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Abstract

The NASA Kepler Space mission had as main objective to discover ex-
trasolar planets by observing over 300,000 stars (Barentsen, 2018). This
results in light curves of those 300,000 stars, which need to be analyzed
individually for presence of exoplanets. With the upcoming TESS mis-
sion more than 2,000,000 stars will be observed (Ricker et al., 2010). In
order to efficiently analyze all that data this thesis puts forth an ap-
proach to automate this analysis using a machine learning algorithm,
a convolutional neural network. The objective of this thesis is to ex-
plore the possibilities and accuracy of such an algorithm in the field
of exoplanet detection. There will be made use of a high leven neu-
ral network framework called Keras, which is built upon the Tensor-
Flow library. The code made for this thesis can be found at https:

//github.com/phicoder/exoplanet-detection.
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1 Introduction

Exoplanets are planets that are situated outside of our solar system. There is an
abundance of exoplanets, which follows from the fact that with the Kepler mis-
sion as of April 2018 there have been discovered over 2,200 confirmed exoplanets
(Johnson, 2018), while having analyzed over 300,000 stars (Barentsen, 2018). It
can be seen that this ratio is slightly more than 1 exoplanet per 150 stars. If
we extrapolate this to our own galaxy, which contains about 2.5 × 1011 stars
(Masetti, 2018), we could potentially have 1.7 × 109 exoplanets in our galaxy.
Some of those planets may be earth-like and may even contain life. The main
focus of exoplanet discovery has become finding those type of earth-like planets.
Analyzing that much data is a quite complicated problem, since the options to
do this using algorithms are limited. Therefore, certain initiatives like ’Planet
Hunters’ have been set up, where a preselection of exoplanet candidates gets
made by volunteers, through a peer reviewing system. However, the new TESS
satellite is estimated to observe 2,000,000 stars (Ricker et al., 2010), which will
take much more time to analyze than the Kepler mission. Moreover, analyzing
this data manually is also prone to errors. For these reasons it might be inter-
esting to look at machine learning algorithms in order to speed up this process.

A popular approach to machine learning is by using neural networks. Neural net-
works are a collection of neurons (nodes), organized in matrices, which slightly
resembles the functioning of the brain, a set of connected neurons. In most cases
of neural networks the process consists of matrix multiplications. By adjusting
the strength of the connections the neural network are able to learn from the
data that is given, called training data. Neural network learn to recognize fea-
tures in that data. Therefore, a neural network can be classified as a pattern
recognizing algorithm. The more complex the network is, the more complex fea-
tures the network is able to recognize. However, more complex features require
more complex networks and more data, which in turn requires more computing
power. The mathematics and techniques behind neural networks can be quite
complex. However, several programming frameworks have been made to develop
neural networks more easily. In this paper, the high level neural network library
Keras for Python3 is used (reference: https://keras.io/). This library makes
use of the lower level TensforFlow (reference: https://www.tensorflow.org/)
library. There are many alternatives, but Keras is very well-documented and
provides all the functionality required in this thesis. Moreover, code can be
ported easily to different machines and GPUs can be used without many extra
proceedings.

For exoplanet detection neural networks could potentially be able to detect the
specific features present in the light curves indicating an exoplanet is present.
In the case that an automated pipeline could be set up to detect exoplanets
from light curves, this would decrease the need for volunteers and increase effi-
ciency and accuracy of finding exoplanets. In this paper the goal is to explore
the use of neural networks in exoplanet detection and create a low threshold
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introduction for astronomers with an interest in this topic. This paper will try
to give an answer to the question, is it possible to accurately detect exoplanets
from light curves using convolutional neural networks? The hypothesis is that
this should be possible, since light curves of stars with orbiting exoplanets show
certain features, which a neural network should be able to pick up.

2 Theory

2.1 Exoplanet detection

There are several methods to detect exoplanets of which the transit method
(Deeg, 1998) is the most prominent. The focus of this paper will be on the
transit method. The transit method looks at the brightness of a star at regular
intervals. The result is a brightness versus the time plot, such a plot is called a
light curve. An example of such a plot can be seen in figure 1.

Figure 1: An idealized representation of a light curve, from (Vanderburg, 2017).
It contains a transiting planet, which is characterized by the repeating dips in
brightness.

If an exoplanet would transit the star, that is being in between the observer and
the host star, the brightness shows a dip. The relative size of this dip only de-
pends on the ratio between the frontal surfaces of the host star and the planet,
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assuming we observe from a distance much larger than the radius of the orbit of
the planet. The brightness decreases roughly as much as the amount that the

planet covers the surface of the host star. We can formulate this as ∆ = r2

R2 ,
where ∆ is the brightness decrease, r is the planet radius and R is the host star
radius. If we take as an example the earth transiting the sun seen from another

solar system we get ∆ = (6×103)2

(7×105)2 = 7 × 10−5 = 0.007%. From this we can see

that in order to detect exoplanets, especially earth-sized exoplanets, we need
very precise measurements of the brightness of the star. This is the main reason
why the popularity of the transit method increased with time; the technology
has become more and more available to do these kind of precise measurements.
With the launch of the Kepler mission, the use of this method vastly overtook
other techniques.

The second most used technique is the radial velocity method. When an object
orbits a star, the star also has an orbit. This implies that the star has a radial
velocity. This velocity can be obtained by using the Doppler effect. Using high
precision spectroscopes a shift in spectral lines of the star can be noticed and
therefore its radial velocity can be deduced. This method is sometimes used to
confirm exoplanet candidates found using the transit method.

