
faculty of mathematics
and natural sciences

Solving large-scale, elliptic
PDEs with rapidly
oscillating coefficients

Internship Applied Mathematics
June 2018

Student: H.T. Stoppels
Company/Institute: Aalto University

Internal RUG supervisor: Dr. ir. F.W. Wubs

External supervisor: D.Sc. A. Hannukainen

1 Introduction
We consider the scalar, uniformly elliptic PDE of the form

−∇ · a(x)∇u = f in U (1)

where U ⊂ Rd is an open and connected set with d = 2, 3 and a(x) ∈ Rd×d is
highly oscillatory with random coefficients. This model describes for instance
the steady-state solution of the heat equation for composite materials: the os-
cillations in a(x) arise when the constituent materials have different conductive
properties and are randomly mixed on a small scale relative to the size of U .

With this model in mind, we try to make our ideas more formal. Define the
space of all admissible coefficient matrices

Ω := {x→ a(x) ∈ L∞(Rd,Rd×d) : a(x) SPD} (2)

and define some probability measure on this space Ω, which guarantees that the
randomness in a has unit range of dependence in Rd (the composite is mixed on
a unit scale) and is stationary with respect to unit translations in U (we cannot
statistically distinguish one patch of material from another outside the unit
range dependence). These assumptions are made fully precise in [2] with the
necessary measure theory machinery. Equation (1) can now be interpreted as a
PDE where a is randomly selected from Ω subject to this probability measure.

From a numerical perspective, the oscillatory behaviour of a is very unattrac-
tive, as very fine grids are necessary to guarantee convergence of discretizations
— not to mention that the ‘optimal’ method for coercive and elliptic PDEs
(geometric multigrid) requires a very fine coarse grid to converge. To work
around this issue, one typically studies the effective, macroscopic properties of
the material and replaces the oscillatory a of problem (1) with the homogenized
coefficients ā, which are under some assumptions constant. In a way, we replace
the composite material with a fictitious, homogeneous material with effectively
the same conductive properties on large scales r � 1.

Figure 1: Section of a composite material in R2 where the black constituent
has vertical fibers acting as insulators such that a(x) is small, while the white
constituent conducts well such that a(x) is large.

2

Determining the homogenized coefficients is however a nontrivial task. For
instance, what appears to be the simplest case where a(x) = σ(x)Id is scalar-
valued with σ(x) as in Figure 1, the homogenized matrix a is not expected
to be scalar-valued, since the effective conductivity in the y-direction will be
larger than in the x-direction. In fact, only in 1D do we know the explicit
relation between the homogenized coefficients ā and the original coefficients a,
and already there the relation is nontrivial. Consider the ODE

− d

dx

(
a
(
x
ε

) duε
dx

)
= 0 in (0, 1)

uε(0) = 0
uε(1) = 1

(3)

which has the solution

uε(x) = m−1
ε

∫ x

0
a−1 (y

ε

)
dy with mε :=

∫ 1

0
a−1 (y

ε

)
dy. (4)

As shown in [2], as ε→ 0, almost surely, the solution uε converges to the linear
function u(x) = x in L2(0, 1), while

mε → m0 := E
[∫ 1

0
a−1(y) dy

]
and the effective coefficient ā is then determined by the harmonic mean of a :

ā := m−1
0 = E

[∫ 1

0
a−1(y) dy

]−1

. (5)

In dimension 2 and 3 it is virtually impossible to construct an explicit relation
between a and ā, and hence we have to resort to algorithms.

1.1 Example composite materials
2D checkerboard. One of the few examples of which we analytically know
the homogenized coefficients is the so-called 2D checkerboard, where a takes
piece-wise constant, random values in each unit square in Rd. Slightly more
precise, for every z ∈ Zd we define two independent random variables Xz,1 and
Xz,2 such that

P[Xz,i = 0] = P[Xz,i = 1] = 1
2 for i = 1, 2.

