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Abstract

In this bachelor’s thesis we study the proof of Dirichlet's Theorem on primes in Arithmetic
Progressions. We find out about the various proofs of this theorem and see how they are different,
but also very related. We start looking at the idea of the proof that Dirichlet originally came up
with it and end up at very recent variations, published in the American Mathematical Monthly. The
influences from time are visible in the mathematics, but the general idea of the proof stays intact.
We can construct different proofs for different audiences and find one for readers from different
backgrounds to enjoy and understand. From classrooms to devoted readers of mathematics, there
is something interesting about the proof of Dirichlet's Theorem for all mathematicians.
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1 Introduction

The aim of this bachelor project is to compare and combine different proofs for Dirichlet's Theorem
on primes in arithmetic progressions. The theorem, and often a proof, can be found in most textbooks
on Analytic Number Theory. We will start by studying the proof as given by Jean-Pierre Serre in
A Course in Arithmetic [5]. This is one of the more classic proofs that explains all concepts and
steps in detail. It relies heavily on the fields of Group Theory, Complex Analysis and Real Analysis.
After understanding this proof, we will move on to study the hardest step and we discuss how
various authors prove this step. We will find that different proofs rely on different fields of study in
mathematics more heavily. Finding our way through multiple proofs, we form our own idea on what
is important and simple to understand. We compare variations of the proof in the final chapter and
recommend readers which proof might best suit their interests. This could be expanded on in other
projects, as there are many more proofs of Dirichlet's Theorem and we only focused on proving one
step of the proof in different ways. An even broader manual could be created to provide a better
tailored proof to different audiences.
Let us study Dirichlet's Theorem now. The theorem states the following:

Theorem 1. Let @ and m be positive integers with gcd(a,m) = 1. There exist infinitely many prime
numbers p such that p = a (mod m).

Equivalently, we can say that there exist infinitely many primes in the so called arithmetic
progression a, a +m, a + 2m, ... for two positive coprime integers a and m. The arithmetic
progression is the collection of integers a (mod m). This is why the theorem is known as Dirichlet's
Theorem on Arithmetic Progressions, shortened to Dirichlet's Theorem.

To prove the theorem, Dirichlet used the series

> % (1.1)

p=a (mod m)

where p is a prime number and s € C has a real part bigger than 1. He showed that this series
diverges for s = 1. This is of course only possible if the sum in (1.1) consists of infinitely many terms,
hence this divergence implies Dirichlet's Theorem. To prove this divergence, Dirichlet split the series
up into two separate series, which were more convenient to work with. Of these two, he showed
one to be divergent and one to be convergent. The combination of these two series was then thus
shown to be divergent. As we cannot say anything about the combination of two divergent series,
proving the one series to be convergent is crucial. To prove this, Dirichlet had to come up with new
functions and series. These are still used to prove various results in Number Theory. This original
way of working is why this theorem and its proofs are still relevant and interesting to us. The study
of Dirichlet's Theorem and its proofs throughout the years teaches us about mathematical styles
in different times. The latest variation on a part of the proof we will study was published in the
American Mathematical Monthly as recent as 2017 [6]. But even this relies on the same ideas that
Dirichlet came up with. To understand the proofs, we first study how Dirichlet himself came up with
the mathematics behind them. That is what we will do now in the next chapter.

2  Preliminaries

2.1 History and characteristics

History of the proof

Prime numbers have very useful applications. Most of these are in the field of cryptography.



However, the investigations on primes started far before these applications, according to [1]: Already
around 300 BC, Euclid wrote about prime numbers in his Elements. He provided the first proof that
there are infinitely many prime numbers. In Elements, Euclid also laid the foundation for what is
now known as the Fundamental Theorem of Arithmetic. This theorem states that any integer greater
than 1 either is a prime or can be represented as a product of primes in a unique way.

Around 2000 years later, Euler came up with his proof for the infinitude of primes. This proof
relies on the divergence of
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at s = 1, where P is the set of all prime numbers. He introduced the idea of the method that
Dirichlet would use later to prove Dirichlet's theorem using the series (1.1). Euler’s series (2.1) was
also defined in such a way that divergence would require an infinite number of terms. In Euler’s
method of showing said divergence, he introduces the zeta function {(s) =) 72, “1—5 We will see
later that this function also plays a key role in Dirichlet's proof. Euler also used the Fundamental
Theorem of Arithmetic in his proof to connect a series over prime numbers to a series over all natural
numbers. This way, he could connect the series (2.1) to the zeta function. The zeta function diverges
as s — 1 and this is how Euler proved the required divergence. This is not the whole proof of course,
but a few highlights of how Euler proved that the series (2.1) diverges when s = 1.

Euler proved that there is an infinitude of primes, but he also showed something about the
distribution of them. For example, the sum ) 7, niz is known to converge, opposed to the series
(2.1) that diverges as s — 1. From this, it can be concluded that there are more prime numbers than
there are squares. The knowledge of distribution of primes ties in with how Dirichlet's theorem was
proven later as he connected the set of primes in arithmetic progressions to the set of all primes.
Dirichlet proved that there are infinitely many primes in arithmetic progressions. For this, he showed
the divergence of } _,_; (mod m) 55 ass = 1, where p = a (mod m) is the collection of all prime
numbers p congruent to a modulo m. To show this, he looked at the ratio between this series over
primes modulo a and the series over all primes.

Approaching the proof

Showing that the series
1
— (2.2)
jS
p=a (mod m)
diverges as s — 1, is not an easy task. This is a hard problem to approach, harder than a sum over

all primes. It is convenient to rewrite (2.2) as

Z f(P)’ (2.3)

p°
peP

where the domain of f is IN. We define f so that

[ 1when p=a (mod m)
flp) = { 0 otherwise.

The rewritten series is very closely related to the series that Euler used in his proof that there are
infinitely many primes. It is therefore appealing to express the series (2.3) in terms of the series (2.1),
of which we know it diverges. For this, the function f(p) first needs to be rewritten as a combination
of so called multiplicative functions:

Definition 1. A function g : IN — C is called multiplicative if g(1) = 1 and it has the property that
g(ab) = g(a)g(b) for all a,b € N.



The function f(p) does not have this property. It is possible, though, to write f(p) as a
combination of multiplicative functions from the natural numbers to the complex plane. Using this,
we rewrite the series (2.3) as a sum of two separate series that only contain multiplicative functions.
Then, we show that one of these series is divergent and the other is convergent. The combination of
these series, must then be divergent. This shows that the series (2.3) is divergent, and so the series
(2.2) must diverge, which concludes the proof.

This rewriting makes the mathematics a lot more complicated. Finding the functions and writing
f(p) as a combination of them is the first part. After this, we have to show that one of our series
diverges and the other converges. Showing this convergence especially is a very difficult step which
we do not show here yet. It is also a step that mathematicians have not been able to avoid. The
fundamental idea of modern proofs of this theorem is still the same as has been introduced by
Dirichlet. This is why Dirichlet's Theorem on Arithmetic Progressions is intriguing, all proofs follow
the same general line but are elegant in their own way. To gain more of an understanding, we study
an example of the proof for a specific case.

2.2 An example

Example 1. Let o = 3 and let m = 8. Dirichlet's theorem states that there are infinitely many prime
numbers in the arithmetic progression 3 (mod 8) = {3,11,19,27,35,43,... }. To prove this, we use

the series ’

p®
p=3 (mod 8)

for p prime and s € C such that the real part of s is bigger than 1. In the end of the proof, we will
take the limit as s — 1.
As has been noted before, the restrictions on p for this series are a problem. We rewrite as

f(p)
Z /JS !

peP

where

| 1 when p =3 (mod 8)
fp) = { 0 otherwise.

Again, the set of all prime numbers is denoted P. To use the divergence of Z/)EP 1/p, we first write
f(p) as a combination of multiplicative functions from IN to C. To find these functions, we look at
the domain that they must have. These functions should be able to take any prime number as an
input value, as the set of prime numbers is the set we sum over. We know that all primes except for
2 are odd. If we divide an odd number by 8, the remainder will also be odd. All primes, except for
2, are thus of the form p =1 (mod 8) =1, p =3, p=5or p = 7. Here we introduce a new bit of
notation. The overline implies that we are considering the element modulo 8 in this example.

This narrows down our functions nicely to only give a non-zero output for these four input
values. This does mean that we leave the prime number 2 out of consideration, but that is not a
problem. The set of all prime numbers except for 2 is still an infinite set of primes as we take away
merely one element. More than this infinitude is not necessary for the argument later on and so we
set f(2) =0.

