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Abstract

Exponential random graph models are the main parametric approach to do sta-
tistical inference in network data. This thesis is an introduction to the rationale
behind exponential random graph models, which is based on maximization of
Shannon entropy as inference procedure, properties of exponential families and
theory of random graphs. The research question is to find an exponential ran-
dom graph model that can approximate every network distribution invariant
under relabelling of vertices. In this model, the first moments of the eigenvalue
distribution of the network are used as sufficient statistics. The moments of the
eigenvalue distribution are equal to the total number of closed walks of different
lengths, multiplied by the size of the network.

The approximation works because of the geometrical properties of the log-
density space of exponential families. These properties allow a decomposition
of the space in term of information explained by the approximating model,
and residual information orthogonal to the previous one. The main result is the
explicit computation of the relative entropy of the real network distribution with
respect to the approximating ERGM. If the size of the homogeneous network
under study is fixed, the ERGM with number of close walks as sufficient statistics
can approximate arbitrarily well the real distribution, if enough moments are
used.
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Chapter 1

Introduction

Many complex objects can be represented by a fixed set of points joined by ties.
The object under analysis is therefore a graph, in this thesis the interest is when
the set of vertices is fixed and the ties are random accordingly to some statistical
models. This is a probability distribution defined in the space of graphs and,
if specified correctly, the distribution can be interpreted as information on the
system under study.

Uncertainty in the Specification of a Statistical Model

Chapter 2 starts with formal definitions of information and uncertainty of a
probability distribution. In short, an event is a particular result of a random
experiment, the information of the event is defined as the amount of knowledge
we gain, after the event is observed. An event has higher information than an-
other if it’s less likely and the knowledge gained by two independent event is
the sum of the individual information. The distribution that model the experi-
ment specifies the probability of each event, so the distribution can be defined
coherently with respect to the information gained in every possible outcome of
the experiment.

The expected information of a (distribution of a) random variable is called
entropy, it is a measure in the space of distributions that can describe the ex-
periment. The entropy can be used to choose a particular distribution as model
of the data. Specifically, distributions with higher entropy are more uncertain,
as the events contain more information, on average. Thus, if we choose a distri-
bution with higher entropy than another one, we are imposing less assumptions
on the statistical model, as the data (outcomes of the experiment) lead to an
higher average knowledge gain. More precisely, as we define information in term
of knowledge gain, we should fix a prior distribution that represents the knowl-
edge that we have on the object under study before seeing the outcome. In
this set a good measure of information is the relative entropy of the specified
distribution with respect to the prior. The entropy corresponds to the inverse
of the relative entropy when the prior is noninformative, so when it represent



the situation in which before seeing an outcome we don’t know anything on the
system under study.

The main approach is to choose as statistical model the distribution that
maximizes the entropy with constraints that fix the expected values of the suf-
ficient statistics of the distribution. The same approach can be derived also ax-
iomatically, the maximization of the entropy (or more generally, minimization of
the relative entropy) is the only approach that assures a consistent specification
of the statistical model, in term of some axioms that a good inference procedure
should satisfy. The distribution obtained by maximization of entropy belongs
to an exponential family, generated by the sufficient statistics whose expected
value has been fixed in the constraints of the maximization algorithm. The ex-
ponential family is one of the main approaches to define statistical models. In
our case it is particularly useful because in this family the sufficient statistics
contain all information of the distribution. Therefore, the exponential family
can be seen as a distribution in the space of sufficient statistics or configura-
tions, different distributions with same sufficient statistics are indistinguishable,
therefore they carry the same information.

The exponential families are most often used without consider their inter-
pretation in term of information, as they have optimal mathematical properties
in many cases, because of the tractability of their log-density. For example,
the log-likelihood ratio between two distributions in the same family is a linear
function of the sufficient statistics, and it can be decomposed in the sum of the
log ratios between the two initial distributions and a common distribution in
the family. This decomposition can be extended in term of relative entropy.
More interestingly to our problem, the sufficient statistics lie in a vector space,
so there are explicit solutions for approximating a family with another one
generated by sufficient statistics in a linear subspace of the original one. For
continuous distributions the vector space is infinite dimensional, however many
distributions can be written in exponential form using an infinite dimensional
basis of continuous functions (for example orthogonal polynomials) that spans
the configuration space.