From these discrete random variables we define a continuous random field x 7→
a(x) by defining for fixed z ∈ Zd and every x ∈ z+ [0, 1)d the coefficient matrix

a(x) =
[
aXz,1 0

0 aXz,2

]
(6)

with for instance a0 = 1 and a1 = 9. For this particular 2D example it is known
that it homogenizes to a constant matrix ā = √a0a1I = 3I, which is a geometric
mean of the sample space of the underlying random variables.

3

Figure 2: Realization of one coefficient of a(x) on a domain of size 148 by 148
for the checkerboard patter of Equation (6).

Convolutions. Another widely used coefficient field a(x) is obtained by con-
voluting white noise with a mollifier function φ(x) ∈ C∞c (Rd) with support of
unit range in Rd. The mollifier constitutes the unit range dependence in the
material. This leads to a wide variety of potential materials that come closer
to real-life examples as found in geophysics (e.g. the diffusivity of a fracked
rock in geothermal energy applications). At same time it leads to non-constant
coefficients, which are potentially tougher problems to solve numerically.

4

Figure 3: The same checkerboard concept of Figure 2 in 3D; we see one realiza-
tion of a single coefficient of a(x)

2 Obtaining the homogenized coefficients and
solving large-scale problems

In this internship both an efficient algorithm to obtain the homogenized matrix
a and subsequently an efficient multigrid-like method that exploits the homog-
enized matrix a to solve (1) numerically up to the small scales were studied.
However, as it turned out, an efficient implementation of standard geometric
multigrid already helped us to push the boundaries of solving (1) numerically
with about 300.000.000 unknowns in 2D and 3D in reasonable time on a stan-
dard workstation computer. Hence, we focus mainly on the algorithm used to
determine the homogenized coefficients, but for completeness we also list the
other algorithm studied.

2.1 Homogenized coefficients
With regard to obtaining the homogenized coefficients ā we try to extend the
results of [6] to the continuous case. The algorithm works as follows. Fix the

5

constant unit vector ξ ∈ Rd and define v−1 ∈ H−1
loc (Rd) as

v−1(x) := ∇ · (a(x)ξ).

For every k ∈ N define vk ∈ H1
loc(R) as the unique solution to

(2−k −∇ · a∇)vk = 2−kvk−1 in U
vk = 0 on ∂U

(7)

where U is a “sufficiently large” ball around the origin in Rd. Then the following
holds:

Definition 1. For all n ∈ N denote the increments

δσ̂2
0 :=

∫
C(2n)

(−aξ · ∇v0 + v2
0),

δσ̂2
k := 2k

∫
C(2n−k/2)

(vk−1vk + v2
k) for k = 1, . . . , n

(8)

and the correction

σ̂2
n =

n∑
k=0

δσ̂2
k. (9)

Here C(r) is the cube [−brc, brc]d .

Theorem 1. For every s ∈ (0, 2) there exists a constant C < ∞ such that for
every t > 0 it holds that

P

[∣∣∣∣∣ξ · āξ − E

[∫
[0,1]d

ξ · aξ
]

+ σ̂2
n

∣∣∣∣∣ ≥ Ctn2−(nd/2)

]
≤ 2 exp (−t2).

For instance, on can pick ξ to be the first standard basis vector, such that
ξ · āξ is just the upper left coefficient of the homogenized matrix. The inter-
pretation of Theorem 1 is that, apart from stochastic fluctuations, the quantity
“average of a − σ̂2

n” is a good estimator for a homogenized coefficient. Finally,
what we mean with U being sufficiently large, is that the arbitrary boundary
condition on ∂U has no significant influence of each vk within the area over
which we integrate when we compute the quantities σ̂2

n. Indeed, one can in-
terpret (7) as exponential time-stepping of the heat equation with a backward
Euler scheme, and in that sense it is intuitive that the boundary conditions
will only have a local influence — note that the area over which we integrate
to compute σ̂2

n shrinks ‘as time progresses’, which plays well with the growing
influence of the boundary condition in the interior of the domain. Furthermore,
the rational is that equations (7) are easy to solve, since the 2−k term improves
diagonal dominance of matrices in the discretizations.