There are two main disadvantages about the transit method. The first disad-
vantage is that the planet has to have an orbit aligned in such a way that the
planet can be positioned between the host star and the earth. The probability
for this to happen, assuming an eccentricity of 1, we get P = R

d , where d is
the radius of the orbit and R is the radius of the host star, ignoring the size
of the planet. Again, taking as an example the earth orbiting the sun we get

P = 7×105

1.5×108 = 4.7 × 10−3 = 0.47%. A very small change, which means that it
is very likely to see no exoplanets around the host star, but in reality there are.
This disadvantage is counteracted with the possibility to monitor many stars at
the same time.

The second disadvantage is that, because of the tiny dip in the light curve, it is
easy to get false positives. A dip does not necessarily mean that an exoplanet is
transiting. According to Santerne et al. (2012) the false positive rate for Kepler
close-in giant candidates is 35%. For this reason, many exoplanet candidates
require further inspection, with for example the radial velocity method, in order
to confirm if the observed anomaly is truly an exoplanet.
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2.2 Convolutional Neural Networks

Before starting to explain what convolutional neural networks are, I would like
to refer you to the following article: https://pythonmachinelearning.pro/

perceptrons-the-first-neural-networks/.

Neural networks are, in its fundament, a collection of weights, usually ordered
in layers. The first layer is the input layer. This layer can receive a series of
numerical values, the places of the weights are also called nodes, and in the case
of the input layer we talk about input nodes. These values then get multiplied
by the weights and get passed to the next layer, where they get multiplied by
those weights. This goes on until the end is reached, the output layer. The
output is again a set of numerical values, which can be interpreted by the user.

Lets start with the simplest form of a neural network. This type is called a
perceptron, which consists of n input nodes and one output node. A sketch
of a perceptron can be seen in Figure 2. Lets say we have the input values
X = [x1, x2, ..., xn]T , which means we have n inputs and thus n weights. Now
we have the weights W = [w1, w2, ..., wn]. The output is the dot product of these
two matrices, z = X ·W = x1 × w1 + x2 × w2 + ...+ xn × wn. The data is fed
forward into the network, this is where the name feed forward network comes
from. It can be seen that the basics of a neural network is nothing more than
simple linear operations, therefore it is quite easy to compute by a computer. In
order to make the data even more useful, by for example normalizing it, we have
a last step. The value z goes through an activation function, which produces
the final output a. This activation function can be any chosen function, but the

most widely used function is the ReLU, which can be written as a =

{
z, z ≥ 0

0, z < 0
.

Normalization of output is very common practice, in order to do that for example
a sigmoid function can be used. The sigmoid function is written as a = 1

1+e−z .
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Figure 2: Interpretation of a perceptron, from Deshpande (2017). The inputs
get multiplied with each assigned weight, the results get added, so we get one
numerical output z. This output then goes through an activation function,
which gives the final useful result a.

In order for the neural network to give useful output, the weights have to be
changed for the output to match the expected value, the neural network has
to be trained. This usually happens through a process called back propagation,
for which we need labeled data. Labeled data is a set of numerical inputs for
which the output is known. Before training we need to initialize the weights,
this can be done by plugging in random values, but it is possible to have more
tactical initialization values. For example; it is possible to use the weights of
another, already trained network. Now the network has been setup, the training
can start. The labeled data goes through the network after which the output
is compared to the expected output. For this comparison a squared error can
be used, but there are many different mathematical error calculation methods,
the function used to calculate the error is called a loss function. For binary
problems, one best uses a binary cross entropy loss function, which is a cross
entropy loss function (De Boer et al., 2005) tailored for binary problems. This
method is provided by the Keras library. Now the error is known, this can be
used to adjust the weights. It is desired to minimize the error, using a so-called
optimizer. There are many optimizers, but the Adam optimizer has proven to
be a very efficient optimizer for most problems (Kingma and Ba, 2014). This
optimizer is also provided by the Keras library. If we have a weight wi, the new
weight becomes wi = wi(1 − δ), where δ is the given error. In order to back
propagate the error to previous layer, a backwardpass is required which can be
seen in Figure 3.
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Figure 3: Abstraction of a backwardpass, for a two input and one output node,
used in back propagation. The given error δ is multiplied with the weights,
which give the errors for those weights δ1, δ2, which can be used to adjust those
weights respectively.

In order to not let the network stagnate, converging to just one solution that
may not be most appropriate, dropout layers can be added. Moreover, these
layers can prevent over-fitting, which will be discussed later in this paper. A
dropout layer deactivates randomly selected connections during the training
period. This will cause the nodes to be less dependent on each other, since
clusters of nodes will be trained to work by themselves. When finally activating
all the connections, the network consists of clusters of nodes who have been
trained together. The final result is a more robust network that should not be
able to over-fit easily. (Srivastava et al., 2014)

For more complex problems, a bigger neural network is required. A neural
network is very modular, so extra layers can be added and more output nodes
can be used. Take as example a handwritten digit classifier, as input a flattened
matrix (converting a m × p matrix to a n × 1 matrix, where n = m × p) of
grey values representing the image is given. There will be some layers using
the ReLU activation function and a dropout layer. At the end the output gets
normalized by a layer with a sigmoid activation function. Since neural networks
work best using binary output, called one hot encoding, the output would be 10
nodes, where node 1 represents the number 0, node 2 represents the number 1,
etcetera. The output will then be 10 numbers each between 0 and 1, the highest
number (probability) is the best guess of the network.