The exponential family can be used also as approximation of distributions
that does not belong to the family. Consider the set of distributions defined
fixing the expected values of some functions of the data. The information pro-
jection of a exponential family of distributions to the set defined before is the
only distribution that belong both to the set and the exponential family, there-
fore it’s the natural approximation of a distribution that does not belong to the
family. The estimate of the distribution is in the same family as the approxima-
tion. The information projection allows the decomposition of the information
loss, which is the sum of the approximation error and estimation error. The
first is the information loss of approximating a distribution with the closest one
that belong to the exponential family, the second is the difference between the
information projection and the estimate using the real data.



Networks as Representation of Complex Systems

If the system we are interested is a collection of objects joined by connections
between them, the object under study can be represented using a network. The
connections are random, therefore a probability distribution is defined in the
space of possible networks, or equivalently in the space of possible adjacency
matrices. Pattern of ties in the observed networks are called subgraphs, many
of them are associated with descriptive statistics of the adjacency matrix (i.e.
information on the observed network).

The most used descriptive statistics is the degree distribution, which spec-
ifies the proportion of vertices with a given degree. The first moment of this
distribution is the average degree. The relation between this statistics and the
size of the network is very important. In fact, for most real large networks, the
average degree grows proportionally to the size of the network. A ranking of the
vertices, based on their importance in the network structure, is called centrality
The simplest one is the degree centrality, in which the importance of a vertex
is measured in how many connections it has.

It is possible that the degree distribution does not represent all information
contained in the network. However, for homogeneous networks, i.e. graphs
in which the vertices are unlabelled, all information of the network is in its
eigenvalues, because the information on the “location” of the vertices in the
graph is in its eigenvectors. If the size of the network is fixed, the eigenvalue
distribution is discrete and it has a bounded support. Therefore, it can be
identified by its moments, which are associated with the expected number closed
walks in the network. The total number of closed walks with a given length is
a linear combination of the counts of some subgraphs. “Very complicated”
subgraphs affect only the counts of very long closed walks, therefore the first
moments of the eigenvalue distributions are function of small subgraphs, which
usually are considered to be more important in the network structure.

Similarly to the degrees, a one dimensional sufficient statistics can be de-
fined as a weighted sum of number closed walks with different length. The
most important one is the Estrada index and it’s related with the statistical
mechanical properties of the network. We can also define a centrality measure
that quantifies the importance of a vertex based on how many closed walks pass
through it. The most important one is called Estrada centrality and depends
on the eigenvalue distribution, as the degree centrality depends on the degree
distribution.

Descriptive statistics can be used to define a model for random graphs.
There are two main approaches to do so. The first one specifies an algorithm
for generating a random graph with given property, for example the average
degree, or a particular degree distribution. The simplest example is the Erdos-
Rényi random graph, in which the only parameter is the constant probability
of a tie between every possible pair of vertices. Almost all models defined in
this way are extensions of the Erdds-Rényi graph. In principle, if the model
is correctly specified, should be possible to compute the expected values and
distributions of some descriptive statistics defined before. However, it’s usually



nontrivial how to do so, the other main approach starts from the choice of
which sufficient statistics are important, and then the distribution is specified
as the one maximize our uncertainty, given the expected value of the important
sufficient statistics.

Network Distributions with Maximum Entropy

The second main approach for defining models for random networks is related to
thermodynamics and statistical inference. The expected values of the sufficient
statistics that are considered to be important in the model are fixed. Then,
the entropy is maximized leading to a random graph with distribution that
belong to the exponential family. The generative algorithm in this case is a
(thermodynamic) stochastic process governed by parameters, and the network
is an observation of this process in a fixed time. In Huang (1963) the parameters
of the family are defined to be “measurable macroscopic quantities associated
with the system”. We need to assume that when the network is observed, the
process is in a sort of thermodynamic equilibrium, therefore the distribution
indexed by the macro parameters is close to the maximum entropy distribution.

