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Abstract

The LHCb detector is an elementary particle detector in which the momentum and charge of par-

ticles are determined from small deflections of these particles in a magnetic field. In this thesis, a

Taylor series expansion is derived to determine the trajectory of a charged particle in a magnetic

field. A rather unusual set of only three expansion variables is used: the angles x′i, y
′
i and a third

variable, x3, which is the inverse of the bending radius at some reference point. This method has

the great advantage that it can be programmed on massively parallel architectures, contrary to the

common highly sequential numerical integration methods. The method is worked out and put into

a Mathematica code, and some examples are given.
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Chapter 1

Introduction

The Standard Model of particle physics is a theory that describes the fundamental particles and how

they interact under three of the four fundamental forces (gravity is not included). The Standard

Model has proven to be a successful framework in providing experimental predictions. For instance,

several properties of weak neutral currents and the W and Z bosons have been predicted with high

accuracy. Over time and through many experiments, the Standard Model has become a well-tested

physics theory.

Despite all the successes the Standard Model has had and the fact that it is believed to be theoretically

self-consistent, physicists are still looking for a more complete theory of subatomic particles and their

interactions. For example, the Standard Model predicts neutrino’s to be massless. But evidence has

been found for neutrino oscillations, which would imply that neutrino’s do have mass. Also, the

Standard Model cannot give a good explanation for the matter-antimatter asymmetry. And there

are more examples of such unanswered problems. So the Standard Model needs to be extended, i.e.

new physics (physics beyond the Standard Model) has to be found.

The Large Hadron Collider (LHC) near Geneva is one of the places where physicists are looking

for new physics. It is the largest and highest-energy particle accelerator in the world. In the LHC,

protons are accelerated in both directions of the 26.7 kilometer long (circular) tunnel. When the

experiment is running, these protons are boosted up to an energy of almost 7 TeV, which is equivalent

to velocities of only a fraction lower than the speed of light. Collisions between these protons result

in showers of hundreds of new particles.

Several detectors are placed along the LHC tube. Each of these detectors focuses on different aspects

of the collisions. One of these detectors is the LHCb detector, which is used to distinguish the

particles that are created in high energy proton-proton collisions. These collisions are studied to

measure parameters of CP-violation in interactions between heavy quarks called bottom quarks.

The setup of the LHCb detector is shown in figure 1.1. This setup consists of many different types

of detectors, but what we are interested in is the dipole magnet. Because when a charged particle

travels through a magnetic field, it gets deflected. This principle can be used to reconstruct the

trajectories of charged particles and to measure their momenta. There is a detector placed in front

of the magnet (TT) and after it (T1-T3). The idea is that we want to connect the particles that are

measured in front of the magnet to the particles that are measured after the magnet. This would be

an easy task if we had a homogeneous field, because then the trajectories would just be circles. But

unfortunately, this is not the case.
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Chapter 1 Introduction

Figure 1.1: The LHCb detector. [1]

The LHCb experiment uses a wide aperture magnet, resulting in a highly non-homogeneous field.

This field has an integrated bending power of 4 Tm over a track length of 10 meters [2]. The variation

of the vertical magnetic field component By along the central track is shown in figure 1.2. To get a

slight feel of what the magnetic field looks like, all three field components are shown for a track with

an angle of 197 mrad in both x and y.

The tracking detectors are placed mainly outside of the magnetic field. Because the particles that

are analysed have such high velocities, their deflection is only minor. Hence, high precision is very

important when tracking particles in the LHCb magnet. Also, when the experiment is running there

are 40 million collisions per second [3], i.e. there is a collision every 25 nanoseconds. In these 25

nanoseconds the complete analysis of the collision needs to be done. The more time is spent on

particle tracking, the less time is left for other things. So it is of the essence that the tracking routine

is very fast as well.

Different techniques can be used to track charged particles through a magnetic field. In general

all these methods try to combine high precision with high speed. Standard techniques for particle

tracking through magnets use numerical integration, such as Runge-Kutta, to integrate the equations

of motion [4–6]. A major disadvantage of these techniques is their highly sequential behaviour,

prohibiting the possibility of computing trajectories in a parallel manner. Since the LHCb experiment

needs high precision when tracking particles, using numerical integration requires a very small step

size. Note that in one collision hundreds of particles are created. Tracking each particle using

numerical integration makes these methods very time-consuming.

Lesser used techniques introduce Taylor series expansions to derive a transfer map M [7–9] that

relates the final coordinates ~zf to the initial coordinates ~zi and parameters ~δ,

~zf =M(~zi, ~δ).
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Chapter 1 Introduction

Figure 1.2: Magnetic field along selected tracks. [2]

Since in the LHCb experiment the magnetic field is not altered for long periods, the Taylor coefficients

can be computed on forehand and be reused for the determination of each individual trajectory. In

this way the coefficients can be computed to very high precision without slowing down the tracking

routine.

The aim of this bachelor project is to create a Taylor expanded map for particle motion

in arbitrary magnetic fields. Such a tracking routine can be programmed on massively parallel

architectures, which will drastically increase the computation speed. A method presented by J.

Bahrdt and G. Wüstefeld is followed [9]. This method uses a rather unusual set of only three

expansion parameters: the transverse angle variables (x′i, y
′
i) at the starting point, and the inverse of

the bending radius x3 at some reference point. It has been shown that this results in a fast converging

series for large bending radii [9, 10].

The next chapter will give some background theory regarding magnetic fields, equations of motion,

Taylor expansions and relativity. In the third chapter we will work out the proposed technique in

second order and derive a function that maps the initial coordinates into the final coordinates. We

conclude this chapter with a simple example to show that the obtained function is already very

accurate at second order. Chapter 4 presents a Mathematica code that can be used to compute the

Taylor expanded map up to arbitrary order. Some examples for higher order approximations will be

given.
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Chapter 2

Background theory

We start this thesis by introducing some background theory that is relevant for the upcoming chap-

ters. The topics of electrodynamics, Taylor series and a little relativity will be discussed briefly.

2.1 Electrodynamics

In this section the basics of magnetism is discussed. A few equations are introduced and it is explained

how they can be used. Also, the expansion variable x3 and shape function of the magnetic field are

introduced and an explanation is given of why they are useful.

2.1.1 Magnetic vector potential

Gauss’ law for magnetism states that the divergence of any magnetic field is zero, i.e. ∇ · ~B = 0.

This implies that there exists a vector potential ~A that satisfies

~B = ∇× ~A. (2.1)

Many methods use this vector potential for calculations instead of the magnetic field. This method

is no exception. This is because the vector potential is much simpler to use in computations, as the

magnetic field involves taking the cross product of the velocity vector with a position vector. Once

the magnetic vector potential has been determined, the magnetic field can be found by simply taking

the curl of the vector potential. This is easier than solving directly for the magnetic field.

Although this works well for theory, in practice only the magnetic field is known (the vector potential

cannot be measured directly). Equation (2.1) needs to be used to determine the magnetic vector

potential. It is important to note that the vector potential has a gauge invariance, meaning that it

cannot be determined uniquely from the magnetic field. The gradient of any scalar function φ can

be added to the vector potential without changing the magnetic field,

∇× ~A = ∇× ( ~A+∇φ),

since the curl of a gradient is zero (∇×∇φ = 0).
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Chapter 2 Background theory

2.1.2 Magnetic rigidity and x3

For a particle in a uniform magnetic field ~B describing a circular orbit of radius ρ, the Lorentz force

is equal to the centrifugal force:

qvB =
mv2

ρ
,

with q,m, v the charge, mass and velocity of the particle. Introducing the momentum p = mv and

simplifying the equation, we get

Bρ =
p

q
. (2.2)

This product of the field and bending radius is called the magnetic rigidity and has the unit T·m.