The efficiency of the handwritten digit classifier can be greatly increased by
using a convolutional neural network. A convolutional neural network can take
as input a 2-dimensional (or a higher dimensional) matrix instead of an n × 1
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matrix. Since the above example, as well as the network in this thesis, have as
input an image, the input will be 2-dimensional which implies a convolutional
neural network can be used. A convolutional neural network usually makes use
of two techniques, called pooling and convolutions. At the end of the network
the matrix is flattened to a 1-dimensional shape and a regular feed foward
neural network can be applied. Pooling is a process with which the size of the
2-dimensional input can be drastically reduced depending on the pooling size.
The image is divided into pieces of the pooling size and for every pool (collection
of pixels) a new output pixel is made. The value for the output pixel can be the
minimum, average or maximum of the pool, called minpooling, average pooling
and maxpooling respectively. If we would take a pooling size of 2 × 2, this
means that the resulting image would be 4 times as small as the input, because
it is halved vertically and horizontally. The part that has the intelligence of
the network are the convolutional layers, in which convolutions happen. For a
convolution a piece of the image is taken, say a k × k fragment, the weights
are applied and a single output is generated. This process is done scanning
the entire image, moving the fragment pixel per pixel across the image. This
process reduces the image size on each side by dk2 e − 1 with k > 2. The ouput
images are called feature maps, since they are supposed to represent a certain
feature that the convolutional neural network learned. A representation of a
convolutional neural network can be seen in Figure 4.

Figure 4: Interpretation of a convolutional neural network by MathWorks
(2018).

Designing a CNN is a non-trivial task. However, one can apply certain rules
and techniques. When setting up a CNN, the first layer will be a convolutional
layer. A convolutional layer generates feature maps which are able to detect
certain patterns. Depending on the number of features and granularity of the
features that need to be detected, the designer can adjust the number of feature
maps and their size. If the features are generally small, the designer can choose
for small maps, e.g. 4x4 maps. If there are a lot of different features to be
detected, the designer can choose to let the layer generate a lot of feature maps.
The more of these maps there are and the bigger they are, the more computing
power they will require, this can also weigh into making design choices. If the
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input is very large, the choice can be made to add some pooling layers. However,
with these layers detail falls away, which can make the network less accurate.
In the end a 1-dimensional matrix is preferred, so the designer can apply a final
feed forward neural network. This last part is mostly used for regularization
and normalization purposes. However, if the task is very complex, the designer
can append a more complex feed forward network. Depending on the amount of
training data the designer should make the network more or less complex; less
data, less complex, otherwise the network will not be able to accurately learn
features. A common issue with neural networks is over-fitting, which means
that the neural network memorizes the training data. This causes the neural
network to get 100% accuracy on the training data, but is not necessarily good
at recognizing the features that the network is required to detect. In order to
reduce over-fitting a dropout layer can be added to the network.
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2.3 Programming a neural network

This section will show how to get started with programming a neural network
by making one using the Keras library. First off a little table with all the layers
and their descriptions.

Layer Description

Dense

A fully connected layer, meaning that all the nodes are
connected to all the nodes in the next layer. In Keras the
first input parameter (x) indicates the number of nodes,

like so Dense(x)

Conv2D

A 2-dimensional convolutional layer. This layer makes x
feature maps of the images of size n × m. In Keras the

syntax is used Conv2D(x, (n,m))

MaxPooling2D

A 2-dimensional pooling layer. A pooling layer takes
n ×m squares of pixels (pools) and transforms them into
one pixel. In the case of a maxpooling layer, the pixel
with the highest value in the pool determines the value of
the single output pixel. Keras uses the following syntax

MaxPooling2D(poolsize = (n,m))

Flatten
A layer that transforms a multidimensional matrix into a
1-dimensional matrix.

Dropout

A layer that deactivates connections between layers ran-
domly with probability p during training. During predic-
tion all the connections are activated again. This layer
can make the network more robust and prevent over-fitting.

Keras uses the following syntax Dropout(p)

At the end of this section the simple network we are going to make is compared to
the network that was made for this thesis. We will program a simple perceptron
which can learn the rules of linear regression. We will be able to let the network
‘understand’ relations in the form of

condition output
ax ≤ y 0 or 1
ax > y 0 or 1

It can be seen that this is a binary classification problem. Also, the advantage of
a neural network is immediately visible; we can solve a general problem without
having to edit the code (if we desire different results, we just need to train on
different data).

11



To start programming the network, we first import TensorFlow and NumPy
and set up the model of a perceptron:

1 from tensorflow import keras
2 import numpy as np
3

4 # Set up a sequential model, with as input an array representing the
5 # layers of the model
6 model = keras.Sequential([
7 keras.layers.Dense(2),
8 keras.layers.Dense(1, activation = ’sigmoid’)
9 ])

As we can see the above model has two input nodes and one output node. A
dense layer represents a fully connected layer, meaning that all the nodes in the
layer are connected to all the nodes in the next layer. In the final layer we use a
sigmoid activation function in order to normalize the output, since we have a bi-
nary classification problem we want output values between 0 and 1. In this case
a sequential model is chosen, since it is a simple feed forward network. One can
also use the functional API that Keras provides to make more complex models
such as “multi-output models, directed acyclic graphs, or models with shared
layers” (https://keras.io/getting-started/functional-api-guide/).

Neural networks made with Keras run on highly optimized C/C++ code, there-
fore networks first need to be compiled. One can do that as follows:

1 model.compile(
2 optimizer = ’Adam’,
3 loss = ’binary crossentropy’,
4 metrics = [’accuracy’]
5 )

The compiler can take several input parameters, but the ones above are most
important. As has been said about optimizers, the Adam optimizer seems to
work best, so we implement that one by giving it to the compiler as an input
parameter. Since this is a binary classification problem, we can use the binary
cross entropy loss function. The metrics are the output the model will print to
the standard output when training. The two most interesting metrics are loss
and accuracy and since loss is provided by default, only accuracy has to be put
in the array.