Maximization of entropy leads to a distribution that belong to the exponen-
tial family generated by the sufficient statistics whose expected value is fixed in
a one-to-one relations with the macro parameters. If the system under study is
a network, this distribution is called Exponential Random Graph Model. These
models are useful in statistical inference because it is possible test the signifi-
cance of the parameters, as the distribution of their associated sufficient statis-
tics is known. The inference is done by Markov Chain Monte Carlo, because
it mimics the generative process in which ties are created and eliminated with
time. This method is necessary because in this way the estimates are averages
of multiple networks that came from a process in thermodynamic equilibrium
(if the chain is stable).

The Hammersley-Clifford theorem (Besag (1974)) implies that every random
network can be written with a distribution that belong to the exponential family.
The theorem also specifies which sufficient statistics are associated with non-
zero macro parameters and so they are significant in the generative algorithm.
These sufficient statistics are particular subgraphs, and when the network is
homogeneous their “location” in the graph is not important, so the parameters
can be associated with the counts of these subgraphs in the network. The
most used exponential random graph model are variants of the Markov random
graph. For this model the sufficient statistics are the degree distribution and the
number of triangles. Thus the Markov random graph is the distribution with
higher entropy when the expected number of triangles and the expected degrees
of the vertices are fixed. The downsizes of these approach are caused by the
instability of the sufficient statistics of the model in canonical form. Moreover,
this model does not specifies how the network grows, therefore consistency of
the estimates can be an issue.



Approximation of Homogeneous Network Models

Our original research question was to find an Hamiltonian such that we can
approximate every network distribution using an exponential random graph
model. The starting point is the Hammersley-Clifford theorem, because every
network distribution can be written as an ERGM, the theorem specifies also the
form of the Hamiltonian, which is a linear combination of subgraph counts. The
Hamiltonian can be simplified considerably if we consider only homogeneous
networks. In this thesis an homogeneous network is defined to be a random
graph with distribution invariant under relabelling of the nodes (sometimes
homogeneity is defined in a different way, see Estrada (2012) chapter 9 for
example). Markov random graphs do not use all information contained in the
network, because the degree distribution does not contains all information.

The homogeneity condition implies that the eigenvalues contains all infor-
mation of the network. Therefore, our idea has been to use as Hamiltonian
a linear combination of the first moments of the eigenvalue distribution, this
setting offers an interpretation of the parameters in term of number of closed
walks. More interestingly, the number of closed walks are linear combinations of
the subgraph counts specified by the Hammersley-Clifford theorem. Therefore
the model introduced in the last chapter is an approximation of every possible
homogeneous network model, and the approximation is linear in the space of
sufficient statistics.

Using the affine geometry of exponential families, the approximation can be
evaluated completely in the log-space. Therefore, the quality of the approxima-
tion depends on how well a linear combination of number of closed walks can
approximate a linear combination of subgraph counts. The sufficient statistics
of the Hamiltonians are discrete functions of the networks, in particular they
are basis of spaces of log-densities, which are finite dimensional. The log-density
space of the approximated distribution is than a lower dimensional subspace of
the original one. The affine geometry implies that vectors in the original space
can be decomposed as a sum of a vector in the approximating space and an
orthogonal residual. Therefore, the information loss is orthogonal to the space
of closed walks considered in the Hamiltonian. However if enough sufficient
statistics are used, the real and approximating model are equivalent.

For non homogeneous networks, like the ones with community structure for
example, these results are not directly applicable. In fact, even with Markov
dependency, modelling the community structure with an exponential random
graph models demands many parameters. Therefore, the original research ques-
tion has been solved partially. However, different Hamiltonians can be combined
as sufficient statistics of the network. Thus, the community structure (or other
kind of inhomogeneities in the network) can be modelled with an Hamiltonian
derived by Markov dependency for example, and the residual information can
be modelled using the closed walks Hamiltonian. With this example, the only
information which is not explained is the non-homogeneous one orthogonal to
the information fitted with Markov dependencies.



