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AbstractIn this bachelor’s thesis we study the proof of Dirichlet’s Theorem on primes in ArithmeticProgressions. We find out about the various proofs of this theorem and see how they are different,but also very related. We start looking at the idea of the proof that Dirichlet originally came upwith it and end up at very recent variations, published in the American Mathematical Monthly. Theinfluences from time are visible in the mathematics, but the general idea of the proof stays intact.We can construct different proofs for different audiences and find one for readers from differentbackgrounds to enjoy and understand. From classrooms to devoted readers of mathematics, thereis something interesting about the proof of Dirichlet’s Theorem for all mathematicians.
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1 Introduction
The aim of this bachelor project is to compare and combine different proofs for Dirichlet’s Theoremon primes in arithmetic progressions. The theorem, and often a proof, can be found in most textbookson Analytic Number Theory. We will start by studying the proof as given by Jean-Pierre Serre in
A Course in Arithmetic [5]. This is one of the more classic proofs that explains all concepts andsteps in detail. It relies heavily on the fields of Group Theory, Complex Analysis and Real Analysis.After understanding this proof, we will move on to study the hardest step and we discuss howvarious authors prove this step. We will find that different proofs rely on different fields of study inmathematics more heavily. Finding our way through multiple proofs, we form our own idea on whatis important and simple to understand. We compare variations of the proof in the final chapter andrecommend readers which proof might best suit their interests. This could be expanded on in otherprojects, as there are many more proofs of Dirichlet’s Theorem and we only focused on proving onestep of the proof in different ways. An even broader manual could be created to provide a bettertailored proof to different audiences.Let us study Dirichlet’s Theorem now. The theorem states the following:
Theorem 1. Let a and m be positive integers with gcd(a,m) = 1. There exist infinitely many primenumbers p such that p ≡ a (mod m).Equivalently, we can say that there exist infinitely many primes in the so called arithmeticprogression a, a + m, a + 2m, . . . for two positive coprime integers a and m. The arithmeticprogression is the collection of integers a (mod m). This is why the theorem is known as Dirichlet’sTheorem on Arithmetic Progressions, shortened to Dirichlet’s Theorem.To prove the theorem, Dirichlet used the series∑

p≡a (mod m)
1
ps , (1.1)

where p is a prime number and s ∈ C has a real part bigger than 1. He showed that this seriesdiverges for s = 1. This is of course only possible if the sum in (1.1) consists of infinitely many terms,hence this divergence implies Dirichlet’s Theorem. To prove this divergence, Dirichlet split the seriesup into two separate series, which were more convenient to work with. Of these two, he showedone to be divergent and one to be convergent. The combination of these two series was then thusshown to be divergent. As we cannot say anything about the combination of two divergent series,proving the one series to be convergent is crucial. To prove this, Dirichlet had to come up with newfunctions and series. These are still used to prove various results in Number Theory. This originalway of working is why this theorem and its proofs are still relevant and interesting to us. The studyof Dirichlet’s Theorem and its proofs throughout the years teaches us about mathematical stylesin different times. The latest variation on a part of the proof we will study was published in theAmerican Mathematical Monthly as recent as 2017 [6]. But even this relies on the same ideas thatDirichlet came up with. To understand the proofs, we first study how Dirichlet himself came up withthe mathematics behind them. That is what we will do now in the next chapter.
2 Preliminaries2.1 History and characteristics
History of the proof

Prime numbers have very useful applications. Most of these are in the field of cryptography.
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However, the investigations on primes started far before these applications, according to [1]: Alreadyaround 300 BC, Euclid wrote about prime numbers in his Elements. He provided the first proof thatthere are infinitely many prime numbers. In Elements, Euclid also laid the foundation for what isnow known as the Fundamental Theorem of Arithmetic. This theorem states that any integer greaterthan 1 either is a prime or can be represented as a product of primes in a unique way.Around 2000 years later, Euler came up with his proof for the infinitude of primes. This proofrelies on the divergence of ∑
p∈P

1
ps (2.1)

at s = 1, where P is the set of all prime numbers. He introduced the idea of the method thatDirichlet would use later to prove Dirichlet’s theorem using the series (1.1). Euler’s series (2.1) wasalso defined in such a way that divergence would require an infinite number of terms. In Euler’smethod of showing said divergence, he introduces the zeta function ζ(s) =
∑∞
n=1 1

ns . We will seelater that this function also plays a key role in Dirichlet’s proof. Euler also used the FundamentalTheorem of Arithmetic in his proof to connect a series over prime numbers to a series over all naturalnumbers. This way, he could connect the series (2.1) to the zeta function. The zeta function divergesas s → 1 and this is how Euler proved the required divergence. This is not the whole proof of course,but a few highlights of how Euler proved that the series (2.1) diverges when s = 1.Euler proved that there is an infinitude of primes, but he also showed something about thedistribution of them. For example, the sum ∑∞
n=1 1

n2 is known to converge, opposed to the series(2.1) that diverges as s → 1. From this, it can be concluded that there are more prime numbers thanthere are squares. The knowledge of distribution of primes ties in with how Dirichlet’s theorem wasproven later as he connected the set of primes in arithmetic progressions to the set of all primes.Dirichlet proved that there are infinitely many primes in arithmetic progressions. For this, he showedthe divergence of ∑p≡a (mod m) 1
ps as s → 1, where p ≡ a (mod m) is the collection of all primenumbers p congruent to a modulo m. To show this, he looked at the ratio between this series overprimes modulo a and the series over all primes.

Approaching the proof

Showing that the series ∑
p≡a (mod m)

1
ps (2.2)

diverges as s → 1, is not an easy task. This is a hard problem to approach, harder than a sum overall primes. It is convenient to rewrite (2.2) as∑
p∈P

f (p)
ps , (2.3)

where the domain of f is N. We define f so that
f (p) =

{ 1 when p ≡ a (mod m)0 otherwise.
The rewritten series is very closely related to the series that Euler used in his proof that there areinfinitely many primes. It is therefore appealing to express the series (2.3) in terms of the series (2.1),of which we know it diverges. For this, the function f (p) first needs to be rewritten as a combinationof so called multiplicative functions:
Definition 1. A function g : N→ C is called multiplicative if g(1) = 1 and it has the property that
g(ab) = g(a)g(b) for all a,b ∈N.
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The function f (p) does not have this property. It is possible, though, to write f (p) as acombination of multiplicative functions from the natural numbers to the complex plane. Using this,we rewrite the series (2.3) as a sum of two separate series that only contain multiplicative functions.Then, we show that one of these series is divergent and the other is convergent. The combination ofthese series, must then be divergent. This shows that the series (2.3) is divergent, and so the series(2.2) must diverge, which concludes the proof.This rewriting makes the mathematics a lot more complicated. Finding the functions and writing
f (p) as a combination of them is the first part. After this, we have to show that one of our seriesdiverges and the other converges. Showing this convergence especially is a very difficult step whichwe do not show here yet. It is also a step that mathematicians have not been able to avoid. Thefundamental idea of modern proofs of this theorem is still the same as has been introduced byDirichlet. This is why Dirichlet’s Theorem on Arithmetic Progressions is intriguing, all proofs followthe same general line but are elegant in their own way. To gain more of an understanding, we studyan example of the proof for a specific case.
2.2 An example
Example 1. Let a = 3 and let m = 8. Dirichlet’s theorem states that there are infinitely many primenumbers in the arithmetic progression 3 (mod 8) = {3, 11, 19, 27, 35, 43, . . . }. To prove this, we usethe series ∑

p≡3 (mod 8)
1
ps ,

for p prime and s ∈ C such that the real part of s is bigger than 1. In the end of the proof, we willtake the limit as s → 1.As has been noted before, the restrictions on p for this series are a problem. We rewrite as∑
p∈P

f (p)
ps ,

where
f (p) =

{ 1 when p ≡ 3 (mod 8)0 otherwise.Again, the set of all prime numbers is denoted P. To use the divergence of ∑p∈P 1/p, we first write
f (p) as a combination of multiplicative functions from N to C. To find these functions, we look atthe domain that they must have. These functions should be able to take any prime number as aninput value, as the set of prime numbers is the set we sum over. We know that all primes except for2 are odd. If we divide an odd number by 8, the remainder will also be odd. All primes, except for2, are thus of the form p ≡ 1 (mod 8) ≡ 1, p ≡ 3, p ≡ 5 or p ≡ 7. Here we introduce a new bit ofnotation. The overline implies that we are considering the element modulo 8 in this example.This narrows down our functions nicely to only give a non-zero output for these four inputvalues. This does mean that we leave the prime number 2 out of consideration, but that is not aproblem. The set of all prime numbers except for 2 is still an infinite set of primes as we take awaymerely one element. More than this infinitude is not necessary for the argument later on and so weset f (2) = 0.We look for functions that take these four elements to the real or complex plane, as we want toend up with a value of 1 or 0 in the end. Let

{g : N→ C}

denote all multiplicative functions g from the set of natural numbers to the complex plane. This is avector space over the complex plane with infinite dimension. A linear subspace of this is the set of
5



multiplicative functions g that are periodic with period 8.
{g : N→ C | g has period 8} = {ψ ◦ π | ψ : Z/8Z→ C}