Now the model has been compiled, we can start training the network. For this
we first need to have training data and labels. In this example, the goal is to
teach the network the following ruleset

condition output
x > y 1
x ≤ y 0
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Since we have an equation, we can generate training data with NumPy using
the following code

1 # generate 10000 training samples of form (x, y)
2 data = np.random.rand(10000, 2)
3

4 # generate the training data labels
5 labels = np.array([])
6 for n in data:
7 if n[0] > n[1]: # if x > y, output a 1
8 labels = np.append(labels, [1])
9 else:

10 labels = np.append(labels, [0])

The more training data, the better, but 10,000 samples seems more than rea-
sonable for this problem.

The following line of code will train the perceptron

1 model.fit(data, labels,
2 epochs = 8,
3 batch size = 20,
4 validation split = 0.1
5 )

The three named input parameters are very important, because they have a big
impact on training performance. Epochs represent the number of iterations the
network has to train on the same data, each time shuffling this data. The more
epochs, the longer the training phase will take, but each epoch the network will
get more accurate. However, too many epochs can result in over-fitting. Since
we are solving a very trivial problem, we actually want the network to over-fit.
However, after some epochs the network will stop improving its accuracy. In
the case of this example that seems to happen after about 8 epochs. Complex
problems may require hundreds of epochs. Batch size indicates on how many
samples the network should predict before it backpropagates the cumulative
error. A bigger batch size means less processing power is required, but also re-
duces the accuracy. In order to keep the training time reasonable for this trivial
example problem, a batch size of 20 is chosen. The validation split parameter
can tell the model on how much of the training data the network should not
train, but predict only. The number represents the fraction of the training data
used as validation data. The accuracy and loss results from these predictions
give a good indication if a network is learning well, one can for example detect
over-fitting or see the progress the network has made. The preferred result is
when the accuracy gradually (over several epochs) increases and the loss gradu-
ally decreases. This is an indication that the network is learning steadily. Just
as important is that the validation loss and accuracy follow the training loss
and accuracy, perhaps with some delay. This is an indication that the network
is not over-fitting.
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The output looks like the following

1 Train on 9000 samples, validate on 1000 samples
2 Epoch 1/8
3 9000/9000 [==============================] − 1s 92us/step − loss:

0.7154 − acc: 0.4287 − val loss: 0.6405 − val acc: 0.7140
4 Epoch 2/8
5 9000/9000 [==============================] − 1s 66us/step − loss:

0.5711 − acc: 0.8072 − val loss: 0.5035 − val acc: 0.8680
6 Epoch 3/8
7 9000/9000 [==============================] − 1s 66us/step − loss:

0.4422 − acc: 0.8748 − val loss: 0.3877 − val acc: 0.9080
8 Epoch 4/8
9 9000/9000 [==============================] − 1s 63us/step − loss:

0.3433 − acc: 0.9088 − val loss: 0.3028 − val acc: 0.9290
10 Epoch 5/8
11 9000/9000 [==============================] − 1s 63us/step − loss:

0.2719 − acc: 0.9368 − val loss: 0.2409 − val acc: 0.9560
12 Epoch 6/8
13 9000/9000 [==============================] − 1s 65us/step − loss:

0.2204 − acc: 0.9578 − val loss: 0.1957 − val acc: 0.9730
14 Epoch 7/8
15 9000/9000 [==============================] − 1s 64us/step − loss:

0.1833 − acc: 0.9739 − val loss: 0.1646 − val acc: 0.9800
16 Epoch 8/8
17 9000/9000 [==============================] − 1s 63us/step − loss:

0.1567 − acc: 0.9882 − val loss: 0.1405 − val acc: 0.9950

We can see that the model is using 1000 samples (10%) as validation data.
Also we see that the model did train for 8 epochs. Furthermore, as well as the
validation accuracy as the training accuracy gradually increase. The validation
and training loss gradually decrease. The network’s final validation accuracy is
99.5%, which means that it is wrong in 1 in 200 cases. This is acceptable for this
example since not all the possible techniques to improve the model have been
applied in order to keep it more accessible. A completely optimized network
would be able to train faster and would be able to get near 100% validation
accuracy.

Now the network has been trained, it can be used to predict on data. We can
do this as follows

1 # generate some prediction data manually
2 predication data = np.array([
3 [0.35, 0.71], # −> 0
4 [0.58, 0.22], # −> 1
5 [0.98, 0.80], # −> 1
6 [0.55, 0.59], # −> 0, stress test, how close can values be?
7 [10, 20] # −> 0, network has not been trained on numbers
8 # bigger than 1.
9 ])

10

11 # Lets predict
12 result = model.predict(predication data)
13

14 print(result)
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The result is the following

1 [[0.02836107]
2 [0.9758824 ]
3 [0.85824233]
4 [0.41625893]
5 [0. ]]

We can see that if we would round all the probabilities, they are all correct. The
fourth entry is quite undecided, since it is hitting the limits of the network’s
accuracy. The last entry shows why neural networks can be so useful. The
last entry consists of numbers bigger than 1, which the network has never been
trained on, but it still can give a certain and correct result.

