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Abstract

The goal of this paper is to give an overview of the dynamics of two one dimensional
discrete dynamical systems: the Tent map family Tc and the quadratic family Fµ (also known
as the logistic map) are investigated. The dynamics for different values of the parameters µ
and c are studied. The quadratic family has chaotic regions for µ > 3 and the Tent map family
has chaotic regions for c > 1. Furthermore, the Cantor sets that occur as non-wandering sets
for µ > 4 and c > 2 are studied.
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1 Introduction
The goal of dynamical systems is to describe a state over a course of time. We will investigate the
dynamics of a one-dimensional discrete dynamical system. Such a system is an iterative procedure
of a continuous function with some initial value. [4]

We want to investigate the dynamics of such a system to find out what happens after a large
number of iterations. These are some questions that we can ask: Does the system converge to a
certain value. What is chaos? When is our dynamical system chaotic?

The mathematician Edward Lorenz first discovered chaotic behaviour in the 1950s. He discov-
ered how a small difference in initial values can result in a large difference in long-term results. He
summarized it as: "Chaos: When the present determines the future, but the approximate present
does not approximately determine the future." He came across chaos by accident when he was
working on weather predictions. The mathematician Robert L. Devaney was the first to formally
define chaos in 1986.

We will look specifically at the following families of functions, as they illustrate many interesting
phenomena that occur in dynamical systems:

• quadratic family Fµ : R→ R

Fµ = µx(1− x)

• Tent map family Tc : R→ R

Tc(x) =

{
cx 0 ≤ x < 1

2

c(1− x) 1
2 ≤ x ≤ 1.

These families of functions show different behaviour for the different real parameters µ > 0 and
c > 0. The dynamics of these families will be investigated. Different papers will be used to do this.
[2] [14]

Especially for µ > 4 and c > 2, the functions behave similar. For these values, we will see
that they each generate a Cantor set as their non-wandering. A non-wandering set consists of all
points that never leave the interval. Furthermore, we will see that the functions are chaotic on
these Cantor sets.

There is some more chaotic behaviour for the quadratic family and the Tent map family that
will also be discussed.

2 Basics
A discrete dynamical system is an iterative procedure of a continuous function f with some initial
value. We will denote this initial value by x0 and the sequence of iterates will look like:

x0, f(x0), f(f(x0)), f(f(f(x0))), . . . .

Because all the interesting things happen in I = [0, 1], we will limit ourselves to x0 ∈ I.

The nth iterate can be written as fn(x0) = (f ◦ · · · ◦ f)(x0). To avoid confusion, the nth derivative
at x0 is written as f (n)(x0).
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(a) Phase portrait

(b) Graphical analysis

Figure 1: Figure (a) shows the phase portrait of a: 1 < µ < 2 and b: 2 < µ < 3. Figure (b) shows
the graphical analysis for 2 < µ < 3.

2.1 Definitions
Definition 1 (Orbits). The set of points {x, f(x), f2(x), . . . } is called the forward orbit of x. It
is denoted by O+(x). If f is a homeomorphism, we can define O(x) as the full orbit of x as the set
of points fn(x) for n ∈ Z. The set O−(x) is defined as the backward orbit of x and consists of the
set of points {x, f−1(x), f−2(x)}.

The goal of dynamical systems is to understand the geometric organisation of all orbits, especially
in the long run. The goal is first to find the set of orbits that are periodic, eventually periodic etc.
Before we do that, we have to make a few definitions.

Definition 2 (Fixed points and periodic points). A point x is a fixed point for f if f(x) = x. A
point x is called a periodic point of period n if fn(x) = x. The set of periodic points of period n
is denoted by Pern(f).

Definition 3 (Eventually periodic points.). A point x is eventually periodic of period n there
exists m > 0 such that fn+i(x) = f i(x) for all i ≥ m.

In other words, a point is eventually periodic if f i(x) is periodic for i ≥ m.
Here are some simple examples to illustrate these definitions:

• The map f(x) = x3 has three fixed points, namely x = 0,x = 1 and x = −1.

• The map P (x) = x2 − 1 has fixed points at x = 1±
√
5

2 . It also has two periodic points of
period 2, namely x = 0 and x = −1. (P (0) = −1 and P (−1) = 0).

• The map Q(x) = x2 has fixed points x = 1 and x = 0 since Q(1) = 1 and Q(0) = 0. There
is one eventually fixed point at x = −1 since Q(−1) = 1 and x = 1 is a fixed point.

Definition 4 (Critical points). A point x is called a critical point if f ′(x) = 0. A critical point is
non-degenerate if f ′′(x) 6= 0 and degenerate if f ′′(x) = 0.

Finding a set of orbits which are periodic turns out to be difficult. To find points of period n, we
would have to solve the equation fn(x) = x. For a function like the quadratic Fµ(x) = µx(1− x)
this results in a polynomial equation of degree 2n. Another way of looking at the behaviour of an
orbit is making a geometric picture of the behaviour of all orbits of such a system. We can draw
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(a) a < 0 (b) a > 0

Figure 2: Graphs of Ga(x) for different values of a.

the iterations of a point in a picture. Figure 1a shows such iterations for the quadratic family for
different values of µ. This picture is called a phase portrait.
We can also do a graphical analysis to observe the behaviour of different orbits. In figure 1b we
can see the graphical analysis of the quadratic family with a fixed point. Define the diagonal as
∆ = {(x, x)|x ∈ R}. The orbit is given by repeatedly drawing line segments vertically from the
diagonal to the graph and then horizontally from the graph back to the diagonal. We start at
x0 on the diagonal, this is point (x0, x0). Then we draw a line segment vertically to the graph,
to the point (x0, f(x0)). Next, we draw a line horizontally back to the diagonal, to the point
(f(x0), f(x0)). This can be repeated to find out how the iterations continue. Clearly, fixed points
are found on the intersection with the diagonal. First we need to make some more definitions:

Definition 5 (Hyperbolic points). Let p be a periodic point of prime period n. The point p is
hyperbolic if |(fn)′(p)| 6= 1 The number (fn)′(p) is called the multiplier of the periodic point.