6

2.1.1 h-FEM discretization

The weak formulation of problem (7) reads: find vk ∈ H1
0 (U) such that∫

U

2−kvkw + a∇vk · ∇w =
∫
U

2−kvk−1w for all w ∈ H1
0 (U). (10)

We note that if the coefficients of a are merely L∞ (e.g. the checkerboard), that
the v−1 can only be interpreted as a distribution, but we are saved because the
first right-hand side can be partially integrated against the test function w:∫

U

v−1w =
∫
U

w∇ · (a(x)ξ) = −
∫
U

a(x)ξ · ∇w.

This also explains why the first correction δσ̂2
0 in Definition 1 is different from

the rest. A standard h-FEM discretization would then transform (10) to a
problem of the form:

(2−kM +A)~vk = 2−kM~vk−1. (11)

where M is a mass matrix, A the coefficient matrix and ~vk the discrete versions
of vk.

2.2 Solving large-scale problems
This section currently serves rather as a justification of geometric multigrid to
solve problems (1) with highly oscillatory coefficients, as the classical proofs [4]
of convergence of multigrid would not allow for these rough coefficients. We
consider the multigrid idea of [1] which uses the homogenized coefficients for
the coarse grid correction.

Consider problem (1) with u = 0 on ∂U. Suppose we are given an approx-
imate solution w ∈ H1

0 (U), then the following procedure will improve this ap-
proximate solution. Denote L := −∇ · a∇ and L̄ := −∇ · ā∇.

Step 1: Solve (λ2 + L)u0 = f − Lw.

Step 2: Solve L̄ū = λ2u0.

Step 3: Solve (λ2 + L)ũ = (λ2 + L̄)ū.

Step 4: Update w ← w + u0 + ũ.

We refer to the results of [1] for an exact statement to which extent the new w
improves upon the old w. For us it is sufficient to realize that this method is very
similar to multigrid: the first step is just the approximate error equation where
L is replaced by (λ2 + L), which is a way to express a smoothing operation1.

1For instance in finite dimensions the linear system Ax = b with A symmetric, positive
definite can be approximately solved for by x̃ ≈ x satisfying (λ2 +A)x̃ = b. If (λi, xi) are the
eigenpairs of A and b =

∑
i
βixi, then x̃ =

∑
i

β
λ2+λi

xi. We see that whenever λi � λ2 the
contribution of xi is small, whereas whenever λi � λ2 the effect of the λ2 term is negligible.

7

The second step is much like a coarse grid correction of the error equation (note
that the right-hand side λ2u0 = (f −Lw)−Lu0 is the next residual) and can be
solved with standard geometric multigrid. Finally step 3 is another smoothing
step. To fully understand the relation between (λ2 + L) and the homogenized
operator L̄, we refer again to [1].

8

3 Implementation details
We have implemented a simple FEM package (available at https://github.
com/haampie/Rewrite.jl) built from scratch in the Julia programming lan-
guage. The main aim of this package is to be able to prototype quickly, yet be
able to handle large-scale problems at the same time. The Julia language seems
to be perfectly fit for this task: it has a syntax similar to MATLAB, yet it is at
the same time powered by a JIT compiler, which typically generates the same
code a C-compiler would. Another great benefit of using Julia is its type system
combined with its multiple-dispatch feature, which typically allows us to write
just one function that works both for two- and three-dimensional meshes.

The base package includes the following:

1. Unstructured grids of triangles and tetrahedrons.

2. Gauss-Legendre quadrature rules.

3. Helper functionality for assembly.

4. Dirichlet boundary conditions.

5. Uniform grid refinement.

6. The ‘implicit fine grid’ approach.

7. A geometric multigrid solver.

8. Exporting of grid with nodal and cell data to VTK format.

In what follows we highlight a few of the implementation details.

