its 

disappointing sales, however, the Segway system seems to be in need for a change. In this project, the 

aim is to design a controller that ensures the safety of the users no matter their experience in 

interacting with the system.  

Towards this end, an automatic pilot function to follow a simple trajectory, namely, a straight line is 

proposed in this project. Therefore, the control objective is twofold: first, if the automatic pilot 

function is activated, the Segway must move forwards at a constant velocity even in presence of slopes. 

Second, if the automatic pilot is not activated, the Segway must remain vertically stable even in 

presence of small disturbances. The presence of an automatic pilot will allow new users who are 

inexperienced with the Segway (for example tourists) to use the Segway safely, without the need for 

extensive practicing.  

Thus, the preliminary problem statement is defined as: ‘A controller has to be designed which stabilizes 

the Segway system while maintaining a constant desired velocity and meeting safety requirements, in 

order to improve the safety of the Segway’. The goal corresponding to this problem statement is 

defined as follows: ‘To design a control law, consisting of a regulator with integral action, such that the 

Segway follows a desired trajectory rejecting disturbances’.   

To meet this goal, the designed controller consists of two parts; one for vertical stabilization and one 

for maintaining constant velocity. The controller for vertical stabilization was specified to stabilize the 

Segway model from an initial error angle of 0.3 𝑟𝑎𝑑 within a time limit of five seconds. The controller 

for maintaining constant velocity was specified to at the very least stabilize the system at a velocity of 

2 𝑚/𝑠, from the initial condition 𝑧𝑖 = [0 0 0 0]𝑇. The allowable overshoot was specified to be 
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20%, the allowable rise time 1 second and the settling time 3.5 seconds. The steady state error should 

converge to zero. These controller requirements consider the velocity response of the system in 

absence of disturbances.  

1.3. Research questions 
In order to solve the problem in the problem definition and reach the goal of the project, the following 

research questions should be answered. For certain research questions, sub questions were defined in 

order to be able to answer these research questions.  

How can the system of the Segway be modeled? 

 Of what components does the Segway system exist (actuator/ sensors)? 

 How can the system be linearized and modeled in state-space form? 

How can this system be controlled in terms of upward configuration? 

How can this systems velocity be regulated while maintaining upward stability using integral control? 

 What kind of reference results in a stable system at the desired velocity? 

 What type of disturbances can be expected? 

 How to design a control law rejecting these disturbances? 

1.4. Preview 
This report sets off with the description of the problem modelling approach in the background section. 

Secondly, the system and main assumptions in this work will be treated. Next, the modelling of the 

system will be discussed. Then, stabilization of the system will be elaborated on, as well as on the 

implementation of the automatic pilot in the system (trajectory tracking). After that, the controller’s 

rejection of disturbances will be considered. Finally, this report concludes by a brief conclusion and 

recommendations for future research.  
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2. Background 
The Segway (or two-wheeled inverted pendulum) is a vehicle which is a popular system in control 

theory (Boubaker, 2012). This popularity arises from the fact that the Segway is unstable without 

control, but with (relatively simple) modelling and control it can be stabilized. The modelling of the 

Segway can be done as a simple inverted pendulum, making it a good exercise for control engineering 

students, for example in tutorials (University of Groningen, 2017). However, the Segway can also be 

modelled more extensively containing parameters of the Segway motor or the Segways environment 

(Younis & Abdelati, 2009) (Castro, Modeling and dynamic analysis of a two-wheeled inverted-

pendulum (masters thesis), 2012). In this thesis, a linearized model of the Segway which takes the 

voltage applied to the DC-motor as an input will be used. The main objective is to design a controller 

to regulate the input voltage.  

The controllers designed were tested on performance extensively by modelling in Matlab Simulink 

(version 2018a). The Simulink solver method used was fixed step, ode8 (Dormand & Prince, 1980). For 

the performance of the controllers, model responses were evaluated based on the transient response 

properties: rise time, overshoot, settling time, and steady-state error. Rise time refers to the time 

required for the signal to rise from 10 % of the desired signal gain to 90 % of the desired signal rise. 

Overshoot refers to the maximum percentage by which the signal exceeds its set target. Settling time 

refers to the time, starting from the moment the signal passes the mid reference level (50 %), required 

before the signal remains within a range of 2 % of the final value. The steady-state error is defined as 

“the difference between the desired final output and the actual one” (Lipták, 2003).  
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3. System and main assumptions 

3.1. Sensors and actuators 
The Segway in this project is assumed to contain two sensors. The first sensor is a gyroscope measuring 

the error angle (𝜃, figure 3.1) between the direction of the gravitational force and the axis 

perpendicular to the Mats of the Segway (the base on which the user is standing (Segway Inc. , 2014)). 

The gyroscope is a sensor which inevitably contains noise in its measured signal.  

The second sensor is a tachometer, 

measuring the velocity of the Segways 

wheels. From the velocity of the wheels, 

the velocity of the Segway (𝑥̇, derivative of 

𝑥, see figure 3.1) is calculated. Because the 

trajectory in this work is a straight line, the 

velocity of both wheels is identical. Should 

the ability of turning be implemented into 

the system, the velocity would be 

measured by two tachometers. The velocity 

is then equal to the average of the two 

measured velocities. The tachometer is 

assumed to contain noise in its 

measurement signal as well.  

The actuators considered are two DC-

motors, and each motor drives its own 

wheel. As the option of turning was not 

considered, the force applied to the surface 

by the wheels was equal to double the 

torque generated by one DC-motor times 

the radius of the wheels. The maximum 

voltage allowed over the DC-motors was 48 

volts.  

3.2. Assumptions 
The assumptions done prior to starting this project are listed below.  

 The Segway is moving in a straight line; the possibility of turning is not considered.  

 The sensors in the Segway measure the velocity and the error angle of the system. 

 The DC-motors have a saturated voltage between −48 and +48 volts.  

 The wheels of the Segway remain in contact with the ground. 

 There is no slipping of the wheels. 

 Segway users do not express unexpected behaviour and follow the user manual provided by 

Segway. For the model, this means the user does not move; he or she is modelled as a rigid 

mass.  

 A typical initial error angle resulting from a user mounting the Segway is 10 degrees or less.  

Figure 3.1: Solidworks model of a Segway with indicated distance (𝑥) 
and error angle (𝜃) 
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4. System modeling 

4.1. State-space model 
The model of the system is largely based on the Grasser model (Grasser, D'Arrigo, Colombi, & Rufer, 

2002) and the Younis model (Younis & Abdelati, 2009). The model used is derived from the linearized 

equations of motion of a two-wheeled inverted pendulum and the linear model for a DC-motor (more 

on the derivation of the force generated by the DC-motors in section 11.4). The dynamics of these 

systems are modeled separately in the beginning but are brought together in two equations of motion, 

resulting in the model of the system. States of the model are the distance covered by the Segway (𝑥), 

velocity of the Segway (𝑥̇), error angle of the Segway compared to the upright position (𝜃), and angular 

velocity of the error angle (𝜃̇). The input to the system is given by the voltage applied to the two DC-

motors; each wheel is connected to its own DC-motor. The model of the system assumes the Segway 

to move in a straight line. Thus, there is no differential mode present that makes the Segway turn. 

Furthermore, the model assumes the Segway’s wheels to stay in contact with the ground without 

slipping.  

The linearized state-space equation for the modelled Segway system is a state-space model of the 

form;  

 𝑧̇ = 𝐴𝑧 + 𝐵𝑢 

𝑦 = 𝐶𝑧 
(4.1) 

With;  

 

𝑧 = [

𝑥
𝑥̇
𝜃
𝜃̇

] (4.2) 

   
 

𝐴 =

[
 
 
 
 
 
0 1 0 0

0
2𝑘𝑚𝑘𝑒(𝑀𝑝𝑙𝑟 − 𝐼𝑝 − 𝑀𝑝𝑙2)

𝑅𝑟²𝛼

𝑀𝑝
2𝑔𝑙²

𝛼
0

0 0 0 1

0
2𝑘𝑚𝑘𝑒(𝑟𝛽 − 𝑀𝑝𝑙)

𝑅𝑟²𝛼

𝑀𝑝𝑔𝑙𝛽

𝛼
0]
 
 
 
 
 

 (4.3) 

   
 

𝐵 =

[
 
 
 
 
 

0
2𝑘𝑚(𝐼𝑝 + 𝑀𝑝𝑙2 − 𝑀𝑝𝑙𝑟)

𝑅𝑟𝛼
0

2𝑘𝑚(𝑀𝑝𝑙 − 𝑟𝛽)

𝑅𝑟𝛼 ]
 
 
 
 
 

 (4.4) 

   
 𝐶 = [

0 1 0 0
0 0 1 0

] (4.5) 

And;  

 
𝛼 = 𝐼𝑝𝛽 + 2𝑀𝑝𝑙2 (𝑀𝑤

𝐼𝑤
𝑟2

) (4.6) 

   
 

𝛽 = 2𝑀𝑤 +
2𝐼𝑤
𝑟2

+ 𝑀𝑝 (4.7) 
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Table 4.1: Definition of system parameters (Younis & Abdelati, 2009) 

Parameter Definition  Value 

𝒙 Distance 𝑚  

𝒙̇ Velocity 𝑚/𝑠  

𝒙̈ Acceleration 𝑚/𝑠²  

𝜽 Error angle 𝑟𝑎𝑑  

𝜽̇ Error angular velocity 𝑟𝑎𝑑/𝑠  

𝜽̈ Error angular acceleration 𝑟𝑎𝑑/𝑠²  

𝒖 Voltage applied to the DC-motor 𝑉  

𝒌𝒎 Constant of the motor torque 0.869 𝑁𝑚/𝐴  

𝒌𝒆 Constant of the motor’s back-EMF 0.083 𝑉𝑠/𝑟𝑎𝑑  

𝒍 Length of the pendulum 1.7 𝑚  

𝒓 Wheel radius 0.2 𝑚  

𝑹 Resistance of the motor 1 𝛺  

𝑴𝒑 Mass of the pendulum 85 𝑘𝑔  

𝑰𝒑 Moment of inertia of the pendulum 68.98 𝑘𝑔 ∙ 𝑚²  

𝑴𝒘 Mass of the wheel 3.5 𝑘𝑔  

𝑰𝒘 Moment of inertia of the wheel 0.07 𝑘𝑔 ∙ 𝑚²  

𝒈 Acceleration of gravity 9.81 𝑚/𝑠²  

The system states used in the model, along with the values of parameters which remain constant, are 

displayed in table 4.1. The system parameter values in table 4.1 were considered to be the same as in 

the article by Younis and Abdelati (Younis & Abdelati, 2009). When the parameter values from table 

4.1 were plugged into equations (4.3)-(4.7), and equations (4.2)-(4.7) were plugged into equation (4.1) 

the following state-space model in equation (4.8) was obtained.  

 

[

𝑥̇
𝑥̈
𝜃̇
𝜃̈

] =  [

0 1 0 0
0 −0.1074 21.3441 0
0 0 0 1
0 −0.0471 14.1063 0

] [

𝑥
𝑥̇
𝜃
𝜃̇

] + [

0
0.2587

0
0.1136

]  𝑢 

𝑦 = [
0 1 0 0
0 0 1 0

] [

𝑥
𝑥̇
𝜃
𝜃̇

] 

(4.8) 

4.2. Stability in the open-loop system 
Following from theory, a state space system is asymptotically stable if and only if the eigenvalues of 

𝐴 all have a strictly negative real part, and is unstable if at least one eigenvalue of A has a strictly 

positive real part (de Persis, Control Engineering – Lecture 4, 2017).  

 

𝑒𝑖𝑔(𝐴) = [

0
−3.79
−0.04
3.72

] (4.9) 
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Using Matlab 2018a, the eigenvalues of the open loop system matrix 𝐴 were calculated as in equation 

(4.9). As predicted, the open loop was not stable, as the fourth eigenvalue had a positive real part.  

4.3. Open-loop Simulink model 
The open-loop state-space matrices obtained (𝐴, 𝐵, 𝐶, 𝐷) were inserted into the program Matlab 

2018a. The open-loop model was then produced in Matlab Simulink (version 2018a), as illustrated in 

figure 4.1.  

 

Figure 4.2: Open-loop state space system in Matlab Simulink 
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5. Selection of control strategy 
Before designing a controller, the control strategy was decided on. First of all, the vertical stabilization 

was considered. It was decided that the upward stabilization of the Segway in the equilibrium point 

(𝑧𝑒 = [0 0 0 0]𝑇) should be optimal. In order to achieve this, a Linear Quadratic Regulator (LQR) 

was proposed, as described in the next section.  

