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Abstract

This paper quantizes the theory of (2+1)-dimensional quantum elec-
tro dynamics (QED3), derives the theories β-function and discusses the
physical ramifications of this function. The dimensional dependence of
classical electrodynamics is first discussed. Subsequently the path integral
formalism is derived and used to define the renormalization group and the
β-function. QED3 is then quantized, the counter terms are calculated to 1-
loop accuracy by using the ε-expansion from 4 dimensions. The β-function
is computed and compared to previous results. Chiral symmetry breaking
for QED3 and its relation to the number of massless fermion flavors to
which the theory is coupled is discussed. QED3 as a model for high Tc

cuprate superconductors is briefly touched upon.
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1 Introduction
Einsteins theory of general relativity postulates that the universe that we inhabit
is a 4-dimensional manifold, despite this it is often useful to examine how physical
processes vary if the amount of dimensions is reduced. Especially when moving
into the realm of quantum field theory the dimensional dependence of many
effective theories ensures that the properties of even rather simple models may
change drastically as the number of spatial dimensions is changed. One of these
theories, and the focus of this thesis, is that of quantum electrodynamics (QED),
which describes the theory of the electromagnetic field coupled to a set of Dirac
fermion fields.
In 4 dimensions the theory of QED has researched extensively over the last
few decades and has offered predictions that have been experimentally verified
with high degrees of accuracy. In the case that the fermions with which the
electromagnetic field couples are massless and the charge e is zero the theory
is invariant under conformal transformations, ie. conformally invariant (see
[1]), however interactions often break this invariance. The perturbation theory
that is used to describe the theory results in the coupling constant, the electric
charge e, to be dependent on the energy scale of the theory. The β-function,
which is a measure of how the coupling constant varies with changing energy, is
strictly non-negative for QED and increases as the energy scale increases. This
implying that the theory becomes free at larger distances (infrared regime; IR)
and becomes strongly coupled at short distances (ultraviolet regime; UV).
In a dimension d < 4 the physics that describes QED begins to change drastically.
Wilson and Fisher [2] were able to show that by using a technique known as the
ε-expansion, in which the theory is calculated with a dimension of d = 4− 2ε
and ε� 1, that certain theories such as the XY model have additional renormal-
ization group (RG) fixed points in dimensions even slightly lower than 4. These
RG fixed points correspond to the zeros of the β-function. This was shown to be
true in QED [3] as well, in addition to the fact that the ε may be taken to larger
values such as 1

2 to explore three dimensional QED (QED3) with reasonable
accuracy. Similar results had also been calculated using the 1/Nf -expansion
of QED [4] (see also [5]), in which Nf is the number of Dirac fermions. Each
resulting in the fact that the β-function for QED in dimension lower than 4 has
a zero at a nonzero coupling, therefore the theory is quantized, conformal, and
interacting at this fixed point.
The implications of this zero, and the corresponding fixed point in the renor-
malization group, result in QED3 having interesting properties not found in its
4-dimensional counterpart. QED3 has a global SU(2Nf ) symmetry group, in
which Nf is the number of massless fermion flavours to which the electromag-
netic field is coupled. Under certain values of Nf the existence of this fixed
point, referred to as the Wilson-Fixed point, results in a spontaneous symmetry
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breaking in the from.

SU(2Nf )→ SU(Nf )× SU(Nf )×U(1) (1.1)

This breaking of symmetry is known as the chiral symmetry breaking, and can
result in the spontaneous generation of mass. The condition placed upon Nf
for this to occur was initially though to be that Nf > 0 [6] but a paper by
Appelquist et al. (1988) [7] showed that chiral symmetry breaking occurs only
when Nf < N c

f , where N c
f is a critical value. There are various estimates for the

value of N c
f ranging from 2 to 10 [3, 7–10]

It has also been shown that QED3 is equivalent to the theory of quasiparticles
in high critical temperature (Tc) cuprate superconductors [11–13]. The chiral
symmetry breaking may actually play a role in the spontaneous generation of
gaps for fermionic interactions at T = 0.

In this thesis we derive the β-function for QED3 and discuss some of the
physical ramifications of this theory. The following section will offer a brief
discussion of classical electrodynamics and how it depends on the number of
spatial and temporal dimensions classically. In addition, it also discusses some
of the properties of the classical electrodynamic lagrangian which will be the
starting point for when we quantize the theory.
Section 3 introduces the path integral formulation of quantum field theory.
This alternative formulation to the operator based view of the Heisenberg or
Schrödinger models is particularly useful in the computation of correlation
functions. In section 4 we describe the principles of the renormalization group
and how this results in the definition of the β-function and the anomalous
dimension. Furthermore, we discuss the existence of renormalization group flow
from and towards to fixed points and how these correspond to the zeros of the
β-functions.
In section 5 we quantize the theory of electrodynamics and obtain the general
partition function. We also discuss how the partition function may be interpreted
in terms of connected Feynman diagrams. In section 6 we compute the β-function
for QED. We begin by calculating the various 1-loop corrections to QED3 to
determine the value of the counterterms. These counterterms are subsequently
used to determine the β-function. The β-function computed here is compared to
β-functions calculated through other methods, such as different renormalization
schemes. In pertubation theory the β-function of QED takes a polynomial form
as an expansion in terms of the coupling constant e, but the exact location of
the zero differs. Finally in section 7 we discuss the physical relevance of the
QED3 theory and β-function, such as the spontaneous chiral symmetry breaking
and the relation to high Tc super conductors.
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2 Classical Electrodynamics in Arbitrary Dimen-
sion

Classical electrodynamics is the study of how charged particles interact with
each other and with external electric and magnetic fields. Before we quantize
this theory to examine the interactions between various fields on a quantum
scale, and how this quantization is dependent upon dimensions, it is important
to first understand the dimensional dependence of classical electrodynamics.
In the classical formulation of (3+ 1)-dimensional electrodynamics the equations
that govern the behaviour of the electric and magnetic field are the Maxwell
equations (in Gaussian units):

∇ ·E = 4πρ ∇ ·B = 0 (2.1)

∇×E = −1
c

∂B
∂t

∇×B =
1
c

(
4πJ+

∂E
∂t

)
Where E, B are the electric and magnetic fields, ρ is the charge density and J

is the current density. These four equations in conjunction with the conservation
of charge and equation for the Lorentz force density

∂ρ

∂t
+∇ · J = 0 f = ρE+

1
c
J×B (2.2)

are generally sufficient to describe all classical electrodynamics phenomena.
The physics changes substantially if the number of dimensions is lowered. In
(2 + 1)-dimensions the electric field naturally becomes a 2-dimensional vector
however the magnetic field becomes a scalar field. In (1 + 1) dimensions the
magnetic field ceases to exist (unless magnetic monopoles exist), and the electric
field becomes a scalar. It may be shown that in (1 + 1) dimensions that for any
region of space that does not contain a charge the electric field is constant, as
such electromagnetic waves cannot occur.

In (3 + 1) dimensions the introduction of the scalar potential φ and the
vector potential A defined by the relations:

E = −∇φ− 1
c

∂A
∂t

B = ∇×A (2.3)

Similar definition may be formulated for (2 + 1) and (1 + 1) dimensional
cases. Through these definitions is possible to reformulate the Maxwell equations
in a significantly more compact relativistic description. Defining the vector
Aµ = (φ, A) we may define the electromagnetic field tensor as:

Fµν = ∂µAν − ∂νAµ (2.4)

From this definition it is clear that the tensor F is anti-symmetric. If we
further define the vector Jµ = (ρ, J) as the collection of the charge and current,
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a relativistic formulation, in Minkowski spacetime, of the Maxwell equations
(2.1) is given by the following equations:

∂µFµν =
4π
c
Jµ (2.5)

∂λFµν + ∂µFνλ + ∂νFλµ = 0 (2.6)

where (2.6) is the Bianchi identity. The conservation of current may be simply
written as ∂µJµ = 0. The conservation of current directly implies the conservation
of charge due to the relation

dQ
dt =

∫
ρ(x, t) dx = 0 (2.7)