It describes the magnetic bending strength that is required for a given particle to have a bending

radius ρ. It can be useful in calculations because only the momentum and charge are needed.

As stated before, the third variable that will be used in the coordinate expansion is x3, the inverse

of the bending radius at some reference point (x0, y0, z0):

x3 =
q

p
·B(x0, y0, z0).

Expansion in this variable is rather unusual, and (as we will find out) will lead to some ambiguity.

A nice feature of x3 as an expansion variable is that it unites the charge, momentum and magnetic

field into one variable. According to Bahrdt and Wüstefeld this results in fast convergence of the

Taylor series [9].

2.1.3 Shape function of the magnetic field

One of the reasons that make it easier to use only three expansion variables, is the introduction of

the shape function ~R. This function is independent of the field strength and purely describes the

geometric shape of the magnetic vector potential. The shape function is defined as follows:

x3 · ~R =
~A

Bρ
. (2.3)

When defining x3 as the inverse of the bending radius ρ, we have ~R = ~A/B.

Taking the curl of equation (2.3) and noting that the curl of the vector potential is equal to the field,

we get
~B

Bρ
= x3 · (∇× ~R). (2.4)

This equation will be used later on to derive an expansion for the magnetic field.

2.2 Equations of motion

In this section the equations of motion of a charged particle in a magnetic field will be introduced.

Before deriving the equations of motion we need to specify the coordinate system we are working in.

In compliance to figure 1.1, we define the longitudinal axis (the axis along the beam pipe) to be the

z-axis. Furthermore, the transverse axes are x (horizontal) and y (vertical).
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Chapter 2 Background theory

The equations of motion for a charged particle in a magnetic field follow from the Lorentz force

equation:
~F = q ~E + q~v × ~B.

For a relativistic particle with v ≈ c traveling through a magnetic field of 1 Tesla1, the bending force

is Bv ≈ 3 · 108 V/m. In this setting we need an electric field of 300 million volts per meter to create

the same bending force as a magnetic field of 1 Tesla. The effects of the electric field are therefore

negligible:
~F ≈ q~v × ~B. (2.5)

Setting equation (2.5) equal to Newton’s second law (~F = m~̈x) and noting that ~v = (ẋ, ẏ, ż) gives

the following equations of motion:

ẍ =
q

m
(ẏBz − żBy) ,

ÿ =
q

m
(żBx − ẋBz) ,

z̈ =
q

m
(ẋBy − ẏBx) .

Note that the factor q/m is constant. Since the change in the z-direction is always the same, i.e. the

length of the magnet, this system can be reduced by one dimension by losing the time dependence

and making the equations of motion functions of z, as presented in [11]:

x′′ =
q

p

√
1 + x′2 + y′2

(
y′Bz − (1 + x′2)By + x′y′Bx

)
,

y′′ = −q
p

√
1 + x′2 + y′2

(
x′Bz − (1 + y′2)Bx + x′y′By

)
.

Here the primes denote derivatives with respect to the longitudinal coordinate z. Note that the

factor q/p is constant too, since we have conservation of momentum.

As a final step we introduce the magnetic rigidity Bρ from equation (2.2) to the equations of motion:

x′′ =

√
1 + x′2 + y′2

Bρ

(
y′Bz − (1 + x′2)By + x′y′Bx

)
, (2.6)

y′′ = −
√

1 + x′2 + y′2

Bρ

(
x′Bz − (1 + y′2)Bx + x′y′By

)
. (2.7)

Now it should be clear why we introduced the magnetic rigidity in the previous section. In this way

properties like mass, charge and momentum are all caught into one variable.

2.3 Taylor series expansion

In this section the general form of a Taylor series expansion in one and multiple variables will be

given. Then a description is given on how these expansions will be implemented in the method that

is presented in this thesis.

1Comparable to the LHCb magnet [2].
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Chapter 2 Background theory

For an infinitely differentiable function f , the Taylor series expansion in some open interval around

x = a is given by

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n

= f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)2 + · · ·

We can extend this single-variable Taylor series to a multivariable Taylor series expansion around

more than one variable. For an infinitely differentiable function f , the 2-D Taylor series expansion

around some open neighborhood (x, y) = (a, b) is given by

f(x, y) =

∞∑
n=0

[
1

n!

n∑
k=0

(
n

k

)
∂nf

∂xn−k∂yk

∣∣∣∣
(a,b)

(x− a)n−k(y − b)k
]

(2.8)

= f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

+
1

2!

[
fxx(a, b)(x− a)2 + 2fxy(a, b)(x− a)(y − b) + fyy(y − b)2

]
+ · · ·

where (
n

k

)
=

n!

(n− k)!k!

are the binomial coefficients.

A similar formula can be derived for expansions in three or more variables. Note that a multivariable

expansion, besides the expansion terms in each variable, also contains cross terms. For example, in

a second order expansion in two variables, besides the second derivatives fxx and fyy, there also is a

term with a combined derivative fxy. In general, for a nth order expansion in k variables, the sum

of derivatives in each term satisfies 0 ≤ n1 + n2 + · · ·+ nk ≤ n.

In this thesis we want to determine a map of the trajectory of a particle in a magnetic field by making

a Taylor series expansion of this trajectory. Using the above defined form of a multivariable Taylor

series, the Taylor coefficients can be found by computing the derivatives of the trajectory. Since we

don’t have an expression for the trajectory, the Taylor coefficients cannot be determined straight

away. A more general form of a Taylor series expansion in k variables is

f(x1, . . . , xk) =
∑

n1,...,nk

bn1···nk
(x1 − a1)n1 · · · (xk − ak)nk , (2.9)

where bn1···nk
are the Taylor coefficients. These coefficients can now be found by inserting the Taylor

expansion into the equations of motion.

The great thing about Taylor series is that they can be used for solving differential equations. This

property is what we will be using when determining an approximation for the particle trajectory. To

show how Taylor series can be used to solve differential equations, let’s do an example. Consider the

differential equation

y′′ + y = 0.

If we want to determine a solution to this equation using a series expansion about the point x0 = 0,

then this solution will be of the form

y(x) =

∞∑
n=0

anx
n.

7



Chapter 2 Background theory

Determining the second derivative of this expansion and plugging the expansions into the differential

equation gives
∞∑

n=2

n(n− 1)anx
n−2 +

∞∑
n=0

anx
n = 0.

Note that the second derivative of the expansion does not start at n = 0. To combine the two series

into a single series, they both need to start at the same point. We also want the exponent of x to

be the same in both series. This can be easily done by shifting down the first power series by 2. We

then find
∞∑

n=0

[(n+ 2)(n+ 1)an+2 + an]xn = 0.

We know that for a power series that is zero for all x, all coefficients have to be zero as well. This

gives the following recurrence relation:

(n+ 2)(n+ 1)an+2 + an = 0, n = 0, 1, 2, . . .

Solving this relation for the coefficients ak gives the following two equations:

a2k =
(−1)ka0

(2k)!
, k = 0, 1, 2, . . . and a2k+1 =

(−1)ka1
(2k + 1)!