We look for functions that take these four elements to the real or complex plane, as we want to
end up with a value of 1 or 0 in the end. Let

{g:N—C}

denote all multiplicative functions g from the set of natural numbers to the complex plane. This is a
vector space over the complex plane with infinite dimension. A linear subspace of this is the set of



multiplicative functions g that are periodic with period 8.
{g:IN = C | g has period 8} = {pox | y:Z/8Z — C}

Here s denotes the canonical projection 7 : IN — Z/8Z that is surjective. This linear subspace has
dimension 8. Even more specific is the linear subspace of this that only takes the units modulo 8 as
inputs:

{g:IN — C | g has period 8 and g(n) =0 if gcd(n,8) + 1}

These functions only map elements in (Z/8Z)* to non-negative values. This subspace has dimension
4 as there are four natural numbers n < 8 such that gcd(n,8) # 1: the numbers 1,3,5 and 7.

A basis of this linear subspace can be defined using four functions. We use the functions
X0 X1, X2 and x3 as a basis:

13 5 7
Yol 1 1 1 1
i1 1
wl1 1 1 4
a1 1 A

The functions in the first column take the input values in the first row and map them to the
corresponding entry, which is either 1 or —1. These functions map any other element of the natural
numbers to 0. This defines four multiplicative functions. We will now construct our function f as a
combination of these functions, by a clever use of signs:

1(p) = 2 00p) = 1(p) = xalp) + ()

(xo(1) = (1) —x2(1) +3(1)) =
(x0(3) —x13) —x2(3) + x3(3)) =
(x0(5) —x1(5) —x2(5) + x3(5)) =

f(7) = 7007) =) =) + (7)) =

(1—1—=1+1) =0,
(T+1+1+1) =1,

(T+1-1-1) =0,

\
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(1—=1+1-1) =0.
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For any prime p, this gives us indeed the following result for f(p):

| 1 when p=3(mod 8)
fp) = { 0 otherwise.

It is interesting to note here that different combinations of signs would give us the functions for 1, 5
and 7 modulo 8. It is only this that influences where we get a 1 and where we get a 0.

Now that we have rewritten f as a combination of multiplicative functions, we can rewrite our
original series. The new series is the one for which we want to show divergence:

1 flp)
Z _—)S_Z ps

p=3 (mod 8) I pEP
_ 100(p) =1 (p) = xo(p) + x3(p))
_ 15 x0(p) = x1(p) = xo(p) + x5(p)
4 /; S



This series can be split up into two parts. We separate xp, which will have a value of 1 for every
input in the series:

11 5 xo(p) | y~ X (p) = x2(p) + x3(p)
ps 4 p ps
p=3 (mod 8) pEP peP
_ 1] 1 —x1(p) = x2(p) + x3(p)
~ 3 e e

peP peP

Looking at the first part of the right-hand side, we recognize this as almost exactly the same as
the series that Euler had shown to be divergent when s = 1. There are only two differences. The
first one is the factor 1/4, but this does not influence divergence. The second one is that we have a
series over all prime numbers, except for 2. In Euler’s case, 2 was included as he summed over all
primes. This does not change our divergence though. Even without 2, we have an infinite set to sum
over and the series does still diverge for s = 1.

Analysis teaches us that we cannot say anything about the sum of two divergent series. They
could diverge in completely different directions and this would leave us wondering what happens
when we add them up. When we add a divergent series and a convergent series however, we get a
divergent series. So we want to show that the second part of our right-hand side,

5 —x1(p) = xa(p) + x3(p)

S
peP\(2} i

converges. Then we have shown that our sum over all prime numbers congruent to 3 modulo 8 is
divergent, because it is the sum of a divergent and a convergent series. This is exactly what we
want to achieve, because this series being divergent proves that there are infinitely many prime
numbers in this specific arithmetic progression.

This last step is a lot more involved. Even for our specific example, we cannot give the proof for
this in short. Therefore we will leave this out here and we will look into it later in this paper. The
goal of this example was to gain an understanding of the outline of the proof of Dirichlet's theorem.
Although different mathematicians have made their own versions of the proof, a lot of the ideas used
come back in almost all the proofs. Now that we have an idea of the form, we can dive further into
the proof. Firstly, we look at the general proof. Then we will look into the required convergence
in the general case, the most complicated step that we have left out for now, and we will see how
different writers approach this same problem in the chapters to come.

3 A classical proof

Throughout this whole thesis Definitions, Lemmas, Propositions and Theorems are numbered sepa-
rately. The numbering is not reset at any point and transfers over chapters. The beginnings of proofs
for Lemmas, Propositions and Theorems are recognized by the italic "Proof” and the conclusion of a
proof is recognized by the symbol %*. Many proofs given here are inspired by and closely related to
the proofs by various authors. If this is the case, at the start of a proof the relation is given between
brackets.

In this chapter, we will study a complete proof of Dirichlet's Theorem. We analyse the proof as
published by J-P. Serre in A Course in Arithmetic [5] in 1973. We refer to his work throughout the
chapter, the work being from this source. The proof starts by a paragraph on Group Theory. This
will appear again later on, after a part on Dirichlet series. After the section on L-functions, we are
ready to prove the theorem. But before that, let us study characters of groups:



3.1 Characters of a finite abelian group

Let G be an abelian group with multiplication as its group law and order |G| < co. We will be
working with this group for the remainder of the section, simply referring to it as G.

Definition 2. A character of G is a homomorphism from G to the multiplicative group C*.

The set of characters of G forms a group which we call the dual of G, denoted G. The group
law in G is defined by x1x2(9) = x1(g9)x2(g). Let x1 and x> be characters of G. Then x1x2(g) is
another character of G because

xix2(gh) = x1(gh)x2(gh) = xi1(g)x1(h)x2(9)x2(h) = x1(g)x2(9) - x1(h)x2(h).
The identity element of G is the trivial character, denoted as

1:G—=C"
g1 Vg € G.

Finally, an inverse element for any character y € G can be defined:
x G- C*
g x(g)”! Vg € G,

which is a character because

_ _ 1 _ _ _ _
X~ (gh) = x(gh)™" = ((g)x(h) ™ = x(9)"x(h) ™" = x""(g)x~" ().
We can conclude that G is indeed a group.

Proposition 1. Let H be a subgroup of G. Every character of H can be extended to a character of G.
This extension can be done in [G : H] possible ways, where [G : H| denotes the index of H in G.

Proof. (A variation on Serre)
We prove this using induction with respect to the index [G : H]. If [G : H] =1, the groups are equal
and the one way to extend the character is to itself. So for this case the argument is done. Now
suppose [G : H] > 1 and let x be a character of H. We will extend this character to a subgroup
H" C G, which has more elements than H. Therefore, [G : H'] will be smaller than [G : H]. And
thus the induction hypothesis allows us to extend the character to G. We approach proving this as
follows:

let x be an element of G which is not contained in H. Let n be the smallest positive integer
such that x” € H. Such n exists because G is a finite group and so ord(n) < co. Let H' be the
group generated by H and x. H' is a subgroup of G and we claim H' is the following group:

H ={hxlh € H, 0 < a < n}

The group H’ is defined in such a way that all elements are of the form hx?, where h € H and
0 < a < n. ltis thus clear that

yeH = ye{hx/heH 0<a<n}

To prove that the same holds the other way, we have to prove that {hx?|h € H, 0 < a < n} is a
group. To show this, let hi,h; € H and 0 < a < b < n. Besides the identity element being in H’,
also

hyx® - hox? = hyhox9tP € H,

as H is commutative. Furthermore,

(/71)(0)71 — (X71)ah171 — /7171)((/771)0 e H



and so H' is a group. It is also true that |H’| = n|H|. This follows from the property that ever
element of H’ can be written in a unique way as h’ = hx? for h € H and 0 < a < n. We will prove
this now: for h1,h, € Hand 0 < a < b < n, we see that

hix® = hox? = x9=P = (/71)_1/72 e H.

By the restrictions on @ and b, it must hold that ¢ = b. Hence hy = h, and so each element of H’
can be written in a unique way as h’ = hx?. Therefore, it holds that |H'| = n|H].

