

Image designed by Vexels

faculty of science
and engineering

 mathematics and applied
mathematics

Optimizing Parameters of

Iterative Methods

Bachelor’s Project Mathematics

July 2018

Student: E.I. Maquelin

First supervisor: Dr.ir. R. Luppes

Second assessor: Dr. A.E. Sterk

Abstract

Numerical optimization methods provide a way of computing the optimum of a func-
tion, even when the function is not differentiable. There are many numerical methods
and it is important to choose the right one for your situation. Not only functions, but
also iterative methods can be optimized. If an algorithm depends on some parameters,
then the optimal parameter values, giving the minimum number of iterations required
for convergence, can be found by applying a minimization method. This study dis-
cusses the idea behind, and convergence behaviour of, the Downhill Simplex Method,
the Powell Methods and Particle Swarm Optimization. The methods are applied to
the Rosenbrock and the Rastrigin function, two well known test functions for numer-
ical optimization, and hereafter to some numerical algorithms depending on various
parameters. The convergence behaviour of a numerical optimization method can de-
pend highly on the given starting point. In this study, we see that especially Particle
Swarm Optimization works well for the test cases where function evaluations are com-
putationally cheap. However, for other optimization problems another method might
be preferred, as the quality of the convergence behaviour of the numerical optimization
method ultimately depends on the problem being optimized.

2

Contents
1 Introduction 5

2 Preliminaries 6
2.1 Rosenbrock Function . 6
2.2 Rastrigin Function . 6
2.3 Iterative Method . 7

2.3.1 Newton’s Method . 7
2.3.2 MyNewtonMethod . 8

3 Downhill Simplex Method 9
3.1 Rosenbrock Function . 10
3.2 Rastrigin Function . 11
3.3 MyNewtonMethod . 12

4 Powell’s Methods 14
4.1 Golden Section Search . 14
4.2 Parabolic Interpolation . 14
4.3 Multidimenionsal Optimization . 15
4.4 Rosenbrock Function . 16
4.5 Rastrigin Function . 17

4.5.1 Improvements . 19
4.6 MyNewtonMethod . 22

5 Grid 24
5.1 Global Minimum . 24
5.2 Applying Methods to a Grid . 25

6 Particle Swarm Optimization 26
6.1 Parameters . 27
6.2 Applying PSO . 28

6.2.1 Swarm Size and Search Area . 29

7 Variations of MyNewtonMethod 32
7.1 MyNewtonMethod_2 . 32
7.2 MyNewtonMethod_3 . 32
7.3 MyNewtonMethod_4 . 33
7.4 MyNewtonMethod_5 . 33
7.5 MyNewtonMethod_3D . 34

3

8 Successive Over-Relaxation 36
8.1 SOR . 36
8.2 One Parameter . 37
8.3 Three Parameters . 37

8.3.1 Increasing the Number of Subintervals 38

9 PSO Failure 40

10 Iteration Cost 41

11 Conclusion 44

A MATLAB Codes 46
A.1 Rosenbrock Function . 46
A.2 Rastrigin Function . 46
A.3 Plot Rosenbrock Function . 46
A.4 Plot Rastrigin Function . 47
A.5 MyNewtonMethod . 47
A.6 Powell’s Method . 48
A.7 Bracketing Minimum . 52
A.8 Golden Section Search . 53
A.9 Coggin’s Method . 56
A.10 1-dimensional Rastrigin Function . 59
A.11 Golden Section Search Improved . 60
A.12 Golden Section Search Repeated . 61
A.13 Coggin’s Method Improved . 62
A.14 Grid . 63
A.15 PSO . 64
A.16 MyNewtonMethod_3 . 67
A.17 MyNewtonMethod_4 . 69
A.18 MyNewtonMethod_5 . 70
A.19 MyNewtonMethod_3D . 71
A.20 ODE . 73
A.21 SOR . 73
A.22 Test Functions . 75
A.23 Discontinuous Function . 77

4

1 Introduction
Finding the extrema of a function is a common problem in mathematics. For well-
defined functions this is easy to do, as one just determines the gradient and finds its
zero. But if the functions are defined in such a way that it is not possible to determine
the (partial) derivative(s) analytically, then the extrema cannot be computed this way;
instead we can make use of numerical optimization methods. Of course, it is preferred
to use a method that is fast (in terms of the number of iterations required for conver-
gence) yet still reliable.
Now consider the situation where the function to be minimized is in fact an iterative
method, taking a certain number of iterations to solve a mathematical problem. The
number of iterations required for the algorithm to convergence depends on some param-
eters. As the dependence on the variables is in such a manner that it is not possible to
take the partial derivatives, one has to apply an optimization method that numerically
finds the minimum for the number of iterations.
The Bachelor Thesis “Methods of Optimization for Numerical Algorithms” by S.J. Pe-
tersen [5] addresses this problem. It focuses on the Downhill Simplex Method and
Powell’s Methods of optimization, both applied to functions and algorithms depending
on one or two variables. But what happens when the algorithm depends on more than
two variables?
This paper discusses the problem of minimizing the number of iterations of an algo-
rithm that depends on e.g. four variables. We will investigate which of the methods
of numerical minimization are robust and fast. The methods considered are the Down-
hill Simplex Method and Powell’s Method, based on the Golden Section Search and
Parabolic Interpolation. Also, Particle Swarm Optimization, a method inspired by nat-
ural concepts such as bird flocking, will be discussed. For each method the workings
are briefly explained, then they are applied to some test functions with interesting
features, and hereafter to an algorithm depending on four variables where the conver-
gence behaviour of the methods is studied. Having found a method that converges
to the minimum number of iterations of our algorithm depending on four variables, a
few variations on the algorithm and a whole new problem are considered to see if the
method also can find the minimum in these cases. We will conclude with the pros and
cons of the methods and determine which is generally the preferred one.
MATLAB will be used to implement the numerical optimization methods. The relevant
codes are given in Appendix A.

5

2 Preliminaries
As mentioned in the introduction, the numerical methods will first be applied to two
test functions, namely the Rosenbrock function and the Rastrigin function, which are
given below. The iterative method that will be optimized in this study depends on four
variables, hence the test functions will mostly be used in their 4-dimensional form. The
MATLAB implementations are given in Appendices A.1 and A.2.

2.1 Rosenbrock Function
The Rosenbrock function is often used to test the efficiency and robustness of numerical
minimization methods. The variation around the global minimum is rather low, as is
seen in Figure 1a. This makes convergence to the global minimum difficult, which is
why this function is a good test case [7]. The Rosenbrock function is the 2-dimensional
function fpx, yq “ pa ´ xq2 ` bpy ´ x2q2. Usually a “ 1 and b “ 100, which will be
assumed throughout the rest of this paper. The n-dimensional generalisation of the
Rosenbrock function for even n is the following:

fpxq “
n{2
ÿ

i“1

100px22i´1 ´ x2iq
2 ` px2i´1 ´ 1q2

The function attains its global minimum at x “ p1, 1, ..., 1q, where fpxq “ 0, and it has
a local minimum near x “ p´1, 1, ..., 1q [12].

2.2 Rastrigin Function
The n-dimensional Rastrigin function is defined as follows [3]:

fpxq “ 10n`
n
ÿ

i“1

rx2i ´ 10cosp2πxiqs

The function has a global minimum at x “ p0, 0, ..., 0q, where fpxq “ 0, and it has many
local minima, as can be seen in Figure 1b. Due to the large number of local minima
and the steep gradients toward these minima, it is hard for optimization methods to
find the global minimum and therefore a great test case [4].

6

(a) (b)

Figure 1: (a) The 2-dimensional Rosenbrock function. The global minimum lies in a
long, narrow, parabolic shaped flat valley. (b) The 2-dimensional Rastrigin function.
There are many local minima and a single global minimum.
MATLAB-codes in Appendices A.3 and A.4

2.3 Iterative Method
After the test functions in closed form, we will study how the methods behave when
applying them to an iterative method that depends on a number of variables. The
goal is to find the optimal values of these variables that give the minimum number of
iterations for the method. The iterative method considered will be a modified version
of the Newton Method; therefore, Newton’s Method is explained briefly below.

2.3.1 Newton’s Method

Newton’s Method is used to find a root of a function fpxq. Note that solving fpxq “ a
for some number a, is the equivalent to finding the root of fpxq´a. A starting guess x0
is given and the tangent line to the curve is computed: ypxq “ fpx0q ` f

1px0qpx´ x0q.
The intersection point x1 of this line with the x-axis is the next approximation of the
root. Repeating these steps gives the algorithm xk`1 “ xk ´

fpxkq

f 1pxkq
, provided that

f 1pxkq ‰ 0 [8].
This algorithm can be generalized into the Multivariate Newton Method, where f(x) is
an n-dimensional multivariate equation system. An initial vector x0 is given and the
next points are computed by solving Jf pxkqδxk “ ´fpxkq and setting xk`1 “ xk`δxk;
in other words, the next point is xk`1 “ xk´J

´1pxkqfpxkq, for k “ 0, 1, 2, ... and where
Jpxq is the Jacobian matrix (the analogue of the derivative of the one-variable case).
It is important to mention that Newton’s Method in general does not converge for all
possible initial guesses, but only for those that are sufficiently close to the root, obtained
by for instance computing a few iterations of the bisection method [7].

7

2.3.2 MyNewtonMethod

Despite the fact that Newton’s Method looks rather simple, it generally is computa-
tionally demanding when the dimension n is large, as one has to evaluate many partial
derivatives. Therefore, we insert four parameters in the 2-dimensional Multivariate
Newton for a specific problem and try to find the values that minimize the number of
iterations required. The problem we will consider is finding the solution p0.1, 2q of

fpx, yq “

„

p10x´ 1q2 ` py ´ 2q2

p10x´ 1q2py ´ 2q2 ´ cosp5πxyq

“

„

0
1

The initial values are x “ 50 and y “ 120. The parameters relax1 and relax2 are used
as relaxations and the Jacobian Jpx, yq is modified through the parameters α and β:

Jpx, yq “

»

—

—

–

20p10x´ 1q 2py ´ 2q

2αp10x´ 1qpy ´ 2q2 2p10x´ 1q2py ´ 2q
`5πy ¨ sinp5πxyq `βπx ¨ sinp5πxyq

fi

ffi

ffi

fl

δ “ J´1px, yq ¨ fpx, yqT

x “ x´ relax1 ¨ δp1q

y “ y ´ relax2 ¨ δp2q

Note that in our implementation of this algorithm, called myNewtonMethod, in
MATLAB (Appendix A.5) we use JzfT instead of invpJq ˚ fT , as the backslash
calculation is quicker and has less residual error. It finds the solution using Gaussian
elimination, without explicitly computing the inverse [11]. Another thing to mention is
that the output of the function is the number of iterations plus a small error term, to
prevent problems in the optimization methods that arise when the difference between
two function values is exactly zero; for readability, the results in this study will be
shown without this error term.
For relax1 “ 1, relax2 “ 1, α “ 10 and β “ 5 we get the pure Newton Method, hence
p1, 1, 10, 5q would be a natural starting point for a numerical optimization method
trying to find the minimum number of iterations. The number of iterations required
for the pure Newton Method is 51, but this can be reduced using the Downhill Simplex
Method as will be shown in the following section.

8

3 Downhill Simplex Method
The first method we consider is the Downhill Simplex Method, also known as the
Nelder-Mead (Simplex) Search, which was proposed by John Nelder and Roger Mead
in 1965. The idea of the method is to find the minimum of a function by rolling a
polyhedron downhill to its lowest possible value [8].
The method does not use (partial) derivatives, only function evaluations. Even though
the method is not very efficient with respect to the number of evaluations it takes, it
is often a good method to use if the objective is to get a solution quickly when the
computational burden of the problem is small [6].
In two dimensions, a simplex consists of three points/vertices and the line segments
connecting them, i.e. a triangle. In three dimensions, the simplex is a tetrahedron (not
necessarily regular). More generally, in N dimensions, a simplex consists of N ` 1 ver-
tices and the hyperplane segments connecting them [1]. The simplexes considered for
this method are nondegenerate, meaning that they have a finite N -dimensional volume.
The algorithm is given an initial guess; however, to define the initial simplex N ` 1
points are required and these are obtained as follows: the N -dimensional initial guess,
P0, is given; define the rest of the points by Pi “ P0 `∆ei where i “ 1, ..., N ` 1, ei is
a unit vector and ∆ a constant.
Given the starting point, the algorithm takes a series of steps to move downhill to the
lowest function value until it reaches a (at least local) minimum. These steps consist
of reflections, contractions and expansions and are shown in Figure 2, resulting in the
alternative name “Amoeba” for the method [6].
Conveniently, MATLAB has an implementation of the Downhill Simplex Method called
“fminsearch”. This function outputs the minimum when given the name of the function
fpxq to be minimized (a scalar-valued function of a vector variable) and an initial guess.
The termination criteria are to require that the decrease in the function value and the
vector distance moved in the terminating step should be fractionally smaller than some
given tolerances ftol and tol respectively, whose default values are 10´4 [1]. Both cri-
teria can be fooled however, when a step of the algorithm fails to go anywhere while it
might not have reached the minimum yet. Therefore, it is a good idea to restart the
algorithm at a point where it claims to have found a minimum, using as initial point
one of the vertices of the claimed minimum [6].
The convergence of the method to the global minimum is only guaranteed in special
cases. Moreover, its rate of convergence depends highly on the initial simplex. Never-
theless, this algorithm is known to be quite efficient and robust for small dimensional
problems [7]. Now let us find out if this is also the case for our test functions.

9

Figure 2: (a) reflection away from the point where the function value is high, i.e. the
high point, (b) reflection and expansion away from the high point, (c) contraction
along one dimension from the high point, (d) contraction along all dimensions toward
the low point. An appropriate sequence of these steps always converges to a (at least
local) minimum.
Source: Figure 10.5.1 [6]

3.1 Rosenbrock Function
The results of applying the Downhill Simplex Method to the Rosenbrock function de-
pending on four variables are shown in Table 1. Recall that the Rosenbrock function
attained its global minimum at p1, 1, 1, 1q, where the function value is 0.
When starting close to or at the global minimum, the method converges nicely; even
when the initial point is p´1, 1, 1, 1q, near the local minimum. However, if the initial

10

point is a bit further from the global minimum, we do not get the correct answer.
Instead, the method encounters a point where the gradient is relatively small, hence
observes changes smaller than the given (default) tolerances, which causes the method
to incorrectly claim that is has reached the minimum.
By decreasing the tolerances and allowing a higher number of function evaluations and
iterations, the range of convergence can be increased. Take for example p5, 5, 5, 5q as
initial point, where the method did not converge to the minimum. Decreasing the tol-
erances from the default 10´4 to 10´7 and increasing the maximum number of function
evaluations and iterations accordingly results in p1.0000, 1.0000, 1.0000, 1.0000q, where
the Rosenbrock function takes the value 1.3115 ¨ 10´15; a very good approximation of
the global minimum indeed.
The Downhill Simplex Method requires for the Rosenbrock function on average circa
1.7 function evaluations per iteration, based on the results in Table 1. As expected,
decreasing the tolerances increases the number of function evaluations and iterations
the method performs.

Initial Point Downhill Simplex Method #Func-
Eval

#It

(0, 0, 0, 0) (1.0000, 1.0000, 1.0000, 1.0000) 725 441
(1, 1, 1, 1) (1, 1, 1, 1) 114 64
(-1, 1, 1, 1) (1.0000, 1.0000, 1.0000, 1.0000) 569 339
(2, -2, 2, -2) (1.0000, 1.0000, 1.0000, 1.0000) 593 348
(5, 5, 5, 5) (2.8014, 7.8508, 2.4230, 5.8733) 169 91
(5, 5, 5, 5) with (1.0000, 1.0000, 1.0000, 1.0000) 1434 851

lowered tolerances
(1000, 1000, 1000, 1000) 103¨ (0.0454, 2.0592, -0.0386, 1.4901) 248 134

Table 1: Estimates of the location of the global minimum p1, 1, 1, 1q obtained by
applying the Downhill Simplex Method to the Rosenbrock function for various initial
points. #FuncEval and #It give the number of function evaluations and iterations
performed by the method.