Finally the Lorentz force may be written as:

fµ = Fµν
Jν

c
(2.8)

where the Einstein summation convention is in effect.
In attempting to extend this to arbitrary (n+ 1)-dimensions we might naively
assume that the equations will hold simply by allowing µ, ν to run from 1 . . . n+ 1.
This is almost sufficient, however as pointed out by [14] the factor 4π that appears
in (2.5) is associated with the surface area of a 3-dimensional unit sphere. As
such in arbitrary dimension this factor must be replaced by the equivalent surface
area of an n-dimensional unit sphere. This is given by:

Cn =
nπn/2

Γ(n/2 + 1) (2.9)

As such classical electrodynamics in (n+ 1) is given by equations (2.4), (2.6),
(2.8) and:

∂µFµν =
Cn
c
Jµ (2.10)

where µ, ν = 1 . . . n+ 1. For the classical langagrian density for electrody-
namics we choose:

L = −1
4FµνF

µν +
Cn
c
AµJ

µ (2.11)

the Euler-Lagrange equations of this lagrangian give equation (2.10) justifying
this choice. For the case of (2+1) dimensions, Cn takes the value 2π. As such this
constant may simply be absorbed into the source term Jµ or may be removed by
changing the unit from Gaussian to Heaveside-Lorentz units. If we further adopt
the convention that c = 1 the general Lagrangian density for a non interacting
electromagnetic field with a source Jµ is given by:

L = −1
4F

µνFµν +AµJ
µ (2.12)
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This implies that the lagrangian to be quantized is itself independent of dimension
except for the scaling of some units.
Now we note that if Aµ is shifted by the derivative of an arbitrary function ∂µΓ
the field strength is invariant:

F ′µν = ∂µ(Aν − ∂νΓ)− ∂ν(Aµ − ∂µΓ) = Fµν − (∂µ∂ν − ∂ν∂µ)Γ = Fµν

A transformation of the potential that does not change the field strength tensor,
Fµν , is defined to be a gauge transformation, and F is therefore said to be gauge
invariant. It may further be seen that if the source term Jµ is conserved the
Lagrangian is gauge invariant.
Due to the fact that the field strength Fµν is anti-symmetric, the Lagrangian
(2.12) does not contain any time derivatives of A0. As such it is impossible to
construct a canonical conjugate momentum and in turn makes the theory difficult
to quantise. The gauge invariance of the Lagrangian has resulted in the system
having too many degrees of freedom. This is solved by choosing an explicit
gauge condition such that Fµν may only be constructed by a single choice of Aµ.
The most common choice is the Lorenz gauge given by the condition ∂µAµ = 0.
Throughout this paper we will use the Lorentz gauge and the closely associated
Landau gauge in section 5.
The imposition of the gauge and the fact that A0 is not a dynamic field fixes
2 degrees of freedom. The remaining degrees of freedom will determine the
number of polarization states that photons may exhibit. In (3 + 1) dimensions
this obviously results in two polarization states, while in (1 + 1) dimensions no
degrees of freedom remain corresponding to the fact that electromagnetic waves
do not exist in (1 + 1) dimensions.

3 Path Integral Formalism
As mentioned in the previous section, it is impossible to construct a canonical
conjugate momentum for the electrodynamic lagrangian. As such it is difficult,
but by no means impossible, to quantize the theory through an operator based
model, such as through the construction of creation and destruction operators.
The quantization of electrodynamics may instead be completed through use of
the path integral formalism , which has the distinct advantage of working with
integrals and functions in contrast to operators. In addition, this formalism
allows for the derivation and physical intuition behind the β-function, which will
be explored in the subsequent section. To derive the path integral formalism we
first consider the Hamiltonian for one dimensional (non-relativistic) quantum
mechanics:

H(P ,Q) = 1
2mP 2 + V (Q) (3.1)

such that P and Q are momentum and position operators satisfying the
commutator relation [Q,P ] = i, where in our notation h̄ = 1. Working in the
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Heisenberg picture we let |q, t〉 = e+iHt |q〉 represent the state that a particle
exists at position q at time t. We further transform the operators into their time
dependent form, Q(t) = eiHtQe−iHt, such that

Q(t) |q, t〉 = eiHtQ |q〉 = qeiHt |q〉 = q |q, t〉

Then we specifically wish to calculate the transition amplitude between a state
initially given by |q, t〉 and finally given by |q′, t′〉. This amplitude is given
by 〈q′, t′|q, t〉 in the chosen Heisenberg picture. Using the identity function
1 =

∫
dq |q〉 〈q| we may split the total time interval T = t′ − t into N + 1 equal

intervals of time ∆t = T
N+1 to rewrite our transition amplitude as:

〈
q′, t′

∣∣q, t〉 = ∫ N∏
j=1

dqj
〈
q′
∣∣ e−iH∆t |qN 〉 〈qN | eiH∆t |qN−1〉 . . . 〈q1| e−iH∆t |q〉

(3.2)
One may use the Campbell-Baker-Hausdorf formula to show an equivalence

between [15] :

〈qN | eiH∆t |qN−1〉 =
∫ dpN−1

2π e−iH(pN−1,qN−1)∆teipN−1(qN−qN−1) (3.3)

in the limit that ∆t approaches 0. This relation, in conjunction with Weyl
ordering which gives a relation between the quantum operator based hamiltonian
and the classical hamiltonian to be:

H(P ,Q) =
∫ dx

2π
dk
2π e

ixP+ikQ
∫

dqdpe−ixp−ikqH(p, q) (3.4)

allows us to rewrite the transition amplitude as:

〈
q′, t′

∣∣q, t〉 = ∫ N∏
j=0

dqj
N∏
k=0

dp
2π e

ipk(qj+1−qj )e−iH(pk,qj )∆t (3.5)

in which we take q = q0 and q′ = qN+1. Defining q̇j =
qj+1−qj

∆t and taking
the formal limit of the amplitude as ∆t→ 0 we obtain:

〈
q′, t′

∣∣q, t〉 = ∫ DqDp exp
[
i

∫ t′

t
dt (p(t)q̇(t)−H(p(t), q(t)))

]
(3.6)

in which Dq and Dp are (Lebesgue) integral measures defined as the formal limit
of the infinite products of dqjs and dpks respectively.
In the special cases in which the Hamiltonian (3.1) is at most quadratic in
momentum and if that quadratic term is independent of the position q then it
is possible to integrate out p. In this case the integrals over p are gaussian [15]
and all constant factors maybe absorbed into Dq to obtain:

〈
q′, t′

∣∣q, t〉 = ∫ q(t′)=q′

q(t)=q
Dq exp

[
i

∫ t′

t
dtL(q̇(t), q(t))

]
=

∫ q′

q
DqeiS (3.7)
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In which S is the action. We may consider this path integral as a weighted
average over all possible paths between the initial and final states.
we may examine some of the properties of this transition amplitude. Examining
the case 〈q′, t′|Q(t1) |q, t〉 where t < t1 < t′ we see that this is equivalent to

〈
q′, t′

∣∣Q(t1) |q, t〉 = 〈q′, t′∣∣ e−iH(t′−t1)QeiH(t1−t) |q, t〉 =
∫ q′

q
Dq q(t1)eiS (3.8)

As such the operator is transformed into a simple function under the path
integral. Generalizing this to arbitrarily many position operators:

〈
q′, t′

∣∣T Q(t1)Q(t2) . . . Q(tn) |q, t〉 =
∫ q′

q
Dq q(t1)q(t2) . . . q(tn)eiS (3.9)

Where T is the time ordering symbol, that orders the operators such that the
later times are placed to the left of the earlier times.
Examining further if we replace our Lagrangian with L→ L+ f(t)q(t), which
is equivalent to a Lagrangian with an external source f(t), we see that:

1
i

δ

δf(t1)

〈
q′, t′

∣∣q, t〉
f
=

∫ q′

q
Dq q(t1)ei

∫
dtL+fq (3.10)

This allows us to further generalize the time ordered product of operators to〈
q′, t′

∣∣T Q(t1) . . . Q(tn) |q, t〉 =
1
i

δ

δf(t1)
. . .