Now set t = x(x") € C*. There exist n distinct elements w € C* such that w" = t. Given
any such w, we define the extended character y,, : H — C* as follows:

xw(h') = xw(hx?) = xw(h)xw(x)* = x(h)w*

This is unique for every element h’ as all elements of H' can be written distinctly as A" = hx?. It is
indeed a character as

X (Hih5) = x(hih2)w* = y(h)w? - x(h2)w” = s () xiw (H))-

Note that xu (h) = x(h) for all h € H, as a = 0 for these elements. There are no other ways to
define a character extended to H’. To prove this, let y of H be extended to x’ of H’. Then,

X' (W) = x(h)x'(x) = x(h)x'(x)’.

But x'(x)" = x(x") = t and therefore x'(x) = w for some w" = t. Thus, any character of H
extended to H" must be of the form x, (h") = x(h)w".

So the character y € H can be extended to some x' € H’. The extended character x’ can be
defined in n = [H’ : H] possible ways, because x’(h") = x(h)w? and there exist n distinct elements
w such that w" = t. As [G : H'] < [G : H], by the induction hypothesis x can be extended to all
of G. Continuing the method, this can be done in [G : H'][H’ : H] = [G : H] possible ways. This
concludes the proof. Lt

Proposition 2. There exist |G| distinct characters of G.

Proof. Let {1} be the trivial subgroup of G. Only the trivial character exists on this subgroup. By
Proposition 1, this character can be extended in [G : {1}] = |G| ways. This defines all characters on

G. Lt

Proposition 3. Let x € G. Let |G| = n. Then
| n when x =1
ZX(X) - { 0 when yx #1,
X
where the sum is taken over all elements x of G.

Proof. (Serre's proof with added intermediate steps)

The first formula is clear as the trivial character ¥ = 1 takes all n elements to 1. For the second
formula, let x be a non-trivial character and let y be an element of G such that x(y) # 1. This must
exist, as we have taken a non-trivial character. Then,

X)) x() =) x(Mx(y) =) x(xy) =) x(x).

Because of this,

(1=x(y))Y x(x)=0.

By the choice of y, it follows that }_ x(x) = 0 and the proposition is proven. Tt
X



Proposition 4. Let x € G. Let |G| = n. Then
Z (x) = n  when x =1
AT =710  when x +1,
X
where the sum is taken over all characters x of G.

Proof. (Inspired by Serre's proof for the previous proposition)

The proof is very similar to the proof for the previous proposition. Using Proposition 2, the first
formula is clear: all characters take the identity element x = 1 to 1 and there are n characters of
G. For the second formula, we take an arbitrary x # 1 in G. Let (x) be the cyclic subgroup of G
generated by x. This subgroup is of order k > 1. Define a character on (x) as follows:

X () = C

Note that this indeed defines a character on (x). By Proposition 1 this character can be extended to

—~ 2mi

a character xy of G. It holds that xy(x) = xx(x) = e & # 1. We see that:
()Y () =) () =) xx(x) =) x(x).
X X X X

This gives:

(1=x(x) ) _x(x) =0,
X

By the choice of yy, it follows that Y x(x) = 0 and the proposition is proven. Lt
X

We will work with multiplicative groups of integers modulo m later, as this is what is needed
for the argument. Therefore we define characters on these group as follows: We call an element x of
the dual of (Z/mZ)* a character modulo m. In this case, consider x as a map Z — C by defining

| xta) whenae (Z/mZ)*
x(a) = { 0 otherwise

where @ = a (mod m). The order of the group (Z/mZ)* is the amount of elements n < m such
that gcd(n, m) = 1: this is denoted ¢(m), also called the Euler-¢ function.

It is possible for the characters of a group to take only real values: the values 1 and —1. It is
interesting to note that this happens for characters x modulo m if and only if m | 24. Otherwise,
a character takes values besides these real ones as well. We will prove this statement later and
address the influence that the properties of a character have on our proof.

3.2 Dirichlet series

Definition 3. A Dirichlet series is a series of the form

00
p

ns'
n=1

where a, € C and s € C.

S

As s is a complex variable, we should make more clear what the part n=° looks like. This can

be rewritten as
1 1

ns  eslog(n)’

10



which should help in understanding the way the series behaves.

Many of the series in this proof are Dirichlet series. This is why we discuss some properties of
them. The convergence of Dirichlet series allows us to define series later that we can work with.
If there was no general convergence for this type of series, all functions would have to be proven
to converge separately. We will show how Dirichlet series converge for values of s and how this
convergence can be extended to other parts of the complex plane.

Proposition 5. If the exponents a, of a Dirichlet series are bounded, there is absolute convergence
for R(s) > 1.

(We denote the real part of the complex variable s by R(s) and we will keep to this notation
for the remainder of the paper.)

Proof. The convergence of the series Y 72 11/n% for a > 1 is well known and we assume its proof
known. Let |ap| < K for all n and some K < oo. This implies that the Dirichlet series converges
absolutely:

|an| K
< < .

IVR(S) n/?(s)

and the series Y_ K /nR() converges for R(s) > 1 as K is finite. So Y_ |a,/n®| converges, and the
proposition is proven. e

An

n°

Lemma 1. Let U be an open subset of C. Let f,, be a sequence of holomorphic functions on U which
converges uniformly to a function f on every compact subset of U. Then f is holomorphic in U and
derivatives f} of the functions f, converge uniformly to the derivative f’ of f on all compact sets.

Proof. This proof is quickly attained by the use of Cauchy’s integral formula. For this, let D be a
closed disc in U and let T be its boundary which is positively oriented. Then,

1 fn(z
fn(ZO) = ZJT[/I:H()C/Z

Z — 20

for all zp in the interior of D. Taking the limit on both sides gives us

_ 1 f(2)
f(ZO) = ﬁ/erOdZ

So f is holomorphic for all zy in the interior of D. This proves the first part of the lemma. For the

second part, we use the formula
1 f,
fl(z0) = ,/”(Z>C/Z.
2[/7 T

(z—2)?
This is obtained from the Taylor series of f,;, around zy together with the residue theorem. As a result
of this, the derivative f/ converge uniformly to the derivative ' of f on all compact sets. Tt

Lemma 2 (Abel's lemma). Let (a,) and (b,) be two sequences. Define

n=m’ n=m’

Amm = § an and Smm = g anbp.

n=m n=m
Then
n=m'—1
Sm,/n/ = } Am,n(bn - bn—H) + Am,m/bm’
n=m

11



Proof. To achieve this result, we replace a, by Ay, —Ann—1 and regroup the brackets. This
immediately provides us with the result. The lemma can be applied to the Dirichlet series > a,/n”.
For this, set by = n™°. Then we obtain the partial sum

n=m’'—

m’ 1 1 1 1
Z an/n® = Sm,m’ = Z Amn (nS - (”"'1)5) + Am,m/(lT,)S-

m n=m

63

Lemma 3. Let a, B be real numbers with 0 < o < B. Let z be a complex number such that
R(z) = x > 0. Then,

|e—az _ e—BZ| < 7(6—00( _ e—Bx)_

Proof. (The proof as done by Serre)
To prove this, we write

B
e~ o P = z/ e~ 7 dt.
a

Note that |e~*?| = ‘eft(R(Z)Hm(z))’ = e X Therefore, taking absolute values on either side gives

B
le” % — efﬁz\ < \Z\/ e Xdt = B(Q*W - efBX),
o X

which shows the result. e

Proposition 6. Let the Dirichlet series f(s) = ) a,/n® converge for s = so. Then f converges
uniformly in all domains of the form R(s —sg) > 0 and Arg(s —sp) < 0, with 6 < 7 /2.

Proof. (Similar to the proof by Serre, using a different series)

We make a translation on s such that we can suppose sy = 0. Then the series f(0) =) a, is
convergent by hypothesis. The restrictions for the domain of uniform convergence become R(s) >0
and |s|/R(s) < k. Since )_a, converges, there exist an N and an € > 0 such that

n=m’
itmm >N, then E an| = [Anmw] < &

n=m

The notations are those of Lemma 2, which we applied to the Dirichlet series before to get

n=m’—1
/7
5”7,”7/ _ Z Amn (ef log(n)s __ o log(n-‘rT)s) + Am,m’C‘ﬁS log(m )

n=m

This is rewritten, so that we can apply Lemma 3 to the exponentials with a = log(n) and B =
log(n +1). This lemma results in

| | n=m’—1

)
S| < 1 J et —log(n)x _ ,—log(n+1)x
| m,m ‘ S € + R(S) ngzm (e e )

Now we work out the series and simplify:
|Sm,m/| <e (1 + k (97109(’”” — e log(m’)x) )

Thus
‘Sm,m/| < 5(1 + k),

which proves the desired uniform convergence in the domain. e

12



Corollary 1. If f converges for s = sp, it also converges for R(s) > R(sp) and the function thus
defined is holomorphic.