3.2 Rastrigin Function
Table 2 shows the results of applying the Downhill Simplex Method to the Rastrigin
function depending on four variables.
Starting the method at the global minimum p0, 0, 0, 0q returns correctly the initial point.
However, when the initial point is near the global minimum, but not the minimum it-
self, the method just returns a point very close to where it started: a local minimum.
The curious thing is that when beginning at a point far away, the result is not as
bad as expected based on the behaviour observed above. For instance, starting at
p100, 100, 100, 100q yields a point closer to the minimum than starting at p5, 5, 5, 5q.

11

This can be explained by the fact that one of the possible steps of the Downhill Sim-
plex Method is expansion, causing the simplex to become larger. If the algorithms start
far away, it uses a lot of expansion steps, which causes the simplex to grow and allows
the method to “skip over” some of the local minima close to the global minimum [5].
The Downhill Simplex Method performs on average 1.8 function evaluations per itera-
tion for the Rastrigin function, according to Table 2. When starting further from the
global minimum, the total number of function evaluations and iterations performed
generally increases.

Initial Point Downhill Simplex Method #FuncEval #It
(0, 0, 0, 0) (0, 0, 0, 0) 18 9
(1, 1, 1, 1) (0.9950, 0.9950, 0.9949, 0.9950) 102 58
(1.5, -1.5, 1.5, -1.5) (1.9899, -1.9899, 1.9900, -0.9949) 167 91
(2, -2, 2, -2) (1.9899, -1.9899, 1.9899, -1.9900) 113 64
(5, 5, 5, 5) (4.9747, 4.9747, 4.9746, 4.9747) 128 73
(100, 100, 100, 100) (0.0000, -1.9899, 0.9949, -0.9950) 320 182

Table 2: Estimates of the location of the global minimum p0, 0, 0, 0q obtained by
applying the Downhill Simplex Method to the Rastrigin function for various initial
points. #FuncEval and #It give the number of function evaluations and iterations
performed by the method.

For the Rosenbrock function the results could be improved by lowering the toler-
ances, for the Rastrigin function this unfortunately does not give better convergence
behaviour.

3.3 MyNewtonMethod
The location of the global minimum of myNewtonMethod is not known yet. Therefore,
the function value of myNewtonMethod, i.e. the number of iterations it takes, at the
location where the Downhill Simplex Method claims to have found the minimum is also
given in Table 3. Note that the method reduces the number of iterations compared
to the pure Newton Method which corresponds to the variables p1, 1, 10, 5q and 51
iterations.
We see in the table that for most inputs the method just returns a point close to the
initial point. Decreasing the tolerances also does not result in better convergence. This
behaviour is similar as to what happened for the Rastrigin function; probably because
there again are many local minima.

12

Initial
Point

Downhill Simplex Method Func.
Value

Time
(sec)

#Func-
Eval

#It

(0, 0, 0, 0) (2.0234, 1.4949, -1.9028, -1.3438) 19 0.828 373 159
(1, 1, 1, 1) (1.0542, 0.9650, 1.0057, 1.0378)* 37 0.436 801 224
(1, 2, 3, 4) (0.9981, 2.0024, 3.0047, 4.0035) 22 0.178 343 137
(2, 2, -3, 5) (2.0000, 2.0000, -3.0002, 5.0000) 6 0.037 284 113
(1, 1, 10, 5) (0.9940, 1.0217, 10.3409, 5.0470) 38 0.102 148 56
(2, 2, 0, 5) (2.0000, 2.0000, 0, 5.0236) 2 0.026 313 106

Table 3: Estimates of the minimum obtained by applying the Downhill Simplex
Method to myNewtonMethod for various initial points. #FuncEval and #It give the
number of function evaluations and iterations performed by the method.
*Exiting: Maximum number of function evaluations has been exceeded

A special situation is indicated by * in Table 3: the method encounters some
difficulties when starting at p1, 1, 1, 1q and gives the error message that it exceeds the
maximum number of function evaluations. Increasing the maximum does not help, as
the method makes futile iterations indefinitely, while already having reached a local
minimum from which it cannot get away. To solve this ftol is set to 10´3 instead
of the default 10´4; then the method recognizes that it has reached a minimum and
gives the following result: p1.0542, 0.9650, 1.0057, 1.0378q where the function value is
38 iterations.
The Downhill Simplex Method requires for myNewtonMethod on average about 2.8
function evaluations per iteration. Each function evaluation in turn performs a certain
number of iterations of the modified Newton Method, depending on the values given
for the parameters of myNewtonMethod.
The results do not show convergence to a single point. Even though we now know that
the global minimum is at most 2, we do not know its value exactly yet. Therefore, in
the next section another numerical optimization method is introduced for comparison,
called Powell’s Method.

13

4 Powell’s Methods
Powell’s Methods [1, 6], in contrast to the Downhill Simplex Method, do make use of
algorithms performing 1-dimensional minimization. We will consider two 1-dimensional
optimization methods that do not use the (partial) derivative of the function: the
Golden Section Search and Parabolic Interpolation [5]. The relevant MATLAB-codes
can be found in Appendices A.6 to A.9.
First the methods are explained, then they are both applied to the test functions and
hereafter to the algorithm, as was done for the Downhill Simplex Method.

4.1 Golden Section Search
The Golden Section Search uses the bracketing of the minimum. A minimum of the
function fpxq is bracketed by the points a ă b when there is a point c, such that
a ă c ă b with fpcq ă fpaq and fpcq ă fpbq. The aim is to find a sequence of
approximations to the minimum such that it is contained in the interval, the length of
the interval is reduced at each iteration and the number of function evaluations is as
low as possible.
At each step of the process there is a bracketing triplet pa, t1, bq and a new point t2 is
generated. t2 is a fraction r « 0.38197 into the larger of the subintervals ra, t1s or rt1, bs.
By comparing the function values at t1 and t2, a new bracketing triplet is selected: if
fpt1q ă fpt2q, then the new bracketing triplet is pa, t1, t2q; if fpt1q ą fpt2q, then the
new bracketing triplet is pt1, t2, bq.
The process repeats these steps, having at each step the width of the search interval
reduced by a fraction 1´ r « 0.61803. The value of r is chosen such that the possible
new intervals are of the same size. 1 ´ r is the reciprocal of the golden section φ “
1`
?
5

2 « 1.61803, which is where the algorithm gets its name from [1].
The process of bracketing is continued until the distance between the two outer points
of the bracketing triplet is smaller than some given tolerance. This method guarantees
that each step brackets the minimum with an interval only 0.61803 times the size of
the preceding interval. Moreover, the convergence is linear [6].

4.2 Parabolic Interpolation
The Golden Section Search is designed to handle the worst possible case of function
minimization. But if the function is close to parabolic near its minimum, then the
parabola fitted through any three points takes us in a single step (very close) to the
minimum [6].
A parabola P pxq interpolates a set of data points px1, y1q, ..., pxn, ynq if it passes through
those points, i.e. if P pxiq “ yi for i “ 1, ..., n. Moreover, a unique interpolating
polynomial always exists if the x-coordinates of the points are distinct [8].
Since the x-coordinate rather than the y-coordinate is needed, the procedure used is

14

technically called Inverse Parabolic Interpolation. The formula for the x-coordinate
that is the minimum of a parabola through three points y1, y2 and y3 is
x “ x2 ´

1
2
px2´x1q

2py2´y3q´px2´x3q
2py2´y1q

px2´x1qpy2´y3q´px2´x3qpy2´y1q
. The formula fails when the denominator is

zero, which happens only if the three points lie on the same straight line [6].
The Parabolic Interpolation in Powell’s Method is performed by the so called Coggin’s
Method, which performs the line search procedure for optimization using Parabolic
Interpolation.

4.3 Multidimenionsal Optimization
Powell’s Methods perform multidimensional optimization by carrying out the 1-
dimensional optimization in a number of different directions until a minimum is found
[5]. A trivial way of doing this is the following: take the set of unit vectors as directions;
find the minimum along the first direction, go from there along the second direction to
its minimum, etc.; go through the set of directions as many times as necessary, until the
function does not decrease anymore. This procedure is not too bad for many functions,
for some however, it is very inefficient.
Consider for instance a function whose contour map is a long, narrow valley not parallel
to any of the unit vectors. If you try to go down the valley along these basis vectors,
you will end up taking a series of very small steps. In general, in N dimensions, if the
second derivatives of a function are much larger in some directions than in others, then
many cycles through all N basis vectors are needed to get anywhere. This example
indicates that it would be wise to choose a different set of directions.
We would like a direction set that either has some very convenient directions that take
us far along narrow valleys, or has some “non-interfering”/conjugate directions with
the property that minimization along one direction is not being undone by subsequent
minimization along another direction, so that endlessly cycling through set of directions
is avoided.
Powell discovered a direction set method that produces N mutually conjugate direc-
tions. There was however a problem with his algorithm for choosing direction vectors.
Namely, its procedure for replacing direction vectors tended to produce sets of direc-
tions that become linearly dependent. If this happens, the procedure finds a minimum
of the function over a subspace instead of the whole space, hence giving the wrong
answer. The problem was solved by discarding the direction that caused the largest
decrease in the function value. It may sound contradictory, but it is done because
dropping it decreases the chance of linear dependence. This last procedure will be used
in the Powell Methods throughout the paper.
Powell’s Method is almost surely faster than the Downhill Simplex Method in most
applications, if it converges [6].

15

4.4 Rosenbrock Function
Golden Section Search

In Table 4 the results are shown for applying Powell’s Method using the Golden Section
Search to the Rosenbrock function. The method converges to the global minimum when
starting nearby. Moreover, we can start further away than with the Downhill Simplex
Method and still obtain the minimum, without having to decrease the tolerance.
When we start very far away, the results are nowhere near the minimum. But also
here, decreasing the tolerance improves the results. Even when starting as far away as
p1000, 1000, 1000, 1000q, we only have to decrease the tolerance from the default 10´4 to
10´8 to find the minimum, not yet having to increase the maximum number iterations.
The number of function evaluation and iterations does increase when lowering the
tolerance, but the iterations do not yet exceed the default maximum value in this case.
The average number of function evaluation the method uses per iteration is 101.

Initial Point Powell’s Method #Func- #It
(Golden Section Search) Eval

(0, 0, 0, 0) (1.0000, 1.0000, 1.0000, 1.0000) 1726 18
(1, 1, 1, 1) (1.0000, 1.0000, 1.0000, 1.0000) 70 1
(-1, 1, 1, 1) (1.0000, 1.0000, 1.0000, 1.0000) 1911 20
(2, -2, 2, -2) (1.0000, 1.0000, 1.0000, 1.0000) 2755 28
(5, 5, 5, 5) (1.0000, 1.0000, 1.0000, 1.0000) 1636 17
(10, 10, 10, 10) (0.9803, 0.9585, -0.7732, 0.5970) 3240 31
(100, 100, 100, 100) (2.0706, 4.2876, 0.3143, 0.0985) 4601 35
(1000, 1000, 1000, 1000) (-31.6226, 999.9889, -31.6226,

999.9895)
224 2

(1000, 1000, 1000, 1000) (1.0000, 1.0000, 1.0000, 1.0000) 28661 132
with lowered tolerance

Table 4: Estimates of the location of the global minimum p1, 1, 1, 1q obtained by
applying Powell’s Method based on the Golden Section Search to the Rosenbrock
function for various initial points. #FuncEval and #It give the number of function
evaluations and iterations performed by the method.

Coggin’s Method

The Powell Method based on Coggin’s Method converges for a larger range than the
Golden Section Search does for the same tolerance. If the initial point is at a great
distance from the actual minimum, the method does not converge to the correct point,
though its result is not as far from the minimum as with the Golden Section Search
and Downhill Simplex Method. The convergence can even be improved by lowering the
tolerance, though not as easily as before. Lowering the tolerances greatly increases the

16

number of function evaluations and iterations, hence it takes rather long for the method
to give a solution. For p100, 100, 100, 100q we can lower the tolerance to obtain a result
within reasonable time, but for a point as far away as p1000, 1000, 1000, 1000q it takes
very long because of the large number of iterations required. The method performs for
the Rosenbrock function on average circa 80 function evaluation per iteration.

Initial Point Powell’s Method #Func- #It
(Coggin’s Method) Eval

(0, 0, 0, 0) (1.0000, 1.0000, 1.0000, 1.0000) 1626 16
(1, 1, 1, 1) (1.0000, 1.0000, 1.0000, 1.0000) 42 1
(-1, 1, 1, 1) (1.0000, 1.0000, 0.9986, 0.9973) 1042 12
(2, -2, 2, -2) (1.0000, 1.0000, 1.0000, 1.0000) 3629 36
(5, 5, 5, 5) (1.0000, 1.0001, 1.0000, 1.0000) 3968 45
(10, 10, 10, 10) (1.0000, 1.0000, 1.0000, 1.0001) 2194 27
(100, 100, 100, 100) (0.2006, 0.0400, 2.1794, 4.7500) 2493 36
(100, 100, 100, 100) with (1.0000, 1.0000, 1.0000, 1.0000) 6679 65

lowered tolerance
(1000, 1000, 1000, 1000) (-4.4770, 20.0446, 0.0260, -0.0036) 3579 52

Table 5: Estimates of the location of the global minimum p1, 1, 1, 1q obtained by
applying Powell’s Method based on Coggin’s Method to the Rosenbrock function for
various initial points. #FuncEval and #It give the number of function evaluations
and iterations performed by the method.

We can conclude that both versions of the Powell Method work pretty good for the
Rosenbrock function, and decreasing the tolerance usually results in a better estimate
of the global minimum, though increasing the time.
An interesting observation when comparing the Downhill Simplex Method and the
Powell Method, is that when starting at the global minimum, the former finds the
exact minimum, while the latter gives a close approximation to it, but not the exact
point. This is because the Downhill Simplex Method evaluates the function at the
initial point, while the Powell Method works with bracketing intervals around the given
point.

4.5 Rastrigin Function
Golden Section Search

For the Rastrigin function the convergence behaviour of Powell’s Method based on the
Golden Section Search is similar to the that of the Downhill Simplex Method, as can
be seen in Table 6. However, there are two initial points that cause some problems,

17

indicated in the table by *.
When starting at the global minimum, Powell’s Method gets into trouble and reaches
the maximum number of stages (i.e. iterations performed by the Powell Method), even
when increasing this number by a large amount. What happens is that it circles around
the minimum, where the function values are very close to each other, but the distance
between two consecutive estimates is slightly above the given tolerance. When decreas-
ing the tolerance, we do get a better approximation of the location of the minimum,
namely 10´10 ¨ p0.9241, 0.9241, 0.9241, 0.9241q. However, it keeps oscillating, hence still
exceeding the maximum number of stages because the decrease in the vector distance
moved stays just above the given tolerance.
When starting as far away as the point p100, 100, 100, 100q, the method also exceeds
the maximum number of stages. Increasing the maximum again does not help as the
method oscillates between two values. Increasing the tolerance does work in this case
as it prevents oscillations and allows the method to terminate, resulting in the point
p0.0011,´0.0000,´0.0000,´0.0000q, close to the minimum. A higher tolerance results
in less function evaluations and iterations. The average number of function evaluations
the method uses per iteration is approximately 97, based on the results in Table 6.

Initial Point Powell Method #Func- #It
(Golden Section Search) Eval

(0, 0, 0, 0) 10´4¨ (-0.2372, -0.2372, -0.2372,
-0.2372)*

345001 5000

(1, 1, 1, 1) (0.9949, 0.9950, 0.9950, 0.9950) 160 2
(1.5, -1.5, 1.5, -1.5) (0.9949, -0.9950, 0.9950, -0.9950) 210 2
(2, -2, 2, -2) (1.9899, -1.9899, 1.9899, -1.9899) 158 2
(5, 5, 5, 5) (4.9747, 4.9747, 4.9747, 4.9747) 172 2
(50, 50, 50, 50) (0.9950, 0.9949, 0.9950, 0.9950) 272 2
(100, 100, 100, 100) 10´4¨ (0.1987, 0.1987, 0.1987,

0.1987)*
345125 5000

(100, 100, 100, 100) with (0.0011, -0.0000, -0.0000, -0.0000) 231 3
increased tolerance

Table 6: Estimates of the location of the global minimum p0, 0, 0, 0q obtained by ap-
plying Powell’s Method based on the Golden Section Search to the Rastrigin function
for various initial points. #FuncEval and #It give the number of function evaluations
and iterations performed by the method.
*warning reached max nr of stages

Coggin’s Method

The results of applying Powell’s Method based on Coggin’s Method to the Rastrigin
function are shown in Table 7. The results are very similar to those in Table 6, but

18

without the problems that arose for the Golden Section Search. Also, the average
number of function evaluations per iteration is lower, namely 47. The convergence of
Coggin’s Method appears to be the best so far, though still far from optimal. This
makes sense as the Rastrigin function contains quadratic terms (and no higher order
terms) and Coggin’s Method performs Parabolic Interpolation [5].