Here π denotes the canonical projection π : N→ Z/8Z that is surjective. This linear subspace hasdimension 8. Even more specific is the linear subspace of this that only takes the units modulo 8 asinputs:
{g : N→ C | g has period 8 and g(n) = 0 if gcd(n, 8) 6= 1}These functions only map elements in (Z/8Z)∗ to non-negative values. This subspace has dimension4 as there are four natural numbers n < 8 such that gcd(n, 8) 6= 1: the numbers 1, 3, 5 and 7.A basis of this linear subspace can be defined using four functions. We use the functions

χ0,χ1,χ2 and χ3 as a basis:
1 3 5 7

χ0 1 1 1 1
χ1 1 -1 -1 1
χ2 1 -1 1 -1
χ3 1 1 -1 -1

The functions in the first column take the input values in the first row and map them to thecorresponding entry, which is either 1 or −1. These functions map any other element of the naturalnumbers to 0. This defines four multiplicative functions. We will now construct our function f as acombination of these functions, by a clever use of signs:
f (p) = 14 (χ0(p)−χ1(p)−χ2(p) + χ3(p)),as

f (1) = 14 (χ0(1)−χ1(1)−χ2(1) + χ3(1)) = 14 (1− 1− 1 + 1) = 0,
f (3) = 14 (χ0(3)−χ1(3)−χ2(3) + χ3(3)) = 14 (1 + 1 + 1 + 1) = 1,
f (5) = 14 (χ0(5)−χ1(5)−χ2(5) + χ3(5)) = 14 (1 + 1− 1− 1) = 0,
f (7) = 14 (χ0(7)−χ1(7)−χ2(7) + χ3(7)) = 14 (1− 1 + 1− 1) = 0.

For any prime p, this gives us indeed the following result for f (p):
f (p) =

{ 1 when p ≡ 3 (mod 8)0 otherwise.It is interesting to note here that different combinations of signs would give us the functions for 1, 5and 7 modulo 8. It is only this that influences where we get a 1 and where we get a 0.Now that we have rewritten f as a combination of multiplicative functions, we can rewrite ouroriginal series. The new series is the one for which we want to show divergence:∑
p≡3 (mod 8)

1
ps =

∑
p∈P

f (p)
ps

=
∑
p∈P

14 (χ0(p)−χ1(p)−χ2(p) + χ3(p))
ps

=
14 ∑
p∈P

χ0(p)−χ1(p)−χ2(p) + χ3(p)
ps
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This series can be split up into two parts. We separate χ0, which will have a value of 1 for everyinput in the series:
∑

p≡3 (mod 8)
1
ps =

14
∑
p∈P

χ0(p)
ps +

∑
p∈P

−χ1(p)−χ2(p) + χ3(p)
ps


=

14
∑
p∈P

1
ps +

∑
p∈P

−χ1(p)−χ2(p) + χ3(p)
ps


Looking at the first part of the right-hand side, we recognize this as almost exactly the same asthe series that Euler had shown to be divergent when s = 1. There are only two differences. Thefirst one is the factor 1/4, but this does not influence divergence. The second one is that we have aseries over all prime numbers, except for 2. In Euler’s case, 2 was included as he summed over allprimes. This does not change our divergence though. Even without 2, we have an infinite set to sumover and the series does still diverge for s = 1.Analysis teaches us that we cannot say anything about the sum of two divergent series. Theycould diverge in completely different directions and this would leave us wondering what happenswhen we add them up. When we add a divergent series and a convergent series however, we get adivergent series. So we want to show that the second part of our right-hand side,∑

p∈P\{2}
−χ1(p)−χ2(p) + χ3(p)

ps ,
converges. Then we have shown that our sum over all prime numbers congruent to 3 modulo 8 isdivergent, because it is the sum of a divergent and a convergent series. This is exactly what wewant to achieve, because this series being divergent proves that there are infinitely many primenumbers in this specific arithmetic progression.This last step is a lot more involved. Even for our specific example, we cannot give the proof forthis in short. Therefore we will leave this out here and we will look into it later in this paper. Thegoal of this example was to gain an understanding of the outline of the proof of Dirichlet’s theorem.Although different mathematicians have made their own versions of the proof, a lot of the ideas usedcome back in almost all the proofs. Now that we have an idea of the form, we can dive further intothe proof. Firstly, we look at the general proof. Then we will look into the required convergencein the general case, the most complicated step that we have left out for now, and we will see howdifferent writers approach this same problem in the chapters to come.
3 A classical proof
Throughout this whole thesis Definitions, Lemmas, Propositions and Theorems are numbered sepa-rately. The numbering is not reset at any point and transfers over chapters. The beginnings of proofsfor Lemmas, Propositions and Theorems are recognized by the italic "Proof." and the conclusion of aproof is recognized by the symbol "☼". Many proofs given here are inspired by and closely related tothe proofs by various authors. If this is the case, at the start of a proof the relation is given betweenbrackets.In this chapter, we will study a complete proof of Dirichlet’s Theorem. We analyse the proof aspublished by J.-P. Serre in A Course in Arithmetic [5] in 1973. We refer to his work throughout thechapter, the work being from this source. The proof starts by a paragraph on Group Theory. Thiswill appear again later on, after a part on Dirichlet series. After the section on L-functions, we areready to prove the theorem. But before that, let us study characters of groups:

7



3.1 Characters of a finite abelian group
Let G be an abelian group with multiplication as its group law and order |G| < ∞. We will beworking with this group for the remainder of the section, simply referring to it as G .
Definition 2. A character of G is a homomorphism from G to the multiplicative group C∗.The set of characters of G forms a group which we call the dual of G, denoted Ĝ. The grouplaw in Ĝ is defined by χ1χ2(g) = χ1(g)χ2(g). Let χ1 and χ2 be characters of G. Then χ1χ2(g) isanother character of G because

χ1χ2(gh) = χ1(gh)χ2(gh) = χ1(g)χ1(h)χ2(g)χ2(h) = χ1(g)χ2(g) · χ1(h)χ2(h).The identity element of Ĝ is the trivial character, denoted as
1 : G → C∗

g 7→ 1 ∀g ∈ G .
Finally, an inverse element for any character χ ∈ Ĝ can be defined:

χ−1 : G → C∗

g 7→ χ(g)−1 ∀g ∈ G ,
which is a character because

χ−1(gh) = χ(gh)−1 = (χ(g)χ(h))−1 = χ(g)−1χ(h)−1 = χ−1(g)χ−1(h).
We can conclude that Ĝ is indeed a group.
Proposition 1. Let H be a subgroup of G . Every character of H can be extended to a character of G .This extension can be done in [G : H] possible ways, where [G : H] denotes the index of H in G .
Proof. (A variation on Serre)We prove this using induction with respect to the index [G : H]. If [G : H] = 1, the groups are equaland the one way to extend the character is to itself. So for this case the argument is done. Nowsuppose [G : H] > 1 and let χ be a character of H . We will extend this character to a subgroup
H ′ ⊆ G, which has more elements than H . Therefore, [G : H ′] will be smaller than [G : H]. Andthus the induction hypothesis allows us to extend the character to G . We approach proving this asfollows:let x be an element of G which is not contained in H . Let n be the smallest positive integersuch that xn ∈ H . Such n exists because G is a finite group and so ord(n) < ∞. Let H ′ be thegroup generated by H and x . H ′ is a subgroup of G and we claim H ′ is the following group:

H ′ = {hxa|h ∈ H , 0 ≤ a < n}
The group H ′ is defined in such a way that all elements are of the form hxa, where h ∈ H and0 ≤ a < n. It is thus clear that

y ∈ H ′ =⇒ y ∈ {hxa|h ∈ H , 0 ≤ a < n}.
To prove that the same holds the other way, we have to prove that {hxa|h ∈ H , 0 ≤ a < n} is agroup. To show this, let h1,h2 ∈ H and 0 ≤ a ≤ b < n. Besides the identity element being in H ′,also

h1xa · h2xb = h1h2xa+b ∈ H ′,as H is commutative. Furthermore,
(h1xa)−1 = (x−1)ah−11 = h−11 x(n−1)a ∈ H ′,
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and so H ′ is a group. It is also true that |H ′| = n|H|. This follows from the property that everelement of H ′ can be written in a unique way as h′ = hxa for h ∈ H and 0 ≤ a < n. We will provethis now: for h1,h2 ∈ H and 0 ≤ a ≤ b < n, we see that
h1xa = h2xb ⇒ xa−b = (h1)−1h2 ∈ H .