If we would like to reuse the (trained) network, we can save its weights or the
entire trained model. Saving the entire model usually takes up much more disk
space, but it saves the following things:

- Architecture of the model, allowing to re-create the model
- Weights of the model
- Training configuration (loss, optimizer)
- State of the optimizer, allowing to resume training exactly where you left off

The network can be saved as follows

1 # Saves the entire model
2 model.save(’model.hdf5’)
3 # or
4 # Saves the weights of the model
5 model.save weights(’model.hdf5’)

The model can be loaded using one of the following lines

1 # Load an entire model
2 model.load(’model.hdf5’)
3 # or
4 # Load the weights of a model
5 model.load weights(’model.hdf5’)

Now we have taken our first steps in programming a neural network in Python3
using Keras, we will have a look at the final model used in this thesis. The code
for the final model is the following

1 model = tf.keras.Sequential([
2 tf.keras.layers.Conv2D(5, (50, 50), activation = ’relu’,
3 input shape = (
4 self.dimensions[0],
5 self.dimensions[1],
6 1
7 )
8 ),
9 tf.keras.layers.MaxPooling2D(pool size = (2, 2)),

10 tf.keras.layers.Conv2D(10, (4, 4), activation = ’relu’),
11 tf.keras.layers.MaxPooling2D(pool size = (2, 2)),
12 tf.keras.layers.Flatten(),
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13 tf.keras.layers.Dense(128, activation = ’relu’),
14 tf.keras.layers.Dropout(0.1),
15 tf.keras.layers.Dense(1, activation = ’sigmoid’),
16 ])
17

18 model.compile(optimizer = ’adam’,
19 loss = ’binary crossentropy’,
20 metrics = [’accuracy’])

We can immediately see similarities between the simple example network and
this network. Moreover, the compiler is exactly the same. The difference lies in
the layers of the sequential model. We can directly see that it is a convolutional
neural network because of the presence of convolutional layers. Also, maxpool-
ing, flattening, dense layers and a dropout have been used. In order to make
the network more accurate, many ReLU activation functions have been used.
At the end, again, a sigmoid activation function is used for normalization.

2.4 Neural networks on exoplanet detection

With the vast amounts of light curves and detected exoplanets, applying a
neural network to this problem could be very useful. The light curves that
represent a star which hosts an exoplanet can be used as training data. There
are several ways to process light curves using neural networks. One can for
example bin the data points to a predefined number of points and feed this
data into the network. Research into this technique has been done by Shallue
and Vanderburg (2018), producing useful results. Other research into exoplanet
detection using neural networks has, to date, not been done. In this thesis a
different approach is used; convolutional neural network will be used to try to
spot potential exoplanets. The light curve can be transformed into an image
of a predefined size, after which the convolutional neural network processes it,
resulting a possible detection of an exoplanet. The advantage of this technique
is that the neural network will always be presented with all the data, no binning
is needed. On the other hand, same-size images of light curves will need to be
generated, since the input size of the convolutional neural network is fixed. If a
lot of data is present, with big ranges in brightness and time, details will become
less visible, since more data is compressed in a smaller frame. This could cause
the network to overlook possible exoplanet candidates.

3 Methods

3.1 Data pipeline

In this thesis the MAST database, (NASA and STScI, 2018), was used to ob-
tain the light curves. The database contains light curves created by the Ke-
pler space mission. In order to automate the data retrieval process a Python
class for MAST was made, which can be found in the public github repos-
itory https://github.com/phicoder/exoplanet-detection, specifically the
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file MAST.py . The class is able to retrieve data from all the available data sets

provided by MAST as well as fetching the light curves given a Kepler ID. This
last functionality was used by the program to fetch all the desired light curves,
these are FITS files (with file extension .fits ).

Once the FITS files were retrieved, the data was processed. The FITS files con-
tain a column for time and a column for adjusted flux. These points were then
plotted into a graph as small white dots on a black background, an example
can been seen in figure 5. These graphs have equal width and height and each
of them has the same dimensions. The images having the same dimensions is
a requirement, since the neural network has a predetermined and fixed amount
of input nodes.

Figure 5: An image of a light curve as used by the neural network. This par-
ticular light curve contains regular dips in brightness, which is the core feature
sought after in light curves in this paper. This feature can signify an exoplanet.
The size of the image is 300x300 pixels.

3.2 Training

In order to make the neural network learn to differentiate between light curves
of star systems with exoplanets from star systems without exoplanets the neu-
ral network needs to be trained. The neural network was trained using light
curves with (positive) and without exoplanet presence (negative). This data
was selected by hand, so that the positive training data completely consist of
light curves with regular dips in brightness, as seen in figure 5. The MAST
database has a data set containing all the Kepler IDs of star systems containing
confirmed exoplanets. These IDs were then used to fetch the appropriate light
curve data. After the data was processed and hand selected, the Neural Network
was trained by feeding all the images as 2-dimensional matrices into the CNN.
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The errors were then back propagated to minimize the loss. After the training
was finished, the neural network was ready to be used to make predictions for
exoplanet presence.

3.3 Convolutional Neural Network

After the data pipeline had been set up, the Neural Network was programmed.
First a basic CNN was made for testing purposes. Since this is a binary classifi-
cation problem, the binary cross entropy loss function was used. Also the Adam
optimizer was implemented, mainly due to its efficiency. Both of these methods
are provided by the Keras library. Using training data several iterations to the
neural network were made to see how the CNN behaved. After several revisions
of the network, a final version of the network was made. The final version of
the neural has the following flow:

300x300 image

⇓
5@50x50 feature maps (convolution)

⇓
2x2 maxpooling

⇓
10@4x4 feature maps (convolution)

⇓
2x2 maxpooling

⇓
flatten to 1d matrix

⇓
dense layer 128 nodes, ReLU

⇓
dropout of 0.1

⇓
dense layer 1 node, Sigmoid

The convergence to a design as above can be explained. There was not a lot
of training data available and there was a lack of experience, so the setup of
the network was kept as simple as possible. In order to reduce the computing
power needed during the test phase, several maxpooling layers were applied. In
general, the number of features that were tried to be detected was not plenty,
therefore the first convolutional layer was made using just 5 feature maps. The
size of these features varies a lot, so a relatively large size was chosen. For
the second convolutional layer much smaller feature maps were chosen, mostly
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because of the pooling. Since the maps were chosen to be smaller in size, the
choice was made to use more feature maps. One dense layer was added to add
slightly more intelligence to the network using the ReLU activation function
due to its good reputation. Since over-fitting was found to be an issue, as can
be seen in 6, a dropout was added at the end of the network. The last layer is
the node that makes the verdict if an exoplanet is present, or more accurately,
features of the training data were recognized. This output is binary, exoplanet
present or not, so the sigmoid activation function was chosen.