For trajectory tracking, the system is required to stabilize at a desired reference velocity (𝑧 =

[0 0 0 0]𝑇). It was required that the controller would be able to reject constant disturbances. For 

rejecting disturbances while maintaining a constant velocity, integral action in the controller was 

required (Franklin, Powell, & Workman, 1990). In order to apply integral action in the controller, first, 

the method of integral control via linearization (Khalil, 1996) was considered. This approach uses LQR 

not only for the error of the states, but also for the integrated errors, by using an augmented system. 

This augmented system contains both the states, as well as the desired states’ integrated error, 

resulting in a LQR controller with integral action. However, when trying this approach to control both 

the error angle and the velocity of the system, this method turned out to result in an uncontrollable 

model, implying that this approach would lead to instability of the closed-loop system. The only error 

which could be integrated resulting in a controllable system was that of the position. Although this 

type of control was not as optimal as when both the error velocity and the error angle could be 

integrated, this controller was still evaluated based on performance.  

Because the integral control via linearization method was not as applicable as desired, other methods 

were evaluated. In the end, it was chosen to design the controller such that the upward stabilization 

of the system at velocity equal to zero was done by a LQR controller, while the system stabilization at 

a desired velocity was done by a PID regulator (over the position error of the Segway) combined with 

the LQR controller, like in the paper ‘Optimal Control of Nonlinear Inverted Pendulum System Using 

PID Controller and LQR: Performance Analysis Without and With Disturbance Input’ (Prasad, Tyagi, & 

Gupta, 2015). In this PID the integral of the position was computed by using the method of integral 

control, using an augmented matrix like in the controller discussed before. As though it would seem 

applying two controllers to a system at the same time would result in the controllers counteracting 

each other, by tuning of the PID satisfactory results were obtained from the linearized model.  

The LQR controller for vertical stabilization, as well as the LQR controller with integral action and the 

PID+LQR controller for trajectory tracking were extensively tested on performance.  
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6. LQR control 

6.1. LQR design 
For the system to return to its equilibrium position (𝑧𝑒 = [0 0 0 0]𝑇) in an optimal way, a linear-

quadratic regulator (LQR) was implemented into the system. The LQR controller consists of a feedback 

gain which returns the system to its equilibrium position while minimizing the ‘cost’. Thus, the LQR is 

an optimal controller, as it minimizes cost. The ‘cost’ in this system is the error of actual states 

compared to the desired states. For example when we desire to stabilize the system at a velocity of 

3 𝑚/𝑠 (10.8 𝑘𝑚/ℎ) and the current velocity is 2 𝑚/𝑠 (7.2 𝑘𝑚/ℎ), the velocity error is 1 𝑚/𝑠 

(3.6 𝑘𝑚/ℎ). In the first part of the project we desire to stabilize the system around the equilibrium 

position. Thus, the error of any state is equal to the states value, i.e. 𝑒𝜃 =  𝜃.  

 
𝐽 =  ∫[𝑧(𝜏)𝑇𝑄𝑧(𝜏)

∞

0

+ 𝑢(𝜏)𝑇𝑅𝑢(𝜏)]𝑑𝜏  (6.1) 

In the quadratic cost function in equation (6.1), the cost assigned to each state is given by the 𝑄 matrix, 

while the value of 𝑅 assigns a cost to the input signal.  

 A𝑇P +  PA −  PBR−1B𝑇P +  Q =  0  (6.2) 
   
 K =  R−1B𝑇P (6.3) 

The cost matrices (𝑄 and 𝑅) are then plugged in to the Algebraic Riccati Equation (6.2), in order to find 

𝑃, where 𝑃 = 𝑃𝑇 > 0. The found 𝑃 matrix is then plugged in to equation (6.3), obtaining the LQR 

feedback gain 𝐾.  

The LQR controller that was proposed is essentially a function of the cost matrices. Thus, the selection 

of values for the cost matrices had a large influence on the quality of the resulting LQR control law.  

6.1.1. Cost matrix and gain vector design 
The values of the 𝑄 and 𝑅 matrices in equation (6.1) were computed using multiple methods (Murray, 

2006). From these methods, the method resulting in the best system response to an initial error angle 

of 0.3 𝑟𝑎𝑑 (𝑧𝑖 = [0 0 0.3 0]𝑇) was selected based on rise time, overshoot and settling time. The 

initial angle of 0.3 𝑟𝑎𝑑 was chosen based on the assumption that the initial error angle would never 

be greater than this. This section discusses the design of the cost matrices 𝑄 and 𝑅.  

Simple cost matrix design 

For this method, The Q and R matrices where chosen as in equations (6.4) and (6.5). 

 

𝑄 =  [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] (6.4) 

   
 𝑅 = 𝜌[1] (6.5) 

In order to obtain a better response, 𝜌 could be varied and was chosen as 𝜌 = 0.0001. After plugging 

these cost matrices into equation (6.1), the cost function is obtained as in equation (6.6).  

 
𝐽 =  ∫[𝑥(𝜏)2

∞

0

+ 𝑥̇(𝜏)2 + 𝜃(𝜏)2 + 𝜃̇(𝜏)2 + 𝜌𝑢(𝜏)2]𝑑𝜏  (6.6) 
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After plugging the cost matrices into equation (6.2), and plugging the obtained matrix 𝑃 into equation 

(6.3), the LQR feedback gain vector was obtained as in equation (6.7). The models response to an initial 

error angle of 0.3 𝑟𝑎𝑑 is displayed in figure 6.1 below.  

 K = [−100 −198.4 1700 747.5] (6.7) 

 

Figure 6.1: Systems response to an initial angle of 0.3 𝑟𝑎𝑑 with an LQR controller based on simple design 

Diagonal weights 

Using this method, the design of the cost matrices was based on the allowable error of all states 

(𝑒𝑖,𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒) and the allowable value of the input (𝑉𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒). The allowable errors were based on the 

maximum initial conditions for which the linearized Segway system remained stable using an LQR 

controller based on values for the Q and R values found in literature (Vinodh Kumar & Jerome, 2013). 

These values where modified to be more realistic in a real Segway, as the linearized model is only valid 

for a tight area around the equilibrium point (𝑧𝑒 = [0 0 0 0]𝑇). The value for the allowable input 

arises from the fact that the motor has a saturation between −48 and +48 volts.  

 𝑒𝑥,𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 = 1 𝑚 (6.8) 
   
 𝑒𝑥̇,𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 = 1 𝑚/𝑠 (6.9) 
   
 𝑒𝜃,𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 = 0.3 𝑟𝑎𝑑 (6.10) 
   
 𝑒𝜃̇,𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 = 0.8 𝑟𝑎𝑑/𝑠 (6.11) 

   
 𝑉𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 = 48 𝑉 (6.12) 

The allowable errors and the allowable input used to compute the 𝑄 and 𝑅 matrices for the LQR 

controller are given in equations (6.8)-(6.12). How the 𝑄 and 𝑅 matrices were designed using this 

method will be described below. 



11 
 

 

𝑄 =  [

𝑞𝑥 0 0 0
0 𝑞𝑥̇ 0 0
0 0 𝑞𝜃 0
0 0 0 𝑞𝜃̇

] (6.13) 

𝑄 is a diagonal matrix with dimensions 4𝑥4 (equation (6.13)), with the weights to be computed on the 

diagonal. Meanwhile 𝑅 is a scalar which was computed as well.  

 
𝐽 =  ∫[𝑞𝑥  𝑥(𝜏)2

∞

0

+ 𝑞𝑥̇  𝑥̇(𝜏)2 + 𝑞𝜃𝜃(𝜏)2 + 𝑞𝜃̇ 𝜃̇(𝜏)2 + 𝑅𝑢(𝜏)2]𝑑𝜏  (6.14) 

When the matrix in equation (6.13) was inserted into the quadratic cost function (equation (6.1)), the 

resulting cost function was obtained in equation (6.14).  

 𝑞𝑖𝑒𝑖,𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒
2 = 1 (6.15) 

   
 𝑅𝑢² =  1 (6.16) 

Then, values of 𝑞𝑖 and 𝑅 were calculated for any state 𝑖 such that equations (6.15) and (6.16) were 

solved. 

 

𝑄 =  [

1 0 0 0
0 1 0 0
0 0 11.1 0
0 0 0 1.6

] (6.17) 

   
 𝑅 = 0.00043 (6.18) 

The resulting values in the 𝑄 and 𝑅 matrices are in equations (6.17) and (6.18) above. The value of 𝑅 

could still be adjusted in order to tune the input/state balance, however, using trial and error it was 

found that changing the value of 𝑅 did not result in a better controller performance. 

After plugging the cost matrices into equation (6.2), and plugging the obtained matrix 𝑃 into equation 

(6.3), the LQR feedback gain vector was obtained as in equation (6.19). The systems response to an 

initial error angle of 0.3 𝑟𝑎𝑑 is displayed in figure 6.2 below.  

 K = [−48.2 −99.6 965.5 401.7] (6.19) 
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Figure 6.2: Systems response to an initial angle of 0.3 𝑟𝑎𝑑 with an LQR controller based on diagonal weights 

Output weighting  

In this method, 𝑣 = 𝐻𝑧 is the output which is desired to remain small. Thus, the vector 𝐻 had to be 

designed. For the values in 𝐻, the allowable state errors in equations (6.8)-(6.11) where used as in 

equation (6.20).  

 

𝐻 =

[
 
 
 
 
𝑒𝑥,𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒

−2

𝑒𝑥̇,𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒
−2

𝑒𝜃,𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒
−2

𝑒𝜃̇,𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒
−2

]
 
 
 
 

= [

1
1

11.1
1.6

] (6.20) 

   
 

𝑄 = 𝐻𝑇𝐻 = [

1 1 11.1 1.6
1 1 11.1 1.6

11.1 11.1 123.21 17.76
1.6 1.6 17.76 2.56

] (6.21) 

   
 𝑅 = 𝜌 = 0.00043 (6.22) 

Next, the 𝑄 and 𝑅 matrixes were computed as in equations (6.21) and (6.22). The value of 𝑅 can be 

chosen arbitrarily in this method, in order to obtain a good response. Thus, the value of 𝑅 was taken 

from equation (6.18).  

After plugging the cost matrices into equation (6.2), and plugging the obtained matrix 𝑃 into equation 

(6.3), the LQR feedback gain vector was obtained as in equation (6.23). The systems response to an 

initial error angle of 0.3 𝑟𝑎𝑑 is displayed in figure 6.3 below.  

 K = [−48.2 −135.9 1382.2 548.2] (6.23) 
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Figure 6.3: Systems response to an initial angle of 0.3 𝑟𝑎𝑑 with an LQR controller based on diagonal weights 

Cost matrix and gain vector selection 

From the three cost matrices and gain vectors computed previously, the best solution was selected. 

This selection was based on the systems response to an initial error angle of 0.3 𝑟𝑎𝑑 in terms of rise 

time, overshoot and settling time in the Segways velocity. The results are in table 6.1 below.  

Table 6.1: Performance of different LQR designs 

Method LQR feedback gain vector Rise time Overshoot Settling time 

Simple design [−100 −198.4 1700 747.5] 0.42 𝑠 44.85 % 3.48 𝑠 

Diagonal 
weights 

[−48.2 −99.6 965.5 401.7] 0.32 𝑠 37.27 % 4.82 𝑠 

Output 
weighting 

[−48.2 −135.9 1382.2 548.2] 0.48 𝑠 15.88 % 5.75 𝑠 

As can be seen, these controller’s responses were quite different from each other. The controller that 

was selected for the continuation of the project was the LQR feedback gain vector based on the 

diagonal weights method. The resulting full-state feedback law obtained is in equation (6.24) 

 𝑢 = −𝐾𝑧 = 48.2𝑥 + 99.6𝑥̇ − 965.5𝜃 − 401.7𝜃̇ (6.24) 

6.2. LQR closed-loop stability 
When the feedback law in equation (6.24) was substituted back into equation (4.1), the following 

closed loop system was obtained (equation (6.25)):  

 

[

𝑥̇
𝑥̈
𝜃̇
𝜃̈

] = (𝐴 − 𝐵𝐾)𝑧 = [

0 1 0 0
12.4771 25.6658 −228.4663 −103.9368

0 0 0 1
5.4759 11.2641 −95.5295 −45.6153

] [

𝑥
𝑥̇
𝜃
𝜃̇

] (6.25) 

Calculating the closed-loop systems eigenvalues in Matlab 2018a yielded the following results 

(equation (6.26)):  
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𝑒𝑖𝑔(𝐴 − 𝐵𝐾) = [

−14.91
−2.57

−1.23 + 0.14𝑖
−1.23 − 0.14𝑖

] (6.26) 

As can be seen in the above equation, the real parts of the eigenvalues of the closed-loop system (𝐴 −

𝐵𝐾) are all strictly negative. Thus we can say that the closed loop system will be stable when using the 

LQR controller to maintain upward stability of the Segway.  