Notes on the Literature

The main inspiration for this work has been Estrada (2012), which is a great
introduction to random networks, often from the statistical viewpoint of how to
“extract” information from network data, mostly in term of descriptive statis-
tics. Complex graphs contain a lot of information, and the book is particularly
useful because a network can be analysed from many different perspectives. The
maximization of entropy as inference procedure starts with Shannon (2001)
(originally published in 1948), however my thesis is based mainly on Jaynes
(1982), his work connected the Shannon’s interpretation of the entropy in term
of information with the physical one developed previously by Boltzmann and
Gibbs. Distribution with maximum entropy are exponential families, the idea
of exploit the affine geometry of the log-space of these distributions is inspired
by Jergensen and Labouriau (2012), chapter 1. Lastly, the most important ref-
erences for the discussion on exponential random graph models are Newman
(2010), section 15.2, Robins et al. (2007), Snijders et al. (2006) and Frank and
Strauss (1986). I tried to emphasize the connection between exponential ran-
dom graph models and the theory developed in chapter 2, because I think that
both the rationale and the mathematics behind these models is based mainly
on their thermodynamic interpretation.



Chapter 2

Maximum Entropy and
Exponential Families

Introduction

Parametric statistical inference starts with the definition of the model that gen-
erates the data. When the distribution of the random experiment is unknown,
its specification involves some assumptions in the generator mechanisms. Other
than the constraints on the distribution, given by the set up of the random
experiment, we would like not to impose other assumptions in the distribution,
but still use a parametric statistical model. If the experiment allows us to gain
some information on the system under study, we are imposing less assumption
if we choose as model the distribution with maximum uncertainty, because the
data gives, on average, more information. The starting point is the definition
of a measure of information which, if maximized, leads to a distribution in the
exponential family.

2.1 Measure of Information and Uncertainty

A result of a random experiment can be associated with the information gained
to the system under study, before and after the experiment is performed. For-
mally, information is defined as the knowledge gained by the result of a statis-
tical experiment, identified by a probability distribution defined in the object
under study. The information is on the macro-properties of the system, governed
by real parameters. When we have knowledge about important combinatorial
properties of the system under study, it is non-trivial assign probability to var-
ious occurrences in a consistent way.

Usually in this thesis will be considered experiments modelled by a finite
dimensional discrete probability distribution X with possible values 1, ...,zn
each of them with probability p1, ..., py such that p; > 0 and Zfil pi=1. We



can associate the information of this experiment by the uncertainty we have in
defining the probability distribution. In this way the concept of information is
associated to the random variable to model the experiment, in particular it’s
equivalent of the uncertainty we have in choosing a specific random variable.
The following axioms allows to derive mathematically a measure of information
(or uncertainty) of the discrete random variable py, ..., pn:

e If exist ¢ such that x; has probability one (and consequently all other
possibilities have probability 0), then the experiment has zero uncertainty
(there is no information gain on performing the experiment).

o If p; < pj, than the event X = x; is less uncertain than X = z; (the first
event carries more information).

e If the events X = z; and X = x; occur independently, then the uncer-
tainty (information) of the joint occurrence, is the sum of the uncertainties
(information) of the singular events.

The three axioms force the mathematical form of the measure of information
or uncertainty f. In fact if A and B are independent events, with associated
information I(A) and I(B), then

I(ANB)=I(A)I(B) <= [f(B(ANB))= [f(P(A)f([B(B),  (2.1)

which implies
I(A) = —blogP(A), (2.2)

where b is a constant greater than 0 that fix the unit of measurement. If b =
1/log2 the information is measured in bits, if b = 1 in nats. In this thesis is
always assumed b = 1.