3.4 Predicting

In order to make predictions, the ./data directory was filled with images of
exoplanets. For the retrieval of the light curve data a Python script was made,
which can be found in the github repository under the name data import.py .

The light curves per star for every time period were put each in its own sub-
directory in the data directory. Once the data directory was filled up, the

./main script was executed. For every star each of the time periods were
analyzed by the neural network. For the stars where at least one of the light
curves reached a certain threshold, a new line in a log file was created in order
to keep the log file as short as possible. After the network had processed all the
light curves, the log file was used to check for potential exoplanets.

3.5 Computing

In the testing phase, while developing the network, a 2.6 GHz Intel Core i7
QuadCore CPU was used. Training the several networks took between 10-
180 minutes. The final network took 180 minutes to train and 120 minutes
to perform the predictions. This was done to demonstrate that it is possible
to perform these kind of tasks on high-end consumer computers, so it is not
necessary to have continuous access to a high-performance (super)computer.
Once having finished the testing phase, the network was also trained using
the norma4 computer cluster at the Kapteyn Astronomical Institute at the
University of Groningen. Using this machine the training and predicting using
the final network took significantly less time, 80 and 20 minutes respectively.
Even though this machine performed much better, the training time can be sped
up significantly by using a GPU. The performance increase of using a GPU could
be in the order of a magnitude.

4 Results

4.1 Training data

The training data was obtained using a modification on the data import.py

script. This set contained the data of a few hundred light curves with and with-
out exoplanet presence. This data was then cast into images containing the data
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as black dots on a white background. However, the neural network could not
increase its accuracy and decrease its loss. The reason for this could be that,
since most of the image is white (encoded as a 1), the weights need to be tuned
down to near 0 in order to get a 0 from the output node. Most of the images
should classify as a 0, since most real images will not contain exoplanets, and
therefore this approach does not work. This was fixed by changing the prepro-
cessing stage, so that the generated images would be white data points on a
black background. Now a new problem arose, the training data with exoplan-
ets (positive) seemed too random and no specific patterns could be recognized.
Therefore, the concession was made to focus on a specific feature for exoplanets
that just some of the graphs contained; very visible regular dips in brightness.
The positive training data had to be selected by hand for these features. After a
thorough selection, 228 images remained for the positive data. After this a ran-
dom selection of 685 images of light curves not containing exoplanets was added.
No specific data reduction was applied on the images, which also contributed to
having to make the decision to just detect the regular dip features.

4.2 Data

To save disk space and reduce prediction time in the test phase, the light curves
of 3,000 stars were used, which is just 1% of the total number of stars observed
by the Kepler mission. A selection of light curve images can be seen in figure 6.
It can be seen that light curve data is not constant; many features are present.
In order to let the neural network give useful results, there has been chosen to
only look for dip features as seen in figure 5.

Figure 6: A random selection of three light curves from three different stars.
One can see how erratic this light curves can be. On the left image there are two
peaks, this feature may be explained by recalibration of the Kepler telescope.
On the middle image a gap can be seen. This is due to downtime of the Kepler
telescope, maybe because the star light was blocked by the earth. In the most
right image a very erratic pattern can be seen, this is not caused by an exoplanet,
but could be a binary star.
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4.3 Neural Network training

Training the neural network was a big part of this thesis. Many iterations of
the neural network were made and for every iteration the network had to be
trained in order to see its effectiveness. The training sessions were done using
913 images doing 8 epochs, 8 times training on the training set, and using
10% of the training data as validation data. This validation data is data on
which the network did not train, but just did predictions. This was used to
check if the network learned features or if it was over-fitting on the training
data. Training the network on 913 images for 8 epochs roughly took between
10-180 minutes, depending on the complexity of the neural network. The loss
of the final version can been seen in 7. A smooth descent in both validation
and training loss can be seen. This most likely implies no over-fitting. The
accuracy on the training data compared to the validation data can be seen in
figure 8. The accuracy of both the training data and validation data raised
gradually in roughly the same pace, meaning that the network is properly and
steadily learning to recognize features. After having obtained these results, the
designing of the neural network was concluded. The downside of this model is
that it took by far the most time to train, but the other models showed signs of
over-fitting. Therefore, this model was chosen above the others. Accordingly,
the produced model was used for doing predictions. The results of other versions
of the network can be found in Appendix A.

Figure 7: The training loss and validation loss per epoch for the final version
of the model. It can be noted that the validation and training loss decrease
gradually at roughly the same pace. This is a sign that the neural network is
not over-fitting and gradually learning to recognize features.
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Figure 8: The training accuracy and validation accuracy per epoch for the final
version of the model. It can be seen that the training and validation accuracy
gradually increase at roughly the same pace. This is a sign that the neural
network is not over-fitting and gradually learning to recognize features. In the
first epoch the validation accuracy is higher than the training accuracy, this is
simply coincidence, later on the accuracies converge towards each other.