6.3. LQR implementation 
As the LQR controller was added to the open-loop system, the closed-loop Simulink model in figure 6.4 

below was obtained. A saturation was added in the control signal because the Segway is actuated by 

two 48V DC-motors. Thus, the control signal was saturated between −48 and +48 volts. Note that 

there is no reference present, because the system is stabilized around the equilibrium point (𝑧𝑒 =

[0 0 0 0]).  

 

Figure 6.4: Closed-loop system with LQR control 

The initial states of the Simulink model in figure 6.4 were entered in the integrator block. For the first 

part of the project, the state which was considered was the error angle. This is why it was investigated 

under what maximum initial error angle (with all other initial states at zero) the system would be able 

to maintain vertical stability. This was done by starting in the equilibrium point and gradually increasing 

the initial error angle.  
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Figure 6.5: Systems response to an initial condition of 𝑧𝑖 = [0 0 0.317 0] 

The maximum error angle from which the system stabilized with the LQR controller was 0.317 𝑟𝑎𝑑. 

This is equivalent to roughly 18.1 degrees. Accordingly, the minimal initial error angle from which the 

system stabilized was −0.317 𝑟𝑎𝑑. This is more than sufficient for the user to be able to mount the 

Segway safely. The systems response for an initial error angle of 0.317 𝑟𝑎𝑑 is displayed in figure 6.5.  

The systems limiting factor in terms of stability is the saturation of the motor. Increasing the range of 

this saturation would allow for a larger range of initial error angles from which the system would be 

able to stabilize itself.  

 

Figure 6.6: Control signal response to an initial condition of 𝑧𝑖 = [0 0 0.317 0] 

The control signal corresponding to the initial error angle of 0.317 𝑟𝑎𝑑 is displayed in figure 6.6. The 

blue line represents the input signal, while the orange line represents the saturated input signal. When 

the initial error angle is a little larger than 0.317 𝑟𝑎𝑑 (for example 0.3175 𝑟𝑎𝑑), the input allowed by 
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the saturation is not able stabilize the system. As a result, the control signal will then decrease 

infinitely;  

 lim
𝑡→∞

𝑢 = −∞ (6.27) 

When the initial error angle is more than a little larger than 0.317 𝑟𝑎𝑑 (for example 0.32 𝑟𝑎𝑑 or more), 

the input allowed by the saturation is not powerful enough to stabilize the system and it becomes 

unstable even sooner. This results in the control signal increasing infinitely; 

 lim
𝑡→∞

𝑢 = ∞ 
(6.28) 
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7. Trajectory Tracking 

7.1. Reference position  
For trajectory tracking of the Segway, it is desired that the system does not only stabilize in the vertical 

position (𝜃 = 𝜃̇ = 0), but also to be able to control the position and velocity of the system. In order to 

do so, a reference position (𝑟) is compared to the actual output position. The resulting position error 

(𝑒𝑥) is then added to the output of the LQR gain, resulting in the input signal. The resulting control 

feedback law is in equation (7.1): 

 

𝑢 = −𝐾𝑧 + 𝑒𝑥 = −[−48.2 −135.9 1382.2 548.2] [

𝑥
𝑥̇
𝜃
𝜃̇

] + (𝑥 − 𝑟) (7.1) 

As before, this input signal is then saturated and put through to the open-loop state space system. 

Because the automatic pilot requires the system to stabilize at a continuous velocity, the reference 

position was given by a ramp function. The slope of this ramp function is equal to the desired velocity 

(𝑥̇𝑑). Thus, the desired distance covered (𝑥𝑑) is equal to the value of this ramp input.  

 C1 = [0 1 0 0] (7.2) 
   
 C2 = [0 0 1 0] (7.3) 
   
 𝐶3 = [0 0 1 0] (7.4) 

In order to enable the model to compare the position state to the reference position, the output matrix 

in equation (7.2) was designed in Matlab 2018a. Likewise, the output matrices in equations (7.3) and 

(7.4) were designed in Matlab 2018a to enable the system to display the states of velocity and error 

angle, using a scope block in Simulink.  

 

Figure 7.1: Closed-loop system with LQR control and reference position 

In figure 7.1 above, the obtained Simulink model is displayed. In order to clarify the purpose of all parts 

of the model and decrease clutter, all parts of the Simulink model were placed in larger blocks 

containing headers which describe the purpose of each part.  

Turning the automatic pilot off will result in the system stabilizing in the position [0 0 0 0] by 

using the LQR feedback gain, while turning it on should result in the  controller stabilizing the system 

in the position 𝑧 = [𝑥𝑑 𝑥̇𝑑 0 0], which is equal to 𝑧 = [𝑟
𝑟

𝑡
0 0] (with 𝑥𝑑 the desired 
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distance, 𝑥̇𝑑 the desired velocity, 𝑟 the reference position and 𝑡 the time since the automatic pilot was 

activated). The desired velocity is equal to the slope of the ramp input.  

7.2. Steady-state error 
Because of the set-up of the Simulink model, the system in figure 7.1 results in a steady-state error in 

the velocity of the Segway. This steady-state error is caused by the fact that at some point the control 

signal becomes constant, i.e. the derivative of the control law in equation (7.1) becomes equal to zero. 

This results in a velocity proportionally lower than the desired velocity.  

 

Figure 7.2: Systems response to a ramp reference signal with a slope of 1.0 

For example a ramp reference with a slope of 1.0 results in the system response in figure 7.2. The 

velocity stabilizes at 0.02 𝑚/𝑠, while the velocity of the Segway should obviously rise to 1.0 𝑚/𝑠. This 

indicates that the resulting steady-state velocity of the system was almost 50 times smaller than it was 

desired to be.  

In order to eliminate the steady-state error, a second controller had to be proposed. In the 

continuation of this report, the implementation of two controllers with integral action into the system 

will be discussed. The reason to choose for integral action was that it does not only eliminate the 

steady state error in the closed-loop system in the absence of disturbances, but rejects disturbances 

as well. Thus, the implemented controllers will play an important role in the finalized Segway system, 

as the performance of the system with both controllers under disturbances was extensively evaluated. 

Note that disturbances that can be expected will be matters related to the environment of the Segway, 

for example differences in users or slopes in the Segways’ path.  

Next, the controller based on integral action in the LQR using an augmented system will be discussed. 

After that, the controller based on the LQR computed before, combined with a PID controller on the 

Segways position will be elaborated on.  
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8. Augmented system allowing integral action 
In order to be able to implement integral action into the Simulink model and the state-space system, 

the new state of the integrated position error (𝜎) had to be added to the system. Also the new system 

should be about the state errors instead of the states, because both the PID+LQR controller and the 

LQR controller with integral action use the state errors to compute an input signal. In order to do this, 

the augmented system in equation (8.1) was proposed (Khalil, 1996): 

 [
𝑒̇
𝜎̇
] = [

𝐴 0
𝐶1 0

] [
𝑒
𝜎
] + [

𝐵
0
] 𝑢 (8.1) 

   

 [
𝑒
𝜎
] =

[
 
 
 
 
𝑒𝑥

𝑒𝑥̇

𝑒𝜃

𝑒𝜃̇
𝜎 ]

 
 
 
 

=

[
 
 
 
 
 

𝑥 − 𝑟
𝑥̇ − 𝑟̇

𝜃
𝜃̇

∫(𝑥 − 𝑟)
]
 
 
 
 
 

 (8.2) 

In equation (8.2), the error state vector is defined. This vector allows the LQR controller (with or 

without integral action) to compute the voltage input from the error of the states (and the integrated 

position error). On the other hand, this vector allows PID action about the position by using 𝑒𝑥, 𝜎 and 

𝑒𝑥̇. Note that in a conventional PID controller, the derivative action would be a function of the 

derivative of the position error (
𝑑

𝑑𝑥
𝑒𝑥 = 𝑒̇𝑥). In the Segway system, however, the derivative of the 

position error is theoretically equal to the velocity error, i.e. 𝑒̇𝑥 = 𝑒𝑥̇. Thus, the vector in equation (8.2) 

could be used to compute the input signal for the Segway.  
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9. LQR control with integral action  

9.1. LQR with integral action design 
For the LQR controller with integral action, an LQR controller like the LQR controller for upward 

stabilization was designed using the same method. The difference however, was that in this case the 

augmented system in equation (8.1) was used. For this augmented system, a different error cost matrix 

𝑄𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 had to be designed. 𝑅 remained as in equation (6.18).  

 

𝑄𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑  =  

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 11.1 0 0
0 0 0 1.6 0
0 0 0 0 5]

 
 
 
 

 (9.1) 

   
 K𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 = [−224.9 −224.3 1605.2 697.2 −107.8] (9.2) 

 

The cost matrix used is in equation (9.1). This matrix was derived using the method of diagonal weights. 

The weights of the original LQR cost matrix were used, combined with a weight for the integrated 

position error. The cost for the integrated error was chosen based on trial and error. The resulting LQR 

feedback gain is in equation (9.2). In figure 9.1 below, the systems response to a desired velocity of 

2 𝑚/𝑠 is imaged. The rise time was 0.60 𝑠, the overshoot 44.20 % and the settling time 3.64 𝑠 (in 

terms of velocity). 

 

Figure 9.1: System response to a reference velocity of 2 𝑚/𝑠 

9.2. LQR with integral action closed-loop stability 
The input when using this controller was given by the closed-loop feedback law in equation (9.3) 

 𝑢 = −[𝐾𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑]

[
 
 
 
 
𝑒𝑥

𝑒𝑥̇

𝑒𝜃

𝑒𝜃̇
𝜎 ]

 
 
 
 

 (9.3) 

   

 

[
 
 
 
 
𝑒̇𝑥

𝑒̇𝑥̇

𝑒̇𝜃

𝑒̇𝜃̇

𝜎̇ ]
 
 
 
 

=

[
 
 
 
 

0 1 0 0 0
58.2008 57.9155 −393.9799 −180.3961 27.8997

0 0 0 1 0
25.5429 25.4177 −168.1694 −79.1715 12.2445

1 0 0 0 0 ]
 
 
 
 

 

[
 
 
 
 
𝑒𝑥

𝑒𝑥̇

𝑒𝜃

𝑒𝜃̇
𝜎 ]

 
 
 
 

 (9.4) 
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When equations (4.3), (4.4), (7.2), (9.2) and (9.3) are substituted back into equation (8.1), with values 

inserted and solved, the augmented closed-loop system was obtained in equation (9.4).  

From this closed-loop system matrix 𝐴𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑,𝑐𝑙, the closed-loop stability of the system was checked 

by evaluating the eigenvalues.  

 

𝑒𝑖𝑔(𝐴𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑,𝑐𝑙) =

[
 
 
 
 

−14.91
−2.56
−1.63

−1.08 + 0.98𝑖
−1.08 − 0.98𝑖]

 
 
 
 

 (9.5) 

The eigenvalues of the augmented closed-loop system are in equation (9.5). As can be seen, all 

eigenvalues have a strictly negative real part, meaning that the closed loop system would be stable 

when the Segway is controlled by a LQR controller with integral action.  

9.3. LQR with integral action implementation 
In order to implement the controller, the model in figure 7.1 was adapted to obtain the Simulink model 

in figure 9.2 below.  

 

Figure 9.2: Simulink model of the LQR controller with integral action 

For this system, it was investigated what was the maximum velocity the Segway would be able to reach 

using this control loop (with 𝑧𝑖 = [0 0 0 0]𝑇). By gradually increasing the slope of the ramp signal, 

it was found that the maximum velocity the system could reach in this model, was 3.14 𝑚/𝑠, which is 

equal to 11.3 𝑘𝑚/ℎ. This velocity limit is probably high enough to be satisfactory for users. However, 

it would be useful if the velocity limit was a bit higher, to ensure safety when dealing with disturbances. 

This could be done by allowing a higher voltage input to the DC-motors, but then the DC-motors for 

the Segway would be required to be of a higher quality, resulting in a more expensive Segway.  
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10. PID+LQR Control 

10.1. PID design 
In order to reject the expected disturbances and maintain a desired velocity, a PI(D) controller was 

implemented into the model. The PI(D) controller was be placed over the error position (𝑒𝑥) resulting 

from the difference between the reference position (𝑟, given by a ramp signal) and the actual position 

(𝑥).  