3.1 A taste of the Julia programming language
As a motivating example for why we use the Julia programming language, con-
sider the definition of the geometrical mesh:

using StaticArrays

struct Mesh{dim,N,Tv,Ti}
nodes::Vector{SVector{dim,Tv}}
elements::Vector{NTuple{N,Ti}}

end

It is an immutable struct of nodes and elements: the nodes are static vectors of
dimension dim and value type Tv, the elements are N-tuples of indices of type Ti
that refer to the nodes. For example, a mesh of a unit square with two triangles
can be constructed as:

9

https://github.com/haampie/Rewrite.jl
https://github.com/haampie/Rewrite.jl

nodes = SVector{2,Float64}[(0,0),(0,1),(1,0),(1,1)]
elements = [(1,2,3), (2,3,4)]
mesh = Mesh(nodes, elements)
typeof(mesh) # Mesh{2,3,Float64,Int64}

The memory layout of nodes and elements is equal to the situation where one
had stored these values as matrices, but the invaluable benefit is that this way we
can dispatch functions on the mesh type. For instance, our grid refinement code
works differently for triangles and tetrahedrons, yet we use it in our multigrid
routine, which works the same way irrespective of the dimensionality. It would
be a waste to reimplement multigrid for the 3D case when we already have it
in 2D. Julia allows us to solve this problem by writing:
const TriMesh{Tv,Ti} = Mesh{2,3,Tv,Ti}
const TetMesh{Tv,Ti} = Mesh{3,4,Tv,Ti}

function refine_uniformly(mesh::TriMesh)
...

end

function refine_uniformly(mesh::TetMesh)
...

end

function multigrid(mesh::Mesh, total_levels = 5)
levels = Vector{typeof(mesh)}(total_levels)
levels[1] = mesh
for i = 2 : total_levels

levels[i] = refine_uniformly(levels[i-1])
end
vcycle(levels)

end

In this simplified example, the multigrid function works for any mesh type.
Another great example of the type system and the multiple-dispatch feature

is the use of the StaticArrays package. Without going into details, it imple-
ments simple linear algebra functions such as inv and det for small matrices
of which the size is known “compile”-time. This is particularly useful for fast
assembly in finite elements, where one typically constructs a mapping from a
reference cell to each mesh cell. In Julia we can explicitly construct this map-
ping without allocating a tiny matrix, and subsequently use functions as inv on
it, which are specialized for the size of this tiny matrix. Julia aggressively inlines
these function calls, often resulting in vectorization and good performance.

3.2 The implicit fine grid approach
A classical approach to solving PDEs via the finite-element method is to as-
semble the large, sparse matrix A in a compressed sparse column or row format

10

(CSC or CSR respectively). However, when the dimensionality of the discretized
problem becomes too large, it is typically impossible to store the matrix like this
due to memory constraints. In what follows we assume that a floating point or
an integer take one unit of memory.

For example, consider a standard discretization on a uniform grid with a
c-point stencil (typically c = 5 in 2D and c = 7 in 3D). With n nodes, the CSC
format stores cn nonzero values, cn row indices and n pointers mapping each
column to the index of its first nonzero value. In total the storage costs of the
compressed format are about (2c+ 1)n units. In the case of unstructured grids,
there is also the need to store the grid itself, which runs into nearly the same
memory demands. The nodes take dn units where d is the dimension, and for
simplices the cells take (d+ 1)e units of memory where e is the number of mesh
cells (typically a small multiple of n).

A simple implementation of multigrid on the other hand requires to store
only 3n units on the finest grid: the unknowns x, the right-hand side b and a
residual vector r. When we attempt to solve large-scale problems to the point
where limited memory is a constraint, we would hope to have a method that
scales roughly with this prefactor O(3n) in terms of memory — storing the grid
and the matrix is then obviously infeasible.

