
UNIVERSITY OF GRONINGEN

BACHELOR THESIS

Constructing the frontend of the Kapteyn
Interferometer and investigating the

single dish configuration

Author:
Mathijn LENSEN

Supervisors:
Prof. Dr. Andrey BARYSHEV

Dr. John P. MCKEAN
Dr. Ronald HESPER

Second examiner:
Dr. Ir. Willem JELLEMA

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor

in the

Kapteyn Astronomical Institute

www.rug.nl
https://www.rug.nl/research/kapteyn/


i

UNIVERSITY OF GRONINGEN

Abstract
Faculty of Science & Engineering
Kapteyn Astronomical Institute

Bachelor

Constructing the frontend of the Kapteyn Interferometer and investigating the
single dish configuration

by Mathijn LENSEN

In this Bachelor Thesis the frontend design of a simple, 2 element interferometer
working at 11.2 GHz is discussed. The interferometric setup consists of two equa-
torial mounts, two offset paraboloidal dishes and 2 LNBs acting as receivers. Ad-
ditionally, the single dish configuration is examined. The radiation pattern was de-
termined showing clear side lobes at a level of approximately -17dB and the beam
width was measured to be 4.90◦. Furthermore, the illumination pattern is investi-
gated to determine the optimal LNB placing. Using Y-factor calibration the receiver
temperature was determined to be 110K up to 150K depending on the LNB placing.
At last some sky measurements on an unstable sky were done resulting in atmo-
spheric opacities at zenith of 0.039 and 0.053.
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Chapter 1

Introduction

1.1 Radio astronomy and interferometry

In the 1860’s, James Clerk Maxwell showed us that electromagnetic radiation comes
from electricity and magnetism and can be found at any wavelength. The field of
radio astronomy spans the electromagnetic window from approximately 30 MHz
(10m) up to 700 GHz (0.4mm). In the 1930’s Karl Jansky was the first one to detect
radio waves coming from an astronomical source. Using an array of large directional
antennas he detected a repeating radio signal, which he eventually concluded to
come from the galactic centre (1933). The era of radio astronomy in the Netherlands
started on 15 April 1944, when Hendrik Christoffel (Henk) van de Hulst predicted
that the neutral hydrogen spectral line should be detectable in the radio-window
(Woerden and Strom, 2006), now known as the 21 cm line. After World War II, Van
de Hulst’s phd-supervisor, Jan Hendrik Oort became director of the observatory in
Leiden and took the lead in Dutch radio astronomy. With his help, in 1956, The
Dwingeloo Radio telescope was put into operation to investigate the centre of the
Milkyway. Fourteen years later, again under effort of Oort, the Westerbork Synthesis
Radio Telescope (WSRT) was built. The WSRT is an aperture synthesis interferome-
ter, meaning it combines the signals of multiple telescopes providing higher angular
resolution by the means of interferometry. Nowadays, radio astronomy and interfer-
ometry are practically fused together which have resulted in incredible projects such
as the Atacama Large Millimeter Array (ALMA) and the upcoming Square Kilome-
tre Array (SKA).

FIGURE 1.1: Left: Jansky and his array of antennas. Right: The Ata-
cama Large Millimeter Array
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1.2 The Kapteyn Interferometer project

The purpose of this bachelor thesis is to describe the process of constructing a simple,
two element interferometer and to investigate various properties of the single dish
configuration and their interpretation. The final goal of the collaborative project is to
determine the angular size of the sun. To get to this goal there are certain steps to be
taken. These steps have been divided among three students and are represented in
their respective bachelor theses. The parts are divided in such a way that each one
focuses on a different aspect and has an equal workload.

One project is to simulate visibilities or the response of the interferometer for
different objects. This part is done by Jasper Steringa (Steringa, 2018), using his
findings the output-data of the interferometer can be compared to the theoretical
expectation.

The second part is done by Casper Farret Jentink (Farret Jentink, 2018). His
project concerns the back-end of the interferometer and the interpretation of the data.
At the end his findings will give an estimate of the angular size of the sun.

My part in this project mainly concerns single dish operation and the front-
end construction of the interferometer. For the single dish this means determin-
ing certain valuable parameters such as the receiver temperature and mapping the
radiation-pattern. For the interferometry part this includes finding out which dishes
and mounts are suitable for our project and cooperating them into the setup. Finally
some tests on the stability of the system and some sky measurements were done to
determine the atmospheric opacity and system temperature. For all the single dish
measurements, the same dish was used every time which is assumed to give the
same results as for the other dish.

Furthermore, in this thesis there is sometimes referred to the Kapteyn Radio Tele-
scope or KRT, a horn-telescope made by fellow-students in 2015. The project which
they did is similar to ours hence some comparisons can be found in this thesis.

All the computational work was done in Python and all errors in this thesis were
calculated using the Astropy module.

FIGURE 1.2: The interferometer, KISS (Kapteyn Interferometer for
Short-baseline Solar observations.)

https://www.python.org/
http://www.astropy.org/
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1.3 Antenna temperature

To do accurate, calibrated measurements of astronomical sources, the power re-
sponse of an antenna system is the most important characteristic to know. The out-
put power per unit bandwidth Pν for an antenna is described by

Pν =
1
2

Ae

∫∫
Bν(θ, φ)Pn(θ, φ)dΩ. (1.1)

In this equation Bν(θ, φ) is the brightness distribution and Pn(θ, φ) is the normal-
ized power pattern. Furthermore Ae is the effective area and dΩ is the beam solid
angle.

Using the Nyquist theorem, described in section 3.1 this can be translated to an
equivalent antenna temperature given by

Tant =
1
2k

Ae

∫∫
Bν(θ, φ)Pn(θ, φ)dΩ, (1.2)

where k is the Boltzmann constant.

1.3.1 Brightness temperature

The brightness distribution describes the brightness profile coming from sources in
direction on which the antenna is pointed at. It is commonly described by the bright-
ness temperature of a black body. A black body is an opaque and non-reflective body
which absorbs all incoming electromagnetic radiation before emitting it again. The
emitted radiation has a specific (Planck) spectrum with the intensity only dependent
on the thermodynamic temperature of the body (Loudon, 2000). For the measure-
ments done in this project, all objects are approximated as being a black body for
the sake of simplicity, which is usually a plausible assumption. The brightness spec-
trum of the emitted electromagnetic waves from a black body is given by Planck’s
law (Fig. 1.3),

Bν(T) =
2hν3

c2
1

e
hν
kT − 1

, (1.3)

where h is Plancks constant, c is the speed of light, ν is the specific frequency and
T the thermodynamic temperature of the body.

Most of the objects in daily life have a temperature of approximately room tem-
perature (≈ 295K) corresponding to most of the radiation being emitted in the in-
frared. For the sun, the temperature is much higher (≈ 5800K) so that most of the
radiation is emitted at wavelengths visible to the human eye.

At radio frequencies/wavelengths, Planck’s law can often be approximated by
the Rayleigh-Jeans Law given by

Bν(T) =
2ν2kT

c2 , (1.4)

with the condition that hν � kT. In Figure 1.3 the Rayleigh-Jeans curve is
represented as the classical theory.

Since the spectral brightness Bν and the temperature T are proportional, the
brightness can be measured in values of T so that we find

Tb =
c2

2kν2 Iν, (1.5)
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where Tb is the brightness temperature of the source and Iν is the spectral inten-
sity.

In this thesis Tant is mostly substituted for Tb being a description of the brightness
of a source, rather than the physical thermodynamic temperature.

FIGURE 1.3: Figure showing the Planck curves for different ther-
modynamic temperatures and the comparison with the classical

Rayleigh-Jeans model. Image source: wikipedia

1.3.2 Radiation pattern

The antenna temperature does not only depend on the brightness temperature of
observed source(s) but also on the (normalized) power pattern P(θ, φ).

The power pattern is often named the (far field) radiation pattern. This radiation
pattern describes the directional (angular) dependence of the strength of the radio
waves from the antenna or other source (Balanis, 1982). To interpret the radiation
pattern of a antenna, a diagram is often used. Since the radiation pattern is angular
dependent, it is mostly shown as a polar diagram as can be seen in Fig. 1.4.

https://en.wikipedia.org/wiki/Black-body_radiation
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FIGURE 1.4: Standard radiation pattern for a dish antenna showing
the main lobe, back lobe and side lobes in a polar representation. Im-

age source: wikipedia

One can clearly see that the pattern consists of multiple lobes and is not isotrop-
ically responsive. The main lobe is mostly used to observe a source while the side
lobes and back lobe (caused by interference) are ought to be minimized. The power
response is described as the gain or directivity of the antenna mostly given in deci-
bels (dB). The relative power can be calculated in dB using

L = 10 ·10 log(
P1

P0
), (1.6)

where P1 is the measured power and P0 is the reference power.

A rectangular radiation pattern in dB scale can be found in Fig.1.5 and a 3D
representation in Fig. 1.6.

FIGURE 1.5: Typical radiation pattern on rectangular plot where the
maximum is normalized to 0 dB. Image source: wikipedia

https://en.wikipedia.org/wiki/Radiation_pattern
https://en.wikipedia.org/wiki/Radiation_pattern
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FIGURE 1.6: 3-dimensional representation of the radiation pattern of
a certain antenna. Image source: mathworks

To characterize the spread of the main lobe or the beam width of the antenna
the Half Power Beam Width or Full Width Half Maximum is used. This is the angle
between the points where the main lobe has decreased to half of the maximum. In
dB scale this corresponds to a drop of -3 dB.

For parabolic antennas the FWHM or beam width is given by

θbw = K
λ

D
, (1.7)

where λ is the observing wavelength, D is the diameter of the dish and K is a fac-
tor depending on the shape of the dish and its illumination. For an ideal uniformly
illuminated parabolic reflector and θ in degrees, K would be 57.3. For a "typical"
parabolic antenna K would be approximately 70 (Minoli, 2009).

A fundamental property of an antenna is that the radiation pattern when the
antenna is used for receiving is identical to if it were transmitting as a consequence
of reciprocity. This property will be exploited in this thesis to make things easier.

The radiation pattern of an antenna can be determined experimentally using a
near field scanner or by doing a far field scan, both methods will be used in this
project.

https://nl.mathworks.com/help/antenna/ug/field-analysis.html
https://en.wikipedia.org/wiki/Reciprocity_(electromagnetism)
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Chapter 2

Setup and operation

2.1 The dishes

At the beginning of the project the choice had to be made which antenna type and
frequency band was to be used for the interferometric setup. We chose to set our ob-
serving frequency in the ballpark of approximately 11 GHzy. Since the radio waves
at this frequency have a small wavelength they can be used for point-to-point com-
munication. The narrow beams can be directed from aperture antennas such as horn
or parabolic antennas without interfering with nearby transmitters on the same fre-
quency. For this reason it is mainly used for the transmission of satellite television.
Due to this enormous economical advantage, this was also used as the frequency
for our experiment. This would imply working in the X or Ku frequency band. The
X band ranges from 8.0 to 12.0 GHz where the Ku band ranges from 12.0 to 18.0
GHz.(IEEE, 2003).

One possibility could be to use two identical horn-antennas. There are different
horn-types which could have been used such as the Picket-Potter horn constructed
by Lap et al, (Lap, 2015). It was decided that these horns would have cost a lot of
time to construct compared with the other possibilities. The paraboloidal antenna,
a dish reflector with a cross-sectional shape of a parabola was the second option.
The advantage of a parabolic dish is that it has a high directivity compared with a
horn. A high directivity translates to a narrow beam so that sources from a partic-
ular direction can be distinguished. Moreover, dish antennas are widely available
on the commercial market making it a superior alternative to buy one compared to
making one ourselves. Paraboloidal antennas can be distinguished by shape such
as cylindrical or ’shaped-beam’ antennas. Furthermore different types are classified
by the type of feed they have. The antenna feed is the component which feeds the
radio-waves to the rest of the antenna structure. Various feeds such as axial, off axis
or Gregorian can be used with each their advantages. The off-axis dish was the most
interesting. The advantage of this configuration is that there is (almost) no obstruc-
tion of the beam by the antenna feed, i.e. it has a relatively high aperture efficiency.
This means that the dish can be smaller compared with other configurations which
have a lower aperture efficiency (but the same forward gain) providing higher mo-
bility. This is the main reason that it is widely used in satellite television.

For our experiment a certain sensitivity is needed to distinguish the sun’s signal
from noise, implying that a certain forward gain or aperture is necessary. It was cal-
culated (3.4) that the aperture is of least concern so that the smallest dishes available
possible is the way to go. We chose to go with the 35cm ’campingschotel in koffer’
from Astrasat. The dishes come with a quite clever attachment so that they can be
easily mounted to certain surfaces. A nice case is also provided so that the mounts

https://www.astrasat.nl/
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are quite mobile and can be set up fairly quickly. There was no list of specifications
included and no information was made public on the internet so some things had to
be measured at first. The dimensions of the dish were accurately measured which
can be found in Table 2.1.

TABLE 2.1: Measured specifications of the dish

Parameter Value

Semi minor axis length D 352 ± 3 mm
Semi major axis length L 402 ± 3 mm
Maximum depth B 37.2 ± 0.3 mm

The geometry of an offset parabola can be seen in Fig.2.2. Since the height and
width of the dish are unequal, it is not radially symmetric but the rim traces out an
ellipsoid. The projection onto the x,y-plane on the contrary is circular, implying that
the reflector surface is paraboloidal with an eccentricity of 1. The spherical projection
onto the x,y-plane of an ellipsoid means that the dish has to be tilted a certain angle.
This angle is called the elevation angle φ, the angle on which the beam is projected
on the sky when the dish is leveled with the ground surface as can be seen in Fig.2.1.
The elevation angle can simply be calculated using

φ = arccos
(D

L
)
. (2.1)

FIGURE 2.1: Parabolic dish with a 30 degree offset design, when the
front of the dish is vertical, the beam elevation is 30 degree. Image

source: Satsig

The focal length F can be calculated with

F =
D3

16LB
(2.2)

as derived by Uhm and Park (M. Uhm and Park, 1996).
The focal point is the point where the LNB should be placed so that the highest

power is measured. The LNB should be placed exactly at a distance F from the
bottom-rim of the dish for optimal results (Rensburg, 2012).

http://www.satsig.net/cgi-bin/yabb/YaBB.pl?num=1483849291
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FIGURE 2.2: Diagram showing the geometry of an offset parabola
dish. Image source: van Rensburg

Furthermore the geometric area can be approximated as an ellipse with

Ageo = πDL (2.3)

and the projected geometric area as a circle with

Apgeo = πD(cos(φ) · L) = πD2. (2.4)

Another quantity dependent on the dish, but also on the observing frequency is
the directivity D or (directive) maximum gain G (when assuming a perfectly efficient
antenna),

D = Gmax =
4π

ΩA
=

4πAe f f

λ2 . (2.5)

The directivity is a dimensionless measure of how much of the received radiation
is concentrated in a single direction, i.e. the ratio between the received power of the
antenna w.r.t. an (hypothetical) isotropic antenna. From this equation it can be seen
that the larger the aperture, the higher the gain. The gain of an antenna can range
from a few dBi for small dipole antennas to approximately 80 dBi for enormous
apertures such as the Arecibo radio telescope in Puerto Rico. In the equation for
the gain, ΩA is the beam solid angle and λ is the observing wavelength equal to c

ν .
C is the speed of light and ν is the observing frequency. Ae f f is the effective area,
representing how much power is effectively captured from the plane-wave, taking
into account (intrinsic) losses.