A PID controller consists of a proportional (𝐾𝑝), an integral (𝐾𝑖) and a derivative (𝐾𝑑) gain. In this way, 

the output of the PID controller will be a linear function of the controllers input, the integral of the 

controllers input and the derivative of the controllers input. When the PID was placed over the position 

error (𝑒𝑥) (proportional), the derivative term became the velocity error (𝑒𝑥̇), and the integral term 

became the integrated position error (𝜎).  

 𝑃𝐼𝐷 = 𝐾𝑝(𝑒𝑥 + 𝜎𝐾𝑖 + 𝑒𝑥̇𝐾𝑑) (10.1) 

The equation for the output signal of the PID controller of the Segway is given in equation (10.1). The 

values of 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 should be tuned in order to obtain an optimal system response and disturbance 

rejection.   

Multiple methods exist to tune a PID controller. In this project, three methods of PID tuning were used. 

First of all, multiple heuristic methods, among which the well-known Ziegler-Nichols method, were 

used to obtain values for the PID parameters. Secondly, the parameter values proposed by the PID 

Tuner App in Simulink were considered. Finally, the values found using the first two methods were 

adapted by manual tuning in order to see whether it was possible to improve the controllers proposed 

with the first two methods.  

10.1.1. Heuristic methods 
An easy method for PID tuning is using heuristics. Heuristic methods use empirical rules to tune the 

parameters of a PI(D) controller (de Persis, Control Engineering – Lecture 13, 2017). Both the Ziegler-

Nichols heuristic method (Ziegler & Nichols, 1942) and the tuning rules found in the paper ‘Rule-Based 

Autotuning Based on Frequency Domain Identification’ (McCormack & Godfrey, 1998) were used to 

calculate gain values for the PID controller in equation (10.1). The PID parameters were found by 

applying the methods explained below.  

The first step of the heuristic methods was to put all PID gains to zero.  

 𝐾𝑝,𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 146.3 (10.2) 

   
 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 3.05 (10.3) 

Next, the proportional gain (𝐾𝑝) was gradually increased until the ultimate gain (𝐾𝑝,𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) was 

reached as in equation (10.2). At this value of the proportional gain the control signal (𝑢) was stable 

with consistent oscillations, as shown in figure 10.1 below. The oscillation period corresponding to the 

ultimate gain (𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) is given in equation (10.2) 
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Figure 10.1: Control signal corresponding to a reference ramp signal with slope 1 and 𝐾𝑝 = 146.3 

The values of the ultimate gain 𝐾𝑝,𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 and the corresponding oscillation period 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 were used 

to obtain the values of the parameters of the controller. Because one of the main requirements of the 

controller was to reject disturbances, the integral term of the controller should be nonzero. This is why 

possible parameter values for a P or a PD controller were not investigated using heuristic methods.  

Table 10.1: PID tuning rules 

Control type 𝑲𝒑 𝑲𝒊 𝑲𝒅 

PI 0.45𝐾𝑝,𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙/1.2 - 

Classic PID 0.6𝐾𝑝,𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙/2 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙/8 

Pessen Integral Rule 0.7𝐾𝑝,𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙/2.5 3𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙/20 

Some overshoot 0.33𝐾𝑝,𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙/2 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙/3 

Small overshoot 0.2𝐾𝑝,𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙/2 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙/3 

In table 10.1 the formulas to calculate the gain values for each type of controller are displayed. The 

first two methods were found in the article ‘Optimum Settings for Automatic Controllers’ (Ziegler & 

Nichols, 1942), while the final three methods are explained in the article ‘Rule-Based Autotuning Based 

on Frequency Domain Identification’ (McCormack & Godfrey, 1998), were the first method used the 

Pessen Integral Rule (Gopi & Suman, 2015). Plugging in the values of 𝐾𝑝,𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 and 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 into table 

10.1 resulted in the parameter values in table 10.2 below.  

Table 10.2: PID gain values resulting from tuning rules 

Control type 𝑲𝒑 𝑲𝒊 𝑲𝒅 

PI 65.84 2.54 0 

Classic PID 87.78 1.53 0.38 

Pessen Integral Rule 102.41 1.22 0.46 

Some overshoot 48.28 1.53 1.02 

Small overshoot 29.26 1.53 1.02 

Using the parameter values in table 10.2, all five controllers were tested with a reference velocity of 

2 𝑚/𝑠. For the Ziegler Nichols method based PI controller and the Pessen Integral Rule based PID 

controller the reference signal resulted in an unstable system. In the figures 10.2-10.4 below the 

systems response for each of the other controllers is plotted.  
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Figure 10.2: Closed-loop systems response to a reference ramp with slope 2 with classic PID controller (Ziegler & Nichols, 
1942) 

 

Figure 10.3: Closed-loop systems response to a reference ramp with slope 2 with a PID controller allowing some overshoot 
(McCormack & Godfrey, 1998) 

 

Figure 10.4: Closed-loop systems response to a reference ramp with slope 2 with a PID controller allowing small overshoot 
(McCormack & Godfrey, 1998) 
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Table 10.3: Characteristics of the controllers based on the Z-N method 

Controller Rise time Overshoot Settling time Steady-state error 

Classic PID 0.47 𝑠 48.25 % 10.4 𝑠 0 𝑚/𝑠 

Some overshoot 0.24 𝑠 44.8 % 14.45 𝑠 0 𝑚/𝑠 

Small overshoot 2.23 𝑠 17.97 % 10 𝑠 0 𝑚/𝑠 

Requirements 1 𝑠 20 % 3.5 𝑠 0 𝑚/𝑠 

The characteristics of the other three controllers are presented in table 10.3, so that they can easily be 

compared to the desired transient properties. As can be seen in the table, none of the three remaining 

controllers met all controller requirements. The required overshoot was only met by the ‘small 

overshoot’ controller, while the rise time requirement was met by the other two controllers. None of 

the proposed controllers met the desired settling time. This meant other controllers had to be 

proposed in order to find a controller which would meet all requirements.  

10.1.2. Simulink PID Tuner App 
A Simulink PID block was used to tune the PID controller applied to the error position (𝑒𝑥). For PID 

tuning, the PID block in Simulink includes a transfer function based PID Tuner app. This PID Tuner App 

automatically computes a linear model of the complete plant. The App considers the plant to be the 

combination of all blocks between the PID controller output and input. For the linearized plant, the 

PID Tuner automatically computes an initial PID design with a balance between performance and 

robustness, based on the response to a unit step signal. The app computes the initial PID design using 

the proprietary tuning algorithm developed by MathWorks (MathWorks, 2018).  

 𝑃𝐼𝐷 = 𝐾𝑝 (1 + 𝐾𝑖

1

𝑠
+ 𝐾𝑑

𝑁

1 + 𝑁
1
𝑠

) (10.4) 

Note that the standard equation for PID controllers of ideal form used by the PID block in Simulink is 

different from the PID controller in equation (10.1). The PID controller in the PID block is given by 

equation (10.4). Here, the 𝑁 represents the filter coefficient of the derivative and multiplying or 

dividing by 𝑠 represents the derivative or integral in the Laplace domain respectively.  

In a conventional PID controller, the derivative gain requires filtering, because when a sensor measures 

the proportional signal, there is bound to be noise in the sensor signal. When this noise is 

differentiated, this results in large fluctuations in the derivative (Isaksson & Graebe, 2002).  

In the Segway systems sensors, however, the velocity of the Segway is measured instead of the 

Segway’s position. The position of the Segway is calculated by integrating the velocity. Thus, in the PID 

controller, there was no sensor signal that was differentiated and so there was no amplification of the 

sensor noise. This is why there was no need for a derivative filter in the PID controller and the value of 

𝑁 was left unused.  

The PID tuner app tuned the values of 𝐾𝑝, 𝐾𝑖, 𝐾𝑑  and 𝑁 in order to obtain a stable controller with a 

good system response and disturbance rejection.   
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Figure 10.5: Closed-loop systems response to a reference ramp with slope 2 with the initial PID controller proposed by the PID 
Tuner App in Simulink 

The initial PID design as proposed by the Tuner App was tested with a desired velocity of 2 𝑚/𝑠 

(reference ramp with slope 2). The systems response is displayed in figure 10.5.  

The PID Tuner App in Simulink allowed further tuning of the controller by increasing or decreasing the 

controller’s response time and transient behavior. Because the initial PID design did not meet the 

desired controller characteristics, the controller was adapted in the PID tuner using trial and error.  

 

Figure 10.6: Closed-loop systems response to a reference ramp with slope 2 with a slightly lower response time compared to 
the initial PID design 

By slightly decreasing the response time in the Tuner App from 2.245 𝑠 to 2.105 𝑠, the system 

response in figure 10.6 was obtained. This PID design was better compared to the initial design in the 

fact that its response and settling times were both lower than those of the initial PID design, as can be 

seen in table 10.4. The phase margin, however, was slightly larger in the initial PID design.  
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Table 10.4: Characteristics of the controllers based on the PID Tuner App in Simulink 

Controller 𝑲𝒑 𝑲𝒊 𝑲𝒅 Rise time Overshoot 
Settling 

time 
Steady-state 

error 

Initial PID 
design 

57.31 0.61 0.21 1.27 𝑠 1.61 % 4.02 𝑠 0 𝑚/𝑠 

Decreased 
response time 

60.67 0.64 0.28 1.24 𝑠 1.28 % 1.22 𝑠 0 𝑚/𝑠 

Requirements - - - 1.5 𝑠 20 % 3.5 𝑠 0 𝑚/𝑠 

In table 10.4 the response characteristics of the controllers based on the PID Tuner App in Simulink are 

compared to the required characteristics. As can be seen, the only controller which meets all 

requirements, is the Initial PID design with decreased response time. Thus, this controller was the 

starting point from which it was investigated whether or not this controller could be improved by 

manual tuning. From now on, this controller will be called controller 1.  

10.1.3. Manual tuning 
In manual tuning, controller 1 obtained in the previous section was adapted in order to improve its 

performance. Because it is not intuitively clear how the PID parameters influence the systems 

response, this influence was investigated. The found effects of increasing individual parameters are 

displayed in table 10.5 (Zhong, 2006) (Kiam Heong Ang, 2005).  

Table 10.5: Effects of increasing PID gains individually 

Parameter Rise time Overshoot Settling time Steady-state error Stability 

P Decrease Increase Small change Decrease Degrade 

I Decrease Increase Increase Eliminate Degrade 

D Minor change Decrease Decrease No effect in theory Improve if D small 

Because there is no parameter that definitely improves all aspects of the controllers performance, the 

𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 gains were simply rounded, either upward or downward.  

Table 10.6: Controllers and controller characteristics obtained by rounding parameters of controller 1 

Controller 
number 

𝑲𝒑 𝑲𝒊 𝑲𝒅 
Rise 
time 

Overshoot 
Settling 
time 

Steady-state 
error 

1 60.67 0.64 0.28 1.24 𝑠 1.28 % 1.22 𝑠 0 𝑚/𝑠 

2 61 0.7 0.3 1.12 𝑠 3.29 % 2.49 𝑠 0 𝑚/𝑠 

3 61 0.7 0.2 1.08 𝑠 9.77 % 3.97 𝑠 0 𝑚/𝑠 

4 61 0.6 0.3 1.25 𝑠 0.41 % 3.02 𝑠 0 𝑚/𝑠 

5 61 0.6 0.2 1.14 𝑠 3.85 % 4.06 𝑠 0 𝑚/𝑠 

6 60 0.7 0.3 1.22 s 2.87 % 2.52 s 0 m/s 

7 60 0.7 0.2 1.12 𝑠 8.52 % 4.39 𝑠 0 𝑚/𝑠 

8 60 0.6 0.3 1.30 𝑠 0.42 % 3.09 𝑠 0 𝑚/𝑠 

9 60 0.6 0.2 1.19 𝑠 2.69 % 4.34 𝑠 0 𝑚/𝑠 

Requirements - - - 1.5 𝑠 20 % 3.5 𝑠 0 𝑚/𝑠 
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In table 10.6, the obtained controllers and the velocity response characteristics with a reference 

velocity of 2 𝑚/𝑠 are shown. It became clear that manually adjusting the PID parameters did only 

improve certain response characteristics if other characteristics deteriorated. Thus, controller 1 was 

chosen as the final PID controller for the Segway system.  