By the restrictions on a and b, it must hold that a = b. Hence h1 = h2 and so each element of H ′can be written in a unique way as h′ = hxa. Therefore, it holds that |H ′| = n|H|.Now set t = χ(xn) ∈ C∗. There exist n distinct elements w ∈ C∗ such that wn = t. Givenany such w , we define the extended character χw : H ′ → C∗ as follows:
χw(h′) = χw(hxa) = χw(h)χw(x)a = χ(h)wa

This is unique for every element h′ as all elements of H ′ can be written distinctly as h′ = hxa. It isindeed a character as
χw(h′1h′2) = χ(h1h2)wa+b = χ(h1)wa · χ(h2)wb = χw(h′1)χw(h′2).Note that χw(h) = χ(h) for all h ∈ H , as a = 0 for these elements. There are no other ways todefine a character extended to H ′. To prove this, let χ of H be extended to χ ′ of H ′. Then,

χ ′(h′) = χ(h)χ ′(xa) = χ(h)χ ′(x)a.
But χ ′(x)n = χ(xn) = t and therefore χ ′(x) = w for some wn = t. Thus, any character of Hextended to H ′ must be of the form χw(h′) = χ(h)wa.So the character χ ∈ Ĥ can be extended to some χ ′ ∈ Ĥ ′. The extended character χ ′ can bedefined in n = [H ′ : H] possible ways, because χ ′(h′) = χ(h)wa and there exist n distinct elements
w such that wn = t. As [G : H ′] < [G : H], by the induction hypothesis χ can be extended to allof G. Continuing the method, this can be done in [G : H ′][H ′ : H] = [G : H] possible ways. Thisconcludes the proof. ☼

Proposition 2. There exist |G| distinct characters of G .
Proof. Let {1} be the trivial subgroup of G. Only the trivial character exists on this subgroup. ByProposition 1, this character can be extended in [G : {1}] = |G| ways. This defines all characters on
G . ☼

Proposition 3. Let χ ∈ Ĝ . Let |G| = n. Then∑
x
χ(x) =

{
n when χ = 10 when χ 6= 1,

where the sum is taken over all elements x of G .
Proof. (Serre’s proof with added intermediate steps)The first formula is clear as the trivial character χ = 1 takes all n elements to 1. For the secondformula, let χ be a non-trivial character and let y be an element of G such that χ(y) 6= 1. This mustexist, as we have taken a non-trivial character. Then,

χ(y)
∑
x
χ(x) =

∑
x
χ(x)χ(y) =

∑
x
χ(xy) =

∑
x
χ(x).

Because of this,
(1−χ(y))∑

x
χ(x) = 0.

By the choice of y, it follows that ∑
x
χ(x) = 0 and the proposition is proven. ☼
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Proposition 4. Let x ∈ G . Let |G| = n. Then∑
χ
χ(x) =

{
n when x = 10 when x 6= 1,

where the sum is taken over all characters χ of G .
Proof. (Inspired by Serre’s proof for the previous proposition)The proof is very similar to the proof for the previous proposition. Using Proposition 2, the firstformula is clear: all characters take the identity element x = 1 to 1 and there are n characters of
G. For the second formula, we take an arbitrary x 6= 1 in G. Let 〈x〉 be the cyclic subgroup of Ggenerated by x . This subgroup is of order k > 1. Define a character on 〈x〉 as follows:

χ̃x : 〈x〉 → C∗

xa 7→ e
2πi
k a.

Note that this indeed defines a character on 〈x〉. By Proposition 1 this character can be extended toa character χx of G . It holds that χx(x) = χ̃x(x) = e 2πi
k 6= 1. We see that:

χx(x)
∑
χ
χ(x) =

∑
χ
χx(x)χ(x) =

∑
χ
χxχ(x) =

∑
χ
χ(x).

This gives:
(1−χx(x))∑

χ
χ(x) = 0.

By the choice of χx , it follows that ∑
χ
χ(x) = 0 and the proposition is proven. ☼

We will work with multiplicative groups of integers modulo m later, as this is what is neededfor the argument. Therefore we define characters on these group as follows: We call an element χ ofthe dual of (Z/mZ)∗ a character modulo m. In this case, consider χ as a map Z→ C by defining
χ(a) =

{
χ(ā) when ā ∈ (Z/mZ)∗0 otherwise

where ā ≡ a (mod m). The order of the group (Z/mZ)∗ is the amount of elements n < m suchthat gcd(n,m) = 1: this is denoted φ(m), also called the Euler-φ function.It is possible for the characters of a group to take only real values: the values 1 and −1. It isinteresting to note that this happens for characters χ modulo m if and only if m | 24. Otherwise,a character takes values besides these real ones as well. We will prove this statement later andaddress the influence that the properties of a character have on our proof.
3.2 Dirichlet series
Definition 3. A Dirichlet series is a series of the form

∞∑
n=1

an
ns ,

where an ∈ C and s ∈ C.As s is a complex variable, we should make more clear what the part n−s looks like. This canbe rewritten as 1
ns =

1
es log(n) ,
10



which should help in understanding the way the series behaves.Many of the series in this proof are Dirichlet series. This is why we discuss some properties ofthem. The convergence of Dirichlet series allows us to define series later that we can work with.If there was no general convergence for this type of series, all functions would have to be provento converge separately. We will show how Dirichlet series converge for values of s and how thisconvergence can be extended to other parts of the complex plane.
Proposition 5. If the exponents an of a Dirichlet series are bounded, there is absolute convergencefor R(s) > 1.(We denote the real part of the complex variable s by R(s) and we will keep to this notationfor the remainder of the paper.)
Proof. The convergence of the series ∑∞n=1 1/nα for α > 1 is well known and we assume its proofknown. Let |an| ≤ K for all n and some K < ∞. This implies that the Dirichlet series convergesabsolutely: ∣∣∣anns ∣∣∣ ≤ |an|nR(s)

≤ K
nR(s)

,
and the series ∑K/nR(s) converges for R(s) > 1 as K is finite. So ∑ |an/ns| converges, and theproposition is proven. ☼

Lemma 1. Let U be an open subset of C. Let fn be a sequence of holomorphic functions on U whichconverges uniformly to a function f on every compact subset of U . Then f is holomorphic in U andderivatives f ′n of the functions fn converge uniformly to the derivative f ′ of f on all compact sets.
Proof. This proof is quickly attained by the use of Cauchy’s integral formula. For this, let D be aclosed disc in U and let Γ be its boundary which is positively oriented. Then,

fn(z0) = 12πi
∫

Γ

fn(z)
z − z0dzfor all z0 in the interior of D. Taking the limit on both sides gives us

f (z0) = 12πi
∫

Γ

f (z)
z − z0dzSo f is holomorphic for all z0 in the interior of D. This proves the first part of the lemma. For thesecond part, we use the formula

f ′n(z0) = 12iπ
∫

Γ

fn(z)
(z − z0)2dz .

This is obtained from the Taylor series of fn around z0 together with the residue theorem. As a resultof this, the derivative f ′n converge uniformly to the derivative f ′ of f on all compact sets. ☼

Lemma 2 (Abel’s lemma). Let (an) and (bn) be two sequences. Define
Am,m′ = n=m′∑

n=m
an and Sm,m′ = n=m′∑

n=m
anbn.

Then
Sm,m′ = n=m′−1∑

n=m
Am,n(bn −bn+1) + Am,m′bm′

11



Proof. To achieve this result, we replace an by Am,n − Am,n−1 and regroup the brackets. Thisimmediately provides us with the result. The lemma can be applied to the Dirichlet series ∑an/ns.For this, set bn = n−s. Then we obtain the partial sum
m′∑
m
an/ns = Sm,m′ = n=m′−1∑

n=m
Am,n

( 1
ns −

1
(n+ 1)s

)
+ Am,m′ 1

(m′)s .
☼

Lemma 3. Let α , β be real numbers with 0 < α < β . Let z be a complex number such that
R(z) = x > 0. Then,

|e−αz −e−βz | ≤ |z|x (e−αx −e−βx).
Proof. (The proof as done by Serre)To prove this, we write

e−αz −e−βz = z
∫ β

α
e−tzdt .

Note that ∣∣e−tz∣∣ = ∣∣∣e−t(R(z)+Im(z))∣∣∣ = e−tx . Therefore, taking absolute values on either side gives
|e−αz −e−βz | ≤ |z|

∫ β

α
e−txdt = |z|x (e−αx −e−βx),

which shows the result. ☼

Proposition 6. Let the Dirichlet series f (s) =
∑
an/ns converge for s = s0. Then f convergesuniformly in all domains of the form R(s − s0) ≥ 0 and Arg(s − s0) ≤ θ, with θ < π/2.

Proof. (Similar to the proof by Serre, using a different series)We make a translation on s such that we can suppose s0 = 0. Then the series f (0) =
∑
an isconvergent by hypothesis. The restrictions for the domain of uniform convergence become R(s) ≥ 0and |s|/R(s) ≤ k . Since ∑an converges, there exist an N and an ε > 0 such that

if m,m′ ≥ N , then
∣∣∣∣∣∣
n=m′∑
n=m

an

∣∣∣∣∣∣ = |Am,m′ | ≤ ε.
The notations are those of Lemma 2, which we applied to the Dirichlet series before to get

Sm,m′ = n=m′−1∑
n=m

Am,n(e− log(n)s −e− log(n+1)s)+ Am,m′e−s log(m′) .
This is rewritten, so that we can apply Lemma 3 to the exponentials with α = log(n) and β =log(n+ 1). This lemma results in

|Sm,m′ | ≤ ε
1 + |s|

R(s)

n=m′−1∑
n=m

(
e− log(n)x −e− log(n+1)x) .

Now we work out the series and simplify:
|Sm,m′ | ≤ ε (1 + k (e− log(m)x −e− log(m′)x))

Thus
|Sm,m′ | ≤ ε(1 + k),which proves the desired uniform convergence in the domain. ☼
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Corollary 1. If f converges for s = s0, it also converges for R(s) > R(s0) and the function thusdefined is holomorphic.This follows from Proposition 6 and Lemma 1.
Proposition 7. Let f be the Dirichlet series f (s) =∑an/ns with real coefficients an ≥ 0. Supposethe function f converges for R(s) > ρ, where ρ is real. Also suppose that f can be extendedanalytically to a function that is holomorphic in a neighbourhood of the point s = ρ, which lies onthe real line. Then there exists a ε > 0 such that f converges for R(s) > ρ− ε.(This means that the domain of convergence of f can be extended to the left in the complexplane as long as we do not run into a singularity of f on the real axis.)
Proof. (Similar to the proof by Serre, using a different series)In similar fashion as we started the proof for Proposition 6, we make a translation on f . We canthus assume that ρ = 0. The function f is holomorphic for R(s) > 0 and also in a neighbourhood of0 by assumption. Then f is holomorphic in a disc |s − 1| ≤ 1 + ε, where ε > 0. As the function isholomorphic there, its Taylor series converges in the disc. The Taylor series around 1, is written as

f (s) =
∞∑
p=0

1
p!
(s − 1)pf (p)(1) for |s − 1| ≤ 1 + ε.