In reality, the effective area would be equal to Apgeoea where ea is the aperture
efficiency. The aperture efficiency is a dimensionless factor between 0 and 1 measur-
ing how close the antenna comes to measuring all the electrical power that falls onto
the physical aperture as radio waves. There are certain factors which determine the
efficiency. One example is aperture blockage where the LNB or the LNB feed struc-
ture blocks part of the beam. For an offset parabola this blockage is mostly negligible
or absent.

http://scholar.sun.ac.za/handle/10019.1/71803
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Another contributing element are the shape errors, random surface errors in the
dish reducing the efficiency. An approximation of the shape errors is the Ruze equa-
tion,

η = exp−
(4πε

λ

)2, (2.6)

where ε is the RMS of the surface deviations.
The RMS and so the reflective efficiency of our dish will be determined using the

phase measurements of the aperture in section 4.3.
Another factor is feed spillover, part of the beam of the LNB misses the reflector,

resulting in less power from the source reaching the feed. It also has to be taken into
account that the part missing the reflector can add a substantial power to the total,
in the case that the surroundings are relatively hot.

The Taper efficiency is another influence, the distribution of power-response over
the antenna aperture. The power response of the feed antenna usually diminishes
towards the rim of the dish, creating an uneven illumination and so lowering the ef-
ficiency and gain. Increasing the F/D ratio will increase the taper efficiency, however
this will increase feed spillover.

Moreover, the radiation pattern contains side lobes and a back lobe, probably
adding power from the surroundings. In section 4.2 and 4.1 the illumination and
radiation pattern will be discussed thoroughly.

Other factors contributing to the aperture efficiency can be losses in the feed,
defocusing, cross polarization or antenna feed mismatch. For reflector antenna’s
the aperture efficiency ranges from 50 to 80 percent (Lehpamer, 2010). An aperture
efficiency of 60-70 percent is estimated for our system. The dish is of low quality with
palpable height differences and protruding bolts on the effective area, implying low
reflective efficiency.

Theoretically the beam width of our dish would be 0.0760K with K the shape fac-
tor according to Eq. 1.7. If the dish were evenly illuminated, this would correspond
to a beam width of 4.33◦ while the expected (gaussian) beam width is 5.29◦. The
k-factor will be determined in section 4.1.1.

TABLE 2.2: Calculated specifications of the dish

Parameter Value

focal length F 182 ± 4 mm
elevation offset angle φ 28.9± 0.2 ◦

F/D ratio 0.52 ± 0.02
Geometric area Ageo 0.445± 0.006 m2

Projected geometric area Apgeo 0.389± 0.005 m2

Directivity D or Gain Gmax 1704 ± 6 or 32.3 dBi
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2.2 The mounting

An important part of the interferometer is the mounting. The mounts should fit our
project by means of characteristics. The mounts should be stable enough so that
wind and ground vibrations are negligible. At last the total setup should be made in
a way that it can be used from the balcony of the Kapteyn institute which is either
convenient for this project as for future research. There are a few options which
would suit these conditions. At first, mounts in the form of clamps could be used to
mount the two dishes to the balustrade of the Kapteyn Institute balcony. This would
be a low-cost and easy way of mounting which also results in a sturdy alt-azimuth
configuration. The dish can be moved around using a ball-head so that it can be
moved in any direction. The disadvantage of this mounting is that you are bound to
choose a certain orientation according to an object on the sky and that the baseline
is limited to a certain length. Furthermore it is hard to orient both dishes in exactly
the same way so that both beams are parallel.

The second and third option are mobile stand-alone alt-azimuth mounts or Equa-
torial mounts. Alt/az-mounts are simple two-axis mounts which can move the dish
in horizontal or vertical direction. The simple configuration makes it stable and
cheap which is the reason it is mainly used for large professional (radio)telescopes
such as ALMA and the Very Large array (VLA). When doing drift-scans these mounts
will not be a problem because the mount should be locked in a certain position. Also
for tip-scans, this mount is fine because one only has to move the orientation of the
dish in vertical direction (altitude). When you would like to see how the response
of an object changes as a function of time, tracking is necessary. The disadvantage
of this mount is that it requires two axis rotation to track an object on the sky. The
solution to this problem is the last option, an equatorial/parallactic mount. An equa-
torial mount has one axis parallel to the axis of rotation/directed to the celestial pole
by which it compensates for the earths rotation. This ensures that only one axis has
to be moved at constant speed to stay fixed at any celestial object with diurnal mo-
tion. The advantage of only having to move one axis to track an object decreases the
offset-errors in the obtained data.

FIGURE 2.3: Diagram visualising the working of an Alt/az and Equa-
torial mount. Image source: Science at your doorstep

Two, simple, equatorial mounts without tracking were already available to be
borrowed when the project started. The mounts had different dimensions but they
could be made to work together to make a temporary setup. Some machining had
to be done so that both dishes could be mounted to the mounts. Using drills and

https://scienceatyourdoorstep.com/2017/10/05/improved-telescope-mounting/
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milling machines one plastic attachment was made which could fit the dovetail-
clamp of the mount perfectly (see Fig. 2.4). For the other mounts a piece of alu-
minum was processed so that the dish could be mounted sturdy to the mount. This
setup was used for a number of measurements before other mounts were bought.
Two ’Skywatcher’ EQ-1 mounts were bought to have a permanent setup. Addition-
ally two electronic motor drives were bought to make tracking available. Using the
new mounts with tracking, objects such as the Sun could be studied more easily. Fur-
thermore different aspects of these objects have been made available for examination
due to the tracking feature.

FIGURE 2.4: Mounting of the dishes to the mounts for the temporary
setup.

For the new mounts, some adjustments had to be made. The new mounts had
a very clumsy attachments so that something had to be figured out for the setup to
work. Using some more machining, two aluminum blocks were produced so that
they can be screwed onto the mounts and the dishes could be mounted on top. The
tracking devices were assembled and connected to the mounts as can be seen in Fig.
2.5.
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FIGURE 2.5: Mounting of the dishes to the mounts for the permanent
setup with on the bottom, the tracking devices.

2.3 The receiver

The receiving device in our case is a heterodyne system: a LNB or Low-Noise Block
down converter. It works in following way: microwave radiation is picked up by
the feedhorn and supplied to a small pin (the antenna) through a section of waveg-
uide. Most LNB’s have 2 pins at right angles so that different polarization’s can also
be received. The electric signal is directed to a circuit board for further processing.
The circuit board consists of a low noise amplifier, frequency mixer, local oscillator
and intermediate frequency (IF) amplifier through which the signal is directed. The
frequency block (RF) is down converted to a lower IF so that the signal can be trans-
mitted via relatively cheap coaxial cables. The cross-section of a LNB can be seen
in Fig. 2.7, showing all the components. Finally, the down converted signal is read
out by a power-meter. A more detailed description of the LNB functioning has been
done by Farret Jentink (Farret Jentink, 2018).

FIGURE 2.6: Diagram showing the principle of an LNB. Image source:
Satsig

http://www.satsig.net/cgi-bin/yabb/YaBB.pl?num=1483849291
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The output from the power-meter can be read of the LCD screen. Using a Rasp-
berry pi the output of the power-meter can be saved on it’s internal server and can
be moved to your own computer. In our case we chose to go with an X-band LNB
because this was the most convenient choice. These LNB’s are widely sold and are
relatively inexpensive. The EVO single LNB also bought at Astrasat turned out to
be our best choice since it has a low noise figure (NF) and high frequency stability.
Besides it has the feature to receive horizontal and vertical polarization. The exact
specifications of the LNB can be found in table 2.3

TABLE 2.3: Specifications of the EVO single LNB

Parameter Value

Input frequency range: Low Band 10.7 - 11.7 GHz
Input frequency range: High Band 11.7 - 12.75 GHz
Gain (typical) 60 dB
Noise Figure NF (typical) 0.1 dB
L.O. Frequency 9.75 GHz
Output frequency: Low band 950 - 1950 MHz

The input frequency of the Low Band was set as our standard. The observing fre-
quency ν was set to 11.2 GHz with a bandwidth ∆ν of 1 GHz and all measurements
will be done in this band. For the measurements done by Farret Jentink, (Farret
Jentink, 2018) an additional filter with a bandwidth of 40 MHz was used, reducing
the span of the observing frequency. The gain of the system is the total amplification
from the received signal up to the signal read out by the power meter. The LNB is
stated to have a NF2 of 0.1 dB in typical circumstances which would imply a receiver
temperature Trcv of approximately 7K through

F = 10
NF
10 =

SNRin

SNRout
= 1 +

Trcv

T0
, (2.7)

where F is the noise factor, SNR is the signal to noise ratio and T0 the standard
noise temperature (~ 295K at room temperature).

The validity of the ’typical’ receiver temperature stated by the manufacturer will
be tested in section 3.2.

FIGURE 2.7: An LNB cut in half showing the small horn, waveg-
uide, antenna pin, circuit board an the coaxial output. Image source:

wikipedia

https://www.raspberrypi.org/
https://www.raspberrypi.org/
 http://evostb.com/?q=product&id=270 
https://www.astrasat.nl/
https://en.wikipedia.org/wiki/Low-noise_block_downconverter/media/File:LNB_1.JPG
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For the LNB’s to fit our project, they had to be adjusted. The LNB’s had to be
phase-locked to preserve the phase-information in the obtained data. This was done
by removing the crystal of the oscillator and coupling both LNB’s to an external
function generator as reference . Originally the power for the LNB was supplied via
the coaxial cable, these 2 signals had to be separated so that the LNB finally had 4
ports; 2 for the power (@ 13 Volt/ 110 mA), 1 for the external reference (@ 25 MHz/
-2dB) and 1 for the power output.
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Chapter 3

Noise, stability and calibration

3.1 Noise

When using a measurement system, the ideal case would be that the measured out-
put would only come from the source of interest. In reality this is never the case.
In electronic systems there always is an unwanted random disturbance in your sig-
nal which we call noise. For our system, electromagnetic radiation is received by
the LNB and goes through a lot of components before being read out by the power-
meter. In this system, various noise types are present with presumably the most
prominent one being thermal noise. Thermal or Johnson–Nyquist noise is gener-
ated by thermally agitated charge carriers inside an electrical conductor which is
independent of applied voltage. The total noise present in the output signal can be
described as the receiver noise or its corresponding receiver temperature using

Pν = kT. (3.1)

The total output or system temperature of our measurement system will then be
equal to receiver temperature plus the signal received from external sources:

Tsys = Tant + Trcv, (3.2)

where Tant is the antenna temperature of the external sources and Trcv is the in-
ternal receiver temperature.

Not only the noise of the components in our system is incorporated into this
equation. Tant consists, next to the source of interest also of other external influences
such as radiation emitted by the atmosphere, ground, surrounding buildings or the
CMB. Summing up all these contributions, Eq.3.2 can also be written as

Tsys = Tsource + Tsky + Tground + Tspill + TCMB + Trcv. (3.3)

All these separate terms contribute to the total system temperature. Tsky is the
contribution of radiation coming from the atmosphere or sky. Tground is the radiation
coming from the ground which is captured by the dish in either the main lobe or
side lobes of the beam. Tspill is the part of the feed antenna which misses the reflector
dish, spillover. TCMB is a ’constant’ term with a current value of 2.73K originating
from the big bang. As already stated before, the receiver temperature is an internal
parameter and can be determined experimentally by calibrating the system. The
calibration will be described in section 3.2.

In instrumentation and electronics, one of the most important properties of a
measurement system is its linearity. Linearity is necessary to calibrate a system so
that the obtained data can be interpreted. Linearity means that when measuring
an dependent variable, the measured output should be directly proportional to an
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independent variable, e.g. the output is directly proportional to the input. In reality,
a measurement system can never be completely linear, most equipment is desired to
have a certain degree of linearity in a specific range and will be non-linear outside
of this range. In our case, linearity plays a role concerning the amplifiers within the
LNB. In Figure 3.1 one can see the output of an amplifier plotted against the input
where the ratio between the output and the input is defined as the gain. One can
clearly see that there is a linear relation so that gain is constant, but at a certain point
it starts to change. At the region far below the 1 dB compression point, where the
gain deviates from the ideal gain with 1 dB, the system is said to be linear. The gain
of a system can be determined using calibration as described in section 3.2

FIGURE 3.1: Figure showing the response of the output as function
of input for an (ideal) amplifier. Image source: SHF communication

technologies

3.2 Y-factor calibration

To interpret the data obtained by the measuring device, in our case a heterodyne
receiver system, calibration is necessary. By comparing measured values with the
known corresponding standard, a calibrated device can be achieved. For our project
we will calibrate the telescope using the Y-factor calibration method (Wilson, Rohlfs,
and Hüttemeister, 2013). By defining the hot load to be a black body emitter at
a certain known thermodynamic temperature and the cold load to be another black
body emitter at a lower, known thermodynamic temperature, the 2 main ingredients
are obtained. The output of the measurement system for the hot and cold load can
be related to the known temperature using the system gain G of the system,

zcold = (Tcold + Trcv)G (3.4)

zhot = (Thot + Trcv)G. (3.5)

https://www.shf.de/support/faq/faq-rf-amplifiers/
https://www.shf.de/support/faq/faq-rf-amplifiers/
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Using these equations it follows that the receiver temperature Trcv can be determined
by

Trcv =
Thot − TcoldY

Y− 1
(3.6)

where Y is defined as
Y =

zhot

zcold
. (3.7)

In our project most powers will be measured in dBm. dBm is a power measure
in dB measured with respect to a reference of 1 mW which makes it an absolute
measure of power. The power can be converted to mW by

P[mW] = 1mW · 10P[dBm]/10. (3.8)

Furthermore the output of the power-meter can be related to the system temperature
using

P[mW] = Tsys kb ∆ν G. (3.9)

Finally, the gain of the system can be determined with

G =
Phot − Pcold

kb∆ν(Thot − Tcold)
. (3.10)

Now using the output power and equation 3.6, the receiver temperature can de-
termined. Now the system is calibrated and can be used to determine brightness
temperatures of certain phenomena. Note that it is important to keep the calibra-
tion up to date. The system should be calibrated just before the measurement and
preferably between every measurement when doing tip scans so that the receiver
information is up to date. A well calibrated system will ensure consistency of the
measurements and so the interpreted data to be correct.