10.2. PID+LQR closed-loop stability 
The input voltage (𝑢) to the DC-motors for this controller was given by the closed-loop feedback law 

in equation (10.5) 

 𝑢 = −[𝐾 0]

[
 
 
 
 
𝑒𝑥

𝑒𝑥̇

𝑒𝜃

𝑒𝜃̇
𝜎 ]

 
 
 
 

+ [𝐾𝑝 𝐾𝑝𝐾𝑑 0 0 𝐾𝑝𝐾𝑖]

[
 
 
 
 
𝑒𝑥

𝑒𝑥̇

𝑒𝜃

𝑒𝜃̇
𝜎 ]

 
 
 
 

 (10.5) 

   

 

[
 
 
 
 
𝑒̇𝑥

𝑒̇𝑥̇

𝑒̇𝜃

𝑒̇𝜃̇

𝜎̇ ]
 
 
 
 

=

[
 
 
 
 

0 1 0 0 0
28.1744 30.0610 −228.4663 −103.9368 10.0462

0 0 0 1 0
12.3650 13.1931 −95.5295 −45.6153 4.4090

1 0 0 0 0 ]
 
 
 
 

 

[
 
 
 
 
𝑒𝑥

𝑒𝑥̇

𝑒𝜃

𝑒𝜃̇
𝜎 ]

 
 
 
 

 (10.6) 

When equations (4.3), (4.4), (6.19), (7.2) and (10.5) were substituted back into equation (8.1), with 

values inserted and solved, the augmented closed-loop system was obtained in equation (10.6).  

From this closed-loop system matrix 𝐴𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑, the closed-loop stability of the system was checked 

by evaluating the eigenvalues.  

 

𝑒𝑖𝑔(𝐴𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑) =

[
 
 
 
 

−10.03
−2.53

−1.16 + 1.19𝑖
−1.16 − 1.19𝑖

−0.68 ]
 
 
 
 

 (10.7) 

The eigenvalues of the augmented closed-loop system are in equation (10.7). As can be seen, all 

eigenvalues have a strictly negative real part, meaning that the closed loop system would be stable 

when the Segway is controlled by a PID+LQR controller.  

10.3. PID+LQR implementation 
When the PID controller was applied to the system, the Simulink model in figure 10.9 was obtained by 

adapting the model in figure 7.1. 
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Figure 10.7: Closed-loop system with LQR and PID control 

For this system, it was investigated what was the maximum velocity the Segway would be able to reach 

using this control loop. By gradually increasing the slope of the reference ramp signal, it was found 

that the maximum velocity the system could reach (from initial condition 𝑧𝑖 = [0 0 0 0]𝑇) in this 

model, was 4.67 𝑚/𝑠, which is equal to 16.81 𝑘𝑚/ℎ. When this velocity is compared to the velocity 

of two-wheeled inverted pendulums in other research, this is more than enough to be sufficient 

(Searock, Browning, & Veloso, 2004) (Castro, Adams, & Singhose, Dynamic response characteristics of 

a two-wheeled inverted-pendulum transporter, 2013).  
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11. Disturbances and signal noise 
For all three controllers, designed previously, the closed-loop models robustness to disturbances and 

noise was checked.   

For signal noise, it was checked how the system would respond to noise in the velocity and in the error 

angle, as those are the states measured by the tachometer and the gyroscope, respectively. Next, the 

disturbances resulting from differences in human users were checked. Then, it was evaluated how the 

system would respond to the presence of positive or negative slopes. Finally, a combination of these 

disturbances was evaluated, simulating a real world situation.  

11.1. Noise in sensor signals 
The rigidity of the controllers was tested by applying white noise to the sensor signals in Simulink. This 

was done by modifying the Simulink models obtained earlier in order to insert noise into the signals.  

11.1.1. Size of sensor noise 
As the sensors in the Segway are a gyroscope and a tachometer, measuring the error angle and the 

velocity, these signals were disturbed with noise. In the white noise block representing the noise in the 

signal from the gyroscope, the noise power was set to 4.36𝑒 − 07, based on the article ‘Gyro Modeling 

and Estimation of Its Random Noise Sources’ (Lam, Stamatakos, Woodruff, & Ashton, 2003). 

Furthermore, the sample time was set to 0.01 𝑠 and the seed was set to the initial setting of [23341].  

In the white noise block representing the noise in the signal from the tachometer, the noise power was 

set to 4.36𝑒 − 06, based on the fact that a small disturbance in the error angle signal has more drastic 

consequences than a small disturbance in the velocity. Thus, the tachometer signal was given a 

relatively powerful noise, in order to challenge the robustness of the controller. Furthermore, like in 

the gyroscope noise, the sample time was set to 0.01 𝑠 and the seed was set to the initial setting 

of [23341].  

With this noise applied to the system, the LQR controller for vertical stabilization was tested, as well 

as the LQR with integral action and the PID+LQR controllers for stabilization at the desired velocity.  

11.1.2. LQR controller 
First, the stabilization of the Segway from an initial angle of 0.3 𝑟𝑎𝑑 was tested using the LQR 

controller. In order to do so, the Simulink model in figure 6.4 was adapted to obtain the model in figure 

11.1.  
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Figure 11.1: Closed-loop system with LQR control and sensor noise 

 

Figure 11.2: System response to an initial angle of 0.3 𝑟𝑎𝑑 with white noise in the sensor signals 

In figure 11.2 the system response with white noise is imaged. As can be seen, the controller is easily 

robust enough to reject the noise; the response is comparable to the response when there is no noise, 

so there will barely be loss of the systems stability. When the noise is zoomed in to, it can be seen that 

the noise is carried on to the system response. However, the responses in terms of error angle or 

velocity of the system are so small that it is not likely that the user will notice the systems response to 

the noise.  

11.1.3. LQR controller with integral action 
Next, the stabilization of the Segway at the desired velocity of 3 𝑚/𝑠 using the LQR controller with 

integral action was tested. To be able to implement signal noise into the model, the Simulink model in 

figure 9.2 was adapted, resulting in the model in figure 11.3.  



32 
 

 

Figure 11.3: Closed-loop system with LQR control with integral action and sensor noise 

 

Figure 11.4: System response to a reference velocity of 3 𝑚/𝑠 with LQR control with integral action and white noise in the 
sensor signals 

In figure 11.4 the system response with white noise is illustrated. In the plot, the influence of the sensor 

noise is more clearly visible than with the LQR controller; the velocity curve has a sharp edge at 𝑡 =

1.6 𝑠. This peak is curved and at a lower velocity level in the absence of noise. Still, the system stabilizes 

well and is robust enough to reject the sensor noise. Like with the LQR stabilization, the steady state 

responses in terms of error angle or velocity of the system are so small that it is not likely that the user 

will notice the Segways transient response resulting from signal noise.  

11.1.4. PID+LQR controller 
Finally, the stabilization of the Segway at the desired velocity of 3 𝑚/𝑠 using the PID+LQR controller 

was tested. The noise was implemented into the model by changing the model in figure 10.4. The 

resulting Simulink model with noise is displayed in figure 11.5 
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Figure 11.5: Closed-loop system with PID+LQR controller and sensor noise 

 

Figure 11.6: System response to a reference velocity of 3 with white noise in the sensor signals 

In figure 11.6 the system response with white noise is illustrated. In the plot, the influence of the sensor 

noise is more noteworthy than with the LQR controllers discussed before. This most likely arises from 

the relatively aggressive gains of the closed-loop system with the PID+LQR controller. Still, the system 

stabilizes well and is robust enough to reject the sensor noise. Like with the LQR stabilization, the 

steady state responses in terms of error angle or velocity of the system are so small that it is not likely 

that the user will notice the Segways transient response resulting from signal noise.  

11.2. Disturbances resulting from differences in users 

11.2.1. Size of user disturbances 
There can be large fluctuations in the length and weight of human users. Because the linearized system 

in equation (4.8) was computed for a user weighing 85 𝑘𝑔 and being 1.7 𝑚 tall, with an inertia of 

68.98 𝑘𝑔 ∙ 𝑚², it needed to be checked how the system would respond to parameter uncertainties in 

terms of user parameters (𝑀𝑝, 𝑙, 𝐼𝑝). In order to do so, the Segways response to the user of 85 𝑘𝑔 and 

1.7 𝑚 was compared to the systems responses to a small user of 60 𝑘𝑔 and 1.6 𝑚 and a large user of 

100 𝑘𝑔 and 2.0 𝑚. First, the stabilization of the Segway using the LQR controller designed in section 6 

from an initial error angle of 10 degrees (0.17 𝑟𝑎𝑑) was checked for the three types of users. Secondly, 

the stabilization at a desired velocity using the LQR controller with integral action and the PID+LQR 

controller were checked for the three user types.  
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Table 11.1: Parameters and state-space matrices for different users 

User mass 
(𝑴𝒑) 

User length 
(𝒍) 

User inertia 
(𝑰𝒑) 

System matrix (𝑨) 
System 

matrix (𝑩) 

85 𝑘𝑔 1.7 𝑚 68.98 𝑘𝑔 ∙ 𝑚² [

0 1 0 0
0 −0.1074 21.3441 0
0 0 0 1
0 −0.0471 14.1063 0

] [

0
0.2587

0
0.1136

] 

60 𝑘𝑔 1.6 𝑚 43.13 𝑘𝑔 ∙ 𝑚² [

0 1 0 0
0 −0.1301 18.3673 0
0 0 0 1
0 −0.0600 13.4885 0

] [

0
0.3134

0
0.1446

] 

100 𝑘𝑔 2.0 𝑚 112.32 𝑘𝑔 ∙ 𝑚² [

0 1 0 0
0 −0.0944 21.3071 0
0 0 0 1
0 −0.0348 11.772 0

] [

0
0.2276

0
0.0839

] 

To be able to check the system responses to the different users, the values of𝑀𝑝, 𝑙 and 𝐼𝑝 in table 4.1 

had to be adapted.  

 𝐼 =
1

𝜌
𝑀𝑙² (11.1) 

   

 𝐼𝑝,𝑛𝑒𝑤 = 𝐼𝑝,𝑜𝑙𝑑 (
𝑀𝑝,𝑛𝑒𝑤

𝑀𝑝,𝑜𝑙𝑑
)(

𝑙 𝑛𝑒𝑤

𝑙𝑜𝑙𝑑
)
2

 (11.2) 

The value for the user inertia was adopted by using the formula in equation (11.2). This equation was 

based on the standard formula for the of inertia for beams and rods (equation (11.1)) (Morin, 2010). 

Equations for the inertia of beams or rods all contain the mass times the length squared, divided by a 

real number 𝜌. Because the human body is not comparable to a beam or a rod, the value of 𝜌 is not 

known. That is why equation (11.2) was used to transform the known inertia of the user of 1.7 𝑚 and 

85 𝑘𝑔 into good approximations of the moments of inertia of other users. Substituting these new 

parameter values into equations (4.3) and (4.4) resulted in the new system matrixes in table 11.1.  

11.2.2. LQR controller 
Using the system matrices in table 11.1 and an initial error angle of 10 degrees (0.17 𝑟𝑎𝑑), the system 

responses in figures 11.7-11.9 were obtained. The initial error angle of 10 degrees was based on the 

assumption that this is a realistic error angle resulting from the user mounting the Segway.  
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Figure 11.7: System response to an initial angle of 0.17 𝑟𝑎𝑑 when carrying a user of 85 𝑘𝑔 and 1.7 𝑚 

 

Figure 11.8: System response to an initial angle of 0.17 𝑟𝑎𝑑 when carrying a user of 60 𝑘𝑔 and 1.6 𝑚 

 

Figure 11.9: System response to an initial angle of 0.17 𝑟𝑎𝑑 when carrying a user of 100 𝑘𝑔 and 2.0 𝑚 
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Table 11.2: System response properties with an initial angle of 0.17 𝑟𝑎𝑑 when carrying different users 

User mass 
(𝑴𝒑) 

User length 
(𝒍) 

User inertia (𝑰𝒑) 
Rise 
time 

Overshoot 
Settling 

time 
Steady-

state error 

85 𝑘𝑔 1.7 𝑚 68.98 𝑘𝑔 ∙ 𝑚² 0.40 𝑠 25.00 % 4.11 𝑠 0 𝑚/𝑠 

60 𝑘𝑔 1.6 𝑚 43.13 𝑘𝑔 ∙ 𝑚² 0.42 𝑠 30.00 % 4.88 𝑠 0 𝑚/𝑠 

100 𝑘𝑔 2.0 𝑚 112.32 𝑘𝑔 ∙ 𝑚² 0.29 𝑠 21.34 % 3.90 𝑠 0 𝑚/𝑠 

From the transient responses in figures 11.7-11.9, the response properties in table 11.2 were derived. 