Initial Point Powell’s Method #Func- #It
(Coggin’s Method) Eval

(0, 0, 0, 0) (0, 0, 0, 0) 30 1
(1, 1, 1, 1) (0.9950, 0.9950, 0.9950, 0.9950) 88 2
(1.5, -1.5, 1.5, -1.5) (0.9950, 0.9950, 0.9950, 0.9950) 111 2
(2, -2, 2, -2) (1.9899, -1.9899, 1.9899, -1.9899) 91 2
(5, 5, 5, 5) (4.9747, 4.9747, 4.9747, 4.9747) 99 2
(100, 100, 100, 100) 10´7¨ (0.1298, 0.1298, 0.1767, 0.1298) 168 3

Table 7: Estimates of the location of the global minimum p0, 0, 0, 0q obtained by
applying Powell’s Method based on Coggin’s Method to the Rastrigin function for
various initial points. #FuncEval and #It give the number of function evaluations
and iterations performed by the method.

4.5.1 Improvements

For both versions of Powell’s Method applied to the Rastrigin function, we have that
starting far away gives better results than when starting relatively close to the global
minimum. This is because when starting far away, the step size of both the Golden Sec-
tion Search and Coggin’s Method is larger and hence it skips over some local minima.
Also, for both versions, decreasing the tolerance does not result in better convergence
behaviour.
So what goes wrong for the Rastrigin function? Let us first look at the 1-dimensional
Rastrigin function and investigate what happens when applying the 1-dimensional op-
timizations.
The 1-dimensional Rastrigin function is fpxq “ 10` x2 ´ 10cosp2πxq. Since the cosine
function has a period of 2π, the cosp2πxq part has a period of 1. Moreover, because
of the x2 term, we have that each local minimum is smaller than its predecessor when
moving in the direction of the origin, see Figure 3.

19

Figure 3: The 1-dimensional Rastrigin function: fpxq “ 10` x2 ´ 10cosp2πxq.
MATLAB-code in Appendix A.10

First, the Golden Section Search is modified such that it converges for the
1-dimensional Rastrigin function. The problem is that the method gets stuck in a local
minimum instead of converging to the global minimum. This happens because the step
size is so small that it does not get out of the neighbourhood of the local minimum
near the initial point. A possible solution is the following: let x1 and x2 bracket the
minimum; increase the size of the direction vector, hence increasing the size of the
default step size, and recompute the bracketing interval until |px2 ´ x1q| ě 2 (code in
Appendix A.11). This condition ensures that the bracketing interval contains multiple
minima and then the method will converge to the smaller one.
However, this might not be enough, since even though it now does not converge
to the first minimum it encounters, it could get stuck at the second one. This is
solved by applying the algorithm again on the output, which gives convergence to a
minimum smaller than the one it started at, providing that we did not start at the
global minimum. Applying the method multiple times eventually results in the global
minimum (code in Appendix A.12).

20

Initial Point Powell’s Method #Func- #It
(Adapted Golden Section Search) Eval

(0, 0, 0, 0) 10´7¨ (0.1848, 0.1848, 0.1848, 0.1848) 386 1
(1, 1, 1, 1) 10´3¨ (-0.2548, -0.2548, -0.2548, -0.2548) 783 2
(1.5, -1.5, 1.5, -1.5) 10´3¨ (-0.1678, 0.3257, -0.1678, 0.3257) 1129 2
(2, -2, 2, -2) 10´3¨ (0.3294, -0.3294, 0.3294, -0.3294) 1464 3
(5, 5, 5, 5) 10´3¨ (0.1982, 0.1982, 0.1982, 0.1982) 1635 2
(100, 100, 100, 100) 10´3¨ (0.3758, 0.3758, 0.3758, 0.3758) 891 2

Table 8: Estimates of the location of the global minimum p0, 0, 0, 0q obtained by ap-
plying Powell’s Method based on the adapted Golden Section Search to the Rastrigin
function for various initial points. #FuncEval and #It give the number of function
evaluations and iterations performed by the method.

Coggin’s Method is modified in a similar way (code in Appendix A.13). It does
not need the addition of applying the algorithm multiple times on its own output, it
already converges after one try. Recall that the convergence of Coggin’s Method was
already better than the Golden Section Search before modifying the methods.

Initial Point Powell’s Method #Func- #It
(Adapted Coggin’s Method) Eval

(0, 0, 0, 0) (0, 0, 0, 0) 42 1
(1, 1, 1, 1) (0, 0, 0, 0) 87 2
(1.5, -1.5, 1.5, -1.5) 10´15¨ (-0.5826, 0.4429, -0.8598, -0.3051) 203 4
(2, -2, 2, -2) (0, 0, 0, 0) 87 2
(5, 5, 5, 5) (0, 0, 0, 0) 87 2
(100, 100, 100, 100) 10´9¨ (-0.8510, -0.8513, -0.8511, -0.8511) 184 3

Table 9: Estimates of the location of the global minimum p0, 0, 0, 0q obtained by
applying Powell’s Method based on the adapted Coggin’s Method to the Rastrigin
function for various initial points. #FuncEval and #It give the number of function
evaluations and iterations performed by the method.

The Powell Methods based on these adapted algorithms exhibit far better conver-
gence behaviour than before, as is seen in Tables 8 and 9. The Powell Method based
on the adapted Golden Section Search performs on average approximately 516 function
evaluations per iteration. Note that the number of iterations remained almost equal,
while the number of function evaluations increased compared to the Powell Method
based on the original Golden Section Search. The Powell Method based on the adapted
Coggin’s Method still requires about 47 function evaluations per iteration, like it did
before it was modified.

21

4.6 MyNewtonMethod
The results for applying both versions of Powell’s Method to myNewtonMethod are
shown in Tables 10 and 11. They show a high dependency on the initial guess and
no convergence to a single point. As with the Rastrigin function we often just obtain
a point close to the initial point. From the tables the average numbers of function
evaluations per iteration can be computed and are 72 and 78 for Powell’s Method
based on the Golden Section Search and Coggin’s Method, respectively.
Decreasing the tolerance does result in a slightly lower function-value, but still does not
give the global minimum, which we know it to be at most 2 from applying the Downhill
Simplex Method.

Initial Powell’s Method Func. #Func- #It
Point (Golden Section Search) Value Eval
(0, 0, 0, 0) (3.0128, 0.9401, 0.5744, -0.5740) 18 10130 137
(1, 1, 1, 1) (1.4872, 2.5488, 1.1310, 2.7563) 14 44260 618
(1, 2, 3, 4) (1.1966, 1.3868, 1.9854, 5.5307) 24 71773 994
(2, 2, -3, 5) (1.9996, 1.9995, -2.9634, 4.9878) 6 15254 215
(1, 1, 10, 5) (1.8885, 2.0011, 8.2079, 7.7844) 13 69581 961
(2, 2, 0, 5) (2.0182, 2.0327, 0.0825, 5.0964) 6 21505 306

Table 10: Estimates of the as yet unknown global minimum obtained by applying
Powell’s Method based on the Golden Section Search to myNewtonMethod for vari-
ous initial points. #FuncEval and #It give the number of function evaluations and
iterations performed by the method.

Initial Powell’s Method Func. #Func- #It
Point (Coggin’s Method) Value Eval
(0, 0, 0, 0) (2.7371, 1.0221, 0.5702, -0.1296) 17 330 4
(1, 1, 1, 1) (2.0219, 2.0723, 0.2969, 5.2520) 6 1597 20
(1, 2, 3, 4) (1.7498, 1.9817, 3.0079, 5.9358) 10 733 9
(2, 2, -3, 5) (1.9998, 2.0000, -2.9340, 5.0000) 6 827 11
(1, 1, 10, 5) (1.8772, 1.7879, 9.9765, 4.6461) 11 699 9
(2, 2, 0, 5) (2.0000, 1.9999, -0.0008, 5.0002) 3 208 3

Table 11: Estimates of the as yet unknown global minimum obtained by applying
Powell’s Method based on Coggin’s Method to myNewtonMethod for various initial
points. #FuncEval and #It give the number of function evaluations and iterations
performed by the method.

For the Rastrigin function we could modify the 1-dimensional optimization
methods used in the Powell Methods such that they did converge to the global

22

minimum. The situation for myNewtonMethod unfortunately is not as simple as for
the Rastrigin function. We now do not have equidistant minima, hence requiring the
bracketing interval to have a certain length does not work. Due to the irregularity
of myNewtonMethod, there does not seem to be an equivalent way of modifying the
methods such that we get convergence.
In the following section we will try another way of applying the three methods
discussed so far in order to find the global minimum.

23

5 Grid
Another way to search for the global minimum of myNewtonMethod is by using a grid
(code in Appendix A.14). We begin simple, by just evaluating the function at all grid
points and selecting the lowest function value. First, we apply a grid-wise search where
each variable in myNewtonMethod goes from ´100 to 100 with a step size of 2. This
results in a minimum of three iterations found for relax1 “ 2, relax2 “ 2, α “ 0 and
β “ 6. Then a more focused grid-wise search is performed, with each variable going
from ´1 to 9 with step size 0.5. The lowest value found is two iterations, for relax1 “ 2,
relax2 “ 2, α “ 0 and β “ 5. Such a simple method already finds a very low function
value, which equals the lowest value found by the Downhill Simplex Method, and is the
lowest result obtained so far. Is this the global minimum or is it possible to reach the
solution of the problem in only one iteration?

5.1 Global Minimum
Reaching the solution in only one iteration is indeed possible. This is shown by using
the fact that the solution of the problem is x “ 0.1, y “ 2 and by fixing α “ 0 and
β “ 5. The values for α and β can be set to any value we like; we have chosen these
values in order to see how far the global minimum is from the point found by the grid-
search. Now we can compute the values for relax1 and relax2 such that we get the
desired result of only one iteration.

Set α “ 0, β “ 5

x “ ´50

y “ 120

fpx, yq “

„

p10x´ 1q2 ` py ´ 2q2

p10x´ 1q2py ´ 2q2 ´ cosp5πxyq ´ 1

Jpx, yq “

»

—

—

–

20p10x´ 1q 2py ´ 2q

2αp10x´ 1qpy ´ 2q2 2p10x´ 1q2py ´ 2q
`5πy ¨ sinp5πxyq `βπx ¨ sinp5πxyq

fi

ffi

ffi

fl

δ “ J´1px, yq ¨ fpx, yqT

relax1 “ px´ 0.1q{δp1q « 1.999999999936510

relax2 “ py ´ 2q{δp2q « 2.000000001144512

(2)

Thus, the global minimum is one iteration and is obtained when
relax1 “ 1.999999999936509, relax2 “ 2.000000001144512, α “ 0 and β “ 5.
Note that changing the value for α also gives other values for relax1 and relax2. β
is completely arbitrary, as it is multiplied by a sine term which equals zero for the

24

initial x and y values. This means that there are infinitely many ways to reach the
minimum of myNewtonMethod in this case. Recall that the pure Newton Method
requires 51 iterations, hence inserting the parameters with the correct values in the
method greatly reduces the number iterations.

When applying the three methods with as initial point the values found in Equation
2, only the Downhill Simplex Method finds the minimum of one iteration. The Powell
Methods have trouble locating the global minimum when starting there, as they use
bracketing intervals around the given point. The function value around the minimum
is very sensitive to changes in the variables, which makes it hard for Powell’s Methods
to find the exact value of the global minimum within this interval. Especially the
Powell Method based Golden Section Search struggles, as it takes too large steps to
find the global minimum; after decreasing the default step size from 10´2 to 10´15 and
decreasing the tolerance to 10´15 as well, we do manage to obtain the global minimum.
When using Coggin’s Method it is also possible to find the minimum when decreasing
the tolerance and increasing the maximum number of iterations.

5.2 Applying Methods to a Grid
Knowing the global minimum of myNewtonMethod, we realize that we have not been
able to find this minimum with any of our optimization methods yet. However, there
is another way to use the grid than the simple manner suggested above. Instead of
evaluating the function at the grid points, apply a numerical method to each point
of the grid. The strength of a grid is that it tests many initial points, increasing the
odds of finding the one that returns the global minimum. When using a grid where all
variables go from ´1 to 4 with step size 1, only the Downhill Simplex Method finds
the global minimum, the Powell Methods do not.

To conclude, we have found the global minimum using a grid and the Downhill
Simplex Method. The drawback of using a grid is that it takes rather long, circa
one hour. When knowing where the minimum is in advance or which point to use as
initial point, we can find the minimum very fast when applying the Downhill Simplex
Method to it. However, in real life we often do not know where the minimum is
located beforehand. Therefore, let us try a new optimization method: Particle Swarm
Optimization, to see if we can find the global minimum faster and without the prior
knowledge of its location.

25

6 Particle Swarm Optimization
The numerical optimization method called Particle Swarm Optimization (PSO) [2, 4]
was introduced by Kennedy and Eberhart in 1995, inspired by natural concepts such
as bird flocking and fish schooling.
PSO minimizes an objective function f by iteratively trying to improve a candidate
solution. It uses a set of candidate solutions, called particles, that move through
the search area to find the global minimum of the function. Maximization can be
performed by considering the function ´f instead. The movement of a particle is
determined by some simple mathematical formulas over the particle’s position and
velocity. The trajectory of the particle depends on the current particle velocity as well
as on the histories of the particle and its neighbours.
The method has become very popular due to its search efficiency, even for high
dimensional objective functions with multiple local minima. Also, it does not make
use of the (partial) derivatives of the objective function. The algorithm is simple and
flexible while performing an efficient search for minima, even for tricky functions.
This makes it sound like a very promising candidate for our optimization problem
myNewtonMethod.
An important remark is that PSO does not guarantee an optimal solution is ever found,
however, many improvements have been suggested of the years to attain convergence [2].

PSO finds the global minimum of real, scalar valued objective functions defined on
a certain domain. The set consisting of all particles (the candidate solutions) is called
the swarm, hence the name of the method. It takes advantage of the particles’ ability to
explore and optimize toward the minimum, by having the particles communicate their
findings amongst each other [4]. Each particle in the swarm moves through the domain
looking for the global minimum. The movement of a particle i is influenced by both
its own best known position in the domain (denoted pi), as well as by the best known
position of the particles in its neighbourhood (denoted gi). When we use the simple
setup where the neighbourhood of a particle is the whole swarm, then the findings of
a particle are shared with all other particles, hence g “ gi is the best known position
of the entire swarm. The particles then move through the search area according to the
following updating rules for their coordinates and velocity:

xipt` 1q “ xiptq ` vipt` 1q,

vipt` 1q “ viptq ` φ1Rppi ´ xiptqq ` φ2Rpg´ xiptqq.
(3)

Here, t denotes the time and R a random diagonal matrix where each diagonal element
is a uniform random number in r0, 1s and is regenerated for each evaluation. The
purpose of these random numbers is to imitate the unpredictable behaviour of nature
swarms. The parameters φ1 ě 0 and φ2 ě 0 are to be determined in advance, the
recommended values being φ1 “ φ2 “ 2.
The velocity vi is updated in the direction of pi weighted by φ1, in the direction of g

26

weighted by φ2 and randomness is introduced by R. This causes the swarm to move
to where good solutions were found in the past [2]. See Figure 4 for an illustration of
Particle Swarm Optimization.

(a) Initial phase of the
search, the particles are
randomly placed in the
search space and given an
initial velocity

(b) Situation after a couple
of iterations, the particles
are moving toward the min-
imum

(c) Final phase of the
search, the minimum is
found at (0,0)

Figure 4: An example of PSO: PSO applied to the 2-dimensional Rastrigin function;
the particles, indicated by arrows, search for the location of the global minimum (0,0)
of the function.