1
i

δ

δf(tn)

〈
q′, t′

∣∣q, t〉∣∣
f=0 (3.11)

In particular we wish to calculate the transition amplitude from the ground
state to the ground state, and further to take the times to the limits t→ −∞
and t′ →∞. As the path integral is interpreted as an integral over all possible
paths from the initial to the final state there is the possibility that the boundary
conditions of these paths are not well behaved in taking the time limits to
infinity. However [15] shows that any reasonable boundary condition will results
in the ground state being the initial and final state provided that we replace our
Hamiltonian in (3.6) with H → (1− iε)H, where ε is an infinitesimal constant.
This allows us to write:

〈0|0〉f =

∫
Dq ei

∫∞
−∞

dt (pq̇−(1−iε)H(p,q)+fq) (3.12)

Assuming that the hamiltonion is, as previously described, at most quadratic in
momentum and if this quadratic term exits it is independent of q, and further
assuming the corresponding lagrangian may be written in the form L = L0 +L1,
such that L1 is only dependent on q and may be treated as a perturbation of
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L0, then we obtain the following relation

〈0|0〉f =

∫
Dq exp

[
i

∫ ∞
−∞

dt (L0(q, q̇) +L1(q) + fq)

]
= exp

[
i

∫ ∞
−∞

dtL1

(
1
i

δ

δf(t)

)]
×
∫
Dq exp

[
i

∫ ∞
−∞

dt (L0(q, q̇) + fq)

]
(3.13)

This equation may be derived by noting that if the exponential pre-factor is
taken inside of the integral, then in accordance with equation (3.10), the correct
factor of q will be pulled out.
In the case of relativistic field theory the Lagrangian is replaced with the
appropriate Lagrangian density. Similarly the position functions are replaced
with fields q(t) → φ(x, t), where φ is an arbitrary field. The operators are
replaced with corresponding operator fields Q(t)→ φ(x, t) and the functions f
are replaced by sources f(t) → J(x, t), in d-dimension space this allows us to
write in general (suppressing the iε)

Z0(J) ≡ 〈0|0〉J =

∫
Dφei

∫
ddx [L+Jφ] (3.14)

Where Z0(J) is generally called the partition function or generating functional
(of the correlation functions). The usefulness of the partition function over the
more traditional method of quantization using the creation and annihilation
operators is in its ability to transform operators into functions. As previously
mentioned the position operators simply transform into position functions under
the partition functions integral. Furthermore similar relationships exist for other
operators, such as those for momentum or the number of particles. As will be
shown in the subsequent section, this allows us to calculate physical objects such
as propagators with relative ease and computational clarity.

4 The Renormalization Group
The partition function, as calculated in the previous section, describes the theory
based on the lagrangian that defines it. However parts of this lagrangian, such
as the coupling constants for the interaction terms, may depend on the energy
scale. As such it useful to determine how consequently the partition function is
dependent on the energy scale. In addition, many theories are solved or simplified
through the usage of perturbation theory, which implies that the theory breaks
down as sufficiently high energy scales. How the partition function evolves as
the energy is changed is described by the β-function(s), which measures how the
coupling constant(s) vary with respect to the energy scale. For example, in the
case of (3+1)-dimensional QED the beta function is non-negative and increasing.
This implies that at sufficiently high energy the coupling constant, in this case
the electric charge e, becomes infinite at which point the perturbation theory
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breaks down.
To obtain the β-function we begin by operating under the assumption that the
action takes a generic form of

SΛ0 [ψ] =

∫
ddx

[
1
2∂

µψ∂µψ+
∑
i

Λd−di
0 gi0Oi(x)

]
(4.1)

In this equation we have an arbitrary set of operators Oi each with canonical
dimension di > 0. The operators are all of the form Oi ∼ (∂µψ)pi(∂µψ)piψqi

where pi and qi are both integers and sum to ni = pi+ qi. gi0 is the dimensionless
coupling constant of the operator. The value Λ0 is an energy scale used to ensure
that the coupling constant is dimensionless. We may use this action to define a
regularized partition function

ZΛ0(gi0) =

∫
C∞(M)≤Λ0

DψeiSΛ0 [ψ] (4.2)

As the partition function may be interpreted as the integral over all possible curves
on some d-dimensional manifold M averaged by the factor eiS the regularized
partition function only integrates over all smooth function with total energy less
than or equal to Λ0.
The space C∞(M) ≤ Λ0 may be equipped with pointwise addition and constant
multiplication and as such may be interpreted as a vector space. This allows
to consider the path integral in two steps, first by integrating over all smooth
functions with energy less that some Λ < Λ0 and then over the region between
(Λ, Λ0]. The field may be split accordingly by means of a Fourier transform

ψ(x) =

∫
|p|≤Λ

ddp
(2π)d

eipxφ(p)+

∫
Λ<|p|≤Λ0

ddp
(2π)d

eipxφ(p) = φ(x)+χ(x) (4.3)

such that φ(x) ∈ C∞(M )≤Λ and χ(x) ∈ C∞(M )(Λ,Λ0] are the low and high
energy regions of the field. The measure may likewise be factorized to Dψ =
DφDχ. Using this fact we may integrate over only the high energy modes χ;
from this we obtain the effective action at an energy scale Λ, one version of the
so called renormalization group equation

Seff
Λ [φ] = −i log

[∫
C∞(M)(Λ,Λ0 ]

Dχ exp(iSΛ0 [φ+ χ])

]
(4.4)

This process is referred to as changing the scale of the theory, in reference to
the fact that the energy scale of the partition function has been decreased. This
process may be iteratively performed to probe the theory at lower and lower
energy modes, this low energy region is generally called the IR or infrared region.
The new partion function

ZΛ(gi(Λ)) =

∫
C∞(M)≤Λ

DφeiS
eff
Λ [φ] (4.5)
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is now dependent upon the lower energy scale Λ. However this equation is equiv-
alent to the original partition function ZΛ(gi(Λ)) = ZΛ0(gi0; Λ0). This may be
seen by considering that despite the fact that the new partition functions path
integral is only perfomed over the low energy modes C∞(M)≤Λ all information
concerning the higher energy modes is now contained in the effective action SeffΛ .
As such no information is lost. The effective action takes a general form similar
to the action initially defined in (4.1)

Seff
Λ [φ] =

∫
ddx

[
CΛ

2 ∂µφ∂µφ+
∑
i

Λd−di
0 Cni/2

Λ gi0Oi(x)

]
(4.6)

Where CΛ is called the wavefunction renormalization factor which accounts for
the possibility that the integration of the higher modes resulted in quantum
corrections to the various terms in the action. This allows us to define a
renormalized field ξ = C1/2

Λ φ

The renormalization of the wavefunction becomes relevant in the computation of
the correlation functions of operators. Suppose we wish to compute the n-point
correlator, the correlation function of n field operators

〈0|φ(x1) · · ·φ(xn) |0〉 =
∫
C∞(M)≤Λ

Dφ eiS
eff
Λ [C1/2

Λ φ;gi(Λ)]φ(x1) · · ·φ(xn) (4.7)

In terms of the previously defined renormalized field we obtain that

〈0|φ(x1) · · ·φ(xn) |0〉 = C−n/2
Λ 〈0| ξ(x1) · · · ξ(xn) |0〉

We may subsequently integrate out all of the modes in the region (sΛ, Λ] for
some value of s < 1. Noting that in evaluating of the correlation function it will
result in some function Γ(n)

Λ (x1, . . . ,xn; gi(Λ)), that is dependent on the scale
Λ, the fixed points xi, and the set of coupling constants gi(Λ). This results in
the relation

C−n/2
sΛ Γ(n)

Λ (x1, . . . ,xn; gi(sΛ)) = C−n/2
Λ Γ(n)

Λ (x1, . . . ,xn; gi(Λ)) (4.8)

When s → 0 this relation leads to a differential equation, which is a single
example of a Callan-Symanzik equation

d
d log Λ

Γ(n)
Λ (x1, . . . ,xn; gi(Λ))

=

(
∂

∂ log Λ
+ βi

∂

∂gi
+ nγ

)
Γ(n)

Λ (x1, . . . ,xn; gi(Λ)) (4.9)

In which βi =
dgi

d log λ and γ = d logCΛ
d log Λ are the beta function of the running

coupling gi(Λ) and the anomalous dimension of the field respectively. The
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anomalous dimension γ gives the difference between the scaling dimension of the
field and the classical dimension. The anomolous dimensions are particularly
interesting once a fixed point has been found as they contain much of the relevant
physics. However the β-function is more interesting for the purpose of this paper.