, k = 0, 1, 2, . . .

Plugging these coefficients back in to the general form of y(x) we started with, we get that the

solution of the differential equation is

y(x) = a0

∞∑
k=0

(−1)kx2k

(2k)!
+ a1

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
,

for some constants a0 and a1 that can be found by applying the initial conditions.

The actual solution to y′′ + y = 0 is given to be

y(x) = c1 cos(x) + c2 sin(x),

for some constants c1 and c2. Note that the Taylor series of cosine and sine are

cos(x) =

∞∑
n=0

(−1)nx2n

(2n)!
and sin(x) =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
.

So, the solution we found using the Taylor series method is exactly the same as the solution from

first principles.

2.4 Relativistic effects

In the LHCb experiment particles are accelerated to velocities close to the speed of light. This means

that relativistic effects need to be considered in our method as well. In this section a description is

given on how to take care of these effects in our tracking routine.

Einstein’s theory of relativity states that the laws of physics are the same everywhere and that the

speed of light is the same for every observer. To make sure that this theory is satisfied in our method,

we need to replace the mass by the relativistic mass.

8



Chapter 2 Background theory

The relativistic mass is obtained by multiplying the mass by the Lorentz factor

γ =
1√

1− v2

c2

.

At low speeds γ ≈ 1, but at higher velocities this factor will have a significant effect. That is the

reason why we need to implement this effect into the expansion. Notice that we can just replace

the mass by the relativistic mass since it is not changed by the magnetic field. The momentum now

becomes

p =
mv√
1− v2

c2

= γmv.

Then, the expression for x3 is

x3 =
Bq

p
=

Bq

γmv
. (2.10)

9



Chapter 3

The algebraic map

In this chapter the method presented by J. Bahrdt and G. Wüstefeld [9] is used to derive an algebraic

map over a finite interval z. This is done by first deriving a Taylor expanded map of the trajectory

in a fixed Cartesian coordinate system. Then, a Taylor series expansion of the shape function ~R

is derived to describe the magnetic field. Together with the equations of motion from the previous

chapter, we will describe a map that maps the initial coordinates and velocities of a particle to the

final coordinates and velocities.

In the second part of this chapter, this procedure is worked out in second order. Finally, as an

example, we will use the derived algebraic map to determine the trajectory of a muon with a velocity

of 2.997 · 108 m/s in a constant magnetic field of 1.05 T.

3.1 Taylor expansion of the trajectory

In this section the general form of a Taylor expanded map will be given. Preparations will be done

regarding the implementation of the maps into the equations of motion (2.6) and (2.7). Integration

constants will already be determined for later purposes.

From the previous chapter we know that the general form of a Taylor expanded map along the z-axis

with respect to the variables x′i, y
′
i and x3 will be of the form:

x(z) =
∑
k,l,m

aklm(z) · x′ki · y′li · xm3

y(z) =
∑
k,l,m

bklm(z) · x′ki · y′li · xm3

where all three variables are expanded around 0. It should be noted that besides the z-dependence

of x and y, these maps are also functions of x′i, y
′
i and x3. We will keep this dependence implicit

to prevent things from becoming messy. Also, since we are Taylor expanding along the z-axis, the

Taylor coefficients aklm and bklm will be functions of z.

To determine the values of the coefficients aklm(z) and bklm(z), we will insert the Taylor expanded

maps into the equations of motion (2.6) and (2.7). Hence, we need to differentiate the Taylor series

10



Chapter 3 The algebraic map

twice with respect to z:

x′(z) =
∑
k,l,m

a′klm(z) · x′ki · y′li · xm3

x′′(z) =
∑
k,l,m

a′′klm(z) · x′ki · y′li · xm3

and

y′(z) =
∑
k,l,m

b′klm(z) · x′ki · y′li · xm3

y′′(z) =
∑
k,l,m

b′′klm(z) · x′ki · y′li · xm3

As we will find out later on, all coefficients aklm(z) and bklm(z) and their first derivatives will be

zero at z = 0. This means that we can already determine the integration constants that arise when

integrating a′′klm(z) and b′′klm(z). Notice that the z-dependence of x(z) and y(z) completely resides

in the coefficients aklm(z) and bklm(z). This implies that the integration constants of x(z) and y(z)

are in fact the integration constants of aklm(z) and bklm(z), respectively.

Integration of x′′(z) gives

x′(z) =
∑
k,l,m

a′klm(z) · x′ki · y′li · xm3 + c1

x(z) =
∑
k,l,m

aklm(z) · x′ki · y′li · xm3 + z · c1 + c2

Setting z = 0, we get

x′i = x′(z = 0) = c1,

xi = x(z = 0) = c2.

A similar result is found for y(z).

By determining the integration constants right now, we don’t have to worry about them at any

point later on. This is also an advantage with regards to the implementation of the algorithm in a

computer script.
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Chapter 3 The algebraic map

Hence, we can define the general form of a Taylor expanded map along the z-axis with respect to

the variables x′i, y
′
i and x3 to be

x(z) = xi + z·x′i+
∑
k,l,m

aklm(z) · x′ki · y′li · xm3 (3.1)

x′(z) = x′i+
∑
k,l,m

a′klm(z) · x′ki · y′li · xm3 (3.2)

x′′(z) =
∑
k,l,m

a′′klm(z) · x′ki · y′li · xm3 (3.3)

y(z) = yi + z·y′i+
∑
k,l,m

bklm(z) · x′ki · y′li · xm3 (3.4)

y′(z) = y′i+
∑
k,l,m

b′klm(z) · x′ki · y′li · xm3 (3.5)

y′′(z) =
∑
k,l,m

b′′klm(z) · x′ki · y′li · xm3 (3.6)

Even though the maps are functions of the longitudinal coordinate z, for the method that we want to

derive we only need to know the position and angle variables at the end of the magnet (z = zfinal).

An advantage of this way of defining the position and angle variables is that we can plot a trajectory

that is determined from the Taylor expanded map and compare this plot with the actual plot.

Recalling the definition of x3, equation (2.10), we can conclude that x3 is zero if either the particle

has no charge, the particle has infinite momentum or when there is no magnetic field. So, we will

exclude all terms in the expansion for which x3 = 0, because this just gives a straight trajectory.

This means that for a nth order approximation the indices k, l,m are restricted to 1 ≤ k+ l+m ≤ n.

Note that k+ l+m is at least one since we assume that every term in the expansion has at least one

power of x3.

3.2 Taylor expanding the magnetic field

As mentioned earlier, the shape function ~R plays an important role. In this section we will derive

the Taylor series expansion of ~R and explain how this expansion is used to determine the expansion

of the magnetic field ~B.

Using the definition of the 2-D Taylor series, equation (2.8), we can define a Taylor series expansion

for the three components of ~R:

Ru(x, y, z) =

∞∑
n=0

[
1

n!

n∑
k=0

(
n

k

)
∂nRu

∂xn−k∂yk

∣∣∣∣
(xi,yi,z)

(x− xi)n−k(y − yi)k
]
,

where u = x, y or z. It should be noted that Ru is only expanded in x and y to keep the z-dependence

in the Taylor coefficients. This is because the biggest variation in the LHCb magnetic field is along

the z-axis.

This equation can be simplified by defining the coefficients Ru
n1n2n3

of the shape function as

Ru
n1n2n3

=
∂n1+n2+n3Ru

∂xn1yn2zn3
. (3.7)
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Chapter 3 The algebraic map

evaluated at the position (x = xi, y = yi, z). This works as long as we assume that the angle at

which the particles enter the magnetic field and the deflection of the particles is small (which is the

case for the LHCb experiment).