This follows from Proposition 6 and Lemma 1.

Proposition 7. Let f be the Dirichlet series f(s) = ) a,/n° with real coefficients a, > 0. Suppose
the function f converges for R(s) > p, where p is real. Also suppose that f can be extended
analytically to a function that is holomorphic in a neighbourhood of the point s = p, which lies on
the real line. Then there exists a € > 0 such that f converges for R(s) > p —&.

(This means that the domain of convergence of f can be extended to the left in the complex
plane as long as we do not run into a singularity of f on the real axis.)

Proof. (Similar to the proof by Serre, using a different series)

In similar fashion as we started the proof for Proposition 6, we make a translation on f. We can
thus assume that p = 0. The function f is holomorphic for R(s) > 0 and also in a neighbourhood of
0 by assumption. Then f is holomorphic in a disc |s — 1] < 14 &, where € > 0. As the function is
holomorphic there, its Taylor series converges in the disc. The Taylor series around 1, is written as

o
1
f(s) = —(s—=1)PrP)(1 for[s—1]<1+e€
() =Y (s =11 ) s—1l<1+
p=0
The point we want to extend our convergence to is s = —¢, here the Taylor series is

f(—e) = i ;—,(1 +e)P(=1)PrP (1),
p=0""

The point lies in our disc and this series is thus convergent.
Now, by Lemma 1, we can compute the pth derivative of f. This derivative is

£(P) () = Z(—T)P(log(n))p%,

or fors=1,

r)(1) = Y (=1)"(tog(m))P =2

Then (=1)Pf(P)(1) = Y (log(n))Pa,/n and this is a convergent series with non-negative terms.
This can be substituted into the Taylor series at s = —e to get the following convergent double
series with non-negative coefficients:

f(—e) = —(1+ ) (log(m))P 22

n
p.n

= Z n Z %(1 + &)P(log(n))P.
n =0

n

The positive coefficients make it so that we can rearrange the sums. This series over p can be
recognized as the Taylor expansion of n'=* at the point s = —e. We use this to rewrite the function

and get
a a
i(ce)=) """ =) =
— N n—¢

n

This is the Dirichlet series at the point s = —e. It came from a double series, which was convergent.
So the Dirichlet series must also be convergent at s = —e. By Corollary 1 of Proposition 6 this
shows that the series also converges for R(s) > —e and the proof is complete. Lt
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Proposition 8. Let f be the Dirichlet series f(s) =) a,/n° with bounded partial sums A, ,y =

/
> o ap. Then, the series converges for R(s) > 0.

Proof. (Serre's proof with added intermediate steps)
Let |Ay | < K for some K < oo as the partial sums are bounded. We apply Lemma 2 again and
take absolute values to obtain

m'—1

)

m

o
(m')?

1 1

|Sm,m" < K ' ITS - m

To continue, suppose s is real and non-negative. As a result of this, the absolute value brackets on
the right-hand side can be removed as all terms in them will be positive. Then we can work out the

series to get
K

ms'

|5m,m/| <

which makes the convergence clear for real s. By Proposition 6, the convergence holds for all complex
s such that R(s) > 0. ted

3.3 The zeta function

We repeat the definition of a multiplicative function from the previous chapter:

Definition 4. A function g : N — C is called multiplicative if g(1) = 1 and

g(mn) = g(m)g(n)

whenever integers n and m are relatively prime. If this equality holds for all pairs n,m € N, then g
is said to be strictly multiplicative.

Let g be any bounded function that is strictly multiplicative.

Lemma 4. The Dirichlet series f(s) =Y g(n)/n® converges absolutely for R(s) > 1. In this domain
its sum is equal to

k=

1—g(p)/ps’

pep 1 —9(P)/p

which is a convergent infinite product. (Here, and in the rest of the paper, the set of prime numbers
is denoted as P)

Proof. (Serre's proof with added intermediate steps)

By Proposition 5, the Dirichlet series converges absolutely for R(s) > 1 as the functions g are
bounded. To prove equality to the infinite product, we define two sets: let S be a finite set of prime
numbers and let N(S) be the subset of positive integers all of whose prime factors belong to S. Then

by the strictly multiplicative property of g, it holds for any n € N(S) such that n = p"p3? ... pi*:
g(n) _g9(pi'py* ") _9(pi) 9(py?)  9(pi)
ns (p{'p5? ... pLk)e pi"® ps~ p
The prime numbers p1,p2, ..., pk are all elements of the set S and any natural number that can be

written as a product of prime numbers from the set S is an element of the set N(S). Therefore,

g,gls_,) = |_| (Z glgljw)) ’

neN(s) peS \m=0

14



When we increase both S and N(S), the left-hand side tends to the Dirichlet series Y 72 1 g(n)/n®.
The right-hand side will then go to g(p™)/p™*). Because g is strictly multiplicative, we
9 9 peP \L_9\P)/P g y [

can rewrite this to get
o0 o0
g(n) _ g(p)"
Z ns |_| Z pms )

n=1 peP \m=0 f

By the geometric series, we see that this convergent infinite product is indeed equivalent to the
required result. Lt

Definition 5. The zeta function is the function

o

=3 =T
pe

1
n=1 p°

where we ensure that R(s) > 1 for the formulas to converge and thus behave properly. This equality
follows from Lemma 4 applied to g = 1.

Now that we have established the zeta function as a Dirichlet series, it is ensured that we can
work with the function in a proper way. In the following part, we will learn more about the zeta
function. This provides us with knowledge about this function and other functions which we will use
later. The L-function, which we will be working with later, gains its properties directly from the zeta
function. This is why it is so important to assert these facts now.

Proposition 9. The zeta function can be written as

{(s) = —— +x(s),

s —1
where « is holomorphic for R(s) > 0.
Proof. (Serre's proof with added intermediate steps)

We see that
,I o0 o0 n+1
= t—°dt = / t—°dt.
s—1 /1 Z n

n=1

n+1 1 0 n+1
/7_5—/ todt| = 74—2/ (n™° —t7°)dt
n s—1 n

n=1

Hence we can write

,] o
s—1 +Z

n=1

¢(s) =

We set the latter part equal to « in the following way:

o0

n+1
kn(s) = / (n—° —t°)dt and hence k(s) = Z Kn(s).

n n=1

Now we need to show that « is defined and holomorphic for R(s) > 0. This would be proven if we
could show that all x, have these properties and )k, converges uniformly. We can write

n+1 1
K, = / (n™° —t°)dt = 3 (nfsfsn*sf(/7—1—1)175—0—/7175
—s
n

which shows that all k, are defined and holomorphic for R(s) > 0. Then we will prove that the
series ) K converges uniformly. For this, see that

lkn(s)| < sup [n =t
te[n.n+1]

15



The derivative of n—°

is biggest at t = n:

— t7° with respect to t is equal to s/t°T!. The absolute value of this derivative

s )_ 5] 5]
s $R(9)+T = [R(s)+

forall t € [n,n+1]
Then, the absolute value of k,(s) for any t € [n,n 4+ 1] can not be bigger than the sum of the
absolute value at t = n and 1 times the absolute value of the derivative here:

s | _ sl
ns+1 ‘ - nR(s)+1

[kn(s)] < |n*S — n*S| + )

This shows the convergence of the series for R(s) > € for all € > 0, which concludes the argument.  %¢

For the next corollary, there is some more to be said about the logarithm used. We define
log ﬁ asy {7 a"/nfor|al < 1. This is a holomorphic function with a continuation to a meromorphic
function on the whole complex plane. We see that

n az az ’
eza/”:1+(a+2+.4.)+(a+2—0—...) +...

This is equal to 14 a + a” + ..., which is a geometric series and thus equals 1/1 — « for |a < 1].
Therefore, it holds that
@Z a/n _ 1
T1—a
and so we have a valid definition for our logarithm. Note that log uv = logu + log v as

elog uv log uelog v log u+log v

=uv=e =e

Corollary 2. It holds that l'Lm1 (ZP /3_5) / log(;j) =Tand}_, 4>2 1/p*® stays bounded.
5— =

Proof. (Serre's proof with added intermediate steps)

We see that
1 1
log {(s) = log |_|1_1 —Zlog(1 1)A

peEP p° peP

Using our definition of the logarithm, we rewrite this as

1 1
log¢(s) = ) ks Zp7+£/f(5)~
p

p.k>1

For this, introduce the series i(s) = Zp,kzz 1/ kpks. For the absolute values of the terms ’1 /kpksy <
ks

|1/p/<5| as k > 2.‘ If we can prove that 3,2 1/p
this convergence in the following way:
o0

) 22‘11/1/3/5/95/95 Z‘ /95—1’ Z/J(/:'—1 Z 7—1)

pk>2 P =2

converges absolutely, so will L/J(s). First, prove

This sum converges to 1 and so,
,I o
Z <y =
(n—1)
k>2 n=2

Thus, this sum is bounded and the second result has been shown. This also implies that (s) is
bounded. To prove the first result, we use that (s —1){(s) is bounded for s in a neighbourhood of 1.