In general the lagrangian that describes the system will have define a set of
coupling constants {gi}, each of these coupling constant will have a corresponding
β-function βi(g1, g2, . . . , gn). At specific energy values the coupling constants
take particular values {g1∗, . . . , gn∗} such that the beta functions at those points
vanish βj(g1∗, . . . , gn∗) = 0. These values are are called critical or fixed points
of the renormalization groups flow. As such the process of determining fixed
points consists of determining the zeros of a set of couple ordinary differential
equations. A fixed point is always reached when the energy scale goes to infinity
or zero. When the scale goes to zero the region is called infrared (IR). If an IR
fixed point exists it is reached in the limit of far IR. Equivalently the energy
scale approaching infinity is referred to as far into the ultraviolet (UV) region, if
an UV fixed point exists it is reached in the limit of this process. Theories at
fixed points are independent of scale. Moreover all Lorentz invariant, unitary
theories, such as quantum electrodynamics, are at critical points invariant under
the larger group of conformal transformations. This implies that theories at
critical points are, in all the mentioned cases, conformal field theories (CFT).
When the theory is very close to a critical point the beta functions take the form

βj(gi∗ + δgi) = Bijδgi +O(δg2
i ) (4.10)

where δgi = gi − gi∗ is an infinitesimal transformation of gi. The matrix Bij is
constant with eigenvectors σi and corresponding eigenvalues ∆i − d. Classically
we would assume that ∆i = di however the effect of integrating out the high
energy modes in the quantum theory results in the dimension of the operators
to change at the critical points. The quantity ∆i is called the scaling dimension
of the operator and the value γi = ∆i − di is known as the anomalous dimension
of the operator.
Due to the fact that σi is an eigenvector of Bij this implies that

∂σi
∂ log Λ

= (∆i − d)σi +O(σ2) (4.11)

which implies that the dependence of σi on the energy scale, in effect how it
flows under the renormalization group is given by

σi(Λ) =

(
Λ
Λ0

)∆i−d
σi(Λ0) (4.12)

in the region defined by perturbing the theory around the critical point (which
defines a basis of attraction). This gives three possibilities for operators. Firstly
we consider operators with ∆i > d. Accordingly the value of the associated
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coupling constant decreases as the energy scale is lowered, implying that deep
into the IR these operators do not play any role. These operators are called
irrelevant. Secondly we consider operators with ∆i < d. These operators coupling
constants increase as the energy scale decrease. These operators are known as
relevant. Finally, operators with ∆i = d are called marginal operators. Near
critical points quantum corrections can result in a scale dependence in these
operators resulting in them either becoming marginally relevant or marginally
irrelevant.

5 Quantization of Electrodynamics
We begin the quantization of the theory of electrodynamics by first examining
the path integral of a photon in (2+1)-dimensions

Z0(J) =

∫
DAeiS (5.1)

where S is the action given by

S =

∫
ddx− 1

4F
µνFµν + JµAµ (5.2)

Such that the time coordinate is given by x0 and that the Einstein summation
convention is in effect. To simplify this expression we first take the Fourier
transform of the fields, using that

φ(k) =

∫
d3xe−ikxφ(x), φ(x) =

∫ d3x

(2π)3 e
ikxφ(k) (5.3)

Using equation (2.4) the Fourier transform of the action is found to be

S =
1
2

∫ d3k

(2π)3 (−Aµ(k)(k
2gµν − kµkν)Aν(−k)

+ Jµ(k)Aµ(−k) + Jµ(−k)Aµ(k)) (5.4)

where gµν is the space-time metric. To further simplify this expression we
examine the matrix Pµν(k) given by the relation

k2Pµν(k) = k2gµν − kµkν (5.5)

We may see the P matrix satisfies Pµν(k)P ρν (k) = Pµρ implying that it is a
projection matrix, hence its eigenvalues may only take the values of 1 and 0.
Noting further that Pµν(k)kν = 0 and that gµνPµν = 2 we see that one of the
eigenvalues is equal to 0 and the other two equal to 1. In equation (5.4) we may
split the field A(k) into its components with reference to a linearly independent
basis specified by three vectors, one of which may be given explicitly by kµ. In
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this basis the term quadratic in Aµ(k) in the action (5.4) will be independent
of the component in the direction of kµ because of the fact that Pµνkν = 0.
Similarly the terms that are linear in A will not contribute either due to the fact
that ∂µJµ(x) = 0, which implies that kµJµ(k) = 0. Hence the kµ component
does not contribute to observables. When computing the path integral (5.1) it
is now irrelevant to complete the calculation over the kµ components, hence we
redefine the path integral to only integrate over the components spanned by two
other basis vectors. These components now all satisfy kµAµ(k) = 0, which when
Fourier transformed into the position space is equivalent to the imposition of the
Lorentz gauge ∂µAµ(x) = 0. As shown in section 2 the imposition of a gauge
is necessary to ensure the correct number of physical degrees of freedom in the
action, and as such this redefinition is legitimate.
Due to the fact that Pµν(k) is a projection matrix and that Pµν(k)kν = 0 it
will project vectors into a subspace that is orthogonal to the vector kµ. While
the fact that Pµν(k) has a 0 eigenvalue would make it impossible to invert, the
redefinition of the path integral ensures that in the subspace that we are working
Pµν(k) is equivalent to the identity matrix. As such the inverse of k2Pµν(k)
is given by 1

k2P
µν(k). To account for vacuum boundary condition in which k2

may take a 0 value we use the same technique as specified in the previous section
and replace k2 with k2 + iε. Now we make the following field redefinition

Bµ(k) = Aµ(k)− (k2Pµν)−1Jν(k) = Aµ(k)− PµνJν
k2 + iε

(5.6)

This results in equation (5.4) taking the form

S =
1
2

∫ d3k

(2π)3 Jµ(k)
Pµν

k2 + iε
Jν(−k) +Bµ terms (5.7)

Furthermore as Aµ has only been shifted by a constant the measure DB is
equivalent to DA. When computing the path integral (5.1) the integral over Bµ
is simply given by Z0(0) = 〈0|0〉J=0 = 1. Hence the path integral is given by

Z0(J) = exp
[
i

2

∫ ddk
(2π)3 Jµ(k)

Pµν

k2 + iε
Jν(−k)

]
= exp

[
i

2

∫
ddxddyJµ(x)∆µν(x− y)Jν(x)

]
(5.8)

in which
∆µν(x− y) =

∫ ddk
(2π)3 e

ik(x−y) Pµν

k2 + iε
(5.9)

and is called the photon propagator for the Lorentz gauge. We may also
compute a simple calculation to show that the propagator is equivalent to
〈0|TAµ(x)Aν(y) |0〉 = 1

i ∆µν(x− y), in effect the probability that a field in state
Aν(y) will become a state Aµ(x).
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We may subsequently examine the theory of 1/2 spin charged Dirac fields
(eg. positrons and electrons) and their interactions with photons. The general
lagrangian for Dirac particles takes the form of

LD = Ψ̄(iγµ∂µ −m)Ψ (5.10)

in which γµ are d × d dimensional matrices that satisfy the d-dimensional
Clifford algebra {γµ, γν} = 2ηµνI, such that η is the Minkovski metric and I is
the identity matrix. Similarly to the photon case the partition function of the
dirac field takes the form

Z0,D(η, η) = exp
[
i

∫
ddxddyη(x)S(x− y)η(y)

]
(5.11)

Where η and η are two source terms for particles and antiparticles respectively,
and S the propogator for dirac particles given by

S(x− y) =
∫ ddp

(2π)3
(−/p +m)

p2 +m2 − iε
eip(x−y) (5.12)

We now attempt to quantize the theory where the electromagnetic field
interacts with the fermion field. We assume that the source terms Jµ for the
photon theory is proportional to the conserved Noether current resulting from
the U(1) symmetry of the Dirac field such that

Jµ = eΨ̄γµΨ (5.13)

where e is a coupling constant that is assumed to take the value of the elementary
charge. However in the construction of the total lagrangian we assume that the
creation and destruction operators for electromagnetic and Dirac fields remain
the same when the fields are interacting. The LSZ theorem [15] implies that this
assumption is valid provided that the total lagranian is renormalized such that
it takes the form

L = −1
4Z3F

µνFµν + iZ2Ψ/∂Ψ−mZmΨΨ + Z1eΨ /AΨ (5.14)

with the factors Z1,Z2,Z3,Zm chosen such that the the following conditions
are satisfied