Also, note that

1

n!

n∑
k=0

(
n

k

)
=

n∑
k=0

1

(n− k)!k!
.

Substituting n1 = n− k and n2 = k, we get

Ru(x, y, z) =
∑
n1,n2

Ru
n1n20

n1!n2!
(x− xi)n1(y − yi)n2 . (3.8)

Now that we have a Taylor expansion of ~R, the expansion of ~B can be obtained by inserting equation

(3.8) into equation (2.4).

3.3 Putting it all together

Now that the coordinate and magnetic field expansions are defined, we can start with putting ev-

erything together. This section will explain how the expansions can be combined to obtain the

coordinate expansion coefficients.

Before we combine all equations that we have derived thus far to determine the coordinate coefficients

aklm(z) and bklm(z), we first need to deal with the
√

1 + x′2 + y′2 that appears in the equations of

motion. When the expansions are inserted in the equations of motion, the coordinate coefficients can

be obtained by comparing the coefficients of products of equal order that are formed by x′i, y
′
i and x3.

Notice that the square root will contain products of the form x′i
a ·y′ib ·xc3 as well. But comparing these

products will be quite hard as long as they are inside the square root. Hence, we will approximate√
1 + x′2 + y′2 by taking Taylor series of the square root around (0, 0) using equation (2.8):

√
1 + x′2 + y′2 =

∑
m,n

1

m!n!
·
(

∂m+n

∂xm∂yn

√
1 + x′2 + y′2

)∣∣∣∣
(0,0)

· x′m · y′n (3.9)

= 1 +
x′2

2
+
y′2

2
+ · · ·

We can finally start with putting everything together. Starting with the equations of motion (2.6) and

(2.7), we insert the expansions of the square root (3.9), the magnetic field (3.8) and the coordinates

expansions (3.2), (3.3), (3.5) and (3.6) into these equations. This results into two huge expressions.

The coefficients of the coordinate expansion can then be obtained by comparing the coefficients of

products of equal order. As one might imagine, it’s nearly impossible to do this by hand. Even

in second order this procedure will be quite tedious and error-prone (as will be shown in the next

section). Hence the derivation of the coordinate expansion coefficients should be done with a com-

puter program. In the next chapter an outline will be given on how to implement this method in a

Mathematica code.

13



Chapter 3 The algebraic map

3.4 Result in second order

Although it’s hard to work out the coefficients by hand, in this section two coefficients are worked out

in second order to give an idea of how this process should be carried out. The rest of the coefficients

will be given to compare for similarities between them.

For a second order expansion the coordinate expansions are given by

x(z) = xi+z · x′i+a001(z) · x3+a002(z) · x23+a011(z) · y′i · x3+a101(z) · x′i · x3 (3.10)

x′(z) = x′i+a
′
001(z) · x3+a′002(z) · x23+a′011(z) · y′i · x3+a′101(z) · x′i · x3 (3.11)

x′′(z) = a′′001(z) · x3+a′′002(z) · x23+a′′011(z) · y′i · x3+a′′101(z) · x′i · x3 (3.12)

y(z) = yi +z · y′i+b001(z) · x3+ b002(z) · x23+b011(z) · y′i · x3+ b101(z) · x′i · x3 (3.13)

y′(z) = y′i+b
′
001(z) · x3+ b′002(z) · x23+b′011(z) · y′i · x3+ b′101(z) · x′i · x3 (3.14)

y′′(z) = b′′001(z) · x3+ b′′002(z) · x23+b′′011(z) · y′i · x3+ b′′101(z) · x′i · x3 (3.15)

The expansion of the shape function ~R is given by

Ru(x, y, z) = Ru
000(z) +Ru

100(z) · (x− xi) +Ru
010(z) · (y − yi).

Note that for a second order expansion of the trajectory, only the first order expansion of ~R is

needed. This is because the coefficients in x′′(z) and y′′(z) only have products of one or two terms.

By definition, one of the x3’s comes from the magnetic field expansion. So when we compare for

coefficients of products of equal order, we only have to look for terms that consist of one factor of x′i,

y′i or x3. And because second order only adds squared terms to the expansion, a first order expansion

of ~R is sufficient.

Using a similar reasoning we can conclude that we only the need the first term in the expansion of

the square root in the equations of motion, i.e.
√

1 + x′2 + y′2 = 1.

The magnetic field expansions can then be determined from equation (2.4) and are given by

Bx

Bρ
= x3 ·

(
∂

∂y
Rz − ∂

∂z
Ry

)
= x3 · [Rz

010 +Rz
110 · (x− xi) +Rz

020 · (y − yi)−R
y
001 −R

y
101 · (x− xi)−R

y
011 · (y − yi)] (3.16)

By

Bρ
= x3 ·

(
∂

∂z
Rx − ∂

∂x
Rz

)
= x3 · [Rx

001 +Rx
101 · (x− xi) +Rx

011 · (y − yi)−Rz
100 −Rz

200 · (x− xi)−Rz
110 · (y − yi)] (3.17)

Bz

Bρ
= x3 ·

(
∂

∂x
Ry − ∂

∂y
Rx

)
= x3 · [Ry

100 +Ry
200 · (x− xi) +Ry

110 · (y − yi)−Rx
010 −Rx

110 · (x− xi)−Rx
020 · (y − yi)] (3.18)

Note that the z-dependence of all coefficients Ru
n1n2n3

is kept implicit.

Let’s restate the formulas of the equations of motion from chapter 2 as we will need them a lot:

x′′ =
1

Bρ

(
y′Bz − (1 + x′2)By + x′y′Bx

)
(3.19)

y′′ = − 1

Bρ

(
x′Bz − (1 + y′2)Bx + x′y′By

)
(3.20)

14



Chapter 3 The algebraic map

As an example to show how the coordinate coefficients should be obtained, let’s determine a′′001(z).

Looking at equation (3.12), we see that the product that belongs to a′′001(z) is x3. As mentioned

before, one factor of x3 comes from the magnetic field expansions by definition. So we are looking

for terms that do not contain any factor of x′i, y
′
i or x3. Since both x′(z) and y′(z) only have terms

containing these factors, the only term in equation (3.19) that we need to check is −By. The terms

in equation (3.17) without any any factor of x′i, y
′
i or x3 are Rx

010 and −Ry
001. We conclude that

a′′001(z) = −Rx
001(z) +Rz

100(z).

Let’s determine another coefficient to show how complicated this procedure can become. From

equation (3.12) we find that the product that belongs to a′′002(z) is x23. Now, besides the term −By,

we also need to consider y′Bz. Note that x′2 and x′y′ cannot contain a term with single factor of x3.

In equation (3.14) there is only one term with a single x3, namely b′001(z). There is no term without

any of the variables. The next thing we need to do is look at Bz/(Bρ) and again search for terms

without any of the three variables. We find that the first part of a′′002(z) is b′001(z)·[Ry
100(z)−Rx

010(z)].