From the properties it was concluded that the system experienced no issues in vertical stabilization 

when operating with smaller or larger users. The larger user’s characteristics were even better than 

those of the user for which the model was derived. This was most likely caused by the more aggressive 

input signal to the DC-motors, resulting from the larger state errors for the large user. Downside to 

this increased performance was of course the larger state errors.  

11.2.3. LQR controller with integral action 
Using the LQR controller with integral action and the system matrices in table 11.1, with all initial 

conditions equal to zero (𝑧𝑖 = [0 0 0 0]) and a reference ramp with slope 3, the trajectory 

tracking of the Segway with small and big users was evaluated. Due to the saturation limits, the system 

became unstable when stabilizing the larger user at 3 𝑚/𝑠. Thus, for the large user, the velocity was 

stabilized at 2 𝑚/𝑠. The system responses are displayed in figures 11.10-11.12. 

 

Figure 11.10: System response to a reference velocity of 3 𝑚/𝑠 when carrying a user of 85 𝑘𝑔 and 1.7 𝑚 (LQR with integral 
action) 
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Figure 11.11: System response to a reference velocity of 3 𝑚/𝑠 when carrying a user of 60 𝑘𝑔 and 1.6 𝑚 (LQR with integral 
action) 

 

Figure 11.12: System response to a reference velocity of 2 𝑚/𝑠 when carrying a user of 100 𝑘𝑔 and 2.0 𝑚 (LQR with integral 
action) 

Table 11.3: System response properties with desired (reference) velocity of  3 𝑚/𝑠 (2 𝑚/𝑠 for the larger user) with LQR 
control with integral action when carrying different users 

User mass 
(𝑴𝒑) 

User length 
(𝒍) 

User inertia (𝑰𝒑) 
Rise 
time 

Overshoot 
Settling 

time 
Steady-

state error 

85 𝑘𝑔 1.7 𝑚 68.98 𝑘𝑔 ∙ 𝑚² 0.61 𝑠 44.20 % 3.74 𝑠 0 𝑚/𝑠 

60 𝑘𝑔 1.6 𝑚 43.13 𝑘𝑔 ∙ 𝑚² 0.63 𝑠 48.51 % 3.47 𝑠 0 𝑚/𝑠 

100 𝑘𝑔 2.0 𝑚 112.32 𝑘𝑔 ∙ 𝑚² 0.49 𝑠 32.67 % 4.07 𝑠 0 𝑚/𝑠 

From the transient responses in figures 11.10-11.12, the response properties in table 11.3 were 

derived. From the properties it was concluded that the system experienced some issues when 

operating with a larger user. This is a result from the saturation of the DC-motor, which is not powerful 

enough to accelerate Segway as fast as would be desired with the larger user. Still, at a lower velocity 

of 2 𝑚/𝑠 this controller is also suited for heavier users.  

11.2.4. PID+LQR controller 
Using the PID+LQR controller and the system matrices in table 11.1, with all initial conditions equal to 

zero (𝑧𝑖 = [0 0 0 0]) and a reference ramp with slope 3, the trajectory tracking of the Segway 

with small and big users was evaluated. The system responses are displayed in figures 11.13-11.15. 



38 
 

 

Figure 11.13: System response to a reference velocity of 3 when carrying a user of 85 𝑘𝑔 and 1.7 𝑚 (PID+LQR) 

 

Figure 11.14: System response to a reference velocity of 3 when carrying a user of 60 𝑘𝑔 and 1.6 𝑚 

 

Figure 11.15: System response to a reference velocity of 3 when carrying a user of 100 𝑘𝑔 and 2.0 𝑚 
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Table 11.4: System response properties with desired (reference) velocity of  3 𝑚/𝑠 with PID+LQR control when carrying 
different users 

User mass 
(𝑴𝒑) 

User length 
(𝒍) 

User inertia (𝑰𝒑) 
Rise 
time 

Overshoot 
Settling 

time 
Steady-

state error 

85 𝑘𝑔 1.7 𝑚 68.98 𝑘𝑔 ∙ 𝑚² 1.17 𝑠 0.63 % 1.16 𝑠 0 𝑚/𝑠 

60 𝑘𝑔 1.6 𝑚 43.13 𝑘𝑔 ∙ 𝑚² 1.19 𝑠 3.17 % 4.16 𝑠 0 𝑚/𝑠 

100 𝑘𝑔 2.0 𝑚 112.32 𝑘𝑔 ∙ 𝑚² 1.37 𝑠 0.35 % 1.77 𝑠 0 𝑚/𝑠 

From the transient responses in figures 11.13-11.15, the response properties in table 11.4 were 

derived. From the properties it was concluded that the system experienced no issues for stabilization 

at the desired velocity of 3 𝑚/𝑠 when operating with smaller or larger users. Some characteristics were 

even better for the other users, at the cost of other characteristics being slightly worse. Altogether the 

controller performed relatively well under user disturbances.  

11.3. Disturbances in error angle 
Another disturbance which was modelled was the disturbance to the error angle (upward 

configuration) of the Segway. Such a disturbance would be a result of the users lean forward or 

backward or the bar hitting an object.  

11.3.1. Size of error angle disturbance 
To evaluate the influence of disturbances in the error angle, this type of disturbance was implemented 

into the state-space model of the Segway. The disturbance was modelled as an impulse affecting the 

angle of the pendulum, with a duration of one second and an amplitude of 0.3.  

 

[

𝑥̇
𝑥̈
𝜃̇
𝜃̈

] =  [

0 1 0 0
0 −0.1074 21.3441 0
0 0 0 1
0 −0.0471 14.1063 0

] [

𝑥
𝑥̇
𝜃
𝜃̇

] + [

0
0.2587

0
0.1136

]  𝑢 + [

0
0

0.3
0

] 

𝑦 = [
0 1 0 0
0 0 1 0

] [

𝑥
𝑥̇
𝜃
𝜃̇

] 

(11.3) 

The resulting state space model during the impulse disturbance is in equation (11.3). In the following 

sections, the responses of the three controllers are evaluated.  

11.3.2. LQR controller 
The Simulink model in figure 6.4 was adapted to obtain the model in figure 11.16. By doing this, the 

disturbance resulting from changes in the error angle was implemented into the model.  
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Figure 11.16: Closed-loop system with LQR control and error angle disturbance 

The pulse disturbance was implemented into the model to start at 𝑡 = 6 and end at 𝑡 = 7. The 

response is imaged in figure 11.17.  

 

Figure 11.17: System response to an impulse error angle disturbance of size 0.3 (LQR) 

As can be seen in the figure above, the disturbance was rejected by the controller rather quickly; within 

approximately five seconds, the system had returned to the equilibrium position. However, the 

systems response is quite aggressive; the actual error angle in the model the system responds to is 

smaller than −0.05 𝑟𝑎𝑑. As a reaction, the velocity rises beyond 1 𝑚/𝑠 and the error angle rises to 

0.08 𝑟𝑎𝑑. Thus, in terms of stabilization the controller performs well. Its aggressiveness should 

encourage the user to stand still and let the controller stabilize. If the user would move to much or to 

wildly, it might result in an unstable system.  

11.3.3. LQR controller with integral action 
Next, the stabilization of the Segway at the desired velocity of 3 𝑚/𝑠 using the LQR controller with 

integral action was tested. To be able to implement an error angle disturbance into the model, the 

Simulink model in figure 9.2 was adapted, resulting in the model in figure 11.18. 
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Figure 11.18: Closed-loop system with LQR control with integral action and error angle disturbance 

Like with the LQR controller, the pulse was implemented to start at 𝑡 = 6 and end at 𝑡 = 7. The system 

response is in figure 11.19 below.  

 

Figure 11.19: System response to an impulse error angle disturbance of size 0.3 (LQR with integral action) 

The system response to the impulse disturbance was comparable to the response in figure 11.17, 

although the amplitudes in terms of velocity and error angle were slightly larger, due to the systems 

desired velocity and increased controller gains compared to the LQR controller. Altogether, the 

disturbance was rejected and the system stabilized within 5 seconds.  

11.3.4. PID+LQR controller 
Finally, the stabilization of the Segway at the desired velocity of 3 𝑚/𝑠 using the PID+LQR controller 

was tested. The error angle disturbance was implemented by adapting the model in figure 10.4, 

resulting in the Simulink model in figure 11.20.  
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Figure 11.20: Closed-loop system with PID+LQR control and error angle disturbance.  

Like in the two Simulink models discussed before, the pulse was implemented to start at 𝑡 = 6 and 

end at 𝑡 = 7. The system response is in figure 11.21 below.  

 

Figure 11.21: System response to an impulse error angle disturbance of size 0.3 (PID+LQR) 

The system response to the impulse disturbance was comparable to the response in figure 11.19. 

However, the response in terms of the error angle for PID+LQR control was more aggressive than for 

LQR with integral action. Still, the response is largely the same as the responses when using the other 

controllers. Altogether, the disturbance was rejected and the system stabilized within 5 seconds.  

11.4. Disturbances in the trajectory 
For the trajectory, until this point it was assumed that the Segway was driving in a straight line on a 

perfectly flat surface. However, in a more realistic environment the presence of slopes is inevitable. 

When the slope would be known, the angle of the slope could be implemented into the dynamic 

equations of motion of the system resulting in a new (non)linear system (Castro, Modeling and 

dynamic analysis of a two-wheeled inverted-pendulum (masters thesis), 2012). If this model was 

linearized, a different model would have been obtained compared to the model in equation (4.8). In 
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this way, the slope would become part of the Segway model to what the LQR and PID controllers were 

tuned.  

However, when the slope is not known, it cannot be implemented into the model. In the environment 

in which a Segway would act, this is probably the case; a Segway or a Segway user does not intuitively 

know what the slope is of the surface on which it is moving. Because the controllers cannot be tuned 

to the model containing the known slope, instead the Segways behavior will be investigated under 

various slope disturbances, using the controllers designed before.  

11.4.1. Size of slope disturbance 
In order to be able to implement a slope disturbance into the linearized model by Younis and Abdelati 

(Younis & Abdelati, 2009), the factor of the DC-motor force in the model had to be found and replaced 

with the DC-motor force plus the force on the Segway resulting from the slope. These forces represent 

the force acting on the base of the Segway.  

 

Figure 11.22: DC-motor equivalent circuit (MathWorks, 2018) 

 
𝑉 = 𝐼𝑅 + 𝐿

𝑑𝐼

𝑑𝑡
+ 𝐸 (11.4) 

First, to obtain the DC-motor force, equation (11.4) was obtained from the DC-motor circuit in figure 

(11.22). 𝐼 represents the current, 𝑅 the resistance over the motor, 𝐿 the motor inductance and 𝐸 the 

motors back-EMF.  

 𝑑𝐼

𝑑𝑡
= 0 (11.5) 

   
 𝑇 = 𝑘𝑚𝐼 (11.6) 
   
 

𝑉 =
𝑇

𝑘𝑚
𝑅 + 𝐸 (11.7) 

Under the assumption that the current through the circuit is constant (equation (11.5) and the 

simplification that the motor is moving at a constant velocity (equation (11.6)), equation (11.7) was 

obtained. Note that variable 𝑇 represents the motor torque.  

 
𝐸 = 𝑘𝑒

𝑥̇

𝑟
 (11.8) 

   
 

𝑉 =
𝑇

𝑘𝑚
𝑅 + 𝑘𝑒

𝑥̇

𝑟
 (11.9) 
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Equation (11.8) was derived from the fact that the DC-motors back-EMF is equal to the back-EMF 

constant times the angular velocity of the motor. When this equation was substituted into equation 

(11.7), equation (11.9) was obtained.  

 
𝑇 = 𝑉

𝑘𝑚

𝑅
− 𝑥̇

𝑘𝑚𝑘𝑒

𝑅𝑟
 (11.10) 

   
 

𝐹𝑚𝑜𝑡𝑜𝑟 = 𝑉
𝑘𝑚

𝑅𝑟
− 𝑥̇

𝑘𝑚𝑘𝑒

𝑅𝑟²
 (11.11) 

By rearranging equation (11.9) for the motor torque (𝑇), equation (11.10) was obtained. By multiplying 

the torque in this equation by the radius of the Segways’ wheels, the motor force in equation (11.11) 

was obtained. Note that this equation describes the force of one wheel to the surface; the total force 

resulting from the motor is twice as large, as there are two motors actuating two wheels.  