Definition 6 (Attracting and repelling periodic points). Let p be a hyperbolic periodic point of
period n. If |fn(p)| < 1, the point p is called an attracting periodic point. If |fn(p)| > 1, the point
p is called a repelling periodic point.

The fixed point in figure 1b seems to be an attracting point since the sequence x0, f(x0), f(f(x0)), . . .
seems to zigzag to the fixed point.

For a family of functions Fc, the phase portrait may differ for different values for c. We can draw
the behaviour for all values of c in a so-called bifurcation diagram. A bifurcation diagram is a
graph with the parameter value horizontally and the values of x vertically. So for each value of the
parameter, you can see the attracting and repelling fixed points. One slice of the graph at some
parameter value is equal to the phase portrait of that value. An example of a bifurcation diagram
is given:

Example 1. Consider the family of equations: Ga(x) = x3−ax+x. We can find the fixed points:

x3 − ax+ x = x

x2 − a+ 1 = 1

x2 = a

x = ±
√
a

The fixed points are x = 0 for all values of a and x = ±
√
a for a ≥ 0. We can see some graphs of

this family in figure 2. For a < 0 there is indeed only the fixed point x = 0. With the derivative

G′a(x) = 3x2 − a+ 1

6



Figure 3: Bifurcation diagram for Ga(x).

we can determine that x = 0 has |G′a(0)| = |−a+1| which is larger than one for negative values of a
and smaller than one for positive values of a. This means that the fixed point x = 0 is repelling for
a < 0 and attracting for a > 0. The other fixed points are repelling since |G′a(±

√
a)| = |2a+1| > 1

for a > 0. This behaviour is shown in figure 3.

Now that we have discussed the main definitions and introduced some methods to investigate the
behaviour of a discrete dynamical system, we will look into some specific functions. The tent map
and the quadratic family will be discussed as they demonstrate many interesting phenomena.

2.2 The Tent Map family
The Tent map family is a family of functions. Its iterations form a discrete dynamical system.
This is the Tent map family for some value of c:

xn+1 = Tc(xn) =

{
cxn 0 ≤ xn < 1

2

c(1− xn) 1
2 ≤ xn ≤ 1.

(1)

There are some functions of the tent map shown in figure 4b. The function is tent-shaped with
the top at x = 1

2 with a value of 1
2c.

In the region 0 ≤ xn <
1
2 there is one fixed point at x = 0. In the region 1

2 ≤ xn ≤ 1 there is also
one fixed point:

c(1− x) = x

1− x =
x

c

1 = x(
1

c
+ 1)

c

c+ 1
= xp.

Note that this second fixed point only exists for c ≥ 1.

2.3 The quadratic family
The family of functions Fµ = µx(1− x) is called the quadratic family or the logistic map. We will
refer to it as the quadratic map. In figure 4a we see some functions of this family. These are the
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(a) µ = 1, 2, 3, 4 (b) c = 0.5, 1, 1.5, 2

Figure 4: Graphs of the quadratic family and the Tent map family

derivatives of the function:

F ′µ(x) =µ− 2µx

F ′′µ (x) =− 2µ (2)

F (n)(x) =0 for n ≥ 3.

From these derivatives we can determine that the top of Fµ lies at x = 1
2 . Fµ(x) = 1

4µ at this top.

We can find the fixed points of Fµ. It is evident that x = 0 is a fixed point. There is second fixed
point:

Fµ(x) = x

µx(1− x) = x

1− x =
1

µ

xp =
µ− 1

µ

So we have one fixed point at x = 0 and one fixed point at x = xp. We find that |F ′µ(0)| = µ and
|F ′µ(xp)| = | − µ+ 2|. So, depending on the value of µ, the fixed points can be either repelling or
attracting. The dynamics of the Tent map family and the quadratic family will be investigated in
the following sections.

2.4 Dynamics of the Tent map family for 0 < c < 1

For c < 1 the Tent map family has one fixed point at x = 0. It has T ′c(0) = c < 1 and is therefore
an attracting fixed point. We can see this in figure 5a, the iterations converge to the fixed point
x = 0.
After c = 1, the Tent map family will become chaotic. This will be discussed later on.

2.5 Dynamics of the quadratic family for 0 < µ < 3.
For µ < 1 the behaviour of the quadratic family is similar to the behaviour of the Tent map family
for c < 1.
We have seen that the quadratic family has two fixed points. The first is x = 0 with |F ′(0)| = µ < 1
which makes it an attracting fixed point. The second fixed point falls outside of I for µ < 1 and
will not be considered yet. Figure 5b shows the graphical analysis of this quadratic family for
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(a) The Tent map family (b) Quadratic family

Figure 5: The dynamics for µ < 1 and c < 1.

µ < 1. The Tent map family and the quadratic family both have one attracting fixed point at
x = 0.
After µ = c = 1 the dynamics of the Tent map family and the quadratic family differ. The
quadratic family with the values 1 < µ < 3 have two fixed points in I. We observe the behaviour
in figure 6. The first fixed point is x = 0 and the second is x = xp. We find that F ′µ(0) = µ > 1
and |F ′µ(p)| = |−µ+2| < 1 for 1 < µ < 3. So x = 0 is a repelling point and x = pµ is an attracting
point. This is exactly what we would expect from figure 6.