For the second part of a′′002(z), we again turn to −By. Notice that we now need to look for terms that

contain a second factor of x3. At first sight it might seem that there aren’t any, but remember that

x and y are expansions as well, i.e. equations (3.10) and (3.13). In the expansion of x(z) and y(z)

we find that the terms that contain a single factor of x3 are a001(z) and b001(z), respectively. Hence,

the second part of a′′002 is −a001(z) ·Rx
101(z) +a001(z) ·Rz

200(z)− b001(z) ·Rx
011 + b001(z) ·Rz

110(z). We

finally conclude that

a′′002(z) = −b′001(z) ·Rx
010(z) + b′001(z) ·Ry

100(z)− a001(z) ·Rx
101(z) + a001(z) ·Rz

200(z)

− b001(z) ·Rx
011 + b001(z) ·Rz

110(z).

The other coefficients can be found in a similar manner. All second derivatives of the coordinate

expansion coefficients up to second order are

a′′001(z) = −Rx
001(z) +Rz

100(z)

b′′001(z) = −Ry
001(z) +Rz

010(z)

a′′002(z) = −b′001(z) ·Rx
010(z) + b′001(z) ·Ry

100(z)− a001(z) ·Rx
101(z) + a001(z) ·Rz

200(z)

− b001(z) ·Rx
011 + b001(z) ·Rz

110(z)

b′′002(z) = a′001(z) ·Rx
010(z)− a′001(z) ·Ry

100(z)− a001(z) ·Ry
101(z) + a001(z) ·Rz

110(z)

− b001(z) ·Ry
011 + b001(z) ·Rz

020(z)

a′′011(z) = −z ·Rx
011(z) + z ·Rz

110(z)−Rx
010(z) +Ry

100(z)

b′′011(z) = −z ·Ry
011(z) + z ·Rz

020(z)

a′′101(z) = −z ·Rx
101(z) + z ·Rz

200(z)

b′′101(z) = −z ·Ry
101(z) + z ·Rz

110(z) +Rx
010(z)−Ry

100(z)

3.5 Example: Constant magnetic field

Now that the second derivatives of the coordinate expansion coefficients are determined, we will end

this chapter by using the obtained results to give an easy example. Assume that we have a constant

magnetic field of 1.05 T in the y-direction, i.e. By = 1.05 and Bx = Bz = 0. Using equation (2.1) we
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Chapter 3 The algebraic map

can determine a possible form of ~A. It can be verified by the reader that ~A = (1.05z, 0, 0) satisfies
~B = ∇× ~A. Then

~R =
~A

B
= (z, 0, 0).

From equation (3.7) we then find that Rx
001 = 1 and all other coefficients are 0. Inserting this into

the coefficients from section 3.4, we find that all coefficients of x′′(z) and y′′(z) are zero except for

a′′001(z). Integrating twice with respect to z gives

a001(z) = −1

2
z2.

As explained in section 3.1, the integration constants are already incorporated in the Taylor expanded

maps x(z) and y(z). So we can ignore the integration constants of a001(z) here, i.e. set them to 0.

Notice that in this case we could have integrated the coefficients a′′klm(z) and b′′klm(z) on the forehand,

since the coefficients of Ru don’t depend on z. In general this is not the case and hence the value

of the coefficients of x(z) and y(z) can only be determined after the magnetic field coefficients have

been found. Since these coefficients depend on the initial conditions of the particle, we can only

determine the second derivatives of the coefficients on forehand. This means that the integration of

a′′klm(z) and b′′klm(z) has to be done for every trajectory individually.

Finally, the Taylor expanded maps are given by

x(z) = xi + z · x′i −
1

2
z2 · x3

y(z) = yi + z · y′i

Note that y(z) is just the drift transformation. This makes sense as we only have a magnetic field

in the y-direction. Also, the maps are very simple since we have a simple magnetic field. For more

complex magnetic fields, these maps are expected to be more complex as well.

Since we are dealing with a constant magnetic field, the particle will follow a circular orbit with

radius ρ = p/(Bq). To show that the method gives the correct results, we can do a Taylor series

expansion of the exact trajectory. For a charged particle entering the magnetic field at ~x = (0, 0, 0)

perpendicularly, the trajectory can be described by

x(z) = ρ−
√
ρ2 − z2.

The second order Taylor expansion of x(z) around z0 = 0 is then given by

x(z) = x(0) + x′(0) · (z − 0) +
x′′(0)

2
· (z − 0)2 = − z

2

2ρ
.

Note that this is exactly a001(z), since ρ = 1/x3. So, we see that our method produces the same

approximation as a Taylor expansion of the exact trajectory would give.

To finish our example, let’s consider a muon entering the magnetic field at xi = yi = 0 perpendicularly

(x′i = y′i = 0) with a velocity of v = 2.997 ·108 m/s. The value of x3 can be calculated using equation

(2.10): x3 ≈ −0.0740089 m−1. The bending radius of this particle is approximately 13.5 meters.

To see how accurate the obtained algebraic map is, we can compare it with the exact trajectory.

As can be seen in figure 3.1, the second order solution already is a pretty good approximation for

the first few meters. Only for larger distances the difference between the exact trajectory and the

approximation becomes significant. The absolute error for the second order approximation is plotted

in figure 3.2.
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Figure 3.1: x(z)-plot of the Taylor expanded map (red) and the exact trajectory (blue) over a
distance of 10 meters. The plotted trajectories are for a muon with a velocity of 2.997 · 108 m/s

and a field strength of 1.05 T.
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Figure 3.2: The error in the approximation over a distance of 10 meters. Notice that especially
in the first few meters, the error is very small. At z = 2 meters, the approximation is only 0.82

millimeters off.

It should be noted that in this example we have used the (approximately) maximum field strength

that can be found in the LHCb magnet (figure 1.2). For lower field strengths the bending radius ρ

will be larger and hence x3 will be smaller. This results in faster convergence. Also, the expanded

map in figure 3.1 is only second order. As we will see in the next chapter, the result will be even

better for higher order expansions (this will of course increase the computation time).

We can compute that after 2 meters the error in the approximation is still only 0.82 millimeters.

This would suggest that it might be a good idea to split up the magnet into smaller segments and

apply the method to each segment individually. This could possibly give high precision at low order

approximations. This is left for future research.
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Chapter 4

Determination of higher orders

In this chapter a description is given of what a Mathematica code that can be used to determine

(the second derivatives of) the coordinate coefficients might look like. Then, some results that can

be obtained using this Mathematica code are given.

4.1 Mathematica code to determine higher orders

In this section the Mathematica code that can be used to determine the coordinate coefficients is

discussed step-by-step. The code is split up into three logical parts. The first part determines the

expansion of the magnetic field. The second part determines the expansion of the trajectory. The last

part puts everything together and determines the second derivatives of the coordinate coefficients.

The complete script can be found in appendix B.

The code starts by defining the order for which the coefficients should be determined. The order is

defined in n.

4.1.1 Taylor expansion of the magnetic field

The first part of the code starts by creating the Taylor series expansion of the magnetic field. First,

we need to determine which coefficients Rn1n20 are needed in nth order approximation, i.e. we need

every combination of (n1, n2) such that n1 +n2 < n (we have discussed in section 3.4 why we can do

the expansion of the magnetic field in one order less). These combinations are stored in magCoeff[i].

Since the code uses multiple iteration variables and the value of some of them is needed in later

parts, the iteration variables will not be reused for different for-loops and are labeled by iter#.

iter1 = 0;

For[Subscript[n, 1] = 0, Subscript[n, 1] < n, Subscript[n, 1]++,

For[Subscript[n, 2] = 0, Subscript[n, 2] < n, Subscript[n, 2]++,

If[Subscript[n, 1] + Subscript[n, 2] < n, iter1 ++;

magCoeff[iter1] = {Subscript[n, 1], Subscript[n, 2], 0}]]]

Now that the possible combinations of n1 and n2 are defined, we can define the expansion of Ru.