When it comes to the linear operator A, the simplest solution is to compute
a value of the matrix each time it is requested. Since ‘matrix-free’ iterative
methods such as multigrid only require application of the matrix in the form of
a matrix-vector product, this is a perfectly reasonable approach.

However, since we cannot afford to store a full unstructured grid either, we
have to make some concessions. In our implicit fine grid approach we as-
sume a given unstructured base mesh that is being refined uniformly — the base
mesh is unstructured, but all refined mesh cells are similar. This way we only
have to store a coarse base mesh and one refined reference cell. Finally, if we
also assume constant coefficients in the base mesh, we can even avoid computing
the matrix entries over and over again. This would fit in well to solve large-scale
problems involving the checkerboard problems explained in Section 1.1.

To be a bit more precise, we define

Definition 2. The set T = {τi}mi=1 is a conforming triangulation of a
domain Ω ⊂ Rd when

1. ∅ 6= τi ⊂ Ω is a simplex for each i,

2. ∪iτi = Ω,

3. τi ∩ τj is either ∅, a node, an edge or a face whenever i 6= j.

We define the base mesh to be a conformal triangulation

T = {τi}Eb
i=1

11

of a domain Ω ⊂ Rd. Further, we refer to the refined reference cell inter-
changeably as the standard simplex τ̂ ⊂ Rd, or a conformal triangulation

T̂ = {τ̂i}Ef

i=1

of this simplex τ , as shown on the left in Figure 4. Next, for any base mesh cell
τ ∈ T we define the affine map F τ : Rd → Rd of the form

F τ (x̂) = Jτ x̂+ bτ

where Jτ ∈ Rd×d, bτ ∈ Rd, x̂ is a local coordinate in the reference cell τ̂ and
x = F τ (x̂) the corresponding coordinate in τ. Also, we define the refined base
mesh as the triangulation

Ttotal = ∪Eb
i=1F

τi(T̂),

which is just the triangulation of the reference cell applied to all cells in the
base mesh. Lastly, the Nf nodes of the refined reference element τ̂ are denoted
x̂i ∈ τ̂ for i = 1, . . . , Nf . The nodes of the refined base mesh is the set {F τi(x̂j)}
for i = 1, . . . , Eb and j = 1, . . . , Nf . These nodes can have a global numbering,
but in practice one only uses the local numbering with respect to a base mesh
cell. If in practical applications values are associated to each node of the refined
base mesh, the typical storage format is a dense matrix

Y =

y
τ1
1 . . . y

τEb
1

...
...

yτ1
Nf

. . . y
τEb

Nf

 (12)

where the value Yij is associated with the node F τj (x̂i). Values of nodes that
are shared among multiple base mesh cells are stored multiple times. For large
enough Nf this does not conflict our storage demands.

3.2.1 Computing a local matrix-vector product

For each node x̂i ∈ τ̂ we have a reference piecewise linear basis function φ̂i such
that

φ̂i(xj) =
{

1 when i = j

0 otherwise
for i, j = 1, . . . , Nf .

In τ we locally use the same numbering of the nodes xτi = F τ (x̂i); similarly
we number the basis functions such that φτi (x) corresponds with φ̂i(x) for
i = 1, . . . , Nf . When it is clear from the context, we drop the superscripts
τ . Consider the local FEM matrix Aτ with entries

Aτij =
∫
τ

a∇φi · ∇φj dx for i, j = 1, . . . , Nf . (13)

12

τ̂

τ

Figure 4: On the left a twice refined reference cell τ̂ , and on the right an
unstructured base mesh with the implicit grid shown in one base mesh cell.

The pullback of the bilinear form to the reference coordinates takes the form

Aτij =
∫
τ̂

aJ−1∇φ̂i · J−1∇φ̂j |J | dx̂. (14)

Assuming constant coefficients of a in τ, we note that the only dependence on
x̂ in the integrand of (14) resides in the reference basis functions φ̂i and φ̂j .