4.4 Neural Network predictions

The final model was used to do predictions on 3,000 stars, with each roughly
18 quarters, so 54,000 images of light curves. The network took 120 minutes
to analyze all the images on the i7 processor. However, this process could have
been sped up many times using a GPU. The program was made so that if the
network was more than 90% sure about that dips in the light curve appeared,
it would count it as a positive. The KIC ID got written in the log file if there
was at least one positive in all the light curves of the star. These are the first
few lines of the log file:

1 KIC ID,surpassed threshold,total,ratio
2 2969216,5,18,0.2777777778
3 2707758,1,18,0.05555555556
4 2576692,13,18,0.7222222222
5 3113351,1,18,0.05555555556

The complete log file can be found and downloaded at https://github.com/

phicoder/exoplanet-detection/blob/master/logs/log.csv. After the neu-
ral network finished predicting, the log file consisted of 1,338 lines, which means
that for 1,338 stars at least one image superseded the 90% threshold. This
log file can now be used to find stars with many images that superseded the
threshold. The best candidate found is KIC ID 2708156, with a score of 16/18,
which appears to be an eclipsing binary. In figure 9 it becomes clear why the
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network labeled most of its images as positive, each of the images contains very
significant dips in brightness.

Figure 9: Quarter 5 of KIC ID 2708156. This star is classified as an eclipsing
binary and was detected by the convolutional neural network. Since the neural
network mainly focused on detecting dips in light curves this can be considered
a positive result.

Looking through the top results it appears that most results are eclipsing bina-
ries and just some of them contain exoplanet candidates. This is due to the fact
that the neural network was trained on recognizing dips in light curves. The
network has proven to recognize those features extremely well, even if the dips
were barely noticeable. However, sometimes the network accepts less obvious
light curves, an example is KIC ID 2718252. This star is not flagged as to have
any anomalies and no very clear dips were observed in the light curves. Two
interesting stars were found in the top 25 results; 2163434 and 2854994. These
stars are not flagged to have any anomalies, but they do show dips in the light
curves as shown in figure 10.

23



Figure 10: On the left KIC ID 2163434 and on the right KIC ID 2854994. These
were both present in the top 25 made by the convolutional neural network.
In both graphs dips in intensity can be noticed, which probably triggered the
network.The most prominent dips are marked between red lines. Neither of
these stars are flagged having an anomaly, e.g. an exoplanet.

It has become clear that the network is able to detect features, in this case dips
in light curves, very well. Even with a selection of 3,000 stars, or 1% of the total
number of stars analyzed by the Kepler mission, some interesting results appear.
Unfortunately it mostly detected eclipsing binaries, but this can be explained
through the lack of preprocessing of the light curve data and inadequate training
data. The network did make few mistakes, but it is not known how many
positives it has skipped. All in all, the technology looks promising. As already
said by Miller (1993) neural networks could be useful in astronomy in the fields
of adaptive telescope optics, object classification and matching, and detector
event filtering, satellite system applications. This thesis could be seen as an
indication that in the category of object classification, Miller might be correct.
The expectations are that by using neural networks in astronomy many tasks
in those fields could be sped up and accuracy could be increased due to less
manual work.

4.5 Analysis of two stars

Two stars have been found using the neural network which have not been clas-
sified as anything, but do show some interesting features. In figure 10 we can
see that both light curves show some small dips in brightness. KIC ID 2163434
In Appendix C we can see all the available light curves for this star. In quarter
7, 9 and 10 dips are visible in the light curves. They are most prominent in the
lowest part of the light curve in quarter 9. Since the dips are visible in so many
places, it was excluded that the features are caused by measurement errors. The
dips are very small in size, which usually does not occur with eclipsing binaries.
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Furthermore, the dips do not have a specific recurring pattern. Since there is
no pattern visible, but there are multiple dips which are small and different in
size, it could be multiple exoplanet candidates. However, there is a lack of light
curves, so the result is not very significant. Nonetheless, it may be interesting
to better investigate this star.

KIC ID 2854994
In Appendix D we can see all the available light curves for this star. In quar-
ter 0, 1, 2, 6, 7, 10, 12, 13 and 17 clear brightness dips can be observed. In
some quarters very prominent dips can be seen, even more so than for KIC ID
2163434. Again there is the same situation in which there are several dips per
light curve, but not with regular intervals. This could again imply multiple ex-
oplanet candidates. Unlike KIC ID 2163434, this star has much more evidence
for an anomaly, many more light curves that contain features pointing to an
anomaly. Therefore, it is recommended that more research is done on this star.

5 Discussion

As concluded through the results, the neural network seems to be able to detect
the features it was trained to find very well. However, these features do appar-
ently not have a one-to-one correlation with exoplanet presence, but are more
likely to occur with eclipsing binaries. For this reason it is important to consider
doing some data preprocessing on the light curves, to make exoplanet features
stand out more in the images. Due to the lack of knowledge on exoplanets and
data reduction methods in this field, this was not possible in this paper. For
that reason there has been chosen to let the neural network recognize dips in
the light curves. A recommendation for follow up research is to bring more
expertise in exoplanet detection. Besides this, a suggestion for data reduction
could be subtracting a base spline from the light curves in order to reduce the
low frequency noise and applying some normalization so that the y-scale can be
conserved, which is not the case in this paper.