For this we use equation (3.8) from section 3.2. Note that x and y are called xf and yf in the code

respectively. As mentioned before, this is not necessarily the case, but it is in principle the only

result we are looking for.
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As a final remark, note that Rcoeff is made dependent on x, y and z. This is because the derivatives

of ~R are needed in the next step.

R[u_] = Sum[(Rcoef[u, x, y, z, magCoeff[i]] *

(xf -xi)^ magCoeff[i][[1]] * (yf-yi)^ magCoeff[i][[2]]) /

(( magCoeff[i][[1]])! * (magCoeff[i][[2]])!) , {i, iter1 }];

We now define the relation between ~B and ~R. For this we directly use equation (2.4). Notice that

the code omits the division by the magnetic rigidity (Bρ).

B[1] = x3 * (D[R[3], y] - D[R[2], z]);

B[2] = x3 * (D[R[1], z] - D[R[3], x]);

B[3] = x3 * (D[R[2], x] - D[R[1], y]);

As a final step, we need to “clean up” the R-coefficients. The Rcoeff are not defined as the derivatives

of ~R (equation (3.7)) but just as functions of x, y, z. So, taking the derivative of R in the definition

of the magnetic field will cause the derivatives of R to be displayed in two places, i.e. Rcoeff will

be of the form

Rcoeff(0,n21,n22,n23,(0,0,0))[u, x, y, z, (n11, n12, n13)],

where n21, n22 and n23 are the derivatives from the definition of the magnetic field, while n11, n12

and n13 are the derivatives from the expansion of R. Hence, we will recombine the derivatives n21,

n22 and n23 with n11, n12 and n13 respectively. Also, we don’t need Rcoeff to be dependent on

x, y, z anymore. Rcoeff will now be of the form

Rcoeff[u, (n1, n2, n3)].

\!\(\* SuperscriptBox [\( Rcoef\),

TagBox[

RowBox [{"(",

RowBox [{"0", ",", "n21_", ",", "n22_", ",", "n23_", ",",

RowBox [{"{",

RowBox [{"0", ",", "0", ",", "0"}], "}"}]}] , ")"}],

Derivative],

MultilineFunction ->None ]\)[u_, x, y, z, {n11_ , n12_ , n13_}] :=

R[u, {n11 + n21 , n12 + n22 , n13 + n23}];

Rcoef[u_, x, y, z, {n1_ , n2_ , n3_}] := R[u, {n1 , n2 , n3}];

4.1.2 Taylor expansion of the trajectory

Similar to the previous subsection, we start by determining which coefficients aklm and bklm are

needed in nth order approximation, i.e. creating every combination of (k, l,m) such that k+l+m ≤ n.

Note that we can ignore every coefficient with m = 0, since in this case there is no bending (see

section 3.1). The combinations are stored in posCoeff[i].

iter2 = 0;

For[k = 0, k <= n, k++,

For[l = 0, l <= n, l++,

For[m = 1, m <= n, m++,

If[k + l + m <= n, iter2 ++;

posCoeff[iter2] = {k, l, m}]]]]

Now that all possible coefficients of the coordinate expansion are obtained, we can define the Taylor

series expansion of x and y. For this we use equations (3.1) and (3.4), respectively.
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xf = xi + z*xi ’ +

Sum[aCoeff[z, posCoeff[i]]*(xi ’)^ posCoeff[i][[1]]*

(yi ’)^ posCoeff[i][[2]]* x3^posCoeff[i][[3]] , {i, iter2 }];

yf = yi + z*yi ’ +

Sum[bCoeff[z, posCoeff[i]]*(xi ’)^ posCoeff[i][[1]]*

(yi ’)^ posCoeff[i][[2]]* x3^posCoeff[i][[3]] , {i, iter2 }];

We also need to define the expansion of the square root term, equation (3.9). Note that in the

code the square root is expanded up to nth order. This is of course way too high, but this at least

guarantees that we will not miss any terms from square root.

sqrtXY[x_, y_] := Sqrt[1 + x^2 + y^2];

sqrtXY = Sum [1/i! Sum[Binomial[i, k] * D[sqrtXY[a, b], {a, i-k}, {b, k}] *

D[xf, z]^(i-k) * D[yf, z]^k, {k, 0, i}], {i, 0, n}] /. {a -> 0, b-> 0};

Now that all expansions are defined, we can define the equations of motion using equations (2.6) and

(2.7). In the definition of the magnetic field we omitted the division by (Bρ), so we need to omit it

in the equations of motion as well.

EOMx = sqrtXY * (D[yf, z] * B[3] - (1 + (D[xf, z])^2) * B[2] +

D[xf, z] * D[yf, z] * B[1]);

EOMy = -sqrtXY * (D[xf, z] * B[3] - (1 + (D[yf , z])^2) * B[1] +

D[xf, z] * D[yf, z] * B[2]);

4.1.3 Comparing coefficients

In the script, the variables EOMx and EOMy are now long equations of (the derivatives of) the coefficients

aklm and bklm, the coefficients Ru
n1n2n3

, and x′i, y
′
i and x3. The coefficients a′′klm and b′′klm can be

obtained by comparing the coefficients of the products x′ki · y′li ·xm3 in x′′f with EOMx (section 3.3). We

do the same thing in y′′f and EOMy.

First we need to determine all possible products x′ki · y′li · xm3 that appear in x′′f and y′′f . We can use

the combinations of (k, l,m) that are stored in posCoeff[i] to create these products. These products

are stored in product[i].

For[i = 1, i <= iter2 , i++,

product[i] = x3^posCoeff[i][[3]] * (xi ’)^ posCoeff[i][[1]] *

(yi ’)^ posCoeff[i][[2]]]

To obtain all (second derivatives of the) coefficients of the trajectory, we use the function Coefficient[ ]

to search for the coefficients of every product stored in product[i]. The results are stored in

EOMxCoeff[i] and EOMyCoeff[i]. Notice that if the product is for example only x3, then the function

also takes products of x′i and y′i as part of the coefficient. These terms don’t belong to the coefficient,

so we set x′i and y′i to zero afterwards to get rid them.

For[i = 1, i <= iter2 , i++, EOMxCoeff[i] = Coefficient[EOMx , product[i]]

/. {Derivative [1][xi] -> 0, Derivative [1][yi] -> 0}]

For[i = 1, i <= iter2 , i++, EOMyCoeff[i] = Coefficient[EOMy , product[i]]

/. {Derivative [1][xi] -> 0, Derivative [1][yi] -> 0}]

We have now determined the equations of the second derivatives of all coefficients of the coordinate

expansions. These equations can be used by a different program to determine the trajectory of a

(charged) particle in a magnetic field. This program needs to determine the coefficients Ru
n1n2n3

and

insert them into the above derived equations. These equations then have to be integrated twice with
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Figure 4.1: x(z)-plot of the Taylor expanded map for the orders n = 2 (blue), n = 3 (green) and
n = 5 (red) together with the exact trajectory (black) over a distance of 10 meters. The plotted

trajectories are for a muon with a velocity of 2.997 · 108 m/s and a field strength of 1.05 T.

respect to z to obtain the coefficients aklm(z) and bklm(z). Finally, inserting these coefficients into

the Taylor expansion of the trajectory will give the desired result.