3 Cantor sets
There are Cantor sets related to the Tent map family and the quadratic family. These Cantor sets
exist for c > 2 and µ > 4. In this section we will observe the dynamics of the Tent map family and
the quadratic family for c > 2 and µ > 4. Certain points ’leave’ the interval I after a number of
iterations. The points that never leave I form a so-called non-wandering set. This non-wandering
set turns out to be a Cantor set. First we will define Cantor sets.

3.1 What is a Cantor set?
Definition 7 (Cantor Set). A set Λ is a Cantor set if Λ is a closed, totally disconnected and perfect
set. A set is totally disconnected if it contains no intervals. A set is perfect if every point of this
set is an accumulation point or limit point of other points in the set, i.e. if it contains no isolated
points.

A well-known example is given below:

Example 2 (Cantor Middle-Thirds Set). The classical example of a Cantor set is the so-called
Cantor Middle-Thirds Set. Figure 7 shows the construction of the Cantor Middle-Thirds Set. We
start with I = C0. Then this interval is split in three parts and the middle open part is removed.
This results in the closed C1 = I − ( 1

3 ,
2
3 ) = [0, 13 ] ∪ [ 23 , 1]. Then the middle part of the remaining

parts is removed again for the next set: C2 = [0, 19 ] ∪ [ 29 ,
3
9 ] ∪ [ 69 ,

7
9 ] ∪ [ 89 , 1]. Note that this set can

also be written as C2 = 1
3C1 ∪ ( 1

3C1 + 2
3 ). This leads inductively to

Cn =
1

3
Cn−1 ∪ (

1

3
Cn−1 +

2

3
). (3)

The set CM =
⋂∞
n=1 Cn is a Cantor set. The proof is given below to give some more insight in

what makes a Cantor set.

Proof. 1. Every Cn is a union of closed intervals and is therefore closed. CM is an infinite inter-
section of closed Cn which makes CM a closed set. 2. Let a, b ∈ CM with a > b and ε = b − a.
Assume there exists an interval (a, b). We can choose n such that 1

3n < ε. CM is the intersection
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Figure 6: Graphical analysis of the quadratic family for 1 < µ < 3.

of closed intervals that are all smaller than ε for some n. Therefore the interval (a, b) cannot exist
and CM is totally disconnected. 3. Take any point p ∈ CM and fix n such that 1

3n < ε. Then p
needs to be in an interval of length 1

3n . This way the endpoints 0, 13 ,
2
3 , 1,

1
9 ,

2
9 , . . . are all contained

in an interval (p− ε, p+ ε). Therefore, each p ∈ CM is an accumulation point which makes CM a
perfect set.[8]

3.2 The Cantor Set as non-wandering set of the Tent map family
After studying the definition and an example of a Cantor set, we now have the tools to look
specifically at the Tent map family.

Example 3 (Cantor Set on Tent map family). Consider the Tent map family:

Tc(xn) = xn+1

{
cxn xn <

1
2

c(1− xn) xn ≥ 1
2

(4)

for some value of c. For c > 2, the top of the Tent map family is higher than 1. This is shown in
figure 8. It can be observed that a point x0 in this top leaves the interval I after the first iteration.
Furthermore, we see that the iteration of such a point will go to −∞.

Figure 7: Cantor Middle Thirds Set.

10



Figure 8: Dynamics of the Tent map family for c > 2. The purple square indicates the interval
[0, 1] and the horizontal T (x) = 0 and T (x) = 1.

Denote the points that leave I after the first iteration by C0. Inductively, we denote the points
that leave I after the nth iteration by Cn−1. The Cantor set related to the Tent map family is

ΛT = I − (

∞⋃
n=0

Cn)

This Cantor set is formed for all c > 2.

Note that for c = 3, ΛT is exactly the Cantor Middle-Thirds set. In figure 9 the red graph shows
T3 and the green graph shows T 2

3 . The intervals that form the tops of these graphs contain all the
points that are mapped out of I after one or two iterations, respectively.

We can calculate the set of points that leave I after the first iteration exactly:

T (x) > 1

3x > 1 and 3(1− x) > 1

x >
1

3
x <

2

3
.

So the points that do not leave I after the first iteration equals C0 = I − ( 1
3 ,

2
3 ) which is indeed

the same as in the Cantor Middle-thirds set. The dotted lines in figure 9 show the ’endpoints’
of the interval. A point on the dotted line is mapped exactly to 1. For example, T3( 1

3 ) = 1 and
T 2
3 ( 1

9 ) = 1. The endpoints never leave I as the next iteration maps these points to the fixed point
x = 0. Therefore, C0 is a closed set.

We can check that the points that leave I after the second iteration also corresponds to the
Cantor Middle thirds set. Indeed, T 2

3 maps all ’endpoints’ 1
9 ,

2
9 ,

7
9 ,

8
9 to 1.

3.3 The Cantor set that is the non-wandering set of the quadratic family
In this section we will see that for µ > 4 the non-wandering set of the quadratic family is a Cantor
set. The proof will be provided for µ > 2 +

√
5.
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Figure 9: Visual representation of the Tent map family for c = 3. Red is T3 and green is T 2
3 . The

dotted lines show 1
9 ,

2
9 ,

3
9 ,

6
9 ,

7
9 ,

8
9

[0, 1] [0, 1]

[0, 1] [0, 1]

k

T2

F4

k

Figure 10: Conjugacy between F4 and the Tent map family T2.

The Cantor set generated by the quadratic family is formed in a similar way as the Cantor set
related to the Tent map family seen before in example 3. The Tent map family for c = 2 and
quadratic family for µ = 4 have a topological conjugacy.

Definition 8 (Topological conjugacy). Let f : A→ A and g : B → B be two maps. f and g are
topologically conjugate if there exists a homeomorphism h : A → B such that h ◦ f = g ◦ h. The
homeomorphism h is called a topological conjugacy.