Hence, on the reference mesh, we compute once and for all the matrices Â(k,`)

for k, ` = 1, . . . , d, with entries

Â
(k,`)
ij =

∫
τ̂

∂φi
∂x̂k

∂φj
∂x̂`

dx̂ for i, j = 1, . . . , Nf . (15)

We then compute the matrix Nτ ∈ Rd×d with entries

Nτ
k` = J−TaJ−1|J |, (16)

such that the local matrix Aτ takes the form

Aτ =
d∑

k,`=1
Nτ
k,`Â

(k,`). (17)

The takeaway is that equation (17) allows us to apply matrix-vector products
with the local matrix Aτ of any base mesh cell τ ∈ T , by applying d2 matrix-
vector products with the precomputed matrices Â(k,`).

13

3.2.2 Computing a global matrix-vector product

Performing the local matrix-vector product can be done fully in parallel, but
the remaining issue is to compute a global matrix-vector product; this requires
some communication. In our implementation we simply use threading on shared
memory, but the setup lends itself perfectly for parallellization on distributed
memory as well.

As per Definition 2, any two simplices τi, τj ∈ T with i 6= j either share
nothing, a node, an edge or a face. We define three sparse connectivity graphs
that map nodes, edges and faces of the base mesh to a list of pairs of (1) the base
mesh cell they belong and (2) their local node, edge and face index. Secondly,
we keep track of the lists of nodes in the refined reference mesh that lie on each
edge and face of τ̂ . Finally, by storing the base mesh is such a way that the
nodes that make up the simplex are ordered, we do not have to worry about the
orientation of the mesh cells, and we can easily sum the shared nodes on every
part of the interfaces.

Using counting sort and radix sort, all operations that are involved in con-
structing the connectivity graphs run in linear time with respect to the number
of nodes on the base mesh. We simply refer to the implementation of the package
itself for all details.

14

4 Results
2D checkerboard We consider2 one realization of the checkerboard on the
domain U = [1, 149] × [1, 149] ⊂ R2, and inspect the convergence behaviour of
h-FEM. We solve problems (7) where in this case “U sufficiently large” means
that we add 10 cells of boundary layer, such that effectively the area we integrate
over when obtaining σ̂2

n is initially a square of size 128 by 128.
We run the iterations of (7) to step n = 5 and solve the problems approx-

imately with standard multigrid with two Richardson iterations as smoothing
steps, where the coarsest level is the standard, uniform triangulation of the
square with nodes {1, . . . , 149}2. Multigrid is run with one to seven uniform
refinements of the coarse grid.

The stopping criterion of multigrid when solving (7) for vk is based on the
absolute change in δσ̂2

k : if the increment is smaller than ε = 0.0001, we consider
the value converged; this corresponds to the exact error with respect to a first-
order Richardson extrapolation.

Refinements Nodes σ̂2
5 V-cycles

1 262 848 1.65537 35
2 657 120 1.84906 47
3 1 971 360 1.93483 53
4 6 702 624 1.96924 56
5 24 576 288 1.98275 58
6 93 968 160 1.98794 58
7 367 330 080 1.99010 59

1.99082

Table 1: Some results for the checkerboard problem. Nodes on the interfaces
are counted multiple times. “V-cycles” is a measure of the complexity — total
complexity is hopefully linear in the number of nodes. The last row shows the
second-order extrapolation of σ.