〈0|Ai(x) |0〉 = 0, 〈k,λ|Ai(x) |0〉 = εiλ(k)e
ikx (5.15)

Where |k,λ〉 represents the state of a single photon of momentum k and helicity
λ, and where εiλ(k) is the ith polarization vector as a function of momentum k.
The states are normalized by:

〈k1,λ1|k2,λ2〉 = (2π)22k0δ2(k2 − k1)δλ1λ2
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However as may be shown all factors of Zi take the form Zi = 1 +O(e2) [15].
Due to the fact that tree level processes, or processes that do not contain loops
in their representative Feynman diagrams, do not have factors of e2 in their
partition function. As such when examining purely tree level processes we may
treat the factors of Zi as the identity.
We treat the interaction term L1 = eΨ /AΨ as perturbation of the lagrangian in
which no interaction takes place. Then using equation (3.13) we find that the
partition function takes the form

Z(η, η, J) ∝ exp
[
i

∫
d3xL1

(
1
i

δ

δη(x)
, i δ
δη

, 1
i

δ

δJ

)]
×Z0(η, η, J)

∝ exp
[
ie

∫
d3x

(
1
i

δ

δJµ(x)

)(
i

δ

δηα(x)

)
(γµ)αβ

(
1
i

δ

δηβ(x)

)]
×Z0(η, η, J)

(5.16)

The proportionality sign is necessary due to the fact that normalization is not
guarenteed by the partition function and must instead be set manunally by the
requirement that Z(0, 0, 0) = 1. In addition Z0(η, η, J) is the partition function
for a non interacing dirac field and A field given by

Z0(η, η, J) = exp
[
i

∫
d3xd3yη(x)S(x− y)η(y)

]
× exp

[
i

2

∫
d3xd3yJµ(x)∆µν(x− y)Jν(x)

]
(5.17)

Through a series of clever calculations it may be shown that (5.16) is equivalent
to

Z(η, η, J) = exp[iW (η, η, J)] (5.18)

Were iW (η, η, J) is the sum of all connected Feynman diagrams with photon,
positron, and electron sources. As we have assumed that L1 functions as a
perturbation it implies that e is generically small. Equation (5.18) that we
may expand the partition function to greater degrees of accuracy by calculating
more complex diagrams. The O(1) order corresponds to all tree level diagrams,
diagrams containing no loops. For increased accuracy we may calculate the O(e2)
order, which corresponds to all diagrams that, in accordance to the Feynman
rules, have one loop. We may continue this process to the desired degree of
accuracy.

6 Calculation of the β-function
6.1 1-loop Corrections to spinor QED3
The β-function is a function that describes how a coupling constant, in the present
case e, varies with a changing energy scale. At the tree level of quantization that
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we have calculated previously the coupling constant remains constant in contrast
to the physically observed data. As such, to begin to approximate the beta
function with O(e2) precision we renormalize the electrodynamic Lagrangian
with respect to the LSZ theorem, and calculate the renormalization terms Zi to
the O(e2) order.
To complete this calculation we will use the method of ε-expansion, a technique
derived from statistical mechanics. The epsilon expansion assumes that the
dimension of the system is given by d = 4− ε in which ε << 1 [2], and then
assumes that the properties of the system continue to hold as ε is increased to
larger values such as 1 to examine systems of dimension d = 3.
The general electrodynamic lagrangian that we will use for this renormalization
is given by

L = −1
4F

µνFµν + iΨ/∂Ψ−mΨΨ +L1 (6.1)

In which L1 is the interaction term given by:

L1 = Z1eΨ /AΨ +Lct (6.2)

and Lct consists of the counter terms,

Lct = −
1
4 (Z3 − 1)FµνFµν + i(Z2 − 1)Ψ/∂Ψ− (Zm − 1)mΨΨ (6.3)

We write the lagrangian in this manner such that the L1 term, consisting of the
interacting term in addition to the counterterms may be treated as a perturbation
of the bare lagrangian (6.1) such that equation (5.16) holds with the new value
of L1.
In order to evaluate the values of the renormalization factors Zi we will calculate
1-loop corrections to propagators and vertex terms that have definite conditions
placed upon them by the renormalization group. We begin by examining the
photon propagator. We may show that the following relation holds:

1
i
∆(x1 − x2) = 〈0|T Aµ(x1)A

ν(x2) |0〉 =
1
i

δ

δJµ(x1)

1
i

δ

δJµ(x2)
iW (J)

∣∣∣∣
J=0
(6.4)

As previously discussed iW (J) is the sum of all connected feynman diagrams.
The effect of the derivatives is to remove sources from the diagram and to label
the propagator corresponding to the removed source as an endpoint xi. To the
O(e2) order the diagrams that this condition corresponds to are given by figure
6.1. By examining these figures with respect to the feynman rules, and working
in the fourier transformed momentum space we see that the exact propagator
takes the form:

1
i
∆µν(k) =

1
i

∆µν(k) +
1
i

∆µρ(k)iΠ̃ρσ(k)
1
i

∆σν(k) +O(e4) (6.5)
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in which ∆µν(k2) is the Fourier transform of the propagator calculated in the
previous section; equation (5.9), and Π̃µν(k2) is the self energy of the loop. A
more useful definition is to define Πµν as the sum of all one-particle irreducible
(1PI) diagrams. These are diagrams that remain connected if any one internal
line of the diagram is cut. This allows the exact photon propagator to be written
as a geometric series

1
i
∆µν(k) =

1
i

∆µν(k) +
1
i

∆µρ(k)iΠρσ(k)
1
i

∆σν(k)+

1
i

∆µα(k)iΠαβ(k)
1
i

∆βγ(k)iΠγσ(k)
1
i

∆σν(k) + . . . (6.6)

Due to the Ward identity for the electromagnetic current it may be shown
that kµΠµν(k) = kνP

µν(k) = 0 implying that we may write Πµν(k) as

Πµν = Π(k2)(k2gµν − kµkν) = k2Π(k2)Pµν(k) (6.7)

Where Pµν is the projection matrix discussed in the previous section. Using
this redefinition of Πµν(k) allows us to solve for the sum of the geometric series
given by

∆µν(k) =
Pµν

k2(1−Π(k2))− iε
(6.8)

This equation has a pole at k2 = 0 with a corresponding residue of Pµν

1−Π(0) . As
we will complete this calculation using the on-shell renormalization scheme which
requires that that the exact photon propagator must have a pole at k2 = 0 with
residue of Pµν , which fixes the condition that

Π(0) = 0 (6.9)

This condition may be used to determine the value of the constant Z3.

Figure 6.1: 1-loop 1PI contributions to the self energy of the photon propagator

Examining figure 6.1 we may note that iΠµν may be written as

iΠµν(k) = −(iZ1e)
2(

1
i
)2
∫ d4l

(2π)4 Tr [S(/l + /k)γµS(/l )γν ]

− i(Z3 − 1)(k2gµν − kµkν) +O(e4) (6.10)
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As previously mentioned S is the fermion propagator. In addition the first
term is negative due to the fact that the closed loop is fermionic. Noting that
Z1 = 1 +O(e2) as previously discussed implies that we may equivalently set
Z1 = 1 and absorb the rest of Z1 into the O(e4) term.
The trace may equivalently written as:

Tr [S(/l + /k)γµS(/l )γν ] =
∫ 1

0
dx 4Nµν

(q2 +D)2 (6.11)

in which q = l+ xk and D = x(1− x)k2 +m2 − iε, and

Nµν = Tr [(−/l − /k +m)γµ(−/l +m)γν ] = 2x(1− x)(k2gµν − kµkν) (6.12)

Where the result of the second equals sign is derived in [15]. Using the relation
that Πµν(k) = Π(k2)(k2gµν − kµkν) we may rewrite equation (6.10) as:

iΠ(k2) = −e2µ̃ε
∫ 1

0
dx8x(1− x)

∫ ddq
(2π)d

1
(q2 +D)2 − i(Z3 − 1) +O(e4)

(6.13)
This integral diverges for dimensions d ≥ 4, as such to obtain a solution it has
been analytically continued into d = 4− ε dimensions. Taking the limit of ε→ 0
will result in the correct integral for the 4-dimensional case. In the present case
we will examine the result of ε→ 1 to examine the three dimensional result. In
order to ensure that the coupling constant e will remain dimensionless it has
been replaced by eµ̃ε/2. Using the general relation that:∫ ddx

(2π)d
(x2)a

(x2 +D)b
=
iΓ(b− a− 1

2d)Γ(a+
1
2d)

(4π)d/2Γ(b)Γ( 1
2d)

D−(b−a−
1
2d) (6.14)

this integral may be evaluated over q as:

µ̃ε
∫ ddq

(2π)d
1

(q2 +D)2 = i
Γ( ε2 )
16π2

(
4πµ̃
D

)ε/2
(6.15)

Operating under the assumption that ε is small we may make use of the
following property of the Γ function:

Γ(−n+ x) =
(−1)n

n!