Using the calibration procedure explained above, the receiver temperature and
gain of solely the LNB and LNB + dish were determined. In Figure 3.2 the measure-
ment to determine the powers of the hot and cold load can be seen. For the part
between 35 and 45 seconds, the LNB was pointing at the cold load (liquid nitrogen),
corresponding to 0.0063 mW and 77.15 K for PLNB,cold and Tcold respectively. The part
between 200 and 300 seconds corresponds to PLNB,hot and Thot with 0.0135 mW and
295.25 K respectively. The part between 360 and 420 seconds corresponds to Pdish,cold
with 0.0074 mW and the part from 550 to 570 seconds matches Pdish,hot with 0.0132
mW. The temperatures of the hot and cold load are the same for both setups. For
all power measurements of the cold load, the minimum power was taken because
this would correspond to (hopefully) all of the beam being filled. Furthermore, all
the values below -22 dBm are due to the connectors making bad contact and are
neglected.
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FIGURE 3.2: Measurement of the power of the hold and cold load for
the setup with LNB only and the setup with LNB + dish.

Using Eq. 3.10 the gain of the LNB + dish was found to be 76 dB. Additionally
Trcv,LNB was found to be 113K while Trcv,dish is equal to 208K. Theoretically, these
system temperatures should be the same unless there is spillover. Another obvious
reason could be that the cold load was not big enough to fill the whole beam. The
spillover of the system is more accurately described in section 4.2. Using Eq. 2.7 and
the calculated receiver temperature, the NF2 of the LNB was found to be 1.4 dB. This
is far from the 0.1 dB specified by the manufacturer which could be explained by not
having ideal conditions.

3.3 Stability

On the 17th and 18th of may 2018 the stability of a (single dish) system was deter-
mined. Using the hot load as calibrator, long time measurements were done where
the beam of the dish was completely filled by the calibrator acting as a black body
radiator (Fig. 3.3). The measurement was done with the phase locked system and
the output of the measurements can be seen in Fig.3.4.
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FIGURE 3.3: The setup used for the stability measurements. The beam
is completely filled by the blue material, a RF absorber acting as a

black body.

FIGURE 3.4: Figure showing the power response of the stability test
for the hot load (a calibrator at room temperature, approximately
295K.) The red block represents which part of the 2 hour measure-

ment is taken into account to calculate the Allan variance.
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For the stability tests of the hot load, only the ambient temperature plays a role.
Keeping the room temperature constant, the fluctuations of the hot load can be de-
termined. In Fig .3.4 it is visible that for the 2 hour measurement, the power drops
approximately 5 percent in the first 600 seconds. This behaviour was seen in all the
measurements so far. An explanation could be that the door to the room was sud-
denly closed for a long time so that the room could stabilize at a temperature lower
than on the hallway, causing a drop in temperature. Furthermore a peak at approxi-
mately 1100s can be seen, the reason for this is that someone opened the door of the
room and hot air started flowing inside.

For the Allan variance plot, only the part from 5000 to 7300 s was taken into
account because the ambient temperature was most stable in this region. For the
part from 5000 to 7300 s of the 2 hour measurement, the standard deviation is only
9.0 · 10−6 W which gives an error of 0.062 percent compared to the average of 0.0146
W. For the 45 minutes measurement, a small(er) drop in temperature can be observed
again. An explanation could be that the room had to acclimatize again only now the
temperature gradient between the hallway and the room in question was less. The
different average power between the two separate measurements can be explained
due to the overall temperature for the 45 minute measurement being lower than for
the 2 hour measurement. The ambient temperature for the 45 minute measurement
was 22 degrees Celsius while the temperature for the 2 hour measurement was 24
degrees Celsius. The standard deviation for the 45 minute measurement is 1.4 · 10−5

W which compared to the average of 0.0128 W is only a 0.11 percent error.

3.4 Sensitivity

In section 3.1, it is shown that the total measured power can be described as the sys-
tem temperature Tsys. This temperature has an RMS uncertainty σT which is given by
the radiometer equation, Eq. 3.11 where ∆ν is the bandwidth and t is the integration
time.

σT =
Tsys√
∆νt

. (3.11)

This RMS uncertainty can be seen as the sensitivity of the system, the lower limit
of the source-temperature to be distinguished from the noise. As can be seen in Eq.
3.11, the higher the system temperature, the lower the sensitivity and the larger the
integration time or bandwidth, the better the sensitivity.

For the single dish, we take the system temperature to be 300K. This is based
on measurements with similar setups and so is assumed to be a realistic value. The
integration time is 40ms and the bandwidth is approximately 1 GHz. Filling this into
Eq. 3.11 we find that σT =0.047K.

For a two element interferometer, Eq. 3.11 is modifed into

σT =
Tsys√
2∆νt

. (3.12)

For the interferometer, a filter is used causing the bandwidth to decrease to 40
MHz. Using the same system temperature and integration time we find that σT
=0.17K which is still quite all right for our measurements. Now we can translate this
temperature to a flux density using
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σs = η′
2k

Ae f f
σT, (3.13)

where η′ is an efficiency factor of approximately 1(Wilson, Rohlfs, and Hütte-
meister, 2013).

Plugging in our found values, we find that our sensitivity equals σs ≈ 600 Jy. Ac-
cording to (Sweijen, 2015), this would imply that the Sun and moon are easily visible
with our setup at approximately 11 GHz. Other (radio-bright) astrophysical sources
such as Cassiopeia A, Cygnus A and Taurus A are all too faint to be detected for τ0
=0.01. If the filter is not used, a σs of 238 Jy can be achieved (neglecting efficiency’s
and atmospheric opacity) making it theoretically possible to detect Taurus A with a
flux density of 509 Jy. The sensitivity could even be further increased by extending
the integration time to seconds, making objects such as Cassiopeia A also visible.

3.5 Allan variance

Now using the stability measurements as shown before, the Allan variance and time
can be calculated. Allan variance, also known as two sample variance is a measure
of frequency (in)stability used in clocks, oscillators and amplifiers and is named af-
ter David W. Allan who published this technique in 1966. The Allan variance is an
estimation of stability due to noise rather than systematic errors or environmental
errors such as temperature effects. To determine the Allan variance, a data set is di-
vided in bins based on an averaging time. Next, the average of each bin is calculated
and compared with the consecutive averages of each bin. The difference between
the bin and the consecutive bin is squared and all of the squares are summed up. At
last, the sum is divided by the total number of bins returning the Allan variance as
a function of averaging time. The mathematical definition is given by

σ2
y (τ) =

1
2

〈
(ȳn+1 − ȳn.)2

〉
(3.14)

In this equation 〈...〉 denotes the expectation value: the sum of the square of the dif-
ferences between each bin, divided by the number of bins. ȳn is the n-th fractional
frequency averaged over time τ. The samples are taken without dead-time in be-
tween them, setting the time between 2 measurements T equal to the observation
time τ. Therefore there is no time after a measurement at which the system is unable
to measure again.
Furthermore analog to standard deviation and variance, the Allan deviation is given
by

σy(τ) =
√

σ2
y (τ). (3.15)

A typical representation of the Allan Variance can be seen in figure 3.5. The noise
contributions are also described. At first the Allan variance start decreasing as the
noise domination is due to the power-sensor. At longer averaging times the variance
decreases and finally increases again. The minimum of the variance is at the Allan
time (where the Allan variance is the lowest) just before the random walk noise
starts to dominate. The Allan time is the best integration time i.e. the integration
time where least noise due to frequency instability is present.
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FIGURE 3.5: Noise contributions to the Allan deviation in a typical
frequency standard. Image source: Electronic Stackexchange

For the stability measurements seen in figure 3.4, the Allan variance was calcu-
lated. Using the method described above and the python script given in Appendix
B, Allan Variance plots were made which can be seen in figure 3.6 and 3.8.

FIGURE 3.6: Allan Variance plot for a 40 minute stability measure-
ment with an integration time τ0 of 50 ms.

https://electronics.stackexchange.com/questions/101045/reading-noise-from-allan-variance-plot-for-mems-sensor-per-ieee-std-952-1997
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FIGURE 3.7: Allan Variance plot for a 120 minute stability measure-
ment with an integration time τ0 of 50 ms. Only the last 40 minutes

were taken into account because this was the most stable part.

One can clearly see that for both measurements the profile is quite similar to that
in figure 3.5. The Allan variance is first decreasing with a power law till a certain
minimum (the Allan time) and then increases as another power law. The plots look
almost identical to each other and show a clear minimum at approximately 1 second
of integration time, in other words, the Allan time is 1 second. This means that an
observation is most accurate (Allan variance of ~10−12) when the duration is close
to 1 second. When doing a calibrated measurement such as a tip scan to determine
τ0 and/or TCMB, the total measurement should not take much longer than 1 second
before calibrating again to achieve the highest accuracy. Unfortunately this is not re-
alistic, for our setup it takes at least a few minutes to finish the tip scan so we are far
from our optimum. Nevertheless at an observing time of a few minutes, the Allan
variance is ~10−9 which is still very low. If we compare our findings with those of
Zandvliet (Zandvliet, 2015) and Formsma (Formsma, 2017), it seems that our setup
has a higher stability. Zandvliet and Formsma both found an Allan time of ~10 s for
their system which is more convenient for tip scans. Nonetheless, their minimum
Allan variances are ~10−9 and ~10−8 respectively which is quite high (in the order
of 3/4 magnitudes higher) compared with our findings. To conclude, the time of
observation used in measurements is not that relevant since the increased noise in
regions far from the Allan time is still relatively small.
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The radiometer equation, Eq. 3.11 can be rewritten into

σ2
y

T2
sys

= (∆νt)−1, (3.16)

where σ2
y is the Allan variance.

We can now fit this profile to our Allan plots to determine the effective band-
width of our system. The radiometer equation can be fitted to the part where white
noise is dominant, e.g. the first part of our Allan profiles. The Figure showing the
Allan plots and their ’best’ radiometer equation can be found in Fig. 3.8.

FIGURE 3.8: Allan Variance plots with their ’best’ radiometer equa-
tion.

From section 3.3 we know that the average power (Tsys) for the 2 hour measure-
ment is equal to 0.0146 W and for the 40 min measurement 0.0128 W. The black lines
corresponds to the Allan variance at a integration time t of 1 (100) s of 10−12.30 W2

and 10−12.55 W2 for the 2 hour and 40 min measurement resp.
Knowing the integration time t, system temperature Tsys and allan variance σ2

y ,
there can be solved for the bandwidth ∆ν using Eq. 3.16.

The effective bandwidth for the 2 hour measurement was found to be 425 MHz.
For the 40 minute measurement, the effective bandwidth was found to be 581 MHz.

These findings imply that the effective bandwidth is approximately half of what
the expected bandwidth should be.
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Chapter 4

Radiation-and illumination pattern

4.1 Radiation pattern

Another valuable property of the single dish configuration is its radiation pattern.
There are two methods to achieve the radiation pattern of a dish. One is to do a
scan in the near field and by transforming it to the far field. The other is simply
by determining the pattern by using a point source in the far field. The far field
or FF is the region where the electromagnetic field of a transmitting antenna is a
relatively uniform and isotropic wave pattern. On the other hand, the angular field
distribution in the near field depends on the distance so that the field is anisotropic.
The region where the far field starts is in the study of antenna design commonly
given by the Frauenhofer distance as can be calculated according to

d f =
2D2

λ
, (4.1)

where D is the diameter of dish and λ is the observing wavelength. For this
equation to hold, the two conditions which have to be satisfied are d f >> D and
d f >> λ. In our case we find that d f is equal to 9.15 m.

FIGURE 4.1: Figure showing the wave-propagation in the Near field
and Far field. Image source: wikipedia

https://en.wikipedia.org/wiki/Near_and_far_field
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4.1.1 Far field scan

To practically determine the beam pattern one could use a point source emitting in
the far field. The next step would be moving the receiver so that it sweeps past the
source. Some important aspects are that the source must be much stronger than the
background ’noise’. An obvious example is using digital video broadcasting satel-
lites such as the ASTRA satellites from SES Astra. These satellites move in a geosyn-
chronous orbit operating at a height of almost 36.000 km while the size is only a few
meters. Due to these dimensions, the satellite can be approximated as being a point
source. All DTV-satellites operate at approximately 11 GHz which is our frequency
of interest. This is of course no coincidence because our frequency choice is based
on the commercial LNB’s made for receiving DTV signals. The power meter should
give a Gaussian response to the sweep. From this Gaussian, the Full Width Half
Maximum or FWHM can be determined which would represent the beam width of
the main lobe.

On the 18th of May the first measurement to determine the beam width was
done. The sky was scanned from an elevation of 20 degrees up to 60 degrees with
steps of 3 degrees in between. The power displayed on the power meter was written
down and afterwards a plot was made of the power response. Using a fitting script
from the SciPy module, a Gaussian-profile was fitted and the standard deviation of
the fit was returned. By making use of the fact that for a Gaussian the Full Width
Half Maximum is given by FWHM = 2

√
2ln2σ , the Beam width was found to be

4.62 deg.
On the 30th of May the second measurement was done by making use of the

Raspberry pi so that the output would have better accuracy. The turning nobs of the
mount were twisted 90 degrees every 5 seconds so that the time (output) component
could be converted to elevation angle (the time steps had to be multiplied by the total
angle over the total time ratio). The output of the measurement with the Gaussian
fit can be seen in Figure 4.2 where the background is subtracted from the profile.

https://www.scipy.org/
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FIGURE 4.2: Power response of the signal coming from a point source
in the far field with a Gaussian fit with FWHM= 4.92 deg.

One can clearly see that the Figure is not continuous but shows small (time) steps
due to the twisting by hand per time step. A straight line between and elevation
angle of 37 and 39 degrees can be seen which can be explained by the turning knob
being stuck against the mount. Despite this, the fit looks fine and a beam width of
4.92 degrees was found.

On the 19th of June the last two FF measurements were done. Using the new
tracking devices, the measurement could be done without human interference. Two
satellites on different elevation angles were used and again a Gaussian profile was
fitted through the data as can be seen in the next Figure.
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FIGURE 4.3: Power response of the signal coming from a point source
in the far field with a Gaussian fit with FWHM = 4.35 and 4.89 degrees

resp.

It can be seen that these plots contain a lot more data than the previous measure-
ment due to the observation time being 50 times longer. Moreover, the total power
for the second satellite is lower than for the first satellite. A reason for this can be
that the centre of the beam does not go through the satellite or that the satellite ra-
diates less. Furthermore the fit for satellite 1 seems to be more accurate than the for
satellite 2 since it moves better through the Gaussian side structure. Additionally,
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the overall power increases as a function of elevation angle so that it does not drop
to zero again. This behaviour can clearly be seen in the top diagram of Figure 4.3 and
can be explained by the atmospheric opacity. More atmosphere between the source
and observer causes more attenuation and so, a lower received power. On the effect
of the atmosphere on the measurements will be elaborated in section 5.1.

If the centre of the beam does not go through the satellite but rather radially ex-
tended from the centre, the Gaussian would decrease in size and the FWHM would
also decrease. This would imply that the FWHM’s found will only give a lower
bound to the beam width. Since the geostationary orbit is almost completely filled
with satellites emitting at our observing frequency, it is likely that there are multi-
ple satellites in our field of view. As a result, the chance of having a satellite very
close to the centre cross-cut of the beam is high which will dominate the Gaussian
and so the largest FWHM’s found will likely be close to the ’real’ beam width. To
conclude, the beam width is estimated to be approximately 4.90◦. This beam width
would correspond to a K-factor of 64.4.