Table 1 lists how the value σ̂2
5 depends on the refinement of the grid. Note

that (apart from stochastic fluctuations) σ̂2
n should converge to 2, since ā

Somewhat to our surprise the convergence of h-FEM is extremely slow – to
get three significant digits of σ̂2

5 we need an astonishing 300 million nodes, which
on the one hand shows that our package can handle very large problems, but
at the same time that the iterative nature of the algorithm of Theorem 1 might
only work for two or three iterations. This is in sharp contrast to the results
for discrete counterpart of [6]. The upside is that the complexity of the method

2Performed with commit 3b405c004c463bc5d1911bb68e3bcd366c31b9e2 by running refs,
data = Rewrite.compare_refinements_on_same_material(2:8)

15

seems to be linear time in the number of unknowns — only a constant amount
of work is necessary to solve the problems (7) as is reflected in the number of
V -cycles of Table 1. In Figure 5 we show the convergence of multigrid and note
that somewhat surprisingly the convergence of σ̂2

2 is faster than the convergence
of σ̂2

1 , even though the conditioning of problem (7) is better for the latter.
Finally Figure 6 shows the convergence of σ̂2

5 compared with the characteristic
grid size h ∼ 2−k.

0 10 20 30 40 50 60

10−4

10−3

10−2

10−1

V-cycle

δσ̂2
0 err

δσ̂2
1 err

δσ̂2
2 err

δσ̂2
3 err

δσ̂2
4 err

δσ̂2
5 err

Figure 5: V -cycle number against approximate error of the increments δσ̂2
k based

on the first-order Richardson extrapolation.

1 2 3 4 5 6 7

10−3

10−2

10−1

Refinements

Approximate σ̂2 error
2−k

Figure 6: The approximate error in σ̂2
5 as function of the number of refinements.

16

3D “checkerboard” We have run the same experiment with a 3D “checker-
board” as shown in Figure 3 with similar results. An experiment done with
a checkerboard of [0, 52]3 with a boundary layer of size 10 and 3 refinements
is what lies within reach on a workstation computer — about 30.000.000 un-
knowns. We see the same issues as in 2D.

4.1 Discussion
The results show that we can in principle solve very high-dimensional discretized
problems in reasonable time. However, at the same time we should improve the
discretization in such a way that this extreme number of unknowns is not neces-
sary. Flux-preserving discretizations come to mind, but for coefficients merely
in L∞ these discretizations are nontrivial. In fact, in dimension 1 already, a
typical flux-preserving discretization replaces a in the discretization with a local
homogenized version of a (the harmonic mean), as shown in [5] and [3]. This
works fine in 1D, but breaks down in 2D and 3D, obviously because homogeniza-
tion is harder in higher dimensions. The solutions of [3] is to build special finite
elements, and also this is precisely what we try to avoid — many numerical
homogenization techniques go through the expensive process of building coarse
basis functions that take into account the local oscillations.

References
[1] S Armstrong, A Hannukainen, T Kuusi, and J-C Mourrat. An iterative

method for elliptic problems with rapidly oscillating coefficients. arXiv
preprint arXiv:1803.03551, 2018.

[2] Scott Armstrong, Tuomo Kuusi, and Jean-Christophe Mourrat. Quanti-
tative stochastic homogenization and large-scale regularity. arXiv preprint
arXiv:1705.05300, 2017.

[3] Ivo Babuška, Gabriel Caloz, and John E Osborn. Special finite element
methods for a class of second order elliptic problems with rough coefficients.
SIAM Journal on Numerical Analysis, 31(4):945–981, 1994.

[4] Susanne Brenner and Ridgway Scott. The mathematical theory of finite
element methods, volume 15. Springer Science & Business Media, 2007.

[5] Jens M Melenk and Ivo Babuška. The partition of unity finite element
method: basic theory and applications. Computer methods in applied me-
chanics and engineering, 139(1-4):289–314, 1996.

[6] J-C Mourrat. Efficient methods for the estimation of homogenized coeffi-
cients. Foundations of Computational Mathematics, pages 1–49, 2016.

17

	Introduction
	Example composite materials

	Obtaining the homogenized coefficients and solving large-scale problems
	Homogenized coefficients
	h-FEM discretization

	Solving large-scale problems

	Implementation details
	A taste of the Julia programming language
	The implicit fine grid approach
	Computing a local matrix-vector product
	Computing a global matrix-vector product

	Results
	Discussion