The random variable is a model for the experiment, its uncertainty is the
expected information gain or (Shannon) entropy, defined as the average infor-
mation of the events modelled by the random variable:

H(P) = [ 1@)dP(w) = En(1(X), (2.3)
in the case X has discrete distribution P the entropy is
N
P)= —pri logp; = —bZ]P’ x;)logP(X = ;). (2.4)
i=1

If we have prior information on the experiment, it’s possible to define a
measure of uncertainty with respect to the random variable that represents
prior knowledge of the system, which will be denoted as @. This is called
relative entropy or Kullback-Leibler divergence from @ to P is

D(P||Q) = szlog— ZPP 1og]PZ(Xzif). (2.5)
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D is not a distance between P and ) because is not symmetric, however it is
equal to 0 if and only if P and Q) are equal with probability 1. If @ is the
uniform distribution, then D(P||Q) x —H(P) which means that the relative
entropy of P with respect to the uniform is the inverse of the Shannon entropy
of P.

The relative entropy can be interpreted also in a frequentist way. In this
framework, P is the real distribution of a random experiment, ) is the model
specified by the statistician. D(P||Q) is the expected value of the difference in
term of information between the real distribution and the model, the expected
value is computed with respect to P. Therefore D(P||Q) is a measure of infor-
mation loss by approximating P with Q. The approximation @ can be seen as
an estimation of P in information sense. Usually when @) is an estimator of P
is denoted by P. The use of entropy as information measure is introduced in
Shannon (2001) (originally published in 1948), my presentation is based mostly
on Martin and England (2011), chapter 2.

2.2 Maximum Entropy Principle

In the previous section, the Shannon entropy is introduced as measure of uncer-
tainty. Each distribution corresponds to the average information gained by the
experiment, we may want to be as uncertain as possible in the definition of the
model, so that the data lead to higher knowledge, on average. Jaynes (1982)
consider the maximization of entropy as an inference procedure optimal if the
data are measured without error. In this case all uncertainty that we have in
the specification of the model, depends only on the fact that the real distribu-
tion is unknown. The Shannon entropy is a measure in the space of probability
distributions that favours models which can be realized in more ways, by the
combinatorial properties of the sample space. In some cases there are concen-
tration inequalities that run out models with distributions far from the one with
maximum entropy. Conversely, if the data have noise, maximization of entropy
does not work well. In this case it’s useful to exploit properties and symmetries
of the noise.

If we have no information on the choice of the probability distribution, there
are no restrictions on p;. The maximization of entropy choose P that maximizes

N
max H(P) = max pri log p;. (2.6)
P P1,--PN =1

If there are no restrictions, the solution of the maximization problem is the
uniform distribution p; = 1/N, which is the one that carries most uncertainty.
Equation 2.6 is called Principle of indifference. It can be used to choose an
appropriate prior distribution as, if the random variable is bounded (like in our
example) the solution is the uniform measure. The prior chosen in this way is
called noninformative prior. However, when information is available, different
distributions emerge as solution of the problem 2.6.

11



Maximum Entropy with Linear Constraints

The problem is to choose a “good” probability distribution to model the random
experiment. This choice has to be coherent with the information we have on
the experiment. If there is none, maximization of entropy gives as choice the
most uncertain (less informative) distribution: the uniform. Consider the case
in which information is available, in form of expectations of functions f;(X).
The problem 2.6 becomes

N N
P = argglax H(P) s.t. Zpifj(%') = 1, Zpl- =1, (2.7)
i=1 i=1

where X ~ P, p;, = P(X = x;), f = (f1,..., fm) and p = (p1, ..., by ) is the
information available in term of the moments of f;.

The maximization is done with m + 1 Lagrange multipliers, o for the nor-
malization constraint, and aq, ..., a,, for the constraints on the expected values.
The Lagrangian is

N N m N
L(P,a)=— Zpi log pi — (sz - 1) _Zaj (Zpifj(xi) - Nj) ; (2.8)
i=1 i=1 j=1 i=1

the derivatives with respect to p; and «; are

0 .
L(z,a) =logp; — ag —piZajfj(xi), i1=1,....N

Op; ;
) al .