At last, especially for satellite 1, side lobe structures are clearly visible. In Fig.
4.4 the measurement of satellite 1 can be found with horizontal and vertical lines
indicating the location of main lobe and side lobe peaks

FIGURE 4.4: Power response of a satellite with horizontal and vertical
lines indicating the peaks of the main and side lobes.

In this diagram the side lobe structures are not that visible but the coordinates of
the peaks can be found in the legend. The Figure was shifted so that the elevation
angle can be converted to offset angle from the main axis. By defining the top to be 0
dB and calculating the relative differences w.r.t. the top of the main peak in dB scale,
Figure 4.5 was obtained.
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FIGURE 4.5: Diagram showing the beam response of the system in dB
as a function of offset angle.

Because of the atmospheric opacity, the power at the negative offset angle is
shifted downward with a certain degree. When subtracting the opacity, the left side
lobe still gives a lower power response than the right side lobe which could also
be due to asymmetry in the dish. We can conclude that the side lobes of the dish
are at approximately 7 degrees from the main axis and have a relative response of
approximately -17 dB (assuming the right side lobe is more accurate). According to
literature, the beam pattern of our dish (if it was a perfect disk) should give a Bessel
function of first order J1. This would imply that the first null should be at an offset
angle of ≈ 5.3 degrees and the peak of the first side-lobe at ≈ 7.1 degree which is in
line with what can be seen in Fig. 4.5. Furthermore the peak of the first side lobe
should be at -17.57 dB which is again, very close to our (-17.3dB) result. This found
values suggest that our beam pattern seems to follow the Bessel profile very well.
The side-lobe level of 17.3 dB suggests that the surroundings of the telescope have
a major impact on the measurement. The side-lobes add an additional factor of 2 ·
10
−17.3

10 ≈ 4 percent to the total system temperature. When measuring an astrophysi-
cal source while the ambient temperature (of the surroundings) is 300K, this would
mean that the side-lobes add another 12K to the total system temperature. This is a
very dramatic results because this would imply that the CMB with a temperature of
3K could never be resolved unless the side-lobes are very well calibrated.
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4.1.2 Near field scan

Setup

Another method used to obtain the radiation pattern is by doing a scan in the near
field and transforming it to the far field. This was done using a Vector Network Ana-
lyzer or VNA. At first, a microwave generator outputs a signal which is transmitted
by an antenna via a piece of wave guide. The signal is received by the LNB (via the
dish) which is subsequently directed to the input of the VNA. The VNA is able to
give information about the amplitude- and phase-response. Using a computer, an
XYZ-table was operated so that the source can be sweeped in front of the dish to
create an YZ-plane orthogonal to the beam (moving in the X-direction) of the dish.
The phase and amplitude output is correlated with the varying location of the wave
guide using a computer.

FIGURE 4.6: Picture showing the piece of wave guide on the left with
the antenna clearly visible. The wave guide is connected to the mi-

crowave generator on top of the VNA on the right.

In our case the microwave generator was set to give an output of 11.25 GHz with
a power of -40 dBm (Fig. 4.6.) The transmitted signal was directed onto the dish
and reflected into the LNB. It was important to put the dish on the desired elevation
angle of 29◦ to create a flat wave front. The flat wave front would give the right
amplitude feedback which could be checked using the phase response. Furthermore
the setup was surrounded by absorbing material to decrease standing waves. To
mount the wave guide to the XYZ-table a piece of aluminum was processed so that
it would connect the wave guide to the table using some screws. A rectangular piece
of copper was constructed and soldered to act as an extension of the wave guide.
This was done so that the radiation would go straight ahead and not interfere with
the sides of the wave guide. Using the copper extension, the absorbing material
could perfectly fit around the source. A picture of the final setup can be found in
Figure 4.7 and 4.8. A diagram showing all the components and connections can be
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found in Figure 4.9. The blue connection represents a phase locked loop, connecting
the microwave generator, VNA and the signal generator so that the input phase can
be compared to the output phase.

FIGURE 4.7: The setup used to do the near field scan showing the
wave guide mounted to the XYZ-table.

FIGURE 4.8: The setup used to do the near field scan showing the
copper extension and blue RF absorbing material.
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FIGURE 4.9: Diagram showing the setup for the near field scan. Im-
age source: (Farret Jentink, 2018)

After each scan, another measurement was done using the same YZ-scanning
plane but now with a shift in the X-direction of λ

4 . The two data sets were combined
by subtracting the shifted data, set multiplied by the imaginary unit and dividing
the total by two. Using this method, standing waves could be eliminated. Using
a Fourier transform, the combined near field data set was transformed to the far
field. Using the python code (Appendix D) obtained from Lap (Lap, 2015), the data
reduction was done to obtain the final beam widths.

From the 21th of May to the 8th of June, a total of 10 measurements were done
resulting in 5 combined data sets. One scan using a y- and z-span of -17 to +17 cm
with in both direction 65 steps resulting in 4225 data points. Three measurements
were done using a span of -20 to + 20 cm with 81 steps on both axis resulting in 6561
data points. One measurement was done using the largest possible span of -25 to
+ 25 cm with 101 steps, resulting in 10201 data points. The highest accuracy can be
achieved by maximizing the span of the observed YZ-plane (the span determines the
step size in the Fourier transformed far field due to the Nyquist–Shannon sampling
theorem). Nevertheless it was found that this gave hardly any better results. The
data set of -20 to +20 cm gave the best results and will be used for further analysis in
the next section.
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Results

The phase- and amplitude response can be found in Fig.4.10 and 4.11 respectively.

FIGURE 4.10: Figure showing the Phase response for the data set of
-20 to +20 cm for both the y- and z-axis.

The phase looks almost flat, a slight tilt can be seen corresponding to a tilt of half
a degree over the total aperture. Some standings waves are prominently visible as
waves coming from the y=0 cm and z=-20 cm direction moving radially outward.
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FIGURE 4.11: Figure showing the Amplitude response for the data
set of -20 to +20 cm for both the y- and z-axis.

For the amplitude one can clearly see the nearly circular shape of the dish and
amplitude falling off radially as expected. Again, the same standings waves can be
seen as in the phase-diagram. The maximum cross cut of the amplitude can be found
in Fig. 4.12.

FIGURE 4.12: Maximum cross cut of the near field amplitude for both
the y- and z-axis

From this Figure it is clearly visible that the y-direction is far more symmetrical
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than the z-direction. One can see that there is one main lobe with 2 clear side lobes
for the y-direction. For the z-direction there is quite a lot of asymmetrical side lobe
structure which is probably due to interference on the asymmetrical axis of the dish.
At the end of the positive z-axis, there are sudden drops due to the LNB obstructing
the beam causing a drop in power. The Fourier transformed (far field) amplitude
response can be found in Fig. 4.13

FIGURE 4.13: Far field amplitude response for an angle of -70◦ to +
70◦ for both the y- and z-axis.

The image clearly shows the main beam being in the centre, some side-lobe struc-
ture can be seen dominantly in the z-direction. The large blob at approximately -25◦

can be explained by the LNB being in the beam. The maximum cross cut of the far
field amplitude can be seen in Fig. 4.14
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FIGURE 4.14: Figure showing the maximum amplitude response for
both the y- and z-axis in degrees.

This Figure shows the final radiation pattern for both y- and z-direction. The
green lines corresponds to the -3dB drop or the beam width. The beam width in the
y-direction was found to be 4.0◦ and 5.0◦ for the z-direction. The first side-lobes are
clearly visible at an offset angle of approximately 5 degrees from the main axis for
the y-direction. For the z-direction it is hard to distinguish side-lobes, together with
the skewed main lobe it can be concluded that the y-axis is far more accurate. For
2 other measurements, the beam width of the y-axis was found to be 4.0◦ for both
measurements, implying a precise result. For the z-axis, fluctuating beam widths of
6.89 and 8.09◦ were found, implying low precision. For the (maximum) far field plots
the accuracy is evidently low. Looking at the number of data points, it is obvious that
higher accuracy could be reached by maximizing the span. Nevertheless the total
span could not be larger than -25 to +25 cm for both axis. Due to this reason it can
be concluded that the beam width found using the far field scan gave (as expected)
the most accurate result.
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4.2 Illumination pattern

The illumination pattern describes how the dish is illuminated by the LNB and so
influences the final radiation pattern. The most accurate results are achieved when
the dish is evenly illuminated by the LNB so that the final radiation pattern is only
dependent on the dish. In practice this can never be achieved. The maximum effi-
ciency (minimum spillover compared to maximum gain) is obtained when the edge
or rim of a circular aperture is illuminated with -11dB. In practice, an edge taper of
-10 dB is said to give the optimal result (NCRA-TIFR, 2002). From previous mea-
surements we found that there is a lot of spillover so it was interesting to investigate
our illumination pattern.

Using the same measurement setup as for the total radiation pattern, the illumi-
nation pattern was obtained. The observing frequency was again 11.25 GHz and a
scanning field of 28 cm times 28 cm with 50 measurements on both spatial(y,z) direc-
tions was chosen with a separation between the source (rectangular tube) and LNB
of 15 cm as visible in Fig. 4.15.

FIGURE 4.15: Start position of the scanner, a field of -14cm to +14 cm
for both y- and z-direction were chosen.

The phase and amplitude responses can be found in Fig 4.16 and 4.17 respec-
tively.
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FIGURE 4.16: Near-field phase response for the LNB at 11.25 GHz.

From this diagram we can clearly see that the LNB was placed in the right way
without an angular offset. The phase should give a circular distributed response (for
a circular aperture) just as visible in Fig. 4.16. There is a small spatial offset towards
the +y and and -z direction which is irrelevant for our measurement.
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FIGURE 4.17: Near-field amplitude response for the LNB at 11.25
GHz.

From the amplitude response it is visible that there is indeed a small offset to-
wards the +y and and -z direction. There are again some standings waves visible in
the diagram. The maximum crosscuts in y- and z-direction of the far field amplitude
plot can be seen in Fig. 4.18.

FIGURE 4.18: Maximum cross cut of the amplitude in y- and z-
direction representing the beam pattern of the LNB.

The Figure shows a relatively evenly illuminated pattern. The resolution of the
plot is quite good comparing it with the of the dish due to a relatively large scanning
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span. The beam width (-3dB) is found to be 33◦ on average and the -10dB angle
is approximately 90◦. Looking at the beam patterns, it can be concluded that this
result is not very precise due to a lack of measurement points. In Figure 4.19 the
illumination onto the dish can be seen where the LNB is pushed inward as far as
possible.

FIGURE 4.19: Front view image of the dish showing the projected
angles of the -3dB and -10dB spread.

In this Figure it is shown that the edge illumination of -10dB is reached quite all
right. From this we can also conclude that the cold load in section 3.2 did not fill the
entire beam because the LNB was subtracted approximately 4 cm, causing a lot of
spillover.
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4.3 Aperture efficiency

Using the phase output (Figure 4.20) discussed before, the RMS of the surface devi-
ations of the dish was determined. At first, the phase difference was converted to an
optical path length difference (OPD) following

Λopd =
λ ∆ϕ

2π
, (4.2)

where Λopd is the optical path length difference and ∆ϕ is the phase difference.

The phase plot has a slight systematic tilt so if the deviations from the mean
would have been calculated right away, they would have been unrealistic. Further-
more, the beam is not completely covered by the scan and some of the surroundings
are within the scan-area.

FIGURE 4.20: Phase diagram showing the differences in phase or ar-
rival time for various locations on the dish.

The solution for this that first a few small parts of 3 by 3 cm (as close as possible
to the centre) of the total covered area were taken apart. For these separate parts, the
mean OPD was calculated. Following that up, the differences in OPD w.r.t. the mean
OPD were calculated and squared. Next, the squares were summed and the total
was divided by the number of squares.At last the square of the total was calculated
which gave the RMS deviations as

ΛopdRMS =

√
1
n
(Λ2

opd1
+ Λ2

opd2
+ ... + Λ2

opdn
). (4.3)
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The RMS was found to be 0.0447λ. Using Ruze’s equation, an efficiency of 73
percent was found. In reality the efficiency is probably higher because of the over-
all tilt in the plot. The scanner measures the OPD every 0.5 mm meaning that the
scan-area per part is only 6 times 6 measurements. If the overall tilt is approximately
0.5 ◦this would already imply an OPD of 0.03 mm between the first and last mea-
surement. Since the expected RMS per part is of the same order of this OPD, the
calculated efficiency can only be used as an lower bound estimate.

According to section 3.2, the Trcv,LNB = 113K while Trcv,dish = 208K. From these
values, the spillover of the LNB can be calculated. By making use of the fact that
the cold load is 77.15 K while the surroundings are 295.25 K, one can calculate the
spillover efficiency. Knowing that the temperature of the dish should equal ηspill
times the temperature of the LNB plus (1 - ηspill) times the surrounding temperature
we find

ηspill =
Tsur − Trcv,dish

Tsur − Trcv,LNB
. (4.4)

Using this equation, ηspill was found to be 0.48 so that the efficiency is only 48
percent. This result is very radical concerning that more than half of the beam is
filled by the surroundings. For all future measurements, the LNB is placed as far as
possible towards the dish to minimize the spillover (and so lower the gain).
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Chapter 5

Elevation scan

5.1 Determination of τ0 and Trcv

When radiation passes through the atmosphere, part of it is attenuated. How much
of the radiation is attenuated is measured by the opacity τ. The opacity is dependent
on the path-length through the atmosphere and the optical depth of the atmosphere.
The atmosphere can be approximated as being plane parallel with the earth’s surface
so that we can calculate the opacity by

τ(z) =
τ0

cos(z)
, (5.1)

where τ0 is the optical depth at zenith (assumed to be constant) and z is the zenith
angle (measured from zenith to the horizon) as shown in Figure 5.1.

FIGURE 5.1: A simple model of the atmosphere to determine the
opacity τ as a function of zenith angle z. Image source: NRAO

Besides, the receiver temperature of the LNB + dish will again be determined but
now with the LNB pushed as far as possible towards the LNB to minimize spillover.
The output of the second measurement can be found in Figure 5.3 where the zenith
angle is the angle between zenith and the measured angle. At zenith, the zenith
angle is zero degrees and at the horizon the zenith angle is 90 degrees. The expected
exponential profile is clearly visible between 0 and 80 degrees. Outside of this range,
the response is unrealistic and is neglected for further research.

http://www.cv.nrao.edu/~sransom/web/Ch2.html
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FIGURE 5.2: Left: The LNB is pushed inward to minimize spillover.
Right: The sky in the (North) direction in which the observation was

done, clouds are predominantly.

FIGURE 5.3: Figure showing the power (brightness temperature) re-
sponse as function of zenith angle.