16



This holds as the zeta function has only a simple pole at s = 1. So for some neighbourhood around
s =1 and some K with |K]| < co:

(s—1){(s) =K.
Taking the logarithm on either side and making sure these exist in the neighbourhood, it follows that
log(s —1) +log {(s) = log K.

Now divide each side by log (51f1) and rearrange the terms to get

1 1
log((s)/[og(5_1) :1—Hog/</log(5_1).

If we take the limit as s — 1, the value of log K stays bounded and so

1
lim L L — | =1
imios €5/t 15

We divide the equality from before by log —=

(s=1)

Log((s)/log(;) :Z;S/log(;) +L/J(s)/[og(s1_1).
p

As s — 1, the value of (/(s) stays bounded and so:

1 1 1
l'LmZPS/log(H) = lim log((s)/log() =1.
p

s—1 s—1

This concludes the proof. Lt

3.4 |-functions

Definition 6. Let m > 1 be an integer and let xy be a character modulo m. The L-function
corresponding to m and y is defined by the series

L( ) . - X(n)

s x)= pra
n=1

This is a Dirichlet series. Such a character y modulo m takes values from the set of natural numbers

to the complex plane, but only the integers prime to m will give non-zero terms. The function x is

defined to be strictly multiplicative and is bounded.

The L-function is closely related to the zeta function and we will see that some of the zeta
functions properties transfer. Afterwards, we will use the L-function to prove the hardest step in the
proof of Dirichlet's Theorem. By the way this function is defined, we can use it later to provide the
much needed convergence of a series. Firstly, it has to be shown that the L-function does not vanish
at s =1 for any character x # 1. This is the aim of this paragraph.

Proposition 10. For y =1,

L(s,1) = F(s){(s) with F(s) = [ ](1-=).

p*
p|m

Thus, L(s,1) extends analytically for R(s) > 0 and it has a simple pole at s = 1.

17



Proof. The equality comes from the definition of the character: using the product expansion of the

zeta function: ] ’
|_| T |_|1 1

peP p° ptm p°

Fece =13

s
plm P

This is equal to L(s,1), the expansion can be found in the same way that the expansion for the zeta
function was found. As the function F(s) is holomorphic for R(s) > 0 and so the properties transfer
directly from the zeta function. This shows why the simple pole is there at s =1 and the fact that
L(s,1) extends analytically. T*

Proposition 11. For x # 1, the series L(s, x) converges for R(s) > 0. For R(s) > 1, the function
converges absolutely and

1

L(S,X) = |_| 1_@ fOl— R(S) > 1
peP p°

Proof. (Serre's proof with added intermediate steps)

The properties of the series for R(s) > 1 are clear by Lemma 4 as L(s, x) is a Dirichlet function

with bounded, strictly multiplicative exponents x. Showing the convergence for R(s) > 0 requires

some more work: using Proposition 8, convergence follows from boundedness of the partial sums

v
Ay = Z)((n) where u < v.

n=u
As x # 1, from Proposition 3 it follows that

u+m—1

Z x(n)=0.

n=u

Because of this, we only need to show that A, , is bounded for v —u < m. For these values, we can

easily majorize the sums: we have
[Auv] < ¢(m),

and the proposition is proven. Ees

We will now go on to prove a notoriously hard step in the proof of Dirichlet's theorem. This is
the non-vanishing of L(s, x) at s = 1 for the characters x # 1. For this, set m to be a fixed positive
integer. For any integer p { m and the group G(m) = (Z/mZ)*, we denote by p the image of p in
G(m). Denote by f(p) the order of p in the group G(m), and put

g(p) = d;g;:))

Thus g(p) is the order of the group G(m)/{p), where (p) is the subgroup of G(m) generated by p.

Lemma 5. If p t m, the following identity holds:
[1O0=x(p)T) = (1 fT“”))g(p),
X

where the product is taken over all characters x of G(m).

Proof. (Serre's proof with added intermediate steps)
We start the proof by looking at the 1/ T-th roots of 1:

(617 11, (-

fwlw!(P)=1}

18



If we multiply both sides by T(P), we get the following equality:
(1 —Tf<P>) =[] (-wn
{wlw/(P)=1}

This f(p) is defined to be the order of (p). On this group, there exist f(p) characters. There exists
one character x of {p) such that x(p) = w for any such root w. Any such character can be extended
to [G(m) : f(p)] = g(p) characters of G(m) by Proposition 1. From this, it follows that

g(p) o(p)
[0 —WT)) - (1 —Tf(/J>) A

wew

[0 =x(p)T) =

X

The lemma is shown. Now define a new function {p(s) as follows:
Cm |_| L S, X

where the product is extended over all characters x of G(m). £es

Proposition 12. We have
1

— p—f(P)S)g(p)A

Cm (5) = |_|

ptm (1

This is a Dirichlet series with positive coefficients, that converges for R(s) > 1.
Proof. Replacing the L-functions by their product expansion yields

-1

== =1 (-0

ptm \ X

Now, apply Lemma 5 with T = p~° to achieve the required result. To show this is a Dirichlet series,
first expand one term of the product:

g(p)
1 9(p) > ‘ 9
_ —f(p)ms
(1 —p—f(P)S) (mZ—Op '

= (p~'PIR()) < 1 for all p. Work out this sum to get

We can use this as ‘p*f(P)S

00 g9(p)
( Z pf(P)mS) — (1 4 pff(p)s +p72f(p)s + .. )J(P) =14 b/;f(/?)s + b;22f(p)s + o

m=0
where by, by, ... are non-negative and depend on p. We plug this in to the product that is (p:
Zm |_|1+bp1/3 fp)s +/J p2f(p)s
pEP
- (1 4 by 27 D5 g py 272 @s y ) (1 4 b3 37 4 py 3 2Bs
o
-y 9
N ns’
n=1

where the coefficients a,, are products of different b, and are thus also non-negative. The coefficients
are also bounded. This shows that {;(s) is a Dirichlet series with non-negative coefficients and it
follows that ¢, converges for R(s) > 1 by Proposition 5. o3
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Theorem 2. The function L(1, x) # 0 for all x # 1.

Proof. (Serre's proof with added intermediate steps) For contradiction, assume that L(1,x) = 0 for
some x1 #+ 1. Then writing y1 as its Taylor expansion around s = 1 allows for a factor s — 1 to be
factorized out. As a result of this, the simple pole of L(s,1) at s = 1 that was shown in Proposition
10 is cancelled out when computing {,. This, in combination with Proposition 11, implies that {, is
holomorphic at s = 1 and can thus be extended analytically to all of R(s) > 0. The function {,, also
converges for R(s) > 1. By Proposition 7, this implies that , converges for all of R(s) > 0 as we
run into no singularities. This can not hold however, we will show that this contradicts with the
definition of our function: the pth factor of {,, is

1 00 9(p)

(1 7/3_;’(/3)5)9(/3)

This dominates the series
o
—kop(m)s
ZP p(m)s
k=0

As a result of this, our function ¢, has all its coefficients greater than those of the series
oo
Z nf¢)(m)s _ |_| Z pfl«p(m)s'
(n,m)=1 ptm k=0

But this series diverges for s = 1/¢(m). Thus , must also diverge for this value of s, for which it is
true that R(s) > 0. We have a contradiction and our assumption must be negated. The proposition
follows. T

Corollary 3. The function ¢, has a simple pole at s = 1.

As L(s, x) has a simple pole for x =1 and is nonzero for all other characters x, this result is
shown.

3.5 Proving Dirichlet's Theorem

As we saw in Corollary 2 to Proposition 9,

1
lim =] /lg|—=| =1
by | 2 ) a5
p
Here P is the set of prime numbers. We now define s to be real and bigger than 1 to not cause any
problems. The limit is taken as s — 1 from above.
Definition 7. Let A be a subset of P. The set A has a density of k, when
(Z5)/{(=))
S —
oy p s—1
tends to k as s — 1. As A C P, this means that 0 < kK < 1. This is also called Dirichlet density.