Proposition 1. There is a topological conjugacy between F4 and T2 as in diagram 10. The proof
is found in the appendix.

Because of this topological conjugacy it is no surprise that the behaviour of both functions is sim-
ilar for µ > 4 and c > 2.

Consider Fµ = µx(1 − x) for µ > 4 with a point x0. Its first iteration is Fµ(x0). For µ > 4
there exists points such that Fµ(x) > 1. Such a point then leaves I in the next iteration. We
can calculate exactly what points leave I after the first iteration. We will denote this set by A0.
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Figure 11: This is the graph of F5. The interval between the black lines is A0. The interval on
the left is I0 and the interval on the right is I1.

Solving Fµ(x) = 1 gives x = 1
2 ±

√
µ−4
2
√
µ . Hence, this is the open interval A0:

A0 =

(
1

2
−
√
µ− 4

2
√
µ

,
1

2
+

√
µ− 4

2
√
µ

)
. (5)

In figure 11, we can see the open interval A0 centered around 1
2 . As before, a point x ∈ A0 goes

to Fn(x)→ −∞.
Then, let A1 = {x ∈ I|Fµ(x) ∈ A0} = {x ∈ I|F 2

µ(x) /∈ I}. If x ∈ A1, then F 2
µ(x) > 1. Calcu-

lating the intervals An becomes increasingly difficult as for calculating A1 we would have to solve
a polynomial of degree 4. By induction, An = {x ∈ I|Fnµ (x) ∈ A0}. This can also be written as
{x ∈ I|Fnµ (x) ∈ I and Fnµ (x) /∈ I for n > i}. This way, An consists of all the points that escape I
after n+ 1 iterations.

Note that Fµ is an increasing function in I0 and a decreasing function in I1. Therefore, Fµ
maps I0 and I1 monotonically onto I. I − A0 consists of two closed intervals, as we have seen.
Then I(A0∪A1) consists of 4 closed intervals which are all mapped onto either I0 or I1 Inductively,
I − (A0 ∪A1 ∪ · · · ∪An) consists of 2n+1 closed intervals. Let I − (A0 ∪A1 ∪ · · · ∪An) = Jn. Then:

Jn = F−1µ (Jn−1) = F−n(J0). (6)

Now that we have defined these sets An, we can look at the following set:

Λ := I − (

∞⋃
n=1

An). (7)

It turns out that Λ is a Cantor set for µ > 4. We will prove that Λ is a Cantor set for µ > 2 +
√

5.
The following property shows why we choose µ > 2 +

√
(5):

Proposition 2. If µ > 2 +
√

(5), then |F ′µ(x)| > 1 for all x ∈ I −A0.

Proof. Split I −A0 in the two closed intervals on the right and left of A0:

I0 =

[
0,

1

2
−
√
µ− 4

2
√
µ

]
and I1 =

[
1

2
+

√
µ− 4

2
√
µ

, 1

]
. (8)
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In I0, we have F ′µ(x) > 0 and in I1, F ′µ(x) < 0. For x ∈ I0 we know 0 < x < 1
2 −

√
µ−4
2
√
µ . For

µ > 2+
√

5, this means 0 < x < 1
2 (3−

√
5). Then |F ′µ(x)| = |µ−2µx| = µ|1−2x| > (2+

√
5)|1−2x|.

Since Fµ has a positive slope in I0, we can lose the absolute signs: |F ′µ(x)| > (2 +
√

5)(1 − 2x).
We know x < 1

2 (3 −
√

5). For x = 0, |F ′µ(0)| = 2 +
√

5 > 1. Then x increases monotonically to
x = 1

2 (3 −
√

5) which has |F ′µ( 1
2 (3 −

√
5)) = 1. Therefore, for x ∈ I0 |F ′µ(x)| > 1. We can do the

same reasoning for I1 to finish the proof.

Proposition 3. If µ > 2 +
√

5, then Λ is a Cantor set.

Proof. In order to prove that Λ is a Cantor set, we need to show that it is a closed, totally
disconnected and perfect set:
1. Λ is closed. We observed that A0 is open. Furthermore, we know An+1 = F−1µ (An). Fµ is a
continuous function so the pre-image of an open set is open. Therefore, A1 = F−1µ (0) is open and
by induction, every An is open. A union of open sets is open, so

⋃∞
n=1An is open. Its complement,

I −
⋃∞
n=1An = Λ is thus closed.

2. Λ is totally disconnected. From proposition 2 we know that |F ′µ(x)| > 1 for µ > 2 +
√

5 and
x ∈ I − A0. There exists λ > 1 such that |F ′µ(x)| > λ > 1 for all x ∈ Λ. Then |Fnµ (x)| > λn by
the chain rule. Assume there exists x, y ∈ Λ such that x 6= y that form a closed interval [x, y] ⊂ Λ.
Then |Fµn(α)| > λn for all α ∈ [x, y]. We can choose n in such a way that λn|x − y| > 1. Then
we can apply the Mean Value Theorem: |Fnµ (x) − Fnµ (y)| > λ|x − y| > 1. This implies that the
distance between Fnµ (x) and Fnµ (y) is larger than 1 and thus at least one of them must be outside
of I. This is contradicting with x, y ∈ Λ. This implied that x and y can never leave I Therefore,
there are no intervals in Λ and it must be totally disconnected.
3. Λ is perfect. A set is perfect if all its point are limit points. So, we have to prove that for all
x0 ∈ Λ and all ε > 0, there is a y ∈ Λ such that x0 6= y and |x0 − y| < ε. We will use I0 and I1 as
defined before in equation 8. The restrictions

Fµ|I0 : I0 → [0, 1] and Fµ|I1 : I1 → [0, 1]

are homeomorphisms and thus there exist inverse maps

h0 : I0 → [0, 1] and h1 : I1 → [0, 1]

such that x = Fµ(h1(x)). The orbits of x ∈ Λ never leave [0, 1] so if x ∈ Λ, we know that
h0(x), h1(x) ∈ Λ.
We know that xn+1 = Fµ(xn) so xn = h0(xn+1) or xn = h1(xn+1) depending on whether xn is in
I0 or I1. There exists λ > 1 such that, for a, b ∈ Λ:

|h0(a)− h0(b)| ≤ 1

λ
|a− b| and |h1(a)− h1(b)| ≤ 1

λ
|a− b|.