Using the brightness distribution, Nyquist theorem given by Eq. 3.1 and Rayleigh-
Jeans law (Eq. 1.5) the following profile was found for the measurement of a distant
source through a slab of atmosphere:
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Tb(s) = Tb(0)e−τ(s) + T(s)(1− e−τ(s)) (5.2)

(Mulder, 2015).
In our case we can substitute TCMB for Tb(0), Tsky for T(s) and Tant(z) for Tb(s)

where z is the zenith angle. A fit of the exponential profile was made for our el-
evations scans. Using the gain found in the previous section and by making the
assumption that the temperature of the CMB is 2.7K, there could be solved for τ0
and Trcv.

Only the part from approximately 0 to 25 degrees was used for the fit because
this gave the best fit to the data, see Figure 5.4.

FIGURE 5.4: Figure showing the power responses as function of
zenith angle with exponential fits.
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The fit returned that the opacity at zenith τ0 is 0.053 and 0.039 for scan 1 and 2
respectively. The opacity at zenith seems to be somewhat large if we compare it with
the values found by (Formsma, 2017) and (Mulder, 2015), 0.019 and approximately
0.03 resp. This difference could be due to the cloud layer above our observing loca-
tion when the measurement was done. To determine the receiver temperatures, the
CMB and sky temperature were subtracted from the system temperature. For the
receiver temperature Trcv we found 132 K and 151 K. These values differ somewhat
from each other but are in line with what was expected. The found temperature is
higher than for the LNB alone but lower than for the LNB + dish as measured before.
Since the LNB was pushed as far as possible inside, the influence from the ground
(spillover) was minimized. This could have caused a drop (from 208 K to 132/151
K) in receiver temperature for the LNB + dish.
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Chapter 6

Conclusion and further research

6.1 Conclusion

The goal of this bachelor project was to construct the frontend of the Kapteyn In-
terferometer, i.e. adapting the mounts and dishes to ensure that the interferometer
works. The equatorial mounts and offset parabola dishes are combined and together
with the back-end and cabling, the interferometer was used to observe the sun.

Furthermore the single dish configuration was investigated.
The radiation pattern of a single dish was mapped, clearly showing side lobe

structures with the expected power-levels implying that the dish is as good as use-
less to do calibrated measurements of radio quiet sources. The beam width was
found to be approximately 4.9◦ and the side lobes are at a power level of -17.3 dB.

The Allan time was found to be approximately 1 second which is in line with re-
sults found for similar setups (Formsma, 2017). The effective bandwidth was found
to be approximately 500 MHz which is half of the theoretical value (1 GHz).

The sensitivity of the single dish and interferometric setup were determined, im-
plying that other astrophysical sources next to the sun and moon are unable to be
observed unless the integration time is increased to the order of seconds.

The spillover efficiency was determined to be 48 % when the LNB was placed on
the ’standard’ intended location. For further measurements the receiver was placed
as close as possible (in the clamp) to the dish, reducing the spillover and gain.

An aperture efficiency of 73% was estimated which is an unrealistic result and
was not taken into account. The illumination pattern was researched which revealed
a lot of spillover and the optimal LNB placing was determined.

At last some sky measurements were done to determine the receiver temperature
and the atmospheric opacity. The receiver temperature was determined to be 110K -
150K depending on the LNB placing. Eventually, the atmospheric opacity at zenith
was determined on an unstable cloudy day resulting in values of 0.039 and 0.053.

6.2 Further research

There are a lot of opportunities for further research using the single dish configura-
tion or interferometer.
To determine the beam width of the single dish more accurately a 22 kHz tone could
be added to use the High Frequency Band (HFB) of the LNB at 11.7 - 12.75 GHz.
Using this band the FWHM for another frequency band can be determined and be
compared with the theoretical value. The HFB could also be used to obtain parame-
ters and compare them with the values found using the LFB.
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As already mentioned in section 4.1.1, the found beam width of the main lobe
only gives a lower bound. The measurement could be improved by isolating one
specific satellite and by sweeping across the source from different sides instead of
only vertical. The average of the found beam widths could be represented since it
should be symmetrical. Besides, the beam width in the FF was only determined
along the semi major axis of the dish which was shown to be less accurate according
to the NF scans. The FF scan could be done over again mounting the dish on a 90◦

angle and sweeping across the source along the semi-minor axis of the dish, giving
a more symmetrical (and accurate) result. Another option to determine the beam
width more accurately could be by using an artificial point source on earth. It would
be perfect to do this in a room particularly for this kind of measurements so that the
sky and surroundings will not influence your results.

The beam width was determined by fitting a Gaussian profile through the main
beam. At first, the Gaussian seems to give the optimal fit but other profiles such
as a sinc or bessel function squared could also be fitted and be compared with the
Gaussian.

For all the (single dish) measurements, the same dish and LNB were used. It
would be interesting to compare the 2 dishes and 2 LNB’s with each other to see if
there are any (remarkable) differences. These potential differences are also interest-
ing for the interferometer since it would cause inconsistencies.

In section 5.1 the receiver temperature was determined using an atmospheric
model without calibration and by assuming the same gain to be the same as a few
weeks before. This is not very accurate, since the LNB placing was really differ-
ent resulting in a different gain. This measurement could be done over again using
Y-factor calibration to get a better estimate of the receiver temperature and atmo-
spheric opacity. This would require a larger cold load to be made so that the beam
is completely filled.

Using attenuators, the output of a system could be compared to the input from
which the linearity of the individual components could be mapped.

It was found that there is spillover from the illumination of the LNB onto the
dish. The Y-factor calibration could be done using different LNB positions. In this
way the spillover could be mapped as a function of LNB distance, making it easy to
choose which Gain-to spillover ratio satisfies specific measuring conditions.

As stated in section 3.4, the sensitivity could be increased by extending the inte-
gration time. When using integration times of seconds, Astrophysical objects such
as Cassiopeia A and Taurus A should be visible for the interferometer. Just as deter-
mining the angular size of the sun done by Farret Jentink (Farret Jentink, 2018), the
same could be done for these objects.

Using the new tracking-devices, objects such as the sun or moon could be ob-
served using longer integration times. Since the projection of the baseline changes,
the fringe-speed changes as a function of time making it easier to obtain the visibility
function.

At last the movement of geostationary satellites could be determined. Using
the interferometer, the relative velocity of geostationary satellites emitting radiation
at our observing frequency would cause differences in fringe speed. Using the dis-
tance (≈ 36.000km) to the satellite and this difference, the deviation from the geosyn-
chronous equatorial orbit of the satellite can be determined.
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Appendix A

Python script for calibration and
elevation scans

m a t p l o t l i b i n l i n e
import numpy as np
import m a t p l o t l i b . pyplot as p l t
import m a t p l o t l i b
import math

#P1 , time1 = np . l o a d t x t ( ’ data KISS/sun . t x t ’
, comments = " # " , unpack=True , useco l s = ( 0 , 1 ) )
time2 , P2 = np . l o a d t x t ( ’ data KISS/ t e s t l o a d 3 . t x t ’
, comments = " # " , unpack=True , useco l s = ( 0 , 1 ) )
#P3 , time3 = np . l o a d t x t ( ’ data KISS/ t e s t 3 . t x t ’
, comments = " # " , unpack=True , useco l s = ( 0 , 1 ) )

# p r i n t ( len ( P2 ) )
# p r i n t ( len ( time2 ) )
#P2 = 10∗∗((P2 )/10)
time = 783∗0.5
degree = (5∗90)/6

f i g = p l t . f i g u r e ( dpi =1200)
frame1 = f i g . add_subplot ( 1 1 1 )
f i g . s e t _ s i z e _ i n c h e s ( 1 5 , 1 0 )
frame1 . p l o t ( time2 , P2 , label = ’ Power hot/cold− load ’ )
# frame1 . p l o t ( np . l i n s p a c e ( 1 5 , 7 0 , 1 0 0 )
,np . l i n s p a c e (0 ,0 .00001 ,100 ) −3)
frame1 . p l o t ( P1 , time1 , label = ’ $B \ = \ 141 \ cm$ ’ )
frame1 . p l o t ( P2 , time2 , label = ’$G_ { bandpass } ( j \omega ) $ ’ )
frame1 . p l o t ( P3 , time3 , label = ’$G_ { bandpass } ( j \omega ) $ ’ )
frame1 . s e t _ x l a b e l ( ’ Time ( s ) ’ , f o n t s i z e =24)
frame1 . s e t _ y l a b e l ( ’ Power (dBm) ’ , f o n t s i z e =24)
frame1 . se t_x l im ( 0 , 7 0 0 )
# frame1 . se t_yl im ( 0 . 0 1 3 1 , 0 . 0 1 3 4 )
frame1 . legend ( l o c =4 , f o n t s i z e =26)
p l t . t ick_params ( a x i s = ’ both ’ , l a b e l s i z e =24 , c o l o r = ’ k ’ )
frame1 . gr id ( True )

Phot2=np . mean(10∗∗ ( ( P2 [ 1 0 2 0 : 1 1 2 0 ] / 1 0 ) ) )
Pcold2=np . min (10∗∗ ( ( P2 [ 9 7 0 : 1 0 1 0 ] / 1 0 ) ) )

Phot1=np . mean(10∗∗ ( ( P2 [ 1 4 1 : 1 9 0 ] / 1 0 ) ) )
Pcold1=np . min (10∗∗ ( ( P2 [ 3 0 1 ] / 1 0 ) ) )
Thot1 =24.2 +273.15
Thot2 =24 .1+273 .15
Tcold= 77 .15 #K
# p r i n t ( Phot1 , Phot2 , Pcold1 , Pcold2 )
# 1 = only lnb , 2 = dish + lnb
Y1 = Phot1/Pcold1
Y2 = Phot2/Pcold2

Trx1 =( Thot1−Tcold∗Y1 ) / ( Y1−1)
Trx2 =( Thot2−Tcold∗Y2 ) / ( Y2−1)
p r i n t ( Trx1 , Trx2 )

bw=10∗∗9 # Hz
kb = 1.381∗10∗∗−23 # . . .
c = 3∗10∗∗8
v = 11.2∗10∗∗9
d= 0 . 3 5 #m
r = 0.5∗d
lamb = c/v
Ae = np . pi∗r∗∗2
Gdish=(4∗np . pi∗Ae/( lamb∗∗2))
p r i n t ( " gaindish " , math . log10 ( Gdish )∗10)
# ( ( Phot1−Pcold1 ) / ( kb∗bw∗( Thot1−Tcold ) ) )
# p r i n t ( ( ( Phot2−Pcold2 ) / ( kb∗bw∗( Thot2−Tcold ) ) ) )
G2 = Pcold2 /( Trx2+Tcold )

G1 = Pcold1 /( Trx1+Tcold )
p r i n t (1/G1,1/G2)
# p r i n t ( math . log10 ( ( Gdish/G1) )∗1 0 )
# p r i n t ( math . log10 (1/G2)∗10)
# p r i n t (G1 , G2)
p r i n t ( math . log10 ( Gdish )∗10)
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p r i n t ( Phot2 , Phot1 )
# p r i n t ( Gdish )
# p r i n t ( ( 1/G1)∗Gdish )
p r i n t (10∗math . log10 (1/G2 ) )

p r i n t ( Pcold1 , Pcold2 )

time3 , P = np . l o a d t x t ( ’ data KISS/data234846_powermeasure . t x t ’
, comments = " # " , unpack=True , useco l s = ( 0 , 1 ) )
P = 10∗∗(P/10)
P = P[230 :330]∗38000
time4 = time3 [ 2 3 0 : 3 3 0 ]∗1 . 8∗9 7 . 5 / 2 5 1 . 5 − 80
import sc ipy . optimize as opt imizat ion
sigma1 = [ 0 . 3 ]∗ len ( time4 )

def func ( x , a , b , c , d ) :
re turn 25 + 273 .15 + c + a∗np . exp ( b/np . cos ( x+d ) )

params = opt imizat ion . c u r v e _ f i t ( func ,
np . deg2rad ( time4 )
,P , p0 =( −20 ,0 .05 ,100 ,10)
, sigma=sigma1 ) # l s q f i t t i n g
a = params [ 0 ] [ 0 ]
b = params [ 0 ] [ 1 ]
c = params [ 0 ] [ 2 ]
d = params [ 0 ] [ 3 ]
berr = params [ 1 ] [ 1 ] [ 1 ]

p r i n t ( " a : " , a )
p r i n t ( " b : " , b )
p r i n t ( " c : " , c )
p r i n t ( " d : " , d )

f i g = p l t . f i g u r e ( dpi =1200)
f i g . s e t _ s i z e _ i n c h e s ( 1 5 , 10)
frame1 = f i g . add_subplot ( 1 1 1 )
frame1 . p l o t ( time4 , P , label = ’ Elevat ion scan 1 ’ )
frame1 . p l o t ( time4 , func ( np . deg2rad ( time4 ) , a , b , c , d ) )
frame1 . s e t _ x l a b e l ( ’ Zenith angle $ (^{\ c i r c } ) $ ’ , f o n t s i z e =20)
p l t . t ick_params ( a x i s = ’ both ’ , l a b e l s i z e =18 , c o l o r = ’ k ’ )
frame1 . s e t _ y l a b e l ( ’ Temperature (K) ’ , f o n t s i z e =20)
frame1 . legend ( f o n t s i z e =24 , l o c =2)
frame1 . gr id ( True )
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Appendix B

Python script for determining
Allan variance

This code was obtained from Lap (Lap, 2015) and modified for to fit our needings.
import numpy as np
import m a t p l o t l i b . pyplot as p l t
import m a t p l o t l i b

def sigma2 ( k , y ) :
# Allan Variance

d i f f s = np . empty ( 0 )
for i in range ( 0 , len ( t )−k , k ) :

va lue_ i = y [ i : i +k ] . mean ( )
value_i_plus_one = y [ i +k : i +2∗k ] . mean ( )
d i f f 2 = ( va lue_ i − value_i_plus_one )∗∗2 / 2
d i f f s = np . append ( d i f f s , d i f f 2 )

re turn d i f f s . mean ( )

# Load data
t , y = np . l o a d t x t ( ’ data KISS/ s t a b i l i t y h o t 1 . t x t ’ , unpack=True )
y = 10∗∗(y/10)

# Determine a l l a n Variance
N = len ( t ) # Number of samples
t h a u _ m u l t i p l i e r s = np . array ( range ( 1 , i n t (N/ 2 ) ) )

# Allan Variance P l o t
f i g = p l t . f i g u r e ( )
frame1 = f i g . add_subplot ( 1 1 1 )
frame1 . loglog ( t h a u _ m u l t i p l i e r s ∗0 .05 , [ sigma2 ( k , y )
for k in t h a u _ m u l t i p l i e r s ] , label= ’ 40 min measurement ’ )
frame1 . s e t _ x l a b e l ( ’ $ t$ $ ( s ) $ ’ )
frame1 . s e t _ y l a b e l ( r ’ $Allen$ $Variance$ $ (\ sigma_ { y }^ 2 ) $ ’ )
frame1 . s e t _ t i t l e
( ’ $Allan$ $var iance$ $plot$ $of$ $the$ $system$ $noise$ ’ )
frame1 . se t_yl im (10∗∗−13,10∗∗−8)
frame1 . legend ( )
frame1 . gr id ( True )