The point we want to extend our convergence to is s = −ε, here the Taylor series is
f (−ε) =

∞∑
p=0

1
p!
(1 + ε)p(−1)pf (p)(1).

The point lies in our disc and this series is thus convergent.Now, by Lemma 1, we can compute the pth derivative of f . This derivative is
f (p)(s) =

∑
(−1)p(log(n))panns ,

or for s = 1,
f (p)(1) =∑(−1)p(log(n))pann .

Then (−1)pf (p)(1) =
∑

(log(n))pan/n and this is a convergent series with non-negative terms.This can be substituted into the Taylor series at s = −ε to get the following convergent doubleseries with non-negative coefficients:
f (−ε) =

∑
p,n

1
p!
(1 + ε)p(log(n))pann

=
∑
n

an
n

∞∑
p=0

1
p!
(1 + ε)p(log(n))p.

The positive coefficients make it so that we can rearrange the sums. This series over p can berecognized as the Taylor expansion of n1−s at the point s = −ε. We use this to rewrite the functionand get
f (−ε) =

∑
n

an
n n

1+ε =∑
n

an
n−ε .

This is the Dirichlet series at the point s = −ε. It came from a double series, which was convergent.So the Dirichlet series must also be convergent at s = −ε. By Corollary 1 of Proposition 6 thisshows that the series also converges for R(s) > −ε and the proof is complete. ☼
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Proposition 8. Let f be the Dirichlet series f (s) = ∑
an/ns with bounded partial sums Am,m′ =∑m′

m an. Then, the series converges for R(s) > 0.
Proof. (Serre’s proof with added intermediate steps)Let |Am,m′ | ≤ K for some K < ∞ as the partial sums are bounded. We apply Lemma 2 again andtake absolute values to obtain

|Sm,m′ | ≤ K
∣∣∣∣ 1

(m′)s

∣∣∣∣+ m′−1∑
m

∣∣∣∣ 1
ns −

1
(n+ 1)s

∣∣∣∣
 .

To continue, suppose s is real and non-negative. As a result of this, the absolute value brackets onthe right-hand side can be removed as all terms in them will be positive. Then we can work out theseries to get
|Sm,m′ | ≤ K

ms ,
which makes the convergence clear for real s. By Proposition 6, the convergence holds for all complex
s such that R(s) > 0. ☼

3.3 The zeta function
We repeat the definition of a multiplicative function from the previous chapter:
Definition 4. A function g : N→ C is called multiplicative if g(1) = 1 and

g(mn) = g(m)g(n)

whenever integers n and m are relatively prime. If this equality holds for all pairs n,m ∈N, then gis said to be strictly multiplicative.Let g be any bounded function that is strictly multiplicative.
Lemma 4. The Dirichlet series f (s) =∑g(n)/ns converges absolutely for R(s) > 1. In this domainits sum is equal to ∏

p∈P

11−g(p)/ps ,
which is a convergent infinite product. (Here, and in the rest of the paper, the set of prime numbersis denoted as P.)
Proof. (Serre’s proof with added intermediate steps)By Proposition 5, the Dirichlet series converges absolutely for R(s) > 1 as the functions g arebounded. To prove equality to the infinite product, we define two sets: let S be a finite set of primenumbers and let N(S) be the subset of positive integers all of whose prime factors belong to S . Thenby the strictly multiplicative property of g, it holds for any n ∈ N(S) such that n = pa11 pa22 . . . pakk :

g(n)
ns =

g(pa11 pa22 . . . pakk )

(pa11 pa22 . . . pakk )s
=
g(pa11 )

pa1s1
g(pa22 )

pa2s2 . . .
g(pakk )

paksk
.

The prime numbers p1,p2, . . . ,pk are all elements of the set S and any natural number that can bewritten as a product of prime numbers from the set S is an element of the set N(S). Therefore,
∑

n∈N(S)

g(n)
ns =

∏
p∈S

( ∞∑
m=0

g(pm)
pms

) .

14



When we increase both S and N(S), the left-hand side tends to the Dirichlet series ∑∞n=1 g(n)/ns.The right-hand side will then go to ∏p∈P (
∑
g(pm)/pms). Because g is strictly multiplicative, wecan rewrite this to get

∞∑
n=1

g(n)
ns =

∏
p∈P

( ∞∑
m=0

g(p)m
pms

) .
By the geometric series, we see that this convergent infinite product is indeed equivalent to therequired result. ☼

Definition 5. The zeta function is the function
ζ(s) =

∞∑
n=1

1
ns =

∏
p∈P

11− 1
ps

,
where we ensure that R(s) > 1 for the formulas to converge and thus behave properly. This equalityfollows from Lemma 4 applied to g = 1.Now that we have established the zeta function as a Dirichlet series, it is ensured that we canwork with the function in a proper way. In the following part, we will learn more about the zetafunction. This provides us with knowledge about this function and other functions which we will uselater. The L-function, which we will be working with later, gains its properties directly from the zetafunction. This is why it is so important to assert these facts now.
Proposition 9. The zeta function can be written as

ζ(s) = 1
s − 1 + κ(s),

where κ is holomorphic for R(s) > 0.
Proof. (Serre’s proof with added intermediate steps)We see that 1

s − 1 =

∫ ∞
1 t−sdt =

∞∑
n=1

∫ n+1
n

t−sdt .
Hence we can write

ζ(s) = 1
s − 1 +

∞∑
n=1

(
n−s −

∫ n+1
n

t−sdt
)

=
1

s − 1 +
∞∑
n=1

∫ n+1
n

(n−s − t−s)dt

We set the latter part equal to κ in the following way:
κn(s) =

∫ n+1
n

(n−s − t−s)dt and hence κ(s) =
∞∑
n=1 κn(s).Now we need to show that κ is defined and holomorphic for R(s) > 0. This would be proven if wecould show that all κn have these properties and ∑ κn converges uniformly. We can write

κn =

∫ n+1
n

(n−s − t−s)dt = 11− s (n−s − sn−s − (n+ 1)1−s + n1−s) ,
which shows that all κn are defined and holomorphic for R(s) > 0. Then we will prove that theseries ∑ κn converges uniformly. For this, see that

|κn(s)| ≤ sup
t∈[n,n+1]

∣∣n−s − t−s∣∣.
15



The derivative of n−s− t−s with respect to t is equal to s/ts+1. The absolute value of this derivativeis biggest at t = n: ∣∣∣ s
ts+1

∣∣∣ = |s|
tR(s)+1 ≤ |s|

nR(s)+1 for all t ∈ [n,n+ 1]
Then, the absolute value of κn(s) for any t ∈ [n,n+ 1] can not be bigger than the sum of theabsolute value at t = n and 1 times the absolute value of the derivative here:

|κn(s)| ≤
∣∣n−s −n−s∣∣+ ∣∣∣ s

ns+1
∣∣∣ = |s|

nR(s)+1 .
This shows the convergence of the series for R(s) ≥ ε for all ε > 0, which concludes the argument. ☼For the next corollary, there is some more to be said about the logarithm used. We definelog 11−α as ∑∞1 αn/n for |α| < 1. This is a holomorphic function with a continuation to a meromorphicfunction on the whole complex plane. We see that

e
∑
αn/n = 1 +(α +

α22 + . . .
)
+

(
α +

α22 + . . .
)2

+ . . . .
This is equal to 1 + α + α2 + . . . , which is a geometric series and thus equals 1/1−α for |α < 1|.Therefore, it holds that

e
∑
αn/n =

11−α .
and so we have a valid definition for our logarithm. Note that loguv = logu+ log v as

eloguv = uv = eloguelog v = elogu+log v .
Corollary 2. It holds that lim

s→1
(∑

p p−s
)

/ log( 1
s−1) = 1 and ∑p,k≥2 1/pks stays bounded.

Proof. (Serre’s proof with added intermediate steps)We see that
log ζ(s) = log∏

p∈P

11− 1
ps

 =
∑
p∈P

log( 11− 1
ps

).
Using our definition of the logarithm, we rewrite this as

log ζ(s) = ∑
p,k≥1

1
kpks

=
∑
p

1
ps +ψ(s).

For this, introduce the series ψ(s) =∑p,k≥2 1/kpks. For the absolute values of the terms ∣∣1/kpks
∣∣ <∣∣1/pks

∣∣ as k ≥ 2. If we can prove that ∑p,k≥2 1/pks converges absolutely, so will ψ(s). First, provethis convergence in the following way:∑
p,k≥2

∣∣∣∣ 1
pks

∣∣∣∣ =∑
p

∣∣∣∣ 1/ps1− 1/ps −
1
ps

∣∣∣∣ =∑
p

∣∣∣∣ 1
ps(ps − 1)

∣∣∣∣ ≤∑
p

1
p(p− 1) ≤ ∞∑

n=2
1

n(n− 1) .
This sum converges to 1 and so, ∑

p,k≥2
1
pks
≤
∞∑
n=2

1
n(n− 1) = 1.