Now we can write x0 = h ◦ h ◦ · · · ◦ h(x). Now we choose y′ = 0, which is a fixed point in Λ. For
any ε > 0 there exists an n such that 1

λn < ε. Then for some y 6= x0 converging to y′ we find that

|x0 − y| ≤
1

λn
|xn − y′| ≤

1

λn
< ε

which completes the proof.

3.4 Symbolic Dynamics
Symbolic dynamics is another approach to describing the orbit of a point. Recall that a point
x ∈ Λ never leaves the Cantor set Λ. We know that Λ ⊂ I0 ∪ I1.
We denote:

sj =

{
0 F j(x) ∈ I0
1 F j(x) ∈ I1

(9)

So every xn is mapped by Fµ to either I0 or I1. We make the following definitions:

Definition 9 (Itinerary Space). The itinerary space is denoted by Σ2 = {s = (s0s1s2 . . . )|sj =
0 or 1}
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Proposition 4. (Σ2, d) is a metric space.

Proof. Devaney has proven that this is a metric on Σ2 [3]. A set together with a metric is a metric
space.

Definition 10. The itinerary of x is a sequence S(x) = (s0s1s2 . . . ), where sj is defined as in
equation 9. S(x) is a function S : Λ→ Σ2.

Example 4. Consider the Tent map family (equation 4). These are its iterations for x0 = 7
9 :

x0 =
7

9
∈ I1

x1 = T3(x0) =
6

9
∈ I1

x2 = T3(x1) = 1 ∈ I1
x3 = T3(x2) = 0 ∈ I0
x4 = T3(x3) = 0 ∈ I0
. . .

To find S(x0), we simply look at the iterations above. Because x = 0 is a fixed point we know that
every digit will be 0 for j ≥ 3. So S(x0) = (11100000 . . . ).

We can do a similar example for the quadratic family.

Example 5. Consider one of the ’endpoints’ of A1 from equation 5:

x0 =
1

2
−
√
µ− 4

2
√
µ

Its iterations are:

x0 =
1

2
−
√
µ− 4

2
√
µ

∈ I0

x1 = Fµ(x0) = 1 ∈ I1
x2 = Fµ(x1) = 0 ∈ I0
x3 = Fµ(x2) = 0 ∈ I0
. . .

Now we can easily see that S(x0) = (01000000 . . . ).

The distance between two sequences s = (s0s1s2 . . . ) and t = (t0t1t2 . . . ) is defined as:

d[s, t] =

∞∑
i=0

|si − ti|
2i

(10)

The shift map is an important map in symbolic dynamics. It shifts the entire sequence S(x) one
place to the left in such a way that the first entry, s0 is "forgotten". It is formally defined as
follows:

Definition 11 (Shift map). The shift map σ : Σ2 → Σ2 is given by σ(s0s1s2 . . . ) = (s1s2s3 . . . ).

Proposition 5. The shift map σ : Σ2 → Σ2 is continuous.

Proof. Devaney has proven this[3] on page 41.

Note that for a fixed point S(x) = (s0s0s0 . . . ) and thus σ(S(x)) = S(x). For a periodic point
of period 2 we have S(x) = (s0s1s0s1 . . . ) and σ(σ(S(x)) = σ ◦ σ ◦ S(x) = S(x). More generally,
S(x) = (s0 . . . sn−1s0 . . . sn−1s0 . . . sn−1 . . . ) and σ ◦ · · · ◦ σ(S(x)) = σn(S(x) = S(x) for periodic
points of period n.

This leads us to the following proposition:
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Proposition 6. There are topological conjugacies between Fµ and σ and between Tc and σ. The
so-called commutative diagram is shown in figure 12. So the following is true:

• S ◦ Tc = σ ◦ S

• S ◦ Fµ = σ ◦ S

Proof. Let Is0s1...sn = {x ∈ I|T ic(x) ∈ Isi∀i = 0, . . . , n}. This can also be written as
⋂n
i=0 T

−i
c (Isi).

A point x ∈ ΛT can be defined as
⋂
n≥0 Is0s1...sn . We can write Tc(Is0...sn) =

⋂n
i=0 T

−i+1
c (Isi) =

Is1...sn since Tc(Is0) = I. Now we can conclude:

S ◦ Tc(x) = S ◦ Tc(
⋂
n≥0

Is0s1...sn)

= S(
⋂
n≥0

Is1...sn)

= (s1s2 . . . )

= σ ◦ S(x)

We can follow the same steps to prove the conjugacy between Fµ and σ.

All topological properties are preserved by such a topological conjugacy. Because ΛT and ΛF are
Cantor sets, we can make the following proposition:

Proposition 7. Σ2 is a Cantor set.

S : Λ→ Σ2 is a homeomorphism for µ > 2 +
√

5. [3] So by proposition 6, there exists a conjugacy
between σ and Fµ for µ > 2 +

√
5.

Proposition 8. Let σ be the shift map. Then:

1. The cardinality of Pern(σ) is 2n

2. Per(σ) is dense in Σ2.

3. There exists a dense orbit for σ in Σ2.

Proof. 1. For any periodic point of period n there is a sequence of length n repeated over and
over. there are 2n possible sequences for a periodic point of period n so the cardinality of
Pern(σ) is 2n.