This concept is defined to state a relation between the set A and the set P. Using this definition,
we can rewrite Dirichlet's Theorem as follows:

Theorem 3 (Dirichlet's theorem). Let m > 1 and a be positive integers such that (a,m) = 1. Let P,
be the set of prime numbers p such that p = a (mod m). Then, the set P, has density 1/¢p(m).
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This theorem implies a corollary, which shows that there is an infinite amount of primes in the
arithmetic progression a (mod m).

Corollary 4. The set P, is infinite.

Any finite set has density zero.

Lemmas

To prove the theorem, some lemmas are needed. Let x be a character of G(m). Define

XP

ptm

which converges for R(s) > 1. In the following lemma 7, it becomes clear why the L-function is
defined to be how it is. Taking the logarithm results in a combination of series that we want to
show convergent at s = 1. As it is shown earlier that the L-function does not vanish at this point, its
logarithm must be bounded in the way we define it.

Lemma 6. If ¥ =1, then f, ~ log( ) for s — 1 from the right side of the complex plane.

For the trivial character ¥ = 1, our function becomes f; = me L This differs from the series

Zpep — only by a finite number of terms and thus the equivalence is implied.

Lemma 7. If ¥ # 1, the function f,, remains bounded when s — 1 from the right side of the complex
plane.

Proof. (Serre's proof with added intermediate steps)
To prove the boundedness of f,, we use the logarithm of the function L(s, x). Again, we use our
definition of the logarithm:

log( ) Z — for |a] < 1.

n=1
We can apply this to the L-function, by using the product expansion of L(s, x) and taking o = x(p)p~=:

log L(s, x) Z log ) — when R(s) > 1
peP

X(P)”

npns’
p.n

Note that this works as |x(p)p~°| < 1. To gain information about f,, we split this sum up into two
parts to get

log L(s, x) = fy(s) + Fy(s).
For this, we set

x(p)"
Fy(s) = v
p.n>2 p

Theorem 2 states that log L(s, x) remains bounded as s — 1 as x # 1 and the L-function converges

here. By Corollary 2 to Proposition 9 the series 1/p"° remains bounded as s — 1. This
y Yy | p.n>2 f

implies that F,(s) stays bounded then as

|FX(S)| = X(p)” < Z plllvs ’

npnhs
p.n>2 p.n>2
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. Now that log L(s, x) and F,(s) both stay bounded as s — 1, so must f,(s). This holds for all
x #F 1 and the proposition is proven.
We will now prove Theorem 3. For this, introduce the following function:

1

/_’)75.

ga(s) =
PEPq

To study the behaviour of this function as s — 1, we use the following Lemma 8. We see that this
relies on the function that we defined and showed properties of in the previous lemmas. We can
then use the convergence and divergence shown there to prove Dirichlet's Theorem. Lt

Lemma 8. We can rewrite the function g4(s) as follows:
1 _
ga(s) = m ZX(C’) 1&(5),
X

where the sum is taken over all characters x of G(m).

Proof. (Serre's proof with added intermediate steps) This is most clear when proven in a backwards
) B o 1 3 . . L )
manner and thus we start by rewriting 3, x(a)~'f,(s) by replacing f, by its definition, we get:

Y (o) Y K®) _y EeX(0)7xp)
PS
X

s
ptm ptm P

But x(a)~"x(p) = x(a=")x(p). Here a=" denotes the unique inverse of the element a in the
group (Z/mZ)* . This is the element in (Z/mZ)* such that a~'a = 1 (mod m). We see that
x(a™Nx(p) = x(a='p) and by Proposition 4:

ZX(C’AP) _ { ¢(m)  when a'p =1 (mod m)
X

0 otherwise.

The sum is thus only non-zero when a='p =1 (mod m), which is when p = @ (mod m). Hence, it

holds that :
> x(a'p)

> xl(a)ls) =) _ — = ¢(mgals)
X ptm

and the lemma is proven. Lt
We are now ready to prove Theorem 3:

Proof As s — 1, for x = 1, the value x(a)™' = 1 and the constant 1/¢(m) stays the same. By
Lemma 6 it is known that f,(s) ~ Log(;j). Lemma 7 shows that all other f, stay bounded. Thus

by Lemma 8, the following equivalence relation holds:

1 1
gc,(s)leog: as s — 1.
This proves Theorem 3 and the proof of Dirichlet's Theorem is concluded by Corollary 4. Tt
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4 Other versions of the non-vanishing
of L-functions

Besides the proof by Serre, there are many more proofs of Dirichlet's Theorem. In this chapter we
will focus on a few different approaches. These are other ways of proving the result of Theorem 2 in
the work by Serre. This theorem states that L(1, x) is not equal to O for all non-trivial characters
Xx- The result is notoriously the hardest step in the proof. There are no ways around the proof
however, as this step is crucial in proving the divergence we are after later on. This is why many
mathematical writers have come up with their own way of proving the theorem. We focus on work by
Monsky [3] and Veklych [6]. Both authors had their respective arguments published in the American
Mathematical Monthly.

Merely these arguments and their proofs are not enough. The two authors prove the non-
vanishing for real characters modulo m only. This would be enough if our unit modulo group
(Z/mZ)* had just real characters. This only holds for a handful of integers m however, as can be
seen in the following lemma:

Lemma 9. All characters x of the group (Z/mZ)* are real if and only if m | 24.

Proof. For any positive integer m,

(Z/mZ)* = H(Z//)“Z)*

plm

by the Chinese Remainder Theorem for rings. Here a is the power corresponding to the prime p in the
prime factorization of m. For (Z/mZ)* to have only real characters, all its elements must have order
1 or 2. For if there exists an element x with ord(x) > 2, we can define a character y : (x) — C*
such that xy(x) ¢ IR. This character can be extended to a character on all of (Z/mZ)* , defining a
non-real character. If all elements y € (Z/mZ)* have order 1 or 2, a character can only take real
values as x(y)? = x(y?) = x(1) = 1.

Thus all elements of (Z/mZ)* must have order 1 or 2. This holds if and only if all elements of
(Z/p“Z)* have order 1 or 2 for all such groups in the Cartesian product. We will show that for
a > 1, the group (Z//J”Z)* has only elements of order 1 or 2 if and only if p? is 2, 3, 4 or 8. This
proves the lemma, as then m | 24 for all (Z/mZ)* for which this holds.

For any prime p and a > 1, we can define a surjective homomorphism

(:(Z/p°Z) — (Z/pZ)*,

x (mod p?) +— x (mod p).

The group (Z/pZ)* is cyclic since any finite group of units in any integral domain is. Therefore
there exists a generating element x € (Z/pZ)* such that ord(x) = p—1. Any element y in the
inverse image of x has as order then a multiple of p — 1. This is an element y € (Z/p“Z)*. So for
any p > 5, the group (Z/p?Z)* contains at least one element y with ord(y) > 2 for a > 1. What
also follows from the result, is that the group (Z/3Z)* has only elements of order 1 or 2, as it is
cyclic.

For the first 3 powers of 2, check that the group (Z/p“Z)* only contains elements of order 1
and 2. For any greater power, an element of bigger order can be found. To show this, define two
surjective homomorphisms that are similar to the function f above:

g1:(Z/3°2)" — (Z/9Z)* | x (mod 3") — x (mod 9) for m > 2,
g>:(2/2°2)" - (Z/16Z)* | x (mod 2") — x (mod 16) for n > 4.

In the group (Z/9Z)* , there is the element 2 with order 6. All elements in the inverse image of
2 then have as order a multiple of 6. Similarly, there is the element 3 € (Z/162Z)* with order 4.
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Therefore there exists at least one element of an order bigger than 2 in (Z/3™Z)* for m > 2 and
in (2/2"2Z2)* for n > 4.

Now, the group (Z/p?Z)* has only elements of order 1 and 2 for ¢ > 1 if and only if
p? € {2,3,4,8}. This proves the lemma. Lt

As we are looking for a proof for all positive integers m, this is not enough. Both Monsky and
Veklych note that this can be resolved easily. They note that the proof is significantly easier for
non-real characters. For the completeness of this paper, we will also address that proof. To keep
it approachable, we have combined work by Ram Murty [4] and Cohn [2] to construct an argument
that fits in with the rest of our proof. We will start with this argument and treat the proofs for real
characters after. In the end, a complete proof for Dirichlet's Theorem can be obtained by combining
work by Serre, Ram Murty and Cohn and either Monsky or Veklych. In the next chapter, we will
compare the arguments and comment more on the combination of these proofs.