Thus, this sum is bounded and the second result has been shown. This also implies that ψ(s) isbounded. To prove the first result, we use that (s − 1)ζ(s) is bounded for s in a neighbourhood of 1.
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This holds as the zeta function has only a simple pole at s = 1. So for some neighbourhood around
s = 1 and some K with |K | < ∞:

(s − 1)ζ(s) = K .Taking the logarithm on either side and making sure these exist in the neighbourhood, it follows that
log(s − 1) + log ζ(s) = logK .

Now divide each side by log 1
(s−1) and rearrange the terms to get

log ζ(s)/ log( 1
s − 1

)
= 1 + logK/ log( 1

s − 1
).

If we take the limit as s → 1, the value of logK stays bounded and so
lim
s→1 log ζ(s)/ log( 1

s − 1
)
= 1.

We divide the equality from before by log 1
(s−1) :

log ζ(s)/ log( 1
s − 1

)
=
∑
p

1
ps
/ log( 1

s − 1
)
+ψ(s)

/ log( 1
s − 1

).
As s → 1, the value of ψ(s) stays bounded and so:

lim
s→1

∑
p

1
ps
/ log( 1

s − 1
)
= lim

s→1 log ζ(s)/ log( 1
s − 1

)
= 1.

This concludes the proof. ☼

3.4 L-functions
Definition 6. Let m ≥ 1 be an integer and let χ be a character modulo m. The L-functioncorresponding to m and χ is defined by the series

L(s,χ) = ∞∑
n=1

χ(n)
ns .

This is a Dirichlet series. Such a character χ modulo m takes values from the set of natural numbersto the complex plane, but only the integers prime to m will give non-zero terms. The function χ isdefined to be strictly multiplicative and is bounded.The L-function is closely related to the zeta function and we will see that some of the zetafunctions properties transfer. Afterwards, we will use the L-function to prove the hardest step in theproof of Dirichlet’s Theorem. By the way this function is defined, we can use it later to provide themuch needed convergence of a series. Firstly, it has to be shown that the L-function does not vanishat s = 1 for any character χ 6= 1. This is the aim of this paragraph.
Proposition 10. For χ = 1,

L(s, 1) = F (s)ζ(s) with F (s) =∏
p|m

(1− 1
ps ).

Thus, L(s, 1) extends analytically for R(s) > 0 and it has a simple pole at s = 1.
17



Proof. The equality comes from the definition of the character: using the product expansion of thezeta function:
F (s)ζ(s) =

∏
p|m

(1− 1
ps

) ∏
p∈P

11− 1
ps

=
∏
p-m

11− 1
ps

.
This is equal to L(s, 1), the expansion can be found in the same way that the expansion for the zetafunction was found. As the function F (s) is holomorphic for R(s) > 0 and so the properties transferdirectly from the zeta function. This shows why the simple pole is there at s = 1 and the fact that
L(s, 1) extends analytically. ☼

Proposition 11. For χ 6= 1, the series L(s,χ) converges for R(s) > 0. For R(s) > 1, the functionconverges absolutely and
L(s,χ) = ∏

p∈P

11− χ(p)
ps

for R(s) > 1
Proof. (Serre’s proof with added intermediate steps)The properties of the series for R(s) > 1 are clear by Lemma 4 as L(s,χ) is a Dirichlet functionwith bounded, strictly multiplicative exponents χ . Showing the convergence for R(s) > 0 requiressome more work: using Proposition 8, convergence follows from boundedness of the partial sums

Au,v = v∑
n=u

χ(n) where u ≤ v .
As χ 6= 1, from Proposition 3 it follows that

u+m−1∑
n=u

χ(n) = 0.
Because of this, we only need to show that Au,v is bounded for v − u < m. For these values, we caneasily majorize the sums: we have

|Au,v | ≤ φ(m),and the proposition is proven. ☼We will now go on to prove a notoriously hard step in the proof of Dirichlet’s theorem. This isthe non-vanishing of L(s,χ) at s = 1 for the characters χ 6= 1. For this, set m to be a fixed positiveinteger. For any integer p - m and the group G(m) = (Z/mZ)∗, we denote by p̄ the image of p in
G(m). Denote by f (p) the order of p̄ in the group G(m), and put

g(p) = φ(m)
f (p) .

Thus g(p) is the order of the group G(m)/〈p̄〉, where 〈p̄〉 is the subgroup of G(m) generated by p̄.
Lemma 5. If p - m, the following identity holds:∏

χ
(1−χ(p)T ) = (1−T f (p))g(p) ,

where the product is taken over all characters χ of G(m).
Proof. (Serre’s proof with added intermediate steps)We start the proof by looking at the 1/T -th roots of 1:(( 1

T

)f (p)
− 1) =

∏
{w|wf (p)=1}

( 1
T −w

)

18



If we multiply both sides by T f (p) , we get the following equality:(1−T f (p)) =
∏

{w|wf (p)=1}(1−wT )This f (p) is defined to be the order of 〈p〉. On this group, there exist f (p) characters. There existsone character χ of 〈p〉 such that χ(p̄) = w for any such root w . Any such character can be extendedto [G(m) : f (p)] = g(p) characters of G(m) by Proposition 1. From this, it follows that
∏
χ

(1−χ(p)T ) = ( ∏
w∈W

(1−wT ))g(p) = (1−T f (p))g(p) .
The lemma is shown. Now define a new function ζm(s) as follows:

ζm(s) =
∏
χ
L(s,χ),

where the product is extended over all characters χ of G(m). ☼

Proposition 12. We have
ζm(s) =

∏
p-m

1(1−p−f (p)s)g(p) .
This is a Dirichlet series with positive coefficients, that converges for R(s) > 1.
Proof. Replacing the L-functions by their product expansion yields

ζm(s) =
∏
χ ,p

11−χ(p)p−s =
∏
p-m

∏
χ

1−χ(p)p−s−1 .
Now, apply Lemma 5 with T = p−s to achieve the required result. To show this is a Dirichlet series,first expand one term of the product:( 11−p−f (p)s

)g(p)
=

( ∞∑
m=0p

−f (p)ms
)g(p) .

We can use this as ∣∣∣p−f (p)s∣∣∣ = (p−f (p)R(s)) < 1 for all p. Work out this sum to get( ∞∑
m=0p

−f (p)ms
)g(p)

=
(1 + p−f (p)s + p−2f (p)s + . . .)g(p) = 1 + b−f (p)sp1 + b−2f (p)s

p2 + . . . ,
where bp1 ,bp2 , . . . are non-negative and depend on p. We plug this in to the product that is ζm:

ζm(s) =
∏
p∈P

1 + bp1p−f (p)s + bp2p−2f (p)s + . . .
=
(1 + b212−f (2)s + b222−2f (2)s + . . .)(1 + b313−f (3)s + b323−2f (3)s + . . .) . . .

=
∞∑
n=1

an
ns ,

where the coefficients an are products of different bpi and are thus also non-negative. The coefficientsare also bounded. This shows that ζm(s) is a Dirichlet series with non-negative coefficients and itfollows that ζm converges for R(s) > 1 by Proposition 5. ☼
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Theorem 2. The function L(1,χ) 6= 0 for all χ 6= 1.
Proof. (Serre’s proof with added intermediate steps) For contradiction, assume that L(1,χ) = 0 forsome χ1 6= 1. Then writing χ1 as its Taylor expansion around s = 1 allows for a factor s − 1 to befactorized out. As a result of this, the simple pole of L(s, 1) at s = 1 that was shown in Proposition10 is cancelled out when computing ζm. This, in combination with Proposition 11, implies that ζm isholomorphic at s = 1 and can thus be extended analytically to all of R(s) > 0. The function ζm alsoconverges for R(s) > 1. By Proposition 7, this implies that ζm converges for all of R(s) > 0 as werun into no singularities. This can not hold however, we will show that this contradicts with thedefinition of our function: the pth factor of ζm is

1(1−p−f (p)s)g(p) =

( ∞∑
k=0p

−kf (p)s
)g(p) .

This dominates the series
∞∑
k=0p

−kφ(m)s.
As a result of this, our function ζm has all its coefficients greater than those of the series∑

(n,m)=1n
−φ(m)s =

∏
p-m

∞∑
k=0p

−kφ(m)s.
But this series diverges for s = 1/φ(m). Thus ζm must also diverge for this value of s, for which it istrue that R(s) > 0. We have a contradiction and our assumption must be negated. The propositionfollows. ☼

Corollary 3. The function ζm has a simple pole at s = 1.As L(s,χ) has a simple pole for χ = 1 and is nonzero for all other characters χ , this result isshown.
3.5 Proving Dirichlet’s Theorem
As we saw in Corollary 2 to Proposition 9,

lim
s→1

∑
p
p−s

/ log( 1
s − 1

)
= 1.