# Show
p l t . show ( )
" " "

def sigma2 ( k , y ) :
# Allan Variance

d i f f s = np . empty ( 0 )
for i in range ( 0 , len ( t )−k , k ) :

va lue_ i = y [ i : i +k ] . mean ( )
value_i_plus_one = y [ i +k : i +2∗k ] . mean ( )
d i f f 2 = ( va lue_ i − value_i_plus_one )∗∗2 / 2
d i f f s = np . append ( d i f f s , d i f f 2 )

re turn d i f f s . mean ( )

# Load data
t , y = np . l o a d t x t ( ’ data KISS/ s t a b i l i t y 2 h . t x t ’ , unpack=True )
t = t [ 4 0 0 0 : 7 5 0 0 ]
y = y [ 4 0 0 0 : 7 5 0 0 ]
y1 = 10∗∗(y/10)

# Determine a l l a n Variance
N = len ( t ) # Number of samples
t h a u _ m u l t i p l i e r s 1 = np . array ( range ( 1 , i n t (N/ 2 ) ) )

# Allan Variance P l o t
f i g = p l t . f i g u r e ( )
frame1 = f i g . add_subplot ( 1 1 1 )
frame1 . loglog ( t h a u _ m u l t i p l i e r s 1 ∗0 .05 , [ sigma2 ( k , y1 )
for k in t h a u _ m u l t i p l i e r s 1 ] , label ="2 Hour measurement " )
frame1 . s e t _ x l a b e l ( ’ $ t$ $ ( s ) $ ’ )
frame1 . s e t _ y l a b e l ( r ’ $Allan$ $Variance$ $ (\ sigma_ { y }^ 2 ) $ ’ )
frame1 . s e t _ t i t l e
( ’ $Allan$ $var iance$ $plot$ $of$ $the$ $system$ $noise$ ’ )
frame1 . se t_x l im ( 0 . 0 1 , 1 0 0 0 )
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frame1 . se t_yl im (10∗∗−13,10∗∗−8)
frame1 . legend ( )
frame1 . gr id ( True )

# Show
p l t . show ( )
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Appendix C

Python Script for determining
beampattern using the FF-scan

import m a t p l o t l i b . pyplot as p l t
import m a t p l o t l i b

time2 , P2 = np . l o a d t x t ( ’ data KISS/HPBW1. t x t ’ , comments ="#"
, unpack=True , useco l s = ( 0 , 1 ) )
time1 , P1 = np . l o a d t x t ( ’ data KISS/HPBW2. t x t ’ , comments ="#"
, unpack=True , useco l s = ( 0 , 1 ) )
time = 783∗0.5
degree = (5∗90)/6

P3 = 0.1∗10∗∗ ( ( P3 )/10)
P3 = P3 − np . min ( P3 )
#P2 = 10∗∗((P1−30)/10)
time = 783∗0.5
degree = (5∗90)/6

Base l ine1 = 1410 #mm
Base l ine2 = 2655 #mm
Base l ine3 = 5130 #mm
r a t i o =77/(24∗60)∗360/ time2 [−1]
time2= r a t i o∗time2
time1= r a t i o∗time1

#P2 = 10∗∗(P2/10)
P2 = P2− np . max( P2 )
P1 = 10∗∗(P1/10)
P1 = P1−np . min ( P1 )
t imel = np . arange ( 3 0 , 4 7 , 0 . 0 1 )

f i g = p l t . f i g u r e ( dpi =1200)
f i g . s e t _ s i z e _ i n c h e s ( 1 5 , 10)
frame1 = f i g . add_subplot ( 1 1 1 )
frame1 . p l o t ( ( time2 +30) ,−0.000017/17∗( time2−20)
, label = ’ $ l i n e $ ’ )
frame1 . p l o t ( time2 +30 ,P2 [ : : − 1 ] , label = ’ $ s a t e l l i t e \ 2$ ’ )
# frame1 . p l o t ( time1 +30 ,P1 [ : : − 1 ] , label = ’ $ s a t e l l i t e \ 1$ ’ )
frame1 . s e t _ x l a b e l ( ’ $Elevat ion \ angle (^{\ c i r c } ) $ ’
, f o n t s i z e =20)
frame1 . s e t _ y l a b e l ( ’ $power$ $ (mW) $ ’ , f o n t s i z e =20)
# frame1 . se t_x l im ( 3 0 , 3 1 )
# frame1 . se t_yl im ( 0 , 0 . 0 0 1 )
frame1 . legend ( f o n t s i z e =24 , l o c =1)
frame1 . gr id ( True )

import sc ipy . optimize as opt imizat ion

def func2 ( x , a , mu, sigma ) :
re turn a∗np . exp(−(x−mu)∗∗2/(2∗sigma∗∗2))

i = 0
j = len ( time2 )
sigma1 = [ 0 . 0 0 1 ]∗ ( j−i )
params = opt imizat ion . c u r v e _ f i t ( func2 , 30+ time2 [ i : j ]
, P2 [ i : j ] , p0 = [ 0 . 0 0 0 0 5 , 4 0 , 1 ] , sigma=sigma1 ) # l s q f i t t i n g
a = params [ 0 ] [ 0 ]
mu = params [ 0 ] [ 1 ]
sigma = params [ 0 ] [ 2 ]

berr = params [ 1 ] [ 1 ] [ 1 ]

p r i n t ( "mu: " ,mu)
p r i n t ( " sigma : " , sigma )

# p r i n t ( " The FWHM: " , 2 . 3 5 5∗ ( sigma ) )
mu=11.2∗10∗∗9 # Hz
c = 299792458 #m/s
D = 0 .352 # m
re s = c /(mu∗D)
# p r i n t ( ’ r e a l r es = ’ , re s∗180/np . pi )
Pnew = P2
max3 = np . max(Pnew [ 3 7 0 0 : 4 1 1 4 ] )
max2 =np . max(Pnew)−0.1
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max1=np . max(Pnew [ 5 0 0 : 1 3 0 0 ] )
p r i n t ( max1 , max2 , max3 )
min1=np . min (Pnew [ 1 0 0 0 : 1 3 0 0 ] )
max1new=max1−min1
p r i n t (max1new)
p r i n t (30+ time2 [1000] ,30+ time2 [ 1 3 0 0 ] )
a= 30+8.1
f i g = p l t . f i g u r e ( dpi =1200)
f i g . s e t _ s i z e _ i n c h e s ( 1 5 , 1 0 )
frame1 = f i g . add_subplot ( 1 1 1 )
frame1 . p l o t (30+ time2−a , P2/ , label = ’ S a t e l l i t e 1 ’ , c o l o r = ’ g ’ )
# p l t . axhl ine ( y =0.000031
, label = ’ s ide lobe 1 ( 3 1 . 2 , 0 . 0 0 0 0 3 1 ) ’ , c o l o r = ’ r ’ )
# p l t . axhl ine ( y =0.0070
, label = ’ main lobe ( 3 8 . 1 , 0 . 0 0 7 0 ) ’ , c o l o r = ’ b ’ )
# p l t . axhl ine ( y =0.00013
, label= ’ s ide lobe 2 ( 4 5 . 1 , 0 . 0 0 0 1 3 ) ’ , c o l o r = ’ y ’ )
p l t . axv l ine ( x=31.2−a , c o l o r = ’ b ’ )
p l t . axv l ine ( x=38.1−a , c o l o r = ’ b ’ )
p l t . axv l ine ( x=45.1−a , c o l o r = ’ b ’ )
p l t . axhl ine ( y=−3, c o l o r = ’ k ’ )
p l t . axhl ine ( y=−3, c o l o r = ’ k ’ )
p l t . axv l ine ( x=38.1−a−2.7 , c o l o r = ’ k ’ )
p l t . axv l ine ( x=38.1−a + 2 . 4 , c o l o r = ’ k ’ , label= ’−3dB l i n e ’ )
p l t . axv l ine ( x=38.1−a +4 .12 , c o l o r = ’ r ’ , lw=3 , l s = " : " )
p l t . axv l ine ( x=45.1−a−11.12 , c o l o r = ’ r ’ , lw=3 , l s = " : " )
p l t . axhl ine ( y=−6, label= ’ symmetrical l i n e s ’ , c o l o r = ’ r ’
, lw=3 , l s = " : " )
p l t . t ick_params ( a x i s = ’ both ’ , l a b e l s i z e =18 , c o l o r = ’ k ’ )
p l t . x t i c k s ( np . arange (−10 , 10 , 1 ) )
# frame1 . p l o t (30+ time2 , func2 (30+ time2 , a ,mu, sigma ) ,
label = ’ Gaussian f i t . FWHM = ’
+ s t r ( round ( 2 . 3 5 5∗ ( sigma ) , 2 ) ) + ’ $^{\ c i r c } $ ’
, c o l o r = ’ orange ’ , lw=2)
frame1 . s e t _ x l a b e l ( ’ E levat ion angle $ (^{\ c i r c } ) $ ’ , f o n t s i z e =20)
frame1 . se t_x l im ( −8 .1 ,9 )
# frame1 . se t_yl im ( 0 . 0 0 , 0 . 0 0 0 0 5 )
frame1 . s e t _ y l a b e l ( ’ Power (dBm) ’ , f o n t s i z e =20)
frame1 . legend ( f o n t s i z e =18 , l o c =1)
frame1 . gr id ( True )



57

Appendix D

Python Script for determining
beampattern using the NF1-scan

This code was obtained from Lap (Lap, 2015) and modified for to fit our needings.
#!/ usr/bin/env python
# −∗− coding : utf−8 −∗−
import math
import numpy as np
from m a t p l o t l i b . pylab import ∗
from mpl_ too lk i t s . mplot3d import Axes3D

x1 , y1 , z1 , r e a l 1 , imaginary1
= np . l o a d t x t ( ’ lnbscanlambda . t x t ’ , useco l s = ( 0 , 1 , 2 , 5 , 6 ) ,
unpack=True )
x2 , y2 , z2 , r e a l 2 , imaginary2
= np . l o a d t x t ( ’ lnbscan . t x t ’ , useco l s = ( 0 , 1 , 2 , 5 , 6 ) ,
unpack=True )
da=50
Nz = da
Ny = da
p r i n t ( len ( x1 ) , len ( y1 ) , len ( r e a l 1 ) )
def s o r t _b y _f r eq ( re , im , Ny, Nz, freq_element ) :

f r e q =np . l i n s p a c e ( 1 0 , 1 2 , 2 1 )
# p r i n t " Matrix w i l l be c a l c u l a t e d for "
+ s t r ( f r e q [ freq_element ] ) + " GHz"
matrix = np . zeros ( ( Nz,Ny) , dtype=complex )
r e a l _ s o r t e d = [ ]
imaginary_sorted = [ ]

k = freq_element
p = freq_element

while k < len ( re ) :
r e a l _ s o r t e d . append ( re [ k ] )
k += 21

while p < len ( im ) :
imaginary_sorted . append ( im [ p ] )
p += 21

h = 0
for i in range (Nz ) :

for j in range (Ny ) :
matrix [ i ] [ j ] = r e a l _ s o r t e d [ h ]
+ imaginary_sorted [ h]∗1 j
h += 1

return matrix

def i n t e r s e c t ( value , x , y ) :
’ ’ ’ Find the x l e f t coordinate corresponding to
y = value assuming a symmetric funct ion w. r . t . x .
I n t e r s e c t f i t s a s t r a i g h t l i n e through the points
j u s t above and j u s t below the wanted value and then
i n t e r p o l a t e s the wanted number .
’ ’ ’

N = len ( y )
# Go halfway
for i in range (N//2 + 1 ) :

i f y [ i ] > value :
y_low = y [ i −1]
y_high = y [ i ]
x_low = x [ i −1]
x_high = x [ i ]
break

# Linear i n t e r p o l a t i o n .
s lope = ( y_high − y_low ) / ( x_high − x_low )
x = ( value − y_low ) / slope + x_low
return x

def f i e l d p l o t s ( rea l1 , imaginary1 , rea l2 , imaginary2 ,
Ny, Nz, s e l e c t e d ) : # Ca l cu l a t e the f i e l d p l o t s .

A1 = np . zeros ( ( Nz,Ny) , dtype=complex )
A2 = np . zeros ( ( Nz,Ny) , dtype=complex )
f r e q u e n c i e s = np . arange ( 1 1 . 2 , 1 1 . 3 , 0 . 1 )
A1_fft_sum = 0
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lowerfreq = np . round ( s e l e c t e d [ 0 ] , decimals =1)
h igher f req = np . round ( s e l e c t e d [ len ( s e l e c t e d )−1]
, decimals =1)

for t in range ( len ( s e l e c t e d ) ) :
A = so r t _ by _ f r eq ( rea l1 , imaginary1 , da
, da , s e l e c t e d [ t ] )
B = s or t _b y_ f re q ( rea l2 , imaginary2 , da
, da , s e l e c t e d [ t ] )