@ﬁ(%a) = ;plf](xl) -y, j=1,..,m (2.9)
P N

%E(x,a) = ;pi -1

Equating the derivatives to 0, gives the solution P* of the optimization
problem which is the distribution

1
Z (@)

pr=P(X =) = =1 @5 fi(@i) — ea'f(-"u,)—F(Ot)7 (2.10)

where Z(«) and F(«) are called respectively partition function and free energy
(or log-partition function), defined as

N
Z(a) =Y e F(a) =log Z(a). (2.11)
i=1

The parameters oy, ..., a,, gives the explicit relation between the partition func-
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tion and the information available, specifically

s = Ep- (5(X)) = oo Flan, - ). (2.12)
@
Note that ag, the Lagrange multiplier associated with the normalization con-
stant is included in the partition function, so is not a parameter of the distri-
bution P*.
The maximum entropy is

H(P*)=a- -pu— F(a), (2.13)

if  is an n-dimensional i.i.d. sample from X and the “theoretical” moment f;
is replaced by its empirical version ji; = .7 | f;(z;), then the maximal entropy
with sufficient statistics fi; is the log-likelihood, if taken as a function of . This
connect the approaches of maximum entropy and maximum likelihood.

Axiomatic Derivation

The former argument motivates the choice of the distribution of maximum en-
tropy as it is optimal in term of information and uncertainty. However, the
approach of Shore and Johnson (1980) motivates 2.7 because it’s the only in-
ference rule that guarantee a self-consistent choice P* (Pressé et al. (2013)).
Define the function H (P, @) which depends on the distribution P and the prior
Q. The chosen distribution P* is the solution of the optimization problem

mgxfi(P, Q) st. Ep(f;(X))=py, forj=1,...,m. (2.14)

Their approach lead to the optimal function H (P, Q) such that if maximized
with respect to the information constraints, lead to “optimal” inference in some
sense.

A self-consistent inference procedure respects the following axioms, the max-
imum of 2.14 should be:

e unique,
e invariant with respect to change of coordinates,

e subset-independent (the inference leads to the same result if carried on in
the whole set of data or separately in independent subsets of the system,
and then combined),

e system-independent (the inference from data that comes from independent
systems, can be carried on separately and then combined).

The axioms specify the form of H (P, @), which has to be equal to

N
HP.Q) =-bY pi 1og% = —bD(P[|Q), (2.15)
i=1 ’
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(Shore and Johnson (1980), Pressé et al. (2013)) or, if @ is uniform,

N
H(P) = —pri log p;. (2.16)
i=1

So the optimal inferred distribution is the one that maximizes the entropy,
subject to the constraints, or, if prior information @) is available, minimizes the
relative entropy from @ to P.

Note that in this derivation the fact that H(P) and D(P||Q) are measures of
information and uncertainty is not used at all. Despite so, if we are interested in
this interpretation, the axioms are reasonable. For example, the axioms of sys-
tem and subset independence, implies that the inference in the various subsets
(or systems) can be combined so that the joint information of the experiment
is the sum of the information in the various subsets (or systems). The max-
imum entropy principle is viewed as the only inference rule that respects the
axioms. Self-consistency is a different concept than consistency in statistics, is
related to assign the distribution of the model in a coherent way, while consis-
tency is related to the quality of an estimate of the “unknown” parameters or
distribution.

These axioms specify also which information constraints are appropriate in
the maximization. First, the constraints have to be linear in p;, they can be
either equalities or inequalities. Many functions f; can be used to define the
constraints, for example polynomials are appropriate, which implies that all
moments of a distribution function can be used (Pressé et al. (2013)). The var-
ious interpretation of entropy are summarized in Giffin (2009), the definition of
Shannon, the one I used, is in term of information and generalizes the definitions
used before, as is shown in Jaynes (1957).