Here P is the set of prime numbers. We now define s to be real and bigger than 1 to not cause anyproblems. The limit is taken as s → 1 from above.
Definition 7. Let A be a subset of P. The set A has a density of k , when(∑

p∈A

1
ps

)/( log( 1
s − 1

))
tends to k as s → 1. As A ⊂ P, this means that 0 ≤ k ≤ 1. This is also called Dirichlet density.This concept is defined to state a relation between the set A and the set P. Using this definition,we can rewrite Dirichlet’s Theorem as follows:
Theorem 3 (Dirichlet’s theorem). Let m ≥ 1 and a be positive integers such that (a,m) = 1. Let Pabe the set of prime numbers p such that p ≡ a (mod m). Then, the set Pa has density 1/φ(m).
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This theorem implies a corollary, which shows that there is an infinite amount of primes in thearithmetic progression a (mod m).
Corollary 4. The set Pa is infinite.Any finite set has density zero.
Lemmas

To prove the theorem, some lemmas are needed. Let χ be a character of G(m). Define
fχ (s) =

∑
p-m

χ(p)
ps ,

which converges for R(s) > 1. In the following lemma 7, it becomes clear why the L-function isdefined to be how it is. Taking the logarithm results in a combination of series that we want toshow convergent at s = 1. As it is shown earlier that the L-function does not vanish at this point, itslogarithm must be bounded in the way we define it.
Lemma 6. If χ = 1, then fχ ∼ log( 1

s−1) for s → 1 from the right side of the complex plane.
For the trivial character χ = 1, our function becomes f1 =

∑
p-m

1
ps . This differs from the series∑

p∈P
1
ps only by a finite number of terms and thus the equivalence is implied.

Lemma 7. If χ 6= 1, the function fχ remains bounded when s → 1 from the right side of the complexplane.
Proof. (Serre’s proof with added intermediate steps)To prove the boundedness of fχ , we use the logarithm of the function L(s,χ). Again, we use ourdefinition of the logarithm:

log( 11−α
)
=
∞∑
n=1

αn
n for |α| < 1.

We can apply this to the L-function, by using the product expansion of L(s,χ) and taking α = χ(p)p−s:
log L(s,χ) = ∑

p∈P
log 11−χ(p)p−s when R(s) > 1

=
∑
p,n

χ(p)n
npns .

Note that this works as |χ(p)p−s| < 1. To gain information about fχ , we split this sum up into twoparts to get log L(s,χ) = fχ (s) + Fχ (s).For this, we set
Fχ (s) =

∑
p,n≥2

χ(p)n
npns .

Theorem 2 states that log L(s,χ) remains bounded as s → 1 as χ 6= 1 and the L-function convergeshere. By Corollary 2 to Proposition 9 the series ∑p,n≥2 1/pns remains bounded as s → 1. Thisimplies that Fχ (s) stays bounded then as
∣∣Fχ (s)∣∣ =

∣∣∣∣∣∣ ∑p,n≥2
χ(p)n
npns

∣∣∣∣∣∣ <
∣∣∣∣∣∣ ∑p,n≥2

1
pns

∣∣∣∣∣∣.
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. Now that log L(s,χ) and Fχ (s) both stay bounded as s → 1, so must fχ (s). This holds for all
χ 6= 1 and the proposition is proven.We will now prove Theorem 3. For this, introduce the following function:

ga(s) =
∑
p∈Pa

1
ps .

To study the behaviour of this function as s → 1, we use the following Lemma 8. We see that thisrelies on the function that we defined and showed properties of in the previous lemmas. We canthen use the convergence and divergence shown there to prove Dirichlet’s Theorem. ☼

Lemma 8. We can rewrite the function ga(s) as follows:
ga(s) =

1
φ(m)

∑
χ
χ(a)−1fχ (s),

where the sum is taken over all characters χ of G(m).
Proof. (Serre’s proof with added intermediate steps) This is most clear when proven in a backwardsmanner and thus we start by rewriting ∑χ χ(a)−1fχ (s) by replacing fχ by its definition, we get:

∑
χ
χ(a)−1∑

p-m

χ(p)
ps =

∑
p-m

∑
χ χ(a)−1χ(p)

ps

But χ(a)−1χ(p) = χ(a−1)χ(p). Here a−1 denotes the unique inverse of the element a in thegroup (Z/mZ)∗ . This is the element in (Z/mZ)∗ such that a−1a ≡ 1 (mod m). We see that
χ(a−1)χ(p) = χ(a−1p) and by Proposition 4:∑

χ
χ(a−1p) = { φ(m) when a−1p ≡ 1 (mod m)0 otherwise.

The sum is thus only non-zero when a−1p ≡ 1 (mod m), which is when p ≡ a (mod m). Hence, itholds that ∑
χ
χ(a)−1fχ (s) =∑

p-m

∑
χ χ(a−1p)
ps = φ(m)ga(s),

and the lemma is proven. ☼We are now ready to prove Theorem 3:
Proof. As s → 1, for χ = 1, the value χ(a)−1 = 1 and the constant 1/φ(m) stays the same. ByLemma 6 it is known that fχ (s) ∼ log( 1

s−1). Lemma 7 shows that all other fχ stay bounded. Thusby Lemma 8, the following equivalence relation holds:
ga(s) ∼

1
φ(m) log 1

s − 1 as s → 1.
This proves Theorem 3 and the proof of Dirichlet’s Theorem is concluded by Corollary 4. ☼
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4 Other versions of the non-vanishing
of L-functions

Besides the proof by Serre, there are many more proofs of Dirichlet’s Theorem. In this chapter wewill focus on a few different approaches. These are other ways of proving the result of Theorem 2 inthe work by Serre. This theorem states that L(1,χ) is not equal to 0 for all non-trivial characters
χ . The result is notoriously the hardest step in the proof. There are no ways around the proofhowever, as this step is crucial in proving the divergence we are after later on. This is why manymathematical writers have come up with their own way of proving the theorem. We focus on work byMonsky [3] and Veklych [6]. Both authors had their respective arguments published in the AmericanMathematical Monthly.Merely these arguments and their proofs are not enough. The two authors prove the non-vanishing for real characters modulo m only. This would be enough if our unit modulo group
(Z/mZ)∗ had just real characters. This only holds for a handful of integers m however, as can beseen in the following lemma:
Lemma 9. All characters χ of the group (Z/mZ)∗ are real if and only if m | 24.
Proof. For any positive integer m,

(Z/mZ)∗ =
∏
p|m

(Z/paZ)∗

by the Chinese Remainder Theorem for rings. Here a is the power corresponding to the prime p in theprime factorization of m. For (Z/mZ)∗ to have only real characters, all its elements must have order1 or 2. For if there exists an element x with ord(x) > 2, we can define a character χx : 〈x〉 → C∗such that χx(x) 6∈ R. This character can be extended to a character on all of (Z/mZ)∗ , defining anon-real character. If all elements y ∈ (Z/mZ)∗ have order 1 or 2, a character can only take realvalues as χ(y)2 = χ(y2) = χ(1) = 1.Thus all elements of (Z/mZ)∗ must have order 1 or 2. This holds if and only if all elements of
(Z/paZ)∗ have order 1 or 2 for all such groups in the Cartesian product. We will show that for
a ≥ 1, the group (Z/paZ)∗ has only elements of order 1 or 2 if and only if pa is 2, 3, 4 or 8. Thisproves the lemma, as then m | 24 for all (Z/mZ)∗ for which this holds.For any prime p and a ≥ 1, we can define a surjective homomorphism

f : (Z/paZ)∗ → (Z/pZ)∗,
x (mod pa) 7→ x (mod p).

The group (Z/pZ)∗ is cyclic since any finite group of units in any integral domain is. Thereforethere exists a generating element x ∈ (Z/pZ)∗ such that ord(x) = p− 1. Any element y in theinverse image of x has as order then a multiple of p− 1. This is an element y ∈ (Z/paZ)∗. So forany p ≥ 5, the group (Z/paZ)∗ contains at least one element y with ord(y) > 2 for a ≥ 1. Whatalso follows from the result, is that the group (Z/3Z)∗ has only elements of order 1 or 2, as it iscyclic.For the first 3 powers of 2, check that the group (Z/paZ)∗ only contains elements of order 1and 2. For any greater power, an element of bigger order can be found. To show this, define twosurjective homomorphisms that are similar to the function f above:
g1 : (Z/3aZ)∗ → (Z/9Z)∗ | x (mod 3m) 7→ x (mod 9) for m ≥ 2,
g2 : (Z/2bZ)∗ → (Z/16Z)∗ | x (mod 2n) 7→ x (mod 16) for n ≥ 4.