 

Figure 11.23: Gravitational forces on the Segway in an inclined surface (Advanced Instructional Systems, 2013) 

Next, the Segway entering a slope (𝜃𝑠) was considered. Then, a new force comes into play; a 

component of the gravitational force now has the same direction as the force applied by the motor. 

This is the parallel component of the gravitational force (𝐹𝑔,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙).  

 𝐹𝑔,// = (𝑀𝑝 + 2𝑀𝑤)𝑔 sin (𝜃𝑠) (11.12) 

   
 

𝐹𝑡𝑜𝑡𝑎𝑙,𝑏𝑎𝑠𝑒 = 𝐹𝑚𝑜𝑡𝑜𝑟 + 𝐹𝑔,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 𝑉
𝑘𝑚

𝑅𝑟
− 𝑥̇

𝑘𝑚𝑘𝑒

𝑅𝑟2
+ (𝑀𝑝 + 2𝑀𝑤)𝑔 sin 𝜃𝑠 (11.13) 

Following from the free body diagram in figure 11.23, the size of this parallel force was given by 

equation (11.12). This results in a new total force on the base of the Segway, shown in equation (11.13).  

Then, to be able to investigate the influence of a slope on the behavior of the Segway, the motor force 

in the state space model in equation (4.8) was replaced by the total force acting on the base of the 
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Segway. The resulting state space disturbance (𝑑𝑠) is in equation (11.14). Adding this disturbance to 

the state space system of Younis and Abdelati (Younis & Abdelati, 2009) and filling in parameter values 

(except for the slope) resulted in the state space system is in equation (11.15):  

 

𝑑𝑠 =

[
 
 
 
 
 

0
(𝑀𝑝 + 2𝑀𝑤)𝑔(𝐼𝑝 + 𝑀𝑝𝑙2 − 𝑀𝑝𝑙𝑟)

𝛼
0

(𝑀𝑝 + 2𝑀𝑤)𝑔(𝑀𝑝𝑙 − 𝑟𝛽)

𝛼 ]
 
 
 
 
 

sin 𝜃𝑠 (11.14) 

   
 

[

𝑥̇
𝑥̈
𝜃̇
𝜃̈

] =  [

0 1 0 0
0 −0.1074 21.3441 0
0 0 0 1
0 −0.0471 14.1063 0

] [

𝑥
𝑥̇
𝜃
𝜃̇

] + [

0
0.2587

0
0.1136

]  𝑢 + [

0
26.8711

0
11.7931

] sin𝜃𝑠 

𝑦 = [
0 1 0 0
0 0 1 0

] [

𝑥
𝑥̇
𝜃
𝜃̇

] 

(11.15) 

Note that the physical meaning of a positive slope is the Segway moving downhill; there is a positive 

force acting on the Segways base. For a negative slope, likewise, there is a negative force acting on the 

base of the Segway.  

Using this state-space system, the behavior of the Segway model under various slopes was checked. 

The behavior was checked using slopes ranging from −0.40 𝑟𝑎𝑑 to 0.40 𝑟𝑎𝑑. The steepest road in the 

Netherlands is smaller than 0.2 𝑟𝑎𝑑 (klimtijd.nl, 2013). Thus, if the controller is able to maintain 

stability under a slope of ±0.2 𝑟𝑎𝑑, the Segway would be able to operate on all Dutch roads.  

The famous Baldwin Street, in Dunedin, New Zealand, is known as the world's steepest residential 

street (Rawlings-Way, Atkinson, & Hunt, 2009). Its official slope is 35 % which is equal to 0.34 𝑟𝑎𝑑. 

Thus, if the model maintains stability under a slope of ±0.35 𝑟𝑎𝑑, the Segway would probably be able 

to operate on every road there is.  

11.4.2. LQR controller 
The Simulink model in figure 6.4 was adapted to obtain the model in figure 11.24. By doing this, the 

disturbance of an inclined surface was implemented into the model.  
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Figure 11.24: Closed-loop system with LQR control and slope disturbance 

For the vertically stabilizing LQR it was investigated for which slopes the model would be able to 

maintain balance. Note that the gyroscope in the Segway measures the angle the system makes with 

the direction of the gravitational force. Thus, the system was still required to stabilize at a measured 

angle of zero.  

In the linearized model, the maximum slope in which the Segway could stabilize was just below 

0.40 𝑟𝑎𝑑. This was under an initial condition of 𝑧𝑖 = [0 0 0 0]𝑇. When reversed, the model also 

stabilized from a minimum slope of a little more than −0.40 𝑟𝑎𝑑. Thus, the real world Segway would 

presumably be able to stabilize in the vertical sense in any slope on a road.  

11.4.3. LQR controller with integral action  
By altering the Simulink model in figure 9.2, the disturbance resulting from an inclined surface was 

implemented into the model, resulting in the model in figure 11.25.  

 

Figure 11.25: Closed-loop system with LQR control with integral action and slope disturbance 

Using this model, the maximum velocity the model could attain while maintaining vertical balance 

under various slopes was investigated. The initial conditions considered for all the simulations were 

𝑧𝑖 = [0 0 0 0]𝑇. The results are displayed in table 11.5. The response characteristics consider the 
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velocity response. Note that these results correspond to the Segway regulating its velocity from zero 

to the desired velocity while operating in an inclined plane. This requires a larger motor force 

compared to the situation were the system is already at the desired velocity, and just needs to reject 

the disturbance resulting from the slope.  

Table 11.5: Maximum velocity under various slopes and transient behavior characteristics (LQR with integral action) 

Slope 
Maximum 
reachable 
velocity 

Rise time Overshoot Settling time 
Steady-state 

error 

−0.4 𝑟𝑎𝑑 0.15 𝑚/𝑠 0.92 𝑠 63.12 % 4.74 𝑠 0 𝑚/𝑠 

−0.3 𝑟𝑎𝑑 1.16 𝑚/𝑠 0.91 𝑠 38.24 % 4.38 𝑠 0 𝑚/𝑠 

−0.2 𝑟𝑎𝑑 1.83 𝑚/𝑠 0.79 𝑠 24.27 % 4.25 𝑠 0 𝑚/𝑠 

−0.1 𝑟𝑎𝑑 2.49 𝑚/𝑠 0.75 𝑠 39.16 % 3.95 𝑠 0 𝑚/𝑠 

0 𝑟𝑎𝑑 3.14 𝑚/𝑠 0.71 𝑠 101.76 % 5.22 𝑠 0 𝑚/𝑠 

0.1 𝑟𝑎𝑑 3.78 𝑚/𝑠 0.65 𝑠 99.00 %  4.72 𝑠 0 𝑚/𝑠 

0.2 𝑟𝑎𝑑 4.37 𝑚/𝑠 0.64 𝑠 84.26 % 4.46 𝑠 0 𝑚/𝑠 

0.3 𝑟𝑎𝑑 4.40 𝑚/𝑠 0.55 𝑠 71.55 % 4.05 𝑠 0 𝑚/𝑠 

0.4 𝑟𝑎𝑑 1.99 𝑚/𝑠 0.20 𝑠 90.14 % 7.44 𝑠 0 𝑚/𝑠 

As can be seen in the table, the rise time decreases as the slope of the inclined surface increases. This 

is logical; if the slope is positive, less force is required to move the Segway forward. In terms of 

overshoot, there were some fluctuations resulting from the differences in slope and maximum 

velocity. The settling time became smaller when the negative slope increased to zero. For the flat 

surface, however, the settling time rose to 5.22 𝑠. This was caused by the absence of disturbance and 

the increased overshoot in the flat surface. When the slope increased to a positive angle, the settling 

time decreased until the slope of 0.3 𝑟𝑎𝑑.  

Starting from a positive slope between 0.2 and 0.3 𝑟𝑎𝑑, a negative force is required from the DC-motor 

to slow the system down. This results in the fact that the model has a lower velocity limit for the 

steepest slopes, as a great motor force is required to counteract the parallel component of the 

gravitational force. The velocities given in table 11.5 are maximum velocities. Lower (positive) 

velocities would be attainable using the LQR controller with integral action.  

Altogether, the results in table 11.5 imply that the LQR controller with integral action will be usable to 

stabilize the system at a velocity of 2 𝑚/𝑠 in environments containing slopes ranging from −0.1 to 

0.3 𝑟𝑎𝑑. This means the controller is only suited for relatively flat areas.  

11.4.4. PID+LQR controller 
From the model derived earlier (figure 10.9) the new Simulink model in figure 11.26 was obtained, by 

inserting the slope disturbance.  
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Figure 11.26: Closed-loop system with PID+LQR control and slope disturbance 

Like with the LQR controller with integral action, the maximum velocity the model could attain using 

the PID+LQR controller under various slopes was investigated. Note that these results correspond to 

the Segway regulating its velocity from zero to the desired velocity while operating in an inclined plane. 

This requires a larger motor force compared to the situation were the system is already at the desired 

velocity, and just needs to reject the disturbance resulting from the slope.  

Table 11.6: Maximum velocity under various slopes and transient behavior characteristics (LQR with integral action) 

Slope 
Maximum 
reachable 
velocity 

Rise time Overshoot Settling time 
Steady-state 

error 

−0.4 𝑟𝑎𝑑 
Unstable for 

positive 
velocity 

- - - - 

−0.3 𝑟𝑎𝑑 0.73 𝑚/𝑠 0.30 𝑠 104.27 % 5.15 𝑠 0 𝑚/𝑠 

−0.2 𝑟𝑎𝑑 2.71 𝑚/𝑠 0.85 𝑠 9.80 % 3.29 𝑠 0 𝑚/𝑠 

−0.1 𝑟𝑎𝑑 3.96 𝑚/𝑠 0.90 𝑠 57.94 % 5.63 𝑠 0 𝑚/𝑠 

0 𝑟𝑎𝑑 4.67 𝑚/𝑠 0.91 𝑠 29.22 % 4.68 𝑠 0 𝑚/𝑠 

0.1 𝑟𝑎𝑑 4.48 𝑚/𝑠 0.65 𝑠 56.30 % 5.63 𝑠 0 𝑚/𝑠 

0.2 𝑟𝑎𝑑 3.85 𝑚/𝑠 1.59 𝑠 1.53 % 2.01 𝑠 0 𝑚/𝑠 

0.3 𝑟𝑎𝑑 5.85 𝑚/𝑠 0.52 𝑠 22.84 % 2.87 𝑠 0 𝑚/𝑠 

0.4 𝑟𝑎𝑑 5.81 𝑚/𝑠 0.57 𝑠 14.37 % 3.25 𝑠 0 𝑚/𝑠 

As can be seen in table 11.6, the results when using the PID+LQR controller were not as linearly 

connected to the slope as with the LQR controller with integral action. Nonetheless, like with the other 

controller, for large slopes the maximum reachable velocity does not increase. Also, the Segway model 

was uncontrollable under a slope of −0.4 𝑟𝑎𝑑. This is caused by the aggressiveness of the controller; 

it attempts to stabilize too fast, resulting in an error angle too large for the DC-motor to stabilize, 

because of the motors saturation. However, for angles larger than −0.3 𝑟𝑎𝑑, the maximum reachable 

velocity is relatively high when compared to the results of the LQR controller with integral action. The 

velocities given in table 11.6 are maximum velocities. Lower (positive) velocities would be attainable 
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using the PID+LQR controller, except for the case when the slope is 0.4 𝑟𝑎𝑑. In this case, a positive 

velocity is required, as the parallel component of the gravitational force is too large to allow the system 

to stabilize at a low velocity (slower than 1 𝑚/𝑠).  

Altogether, the results in table 11.6 imply that the PID+LQR controller will be usable to stabilize the 

system at a velocity of 2.5 𝑚/𝑠 in environments containing slopes ranging from −0.2 to 0.4 𝑟𝑎𝑑. This 

means the controller is able to reject most (normal) slopes. When the slopes get larger than 0.2 𝑟𝑎𝑑, 

the controller is not suited for control of the Segway system. The PID+LQR controller would thus suffice 

for most Segways acting as a transportation vehicle.  

11.5. Testing the controllers under multiple combined disturbances 

11.5.1. Test situation 
As a final test, the disturbances discussed previously were combined in order to check the models 

behavior in a realistic situation for both controllers. The situation modelled consisted of the following 

steps:  

 A user of 80 𝑘𝑔, 1.80 𝑚 and 72.78 𝑘𝑔 ∙ 𝑚² mounts the Segway at time 𝑡 = 0 under an initial 

error angle of −0.17 𝑟𝑎𝑑. Note that this represents the user leaning forward. Sensor noise is 

equal to the white noise in the section on noise rejection.  

 The Segway is stabilized by the LQR controller. 