[
1
x
− γ +

n∑
k=1

k−1 +O(x)

]
(6.16)

In which n is a non-negative integer and x is a small value and γ is the Euler-
Mascheroni constant which has the value γ = 0.5772. Further using the approxi-
mation that, provided that ε is small:

Aε/2 = 1 + ε

2 lnA+O(ε2) (6.17)
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we may rewrite equation (6.15) as:

i

16π2

(
2
ε
+ ln

(
4πµ̃
D

)
− γ
)
=

i

8π2

(
1
ε
− 1

2 ln
(
µ2/D

))
(6.18)

In which µ2 = 4πe−γ µ̃2. In addition we have dropped any terms of O(ε) and
higher. As such we obtain that for equation (6.13)

Π(k2) = − e
2

π2

∫ 1

0
dx x(1−x)

(
1
ε
− 1

2 ln
(
µ2/D

))
− (Z3−1)+O(e4) (6.19)

Using the on-shell renormalization scheme in which Π(0) = 0 we obtain that:

Z3 = 1− e2

6π2

(
1
ε
− ln(m/µ)

)
+O(e4) (6.20)

In this expression the m in the logarithmic term is obtained by evaluating D at
k2 = 0.

Next we turn to the exact fermion propagator. Using the Lehmann-Källen
form of the exact fermion propagator we may obtain the realtion

S(/p)−1 = /p +m− iε− Σ(/p) (6.21)

Similarly to the photon propagator iΣ(/p) is the sum of all 1PI diagrams, con-
sisting of two external fermion lines such that the external propagators have
been removed. The use of the on-shell renormalization scheme in addition to
the fact that the exact fermion propagator S(/p) has a pole with residue 1 at
/p = −m implies the following two conditions

Σ(−m) = 0 Σ′(−m) = 0 (6.22)

where the apostrophe implies the derivative of Σ(/p) with respect to /p. The two
conditions allow us to further specify two renormalization constant Z2 and Zm.

Figure 6.2: 1-loop 1PI contributions to the self energy of the fermion propagator
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By examining figure 6.1, which gives the one loop feynman diagrams correcting
the fermionic propagator we may obtain the fact that

iΣ(/p) = (iZ1e)
2
(

1
i

)2 ∫ d4l

(2π)4 [γνS(/p + /l )γµ] ∆̃µν(l)

− i(Z2 − 1)/p − i(Zm − 1)m+O(e4) (6.23)

Similarly to the case of Πµν(k) above we may similarly rewrite this equation to

iΣ(/p) = e2µ̃ε
∫ 1

0
dx

∫ ddq
(2π)d

N

(q2 +D)2 − i(Z2 − 1)/p − i(Zm − 1)m+O(e4)

(6.24)
in which q = l+ xp, D = x(1− x)p2 + xm2 + (1− x)m2

γ . Here mγ is the
mass of the photon, which for the sake of the calculation must be assumed to be
positive. Once the integral has been completed mγ → 0 to obtain the correct
relation. Finally N = −(d− 2)[/q − (1− x)/p]− dm. The term linear in N that
is linear in q will integrate to 0 [15]. As such we get

Σ(/p) = −
e2

8π2

∫ 1

0
dx [(2− ε)(1− x)/p + (4− ε)m]

[
1
ε
− 1

2 ln
(
D/µ2)]

− (Z2 − 1)/p − (Zm − 1)m+O(e4) (6.25)

This on-shell normalization scheme requires that this expression for Σ(/p) be
finite. As ε is taken to be arbitrary to ensure this finitude it requires that the
constants Z2 and Zm must take the form

Z2 = 1− e2

8π2

(
1
ε
+ finite

)
+O(e4) (6.26)

and
Zm = 1− e2

2π2

(
1
ε
+ finite

)
+O(e4) (6.27)

The exact value of these finite terms is unimportant as they do not contribute
the to calculation of the β-function. These terms are specified by the conditions
of equation (6.22).

Finally to determine the final constant Z1 we must examine the vertex terms
in electrodynamic Feynman diagrams. A vertex in this context is defined by
an intersection of three lines necessarily consisting of one incoming and one
outgoing fermion with momenta p and p′ respectively and one photon with
momentum k whose momentum is specified by the conservation of momentum to
be equivalent to k = p′− p. As in the case of the photon or fermionic propagator
we define iV µ(p, p′) to be the sum of all 1PI diagrams containing a vertex as
previously specified. The diagram for the 1-loop correction may be seen in figure
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Figure 6.3: 1-loop 1PI contributions to the vertex term

6.1, resulting in a equation

iV µ(p′, p) = iZ1eγ
µ+(ie3)

(
1
i

)3 ∫ d4l

(2π)4
[
γρS(/p′ + /l )γµS(/p + /l )γν

]
∆̃νρ(l)

(6.28)

Noting that the first term of this equation is the tree level vertex, while the
second term is explicitly given by the diagram in figure 6.1. Rewriting as before
we obtain the following equation:

iV µ(p′, p) = iZ1eγ
µ + e3

∫
dF3

∫ d3q

(2π)3
Nµ

(q2 +D)3 (6.29)

in which ∫
dF3 = 2

∫ 1

0
dx1dx2dx3δ(x1 + x2 + x3 − 1) (6.30)

and q = l+ x1p+ x2p′,

D = x1(1− x1)p
2 + x2(1− x2)p

′2 − 2x1x2p · p′ + (x1 + x2)m
2 + x3m

2
γ (6.31)

Nµ =
(d− 2)2

d
q2γµ + Ñµ (6.32)

Ñµ = γν [x1/p − (1− x2)/p′ +m]γµ[−(1− x1)/p + x2/p′ +m]γν (6.33)

As such we may rewrite the integral as:

i

e
V µ(p′, p) = iZ1γ

µ + e2
∫

dF3
(d− 2)2

d
γµ
∫ ddq

(2π)d
q2

(q2 +D)3+

Ñµ
∫ ddq

(2π)d
1

(q2 +D)3 (6.34)
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We note that∫ ddq
(2π)d

q2

(q2 +D)3 = i
Γ(ε/2)Γ(3− ε

2 )

2(4π)2−ε/2Γ(2− ε
2 )
D−ε/2 =

i(2− ε/2)Γ(ε/2)
32π2

(
4π
D

)ε/2

(6.35)
where in the second equality we have used the relation Γ(z) = (z − 1)Γ(z − 1).
Secondly ∫ ddq

(2π)d
1

(q2 +D)3 =
iΓ(1− ε/2)

32π2

(
4π
D

)ε/2
(6.36)

Using the same manipulations as in the previous sections these relations may
be simplified to an expression of V µ(p, p′)

1
e
V µ(p, p′) = Z1γ

µ+
e2

8π2

[(
1
ε
− 1− 1

2

∫
dF3 ln

(
D/µ2)) γµ + 1

4

∫
dF3

Ñµ

D

]
+O(e4) (6.37)

Once again we require that this vertex term is finite for all values of ε. This
requires that the constant Z1 must take the form

Z1 = 1− e2

8π2

(
1
ε
+ finite

)
+O(e4) (6.38)

6.2 The β-function
Now that we have calculated the required renormalization constants we may
determine the relationship between the original or "bare" coupling constant e0
and the renormalized constant e. The coupling constant defines the amount of
interaction between the electromagnetic field and the Dirac field through the
term Z1eΨ /AΨ, such that e = 0 would correspond to no interaction. As such the
relation between the bare coupling constant and the renormalized constant is
given by

e0 = Z−1/2
3 Z−1

2 Z1µ̃
ε/2e (6.39)

in which the Z3 corresponds to the renormalization of the A field, the Z2
corresponds to the renormalization of the Ψ fields and the Z1 corresponds to the
renormalization of the interaction term. We may examine the Zi terms using
the minimal subtraction renormalization scheme in which the finite terms have
been removed such that