6.1 Parameters
The choice for the size of the swarm is an educated guess, depending on the researchers
past experience with PSO and the function being optimized. Moreover, increasing the
sample size leads to a greater computation time. This choice is very important, as
having enough particles initialized is crucial for the effectiveness of the method.

We also have to select which topology to use for the communication within the
particle swarm: to use either circle or wheel topologies. In circle (aka local best)
topology, the particles communicate only with their closest neighbours; while wheel
(aka global best) topology allows all particles to communicate with one common
particle in order to determine the movement direction. The communication between
particles affects the swarm’s movement and hence its convergence.
Eberhart and Kennedy discovered that for the Rastrigin function the wheel/global
best topology performs better than circle topology, hence we will use this topology.

The search area of the swarm needs to be restricted somehow. This was initially
done by limiting the velocity of the particles, while making sure not to restrict it too
much as this could cause the swarm to get trapped in a local optimum.

27

Another way of doing this redefining the search area is by using an inertia weight, which
improves the stability of the search method [4]. This improvement was suggested by Shi
and Eberhart [2], who introduced an inertia weight, w, to control the amount by which
the current velocity affects the velocity of the next step. Using the inertia weight, the
updating rules in Equation 3 become

xipt` 1q “ xiptq ` vipt` 1q,

vipt` 1q “ wviptq ` φ1Rppi ´ xiptqq ` φ2Rpg´ xiptqq.

The effect of w being large is that it makes it relatively hard to change the particle’s
direction, resulting in scattering the swarm over the search area. This is desirable
in the initial phase of the search when we do not yet know in which part of the
domain the global minimum resides. After the initial phase, the search should be
restricted to smaller, promising regions for a finer search, requiring a smaller inertia
weight. Therefore, it is common to start with w “ 1 and to gradually reduce it (e.g.
exponentially) to w “ 0. As the value of the inertia weight decreases, the search area
gets smaller [2].

PSO is in fact a particular case of Generalized Particle Swarm Optimization
(GPSO), which has the updating equations:

xipt`∆tq “ xiptq `∆tvipt`∆tq,

vipt`∆tq “ p1´∆tp1´ wqqviptq ` φ1R∆tppi ´ xiptqq

` φ2R∆tpg´ xiptqq.

The ∆t factor influences the stability of the method, determining whether the method
focuses on the area around the global best solution, or whether it searches the whole
space. It can be used to prevent the method from getting trapped in local minima. PSO
is obtained when ∆t is set to 1. PSO with an inertia weight already works very good for
the problems we are trying to solve, as will be shown below; hence the improvements
suggested by GPSO are not necessary and we will just use PSO, i.e. ∆t “ 1 [10].

6.2 Applying PSO
Over the years, many other improvements have been suggested for the PSO algorithm.
Let us leave them be for now and find out how the basic algorithm performs. The first
three rows in Table 12 show the results of applying PSO without an inertia weight
to the test functions and our algorithm. The result for the Rosenbrock function is
not the global minimum, while for the Rastrigin function we do get a rather good
approximation. The method claims that the minimum number of iterations for
myNewtonMethod is two, instead of one.
The results obtained by the basic PSO are not very good. Therefore, we also try the
improved version which makes use of an inertia weight that decreases exponentially,

28

leaving the lower and upper bounds and swarm size unchanged. As is shown in the
next three rows of the table, the convergence behaviour of this version of the method
is much better for the test functions. Moreover, the method now does find the correct
global minimum of myNewtonMethod. This improved PSO takes approximately 32
minutes to find the minimum of myNewtonMethod, which is almost twice as fast as
applying the Downhill Simplex Method to the grid.

Problem LB UB Swarm
Size

Output PSO Func. Value Time
(sec)

Rosenbrock
(without w)

-5 10 500 (1.8419, 3.3817,
0.9009, 0.8078)

0.7321 1.0148

Rastrigin
(without w)

-5.12 5.12 500 (0.0144, 0, 0, 0) 0.0413 0.9226

myNewton-
Method
(without w)

-1 10 1000 (2, 2, 0, 5) 2 3027.2

Rosenbrock
(with w)

-5 10 500 (1.0000, 1.0000,
1.0000, 1.0000)

1.9328 ¨ 10´14 4.7443

Rastrigin
(with w)

-5.12 5.12 500 10´8¨ (0.1533,
-0.2509, 0.1539,
-0.1434)

0 1.2542

MyNewton-
Method
(with w)

-1 10 1000 (2.0000, 2.0000,
0.0000, 8.0187)

1 1934.0

Table 12: Results of applying PSO to various objective functions. LB and UB are
the lower respectively upper bounds for each variable, defining the search area. The
Swarm Size is the number of particles initialized. Func. Value gives the function value
at the point found by PSO.

Because the PSO method works better for our test functions and myNewton-
Method with an inertia weight, this version of the method will be used from now on
(MATLAB-code in Appendix A.15).

6.2.1 Swarm Size and Search Area

As was mentioned before, the convergence of PSO depends on the swarm size and the
search area: the search area must contain the global minimum and the swarm size must
be large enough such that this minimum is indeed found. For myNewtonMethod the
computation time is measured for different swarm sizes in Table 13 and for a number
of search areas, represented by lower and upper bounds, in Table 14.

29

Swarm Size Time (sec) Time/Swarm Size Min. Found
500 881.686570 1.7634 No
1000 2190.047727 2.1900 Yes
1500 2449.725901 1.6332 Yes
2000 2763.140167 1.3816 Yes
2500 4514.675964 1.8059 Yes
3000 5311.872125 1.7706 Yes

Table 13: Times for applying PSO to myNewtonMethod for various swarm sizes; the
lower bound for each variable of is -1 and the upper bound is 10.

The relation between the swarm size and the time is approximately linear, as can
also be seen in Figure 5.

Figure 5: Graph showing an approximately linear relation between swarm size and
time

In Table 14 we see that the size, i.e. the hypervolume, of the search area clearly
influences the computation time, but there is not a clear relation visible; increasing the
search area does not necessarily result in a longer time. The lack hereof is due to the
multiple global minima: depending on the size of the search area, PSO will converge to
different global minima, hence causing different computation times.
A special case in Table 14, indicated by *, is when the method does not find the global
minimum. However, when the swarm size is increased a bit, to 1100, it does locate
the minimum. Another, though less reliable, option is repeating the search with other
random numbers (i.e. not using rng(‘default’) in the MATLAB-code in A.15), which
also can give the correct answer, indicating that it had bad luck with choosing the
random numbers. This shows that it might help to repeat PSO with different random

30

numbers, though it is more sensible to use a larger swarm size when the minimum is
not found at the first try.

LB UB Time (sec) Min. Found
-1 2 343.944887 Yes
-1 3 1798.958278 Yes
-1 4 2787.301390 Yes
-1 5 1116.118964 No*
-1 6 1200.379516 Yes
-1 7 1709.458208 Yes
-1 8 1572.854437 Yes
-1 9 1633.012427 Yes
-1 10 1934.0 Yes

Table 14: Times for applying PSO to myNewtonMethod for various search areas; the
swarm size is 1000; LB and UB are the lower respectively upper bounds for each
variable of myNewtonMethod, defining the search area.

31

7 Variations of MyNewtonMethod
Now that we have found a method that converges for several test cases without having
to use a time-consuming search grid, let us see if PSO still works for some variations
of the test cases. We will change the initial guess for the Newton Method, add two
more parameters, add some exponential terms and discuss the convergence behaviour.
We conclude with expanding the problem to a 3-dimensional problem, being solved by
the Newton Method (MATLAB-codes in Appendices A.16 to A.19).

The Downhill Simplex Method and Powell’s Methods in general perform poorly for
the variations of myNewtonMethod, not finding the global minimum when starting close
to it nor when starting at the values that give the pure Newton Method. Therefore, we
will focus on the PSO method.

7.1 MyNewtonMethod_2
The first variation considered entails changing the initial x and y values used in myNew-
tonMethod, such that sinp5πxyq ‰ 0. This is done because for the present initial values,
x “ ´50 and y “ 120, β is arbitrary for the minimum of only 1 iteration, as it is mul-
tiplied by sinp5π ¨ ´50 ¨ 120q “ 0. Setting x “ ´50.2 and y “ 120.3 prevents this from
happening. PSO finds the minimum of one iteration without any problems; the result
is shown in Table 15, where this variation is called myNewtonMethod_2.
MyNewtonMethod_2 is a little bit faster than myNewtonMethod, about one minute.
The difference is time is due to the fact that MATLAB is not able to measure the
computation times very precisely, and the global minimum lies at a different location.

7.2 MyNewtonMethod_3
For the next problem, called myNewtonMethod_3, two more parameters, γ and ε, are
inserted in myNewtonMethod_2 to modify the Jacobian in the following way

Jpx, yq “

»

—

—

–

2γp10x´ 1q 2εpy ´ 2q

2αp10x´ 1qpy ´ 2q2 2p10x´ 1q2py ´ 2q
`5πy ¨ sinp5πxyq `βπx ¨ sinp5πxyq

fi

ffi

ffi

fl

For relax1 “ 1, relax2 “ 1, α “ 10, β “ 5, γ “ 10, ε “ 1 we get the pure Newton
Method.
Again, PSO finds the global minimum. Note in Table 15 that, relative to myNewton-
Method_2, there is a significant increase (circa 50%) in the time it takes for the method
to locate the minimum. This is expected, as the problem now has two more parameters
for which it has to find the correct values and hence a larger search area.

32

7.3 MyNewtonMethod_4
Now we turn the problem into a seemingly more difficult one by adding some exponential
terms, making it more sensitive to changes in the x and y values. The problem is called
myNewtonMethod_4 in Table 15 and consists of finding the solution p0.1, 2q of

fpx, yq “

„

p10x´ 1q2 ` py ´ 2q2exy

p10x´ 1q2py ´ 2q2 ´ cosp5πxyqexy

“

„

0
exy

The initial values are x “ ´50.2 and y “ 120.3. The parameters relax1 and relax2 are
used as relaxations in Newton and the Jacobian is modified through the parameters α
and β:

Jpx, yq “

»

—

—

—

—

–

20p10x´ 1q ` ypy ´ 2q2exy 2py ´ 2qexy ` xpy ´ 2q2exy

2αp10x´ 1qpy ´ 2q2 2p10x´ 1q2py ´ 2q
`5πy ¨ sinp5πxyqexy `βπx ¨ sinp5πxyqexy

´y ¨ cosp5πxyqexy ´ yexy ´x ¨ cosp5πxyqexy ´ xexy

fi

ffi

ffi

ffi

ffi

fl

δ “ J´1px, yq ¨ fpx, yqT

x “ x´ relax1 ¨ δp1q

y “ y ´ relax2 ¨ δp2q

It takes PSO a little bit longer (almost three minutes) than for myNewtonMethod_2 to
find the minimum, which is located somewhere else than the minimum of myNewton-
Method_2. It is interesting to note that for myNewtonMethod_2, we needed a swarm
size of 1000, and PSO did not find the minimum for a swarm of 500 particles. Here
however, we already obtain convergence when the swarm size is only 50, in less than
three minutes; being able to decrease the swarm size lowers the computation time signif-
icantly. The added exponential terms cause the gradient to often have a larger absolute
value, which makes it easier for PSO to find the minimum.

7.4 MyNewtonMethod_5
MyNewtonMethod_5 is obtained by combining myNewtonMethod_3 and myNewton-
Method_4 : it contains the exponential terms and six parameters. PSO finds the mini-
mum and the result shown in Table 15. It does take a lot longer than for myNewton-
Method_3, to which we have added the exponential terms. However, as with myNew-
tonMethod_4, adding the exponential terms allows us to decrease the swarm size. PSO
already works with a swarm size of 250, finding the minimum in about 19 minutes,
which is five times as fast as for the swarm containing 1000 particles.

33

7.5 MyNewtonMethod_3D
MyNewtonMethod finds the solution of a 2-dimensional problem. Instead, now consider
finding the solution p0.1, 2, 1q of the following 3-dimensional problem:

fpx, yq “

»

–

p10x´ 1q2 ` py ´ 2q2 ` p5z ´ 5q2

p10x´ 1q2py ´ 2q2 ` p5z ´ 5q2 ´ cosp5πxyq
ez

fi

fl “

»

–

0
1
e1

fi

fl

The initial values are x “ ´50, y “ 120 and z “ 15. The parameters relax1 and relax2
are used as relaxations in Newton’s Method and the Jacobian is modified through the
parameters α and β:

Jpx, y, zq “

»

—

—

—

—

—

—

–

20p10x´ 1q 2py ´ 2q 10p5z ´ 5q

2αp10x´ 1qpy ´ 2q2 2p10x´ 1q2py ´ 2q 10p5z ´ 5q
`5πy ¨ sinp5πxyq `βπx ¨ sinp5πxyq

0 0 ez

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

δ “ J´1px, yq ¨ fpx, yqT

x “ x´ relax1 ¨ δp1q

y “ y ´ relax2 ¨ δp2q

z “ z ´ δp3q

As before, for relax1 “ 1, relax2 “ 1, α “ 10 and β “ 5 we get the pure Newton
Method.
We could still compute relax1 and relax2 when fixing α and β to find the correct x
and y values in only one iteration; however, the minimum number of iterations is not
one anymore. This is because z also needs to converge, which does not happen in a
single step; in fact, this takes at least 19 iterations. PSO finds this global minimum of
19 iterations rather fast, in almost three minutes with a swarm size of 50, as is shown
in Table 15.

34

Problem LB UB Swarm
Size

Output PSO Func.
Value

Time
(sec)

MyNewton-
Method

-1 10 1000 (2.0000, 2.0000, 0.0000, 8.0187) 1 1934.0

MyNewton-
Method_2

-1 10 1000 (2.0023, 1.9587, -0.2106, 4.7384) 1 1892.7

MyNewton-
Method_3

-1 10 1000 (2.0004, 3.2925, 3.9266, 8.2038,
10.0000, 1.6518)

1 2834.2

MyNewton-
Method_4

-1 10 1000 (2, 4, 5, 9) 1 2040.5

MyNewton-
Method_5

-1 10 1000 (2, 4, 5, 3, 10, -1) 1 5770.1

MyNewton-
Method_3D

-10 10 50 (2.0024, 1.9998, -2.2452, 4.9942) 19 200.81

Table 15: Results of applying PSO to variations of myNewtonMethod. LB and UB
are the lower respectively upper bounds for each variable, defining the search area.
The Swarm Size is the number of particles initialized. Func. Value gives the function
value at the point found by PSO.

35

8 Successive Over-Relaxation
We have studied myNewtonMethod and some variations of it and found that PSO
locates the minimum for all these problems. Now we consider a whole new problem and
investigate if PSO is also able to find an optimum when solving an ordinary differential
equation, exploring the range of applications of PSO.
The new problem concerns solving the ordinary differential equation y2pxq`αypxq “ x,
with α “ 10´4, yp0q “ yp1q “ 1 and x P r0, 1s. The problem is first discretized and
then solved using successive over-relaxation (SOR) [1]. However, instead of just one,
SOR is given three parameters.
The discretization of the ODE is done using the finite difference method (FDM) [1],
where the derivatives are replaced by their discrete approximations. The interval r0, 1s
is divided into 100 subintervals and yi denotes the approximate solution at point xi.
The approximation for the second derivative then is y2pxiq « 1

h2 pyi`1 ´ 2yi ` yi´1q,
with h “ 0.01. After the discretization (Appendix A.20), we obtain a system of the
form Ax “ b, which will be solved using SOR (Appendix A.21).

8.1 SOR
SOR is a modification of the Gauss-Seidel Method. The Gauss-Seidel Method performs
fixed-point iterations for a system of equations. First the equations are rewritten,
solving equation i for the ith unknown. Then the resulting function is iterated, starting
with an initial given guess. In this iteration process, the method uses the most recent
values of the unknown in every iteration step [8].
SOR is obtained by adding a relaxation parameter ω P p1, 2q to the Gauss-Seidel Method
that can accelerate the convergence toward the solution of the ODE. It combines the
approximated values of the previous and current iteration [1]. As mentioned, we will
not use just one parameter ω, but three parameters ω1, ω2, ω3. Each ωi determines for
the update the ratio between the previous and current solution; w1 does this for y1, w2

for yi if i ě 2 is even and w3 for yi if i ě 2 is odd.
The solution of the ODE obtained by using SOR is shown in Figure 6.