 At time 𝑡 = 10 the automatic pilot is started with a desired velocity as high as allowed by the 

saturation. 

 The LQR controller with integral action or the PID+LQR controller stabilizes the Segway at the 

desired velocity.  

 At time 𝑡 = 20 the Segway enters an inclined surface with slope −0.4 𝑟𝑎𝑑. 

 At time 𝑡 = 30 the surface plane becomes flat again.  

 At time 𝑡 = 40 the Segway enters a surface with slope 0.4 𝑟𝑎𝑑. 

 At time 𝑡 = 50 the surface becomes flat again.  

 At time 𝑡 = 60 the automatic pilot is turned off and the controller for trajectory tracking brings 

the velocity back to zero. This was done by the controllers for trajectory instead of the LQR 

controller for vertical stabilization, as this resulted in a better response in the linearized model.  

The initial error angle of −0.17 𝑟𝑎𝑑 was chosen because it is assumed to be a realistic error angle 

resulting from the user mounting the Segway. The velocity is regulated to its maximum in order to test 

the controller with noise. The changes in slope are relatively large; this was done because the system 

response to small slopes was barely visible once the Segway was at its desired velocity level. Finally, 

the automatic pilot was turned off to check the systems response to decreasing the desired velocity. 

Disturbances in the error angle were not considered in the test situation, because in the ideal situation, 

the user is not moving. This implies the test is actually a representation of a real situation were the 

user is rigid and does not move. If the model would maintain stability throughout the run, the quality 

of the controller’s performance in the linearized model is high enough to be implemented and 

evaluated on a real life Segway.  

11.5.2. LQR controller with integral action 
In order to model the situation described above with the LQR controller with integral action for 

trajectory tracking, the models derived before were combined and adapted into the model that is in 

figure 11.27. 
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Figure 11.27: Closed-loop system with combined disturbances (LQR with integral action) 

In the Simulink model in the figure above, the disturbances discussed before were combined. 

Simulink’s step and product blocks were used to model transitions between controllers or slopes. The 

systems response in terms of velocity and error angle are in figure 11.28. The input signal (voltage) is 

displayed in figure 11.29.  

 

Figure 11.28: Systems response in terms of velocity and error angle 

 

Figure 11.29: Systems response in terms of input voltage 

The highest velocity which could be attained by the model 10 seconds after stabilizing from an error 

angle of 0.17 𝑟𝑎𝑑 was 2.68 𝑚/𝑠. As can be seen in the figures above, the influence of the noise carried 

on to the Segways states was negligible, while the noise in the input voltage was relatively large. Also 

the influence of the user being different from the user in the model was imperceptible. The largest 

oscillating behavior was resulting from the automatic pilot turning on, which is logical as the velocity 

is rising to its maximum. The influence of the slope disturbances was relatively small, even for the large 

slopes of ±0.4 𝑟𝑎𝑑. From this fact it was concluded that once the Segway is at the desired velocity, 
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disturbances in the form of slopes pose no issue to the Segways stabilization. Noteworthy is the 

slowing down of the system, which expresses far less oscillating behavior than speeding up.  

Altogether, the LQR controller with integral action is well suited to control the Segway with automatic 

pilot under the expected disturbances. To maintain stability in the real life Segway implementation, it 

is advised to set the value of the desired velocity when the automatic pilot is turned on to 2.5 𝑚/𝑠. 

This is slightly under the velocity used in the test above, to maintain some ‘safety margin’ to ensure 

safety for the Segway user.  

11.5.3. PID+LQR controller 
In order to model the situation described in the section on the test situation with the PID+LQR 

controller for trajectory tracking, the models derived before were combined and adapted into the 

model that is in figure 11.30. 

 

Figure 11.30: Closed-loop system with combined disturbances (PID+LQR) 

Like in the model in figure 11.21, the disturbances discussed before were combined. Simulink’s step 

and product blocks were used to model transitions between controllers or slopes. The systems 

response in terms of velocity and error angle are in figure 11.31. The input signal (voltage) is displayed 

in figure 11.32.  

 

Figure 11.31: Systems response in terms of velocity and error angle 
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Figure 11.32: Systems response in terms of input voltage 

The highest velocity which could be attained by the model 10 seconds after stabilizing from an error 

angle of 0.17 𝑟𝑎𝑑 was 5.9 𝑚/𝑠. As can be seen in the figures above, the influence of the noise carried 

on to the Segways states was negligible, while the noise in the input voltage was relatively large. Also 

the influence of the user being different from the user in the model was imperceptible, like was the 

case when using the LQR controller with integral action. The largest oscillating behavior was resulting 

from the velocity reducing back to zero. The speeding up of the system after turning the automatic 

pilot on resulted in way less oscillating behavior. This is exactly opposite to the behavior of the LQR 

controller with integral action discussed before.  

The influence of the slope disturbances was relatively small, even for the large slopes of ±0.4 𝑟𝑎𝑑. 

From this fact it was concluded that also for the PID+LQR controller, once the Segway is at the desired 

velocity, disturbances in the form of slopes pose no issue to the Segways stabilization.  

Altogether, the PID+LQR controller is very well suited to control the Segway with automatic pilot under 

the expected disturbances. In terms of desired velocity for the automatic pilot, there is pretty much 

no boundary. As the test situation above could remain stable at a velocity of up to 5.9 𝑚/𝑠, any value 

between 0 and 5 𝑚/𝑠 should be applicable in a real situation. However, for most applications the 

desired velocity of the automatic pilot would most likely be below 5 𝑚/𝑠.  
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12. Discussion 
The controllers proposed in this project were based on the linearized model of a Segway. In the section 

on disturbances and noise, the controller’s robustness was tested. However, when a model is 

linearized, it is only valid for a tight set of values around the equilibrium point. Thus, the borders of 

stability found in this project may not comply with reality. Still, based on the findings in this project, 

the controllers will be expected to reject most disturbances, as long as they are not too large.  

In order to state if the approaches hereby proposed are suitable or not for the design of the automatic 

pilot function, the controllers must be implemented in the nonlinear model of the system, which 

captures physical phenomena that are neglected by the linearized model. Accordingly, once the 

simulation results are satisfactory, it is possible to proceed with the experimental validation of this 

work. 

Would the controllers be rendered unsuitable by implementation in the nonlinear model, multiple 

other approaches could be suggested. First of all, a nonlinear approach to the system would provide 

other and possibly better controllers. However, nonlinear control would result in a more complicated 

problem, which might be unnecessary in the relatively simple case of the Segway system. Another 

approach might be to tune the controller to the buyer; let the buyer specify his or her height and 

weight, so that the controller can be adapted to the user. A variant to this approach would be to 

implement a weight sensor into the Segway, so that the control signal can be scaled to the weight of 

the user. The same can be done to deal with slope disturbances; implement a sensor measuring the 

slope of the plane in which the Segway is moving and implement this slope into the controller.  These 

approaches would lead to a better controller, but also to a more complicated and expensive system.  

In the controllers proposed in this project, the desired velocity is increased from zero to the desired 

level instantly. Another adaption to the controllers in this project would be to gradually increase the 

velocity instead. This would result in a less aggressive stabilization, resulting in higher attainable 

velocities. The drawback to this approach is that when the user does want to reduce the velocity 

instantly, the Segway might become unstable.  

Another alternative approach to trajectory tracking could be to regulate the system in a desired 

position. In this way, the reference is not the desired velocity of the system but the desired final 

position. However, this approach was not considered in this project, because a controller would try to 

move the system to the desired position as fast as possible. This approach would result in problems 

with the saturation of the DC-motors and variability in the velocity. Still, by tuning the controller 

parameters, these issues could be solved.  

As a final remark, the model used in this system did not incorporate the option of turning. It was 

assumed that turning the Segway would have little influence on the stabilization of the vertical position 

of the Segway or its velocity. If the controllers in this project would be implemented into a Segway, the 

effect of steering should be investigated more deeply.  
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13. Conclusions 
In the beginning of this project an LQR controller for vertical stabilization was proposed. This controller 

showcased a good balance between the aggressiveness of the stabilization and the required voltage 

over the DC-motors. The two controllers for trajectory tracking (LQR with integral action and LQR+PID) 

were designed and extensively tested. Altogether both controllers performed satisfactory, although 

the PID+LQR controller was considered more robust. Especially in the attainable velocity the PID+LQR 

controller performed better with an attainable velocity of 4.67 𝑚/𝑠. In terms of stabilization in a slope, 

the PID+LQR controller performed worse than the other two controllers. However, when the system 

was already at the desired velocity and the system entered a slope, the resulting disturbance was 

minimal for all controllers. When gaining velocity, the response of the PID+LQR controlled system was 

better, while decreasing in velocity resulted in a better response from the LQR with integral action 

controlled system.  

In the end, both controllers would be well suited to control the system of the Segway with automatic 

pilot. In terms of robustness, the PID+LQR controller would be the best controller to use. When a larger 

robustness is required from the Segway, this might be solved by increasing the capacity of the actuating 

DC-motors.  
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Appendix A: Matlab script used for simulations 
%% Parameters 

Km = 0.869; % Constant of motor torque 

Ke = 0.083; % Constant of the motor's back-EMF 

L = 1.7; % Length of the pendulum 

R = 0.2; % Wheel radius 

Rm = 1; % Resistance of motor 

Mp = 85; % Mass of the pendulum 

Ip = 68.98; % Inertia of the pendulum 

Mw = 3.5; % Mass of the wheel 

Iw = 0.07; % Inertia of the wheel 

g = 9.81; % Gravity 

slope = 0.5*pi; % Surface slope 

 

%% Matrixes 

beta = 2*Mw + ((2*Iw) / (R*R)) + Mp; 

alpha = Ip*beta + 2*Mp*L*L*((Mw*Iw) / (R*R)); 

  

A = [0, 1, 0, 0; 0, (2*Km*Ke*(Mp*L*R - Ip - Mp*L*L)) / (Rm*R*R*alpha), 

(Mp*Mp*g*L*L) / alpha, 0; 0, 0, 0, 1; 0, (2*Km*Ke*(R*beta - Mp*L)) / 

(Rm*R*R*alpha), (Mp*g*L*beta) / alpha, 0]; 

  

B = [0; (2*Km*(Ip + (Mp*L*L) - (Mp*L*R))) / (Rm*R*alpha); 0; 

(2*Km*(Mp*L - R*beta)) / (Rm*R*alpha)]; 

  

Ds = [0; ((Mp+2*Mw)*g*sin(slope)*(Ip + (Mp*L*L) - (Mp*L*R))) / 

(alpha); 0; ((Mp+2*Mw)*g*sin(slope)*(Mp*L - R*beta)) / (alpha)]; 

  

C = [0, 1, 0, 0; 0, 0, 1, 0]; 

  

C1 = [1, 0, 0 ,0]; 

C2 = [0, 1, 0, 0]; 

C3 = [0, 0, 1 ,0]; 

C4 = [0, 0, 0, 1]; 

  

D = 0;  

  

%% Open-Loop system 

states = {'x' 'x_dot' 'phi' 'phi_dot'}; 

inputs = {'u'}; 

outputs = {'x'; 'phi'}; 

  

sys_ol = ss(A, B, C, D, 'statename', states, 'inputname', inputs, 

'outputname', outputs); 

  

poles = eig(A); 

co = ctrb(A, B); 

controllability = rank(co); 

  

%% LQR 

  

Q = zeros(4, 4); 

Q(1,1) = 1; 

Q(2,2) = 1; 

Q(3,3) = 11.1; 
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Q(4,4) = 1.6; 

  

r = 0.00043; 

  

K = lqr(A, B, Q, r); 

  

Ac = [(A-B*K)]; 

Bc = [B]; 

Cc = [C]; 

Dc = [D]; 

  

sys_cl = ss(Ac, Bc, Cc, Dc, 'statename', states, 'inputname', inputs, 

'outputname', outputs); 

  

%% Augmented LQR trajectory tracking and PID 

Kp = 60.67; 

Ki = 60.67*0.64; 

Kd = 60.67*0.28; 

  

Aa = [A zeros(4, 1); C1 0]; 

Ba = [B; 0]; 

Ca = [C1 0]; 

  

sys_aug = ss(Aa, Ba, Ca, Dc); 

augcontrollability = rank(ctrb(Aa, Ba)); 

  

Kpidlqr = [(K(1)-Kp) (K(2)-Kd) K(3) K(4) -Ki]; 

Qa = [Q zeros(4, 1); zeros(1, 4) 5]; 

Kalqr = lqr(Aa, Ba, Qa, r); 

 