2.3 Exponential Family of Distribution

In statistics, the choice of a distribution that describes a random experiment is
based on assumptions on the properties of the data generated from the exper-
iment. In this section, the exponential family of distribution is derived in the
classic statistical approach, and many quantities which was previously defined
only for discrete distributions will be extended to other measures.

The space of possible outcomes of the experiment is sample space X. This
space is enriched with a collection of subsets of X', called o-algebra, denoted by
A and a measure v over it. The two cases that will be considered are when the
sample space is discrete or absolutely continuous. In the first case, the o-algebra
is 2%, the power set of X which consists of all the possible subsets of elements
of the sample space, the measure v is the counting measure, which counts the
number of elements in a € A = 2¥. In the second case, is considered the Borel
o-algebra, formed by countable unions, intersections and complements of the
open sets in X, here v is the Lebesgue measure, the standard measure of volume
in an Euclidean space.
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With this construction, the sample space (X, A, v) becomes a measure space.
The first step in the definition of the probability distribution involves the trans-
formation of the measure v through an A-measurable function h : X — R which
is called reference function. h induces to (X, A) the (not necessarily finite) base
measure (or reference measure) vy, which often admits density

dvp(z) = h(x)dv(z), (2.17)

for x € X. The measure space (X, A,v,) induces a reference distribution on X
with density
dPy ., (x) o< dvp(z) = h(z)dv(z). (2.18)

Py, is defined in the support of the reference measure vy, is the closed set
{reX :v(x) >0} or {xe€X:Te>0st. vp(Ne(z)) >0}, (2.19)

for the discrete or continuous case respectively, N.(z) is the neighbourhood of
x with radius €. It can be assumed h > 0 so that only v specifies the support.
Denote with K, the closure of the convex hull of the support.

The reference distribution P ,, can be expanded to a family of probability
distributions. Let o a m-dimensional vector of parameters, f = (f1,..., fm) :
X — R™ an A-measurable function. The vector o € A parametrizes the ex-
ponential family of distributions with base measure v, and sufficient statistics
S,y fm- A fixed value o* in the parametric space A, induces the probability
distribution with density

APy, (x) x exp(a” - f(x))dvp(z) = exp (Z a;kfi(x)> h(z)dv(z). (2.20)

The exponent term a* - f(x) sometimes is called Hamiltonian. Apart from the
base measure, which is common to all densities in the family, every specific
distribution depends on the data only through the sufficient statistic f, which is
a low dimensional summary of the data. In particular, the density is determined
by linear combinations of f(z) the main characteristics of the data x.

To obtain a probability measure, dP,- .f,, has to integrate to 1 over its
domain. We can standardize the measure computing

F(a) = log/exp(a - f(x))h(x)dv(z) = logE,, (exp(a - f(X)), (2.21)

which is the log-Laplace transform of the reference measure, called also log-
partition function, or free energy. The family is defined when F' is finite and
the parametric space can be chosen as

A={a:F(a) < x} CR™, (2.22)

which is called natural or canonical parametric space.
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It’s possible define a parametrization function such that 8 = (), so that 3
is the new vector of parameters. If this function is the identity, then « is called
natural or canonical parameter, and similarly, the canonical exponential family
has densities

dP,(x) = exp(a - f(x) — F(a))h(z)dv(z). (2.23)

Equation 2.22 gives the main advantage of using the natural parameter, in this
case the parametric space A coincides with the set of values such that F(«) is
finite, i.e. P, is a probability distribution for all . The model 2.23 is equivalent
of the one obtained with the transformation

B=p(a)=Ba+f and y=B"'f(z)+, (2.24)

where B is nonsingular, (Brown (1986), proposition 1.6). The exponential family
is therefore invariant with respect to linear transformations of the sufficient
statistics. Starting from 2.23, every choice of B, [y and yy gives a canonical
exponential family.