The final model used seems to work quite well; low validation loss, high valida-
tion accuracy and no apparent over-fitting. Training on 913 images for 8 epochs
took roughly 180 minutes on an Intel i7 QuadCore CPU and 80 minutes on the
norma4 computer cluster at the Kapteyn Astronomical Institute. Considering
both machines used a CPU, this is a very reasonable training time. However, the
training times were simply too long to make even more complex networks, which
could have improved the accuracy even more. Also because of this, just several
iterations of a neural network have been made. Therefore, it is not guaranteed
that the current model is the best model for the task. In order to be less limited
by this factor, one can use GPUs instead. These could reduce the training and
prediction time by an order of a magnitude. The current code is compatible
with Nvidia GPUs, so using these should not take any extra proceedings. It is
also possible to run the code in the cloud using Google’s TPUs (Tesla Process-
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ing Units), where as much power as needed can be provided (please refer to:
https://cloud.google.com/ml-engine/).

In order to make more adequate use of neural networks in astronomy, the com-
munity will have to collaborate. It has been noticed that in this thesis there was
a consistent lack of knowledge about exoplanet detection, which in turn limited
the scope of the thesis to mainly focus on the neural network. This led to missed
potential for the thesis. A suggestion is to create a close collaboration between a
team of exoplanet experts and convolutional neural network experts. However,
the aim of this thesis was mostly to gain experience in using these techniques
and to create an entry for astronomers in the topic of neural networks. Getting
used to work with neural networks took a lot of time. Therefore, that got the
priority in this thesis.

In science in general it is of utmost importance to log everything done during
the thesis. However, while making this thesis there has been lost track of logging
progress. An example is the iterations of the neural network; many iterations
have been made, but just the last four versions were accurately logged. Logging
the iterations of the neural network and their results are extremely important
for follow-up research, since with those results new iterations can be more eas-
ily made. In this thesis github has been used for version control, but too few
commits have been made. In follow-up research a commit should be done for
every newly made iteration of the neural network. Using such a repository sys-
tem is not enough, since it is important to keep track of the results as well.
A spreadsheet as found in Appendix B would suffice for each iteration of the
neural network.
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6 Conclusion

First off, it has been a very instructive experience trying to apply convolutional
neural networks in the field of astronomy, specifically in the field of exoplanet
detection. Combining the front lines of computer science with one of the most
widely discussed topics in astronomy opens up doors for many other neural
network applications in astronomy. A main goal of this paper is to create a low
threshold introduction for astronomers into neural networks. Considering the
results of the paper, the hope is to have made a positive impression of neural
networks and that with even little knowledge impressive results can be achieved.

Although this paper did not produce a perfect solution to detect exoplanets, it
made a good basis for follow-up research to start from, including open source
code. Moreover, two interesting objects, which are not classified yet, have been
detected analyzing 3,000 stars, or 1% of the total number of stars analyzed by
the Kepler mission, namely: KIC ID 2163434 and KIC ID 2854994. A closer
inspection on these stars pointed out that they both contained irregular dips in
brightness, which might implicate exoplanet presence. Further research might
be useful to confirm this result. Furthermore, the neural network seems to be
able to detect eclipsing binaries with ease, which could make it useful to search
for those objects for the TESS mission. The network is very adjustable and
reusable, thus having the potential, with some modifications, to be put to use
for finding exoplanets.

To conclude, it is possible to accurately detect specific features in images of
light curves using convolutional neural networks. For this reason the research
question remains unanswered. However, if one is able to bring forward more
features of exoplanet presence by applying a certain (automated) data reduction
algorithm on the images, it is definitely possible to accurately detect exoplanets
from light curves using convolutional neural networks.
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Appendix A

The following are all the accuracy and loss results for the 4 iterations of the
neural network.

300x300 image

⇓
10@10x10 feature maps (convolution)

⇓
2x2 maxpooling

⇓
40@3x3 feature maps (convolution)

⇓
2x2 maxpooling

⇓
flatten to 1d matrix

⇓
dense layer 50 nodes, ReLU

⇓
dense layer 1 node, Sigmoid
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300x300 image

⇓
10@10x10 feature maps (convolution)

⇓
2x2 maxpooling

⇓
40@3x3 feature maps (convolution)

⇓
2x2 maxpooling

⇓
flatten to 1d matrix

⇓
dense layer 50 nodes, ReLU

⇓
dropout of 0.1

⇓
dense layer 1 node, Sigmoid
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300x300 image

⇓
30@4x4 feature maps (convolution)

⇓
2x2 maxpooling

⇓
20@3x3 feature maps (convolution)

⇓
2x2 maxpooling

⇓
flatten to 1d matrix

⇓
dense layer 50 nodes, ReLU

⇓
dropout of 0.1

⇓
dense layer 1 node, Sigmoid
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Final model

300x300 image

⇓
5@50x50 feature maps (convolution)

⇓
2x2 maxpooling

⇓
10@4x4 feature maps (convolution)

⇓
2x2 maxpooling

⇓
flatten to 1d matrix

⇓
dense layer 128 nodes, ReLU

⇓
dropout of 0.1

⇓
dense layer 1 node, Sigmoid
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Appendix B
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7 Appendix C

Light curves of the star with KIC ID 2163434

(a) Quarter 0 (b) Quarter 7

(c) Quarter 8 (d) Quarter 9

(e) Quarter 10
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8 Appendix D

Light curves of the star with KIC ID 2854994

(a) Quarter 0 (b) Quarter 1

(c) Quarter 2 (d) Quarter 3

(e) Quarter 4 (f) Quarter 5
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(a) Quarter 6 (b) Quarter 7

(c) Quarter 8 (d) Quarter 9

(e) Quarter 10 (f) Quarter 11
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(a) Quarter 12 (b) Quarter 13

(c) Quarter 14 (d) Quarter 15

(e) Quarter 16 (f) Quarter 17
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