4.2 Example: Constant magnetic field

Continuing with the example from section 3.5, we can use the derived code to determine higher order

approximations of the trajectory of a particle in a constant field. Figure 4.1 shows the trajectory

for the orders n = 2, 3 and 5 together with the exact solution. There is a clear improvement in the

precision of the approximations for higher orders. Especially the fifth order approximation looks very

promising. The errors in the approximations are shown in figure 4.2. After five meters, the error in

the fifth order approximation is still only 0.2 millimeters.

4.3 Another example

The previous example used the most simple type of magnetic field, i.e. a constant field. This meant

that we had only one nonzero coefficient Ru
n1n2n3

. Also, since we had a constant magnetic field, the

value of x3 was independent of the choice of the reference point at which it was defined. In the next

example we will try to use a more complex field to show what the possibilities are and also what

problems might arise when using this method. We will conclude that it is currently too difficult to

come up with a good example that is relevant to the LHCb magnet. We will finish this section by

using the method on a quadrupole magnet.

We want to use a magnetic field that sort of resembles to the actual field in the LHCb magnet.

Looking at figure 1.2 would suggest that a Gaussian-shaped field in the y-direction would be a good

starting point. So, we want to use a field of the form

By = a+ be−
(z−c)2

2d2 ,
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Figure 4.2: The error in the approximation over a distance of 10 meters for the orders n = 2
(blue), n = 3 (green) and n = 5 (red). At z = 5 meters, the error in the third order approximation
is 0.2 centimeters; the error in the fifth order approximation is only 0.2 millimeters. Also, at z = 10

meters, the fifth order approximation is still only 7.9 centimeters off.

for some constants a, b, c, d. But this is where things become tricky. The coefficients Ru
n1n2n3

that

correspond to such a field will be very hard (if not impossible) to integrate. This example is not

going to work.

The magnetic field of the LHCb magnet is not completely known, but rather it is approximated to

high accuracy. This approximation could for instance be done using a development in series of basis

functions as shown by Hicheur and Conti [12]. Perhaps we should try magnetic field equations that

are polynomials, as these are more realistic to be used and also are much easier to integrate. But

this will give problems as well. Note that, to find ~R, we divide ~A by the magnitude of the field. This

will result in fractions of polynomials. Logarithmic terms will arise that give complex values when

integrating the coefficients Ru
n1n2n3

. A trajectory with a complex part is not something we want.

This is not going to work either.

A possible solution to avoid this last problem is to leave the magnetic field equations for what they

are and directly define the components of the shape function. In this way we know for sure that

the method will not run into problems that are caused by the manipulation of the magnetic field. It

would be a final resort to at least test how well the method functions. Unfortunately, it’s not easy

to find equations for ~R that result in a decent magnetic field as well. We will leave this as possible

future research.

It should be clear that we are interested in a field that changes in the longitudinal direction. As

mentioned, this results in too many issues. So, we will not continue with this anymore. What we

can do, is test the method for a field that is constant in the z-direction, but does have a x and

y-dependence. An example of such a field that is much used in accelerator physics is the quadrupole

field. A quadrupole field has the nice property that its magnitude grows rapidly with the radial

distance from its longitudinal axis, making it very useful for particle beam focusing. The general

form of a quadrupole field is given by

~B = (Ky,Kx, 0),

for some field gradient K.
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Figure 4.3: Plots of the Taylor expanded map for the orders n = 2 (blue), n = 3 (green) and
n = 5 (red) together with the exact trajectory (black) over a distance of 10 meters. The plotted
trajectories are for a muon with a velocity of 2.997 ·108 m/s. Notice that The precision is not really

improved by including higher order terms.

Note that this magnetic field has a focusing effect in the xz-plane, while it is defocusing in the yz-

plane. A possible vector potential that corresponds to this field and satisfies Maxwell’s equations

is
~A = (Kxz, 0,Kx2/2).

We again use a muon entering the field perpendicularly. Only this time the muon enters the field

at x = y = 0.1 meters. This is because at the center of the magnet, i.e. x = y = 0, the field

is zero. The approximations for second, third and fifth order are shown in figure 4.3. The exact

solution is obtained using the Euler method with very small step size (appendix A). The value of x3
is defined along the line (x, y) = (0.1, 0.1). Note that the value of x3 does not depend on z. To show

how the precision of the approximations behave over a distance of 10 meters, the errors between the

approximations and the exact trajectories is shown in figure 4.4.

23



Chapter 4 Determination of higher orders

0 2 4 6 8 10
z (m)0

5

10

15

error (mm)

(a) error in the xz-plane

0 2 4 6 8 10
z (m)0

5

10

15

error (mm)

(b) error in the yz-plane

Figure 4.4: Errors in the Taylor expanded maps for the orders n = 2 (blue), n = 3 (green) and
n = 5 (red) over a distance of 10 meters.

It can be seen in figures 4.3 and 4.4 that the final precision is already reached at low order, which

illustrates the fast convergence of this approach. Notice that in the y(z)-plot the third order approx-

imation shows slightly worse results than the second order approximation. It is also interesting to

note that in the xz-plane the fifth order approximation almost completely overlaps with the third

order, while in the yz-plane the fifth order overlaps with the second order approximation.
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Conclusion

We have shown a possible method that can be used to track charged particles through an arbitrary

magnetic field. The final goal was to use this method on the magnetic field of the LHCb detector.

We have developed a Taylor expanded function that maps the initial position and transverse angle

variables to the final position and angles. A nice feature of this method is that it can be programmed

on parallel architectures. This will drastically increase the computation speed. The initial idea was

to compute the expansion coefficients aklm(z) and bklm(z) on forehand completely, so that we only

would need to fill in the initial conditions of the particle to determine its position and velocity at the

end of the magnet. Unfortunately, it turned out that this is not possible with our setup. However,

the second derivatives can be determined on forehand, which already saves a lot of computation time.

Then, the only task that is left is to insert the magnetic field coefficients Ru
n1n2n3

into the second

derivatives a′′klm(z) and b′′klm(z), and integrate these coefficients twice with respect to z.

An expansion in three variables is assumed to be more advantageous then in four variables. The

computation time will be less and the determination of the expansion coefficients aklm(z) and bklm(z)

will be less complicated then it would be when expanding in four variables. But as it turned out, this

method is very tricky. The result can be very dependent on the choice of the expansion parameter

x3. There is a lot of room for improvement here, especially in the definition of the reference point

at which x3 is defined. But the introduction of x3 also brought advantages. Most importantly,

parameters like the charge, momentum and the magnetic field are all defined inside this one variable.

This means that we don’t have to care about these parameters anywhere else in the expansion. This

also results in faster convergence.

For a constant field, this method shows decent results. This is because, for such a field the value of

x3 is the same, regardless of the reference point at which we define x3. Unfortunately, determining

the trajectory of a particle in a constant magnetic field is something we can do without a program:

the trajectories are just circles.

Although this method should work for arbitrary fields, we saw that it is hard to come up with

an example that is relevant to the LHCb magnet. Perhaps we should put some restrictions on the

magnetic field that is put in. Or maybe this issue can be resolved by making some minor adjustments

to the method.