In the group (Z/9Z)∗ , there is the element 2 with order 6. All elements in the inverse image of2 then have as order a multiple of 6. Similarly, there is the element 3 ∈ (Z/16Z)∗ with order 4.
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Therefore there exists at least one element of an order bigger than 2 in (Z/3mZ)∗ for m ≥ 2 andin (Z/2nZ)∗ for n ≥ 4.Now, the group (Z/paZ)∗ has only elements of order 1 and 2 for a ≥ 1 if and only if
pa ∈ {2, 3, 4, 8}. This proves the lemma. ☼As we are looking for a proof for all positive integers m, this is not enough. Both Monsky andVeklych note that this can be resolved easily. They note that the proof is significantly easier fornon-real characters. For the completeness of this paper, we will also address that proof. To keepit approachable, we have combined work by Ram Murty [4] and Cohn [2] to construct an argumentthat fits in with the rest of our proof. We will start with this argument and treat the proofs for realcharacters after. In the end, a complete proof for Dirichlet’s Theorem can be obtained by combiningwork by Serre, Ram Murty and Cohn and either Monsky or Veklych. In the next chapter, we willcompare the arguments and comment more on the combination of these proofs.
4.1 M. R. Murty and H. Cohn on non-real characters
Lemma 10. For R(s) > 1, the Dirichlet series ∑∞1 ann−s that represents the product ∏χ L(s,χ)has the property that a1 = 1 and an ≥ 0 for all n ≥ 2. The product of L-functions is taken over allcharacters χ modulo m for some positive integer m.
Proof. (Closely related to the proof by Ram Murty)We start by writing L(s,χ) as its product expansion

L(s,χ) = ∏
p∈P

(1− χ(p)ps

)−1 .
Then, using the earlier defined logarithm

log( 11−α
)
=
∞∑
n=1

αn
n for |α| < 1,

we can write the following:
log∑

p∈P
L(s,χ) =∑

χ

∑
p

∞∑
n=1

χ(pn)
npns =

∑
n,p

1
npns

∑
χ
χ(pn)

 .
The change in summation order is permitted as the series converges absolutely for R(s) > 1. Thishas been proven for the L-function in Proposition 11 and it transfers to this series. Now, the sum∑
χ(pn) over all characters χ mod m is equal to φ(m) if pn ≡ 1 (mod m) and 0 otherwise. Thisfollows from Proposition 4. We can thus rewrite as

log∑
p∈P

L(s,χ) = φ(m)
∑
n

∑
pn≡1 (mod m)

1
npns .

If we exponentiate both sides and use the equality ex = 1 + x + x2/2 + . . . , we see that
∏
χ
L(s,χ) = 1 +φ(m)∑

n

∑
pn≡1 (mod m)

1
npns

+ . . . .
This proves the lemma as the exponents an will all be non-negative and a1 = 1. ☼

Theorem 4. The function value L(1,χ1) 6= 0 for all characters χ1 6= 1 such that χ1 6= χ1. (That is,the character χ1 is not real-valued.)
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Proof. (Inspired by the proofs by Ram Murty and Cohn)For contradiction, assume that for a non-real χ1 6= 1, it holds that L(1,χ1) = 0. Then,
L(1,χ1) =∑

n

χ(n)
n =

∑
n

χ(n)
n = L(1,χ1) = 0.

By the Taylor series of L(s,χ1), we can write
L(s,χ1) = (s − 1)g(s,χ1).This g(s,χ) is continuous for all R(s) > 0, except possibly s = 1. By Lemma 1, we can computethe derivative of L(s,χ1) at s = 1 and show that this is continuous for R(s) > 0. So if we set

g(1,χ1) = L′(1,χ1), the function g(s,χ1) is continuous for all R(s) > 0. This procedure can also beapplied to χ1 to see that
L(s,χ1) = (s − 1)g(s,χ1),where g(1,χ1) = L(1,χ1) at s = 1. This is thus also continuous for all R(s) > 0. Now,∏

χ
L(s,χ) = L(s, 1)(s − 1)2g(s,χ1)g(s,χ1) ∏

χ 6=1,χ1 ,χ1
L(s,χ).

Here the character 1 denotes the trivial character. The function L(s, 1)(s − 1) is continuous for all
R(s) > 0 as the simple pole at s = 1 that L(s, 1) has, is cancelled. Taking the limit on both sidesgives lim

s→1
∏
χ
L(s,χ) = lim

s→1(s − 1)L(s, 1)(s − 1)g(s,χ1)g(s,χ1)
As s → 1, all functions are continuous and can thus not yield infinity. But (s − 1)→ 0, and so thewhole product yields 0: lim

s→1
∏
χ
L(s,χ) = 0.

But by Lemma 10, ∏
χ
L(s,χ) = 1 + ∞∑

n=2
an
ns for R(s) > 1.

The product function is thus greater than 1 real values of s > 1. If we would only have one non-trivialcharacter χ such that L(s,χ) = 0, the function would be continuous for all R(s) > 0, but this wouldnot be any problem. Now that we have two such non-trivial characters however, there is a problem.We have now that the function is continuous, but also that the limit is 0 as s → 1. But for real s > 1,the function is greater than 1. This would mean that the function is not continuous and this is acontradiction. We must thus conclude that L(1,χ1) 6= 0. ☼

4.2 P. Monsky on real characters
Lemma 11. Let χ be a real character modulo m, where m is a positive integer. Define cn :=

∑
χ(d),where the sum is taken over all positive divisors d of n. Then the series ∑∞n=1 cn diverges.

Proof. (Monsky’s proof with added intermediate steps)For any power of a prime p,
cpa = 1 + χ(p) + χ(p)2 + · · ·+ χ(p)a ≥ 0.The equality follows from the multiplicative property of the character χ . As χ is a real character, forany prime p the value of χ(p) is either 1, -1 or 0. Therefore,
cpa =

{ 1, 1 + a or 0 when a is odd1 or 1 + a when a is even.
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For any distinct primes p and q and finite, non-negative a,b ∈ R, it holds that cpaqb = cpacqb :
cpaqb =

∑
0≤x≤a, 0≤y≤bχ(p

xqy) =
∑

0≤x≤aχ(p
x)
∑

0≤y≤bχ(q
y) = cpacqb

Then for the prime factorization of any natural number n = pa11 pa22 . . . pakk ,
cn = cpa11 cpa22 . . . cpakk ≥ 0.

as all the values in this product are not negative. Furthermore, if p is a prime dividing m then
χ(p) = 0. Then for a power of such p,

cpa = 1 + χ(p) + χ(p)2 + · · ·+ χ(p)a = 1.
For m ≥ 2, there exists at least one prime p that divides m and therefore for such a prime p,

lim
N→∞

N∑
n=1 cn ≥ lim

K→∞

K∑
a=1 cpa = lim

K→∞

K∑
a=1 1.

It follows that the series diverges. For m = 1, the only character is the trivial character anddivergence follows evidently for this case. As the series diverges for all positive integers m, thelemma is proven. ☼

Theorem 5. Let m be a positive integer. The function value L(1,χ) 6= 0 for all real characters χmodulo m such that χ 6= 1.
Proof. (The proof as done by Monsky)Set f to be the following function:

f (t) =
∞∑
n=1

χ(n)tn1− tn .
This function converges absolutely for t ∈ [0, 1): for t = 0, all terms are equal to 0 and convergenceis evident. For 0 < t < 1, we set

an :=
∣∣∣∣χ(n)tn1− tn

∣∣∣∣ = tn1− tn .
If there exist exponents bn such that an/bn is bounded and ∑bn is convergent, then ∑an mustconverge as well, this follows from the comparison test. For this, let bn = tn. Then,

lim
n→∞

an
bn

= lim
n→∞

11− tn = 1,
for all 0 < t < 1. This shows that an/bn is bounded and the series ∑∞1 tn is known to converge for0 < t < 1, as it is a geometric series. Therefore, the series

∞∑
n=1

∣∣∣∣χ(n)tn1− tn
∣∣∣∣ = ∞∑

n=1
tn1− tn

must also converge and the absolute convergence of f (t) is proven. Then for t ∈ [0, 1), we can usegeometric series to write
∞∑
n=1 cnt

n =
∑
n

∑
d|n, d>0χ(d)t

n =
∑
d

∑
k
χ(d)tdk =

∞∑
d=1χ(d)

td1− td = f (t).
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For this, we need the series ∑∞1 cntn to be convergent. We can show it is by the root test for powerseries: lim
n→∞

sup n
√
|cntn| = lim

n→∞
sup t n√cn

This root exists as cn ≥ 0 as was proven in Lemma 11. But cn =
∑
χ(d) over the positive divisors dof n. This sum is over no more than n divisors and all terms are at most 1, so the sum is not greaterthan n. Thus, lim

n→∞
sup n

√
|cntn| ≤ lim

n→∞
sup t n√n ≤ sup t ≤ 1,

and the convergence is shown. As a result of Lemma 11 and the equality to ∑∞1 cntn, the function
f (t)→∞ as t → 1−.For contradiction, now suppose that L(1,χ) =∑∞1 χ(n)/n = 0. This series is convergent for
R(s) > 0 as was shown in Proposition 11. Then it holds that

−f (t) =
∞∑
n=1χ(n)

[ 1
n(1− t) − tn1− tn

] ,
which is then also convergent. We write this as ∑∞1 χ(n)bn where bn are functions of t . Then,

(1− t)(bn −bn+1) = 1
n −

1
n+ 1 − tn1 + t + · · ·+ tn−1 +

tn+11 + t + · · ·+ tn
=

1
n(n+ 1) − tn

(1 + t + · · ·+ tn−1)(1 + t + · · ·+ tn) .
By the inequality of the arithmetic and geometric means,

(1 + t + · · ·+ tn−1) ≥ n(1 · t · · · · · tn−1)1/n
= nt(n−1)/2 ≥ ntn/2.

In the same way (1+ t + · · ·+ tn) ≥ (n+ 1)tn/2. This, together with the equality from before, gives
bn −bn+1 ≥ 0 and thus b1 ≥ b2 ≥ b3 ≥ . . . .It follows from Proposition 3 that ∑a+m−1

a χ(n) = 0 for χ 6= 1 and any natural number a.Thus, the sum ∑N1 χ(n) is bounded in absolute value by φ(m), independent of N . Together with theproperties of bn and the fact that b1 = 1, this shows that∣∣∣∣∣ N∑
n=1χ(n)bn

∣∣∣∣∣ ≤ |b1|
∣∣∣∣∣ N∑
n=1χ(n)

∣∣∣∣∣ ≤ φ(m), for all N ∈N.
Taking the limit as N →∞ shows that the function f (t) = −∑∞1 χ(n)bn is bounded, but before wehave shown that f (t)→∞ when t → 1−. This is a contradiction and we must thus conclude thatour assumption L(1,χ) = 0 is false. The theorem is proven. ☼

4.3 B. Veklych on real characters
Lemma 12. Let χ be a real character modulo m, where m is a positive integer. Define cn =

∑
χ(d),where the sum is taken over all positive divisors d of n. Then, the series ∑∞n=1 cnn−1/2 diverges.