41 M. R Murty and H. Cohn on non-real characters

Lemma 10. For R(s) > 1, the Dirichlet series } §°a,n that represents the product [, L(s, x)
has the property that a4 =1 and a, > 0 for all n > 2. The product of L-functions is taken over all
characters x modulo m for some positive integer m.

Proof. (Closely related to the proof by Ram Murty)
We start by writing L(s, x) as its product expansion

Lsx) =[]

peEP

x(p) )

p®

Then, using the earlier defined logarithm

1 > _n
log(m) = i for|0(|<1,

n=

we can write the following:

09 L0 =3 Y 5 ME5 T (Y )

peP X P n=1 np X

The change in summation order is permitted as the series converges absolutely for R(s) > 1. This
has been proven for the L-function in Proposition 11 and it transfers to this series. Now, the sum
> x(p") over all characters xy mod m is equal to ¢(m) if p” =1 (mod m) and 0 otherwise. This
follows from Proposition 4. We can thus rewrite as

1
log Z L(s,x) = ¢(m) Z Z o
peP n pn=1 (mod m)

If we exponentiate both sides and use the equality e* =14 x + x2/2 4 ..., we see that

i) =1+ [em> 5 pL
X

n pn=1 (mod m)
This proves the lemma as the exponents a, will all be non-negative and a4 = 1. Lt

Theorem 4. The function value L(1, x1) # 0 for all characters x1 # 1 such that x; # Xx7. (That is,
the character xq is not real-valued.)
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Proof. (Inspired by the proofs by Ram Murty and Cohn)
For contradiction, assume that for a non-real x4 1, it holds that L(1,X1) = 0. Then,

L =y Xy X s o

By the Taylor series of L(s, x1), we can write

L(s.x1) = (s—1)g(s.x1).

This g(s, x) is continuous for all R(s) > 0, except possibly s = 1. By Lemma 1, we can compute
the derivative of L(s,x1) at s = 1 and show that this is continuous for R(s) > 0. So if we set
g(1.x1) = L’(1, x1), the function g(s, x1) is continuous for all R(s) > 0. This procedure can also be
applied to X7 to see that

L(s.x1) = (s =1)g(s.x1).
where g(1,x1) = L(1,x1) at s = 1. This is thus also continuous for all R(s) > 0. Now,

[ 1L(s.x) = Lis. (s =1 g(sxi)g(s.xn) [ ] Lisx).

X XF1xaxa

Here the character 1 denotes the trivial character. The function L(s,1)(s— 1) is continuous for all
R(s) > 0 as the simple pole at s = 1 that L(s, 1) has, is cancelled. Taking the limit on both sides
gives

s—1

lim [ ]L(s.5) = lim(s =) L(s,1)(s =) g (s.x1)g (5. 37)
X

As s — 1, all functions are continuous and can thus not yield infinity. But (s — 1) — 0, and so the
whole product yields 0:

li =0

il JHe0 =0
X

But by Lemma 10,

n°
n=2

o

|_| L(s,x) =1+ Z dn for R(s) > 1.

X
The product function is thus greater than 1 real values of s > 1. If we would only have one non-trivial
character x such that L(s, x) = 0, the function would be continuous for all R(s) > 0, but this would
not be any problem. Now that we have two such non-trivial characters however, there is a problem.
We have now that the function is continuous, but also that the limit is 0 as s — 1. But for real s > 1,
the function is greater than 1. This would mean that the function is not continuous and this is a

contradiction. We must thus conclude that L(1, x1) # 0. ot

42 P. Monsky on real characters

Lemma 11. Let x be a real character modulo m, where m is a positive integer. Define ¢, := ) x(d),
where the sum is taken over all positive divisors d of n. Then the series ) 77, ¢, diverges.

Proof. (Monsky's proof with added intermediate steps)
For any power of a prime p,

cpo =1+ x(p) +x(p)*+- +x(p)* >0

The equality follows from the multiplicative property of the character y. As x is a real character, for
any prime p the value of x(p) is either 1, -1 or 0. Therefore,

1,174+ aor0 when ais odd
Qﬂ = .
Tor1+4+a when a is even.
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For any distinct primes p and g and finite, non-negative a,b € R, it holds that c,e» = cpacyp:
— X -4 — X [ _
Cogp =y x(P'a) =Y x(p*) Y x(q¥) = cpocy
0<x<a, 0<y<hb 0<x<a 0<y<b
Then for the prime factorization of any natural number n = pﬁ”pgz . 4pzk,

Ch=CaCay...Ca. >0.
n pﬂ p22 pkA_

as all the values in this product are not negative. Furthermore, if p is a prime dividing m then
x(p) = 0. Then for a power of such p,

cpo =T+ x(p) +x(p)*+ - +x(p)* =1.

For m > 2, there exists at least one prime p that divides m and therefore for such a prime p,

It follows that the series diverges. For m = 1, the only character is the trivial character and
divergence follows evidently for this case. As the series diverges for all positive integers m, the
lemma s proven. Lt

Theorem 5. Let m be a positive integer. The function value L(1,x) # 0 for all real characters x
modulo m such that y #+ 1.

Proof. (The proof as done by Monsky)

Set f to be the following function:
n

(=5 )i('j)fn A
n=1

This function converges absolutely for t € [0,1): for t =0, all terms are equal to 0 and convergence
s evident. For 0 < t < 1, we set

tﬂ
T

x(n)t"
T—m

ap = ‘

If there exist exponents b, such that a,/b, is bounded and ) b, is convergent, then ) a, must
converge as well, this follows from the comparison test. For this, let b, = t". Then,

. an . 1
ltm — = lim =1,
n—oo b, n—oo |1 — N

for all 0 < ¢ < 1. This shows that a,/b,, is bounded and the series y_§°t" is known to converge for
0 < t <1, asitis a geometric series. Therefore, the series

%) ¢n
- Z 1 —tn
n=1

must also converge and the absolute convergence of f(t) is proven. Then for t € [0,1), we can use
geometric series to write

[e%e] o0 d
St =Y Y X =YY ) =3 () = (1)
d k d=1

n=1 n dn, d>0

(0]

)

n=1

x(n)t"
T—
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For this, we need the series ) ° ¢,t" to be convergent. We can show it is by the root test for power

series:
lim sup V/|cat”| = lim sup t{/c,
n—oa n—oQ

This root exists as ¢, > 0 as was proven in Lemma 11. But ¢, = ) _x(d) over the positive divisors d
of n. This sum is over no more than n divisors and all terms are at most 1, so the sum is not greater
than n. Thus,

lim sup {/|c,t"] < lim supt/n <supt <1,

n—o0 n—oo

and the convergence is shown. As a result of Lemma 11 and the equality to ) 3° ¢,t”, the function
f(t) >c0ast— 1.

For contradiction, now suppose that L(1,x) = 5° x(n)/n = 0. This series is convergent for
R(s) > 0 as was shown in Proposition 11. Then it holds that

~f()=2_x(n) [,7(11_ H A it '

n=1

which is then also convergent. We write this as Y_9° x(n)b, where b, are functions of t. Then,

1 1 ¢ 1
PR R Ay T B

1 t”

nn+1) (+t+-- 4+ +t4+ - +1t7)

(1=10)(bn = bns1) =

By the inequality of the arithmetic and geometric means,

1/n

(A4t+- -+t >n (1 »t-»~-t”*1) = nt(=N0/2 5 /2,

In the same way (14 t4---+t") > (n +1)t"/2 This, together with the equality from before, gives
bn—bnt1 >0and thus by > by > b3 > ... .

It follows from Proposition 3 that ZC’+’”*1

p x(n) = 0for x # 1 and any natural number a.

Thus, the sum ZQ\/)((H) is bounded in absolute value by ¢(m), independent of N. Together with the
properties of b, and the fact that by = 1, this shows that

N N

Zx(n)bn < |bq] Z)((n) < p(m), for all N € IN.

n=1 n=1
Taking the limit as N — oo shows that the function f(t) = —3_9° x(n)b, is bounded, but before we
have shown that f(t) — oo when t — 1. This is a contradiction and we must thus conclude that
our assumption L(1, x) = 0 is false. The theorem is proven. Lt

43  B. Veklych on real characters

Lemma 12. Let x be a real character modulo m, where m is a positive integer. Define ¢, = Y x(d),
where the sum is taken over all positive divisors d of n. Then, the series Y 77, con~ /2 diverges.