Figure 6: Plot of the solution obtained by SOR using the parameter values found by
PSO that give 501 iterations.

36

8.2 One Parameter
Before looking at the problem with three parameters, we first discuss the normal sit-
uation with only one parameter. Note that for some special occasions the optimal
parameter value can be determined in advance, for instance when the matrix A in Ap-
pendix A.21 is positive definite and tridiagonal ([1] p. 230). However, in general we
have to use a search algorithm to find this optimal value. We conduct a simple grid
search evaluating the function, which gives the number of iterations at each grid point.
When the variables go from 1 to 2 with step size 10´4, this results in ω “ 1.9373 with
582 iterations. Applying the Downhill Simplex Method or the Powell Methods starting
at 2 or at 1 all yield the same result. Moreover, PSO finds this point as well. All
together, it is plausible to assume that the minimum number of iterations is 582 if we
use only one parameter ω.

8.3 Three Parameters
Now consider the situation with three parameters, which hopefully leads to a lower
minimum number of iterations. The results of applying various methods to the problem
are shown in Table 16. Conducting a simple grid-search or PSO both give a minimum
of 501 iterations. The Downhill Simplex Method and Powell Method based on the
Golden Section Search find this minimum when starting in the middle of the search
space. Interestingly, they do not find the minimum when starting close to it. The
Powell Method using Coggin’s Method has problems finding the minimum and often
leaves the search space. It does locate the minimum when starting very close to it,
indicating that the Powell Method heavily relies on the choice of the initial values of
the parameters. When applying the methods to a grid, they are all able to find the
minimum.
In Table 16 we also see that the minimum of 501 iterations is not too sensitive to
small changes in the parameters. PSO for instance finds this minimum at ω1 “ 1.0000,
ω2 “ 1.9258 and ω3 “ 1.9531, while the simple grid-search found the same minimum
at ω1 “ 1.0200, ω2 “ 1.9400 and ω3 “ 1.9400.
None of the methods considered in this study finds a number of iterations lower than
501, so this is probably the global minimum. The values found for the parameters ωi

differ from each other and the minimum is lowered by almost 14% compared to the
normal SOR with one parameter, hence it is profitable to insert these extra parameters
in SOR.

37

Initial Point Method Output Func.
Value

Grid 1:0.01:2 Function Evaluation (1.0200, 1.9400, 1.9400) 501
(1.5, 1.5, 1.5) Downhill Simplex Method (1.0132, 1.9263, 1.9527) 501
(1, 2, 2) Downhill Simplex Method (1.0500, 2.0000, 2.0000) divergence
(1.5, 1.5, 1.5) Powell Method (1.0081, 1.9390, 1.9397) 501

(Golden Section Search)
(1, 2, 2) Powell Method (1.0052, 1.8852, 1.9966) 503

(Golden Section Search)
(1.5, 1.5, 1.5) Powell Method (1.0160, 2.4103, 3.0001) divergence

(Coggin’s Method)
(1, 2, 2) Powell Method (0.2499, 1.8892, 1.9906 divergence

(Coggin’s Method)
(1.1, 1.9, 1.9) Powell Method (0.1612, 1.9589, 1.9063) divergence

(Coggin’s Method)
(1, 1.95, 1.95) Powell Method (1.0288, 1.9291, 1.9503) 501

(Coggin’s Method)
Grid 1:0.2:2 Downhill Simplex Method (1.0069, 1.9393, 1.9395) 501
Grid 1:0.2:2 Powell Method (1.0005, 1.9395, 1.9394) 501

(Golden Section Search)
Grid 1:0.11:1:99 Powell Method (1.0078, 1.9219, 1.9577) 501

(Coggin’s Method)
LB=1, UB=2 PSO, swarm size = 50 (1.0000, 1.9258, 1.9531) 501

Table 16: Results of applying various methods to SOR with three parameters, when
100 subintervals are used for the discretization. Func. Value gives the function value
(i.e. the number of SOR iterations) at the point found by the method considered. LB
and UB are the lower respectively upper bounds for each variable, defining the search
area for PSO.

8.3.1 Increasing the Number of Subintervals

Now increase the number of subintervals for the discretization of the ODE from 100 to
1000, then the discrete approximation is closer to the real solution, but SOR requires
more iterations and time to obtain the solution, even when increasing the allowed resid-
ual term from 10´9 to 10´3. Moreover, the value and location of the minimum changes:
the location of the minimum found by PSO for 100 subintervals would now give a result
of 39614 iterations, which is a lot larger than the 501 iterations found for 100 subinter-
vals and is not the global minimum, as we will soon see.
Due to the increase in time to evaluate SOR, we consider only the simple grid-search,
Downhill Simplex Method, Powell Methods and the Downhill Simplex Method applied
to a grid. The Powell Methods will not be applied to a grid, neither will we use PSO

38

since these cannot be computed within reasonable time. The Powell Methods often
diverge and take longer to be evaluated than the Downhill Simplex Method, whose
grid-search already took over 13 hours to complete. PSO uses many function evalu-
ations, and because of the increased number of subintervals these take longer to be
evaluated. Hence, the computation time for PSO will also be very large (more details
regarding the costs per iteration can be found in the section 10).
In Table 17 we see that the lowest function value found is 3401 SOR iterations, which
is over 6 times larger than the minimum number of iterations found in Table 16. So
increasing the number of subintervals to obtain a more precise solution of the ODE
results in a higher computation time and alters the applicability of the numerical opti-
mization methods. This example emphasizes the importance of having as little function
evaluations in a method as possible!

Initial Point Method Output Func.
Value

Grid 1:0.2:2 Function Evaluation (1.0000, 1.8000, 2.0000) 86534
Grid with Function Evaluation (1.0000, 1.9900, 2.0000) 4375
ω1 P 1:0.01:1.1
ω2 P 1.9:0.01:2
ω3 P 1.9:0.01:2
(1.5, 1.5, 1.5) Downhill Simplex Method (1.2256, 1.9935, 1.9932) 3455
(1, 2, 2) Downhill Simplex Method (1.0000, 2.1000, 2.0000) divergence
(1.1, 1.9, 1.9) Downhill Simplex Method (1.1249, 1.9937, 1.9930) 3435
(1.1249, 1.9937,
1.9930)

Downhill Simplex Method (1.0001, 1.9934, 1.9933) 3401

(1.5, 1.5, 1.5) Powell Method (100.5832, 101.6030, divergence
(Golden Section Search) 101.2346)

(1, 2, 2) Powell Method (0.748, 172.2884, divergence
(Golden Section Search) 172.2884)

(1.1, 1.9, 1.9) Powell Method (1.3535, 1.9875, 1.9991) 3490
(Golden Section Search)

(1.5, 1.5, 1.5) Powell Method (1.4889, 2.3565, 3.0001) divergence
(Coggin’s Method)

(1, 2, 2) Powell Method (0.2500, 2.0000, 2.0000) divergence
(Coggin’s Method)

(1.1, 1.9, 1.9) Powell Method (1.4990, 1.9982, 1.9678) 10772
(Coggin’s Method)

Grid 1:0.25:2 Downhill Simplex Method (1.0000, 1.9933, 1.9934) 3401

Table 17: Results of applying various methods to SOR with three parameters, when
1000 subintervals are used for the discretization. Func. Value gives the function value
(i.e. the number of SOR iterations) at the point found by the method considered.

39

9 PSO Failure
It seems like PSO can minimize many problems. Can we come up with a function for
which the methods fails?
Having tried many test functions [9] (Ackley function, Bukin6 function, Three-Hump
Camel function, Easom function, Eggholder function, McCormick function, Schaffer
function N.2, Schaffer function N.4, Styblinski-Tang function and the Sphere function,
see Appendix A.22) we do not find one for which the method fails, when setting the
parameters of PSO to the correct values for each function.
Consider the discontinuous function ypxq “ 1 ´ δx,j , where δi,j is the Kronecker delta
function and j “ 1.2. This function is constant 1 everywhere except for one specific
point, here 1.2, where it is 0:

ypxq “

#

1 if x ‰ 1.2

0 if x “ 1.2

The minimum of this function (MATLAB-code in Appendix A.23) should be very
hard to find, and indeed, when applying PSO to the function we do not get the correct
solution, even after increasing the swarm size, the maximum number of iterations and
runs and decreasing the search area.

The Downhill Simplex Method and Powell Methods perform poorly as well, failing
to locate the minimum. The only (not so useful) exceptions are when the Downhill
Simplex Method and the Powell Method based on Coggin’s Method are given the
minimum as initial value, then they do find the minimum.

40

10 Iteration Cost
Numerical optimization methods can be compared by considering the costs of their
iterations. With the costs we primarily mean the amount of function evaluation per
iteration, since this is the major time component of each iteration, especially when the
optimization problem becomes larger or more difficult.

From the tables in the previous chapters we can compute approximations to the
average number of function evaluations per iteration for each method, based on their
results when applying them to the Rosenbrock function, the Rastrigin function and
myNewtonMethod. The Downhill Simplex Method then executes approximately 2
function evaluations per iteration, Powell’s Method based on the Golden Section
Search 90 and based on Coggin’s Method 68. This shows that the Downhill Simplex
Method has by far the cheapest iterations, then comes the Powell Method based on
Coggin’s Method, quickly followed by the Golden Section Search. PSO performs about
500 function evaluations per iteration for the Rosenbrock function and the Rastrigin
function. Thus the iterations of PSO are the most expensive, but this is also the
method that performed best for the test cases.

Table 18 shows the number of function evaluations and iterations PSO uses when
optimizing the variations of myNewtonMethod. For myNewtonMethod itself, PSO
carries out circa 500 function evaluations per iteration. When changing the initial x
and y values as was done in myNewtonMethod_2, this number increases to 1000, which
makes sense as it then also has to find the correct value for β to obtain the minimum.
When adding the exponential terms in myNewtonMethod_4 and myNewtonMethod_5,
the time per function evaluation (and hence per iteration) increases significantly as the
function and especially its partial derivatives become more complex, hence take longer
to be evaluated. MyNewtonMethod_3D has a lower number of function evaluation per
iteration than the other variations of myNewtonMethod, caused by its smaller swarm
size (see Table 15).

41

Problem #Func-
Eval

#It #FuncEval/It Time/FuncEval

MyNewton-
Method

2370010 4730 501 8.2 ¨10´4

MyNewton-
Method_2

4743010 4743 1000 4.0 ¨10´4

MyNewton-
Method_3

5954010 5954 1000 4.8 ¨10´4

MyNewton-
Method_4

1020010 1020 1000 0.0020

MyNewton-
Method_5

2980010 2980 1000 0.0019

MyNewton-
Method_3D

169760 3395 50 0.0012

Table 18: PSO is applied to variations of myNewtonMethod, #FuncEval and #It
give the number of function evaluations and iterations performed by the method.
#FuncEval/It is the number of function evaluations per iteration and Time/FuncEval
gives how long a single function evaluation approximately takes on average.

The importance of a low number of function evaluations was clearly visible when we
increased the number of subintervals in the discretization of the ODE solved using SOR.
Table 19 shows for the methods that converged the number of function evaluations and
iterations for the original case with 100 subintervals. This indicates why we have not
used PSO to optimize SOR when we have 1000 subintervals, as the number of function
evaluations is very large, compared to other methods.

Initial Point Method #Func-
Eval

#It #FuncEval/It

(1.5, 1.5, 1.5) Downhill Simplex Method 430 173 6
(1.5, 1.5, 1.5) Powell Method 3855 68 57

(Golden Section Search)
(1, 2, 2) Powell Method 2663 48 55

(Golden Section Search)
(1,1.95, 1.95) Powell Method 304 5 61

(Coggin’s Method)
LB=1, UB=2 PSO, swarm size = 50 118910 2378 50

Table 19: Information about the methods that converged in Table 16, where vari-
ous methods were applied to SOR with three parameters, using 100 subintervals for
the discretization. #FuncEval and #It give the number of function evaluations and
iterations performed by the method and #FuncEval/It is the number of function
evaluations per iteration.

42

The function evaluations and iterations when using 1000 subintervals in the dis-
cretization are given in Table 20, for those initial points from Table 17 for which the
methods converged to a point (though not necessarily the minimum). Here, a single
function evaluation takes on average circa 220 times as long compared to the discretiza-
tion with 100 subintervals. Together with the observation that PSO took 118910 func-
tion evaluations in about 5 minutes, it would take about one day to perform PSO for
the 1000 subintervals, if the same number of function evaluations was used. However,
we saw in Table 17 that the methods find it harder to locate the minimum than before,
hence the number of function evaluation used by PSO will almost surely be higher than
the number used for 100 subintervals. This will increase the computation time even
more and therefore it is not possible to evaluate PSO for SOR using 1000 subintervals
for the discretization within reasonable time. Even though PSO was a great method
for locating the minimum, it would now take a very long time to execute it. Hence,
in this case the Downhill Simplex Method is preferred over PSO because it performs
fewer function evaluations.

Initial Point Method #Func-
Eval

#It #FuncEval/It

(1.5, 1.5, 1.5) Downhill Simplex Method 195 100 2
(1.1, 1.9, 1.9) Downhill Simplex Method 92 45 2
(1.1, 1.9, 1.9) Powell Method 552 8 69

(Golden Section Search)
(1.1, 1.9, 1.9) Powell Method 699 11 64

(Coggin’s Method)

Table 20: Information about the methods that converged in Table 17, where various
methods were applied to SOR with three parameters, using 1000 subintervals for
the discretization. #FuncEval and #It give the number of function evaluations and
iterations performed by the method and #FuncEval/It is the number of function
evaluations per iteration.

43

11 Conclusion
Having applied various methods to a number of problems, it is time to decide which
one is generally the best to use. First a summary is given of the performance of the
methods discussed.
The Downhill Simplex Method performed well for the Rosenbrock function and came
close to the minimum of myNewtonMethod ; on the other hand, for the Rastrigin func-
tion it behaved poorly. The Powell Methods performed even better for the Rosenbrock
function, and after some improvements converged to the minimum of the Rastrigin
function as well. However, for myNewtonMethod they did not find the minimum. PSO
with an inertia weight worked very well for all the problems discussed, with the ex-
ception of the one specifically chosen such that PSO failed; recall that the Downhill
Simplex Method and Powell Methods could not find the minimum in this case either.
Moreover, PSO is able to deal with functions having many local minima much better
than the Downhill Simplex Method and Powell’s Methods. Applying the Downhill Sim-
plex Method or Powell Methods to a grid improved the results for myNewtonMethod,
as multiple initial points were tested. This grid approach proved to be useful, though
time-consuming. For SOR with three parameters and 100 subintervals, all methods
located the minimum without using a grid. However, Powell’s Method using Coggin’s
Method only found the minimum when starting very close to it.
When the location of the minimum is not yet known, PSO can search a large area
and often still find the minimum, as long as the number of particles initialized is large
enough. Increasing the swarm size increases the computation time, but more impor-
tantly, it also increases the chance of finding the minimum. Once the location of the
minimum becomes clearer, the search area can be chosen more precise and the swarm
size can be decreased. The downside is that PSO generally uses a lot of function eval-
uations and hence is very computationally demanding if the function to be optimized
requires significant time to be evaluated, as we saw when increasing the number of
subintervals used in the discretization from 100 to 1000.
The quality of the convergence behaviour of numerical optimization methods clearly
depends on the problem to be optimized. For the Rosenbrock function, all the methods
worked just fine, while for the Rastrigin function this was not always the case.
To conclude, PSO with an inertia weight is the preferred method here, based on the op-
timization problems discussed. Note however, that for other problems another method
might be better, in terms of speed and precision. If one already has some idea where
the minimum is located, the Downhill Simplex Method or Powell’s Method might be
faster, if they converge. If there is no prior knowledge about the minimum, PSO is a
good method to find the minimum, as it can effectively search relatively large areas in
case of computationally cheap function evaluations.

44

References
[1] Laurene V. Fausett. Applied Numerical Analysis Using MATLAB. Pearson,

Prentice-Hall, 2 edition, 2008.

[2] Keisuke Kameyama. Particle Swarm Optimization - A Survey. IEICE Transactions
on Information and Systems, Volume E92-D, Issue 7, 2009.

[3] José Mira and Juan V. Sánchez-Andrés. Engineering Applications of Bio-Inspired
Artificial Neural Networks, pages 62–63. Springer Science & Business Media, 1
edition, 1999.