Z1 = 1− e2

8π2
1
ε
+O(e4) (6.40)

Z2 = 1− e2

8π2
1
ε
+O(e4) (6.41)
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Z3 = 1− e2

6π2
1
ε
+O(e4) (6.42)

We may take the logarithms of both sides of the equation (6.39)

ln e0 = lnZ−1/2
3 Z−1

2 Z1 + ln e+ ε

2 ln µ̃ (6.43)

Noting that the bare coupling constant must be independent of the choice of
scale µ̃ we now take the derivative with respect to ln µ̃ to obtain

0 =
d

d ln µ̃ ln e0 =
∂ lnZ−1/2

3 Z−1
2 Z1

∂e

de
d ln µ̃ +

1
e

de
d ln µ̃ +

ε

2 (6.44)

Because of the fact that Z1 and Z2 have the same value up to the O(e2; 1
ε )

order and as such cancel. Furthermore, the Ward identity of QED implies that
Z1 = Z2 for all order. We may rewrite the equation and reorganize it to obtain

0 =

(
2− e∂ lnZ3

∂e
+O( 1

ε2
)

)
de

d ln ũ + eε (6.45)

now we may note that to the current order

∂ lnZ3
∂e

= −
e

3π2ε

1− e2
6π2ε

(6.46)

as such we obtain the relation

0 =

(
2 +

e2

3π2ε

1− e2
6π2ε

+O( 1
ε2
)

)
de

d ln ũ + eε (6.47)

We may make the following redefinition in accordance with the standard method
of calculating the β-function as given by [15].

de
d ln µ̃ = −eε+ β(e) (6.48)

This allows us to simplify the equation to obtain

β(e)

(
2 +

e2

3π2ε

1− e2
6π2ε

)
=
−eε+ e3

6π2

1− e2
6π2ε

(6.49)

This results in the β-function being defined as

β(e) = −1
2εe+

e3

12π2 +O(e5) (6.50)

Finally we may take the limit of ε→ 1 to obtain that for QED3 the β-function
is given by

β(e) = −1
2e+

e3

12π2 +O(e5) (6.51)
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This β-function clearly has a zero at e∗ =
√

6π2 implying the existence of a
Wilson-fisher fixed point. The β-functions for QED3 and QED4 are graphed in
figures 6.4 and 6.5 respectively, in which the β-function for QED4 is competed
from equation (6.49) and taking ε→ 0. The graph of the QED4 β-function show
that a IR fixed point exists at e = 0, implying that the theory becomes free, or
non-interacting, in the limit of the IR. In the UV domain the β-function obtains
a Landau pole, the point at which the coupling constant becomes infinite and the
perturbation theory breaks down. The QED3 β-function in contrast has an IR
fixed point at Wilson-Fisher fixed point previously calculated. As the coupling
constant obtains a positive value in the limit of the IR the theory continues to
interact even at low energy scales. In addition the β-function has another zero
obtained if the coupling constant becomes 0. As the β-function obtain a zero
only in the limit of the IR or the UV, this fixed point must correspond to a UV
fixed point. This implies that the theory is UV free.

Figure 6.4: β-function for QED3

The ε-expansion used in this paper may be used to further elucidate the
properties of three dimensional QED and its corresponding β-function. Di Pietro
et al. (2015) [3] noted that for an abstract system in d = 4 the correlation
function for an operator O may be expanded in powers of of a coupling constant
g that is marginal given by

〈0| O(p)O(−p) |0〉 = p2∆−4
∞∑

0≤m≤n,n=0
cnmg

n

(
log Λ2

p2

)m
(6.52)

Such that ∆ is the scaling dimension of the operator under the condition that
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Figure 6.5: β-function for QED4

d = 4 and the coupling constant is equal to 0. In a scale invariant theory (see [1])
under a dilation, or a change in scale, x→ λx each operator picks up a prefactor
of λ−∆ such that ∆ is the scaling dimension of the operator. Λ is the ultraviolet
(UV), or high energy, cutoff; the energy at which the perturbation theory begins
to break down. To ensure that the theory is independent of the ultraviolet cutoff
the operator may be renormalized to ZO allowing the renormalization Z and
the coupling constant g to evolve as a function of the energy scale such that the
Callan-Symanzik equation is satisfiel(

∂

∂ log Λ
+ β(g)

∂

∂g
+ 2γ(g)

)
〈0| O(p)O(−p) |0〉 = 0 (6.53)

In which β(g) = dg
d log Λ is the β-function and γ(g) = d logZ

d log Λ is called the
anomalous dimension. By expanding the beta function and anomalous dimension
to the leading order of g

β(g) = β1g
3 +O(g5), γ(g) = γ1g

2 +O(g4) (6.54)

Di Pietro et al. were able to show that for a dimension of d = 4− 2ε the operator
expansion takes the form

〈0| O(p)O(−p) |0〉 ' p2∆−d
(

1 + β1
cε

g

pcε

)− 2γ1
β1 ≈

p→0
p2∆−dp

2γ1
cε
β1 (6.55)

In which c is a positive constant given by the positive mass dimension cε that
is obtained by the coupling constant g in the new dimension d = 4− 2ε. As
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the coupling constant is marginal in 4 dimensions, implying that a dimensional
analysis of g is independent of mass, in other dimensions is will obtain a mass
dimension. This result of equation (6.55) implies that in the infrared (IR), or
low energy, limit (equivalently given by p→ 0) the scaling law for the operators
changes to become

∆IR = ∆ + γ1
cε

β1
(6.56)

And also that the scaling to this IR scale only occurs when

p�
(
β1
cε

) 1
cε

g
1
cε (6.57)

The presence of the large factor (β1/cε)
1
cε implies that the IR fixed point is

parametrically close to the UV fixed point. Di Pietro et al. show that the IR
fixed point corresponds to one of the zeros of the β-function of ĝ = gΛ−cε

β(ĝ) =
dĝ

d log Λ
= −cεĝ+ β1ĝ

3 +O(ĝ5) (6.58)

ĝ was chosen because, unlike g, it is dimensionless.
The lagrangian for 4-dimensional QED chosen by Di Pietro et al. is given by

L = − 1
4e2F

µνFµν + i

Nf∑
a=1

Ψaγ
µDµΨa (6.59)

In which Dµ = ∂µ − ieAµ is the covariant derivative. This lagrangian shows
the interaction between the electromagnetic field and Nf flavors of massless
fermions. It is an extention of the β-function previously calculated which was
coupled to a single Dirac field. This lagrangian in contrast does not have mass
term as the fermions are assumed to be massless. This was chosen because the
lagrangian exhibits a larger symmetry group without the presence of the mass
term. The mass term may be consider as a coupling constant for the bilinear
operator ΨΨ and its renormalization is independent of the re renormalization of
e. As such the removal of this term does not substantially change the β-function
corresponding to e which, for this extended Lagrangian, in d = 4− 2ε dimensions
was found to be

β(ê) = −εê+
Nf

12π2 ê
3 +O(ê5) (6.60)

such that once again ê = eΛ−ε is chosen to be dimensionless. As such for the
present case of (2+1)-dimensions we may choose ε = 1

2 and obtain the β-function
to be

β(ê) = −1
2 ê+

Nf
12π2 ê

3 +O(ê5) (6.61)

Resulting in the existence of a Wilson-Fisher fixed point at ê∗ = 6π2
Nf

.
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Similarly one may compute the β-function using the MS renormalization
scheme, in constrast to the on-shell scheme used in this paper. This scheme
requires the values of the counterterms to be chosen such that the purely divergent
part of the loop integrals are removed, for example be subtracting factors of
1
ε such that in the limit of ε→ 0 no factors in the integral go to infinity. The
MS β-function was has been determine up to the 4-loop accuracy in d = 4− 2ε
dimensions [4, 16]

βMS(ê) = −2εê+
2Nf

3 ê2 +
Nf
3 ê3 −

Nf (22Nf + 9)
144 ê4

−
Nf
64

[
616N2

f

243 +

(
416ζ(3)

9 − 380
27

)
Nf + 23

]
ê5 +O(ê6) (6.62)

In which ê is once again dimensionless and the βMS-function for the present
3-dimensional case may be found by replacing the ε with 1