Proof. (A combination of the proofs by Monsky and Veklych)
In the proof of Lemma 11 that for a prime factorization of any natural number n = /Ji”pgz . .pzk it
holds that

Ch=C.a;Ca...Ca >0.
n PH /322 pkk =

27



Specifically, for a square n all powers aq,ay,...,ax of the prime factorization are even and so

€01 > 1, €02 >1,... . As aresult, also ¢, > 1. Then, for N = M2,
1 2

n=1 m=1 m=1

Taking the limit as M — oo, the last series becomes the harmonic series, of which divergence is a
well-known property. The series Y %2, c,n~"/? thus also diverges and the lemma is proven. Lt

Theorem 6. Let m be a positive integer. The function value L(1,x) # 0 for all real characters x
modulo m such that y # 1.

Proof. (The proof as done by Veklych) Consider the function F(s) = {(s)L(s, x). The zeta function is
holomorphic for R(s) > 0 besides a simple pole at s = 1, we showed this in Corollary 3 to Theorem
2. Assume that L(1, x) = 0. The expansion of L(s, x) = 0 at s = 1 cancels the pole of {(s) and so,
the function F(s) is holomorphic for all R(s) > 0. Specifically, this F(s) is holomorphic in a disc
centered at s = 2 that contains s = 1/2. Equivalently, the function F(2 —s) is holomorphic in a
disc centered at s = 0 that contains s = 3/2.

For R(s) > 1, we have the absolutely convergent Dirichlet series of {(s) = ) k= and
L(s,x) =Y ;x(O){~=. Multiplying these, we obtain a Dirichlet series that represents F(s) for at
least R(s) > 1. This is the series ), c,n~°, where ¢, =) ,x(d) as in Lemma 12. This equality
can be shown in the following way:

o

Zcf”n*S:Z Z x(d) ZZX (d)(dk)~ Z}( dfsgkfs.

n=1 n dn, d>0

Now let s € [0,1). Then F(2—s) is represented by

C C C
n n slogn n
n - n n
n=1

n n

Due to the expansion of e*'°9” this is equal to

(1
ZHZZ R =2 gt !
n

The change in summation order is permitted since all terms of the double series are non-negative
as s € [0,1). We have now found a power series in s that converges to F(2—s) for s € [0,1).
The radius of convergence of this power series must thus be at least 1 and so it defines a function
holomorphic in |s| < 1. In this open disc, the power series coincides with F(2 —s) as analytic
continuations are unique. The series is thus the power series expansion of F(2 —s) around 0. As a
result, it must converge to F(2—s) in the whole disc around 0 where F(2 —s) is holomorphic. We
have shown that this disc contains s = 3/2 before. Therefore, we set s equal to 3/2 in the power
series and read the formula backwards. We then see that ) ° can~ /2 converges to F(1/2).

But by Lemma 12, the series ) {° c,n~ /2 diverges already. This is a contradiction and we
must therefore conclude that our assumption was false. Hence, it holds that £(1, x) = 0 for all real
characters y #+ 1. tes

5 A comparison between proofs

Ram Murty / Cohn on non-real characters
The argument on non-real characters is not a hard proof. It could possibly be made even easier, but
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the combination of work by Ram Murty and Cohn makes for a smooth addition to our earlier proof.
What makes this proof so easy relatively, is the existence of a distinct character ¥ for any character
X that is not real-valued. Both these series then vanish at s = 1 by assumption and we can subtract
a factor (s — 1) from both their Taylor Series. As a result of this, there is no need for complicated
arguments about converging and diverging series. The product of L-functions can just be shown to
yield 0 as s — 1 if we assume that L(1, x) = 0 for some non-real x. This does not agree with the
value of the corresponding Dirichlet series and a contradiction is quickly found.

This proof is simple and it would work well with the rest of the proof by Serre. We do need
to combine it with either the proof by Monsky or by Veklych to be able to substitute out Theorem
2 of Serre's proof. | will include my opinion on the combination of the proofs with this one in the
respective texts on the proofs by Monsky and Veklych.

Monsky on real characters
Recommended audience: readers with little knowledge of Complex Analysis, students of an introduc-
tory course in Number Theory.

The proof by Monsky is different from Serre and Veklych in that it does not rely on a product
of L-functions. Monsky introduces a different function based on a character and its L-function. The
argument thus does not have to do with the trivial character and the simple pole of its L-function.
Instead, he introduces a series f. This f can be shown to diverge by a clever use of sums of characters.
The divergence can only be shown in this way for real characters, which is a disadvantage of the
argument. Afterwards, Monsky shows that f is bounded. Here the vanishing L-function comes in.
He shows this boundedness in a quick and rather easy way, but some of the used steps are not
very intuitive. The combination of divergence and boundedness then results in a contradiction, which
proves the theorem.

This argument is understandable even for those who have less knowledge of L-functions and
Complex Analysis. This makes it suitable for a classroom, but it has its downsides. As a result of the
simplifications, it does not fit in too well with the rest of a proof for Dirichlet's Theorem. Although
Monsky does not use so many properties of the L-function and results from Complex Analysis, they
are used in the rest of such a proof. That means that the proof by Monsky is suitable for showing
only this result in an easy and understandable way, but it might not be the best choice in a proof of
the whole theorem. A last concern with this proof is that, although not specifically named, results
from various fields are still used implicitly. This could give problems for less experienced readers, as
they are not used to working with these results yet. An example of this is working with a series as
the one defined as f(t), which has to be shown convergent first for the given domain. The importance
of a step like this could not be too clear for a reader. Summarizing, the proof by Monsky is a great
option for readers who are merely interested in this step of the proof, they should just make sure
that they do not simplify it too much for themselves.

Veklych on real characters
Recommended audience: readers with knowledge of and interest in Complex Analysis, students of a
course in Complex Analysis.

The beginning of the proof by Veklych is similar to the beginning of Monsky's proof. Both
use the same sums over characters to show a form of divergence. After this, the proofs go different
ways. Veklych wants to contradict this form of divergence. To do this, he introduces a power series
expansion that converges. Using results from Complex Analysis, like the uniqueness of analytic
continuations, he expands the radius of convergence of this expansion. For this, he does need the fact
that L(1,x) = 0 for some x #+ 1. Now that the convergence is extended, it can be used to contradict
the earlier named divergence and the proof is concluded.

This proof relies a lot on Complex Analysis. This does fit in well with the rest of the proof, but
can be difficult to understand for readers new to the field. The results that are used, are implemented
in a clear way. This way, the proof would fit perfectly in a course on Complex Analysis. It could be a
good addition to any course in the matter to peak an interest of Number Theory. The proof is clever,
but the used power series expansion is not too easy to grasp. It is quite a long expansion which
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can cause confusion. The proof does tie in well with the use of a product of L-functions by Serre.
This is also used in the proof on characters that are not real-valued and so it would fit in better
than the proof by Monsky in my opinion. If the reader is not too familiar with Complex Analysis, the
proof can be difficult. Otherwise, this is a proof that fits in very well and provides a good alternative,
especially in a context of more complex theory.

Serre on all characters
Recommended audience: devoted readers.

Serre proves the non-vanishing of the L-function for all characters x # 1 at once. To show that
the product over all L-functions diverges, he shows the divergence of another series that is dominated
by this one. Afterwards, he shows the convergence of the product at the same point. He does this
by cancelling the simple pole of the L-function of the trivial character at s = 1. By removing this
singularity, the convergence of the product of L-functions can be extended to the point where it also
diverges. This gives the required contradiction.

The proof by Serre is more broad than all other arguments that we include. It contains a proof
for real and non-real characters, but it is even broad in another way: the propositions that Serre
introduces to prove this theorem are also applicable to other cases. Proposition 7 for example, states
a result about all Dirichlet series with positive coefficients instead of just stating it for the specific
series. This is a strength of Serre’s proof, but it does result in more complicated mathematics. The
argument is long in comparison to the new arguments we have introduced, and more knowledge on
complex functions is needed to understand all the steps. In showing the divergence, Serre uses an
approach that deals with all characters at once. This does result in a more complicated argument
in which more Group Theory is used. The proof by Serre is elegant and it carries the spirit of
Dirichlet's own approach with it. Understanding this, does require a more devoted study than the
other provided proofs do. For a reader that has the time and knowledge to do so, this proof is the
one | would suggest. For an audience looking for a shorter or more modern proof, this proof is best
left for later.
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