2. A subset is dense in Σ2 if it closure equals Σ2. We can produce a sequence τn = (s0 . . . sns0 . . . sn)
such that τn is the repeating sequence with its entries agreeing with some arbitrary s ∈ Σ2

up till the nth entry. Then the distance d[τn, s] ≤ 1
2n [3] which shows that for every s ∈ Σ2

there exists a τn converging to it. Hence the closure of Per(σ) is equal to Σ2 and it is a dense
subset.

3. Consider s∗ as in equation 11. It is constructed by successively listing all blocks of each
length. After enough iterations of σ, we find a sequence that agrees with any other sequence
in an arbitrarily large number of places. Therefore, there exist a dense orbit for σ in Σ2.

s∗ = (0 1|00 01 10 11|000 001 . . . | . . . ) (11)

A topological conjugacy preserves the dynamics of its functions. For example, if xp is a fixed point
for Fµ, then S(xp) is a fixed point for σ:

S(xp) = S(Fµ(xp)) = σ(S(xp)).
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ΛT ΛT

Σ2 Σ2

ΛF ΛF

S

Tc

σ

S

S S

Fµ

Figure 12: The commutative diagram of the conjugacy between Fµ and σ and the conjugacy
between Tc and σ.

In the same way, if Fµ has a periodic point of period n xp then σ has a periodic point S(xp) of
period n:

S(xp) = S(Fnµ (xp)) = σ ◦ S ◦ Fn−1(xp) = σ2 ◦ S ◦ Fn−2(xp) = · · · = σn(S(xp)).

Because of the conjugacy between Fµ and σ all the topological properties that hold for σ in
proposition 10 also hold for Fµ. We can summarize this in the following proposition:

Proposition 9. Let Fµ(x) = µx(1− x) with µ > 2 +
√

5. Then:

1. The cardinality of Pern(Fµ) is 2n

2. Per(Fµ) is dense in ΛF .

3. Fµ has a dense orbit in ΛF .

Note that we there is also a topological conjugacy between Tc and σ. Therefore, the same properties
hold for Tc as well:

Proposition 10. Let Tc be the Tent map family with c > 2. Then:

1. The cardinality of Pern(Tc) is 2n

2. Per(Tc) is dense in ΛT .

3. Tc has a dense orbit in ΛT .

4 Chaos

4.1 Devaney’s Definition of Chaos
Devaney was the first one to formally define chaos. He stated that a chaotic map has the following
three ingredients:

Definition 12. Let V be a set. f : V → V is said to be chaotic on V if

1. f has sensitive dependence on initial conditions

2. f is topologically transitive

3. periodic points are dense in V

These three properties are defined below:
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Definition 13. Sensitive dependence on initial conditions
A function f : J → J has sensitive dependence on initial conditions if there exists δ > 0 such
that, for any x ∈ J and any neighborhood N of x, there exists y ∈ N and n ≤ 0 such that
|f (x)− fn(y)| > δ.

Definition 14. Topologically transitive
A function f : J → J is said to be topologically transitive if for any pair of open sets U, V ⊂ J
there exist k > 0 such that fk(U) ∩ V 6= 0.

If J has no isolated points, then we can say that if there is a point x0 ∈ J such that its orbit
x0, f(x0), f2(x0), . . . is dense we can also say that f is topologically transitive. This is proven by
[9]

Definition 15. A subset U ⊂ S is dense in S if Ū = S, where Ū is the closure of U .

After Devaney made this definition, there was a paper written by J. Banks [1] in which he proved
that the first property of Devaney’s definition follows from the last two properties. This is written
in the following proposition.

Proposition 11. If f : X → X is transitive and has dense periodic points then f has sensitive
dependence on initial conditions.

The Tent map family and the quadratic family display chaos in certain regions. This will be
discussed below.

Proposition 12. Fµ(x) = µx(1− x) is chaotic on the cantor set ΛF for µ > 2 +
√

5.

Proof. To prove this we need to prove all three properties of definition 15:
1. Let A0 be the set A0 as in the Cantor set. Let δ < A0 and x, y ∈ ΛF . If x 6= y, then S(x) 6= S(y)
which means the itineraries of x and y must differ in at least one spot. Suppose they differ in the
nth spot. Then Fnµ (x) lies in I0 while Fnµ (y) lies in I1 or vice versa. Then |Fnµ (x)− Fnµ (y)| > δ.
2. Fµ on the Cantor set ΛF is a function Fµ(x) : ΛF → ΛF . Consider x in any open set in ΛF .

There is a topological conjugacy, as shown in proposition 6. This means that F k(x) = S−1◦σk◦S(x).
Since ΛF is a Cantor set for µ > 2 +

√
5 we know it is a perfect set. Therefore, noting that there

exits a dense orbit is enough to prove topological transitivity. According to proposition 9, Fµ has
a dense orbit in ΛF
3. Proposition 9 shows that the periodic points are dense in ΛF , finishing the proof. [5] [3]

The quadratic family is not only chaotic for µ > 2 +
√

5 but for all values µ > 4 [3]. Following the
same reasoning as proposition 12, the Tent map family for c > 2 is chaotic on the Cantor set ΛT .
More chaotic regions for the quadratic family and the Tent map family will be dealt with in the
following sections.