A1 += (A + 1 j∗B)/2

# Nearf ie ld
A1_near_amp = abs (A1)
A1_near_phase = np . arc tan2 ( np . imag (A1 ) , np . r e a l (A1 ) )

t h e t a = np . l i n s p a c e (−14 ,14 ,da )
maximum = 0
for i in range (Nz ) :

for j in range (Ny ) :
i f A1_near_amp [ i ] [ j ] > maximum :

maximum = A1_near_amp [ i ] [ j ]
index_z = i
index_y = j

A1_near_amp_T = A1_near_amp . T

# For one frequency
i f lowerfreq == higher f req :

f i g 1 = p l t . f i g u r e ( )
f i g 1 . s e t _ s i z e _ i n c h e s ( 1 5 , 10)
ax = f i g 1 . add_subplot ( 1 1 1 )
ax . s e t _ x l a b e l ( ’ y (cm) ’ , f o n t s i z e =28)
ax . s e t _ y l a b e l ( ’ z (cm) ’ , f o n t s i z e =28)
#ax . s e t _ x t i c k s ( np . l i n s p a c e ( −14 ,14 ,9 ) )
#ax . s e t _ y t i c k s ( np . l i n s p a c e ( −14 ,14 ,9 ) )
ax . t ick_params ( a x i s = ’ both ’ , which= ’ major ’
, l a b e l s i z e =28)
ax . s e t _ t i t l e ( ’ Amplitude near−f i e l d f o r ’+
s t r ( np . round ( lowerfreq , decimals = 0) ) + ’ GHz ’
, f o n t s i z e =28)
cax = ax . imshow(10∗np . log10 ( ( A1_near_amp
/np . amax ( ( A1_near_amp ) ) )∗∗2 )
, vmin=−40,vmax=0 , e x t e n t =[−14 ,14 ,−14 ,14])
cbar = f i g 1 . c o l or ba r ( cax )
cbar . s e t _ l a b e l ( ’ Power ( dB ) ’ , f o n t s i z e =28)
a = s t r ( lowerfreq )
b = " "
for c in a :

i f c != " . " :
b += c

e lse :
b +=" , "

s a v e f i g ( ’ Nearf ield_amplitude_ ’+ b
+ ’_GHz . png ’ )
show ( )

f i g 1 = p l t . f i g u r e ( )
f i g 1 . s e t _ s i z e _ i n c h e s ( 1 5 , 10)
ax = f i g 1 . add_subplot ( 1 1 1 )
x = np . l i n s p a c e (−40 ,40 ,da )
p l o t ( x ,10∗np . log10 ( ( A1_near_amp [ index_z ]
/np . amax ( A1_near_amp [ index_z ] ) )∗∗2 )
, label= ’maximum along z ’ , l inewidth =2)
p l o t ( x ,10∗np . log10 ( ( A1_near_amp_T [ index_y ]
/np . amax ( A1_near_amp_T [ index_y ] ) )∗∗2 )
, label= ’maximum along y ’ , l inewidth =2)
t i t l e ( ’Maximum amplitude c r o s s cut
near−f i e l d f o r ’
+ s t r ( np . round ( lowerfreq , decimals =0 ) )
+ ’ GHz ’ , f o n t s i z e =28)
ax . s e t _ x t i c k s ( np . l i n s p a c e ( −14 ,14 ,5 ) )
ax . t ick_params ( a x i s = ’ both ’ , which= ’ major ’
, l a b e l s i z e =28)
x l a b e l ( " d i s t a n c e from c e n t e r (cm) "
, f o n t s i z e =28)
y l a b e l ( " Power ( dB ) " , f o n t s i z e =28)
legend ( l o c = ’ lower c e n t e r ’ )
s a v e f i g ( ’ Nearf ie ld_ampl i tude_crosscut_ ’
+b+ ’_GHz . png ’ )
show ( )

f i g 1 = p l t . f i g u r e ( )
f i g 1 . s e t _ s i z e _ i n c h e s ( 1 5 , 10)
ax = f i g 1 . add_subplot ( 1 1 1 )
ax . s e t _ x l a b e l ( ’ y (cm) ’ , f o n t s i z e =20)
ax . s e t _ y l a b e l ( ’ z (cm) ’ , f o n t s i z e =20)
ax . t ick_params ( a x i s = ’ both ’ , which= ’ major ’
, l a b e l s i z e =28)
ax . s e t _ t i t l e ( ’ Phase near−f i e l d f o r ’
+ s t r ( np . round ( lowerfreq , decimals =0 ) )
+ ’ GHz ’ , f o n t s i z e =28)
cax = ax . imshow ( A1_near_phase
, e x t e n t =[−14 ,14 ,−14 ,14])
# f i g 1 . co lo rb ar ( cax )

s a v e f i g ( ’ Nearf ie ld_phase_ ’
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+b+ ’_GHz . png ’ )
show ( )

# For mult iple f r e q u e n c i e s
e lse :

a = s t r ( lowerfreq )
b = " "
for c in a :

i f c != " . " :
b += c

e lse :
b +=" , "

a = s t r ( h igher f req )
d = " "
for e in a :

i f e != " . " :
d += e

e lse :
d +=" , "

f i g 1 = p l t . f i g u r e ( )
f i g 1 . s e t _ s i z e _ i n c h e s ( 1 5 , 10)
ax = f i g 1 . add_subplot ( 1 1 1 )
ax . s e t _ x l a b e l ( ’ y (cm) ’ , f o n t s i z e =20)
ax . s e t _ y l a b e l ( ’ z (cm) ’ , f o n t s i z e =20)
ax . s e t _ t i t l e ( ’ Amplitude n e a r f i e l d f o r ’
+ s t r ( lowerfreq )
+ ’− ’ + s t r ( h igher f req ) + ’ GHz ’ , f o n t s i z e =24)
cax = ax . imshow(10∗np . log10 ( ( A1_near_amp
/np . amax ( ( A1_near_amp ) ) )∗∗2 )
, vmin=−40,vmax=0 , e x t e n t =[−14 ,14 ,−14 ,14])
f i g 1 . co lo rb ar ( cax )
cax . s e t _ l a b e l ( " Power ( dB ) " )
s a v e f i g ( ’ Nearf ield_amplitude_ ’+b+ ’− ’
+d+ ’_GHz . png ’ )
show ( )

f i g 1 = p l t . f i g u r e ( )
f i g 1 . s e t _ s i z e _ i n c h e s ( 1 5 , 10)
ax = f i g 1 . add_subplot ( 1 1 1 )
x = np . l i n s p a c e (−40 ,40 ,da )
p l o t ( x ,10∗np . log10 ( ( A1_near_amp [ index_z ]
/np . amax ( A1_near_amp [ index_z ] ) )∗∗2 )
, label= ’maximum along z ’ , l inewidth =2)
p l o t ( x ,10∗np . log10 ( ( A1_near_amp_T [ index_y ]
/np . amax ( A1_near_amp_T [ index_y ] ) )∗∗2 )
, label= ’maximum along y ’ , l inewidth =2)
t i t l e ( ’Maximum amplitude c r o s s cut
n e a r f i e l d f o r ’
+ s t r ( lowerfreq ) + ’− ’ + s t r ( h igher f req )
+ ’ GHz ’ , f o n t s i z e =24)
x t i c k s ( np . l i n s p a c e ( −14 ,14 ,5 ) )
x l a b e l ( ’ d i s t a n c e from c e n t e r (cm) ’
, f o n t s i z e =20)
y l a b e l ( ’ Power ( dB ) ’ , f o n t s i z e =20)
legend ( l o c = ’ lower c e n t e r ’ )
s a v e f i g ( ’ Nearf ie ld_ampl i tude_crosscut_ ’
+b+ ’− ’+d+ ’_GHz . png ’ )
show ( )

f i g 1 = p l t . f i g u r e ( )
f i g 1 . s e t _ s i z e _ i n c h e s ( 1 5 , 10)
ax = f i g 1 . add_subplot ( 1 1 1 )
ax . s e t _ x l a b e l ( ’ y (cm) ’ , f o n t s i z e =20)
ax . s e t _ y l a b e l ( ’ z (cm) ’ , f o n t s i z e =20)
ax . s e t _ t i t l e ( ’ Phase n e a r f i e l d f o r ’
+ s t r ( lowerfreq )
+ ’− ’ + s t r ( h igher f req ) + ’ GHz ’ , f o n t s i z e =24)
cax = ax . imshow ( A1_near_phase
, e x t e n t =[−14 ,14 ,−14 ,14])
f i g 1 . co lo rb ar ( cax )

s a v e f i g ( ’ Nearf ie ld_phase ’+b+ ’− ’+d+ ’_GHz . png ’ )
show ( )

# F a r f i e l d
c = 29979245800 #cm/s
f = 11 .25 e9
uni t = 280
lambda_0 = c/ f #mm
D= 15
element_number1 = np . arange ( 1 , 2 5 , 1 )
∗( lambda_0∗D/uni t )
# Hier moet j i j van maken : np . arange ( 1 , 4 1 , 1 )
∗( lambda_0∗D/400)
waarbi j de D de afs tand t o t de s p i e g e l i s
element_number2 = −1∗np . arange (25 ,0 ,−1)
∗( lambda_0∗D/uni t )
# Hetzelfde h i e r a l s in r e g e l 295
zero = np . array ( 0 )
x = np . hstack ( ( element_number2 , zero , element_number1 ) )

theta_y = np . degrees ( np . arc tan ( x ) )
the ta_z = np . degrees ( np . arc tan ( x ) )
p r i n t ( len ( the ta_z ) )
A1_far_amp = abs ( np . f f t . f f t s h i f t ( np . f f t . f f t 2 (A1 ) ) )
A1_far_phase = np . arc tan2 ( np . imag (A1 ) , np . r e a l (A1 ) )
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t h e t a = np . l i n s p a c e (−14 ,14 ,da )
maximum = 0
for i in range (Nz ) :

for j in range (Ny ) :
i f A1_far_amp [ i ] [ j ] > maximum :

maximum = A1_far_amp [ i ] [ j ]
index_z = i
index_y = j

A1_far_amp_T = A1_far_amp . T

y = 10∗np . log10 ( ( A1_far_amp [ index_z ]/
np . amax ( A1_far_amp [ index_z ] ) )∗∗2 )
z = 10∗np . log10 ( ( A1_far_amp_T [ index_y ]/
np . amax ( A1_far_amp_T [ index_y ] ) )∗∗2 )

# For one frequency
i f lowerfreq == higher f req :

a = s t r ( lowerfreq )
b = " "
for c in a :

i f c != " . " :
b += c

e lse :
b +=" , "

f i g 2 = p l t . f i g u r e ( )
f i g 2 . s e t _ s i z e _ i n c h e s ( 1 5 , 10)
ax = f i g 2 . add_subplot ( 1 1 1 )
ax . s e t _ x l a b e l ( ’y−angle ( $^\ c i r c $ ) ’
, f o n t s i z e =20)
ax . s e t _ y l a b e l ( ’ z−angle ( $^\ c i r c $ ) ’
, f o n t s i z e =20)
ax . s e t _ x t i c k s ( np . l i n s p a c e ( −70 ,70 ,15) )
ax . s e t _ y t i c k s ( np . l i n s p a c e ( −70 ,70 ,15) )
ax . s e t _ t i t l e ( ’ Amplitude far−f i e l d ’
+ s t r ( np . round ( lowerfreq , decimals =0 ) )
+ ’ GHz ’ , f o n t s i z e =24)
cax = ax . imshow(10∗np . log10 ( ( A1_far_amp
/np . amax ( ( A1_far_amp ) ) )∗∗2 )
, vmin=−40,vmax=0 , e x t e n t =[−70 ,70 ,−70 ,70])
cbar= f i g 2 . c o l or ba r ( cax )

cbar . s e t _ l a b e l ( ’ Power ( dB ) ’ , s i z e =20)
s a v e f i g ( ’ Far f ie ld_ampl i tude_ ’+ b + ’_GHz . png ’ )
show ( )

ax = f i g 2 . add_subplot ( 1 2 2 )
#x = np . l i n s p a c e (−40 ,40 ,81)
p l o t ( theta_z , z , label= ’maximum along y ’
, l inewidth =2)
p l o t ( theta_y , y , label= ’maximum along z ’
, l inewidth =2)
t i t l e ( ’Maximum ampltude c r o s s cut far−f i e l d ’
+ s t r ( np . round ( lowerfreq , decimals =0 ) )
+ ’ GHz ’ , f o n t s i z e =24)
legend ( l o c = ’ lower c e n t e r ’ )
xlim ( [ −70 ,70 ] )
# x t i c k s ( np . l i n s p a c e ( −40 ,40 ,9 ) )
x l a b e l ( ’ Angle ( $^\ c i r c $ ) ’ , f o n t s i z e =20)
y l a b e l ( ’ Power ( dB ) ’ , f o n t s i z e =20)
s a v e f i g ( ’ F a r f i e l d _ a m p l i t u d e _ c r o s s c u t _ ’
+ b + ’_GHz . png ’ )
show ( )

# For more than one frequency
e lse :

a = s t r ( lowerfreq )
b = " "
for c in a :

i f c != " . " :
b += c

e lse :
b +=" , "

a = s t r ( h igher f req )
d = " "
for e in a :

i f e != " . " :
d += e

e lse :
d +=" , "

f i g 2 = p l t . f i g u r e ( )
f i g 2 . s e t _ s i z e _ i n c h e s ( 1 5 , 10)
ax = f i g 2 . add_subplot ( 1 2 1 )
ax . s e t _ x l a b e l ( ’ y (cm) ’ , f o n t s i z e =20)
ax . s e t _ y l a b e l ( ’ z (cm) ’ , f o n t s i z e =20)
ax . s e t _ t i t l e ( ’ Amplitude f a r f i e l d ’
+ s t r ( lowerfreq )
+ ’− ’ + s t r ( h igher f req ) + ’ GHz ’
, f o n t s i z e =24)
cax = ax . imshow(10∗np . log10 ( ( A1_far_amp
/np . amax ( ( A1_far_amp ) ) )∗∗2 )
, vmin=−40,vmax=0)
f i g 2 . co lo rb ar ( cax )
cax . s e t _ l a b e l ( " Power ( dB ) " )
s a v e f i g ( ’ Far f ie ld_ampl i tude_ ’+b+ ’− ’
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+d+ ’_GHz . png ’ )
show ( )

ax = f i g 2 . add_subplot ( 1 2 2 )
x = np . l i n s p a c e (−14 ,14 ,da )
p l o t ( x , z , label= ’maximum along y ’
, l inewidth =2)
p l o t ( x , y , label= ’maximum along z ’
, l inewidth =2)
t i t l e ( ’Maximum amplitude
c r o s s cut n e a r f i e l d ’
+ s t r ( lowerfreq ) + ’− ’
+ s t r ( h igher f req )
+ ’ GHz ’ , f o n t s i z e =24)
legend ( l o c = ’ lower c e n t e r ’ )
x t i c k s ( np . l i n s p a c e ( −40 ,40 ,9 ) )
x l a b e l ( ’ d i s t a n c e from c e n t e r (cm) ’
, f o n t s i z e =20)
y l a b e l ( ’ Power ( dB ) ’ , f o n t s i z e =20)
s a v e f i g ( ’ F a r f i e l d _ a m p l i t u d e _ c r o s s c u t _ ’
+b+ ’− ’+d+ ’_GHz . png ’ )
show ( )

re turn z , y , lowerfreq , h igher f req

def beamsize ( z , y , Ny, Nz, lowerfreq , h igher f req ) :
# bepalen van de beamsize

c = 29979245800 #cm/s
f = 11 .25 e9
uni t = 280
lambda_0 = c/ f
D = 15 #
element_number1 = np . arange ( 1 , 2 5 , 1 )
∗( lambda_0∗D/uni t )
# Hier moet j i j van maken : np . arange ( 1 , 4 1 , 1 )
∗( lambda_0∗D/400)
waarbi j de D de afs tand t o t de s p i e g e l i s
element_number2 = −1∗np . arange (25 ,0 ,−1)
∗( lambda_0∗D/uni t )
# Hetzelfde h i e r a l s in r e g e l 295
zero = np . array ( 0 )
x = np . hstack ( ( element_number2 , zero , element_number1 ) )

theta_y = np . degrees ( np . arc tan ( x ) )
the ta_z = np . degrees ( np . arc tan ( x ) )

# along y−a x i s
y_min_beamsize = i n t e r s e c t (−3 , theta_y , y )
y_min_beamsize_rad = np . radians ( y_min_beamsize )
# Half angle in radians
y_min_beamsize_deg = y_min_beamsize
# Half angle in degrees

y_max_beamsize = i n t e r s e c t (−3,−1∗ theta_y , y )
y_max_beamsize_rad = np . radians ( y_max_beamsize )
# Half angle in radians
y_max_beamsize_deg = y_max_beamsize
# Half angle in degrees

y_beamsize_avg_deg =
( abs ( y_min_beamsize_deg )+ abs ( y_max_beamsize_deg ) ) /2
y_beamsize_avg_rad =
( abs ( y_min_beamsize_rad )+ abs ( y_max_beamsize_rad ) ) /2

p r i n t ( ’ Beamsize ( f u l l angle ) along z−a x i s : ’
, np . round ( (2∗ y_beamsize_avg_deg ) , decimals =2)
, ’ degrees ’ )
p r i n t ( ’Beam s o l i d angle along z−a x i s : ’
, ( y_beamsize_avg_rad∗∗2)∗np . pi , ’ s t e r a d i a n ’ )