[4] A.E. Olsson. Particle Swarm Optimization: Theory, Techniques and Applications.
Nova Science Publishers, Inc., 1 edition, 2011.

[5] S.J. Petersen. Methods of Optimization for Numerical Algorithms. July 2017.
University of Groningen.

[6] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipes, The Art of Scientific Computing. Cambridge University Press, 3 edition,
2007.

[7] Alfio Quarteroni, Fausto Saleri, and Paola Gervasio. Scientific Computing with
MATLAB and Octave. Springer-Verlag, 4 edition, 2014.

[8] Timothy Sauer. Numerical Analysis. Pearson, 2 edition, 2012.

[9] S. Surjanovic and D. Bingham. Virtual Library of Simulation Experiments. https:
//www.sfu.ca/~ssurjano/optimization.html, August 2017.

[10] Y. Tan, Y. Shi, Y. Chai, and G. Wang. Advances in Swarm Intelligence, Part I:
Second International Conference, ICSI 2011, Chongqing, China, June 12-15, 2011,
Proceedings. Number pt. 1 in Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2011.

[11] Inc. The MathWorks. Matrix Inverse. https://nl.mathworks.com/help/matlab/
ref/inv.html, 1994-2018.

[12] S. Tsutsui and P. Collet. Massively Parallel Evolutionary Computation on GPG-
PUs, page 74. Springer Science & Business Media, 6 edition, 2013.

45

https://www.sfu.ca/~ssurjano/optimization.html
https://www.sfu.ca/~ssurjano/optimization.html
https://nl.mathworks.com/help/matlab/ref/inv.html
https://nl.mathworks.com/help/matlab/ref/inv.html

A MATLAB Codes

A.1 Rosenbrock Function

% This script defines the 4-dimensional Rosenbrock function
globally for easy access in other scripts.

function z = rosenbrock(x)
z = 100*(x(1)^2-x(2))^2 + (x(1) -1)^2 + 100*(x(3)^2-x(4))^2 +

(x(3) -1)^2;
end

A.2 Rastrigin Function

% This script defines the 4-dimensional Rastrigin function
globally for easy access in other scripts.

function y = rastrigin(x)
N = length(x);
A = 10;
y = A*N + x(1)^2 - A * cos(2*pi*x(1)) + x(2)^2 - A * cos(2*

pi*x(2)) + x(3)^2 - A * cos(2*pi*x(3)) + x(4)^2 - A * cos
(2*pi*x(4));

end

A.3 Plot Rosenbrock Function

% This script makes a plot of the 2-dimensional Rosenbrock
function on the interval where x goes from -2 to 2 and y
from -1 to 3.

clear all
rosenbrock2D =@(x,y) (1-x)^2+100*(y-x^2)^2;
x = -2:0.01:2;
y = -1:0.01:3;
for i = 1: length(y)

for j = 1: length(x)
z(i,j) = rosenbrock2D(x(j),y(i));

end
end
surf(x,y,z,'EdgeColor ','none','LineStyle ','none','

FaceLighting ','gouraud ')
xlabel('x')
ylabel('y')
zlabel('f(x,y)')

46

A.4 Plot Rastrigin Function

% This script makes a plot of the 2-dimensional Rastrigin
function on the interval where x and y go from -5.12 to
5.12.

clear all
rastrigin2D =@(x,y) 20 + x^2 - 10*cos(2*pi*x) + y^2 - 10*cos

(2*pi*y);
x = -5.12:0.01:5.12;
y = -5.12:0.01:5.12;
for i = 1: length(y)

for j = 1: length(x)
z(i,j) = rastrigin2D(x(j),y(i));

end
end
surf(x,y,z,'EdgeColor ','none','LineStyle ','none','

FaceLighting ','gouraud ')
xlabel('x')
ylabel('y')
zlabel('f(x,y)')

A.5 MyNewtonMethod

function [out] = myNewtonMethod(in)
% Newton algorithm to solve:
% F1= (10*x-1)^2 + (y-2)^2 = 0
% F2= (10*x-1) ^2*(y-2)^2 - cos(5*x*y*pi) = 1
% with (multiple) solution (x,y) = (0.1, 2).
% Relaxation in Newton: relax1 , relax2
% Jacobian modified through parameters: alf , bet
% Pure Newton for relax1=relax2=1, alf=10, bet=5
relax1 = in(1);
relax2 = in(2);
alf = in(3);
bet = in(4);
nmax = 1000;
n = 0;
x = -50;
y = 120;
% For MyNewtonMethod_2 use:
% x = -50.2;
% y = 120.3;
F(1) = (10*x-1)^2 + (y-2)^2;

47

F(2) = (10*x-1) ^2*(y-2)^2 - cos(5*x*y*pi) - 1;
error = norm(F);
while error > 1.0E-16 && n < nmax

n = n + 1;
J(1,1) = 2*10*(10*x-1);
J(1,2) = 2*(y-2);
J(2,1) = 2*alf *(10*x-1)*(y-2)^2 + 5*y*pi*sin(5*x*y*pi);
J(2,2) = 2*(10*x-1) ^2*(y-2) + bet*x*pi*sin(5*x*y*pi);
% Check if all entries in the Jacobian are finite numbers:
if isnan(J(1,1)) ~= 0 || isinf(J(1,1)) ~= 0|| isnan(J(1,2)

) ~= 0 || isinf(J(1,2)) ~= 0 || isnan(J(2,1)) ~= 0||
isinf(J(2,1)) ~= 0 || isnan(J(2,2)) ~= 0 || isinf(J
(2,2)) ~= 0

n = nmax;
break

end
rcond = cond(J);
if rcond < 1.0E-16 || rcond > 10^10

n = nmax;
break

end
delta = J\F';
x = x - relax1*delta (1);
y = y - relax2*delta (2);
F(1) = (10*x-1)^2 + (y-2)^2;
F(2) = (10*x-1) ^2*(y-2)^2 - cos(5*x*y*pi) -1;
error = norm(F);

end
out = n + error ^0.1;

A.6 Powell’s Method

function [xo,Ot ,nS]= powell(S,x0,ip,method ,Lb,Ub,problem ,tol ,
mxit)

% Unconstrained optimization using Powell.
% S: objective function
% x0: initial point
% ip: (0): no plot (default), (>0) plot figure ip with pause

, (<0) plot figure ip
% method: (0) Coggins (default), (1): Golden Section
% Lb, Ub: lower and upper bound vectors to plot (default =

x0*(1+/ -2))
% problem: (-1): minimum (default), (1): maximum

48

% tol: tolerance (default = 1e-4)
% mxit: maximum number of stages (default= 50*(1+4*~(ip >0)))
% xo: optimal point
% Ot: optimal value of S
% nS: number of objective function evaluations
% Copyright (c) 2001 by LASIM -DEQUI -UFRGS
% $Revision: 1.0 $ $Date: 2001/07/07 21:10:15 $
% Argimiro R. Secchi (arge@enq.ufrgs.br)
if nargin < 2

error('powell requires 2 input arguments ');
end
if nargin < 3 || isempty(ip)

ip = 0;
end
if nargin < 4 || isempty(method)

method = 0;
end
if nargin < 5 || isempty(Lb)

Lb = -x0 -~x0;
end
if nargin < 6 || isempty(Ub)

Ub = 2*x0+~x0;
end
if nargin < 7 || isempty(problem)

problem =-1;
end
if nargin < 8 || isempty(tol)

tol=1e-4;
end
if nargin < 9 || isempty(mxit)

mxit = 1000*(1+4*~(ip >0));
end

x0 = x0(:);
y0 = feval(S,x0)*problem;
n = size(x0 ,1);
D = eye(n);
ips = ip;
if ip && n == 2

figure(abs(ip));
[X1,X2] = meshgrid(Lb(1):(Ub(1)-Lb(1))/20:Ub(1),Lb(2):(Ub

(2)-Lb(2))/20:Ub(2));

49

[n1,n2] = size(X1);
f = zeros(n1,n2);
for i = 1:n1

for j = 1:n2
f(i,j) = feval(S,[X1(i,j);X2(i,j)]);

end
end
mxf = max(max(f));
mnf = min(min(f));
df = mnf+(mxf -mnf)*(2.^(([0:10]/10) .^2) -1);
[v,h] = contour(X1,X2,f,df); hold on;
clabel(v,h);
h1 = plot(x0(1),x0(2),'ro');
legend(h1,'start point');
if ip > 0

ips = ip + 1;
disp('Pause: hit any key to continue ');
pause;

else
ips = ip - 1;

end
end
xo = x0;
yo = y0;
it = 0;
nS = 1;
while it < mxit
% exploration

delta = 0;
for i = 1:n

if method
% to see the linesearch plot , remove the two 0* below

[stepsize ,x,Ot,nS1] = goldenSection(S,xo,D(:,i) ,0*ips ,
problem ,tol ,mxit);

Ot = Ot*problem;
else

[stepsize ,x,Ot,nS1] = coggins(S,xo,D(:,i) ,0*ips ,
problem ,tol ,mxit);

Ot = Ot*problem;
end
nS = nS+nS1;
di = Ot-yo;

50

if di > delta
delta = di;
k = i;

end
if ip && n == 2

plot([x(1) xo(1)],[x(2) xo(2)],'r');
if ip > 0

disp('Pause: hit any key to continue ');
pause;

end
end
yo = Ot;
xo = x;

end
% progression
it = it+1;
xo = 2*x-x0;
Ot = feval(S,xo)*problem;
nS = nS+1;
di = y0-Ot;
j = 0;
if di >= 0 || 2*(y0 -2*yo+Ot)*((y0-yo-delta)/di)^2 >= delta

if Ot >= yo
yo = Ot;

else
xo = x;
j = 1;

end
else

if k < n
D(:,k:n-1) = D(:,k+1:n);

end
D(:,n) = (x-x0)/norm(x-x0);
if method
% to see the linesearch plot , remove the two 0* below

[stepsize ,xo,yo,nS1] = goldenSection(S,x,D(:,n) ,0*ips ,
problem ,tol ,mxit);

yo = yo*problem;
else

[stepsize ,xo,yo,nS1] = coggins(S,x,D(:,n) ,0*ips ,
problem ,tol ,mxit);

yo = yo*problem;

51

end
nS = nS+nS1;

end
if ip && n == 2 && ~j

plot([x(1) xo(1)],[x(2) xo(2)],'r');
if ip > 0

disp('Pause: hit any key to continue ');
pause;

end
end
if norm(xo-x0) < tol *(0.1+ norm(x0)) && abs(yo-y0) < tol

*(0.1+ abs(y0))
break;

end
y0 = yo;
x0 = xo;

end
Ot = yo*problem;
if it == mxit

disp('Warning Powell: reached maximum number of stages!');
elseif ip && n == 2

h2=plot(xo(1),xo(2),'r*');
legend ([h1,h2],'start point','optimum ');

end

A.7 Bracketing Minimum

function [x1,x2 ,nS]= bracket(S,x0,d,problem ,stepsize)
% Bracket the minimum (or maximum) of the objective function

in the search direction.
% S: objective function
% x0: initial point
% d: search direction vector
% problem: (-1): minimum (default), (1): maximum
% stepsize: initial stepsize (default = 0.01* norm(d))
% [x1,x2]: unsorted lower and upper limits
% nS: number of objective function evaluations
% Copyright (c) 2001 by LASIM -DEQUI -UFRGS
% $Revision: 1.0 $ $Date: 2001/07/04 21:45:10 $
% Argimiro R. Secchi (arge@enq.ufrgs.br)
if nargin < 3

error('bracket requires 3 input arguments ');
end

52

if nargin < 4
problem = -1;

end
if nargin < 5

stepsize = 0.5* norm(d);
end
d = d(:);
x0 = x0(:);
j = 0;
nS = 1;
y0 = feval(S,x0)*problem;
while j < 2

x = x0+stepsize*d;
y = feval(S,x)*problem;
nS = nS+1;
if y0 >= y

stepsize = -stepsize;
j = j+1;

else
while y0 < y

stepsize = 2* stepsize;
y0 = y;
x = x+stepsize*d;
y = feval(S,x)*problem;
nS = nS+1;

end
j = 1;
break;

end
end
x2 = x;
x1 = x0+stepsize *(j-1)*d;

A.8 Golden Section Search

function [stepsize ,xo,Ot,nS]= goldenSection(S,x0,d,ip,problem
,tol ,mxit ,stp)

% Performs line search procedure for unconstrained
optimization using golden section.

% S: objective function
% x0: initial point
% d: search direction vector
% ip: (0): no plot (default), (>0) plot figure ip with pause

53

, (<0) plot figure ip
% problem: (-1): minimum (default), (1): maximum
% tol: tolerance (default = 1e-4)
% mxit: maximum number of iterations (default = 50*(1+4*~(ip

>0)))
% stp: initial stepsize (default = 0.01* sqrt(d'*d))
% stepsize: optimal stepsize
% xo: optimal point in the search direction
% Ot: optimal value of S in the search direction
% nS: number of objective function evaluations
% Copyright (c) 2001 by LASIM -DEQUI -UFRGS
% $Revision: 1.0 $ $Date: 2001/07/04 22:30:45 $
% Argimiro R. Secchi (arge@enq.ufrgs.br)
if nargin < 3

error('goldenSection requires 3 input arguments ');
end
if nargin < 4 || isempty(ip)

ip = 0;
end
if nargin < 5 || isempty(problem)

problem = -1;
end
if nargin < 6 || isempty(tol)

tol = 1e-4;
end
if nargin < 7 || isempty(mxit)

mxit = 50*(1+4*~(ip >0));
end
d = d(:);
nd = d'*d;
if nargin < 8 || isempty(stp)

stepsize = 0.01* sqrt(nd);
else

stepsize = abs(stp);
end
x0 = x0(:);
[x1,x2,nS] = bracket(S,x0,d,problem ,stepsize);
z(1) = d'*(x1-x0)/nd;
z(2) = d'*(x2-x0)/nd;
fi = .618033985;
k = 0;
secao = fi*(z(2)-z(1));

54

p(1) = z(1)+secao;
x = x0+p(1)*d;
y(1) = feval(S,x)*problem;
p(2) = z(2)-secao;
x = x0+p(2)*d;
y(2) = feval(S,x)*problem;
nS = nS+2;
if ip

figure(abs(ip)); clf;
c = ['m','g'];
B = sort([z(1),z(2)]);
b1 = 0.05*(abs(B(1))+~B(1));
b2 = 0.05*(abs(B(2))+~B(2));
X1 = (B(1)-b1):(B(2)-B(1)+b1+b2)/20:(B(2)+b2);
n1 = size(X1 ,2);
for i = 1:n1,

f(i) = feval(S,x0+X1(i)*d);
end
plot(X1,f,'b'); axis(axis); hold on;
legend('S(x0+\alpha d)');
xlabel('\alpha');
plot([B(1),B(1)],[-1/eps 1/eps],'k');
plot([B(2),B(2)],[-1/eps 1/eps],'k');
plot(p,y*problem ,'ro');
if ip > 0

disp('Pause: hit any key to continue ');
pause;

end
end
it = 0;
while abs(secao/fi) > tol && it < mxit

if y(2) < y(1)
j = 2;
k = 1;

else
j = 1;
k = 2;

end
z(k) = p(j);
p(j) = p(k);
y(j) = y(k);
secao = fi*(z(2)-z(1));

55

p(k) = z(k)+(j-k)*secao;
x = x0+p(k)*d;
y(k) = feval(S,x)*problem;
nS = nS+1;
if ip

plot([z(k),z(k)],[-1/eps 1/eps],c(k));
plot(p(k),y(k)*problem ,'ro');
if ip > 0

disp('Pause: hit any key to continue ');
pause;

end
end
it = it+1;

end
stepsize = p(k);
xo = x;
Ot = y(k)*problem;
if it == mxit

disp('Warning goldenSection: reached maximum number of
iterations!');

elseif ip
plot(stepsize ,Ot,'r*');

end

A.9 Coggin’s Method

function [stepsize ,xo,Ot,nS]= coggins(S,x0,d,ip,problem ,tol ,
mxit ,stp)

% Performs line search procedure for unconstrained
optimization using quadratic interpolation.