Proof. (A combination of the proofs by Monsky and Veklych)In the proof of Lemma 11 that for a prime factorization of any natural number n = pa11 pa22 . . . pakk itholds that
cn = cpa11 cpa22 . . . cpakk ≥ 0.
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Specifically, for a square n all powers a1,a2, . . . ,ak of the prime factorization are even and so
cpa11 ≥ 1, cpa22 ≥ 1, . . . . As a result, also cn ≥ 1. Then, for N = M2,

N∑
n=1

cn
n1/2 ≥

M∑
m=1

cm2
m ≥

M∑
m=1

1
m .

Taking the limit as M →∞, the last series becomes the harmonic series, of which divergence is awell-known property. The series ∑∞n=1 cnn−1/2 thus also diverges and the lemma is proven. ☼

Theorem 6. Let m be a positive integer. The function value L(1,χ) 6= 0 for all real characters χmodulo m such that χ 6= 1.
Proof. (The proof as done by Veklych) Consider the function F (s) = ζ(s)L(s,χ). The zeta function isholomorphic for R(s) > 0 besides a simple pole at s = 1, we showed this in Corollary 3 to Theorem2. Assume that L(1,χ) = 0. The expansion of L(s,χ) = 0 at s = 1 cancels the pole of ζ(s) and so,the function F (s) is holomorphic for all R(s) > 0. Specifically, this F (s) is holomorphic in a disccentered at s = 2 that contains s = 1/2. Equivalently, the function F (2− s) is holomorphic in adisc centered at s = 0 that contains s = 3/2.For R(s) > 1, we have the absolutely convergent Dirichlet series of ζ(s) =

∑
k k−s and

L(s,χ) = ∑
l χ(l)l−s. Multiplying these, we obtain a Dirichlet series that represents F (s) for atleast R(s) > 1. This is the series ∑n cnn−s, where cn =

∑
d χ(d) as in Lemma 12. This equalitycan be shown in the following way:

∞∑
n=1 c

−nn−s =
∑
n

∑
d|n, d>0χ(d)n

−s =
∑
d

∑
k
χ(d)(dk)−s =

∑
d
χ(d)d−s

∑
k
k−s.

Now let s ∈ [0, 1). Then F (2− s) is represented by
∞∑
n=1

cn
n2−s =

∑
n

cn
n2 (es logn − 1)+∑

n

cn
n2 .

Due to the expansion of es logn, this is equal to∑
n

cn
n2

∞∑
k=1

sk (logn)k
k !

+ F (2) =∑
k
sk
∑
n

cn
n2 (logn)k

k !
+ F (2).

The change in summation order is permitted since all terms of the double series are non-negativeas s ∈ [0, 1). We have now found a power series in s that converges to F (2− s) for s ∈ [0, 1).The radius of convergence of this power series must thus be at least 1 and so it defines a functionholomorphic in |s| < 1. In this open disc, the power series coincides with F (2− s) as analyticcontinuations are unique. The series is thus the power series expansion of F (2− s) around 0. As aresult, it must converge to F (2− s) in the whole disc around 0 where F (2− s) is holomorphic. Wehave shown that this disc contains s = 3/2 before. Therefore, we set s equal to 3/2 in the powerseries and read the formula backwards. We then see that ∑∞1 cnn−1/2 converges to F (1/2).But by Lemma 12, the series ∑∞1 cnn−1/2 diverges already. This is a contradiction and wemust therefore conclude that our assumption was false. Hence, it holds that L(1,χ) 6= 0 for all realcharacters χ 6= 1. ☼

5 A comparison between proofs
Ram Murty / Cohn on non-real charactersThe argument on non-real characters is not a hard proof. It could possibly be made even easier, but
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the combination of work by Ram Murty and Cohn makes for a smooth addition to our earlier proof.What makes this proof so easy relatively, is the existence of a distinct character χ for any character
χ that is not real-valued. Both these series then vanish at s = 1 by assumption and we can subtracta factor (s − 1) from both their Taylor Series. As a result of this, there is no need for complicatedarguments about converging and diverging series. The product of L-functions can just be shown toyield 0 as s → 1 if we assume that L(1,χ) = 0 for some non-real χ . This does not agree with thevalue of the corresponding Dirichlet series and a contradiction is quickly found.This proof is simple and it would work well with the rest of the proof by Serre. We do needto combine it with either the proof by Monsky or by Veklych to be able to substitute out Theorem2 of Serre’s proof. I will include my opinion on the combination of the proofs with this one in therespective texts on the proofs by Monsky and Veklych.
Monsky on real characters
Recommended audience: readers with little knowledge of Complex Analysis, students of an introduc-
tory course in Number Theory.The proof by Monsky is different from Serre and Veklych in that it does not rely on a productof L-functions. Monsky introduces a different function based on a character and its L-function. Theargument thus does not have to do with the trivial character and the simple pole of its L-function.Instead, he introduces a series f . This f can be shown to diverge by a clever use of sums of characters.The divergence can only be shown in this way for real characters, which is a disadvantage of theargument. Afterwards, Monsky shows that f is bounded. Here the vanishing L-function comes in.He shows this boundedness in a quick and rather easy way, but some of the used steps are notvery intuitive. The combination of divergence and boundedness then results in a contradiction, whichproves the theorem.This argument is understandable even for those who have less knowledge of L-functions andComplex Analysis. This makes it suitable for a classroom, but it has its downsides. As a result of thesimplifications, it does not fit in too well with the rest of a proof for Dirichlet’s Theorem. AlthoughMonsky does not use so many properties of the L-function and results from Complex Analysis, theyare used in the rest of such a proof. That means that the proof by Monsky is suitable for showingonly this result in an easy and understandable way, but it might not be the best choice in a proof ofthe whole theorem. A last concern with this proof is that, although not specifically named, resultsfrom various fields are still used implicitly. This could give problems for less experienced readers, asthey are not used to working with these results yet. An example of this is working with a series asthe one defined as f (t), which has to be shown convergent first for the given domain. The importanceof a step like this could not be too clear for a reader. Summarizing, the proof by Monsky is a greatoption for readers who are merely interested in this step of the proof, they should just make surethat they do not simplify it too much for themselves.
Veklych on real characters
Recommended audience: readers with knowledge of and interest in Complex Analysis, students of a
course in Complex Analysis.The beginning of the proof by Veklych is similar to the beginning of Monsky’s proof. Bothuse the same sums over characters to show a form of divergence. After this, the proofs go differentways. Veklych wants to contradict this form of divergence. To do this, he introduces a power seriesexpansion that converges. Using results from Complex Analysis, like the uniqueness of analyticcontinuations, he expands the radius of convergence of this expansion. For this, he does need the factthat L(1,χ) = 0 for some χ 6= 1. Now that the convergence is extended, it can be used to contradictthe earlier named divergence and the proof is concluded.This proof relies a lot on Complex Analysis. This does fit in well with the rest of the proof, butcan be difficult to understand for readers new to the field. The results that are used, are implementedin a clear way. This way, the proof would fit perfectly in a course on Complex Analysis. It could be agood addition to any course in the matter to peak an interest of Number Theory. The proof is clever,but the used power series expansion is not too easy to grasp. It is quite a long expansion which
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can cause confusion. The proof does tie in well with the use of a product of L-functions by Serre.This is also used in the proof on characters that are not real-valued and so it would fit in betterthan the proof by Monsky in my opinion. If the reader is not too familiar with Complex Analysis, theproof can be difficult. Otherwise, this is a proof that fits in very well and provides a good alternative,especially in a context of more complex theory.
Serre on all characters
Recommended audience: devoted readers.Serre proves the non-vanishing of the L-function for all characters χ 6= 1 at once. To show thatthe product over all L-functions diverges, he shows the divergence of another series that is dominatedby this one. Afterwards, he shows the convergence of the product at the same point. He does thisby cancelling the simple pole of the L-function of the trivial character at s = 1. By removing thissingularity, the convergence of the product of L-functions can be extended to the point where it alsodiverges. This gives the required contradiction.The proof by Serre is more broad than all other arguments that we include. It contains a prooffor real and non-real characters, but it is even broad in another way: the propositions that Serreintroduces to prove this theorem are also applicable to other cases. Proposition 7 for example, statesa result about all Dirichlet series with positive coefficients instead of just stating it for the specificseries. This is a strength of Serre’s proof, but it does result in more complicated mathematics. Theargument is long in comparison to the new arguments we have introduced, and more knowledge oncomplex functions is needed to understand all the steps. In showing the divergence, Serre uses anapproach that deals with all characters at once. This does result in a more complicated argumentin which more Group Theory is used. The proof by Serre is elegant and it carries the spirit ofDirichlet’s own approach with it. Understanding this, does require a more devoted study than theother provided proofs do. For a reader that has the time and knowledge to do so, this proof is theone I would suggest. For an audience looking for a shorter or more modern proof, this proof is bestleft for later.
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