# along z−a x i s
z_min_beamsize = i n t e r s e c t (−3 , theta_z , z )
z_min_beamsize_rad = np . radians ( z_min_beamsize )
# Half angle in radians
z_min_beamsize_deg = z_min_beamsize
# Half angle in degrees

z_max_beamsize = i n t e r s e c t (−3,−1∗ theta_z , z )
z_max_beamsize_rad = np . radians ( z_max_beamsize )
# Half angle in radians
z_max_beamsize_deg = z_max_beamsize
# Half angle in degrees

z_beamsize_avg_deg = ( abs ( z_min_beamsize_deg )
+abs ( z_max_beamsize_deg ) ) / 2
z_beamsize_avg_rad = ( abs ( z_min_beamsize_rad )
+abs ( z_max_beamsize_rad ) ) / 2

p r i n t ( ’ Beamsize ( f u l l angle ) along y−a x i s : ’
, np . round ( (2∗ z_beamsize_avg_deg )
, decimals =2)
, ’ degrees ’ )
p r i n t ( ’Beam s o l i d angle along y−a x i s : ’
, ( z_beamsize_avg_rad∗∗2)∗np . pi , ’ s t e r a d i a n ’ )
p r i n t ( ’ Average beam s i z e ’ ,
( y_beamsize_avg_deg+z_beamsize_avg_deg )
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, ’ degrees ’ )

#one frequency

i f lowerfreq == higher f req :
a = s t r ( lowerfreq )
b = " "
for c in a :

i f c != " . " :
b += c

e lse :
b +=" , "

#x , k = np . l o a d t x t ( ’ f ina l_beampattern . t x t ’
, useco l s = ( 0 , 1 ) , unpack=True )
# k_ re a l = 10∗∗(k/10)
# k_real_norm = k_ re a l/np . amax ( k_ re a l )
#k_db_norm = 10∗np . log10 ( k_real_norm )

# beamsize_x = i n t e r s e c t (−3 ,x , k_db_norm )
# k_s ize = beamsize_x∗−2

#y_min = y_min_beamsize_deg
#y_max = y_max_beamsize_deg

f i g 3 = p l t . f i g u r e ( )
f i g 3 . s e t _ s i z e _ i n c h e s ( 1 5 , 10)

ax = f i g 3 . add_subplot ( 1 2 1 )
ax . p l o t ( theta_y , y , ’ b ’ ,
label ="Measured data\nBeamwidth : "
+ s t r ( np . round ( (2∗ y_beamsize_avg_deg )
, decimals =2))+ ’ $^\ c i r c $ ’
, l inewidth =2)
# ax . v l i n e s ( y_min , 0 , 0 , ’ r ’
, label= ’ Beamsize : ’
+ s t r ( np . round ( (2∗ y_beamsize_avg_deg )
, decimals = 2) )
+ ’ $^\ c i r c $ ’ , l inewidth =2)
# ax . v l i n e s ( y_max,−80 ,0 , ’ r ’ , l inewidth =2)
#ax . v l i n e s (4 .4 , −60 ,0 , ’ k ’ ,
label= ’ T h e o r e t i c a l : 8 . 8 $^\ c i r c $ ’ )
#ax . v l i n e s (−4.4 ,−60 ,0 , ’ k ’ )
# ax . h l i n e s (−3 ,−100 ,100 , ’ g ’
, label ="−3 dB l i n e "
, l inewidth =2)
ax . s e t _ x t i c k s ( np . l i n s p a c e (−140 ,140 ,11) )
ax . x ax i s . se t_minor_ loca tor
( Mult ipleLocator ( 5 ) )
ax . se t_x l im ( [ −70 ,70 ] )
ax . s e t _ x l a b e l ( ’ Angle y ( $^\ c i r c $ ) ’ , f o n t s i z e =20)
ax . s e t _ y l a b e l ( ’ Power ( dB ) ’
, f o n t s i z e =20)
ax . s e t _ t i t l e ( ’Beam pat tern h o r i z o n t a l cut
( ’+ s t r ( np . round ( lowerfreq
, decimals = 0) )
+ ’ GHz) ’
, f o n t s i z e =20)
legend ( l o c = ’ lower c e n t e r ’ )

#z_min = z_min_beamsize_deg
#z_max = z_max_beamsize_deg

ax = f i g 3 . add_subplot ( 1 2 2 )
#ax . p l o t ( x , k_db_norm , ’ g ’ , label =" Simulated
data\nBeamwidth : " + s t r ( np . round ( k_s ize
, decimals = 2) )
+ ’ $^\ c i r c $ ’ , l inewidth =2)
# ax . h l i n e s (−3 , −180 ,180 , ’ g ’
, label= ’−3 dB l i n e ’
, l inewidth =2)
# ax . v l i n e s ( beamsize_x , 0 , 0 , ’ k ’
, label ="Beamwidth : "
+ s t r ( np . round ( k_size , decimals =2) )+" $^\ c i r c $ "
, l inewidth =2)
# ax . v l i n e s (−1∗beamsize_x ,
, 0 , ’ k ’ , l inewidth =2)
ax . se t_yl im ( [ −75 ,0 ] )

ax . p l o t ( theta_z , z
, label= ’ Measured data\nBeamsize : ’
+ s t r ( np . round ( (2∗ z_beamsize_avg_deg )
, decimals = 2) )
+ ’ $^\ c i r c $ ’ , l inewidth =2)
# ax . v l i n e s ( z_min ,−80 ,0 , ’ r ’
, label= ’ Beamsize : ’
+ s t r ( np . round ( (2∗ z_beamsize_avg_deg )
, decimals = 2) )
+ ’ $^\ c i r c $ ’ , l inewidth =2)
# ax . v l i n e s ( z_max ,−80 ,0 , ’ r ’ , l inewidth =2)
#ax . v l i n e s (4 .4 , −60 ,0 , ’ k ’
, label= ’ T h e o r e t i c a l : 8 . 8 $^\ c i r c $ ’ )
#ax . v l i n e s (−4.4 ,−60 ,0 , ’ k ’ )
#ax . v l i n e s (−38 ,−60 ,0 , ’ y ’
, label= ’Beam : 74$^\ c i r c $ ’ )
#ax . v l i n e s (36 ,−60 ,0 , ’ y ’ )
ax . se t_x l im ( [ −70 ,70 ] )
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# ax . h l i n e s (−3 ,−100 ,100 , ’ g ’
, label ="−3 dB l i n e " , l inewidth =2)
ax . s e t _ x t i c k s ( np . l i n s p a c e (−140 ,140 ,11) )
ax . x ax i s . se t_minor_ loca tor
( Mult ipleLocator ( 5 ) )
ax . s e t _ x l a b e l ( ’ Angle z ( $^\ c i r c $ ) ’
, f o n t s i z e =20)
ax . s e t _ y l a b e l ( ’ Power ( dB ) ’ , f o n t s i z e =20)
ax . s e t _ t i t l e ( ’Beam pat tern v e r t i c a l cut
( ’+ s t r ( np . round ( lowerfreq , decimals = 0) )
+ ’ GHz) ’ , f o n t s i z e =20)
legend ( l o c = ’ lower c e n t e r ’ )

t i g h t _ l a y o u t ( )

s a v e f i g ( ’ Beamsize_ ’+ b + ’_GHz . png ’ )
show ( )

e lse :
a = s t r ( lowerfreq )
b = " "
for c in a :

i f c != " . " :
b += c

e lse :
b +=" , "

a = s t r ( h igher f req )
d = " "
for e in a :

i f e != " . " :
d += e

e lse :
d +=" , "

y_min = y_min_beamsize_deg
y_max = y_max_beamsize_deg
f i g 3 = p l t . f i g u r e ( )
f i g 3 . s e t _ s i z e _ i n c h e s ( 1 5 , 10)
ax = f i g 3 . add_subplot ( 1 2 1 )
ax . p l o t ( theta_y , y , ’ b ’ , label= ’ beamsize :
’+ s t r ( np . round ( (2∗ y_beamsize_avg_deg )
, decimals =2))+ ’ $^\ c i r c $ ’ )
#ax . v l i n e s ( y_min ,−60 ,0 , ’ r ’ , label= ’ S c r i p t ’ )
#ax . v l i n e s ( y_max,−60 ,0 , ’ r ’ )
#ax . v l i n e s (4 .4 , −60 ,0 , ’ k ’ ,
label= ’ T h e o r e t i c a l : 8 . 8 $^\ c i r c $ ’ )
ax . v l i n e s (−45.2 ,−60 ,0 , ’ k ’ )
ax . v l i n e s (41 .8 , −60 ,0 , ’ k ’ )
ax . h l i n e s (−3 ,−160 ,160 , ’ g ’
, label= ’− 3 dB l i n e ’ )
ax . h l i n e s (−10 ,−160 ,160 , ’ k ’
, label= ’− 10 dB l i n e s ’ )
ax . s e t _ x t i c k s ( np . l i n s p a c e
(−140 ,140 ,21) )
ax . x ax i s . se t_minor_ loca tor
( Mult ipleLocator ( 5 ) )
ax . s e t _ x l a b e l ( ’ Angle z ( $^\ c i r c $ ) ’ , f o n t s i z e =20)
ax . s e t _ y l a b e l ( ’ Power ( dB ) ’
, f o n t s i z e =20)
ax . se t_yl im ( [ −50 ,0 ] )
ax . se t_x l im ( [ −70 ,70 ] )
ax . s e t _ t i t l e
( ’Beam pat tern seen along z−a x i s max . amp1 ’
+ s t r ( lowerfreq ) + ’− ’
+ s t r ( h igher f req ) + ’ GHz ’ )
legend ( )

z_min = z_min_beamsize_deg
z_max = z_max_beamsize_deg
ax = f i g 3 . add_subplot ( 1 2 2 )
ax . p l o t ( theta_z , z , label= ’ beamsize : ’
+ s t r ( np . round ( (2∗ z_beamsize_avg_deg )
, decimals = 2) )
+ ’ $^\ c i r c $ ’ )
#ax . v l i n e s ( z_min ,−60 ,0 , ’ r ’
, label= ’ S c r i p t ’ )
#ax . v l i n e s ( z_max ,−60 ,0 , ’ r ’ )
#ax . v l i n e s (4 .4 , −60 ,0 , ’ k ’ ,
label= ’ T h e o r e t i c a l : 8 . 8 $^\ c i r c $ ’ )
#ax . v l i n e s (−4.4 ,−60 ,0 , ’ k ’ )
#ax . v l i n e s (−38 ,−60 ,0 , ’ y ’ ,
label= ’Beam : 74$^\ c i r c $ ’ )
#ax . v l i n e s (36 ,−60 ,0 , ’ y ’ )
ax . v l i n e s (−47 ,−60 ,0 , ’ k ’ )
ax . v l i n e s (42 .5 , −60 ,0 , ’ k ’ )
ax . h l i n e s (−3 ,−160 ,160 , ’ g ’
, label= ’− 3 dB l i n e ’ )
ax . h l i n e s (−10 ,−160 ,160 , ’ k ’
, label= ’− 10 dB l i n e s ’ )
#ax . x ax i s . s e t _ m a j o r _ l o c a t o r ( )
ax . s e t _ x t i c k s ( np . l i n s p a c e (−140 ,140 ,21) )
ax . x ax i s . se t_minor_ loca tor
( Mult ipleLocator ( 5 ) )
ax . s e t _ x l a b e l ( ’ Angle y ( $^\ c i r c $ ) ’
, f o n t s i z e =20)
ax . s e t _ y l a b e l ( ’ Power ( dB ) ’ , f o n t s i z e =20)
ax . se t_yl im ( [ −50 ,0 ] )
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ax . se t_x l im ( [ −70 ,70 ] )
ax . s e t _ t i t l e
( ’Beam pat tern seen along y−a x i s max .
amp1 ’+ s t r ( lowerfreq ) + ’− ’
+ s t r ( h igher f req ) + ’ GHz ’ )
legend ( )

t i g h t _ l a y o u t ( )

s a v e f i g ( ’ Beamsize_ ’+b + ’− ’ + d+ ’_GHz . png ’ )
show ( )

def resonance ( rea l1 , imaginary1 , rea l2 ,
imaginary2 , Ny, Nz, s e l e c t e d ) :

A1 = np . zeros ( ( Nz,Ny) , dtype=complex )
A2 = np . zeros ( ( Nz,Ny) , dtype=complex )
f r e q = np . arange ( 1 0 . 5 , 1 1 . 6 , 0 . 1 )
A1_fft_sum = 0
lowerfreq = np . round ( s e l e c t e d [ 0 ]
, decimals =1)
h igher f req = np . round ( s e l e c t e d [ len ( s e l e c t e d )−1]
, decimals =1)

for t in range ( len ( s e l e c t e d ) ) :
A = so r t _ by _ f r eq ( rea l1 , imaginary1
, da , da , s e l e c t e d [ t ] )
B = s or t _b y_ f re q ( rea l2 , imaginary2
, da , da , s e l e c t e d [ t ] )

A1 += (A − 1 j∗B)/2

# Nearf ie ld
A1_near_amp = abs (A1)
A1_near_phase = np . arc tan2 ( np . imag (A1)
,np . r e a l (A1 ) )

f i g 1 = p l t . f i g u r e ( )
f i g 1 . s e t _ s i z e _ i n c h e s ( 1 5 , 10)
ax = f i g 1 . add_subplot ( 1 1 1 )
ax . s e t _ x l a b e l ( ’ y (mm) ’ )
ax . s e t _ y l a b e l ( ’ z (mm) ’ )
ax . s e t _ t i t l e ( ’ Standing wave n e a r f i e l d f o r ’
+ s t r ( lowerfreq ) + ’− ’ + s t r ( h igher f req ) + ’ GHz ’ )
cax = ax . imshow(10∗np . log10 ( ( A1_near_amp
/np . amax ( ( A1_near_amp ) ) )∗∗2 ) , vmin=−40,vmax=0)
f i g 1 . co lo rb ar ( cax )
s a v e f i g ( ’ Standing_wave_horn_ ’+ s t r ( lowerfreq )
+ ’− ’ + s t r ( h igher f req ) + ’_GHz . png ’ )
show ( )

s e l e c t e d = np . arange ( 1 1 . 2 , 1 1 . 3 , . 1 )
f i e l d = f i e l d p l o t s ( rea l1 , imaginary1 ,
rea l1 , imaginary1 , Ny, Nz, s e l e c t e d )
z = f i e l d [ 0 ]
y = f i e l d [ 1 ]
lowerfreq = f i e l d [ 2 ]
h igher f req = f i e l d [ 3 ]

beamsize ( z , y , Ny, Nz, lowerfreq , h igher f req )
resonance ( rea l1 , imaginary1 , rea l2 , imaginary2
, Ny, Nz, s e l e c t e d )
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