% S: objective function
% x0: initial point
% d: search direction vector
% ip: (0): no plot (default), (>0) plot figure ip with pause

, (<0) plot figure ip
% problem: (-1): minimum (default), (1): maximum
% tol: tolerance (default = 1e-4)
% mxit: maximum number of iterations (default = 50*(1+4*~(ip

>0)))
% stp: initial stepsize (default = 0.01* sqrt(d'*d))
% stepsize: optimal stepsize
% xo: optimal point in the search direction
% Ot: optimal value of S in the search direction

56

% nS: number of objective function evaluations
% Copyright (c) 2001 by LASIM -DEQUI -UFRGS
% $Revision: 1.0 $ $Date: 2001/07/04 21:20:15 $
% Argimiro R. Secchi (arge@enq.ufrgs.br)
if nargin < 3

error('coggins requires 3 input arguments ');
end
if nargin < 4 || isempty(ip)

ip = 0;
end
if nargin < 5 || isempty(problem)

problem = -1;
end
if nargin < 6 || isempty(tol)

tol = 1e-4;
end
if nargin < 7 || isempty(mxit)

mxit = 100*50*(1+4*~(ip >0));
end
d = d(:);
nd = d'*d;
if nargin < 8 || isempty(stp)

stepsize = 0.5* sqrt(nd);
else

stepsize = abs(stp);
end
x0 = x0(:);
[x1,x2,nS] = bracket(S,x0,d,problem ,stepsize);
z(1) = d'*(x1-x0)/nd;
y(1) = feval(S,x1)*problem;
z(3) = d'*(x2-x0)/nd;
y(3) = feval(S,x2)*problem;
z(2) = 0.5*(z(3)+z(1));
x = x0+z(2)*d;
y(2) = feval(S,x)*problem;
nS = nS+3;
if ip

figure(abs(ip)); clf;
B = sort([z(1),z(3)]);
b1 = 0.05*(abs(B(1))+~B(1));
b2 = 0.05*(abs(B(2))+~B(2));
X1 = (B(1)-b1):(B(2)-B(1)+b1+b2)/20:(B(2)+b2);

57

n1 = size(X1 ,2);
for i = 1:n1

f(i) = feval(S,x0+X1(i)*d);
end
plot(X1,f,'b',X1(1),f(1),'g'); axis(axis); hold on;
legend('S(x0+\alpha d)','P_2(x0+\alpha d)');
xlabel('\alpha');
plot([B(1),B(1)],[-1/eps 1/eps],'k');
plot([B(2),B(2)],[-1/eps 1/eps],'k');
plot(z,y*problem ,'ro');
if ip > 0

disp('Pause: hit any key to continue ');
pause;

end
end
it = 0;
while it < mxit

a1=z(2)-z(3); a2=z(3)-z(1); a3=z(1)-z(2);
if y(1) == y(2) && y(2) == y(3)

zo = z(2);
x = x0+zo*d;
ym = y(2);

else
zo = .5*(a1*(z(2)+z(3))*y(1)+a2*(z(3)+z(1))*y(2)+a3*(z

(1)+z(2))*y(3))/(a1*y(1)+a2*y(2)+a3*y(3));
x = x0+zo*d;
ym = feval(S,x)*problem;
nS = nS+1;

end
if ip

P2 = -((X1-z(2)).*(X1-z(3))*y(1)/(a3*a2)+(X1-z(1)).*(X1-
z(3))*y(2)/(a3*a1)+(X1-z(1)).*(X1-z(2))*y(3)/(a2*a1))
*problem;

plot(X1,P2,'g');
if ip > 0

disp('Pause: hit any key to continue ');
pause;

end
plot(zo,ym*problem ,'ro');

end
for j=1:3

if abs(z(j)-zo) < tol *(0.1+ abs(zo))

58

stepsize = zo;
xo = x;
Ot = ym*problem;
if ip

plot(stepsize ,Ot,'r*');
end
return;

end
end
if (z(3)-zo)*(zo-z(2)) > 0

j = 1;
else

j = 3;
end
if ym > y(2)

z(j) = z(2);
y(j) = y(2);
j = 2;

end
y(4-j) = ym;
z(4-j) = zo;
it = it+1;

end
if it == mxit

disp('Warning Coggins: reached maximum number of
iterations!');

end
stepsize = zo;
xo = x;
Ot = ym*problem;

A.10 1-dimensional Rastrigin Function

% This script plots the Rastrigin function on the standard
interval where x and y go from -5.12 to 5.12.

clear all
close all
rastrigin1d =@(x) 10 + x^2 - 10 * cos(2*pi*x);
x = linspace (-5.12 ,5.12 ,1001);
for i = 1: length(x)

y(i) = rastrigin1d(x(i));
end
plot(x,y)

59

xlabel('x')
ylabel('f(x)')

A.11 Golden Section Search Improved

function [stepsize ,xo,Ot,nS]= goldenSectionImp(S,x0 ,d,ip ,
problem ,tol ,mxit ,stp)

% Golden Section Search improved for the Rastrigin function.
% S: objective function
% x0: initial point
% d: search direction vector
% ip: (0): no plot (default), (>0) plot figure ip with pause

, (<0) plot figure ip
% problem: (-1): minimum (default), (1): maximum
% tol: tolerance (default = 1e-4)
% mxit: maximum number of iterations (default = 50*(1+4*~(ip

>0)))
% stp: initial stepsize (default = 0.01* sqrt(d'*d))
% stepsize: optimal stepsize
% xo: optimal point in the search direction
% Ot: optimal value of S in the search direction
% nS: number of objective function evaluations
if nargin < 3

error('goldenSectionImp requires 3 input arguments ');
end
if nargin < 4 || isempty(ip)

ip = 0;
end
if nargin < 5 || isempty(problem)

problem = -1;
end
if nargin < 6 || isempty(tol)

tol = 1e-4;
end
if nargin < 7 || isempty(mxit)

mxit = 50*(1+4*~(ip >0));
end
d = d(:);
nd = d'*d;
if nargin < 8 || isempty(stp)

stepsize = 0.01* sqrt(nd);
else

stepsize = abs(stp);

60

end
x0 = x0(:);
[x1,x2,nS] = bracket(S,x0,d,problem ,stepsize);
first = 1;
while abs(x2-x1)<2

if first == 1
stepsize = stepsize * 10;
first = 0;

end
for i = 1: length(x0)

if d(i) ~= 0
d(i) = d(i)+1;
if d(i) == 0

d(i) = d(i)+0.1;
end

end
end
nd = d'*d;
[x1,x2,nS] = bracket(S,x0,d,problem ,stepsize);

end
z(1) = d'*(x1-x0)/nd;
z(2) = d'*(x2-x0)/nd;
fi = .618033985;
% The rest of the code is the same as in the normal Golden

Section Search given in Appendix A.8

A.12 Golden Section Search Repeated

% Repeat the Golden Section Search until the minimum is
found

function[stepsize ,xo,Ot,mS] = goldenSectionRep(S,x0,d,ip,
problem ,tol ,mxit ,stp)

T = zeros (1);
j = 0;
mS = 0;
[stepsize ,xo,T(1),nS]= goldenSectionImp(S,x0,d);
mS = mS+nS;
[stepsize ,xo,T(2),nS]= goldenSectionImp(S,xo,d);
mS = mS+nS;
i = 2;
while abs(T(1)-T(2)) > tol*10

i = 1+j*1;
[stepsize ,xo,T(i),nS]= goldenSectionImp(S,xo,d);

61

mS = mS+nS;
j = 1-j;

end
Ot = T(2-i+1);
end

A.13 Coggin’s Method Improved

function [stepsize ,xo,Ot,nS]= cogginsImp(S,x0,d,ip,problem ,
tol ,mxit ,stp)

% Coggin 's Method improved for the Rastrigin function
% S: objective function
% x0: initial point
% d: search direction vector
% ip: (0): no plot (default), (>0) plot figure ip with pause

, (<0) plot figure ip
% problem: (-1): minimum (default), (1): maximum
% tol: tolerance (default = 1e-4)
% mxit: maximum number of iterations (default = 50*(1+4*~(ip

>0)))
% stp: initial stepsize (default = 0.01* sqrt(d'*d))
% stepsize: optimal stepsize
% xo: optimal point in the search direction
% Ot: optimal value of S in the search direction
% nS: number of objective function evaluations
if nargin < 3

error('coggins requires 3 input arguments ');
end
if nargin < 4 || isempty(ip)

ip = 0;
end
if nargin < 5 || isempty(problem)

problem = -1;
end
if nargin < 6 || isempty(tol)

tol = 1e-4;
end
if nargin < 7 || isempty(mxit)

mxit = 100*50*(1+4*~(ip >0));
end
d = d(:);
nd = d'*d;
if nargin < 8 || isempty(stp)

62

stepsize = 0.5* sqrt(nd);
else

stepsize = abs(stp);
end
x0 = x0(:);
[x1,x2,nS] = bracket(S,x0,d,problem ,stepsize);
first = 1;
while abs(x2-x1)<2

if first == 1
stepsize = stepsize * 10;
first = 0;

end
for i = 1: length(x0)

if d(i) ~= 0
d(i) = d(i)+1;
if d(i) == 0

d(i) = d(i)+0.1;
end

end
end
nd = d'*d;
[x1,x2,nS] = bracket(S,x0,d,problem ,stepsize);

end
z(1) = d'*(x1-x0)/nd;
% The rest of the code is the same as in the normal Coggin 's

Method given in Appendix A.9

A.14 Grid

% Evaluating a function or applying a method on a grid.
Insert the stepSize , the start and end values of the
required number of parameters w.

clear all
tic
% insert values:
stepSize = ...;
w1start =..; w1end =..;
w2start =..; w2end =..;
w3start =..; w3end =..;
w4start =..; w4end =..;
dw1 = (w1end -w1start)/stepSize;
dw2 = (w2end -w2start)/stepSize;
dw3 = (w3end -w3start)/stepSize;

63

dw4 = (w4end -w4start)/stepSize;
minnit =10^6;
for i = 0:dw1
for j = 0:dw2
for k = 0:dw3
for l = 0:dw4

w1 = w1start + i*stepSize;
w2 = w2start + j*stepSize;
w3 = w3start + k*stepSize;
w4 = w4start + l*stepSize;
% choose function evaluation or a method
nitval = ... % insert preferred function or gssor
[xo,nitval] = ... % insert preferred method: fminsearch or

powell
if nitval < minnit

minnit = nitval;
% if chosen function evaluation or gssor:
w1opt = w1;
w2opt = w2;
w3opt = w3;
w4opt = w4;
% if chosen optimization method:
w1opt = xo(1);
w2opt = xo(2);
w3opt = xo(3);
w4opt = xo(4);

end
end
end
end
end
toc
minnit = floor(minnit)
[w1opt , w2opt , w3opt , w4opt]

A.15 PSO

% This script performs Particle Swarm Optimization (PSO).
% Insert the number of variables (m), population size (n)

and replace all notions of 'function ' by the name of the
function to be optimized.

tic
clear all

64

close all
rng('default ')
LB = ...; % insert lower bounds of variables
UB = ...; % insert upper bounds of variables
% pso parameters values
m = ...; % insert number of variables
n = ...; % insert population size (i.e. number of

particles)
wmax = 1 % inertia weight
wmin = 0 % inertia weight
c1 = 2; % acceleration factor
c2 = 2; % acceleration factor
% pso main program -------------------------------------start
maxite = 1000; % set max number of iterations
maxrun = 10; % set max number of runs needed
funEval = zeros(maxrun ,1);
for run = 1: maxrun

run
% pso initialization ---------------------------------start
for i = 1:n

for j = 1:m
x0(i,j) = round(LB(j)+rand()*(UB(j)-LB(j)));

end
end
x = x0; % initial population
v = 0.1*x0; % initial velocity
for i = 1:n

f0(i,1) = function(x0(i,:));
funEval(run) = funEval(run) + 1;

end
[fmin0 ,index0] = min(f0);
pbest = x0; % initial pbest
gbest = x0(index0 ,:); % initial gbest
% pso initialization -----------------------------------end
% pso algorithm --------------------------------------start
ite = 1;
tolerance = 1;
while ite <= maxite && tolerance >10^ -12

% update exponentially decreasing inertial weight
w = wmin+(wmax -wmin)*exp(-ite/(maxite /25));
%w=1 gives PSO without inertia weight

65

% pso velocity updates
for i = 1:n

for j = 1:m
v(i,j) = w*v(i,j)+c1*rand()*(pbest(i,j)-x(i,j))+c2*

rand()*(gbest(1,j)-x(i,j));
end

end
% pso position update
for i = 1:n

for j = 1:m
x(i,j) = x(i,j)+v(i,j);

end
end
% handling boundary violations
for i = 1:n

for j = 1:m
if x(i,j) < LB(j)

x(i,j) = LB(j);
elseif x(i,j) > UB(j)

x(i,j) = UB(j);
end

end
end
% evaluating fitness
for i = 1:n

f(i,1) = function(x(i,:));
funEval(run) = funEval(run) + 1;

end
% updating pbest and fitness
for i = 1:n

if f(i,1) < f0(i,1)
pbest(i,:) = x(i,:);
f0(i,1) = f(i,1);

end
end
% finding out the best particle
[fmin ,index] = min(f0);
% storing best fitness
ffmin(ite ,run) = fmin;
% storing iteration count

ffite(run) = ite;
% updating gbest and best fitness

66

if fmin < fmin0
gbest = pbest(index ,:);
fmin0 = fmin;

end
% calculating tolerance
if ite > 100;

tolerance = abs(ffmin(ite -100,run)-fmin0);
end
ite = ite+1;

end
% pso algorithm --end
gbest;
fvalue = function ([gbest (1),gbest (2) ,..,gbest(m)]); % size

of gbest vector depends on m
funEval(run) = funEval(run) + 1;
fff(run) = fvalue;
rgbest(run ,:) = gbest;
iterations(run)=ite;

end
% pso main program ---------------------------------------end
[bestfun ,bestrun] = min(fff);
bestfun = floor(bestfun) % floor only necessary when output

of 'function ' is the integer number of iterations plus a
small error term

best_variables = rgbest(bestrun ,:)
toc
totalFunEval=sum(funEval)
totalIt=sum(iterations)
% Available from: https ://www.researchgate.net/publication

/296636431 _Codes_in_MATLAB_for_
Particle_Swarm_Optimization.