2 . Once again implying
the existence of a Wilson-Fisher fixed point at

ê∗ =
3ε
Nf
− 27ε2

4N2
f

+
99ε3

16N2
f

+
77ε4

16N2
f

+O

(
ε5; 1

N3
f

)
(6.63)

Which at ε = 1
2 results in

ê∗ =
384Nf − 157

256N2
f

(6.64)

7 Physical Relevance of the QED3 β-function
As previously discussed in section 4 the presence of fixed point affects the flow
of the renormalization group at different energy scales. More specifically as one
approaches a fixed point the coupling constants of operators may increase or
decrease resulting in certain operators becoming relevant or irrelevant. Primarily
we will examine the relevance of certain operators near the Wilson-Fisher fixed
point and the implications that this has for the theory of QED3.
The lagrangian of QED3 has SU(2Nf ) symmetry group. Requiring that the
operators that we examine are invariant under this symmetry group and further
requiring them to be of even parity results in two scalar quadrilinear operators
given by [3]

O1 = (
∑
i

ψiσ
µψi)2, O2 = (

∑
i

ψiψ
i)2 (7.1)

in which σµ are the Pauli matrices and ψ are given by the decomposition of the
diract field according to

Ψj =

(
ψj

iσ2ψ
j+Nf

)
, j = 1 . . . Nf (7.2)
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A basis may be constructed using these two operators as the basis vectors. Upon
renormalization each of the operators is renormalized by a factor Zi, based on
these factors a anomalous dimension matrix may be computed according to the
definition

γij = ZikΛ
d

dΛ
(Zkj)

−1 (7.3)

When applied to the operators defined by equation (7.1) the result as calculated
by [3]

γO(ê) =
ê2

16π2

(8
3 (2Nf + 1) 12

44
3 0

)
+O(ê4) (7.4)

Whose eigenvalues may be found to be

ê2

12π2 (2Nf + 1± 2
√
N2
f +Nf + 25) (7.5)

We may evaluate this at the value of the coupling constant at the Wilson-
Fisher fixed point previously found to be 12π2ε

Nf
. This results in the fact that

the operator corresponding to the negative eigenvalue only becomes relevant,
that its anomalous dimension is negative, when the number of fermion flavours
Nf ≤ 9ε

2 +O(ε2). In three dimensions, i.e. ε = 1
2 , this implies that the operator

becomes relevant if Nf = 1, 2. This implies that if the operator becomes relevant
it may create a new renormalization group flow to a new IR phase.
A potential result of this new IR phase is the potential for the operator

Nf∑
a=1

(ψaψ
a −ψa+Nfψ

a+Nf ) (7.6)

to obtain a vacuum expectation value. The operator (7.6) is also known as the
number operator and counts the number of particles present in the system. As
such the RG flow may result in spontaneous mass generation. This subsequently
breaks the global SU(2Nf ) symmetry of the lagrangian replacing it with a
SU(Nf )× SU(Nf )× U(1) symmetry group. This process is known as chiral
symmetry breaking and has been shown to only occur below a certain critical
value of Nf labelled N c

f [7]. Various estimates of the value of N c
f have been

estimated ranging from 2-10 [7–10].

The theory of QED3 has also been used to describe the behaviour of some
high Tc cuprate superconductors. Cuprates referring to materials containing
anionic copper complexes. At the critical temperature Tc the superconductor
undergoes a phase transition and stops superconducting. A paper by Franz et
al. [11] showed that for low energy scales, near a temperature of 0, the theory
that describes the behaviour of quasi particles inside of the pseudogap of the
superconductor was found to be that of (2+1) dimensional QED. The previously
discusses chiral symmetry breaking occurs within the cuprates. In these systems
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it is argued that the number of fermion flavors is given by Nf = 2nCuO, the
number of CuO2 layers that are present per unit cell. In the case that Nf < N c

f
the interactions with a massless Berry gauge field result in the spontaneous
creation of a gap for the ferimionic interactions provided that the temperature
is T = 0 [11]. This is further discussed in other paper on the subject [12, 13].

8 Conclusion
In this paper the β-function for three dimensional quantum electrodynamics
(QED3) was derived and its physical ramifications were discussed.
The classical theory of electrodynamics was first discussed to determine its
dependence on the number of dimensions. Examining the relativistic formulation
of the Maxwel equation in three and four dimensions resulted in a lagrangian to
be quantized of the form

L = −1
4F

µνFµν + JµA
µ (8.1)

in which Jµ is a term for external sources. Subsequently using the operator based
hamiltoniona for non-relativistic quantum mechanics the partition function, Z,
was derived. The partition function gives the probability that the system starts
and ends in the ground state as a path integral over all possible paths between
the initial and final state weighted by the complex exponent of the action S

Z = 〈0|0〉 =
∫
Dφ eiS (8.2)

The functionality of the partition function is that operators that would be
applied to states become functions under the path integral. This allows for the
computation of correlation functions, or other sets of operators, by computing a
path integral.
Many of the theories that may be expressed in this path integral formalism
are pertubative theories implying that partition function is dependent on the
energy scale of the system. The coupling constants define the degree to which
interactions between various fields occur and are specified in the lagrangian.
They are defined such that a coupling constant of 0 implies no interaction, with
greater constant implying greater interactions. By integrating out higher energy
modes of partition function the coupling constants become dependent upon the
energy scale. This allows for the definition of the β-function to measure the
degree of this dependence

β(g) =
dg

d log Λ
(8.3)

such that g is the coupling constant and Λ is the energy scale. Much information
concerning the energy scale dependence of the theory may be determined simply
from the β-function. The zeros of the β-function correspond to fixed points of
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the theory, points at which the theory is conformally invariant. Near these fixed
points the beta function may be used to determine which operators become
relevant and irrelevant in describing the physical world.
Using the path integral formalism described, QED or the theory of interaction
between the electromagnetic field and the Dirac fermion field, was quantized.
Be considering the source term Jµ to be proportional to the conserved Noether
current corresponding to the U(1) symmetery group of the Dirac field the total
lagrangian was found to be

L = −1
4Z3F

µνFµν + iZ2Ψ/∂Ψ−mZmΨΨ + eZ1Ψ /AΨ (8.4)

Where Zi are constants to be determined such that the theory abides by the
LSZ theorem. The quatized theory of this lagrangian has been shown to be
equivalent to the sum of all connected Feynman diagrams with photon, positron,
and electron sources. Thsi allows for the computatiton of the partition function
with a O(e2n) degree of accuracy by computing the sum of all Feynman diagrams
with n-loops.
By computing the exact photon propagator, exact fermion propagator, and
the exact vertex terms to the 1-loop order the Zi were computed to the O(e2)
order. This was completed using dimensional expansion by assuming that the
dimension of the system is d = 4− ε and subsequently taking ε→ 1 to examine
the three dimensional case. The Zi were used to determine the relationship
between the original coupling constant e0 and the renormalized constant e which
was used to determine the energy dependence of the coupling constant, in effect
the β-function as

β(e) = −1
2e+

e3

12π2 +O(e5) (8.5)

By extending the problem to Nf flavors of massless fermions the β-function was
found to be

β(e) = −1
2e+

Nfe
3

12π2 +O(e5) (8.6)

This resulted in the Wilson-Fisher fixed point, or the zero of the β-function to
take the value of e∗ = 6π2

Nf
.

By examining a couple of quadrilinear operators at an energy scale near the
Wilson-Fisher fixed point it may be shown that if the number of massless fermion
flavors is less than Nf < 9

4 that one of these operators becomes relevant. This
in turn results in spontaneous mass generation resulting in the breaking of the
SU(2Nf ) symmetry group of QED3.
Furthermore, several papers, such as [11], have shown that the theory describing
high Tc cuprate superconductors may be isometric to that of QED3.
This paper has hardly been able to discuss the theory of QED3 in its entirety.
We have barely commented on the many aspects of the renormalization group,
choosing instead to focus solely on the β-function. More research has been
completed in many of these fields, for example, anomalous dimension of the
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theory which has been a subject of discussion some papers, see for instance [16].
Nor have we discussed how QED3 may be used as a prototype or model for more
complex system such as quenched QED4 or three dimensional chromodynamics
[17]. In addition there is the distinct possibility that QED3 may be used to
accurately describe other superconductors in addition to the cuprates that have
been discussed in papers such as [11–13].
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