4.2 Lyapunov exponents
A Lyapunov exponent is a measure for sensitivity to initial conditions. [7]

The lyapunov exponent λ for discrete systems is:

λ = lim
N→∞

1

N

N∑
n=1

log2 |
dxn+1

dxn
|, (12)

where
xn + 1 = f(xn)

.
The Lyapunov exponent indicates the following:

• λ < 0 indicates a periodic attractor. (no chaos)

• λ = 0 indicates a bifurcating periodic point

• λ > 0 indicates sensitivity to initial conditions. (chaos)
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4.3 Chaos on the Quadratic family
We discussed chaos for the quadratic family for µ > 4. For µ < 4 there is also chaotic behaviour.
This is a different kind of chaos. We will look at the dynamics of µ > 3 and we will see that there
are a number of period-doubling bifurcations that lead to chaos.

Figure 13: The graph of Fµ (purple) and F 2µ (green) for µ = 3.4.
.

We will start with an example:

Example 6. For µ = 3.4, the fixed points are x = 0 and x = µ−1
µ = 2.4

3.4 .
We can calculate that both are repelling fixed points. When we take a look at F 2

3.4(x), we find
that F 2

3.4 has four fixed points as can be seen in figure 13. This means that F3.4 has two repelling
fixed points but also two periodic points of period two. To calculate these points we have to solve
F 2
µ(x) = −µ3x4 + 2µ3x3 − (µ3 + µ2)x2 + µ2x = x. The solution to this equation is:

p1 = 0, p2 =
µ+ 1−

√
µ2 − 2µ− 3

2µ
, p3 =

µ− 1

µ
, p4 =

µ+ 1 +
√
µ2 − 2µ− 3

2µ

Then we take the derivative: d
dxF

2
µ = −4µ3x3 + 6µ3x2 − 2(µ3 + µ2)x + µ2. Now we can deter-

mine if our new found periodic points are attracting or repelling: | d
dxF

2
3.4(p2)| = 0.76 < 1 and

| d
dxF

2
3.4(p4)| = 0.76 < 1. So for µ = 3.4 there are two repelling fixed points and two attracting

periodic points of period 2.

Note that p2 and p4 exist only for µ > 3 because for µ < 3, they are imaginary and for µ = 3,
p2 = p4 = p3. We say there is a period-doubling bifurcation at µ = 3.

Proposition 13 (Period-doubling bifurcation). Suppose

• fµ(0) = 0 for all µ in an interval about µ0.

• f ′µ0
(0) = −1

• ∂(f2
µ)

′

∂µ |µ=µ0
(0) 6= 0.
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Figure 14: Graph of F 4
µ for µ = 3.5.

.

Then there is an interval J about 0 and a function p : J → R such that

fp(x)(x) 6= x

but
f2p(x)(x) = x.

Proof. Devaney has proven this. (page 90) [3]

This proposition shows the necessary qualities for a bifurcation at x = 0. We can check the
properties for µ = 3. For µ = 3, there is a bifurcation at the fixed point 2

3 :

• Fµ( 2
3 ) = 2

3 .

• F ′3( 2
3 ) = −1

• ∂(F 2)′

∂µ |µ=3 = 44 6= 0.

In the example above, the periodic points of period 2 were attracting. As µ increases, there will
be another bifurcation and they will change to repelling periodic points. We can calculate when
these points swap from attracting to repelling points:

| d
dx
F 2
µ(p2)| = d

dx
F 2
µ(p4)| = | − µ2 + 2µ+ 4| = 1

We find that the period-doubling bifurcation occurs at µ = 1 +
√

6 ≈ 3.449. This means that
the periodic points of period 2 are attracting for 3 < µ ≤ 1 +

√
6 ≈ 3.449 and repelling for

µ ≥ 1 +
√

6 ≈ 3.449.

So after µ = 1 +
√

6 there are 8 periodic points (2 fixed points, 2 periodic points of period 2
and 4 periodic points of period 4). Figure 14 shows that indeed, F 4

3.5(x) has 8 fixed points.
Figure 15 shows the first period-doubling bifurcations. Calculating all these points is getting more
and more complicated so we not calculate them exactly. The Feigenbaum diagram (figure 17)
shows only the attracting periodic points. More period-doubling bifurcations occur as µ increases.
There are bifurcations at µ ≈ 3.544 (8 periodic points), at µ ≈ 3.564 (16 periodic points) and
at µ ≈ 3.569 (32 periodic points). As µ increases even further, its behaviour becomes chaotic.
This is seen in the bifurcation diagram in figure 17 The critical value after which there is chaos is
µ ≈ 3.56994 [13].
In figure 16 we see the Feigenbaum diagram a little closer up. There are ’windows’ in the diagram.
We clearly see there are only 3 periodic points in such a window. One such a window is at
µ = 3.8284. Li and Yorke proved in 1975 that "period 3 implies chaos". They proved that once a
period-3 orbit is established there are orbits of all other periods. [6]

20



Figure 15: This figure shows the bifurcation diagram for Fµ. The integers on the right of the
picture represent the periods.

Yet another way of looking at the chaotic regions is by looking at the Lyapunov exponents. For
the quadratic family the Lyapunov exponent is determined by:

λ ≈ 1

N

N∑
n=1

log2 | µ− 2µxn |

Figure 17 shows the Lyapunov exponents for 3 < µ < 4. It shows that this corresponds to the
Feigenbaum diagram. At the non-chaotic region of the quadratic family, the Lyapunov exponent is
indeed negative. At the period-doubling bifurcations the Lyapunov exponent is zero. Furthermore,
we see that at the ’windows’ in the Feigenbaum diagram, the Lyapunov exponent has peaks in the
negative side of the graph.

4.3.1 The Feigenbaum constant

period µ δk
2 3 4.7514 . . .
4 3.449489 . . . 4.6562 . . .
8 3.544090 . . . 4.6683 . . .
16 3.564407 . . . 4.6687 . . .
32 3.568759 . . . 4.6692 . . .

Table 1: The values of δk calculated to show how the Feigenbaum constant is arrived at.