A.16 MyNewtonMethod_3

function [out]= myNewtonMethod_3(in)
% Newton algorithm to solve:
% F1= (10*x-1)^2 + (y-2)^2 = 0
% F2= (10*x-1) ^2*(y-2)^2 - cos(5*x*y*pi) = 1
% with (multiple) solution (x,y) = (0.1, 2).
% Relaxation in Newton: relax1 , relax2
% Jacobian modified through parameters: alf , bet , gam , eps
% Pure Newton for relax1=relax2=1, alf=10, bet=5, gam=10,

eps=1

67

relax1 = in(1);
relax2 = in(2);
alf = in(3);
bet = in(4);
gam = in(5);
eps = in(6);
nmax = 1000;
n = 0;
x = -50.2;
y = 120.3;
F(1) = (10*x-1)^2 + (y-2)^2;
F(2) = (10*x-1) ^2*(y-2)^2 - cos(5*x*y*pi) - 1;
error = norm(F);
while error > 1.0E-16 && n < nmax

n = n + 1;
J(1,1) = 2*gam *(10*x-1);
J(1,2) = 2*eps*(y-2);
J(2,1) = 2*alf *(10*x-1)*(y-2)^2 + 5*y*pi*sin(5*x*y*pi);
J(2,2) = 2*(10*x-1) ^2*(y-2) + bet*x*pi*sin(5*x*y*pi);
% Check if all entries in the Jacobian are finite numbers:
if isnan(J(1,1)) ~= 0 || isinf(J(1,1)) ~= 0|| isnan(J(1,2)

) ~= 0 || isinf(J(1,2)) ~= 0 || isnan(J(2,1)) ~= 0||
isinf(J(2,1)) ~= 0 || isnan(J(2,2)) ~= 0 || isinf(J
(2,2)) ~= 0

n = nmax;
break

end
rcond = cond(J);
if rcond < 1.0E-16 || rcond > 10^10

n = nmax;
break

end
delta = J\F';
x = x - relax1*delta (1);
y = y - relax2*delta (2);
F(1) = (10*x-1)^2 + (y-2)^2;
F(2) = (10*x-1) ^2*(y-2)^2 - cos(5*x*y*pi) -1;
error = norm(F);

end
out = n + error ^0.1;

68

A.17 MyNewtonMethod_4

function [out]= myNewtonMethod_4(in)
% Newton algorithm to solve:
% F1= (10*x-1)^2 + (y-2)^2*exp(x*y) = 0
% F2= (10*x-1) ^2*(y-2)^2 - cos(5*x*y*pi)*exp(x*y) = exp(x*y)
% with (multiple) solution (x,y) = (0.1, 2).
% Relaxation in Newton: relax1 , relax2
% Jacobian modified through parameters: alf , bet
% Pure Newton for relax1=relax2=1, alf=10, bet=5
relax1 = in(1);
relax2 = in(2);
alf = in(3);
bet = in(4);
nmax = 1000;
n = 0;
x = -50.2;
y = 120.3;
F(1) =(10*x-1)^2 + (y-2)^2*exp(x*y);
F(2) =(10*x-1) ^2*(y-2)^2 - cos(5*x*y*pi)*exp(x*y) - exp(x*y);
error = norm(F);
while error > 1.0E-16 && n < nmax

n = n + 1;
J(1,1) = 2*10*(10*x-1)+y*(y-2)^2*exp(x*y);
J(1,2) = 2*(y-2)*exp(x*y)+x*(y-2)^2*exp(x*y);
J(2,1) = 2*alf *(10*x-1)*(y-2)^2 + 5*y*pi*sin(5*x*y*pi)*exp

(x*y)-y*cos(5*x*y*pi)*exp(x*y)-y*exp(x*y);
J(2,2) = 2*(10*x-1) ^2*(y-2) + bet*x*pi*sin(5*x*y*pi)*exp(x

*y)-x*cos(5*x*y*pi)*exp(x*y)-x*exp(x*y);
% Check if all entries in the Jacobian are finite numbers:
if isnan(J(1,1)) ~= 0 || isinf(J(1,1)) ~= 0|| isnan(J(1,2)

) ~= 0 || isinf(J(1,2)) ~= 0 || isnan(J(2,1)) ~= 0||
isinf(J(2,1)) ~= 0 || isnan(J(2,2)) ~= 0 || isinf(J
(2,2)) ~= 0

n = nmax;
break

end
rcond = cond(J);
if rcond < 1.0E-16 || rcond > 10^10

n = nmax;
break

end

69

delta = J\F';
x = x - relax1*delta (1);
y = y - relax2*delta (2);
F(1) = (10*x-1)^2 + (y-2)^2*exp(x*y);
F(2) = (10*x-1) ^2*(y-2)^2 - cos(5*x*y*pi)*exp(x*y) - exp(x

*y);
error = norm(F);

end
out = n + error ^0.1;

A.18 MyNewtonMethod_5

function [out]= myNewtonMethod_5(in)
% Newton algorithm to solve:
% F1= (10*x-1)^2 + (y-2)^2*exp(x*y) = 0
% F2= (10*x-1) ^2*(y-2)^2 - cos(5*x*y*pi)*exp(x*y) = exp(x*y)
% with (multiple) solution (x,y) = (0.1, 2).
% Relaxation in Newton: relax1 , relax2
% Jacobian modified through parameters: alf , bet , gam , eps
% Pure Newton for relax1=relax2=1, alf=10, bet=5, gam=10,

eps=1
relax1 = in(1);
relax2 = in(2);
alf = in(3);
bet = in(4);
gam = in(5);
eps = in(6);
nmax = 1000;
n = 0;
x = -50.2;
y = 120.3;
F(1) =(10*x-1)^2 + (y-2)^2*exp(x*y);
F(2) =(10*x-1) ^2*(y-2)^2 - cos(5*x*y*pi)*exp(x*y) - exp(x*y);
error = norm(F);
while error > 1.0E-16 && n < nmax

n = n + 1;
J(1,1) = 2*gam *(10*x-1)+y*(y-2)^2*exp(x*y);
J(1,2) = 2*(y-2)*exp(x*y)+eps*x*(y-2)^2*exp(x*y);
J(2,1) = 2*alf *(10*x-1)*(y-2)^2 + 5*y*pi*sin(5*x*y*pi)*exp

(x*y)-y*cos(5*x*y*pi)*exp(x*y)-y*exp(x*y);
J(2,2) = 2*(10*x-1) ^2*(y-2) + bet*x*pi*sin(5*x*y*pi)*exp(x

*y)-x*cos(5*x*y*pi)*exp(x*y)-x*exp(x*y);
% Check if all entries in the Jacobian are finite numbers:

70

if isnan(J(1,1)) ~= 0 || isinf(J(1,1)) ~= 0|| isnan(J(1,2)
) ~= 0 || isinf(J(1,2)) ~= 0 || isnan(J(2,1)) ~= 0||
isinf(J(2,1)) ~= 0 || isnan(J(2,2)) ~= 0 || isinf(J
(2,2)) ~= 0

n = nmax;
break

end
rcond = cond(J);
if rcond < 1.0E-16 || rcond > 10^10

n = nmax;
break

end
delta = J\F';
x = x - relax1*delta (1);
y = y - relax2*delta (2);
F(1) = (10*x-1)^2 + (y-2)^2*exp(x*y);
F(2) = (10*x-1) ^2*(y-2)^2 - cos(5*x*y*pi)*exp(x*y) - exp(x

*y);
error = norm(F);

end
out = n + error ^0.1;

A.19 MyNewtonMethod_3D

function [out]= myNewtonMethod_3D(in)
% Newton algorithm to solve:
% F1= (10*x-1)^2 + (y-2)^2 +(5*z-5)^2 = 0
% F2= (10*x-1) ^2*(y-2)^2 +(5*z-5)^2 - cos(5*x*y*pi) = 1
% F3= exp(x*y)+(5*z-5)^2 = exp (0.2)
% with (multiple) solution (x,y,z) = (0.1, 2, 1).
% Relaxation in Newton: relax1 , relax2
% Jacobian modified through parameters: alf , bet
% Pure Newton for relax1=relax2=1, alf=10, bet=5
relax1 = in(1);
relax2 = in(2);
alf = in(3);
bet = in(4);
nmax = 1000;
n = 0;
x = -50;
y = 120;
z = 15;
F(1) = (10*x-1)^2 + (y-2)^2 +(5*z-5)^2;

71

F(2) = (10*x-1) ^2*(y-2)^2 +(5*z-5)^2 - cos(5*x*y*pi) - 1;
F(3) = exp(z)-exp(1);
error = norm(F);
while error > 1.0E-16 && n < nmax

n = n + 1;
J(1,1) = 2*10*(10*x-1);
J(1,2) = 2*(y-2);
J(1,3) = 2*5*(5*z-5);
J(2,1) = 2*alf *(10*x-1)*(y-2)^2 + 5*y*pi*sin(5*x*y*pi);
J(2,2) = 2*(10*x-1) ^2*(y-2) + bet*x*pi*sin(5*x*y*pi);
J(2,3) = 2*5*(5*z-5);
J(3,1) = 0;
J(3,2) = 0;
J(3,3) = exp(z);
% Check if all entries in the Jacobian are finite numbers:
Break =0;
for i = 1:3

for j = 1:3
if (isnan(J(i,j)) ~= 0 || isinf(abs(J(i,j))) ~= 0)

n = nmax;
Break =1;

end
end

end
if Break == 1

break
end
rcond = cond(J);
if rcond < 1.0E-16 || rcond > 10^10

n = nmax;
break

end
delta = J\F';
x = x - relax1*delta (1);
y = y - relax2*delta (2);
z = z - delta (3);
F(1) = (10*x-1)^2 + (y-2)^2 +(5*z-5)^2;
F(2) = (10*x-1) ^2*(y-2)^2 +(5*z-5)^2 - cos(5*x*y*pi) -1;
F(3) = exp(z)-exp(1);
error = norm(F);

end
out = n + error ^0.1;

72

A.20 ODE

% Discretization of y''(x) + alpha*y(x) = x, y(0)=1, y(1)=1
for x in [0,1] using FDM , on a grid with 100 segments.

% The solution of the ODE is y(x)=10^4*x+cos (0.01*x)
+(1-10^4- cos (0.01))*sin (0.01*x)/sin (0.01).

clear all
N = 101;
alpha = 1E-4;
L = zeros(N,1);
D = zeros(N,1);
R = zeros(N,1);
b = ones(N,1);
dx = 1/(N-1);
for i = 2:N-1,

D(i) = -2/(dx*dx) +alpha;
L(i) = 1/(dx*dx);
R(i) = 1/(dx*dx);
b(i) = (i-1)*dx;

end
D(1) = 1;
D(N) = 1;

A.21 SOR

function [it,xsol]= gssor(L,D,R,b,N,w1,w2 ,w3)
% solve Ax=b using Gauss -Seidel method
% input L, D, R: matrices that together form A
% input b: vector (1D) containing r.h.s.
% input N: dimension of problem
% output x: solution vector
% output it: number of iterations

% initial solution
xsol = zeros(N,1);
resid = 1E3;
it = 0;
while resid >1E-9
% increment iteration counter

it = it+1;
if it > 10000,

break;
end

73

% solution of previous iteration
xsolold = xsol;

% new solution with Gauss -Seidel
Sum = R(1)*xsol (2);
xsol (1) = (b(1)-Sum)/D(1);
xsol (1) = w1*xsol (1) + (1-w1)*xsolold (1);
for i = 2:N-1,

Sum = L(i)*xsol(i-1) + R(i)*xsol(i+1);
xsol(i) = (b(i)-Sum)/D(i);
if 2*floor(i/2) == i

xsol(i) = w2*xsol(i) + (1-w2)*xsolold(i);
else

xsol(i) = w3*xsol(i) + (1-w3)*xsolold(i);
end

end
Sum = L(N)*xsol(N-1);
xsol(N) = (b(N)-Sum)/D(N);
xsol(N) = w1*xsol(N) + (1-w1)*xsolold(N);

% solution is a number
for i = 1:N

if isnan(xsol(i)) ~= 0 || isinf(xsol(i)) ~= 0
it = 10^5;
break

end
end

% residual resid= ||Ax-b||;
Sum = 0;
i = 1;
axi = D(i)*xsol(i) + R(i)*xsol(i+1);
Sum =Sum + (axi -b(i))^2;
for i = 2:N-1

axi = L(i)*xsol(i-1) + D(i)*xsol(i) + R(i)*xsol(i+1);
Sum = Sum + (axi -b(i))^2;

end
i = N;
axi = L(i)*xsol(i-1) + D(i)*xsol(i);
Sum = Sum + (axi -b(i))^2;
resid = sqrt(Sum);
if resid > 10^30

it = 10^6;
end

end

74

it = it+resid ^0.1;

A.22 Test Functions
Test functions together with the settings for which PSO finds their minimum.

Ackley Function
% Ackley Function: nearly flat outer region and a large hole

at the centre. The risk for optimization methods is to
get stuck in one of the many local minima.

% 2-dimensional form
% Global minimum: f(0,0)=0
a = 20;
b = 0.2;
c = 2*pi;
sum1 = 0;
sum2 = 0;
for i = 1:2

sum1 = sum1 + x(i)^2;
sum2 = sum2 + cos(c*x(i));

end
y = -a*exp(-b*sqrt(sum1 /2)) - exp(sum2 /2) + a + exp(1);
% PSO: LB=-32.768, UB=32.768 , swarm size =10

Bukin6 Function
% Bukin Function N.6: many local minima in a ridge.
% Global minimum: f(-10,1)=0.
y = 100 * sqrt(abs(x(2) - 0.01*x(1)^2)) + 0.01 * abs(x(1)

+10);
% PSO: LB=[-15,-3], UB=[-5,3], swarm size =10

Three-Hump Camel Function
% Three -Hump Camel Function: three local minima.
% Global minimum: f(0,0)=0.
y = 2*x(1)^2 - 1.05*x(1)^4 + x(1) ^6/6 + x(1)*x(2) + x(2)^2;
% PSO: LB=[-5,-5], UB=[5,5], swarm size =10

Easom Function
% Easom Function: several local minima. It is unimodal and

the global minimum has a small area.
% Global minimum: f(pi,pi)=-1
y = -cos(x(1))*cos(x(2))*exp(-((x(1)-pi)^2+(x(2)-pi)^2));
% PSO: LB=[-100,-100], UB=[100 ,100] , swarm size =10

75

Eggholder Function
% Eggholder Function: dificult to optimize due to the large

number of local minima.
% Global minimum: f(512 ,404.2319) = -959.6407
y = -(x(2) +47)*sin(sqrt(abs(x(1)/2+x(2) +47))) - x(1)*sin(

sqrt(abs(x(1) -(x(2) +47))));
% PSO: LB=[-512, -512], UB=[512, 512], swarm size =10

McCormick Function
% McCormick Function: plate -shaped.
% Global minimum: f(-0.54719 , -1.54719) = -1.9133
y=sin(x(1)+x(2))+(x(1)-x(2))^2 -1.5*x(1) +2.5*x(2)+1;
% PSO: LB=[-1.5,-3], UB=[4,4], swarm size =10

Schaffer Function N.2
% Schaffer Function N.2: many local minima.
% Global minimum: f(0,0)=0
y = 0.5 + (sin(x(1)^2-x(2)^2) ^2 -0.5) /(1+0.001*(x(1)^2+x(2)

^2))^2;
% PSO: LB=[-100,-100], UB=[100 ,100] , swarm size =10

Schaffer Function N.4
% Schaffer Function N.4: many local minima
% Global minimum: f(0 ,1.25313) =0.292579
y=0.5+(cos(sin(abs(x(1)^2-x(2)^2)))^2 -0.5) /(1+0.001*(x(1)^2+

x(2)^2))^2;
% PSO: LB=[-100,-100], UB=[100 ,100] , swarm size =10

Styblinski-Tang Function
% Styblinski -Tang Function: not convex.
% 2-dimensional form
% Global minimum: f(-2.903534 , -2.903534) = -39.16599*2
y = (x(1)^4 - 16*x(1)^2 + 5*x(1) + x(2)^4 - 16*x(2)^2 + 5*x

(2))/2;
% PSO: LB=[-5,-5], UB=[5,5], swarm size =10

Sphere Function
% Sphere Function: 2 local minima except for the global one.

It is unimodal.
% 2-dimensional form
y = x(1)^2 + x(2)^2;
% PSO: LB=[-5.12,-5.12], UB=[5.12 ,5.12] , swarm size =10

76

A.23 Discontinuous Function

% Function for which PSO fails to find the minimum
function [y] = discont(x)

y = (x ~= 1.2);
end

77

	Introduction
	Preliminaries
	Rosenbrock Function
	Rastrigin Function
	Iterative Method
	Newton's Method
	MyNewtonMethod

	Downhill Simplex Method
	Rosenbrock Function
	Rastrigin Function
	MyNewtonMethod

	Powell's Methods
	Golden Section Search
	Parabolic Interpolation
	Multidimenionsal Optimization
	Rosenbrock Function
	Rastrigin Function
	Improvements

	MyNewtonMethod

	Grid
	Global Minimum
	Applying Methods to a Grid

	Particle Swarm Optimization
	Parameters
	Applying PSO
	Swarm Size and Search Area

	Variations of MyNewtonMethod
	MyNewtonMethod_2
	MyNewtonMethod_3
	MyNewtonMethod_4
	MyNewtonMethod_5
	MyNewtonMethod_3D

	Successive Over-Relaxation
	SOR
	One Parameter
	Three Parameters
	Increasing the Number of Subintervals

	PSO Failure
	Iteration Cost
	Conclusion
	MATLAB Codes
	Rosenbrock Function
	Rastrigin Function
	Plot Rosenbrock Function
	Plot Rastrigin Function
	MyNewtonMethod
	Powell's Method
	Bracketing Minimum
	Golden Section Search
	Coggin's Method
	1-dimensional Rastrigin Function
	Golden Section Search Improved
	Golden Section Search Repeated
	Coggin's Method Improved
	Grid
	PSO
	MyNewtonMethod_3
	MyNewtonMethod_4
	MyNewtonMethod_5
	MyNewtonMethod_3D
	ODE
	SOR
	Test Functions
	Discontinuous Function