One thing to note is that this method works better when the bending radius is large, i.e. when

x3 is small. We also noted that the error in the approximation grows stronger when the distance

over which the particle travels becomes larger. A possible way to improve this method to get higher

precision is to determine the map for smaller segments. Splitting up the whole magnet into segments
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Chapter 5 Conclusion

of 1 meter or 10 centimeters and determining the trajectory for each segment individually would

probably still be faster than integrating over the whole magnet using numerical integration.

All in all, we can say that this method has potential but is currently not ready to be used to track

charged particles through the LHCb magnet.
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Appendix A

Euler method

The Euler method is a method for solving ordinary differential equations (ODEs) with a given initial

value. Although it is not the most accurate method (it does not converge very fast), it is very easy

to program and when using a small enough step size a high precision will be obtained anyway. Since

this method is only used for comparison with the expanded map, the long computation time that

will arise is not an issue.

To use the Euler method, we need an ODE of the form

y′(t) = f(t, y(t)), y(t0) = y0,

where y0 is the value at the initial point t = t0. For a step size h, we can define the time tn = t0 +nh.

The general form of one step from tn to tn+1 is then given by

yn+1 = yn + hf(tn, yn).

To determine the exact trajectory of a charged particle in a magnetic field, we can again use the

Lorentz force equation (2.5). Note that we are dealing with vectors, as we want to know all three

position components. We now have two ODEs that are related to each other:

~v′(t) =
q

γm

[
~v(t)× ~B(~x(t))

]
, ~v(t0) = ~v0,

~x′(t) = ~v(t), ~x(t0) = ~x0.

One step in the Euler method will then be

~vn+1 = ~vn + h · q

γm

[
~vn × ~B(~xn)

]
, (A.1)

~xn+1 = ~xn + h · ~vn. (A.2)

Equations (A.1) and (A.2) are implemented in a Mathematica script that can be used to determine

the exact trajectory.
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Appendix A Euler method

(* Constants *)

cLight = 299792458; (* m/s *)

eCharge = 1.60217662*10^ -19; (* C *)

(* Parameters *)

mass = 1.88353*10^ -28; (* kg (muon mass) *)

velocity = 2.997*10^8; (* m/s *)

q = -eCharge; (* C *)

pos [0] = {0, 0, 0};

vel [0] = {0, 0, velocity };

gamma = 1 / Sqrt[1 - (Norm[vel [0]] / cLight )^2];

Bfield [{x_,y_,z_}] = {0, 1.05, 0}; (* T *)

(* Setting step size*)

time = 10^ -7;

steps = 10^4;

h = time/steps;

(*Euler integration *)

Do[{vel[n] = vel[n-1] + h * (q / (gamma * mass)) *

Cross[vel[n-1], Bfield[pos[n-1]]] ,

pos[n] = pos[n-1] + h * vel[n-1]}, {n, 1, steps}]

position = Array[pos ,steps ];

xPos = position [[All ,1]];

yPos = position [[All ,2]];

zPos = position [[All ,3]];

xyPlot = ListLinePlot[Transpose [{xPos , yPos}], AxesLabel -> {"x (m)", "y (m)"}];

xzPlot = ListLinePlot[Transpose [{zPos , xPos}], AxesLabel -> {"z (m)", "x (m)"},

PlotRange -> {{0, 10}, Automatic }];

yzPlot = ListLinePlot[Transpose [{zPos , yPos}], AxesLabel -> {"z (m)", "y (m)"},

PlotRange -> {{0, 10}, Automatic }];
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Mathematica code for determining

coefficients

(* Define order*)

n = 2;

(*1: Taylor expansion of the magnetic field*)

iter1 = 0;

For[Subscript[n, 1] = 0, Subscript[n, 1] < n, Subscript[n, 1]++,

For[Subscript[n, 2] = 0, Subscript[n, 2] < n, Subscript[n, 2]++,

If[Subscript[n, 1] + Subscript[n, 2] < n, iter1 ++;

magCoeff[iter1] = {Subscript[n, 1], Subscript[n, 2], 0}]]]

R[u_] = Sum[(Rcoef[u, x, y, z, magCoeff[i]] *

(xf -xi)^ magCoeff[i][[1]] * (yf-yi)^ magCoeff[i][[2]]) /

(( magCoeff[i][[1]])! * (magCoeff[i][[2]])!) , {i, iter1 }];

B[1] = x3 * (D[R[3], y] - D[R[2], z]);

B[2] = x3 * (D[R[1], z] - D[R[3], x]);

B[3] = x3 * (D[R[2], x] - D[R[1], y]);

(*Clean up coefficients *)

\!\(\* SuperscriptBox [\( Rcoef\),

TagBox[

RowBox [{"(",

RowBox [{"0", ",", "n21_", ",", "n22_", ",", "n23_", ",",

RowBox [{"{",

RowBox [{"0", ",", "0", ",", "0"}], "}"}]}] , ")"}],

Derivative],

MultilineFunction ->None ]\)[u_, x, y, z, {n11_ , n12_ , n13_}] :=

R[u, {n11 + n21 , n12 + n22 , n13 + n23}];

Rcoef[u_, x, y, z, {n1_ , n2_ , n3_}] := R[u, {n1 , n2 , n3}];

(*2: Taylor expansion of the trajectory *)

iter2 = 0;

For[k = 0, k <= n, k++,

For[l = 0, l <= n, l++,

For[m = 1, m <= n, m++,

If[k + l + m <= n, iter2 ++;

posCoeff[iter2] = {k, l, m}]]]]

xf = xi + z*xi ’ +

Sum[aCoeff[z, posCoeff[i]]*(xi ’)^ posCoeff[i][[1]]*

(yi ’)^ posCoeff[i][[2]]* x3^posCoeff[i][[3]] , {i, iter2 }];

yf = yi + z*yi ’ +

Sum[bCoeff[z, posCoeff[i]]*(xi ’)^ posCoeff[i][[1]]*

(yi ’)^ posCoeff[i][[2]]* x3^posCoeff[i][[3]] , {i, iter2 }];

(* Taylor expansion of square root term*)

29



Appendix B Mathematica code for determining coefficients

sqrtXY[x_, y_] := Sqrt[1 + x^2 + y^2];

sqrtXY = Sum [1/i! Sum[Binomial[i, k] * D[sqrtXY[a, b], {a, i-k}, {b, k}] *

D[xf, z]^(i-k) * D[yf, z]^k, {k, 0, i}], {i, 0, n}] /. {a -> 0, b-> 0};

(* Equations of motion *)

EOMx = sqrtXY * (D[yf, z] * B[3] - (1 + (D[xf, z])^2) * B[2] +

D[xf, z] * D[yf, z] * B[1]);

EOMy = -sqrtXY * (D[xf, z] * B[3] - (1 + (D[yf , z])^2) * B[1] +

D[xf, z] * D[yf, z] * B[2]);

(*3: Compare coefficients *)

(* Create possible products *)

For[i = 1, i <= iter2 , i++,

product[i] = x3^posCoeff[i][[3]] * (xi ’)^ posCoeff[i][[1]] *

(yi ’)^ posCoeff[i][[2]]]

(*Find coefficients of EOMs*)

For[i = 1, i <= iter2 , i++, EOMxCoeff[i] = Coefficient[EOMx , product[i]]

/. {Derivative [1][xi] -> 0, Derivative [1][yi] -> 0}]

For[i = 1, i <= iter2 , i++, EOMyCoeff[i] = Coefficient[EOMy , product[i]]

/. {Derivative [1][xi] -> 0, Derivative [1][yi] -> 0}]
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