The mathematical physicist M.J. Feigenbaum calculated the Feigenbaum constant in 1979. The
Feigenbaum constant characterizes the geometric approach of the bifurcation parameter to its limit
as the parameter µ increases. He calculated it to be δ = 4.6692016091029 . . . for the quadratic
family.
This constant is given by the limit [12]:

δ = lim
k→∞

δk = lim
k→∞

µk+1 − µk
µk+2 − µk+1

.

where µk is the value of µ at which a period 2n cycle appears. With the values of µ where period-
doubling bifurcations occurred, we can calculate the first values of δk. As we can see in table 1,
the value of δk already agrees with the Feigenbaum constant δ for the first 4 digits. [14]
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Figure 16: Feigenbaum diagram for 3.6 < µ < 3.9. Note that R = µ.

4.3.2 Cantor set in the Feigenbaum diagram

In the Feigenbaum diagram the regions with many periodic points are the dark regions. These
regions are chaotic. In between these dark regions there are light parts with only a few periodic
points. These parts are called ’windows’. In figure 16, we can see some of these windows. The
’windows’ in the bifurcation diagram are open. The chaotic parts in the Feigenbaum diagram form
a Cantor Set of positive measure. [11].
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Figure 17: The top graph is the Feigenbaum diagram and the graph below shows Lyapunov
exponent for values of 3 < µ < 4.
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Figure 18: Bifurcation diagram for the Tent map family for 1 ≤ c ≤ 2.

4.4 Chaos in the Tent Map family
The bifurcation diagram of the Tent map family for 1 ≤ c ≤ 2 is shown in figure 18. For 1 ≤ c ≤ 2,
the Tent map family shows chaotic behaviour. Unlike the quadratic family, the Tent map family
does not follow the period-doubling route to chaos. Figure 18 shows that there are many periodic
points.
The Lyapunov exponent can be easily calculated for the Tent map family:

λ = lim
N→∞

1

N

N∑
n=1

log2 |
dxn+1

dxn
|= lim

N→∞

1

N

N∑
n=1

log2 c = log2 c.

For c < 1 the Lyapunov exponent is negative and for c > 1 the Lyapunov exponent is positive.
This indicates that the Tent map family displays chaos for c > 1.
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5 Conclusion
In this project we have been looking at the dynamics of one-dimensional discrete dynamical sys-
tems, specifically the quadratic family Fµ and the Tent map family Tc. We have looked at the
dynamics of these families as well as the role of Cantor sets and chaos.

Devaney’s book [3] has been a large part of this project. His book was reviewed by the dutch
mathematician F. Takens [10]. He stated that it was only recent that it was realized that one-
dimensional dynamical systems have interesting properties. Takens states that Devaney uses this
low-dimensional context to introduce a number of notions which are also of importance for higher
dimensions. So the work done in this paper gives firstly an overview of the one-dimensional discrete
dynamical systems discussed. Secondly, it gives the reader insight into one-dimensional dynamical
systems which is useful for investigating dynamical systems of higher dimensions.

We have found that the quadratic family becomes chaotic for increasing values of µ, following
the period-doubling route to chaos. For µ < 3, there are no more than two fixed points. For
µ > 3, there are period-doubling bifurcations as µ increases. These period-doubling bifurcations
are shown in a so-called Feigenbaum diagram, which is the bifurcation diagram for the quadratic
family. Some interesting aspects of this diagram were mentioned. There is a Feigenbaum constant
and the complement of the windows in the Feigenbaum diagram form a Cantor set.

The Tent map family has only one fixed point for c < 1. For c > 1 we observe chaotic be-
haviour. It does not follow the period-doubling route to chaos. We have calculated the Lyapunov
exponents which indicated that there was indeed chaos for c > 1.

For µ > 4 and c > 2 we observed that certain points of I leave the interval after the first it-
eration. The points that never leave are called the non-wandering set. This non-wandering set is a
Cantor Set. Furthermore, we have looked at symbolic dynamics. There is a topological conjugacy
between the shift map and both Fµ and Tc. We used symbolic dynamics to see that the Tent map
family and quadratic family are chaotic for c > 2 and µ > 4 on their Cantor sets.
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A Appendix

A.1 Conjugation between Tent map and Logistic map
Proposition 14. This is proposition 1.There is a topological conjugacy between F4 and T2 as in
diagram 10. The proof is found in the appendix.

Proof. Recall the tent map:

xn+1 = T2(xn) =

{
2xn 0 ≤ xn < 1

2

2(1− xn) 1
2 ≤ xn ≤ 1

and the quadratic equation F4 = 4x(1− x). Define

k(x) =
2

π
arcsin

√
x.

The function k is a homeomorphism on I = [0, 1]. Then it follows that k−1(x) = (sin π
2x)2. We

need to prove that F4(x) = k−1 ◦ T2 ◦ k(x).
First case, 0 ≤ xn < 1

2 :

F4(x) = k−1 ◦ T2 ◦ k(x)

= (sin(
π

2
(

4

π
arcsin

√
x)))2

= (sin(2 arcsin
√
x))2

= (2 sin(arcsin
√
x) cos(arcsin

√
x)2

= (2
√
x cos(arcsin

√
x))2

= 4x(1− sin2(arcsin
√
x))2

= 4x(1− x)

The second case, 1
2 ≤ xn ≤ 1:

F4(x) = k−1 ◦ T2 ◦ k(x)

= (sin(
π

2
(− 4

π
arcsin

√
x+ 2)))2

= (sin(−2 arcsin
√
x+ π))2

= (2 sin(− arcsin
√
x+

π

2
) cos(− arcsin

√
x+

π

2
)2

= (2 cos(arcsin
√
x) sin(arcsin

√
x)2

= 4x(cos(arcsin
√
x))2

= 4x(1− x)

Which completes the proof.
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