If K, the closure of convhull(supp(v)) is bounded, and the sufficient statis-
tics are bounded as well in v, then F(o) < oo for all a in R™. However, some
values of a define a distribution with expected values of sufficient statistics in
the boundaries of K, this is mostly a problem of discrete distributions. Note
that some values in the boundaries of K, are not in supp(v), because the last
one is not necessarily a convex set. For these a, the distribution represent a
model in which the expected value of the sufficient statistics is not in the sup-
port of the family, so even though the model still makes sense theoretically, it’s
useless for describing the system under study.

These problems happens especially when the distribution is discrete. in
these cases is useful to reparametrize the model through the non-linear function
w:A— M CR™ such that

d
pla); = dajF(a), (2.25)
for j = 1,...,m. The new parameters are the expected values of the sufficient
statistics, they are called mean value parameters and they can be defined when
u(a) is one-to-one, with inverse function o = «(u). This choice gives a more
direct interpretation of the parameters, as u = E(f(X)). The parametric space
M = u(A) is usually a more complicated subset of R™ which is equivalent to

M =int(K,) or M =rint(K,), (2.26)

if the family is minimal or not respectively. Thus the expected value of the
sufficient statistics belongs to the interior of the support of the base measure
when the family is minimal. If is not minimal, then M is the relative interior
of the support, which is the interior of an affine subspace of K, .

If an n dimegsional sample from X is available, P* = P,« € P, can be
estimated with P = P; € P,. The parameter & is the mazimum likelihood
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estimator of o, which is the value that solves
1 n
Ea(f;(X) =~ filw:), (2:27)
i=1
for j = 1,...,m. Therefore the estimator can be written as
. N I
G=a(p), p=—>_ fiz), (2.28)
i=1

where o : M — A is the parametrization function from the mean value pa-
rameter to the canonical parameter. The maximum likelihood estimator exists
if and only if i € int(K,) (Jorgensen and Labouriau (2012), theorem 1.18).
If the family is not minimal the estimator does not exist as the family is not
identificable, so there are infinite parameter vectors that solves 2.27.

In the previous section the exponential family has been derived with maxi-
mization of entropy. The same approach applies also when the sample space is
not discrete and bounded. For general probability distributions P and @) with
densities p and ¢ absolutely continuous with respect to the measure vy, the
entropy is

H(P) =~ [ p(o)ogp(a)d (), (2:29)
with dvy(x) = h(x)dv(z). The Kullback-Leibler divergence is
= z)lo p() vy (z
DIPIIQ) = [ pla)log B lan, (z). (230

When h(z) is constant and v is the counting measure these quantities correspond
with the ones in equation 2.4 and 2.5 respectively. If v is the Lebesgue mea-
sure H(P) is called differential entropy and D(P||Q) can be interpreted as the
divergence between densities p and ¢. In a general measure space (X, A, vy,),
the exponential family can be derived in the same way as in section 2.2, by
maximization of H(P) in equation 2.29 with linear constraints.

The reference function h is defined a priori and influences both entropy and
divergence. When P is bounded, the choice that guarantees maximum entropy
is when h is constant, both in the discrete or in the continuous case. Note that
when this is the case the distribution P conditional to the value of the sufficient
statistics is uniform. This makes sense because often the expected value of the
sufficient statistics is the only available information on the experiment, therefore
different distributions with same sufficient statistics are indistinguishable, in
term of information, so the choice h(x) o< 1 guarantees maximal uncertainty.
Another coherent choice in an information context is a reference function that
depend on z only through f(z), however (for bounded distributions) the entropy
is always lower than when is h constant, and the probability of the data is not
affected only by the parameters. This approach is not developed further in the
thesis, however in the context of exponential random graph models it has been
used in Chandrasekhar and Jackson (2014).
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Properties of Exponential Families

The log-partition function F'(«) is often considered just a normalization con-
stant. However this function specifies all the information in P,, because of
the explicit link between F' and the expected values of f(z). The function is
differentiable in all values o € int(A) and the derivative and the integral sign
can be swapped (Brown (1986), theorem 2.2). Moreover the function is strictly
convex in its domain A. Derivatives of F' can be used to compute moments of
the sufficient statistics.

When the distribution is derived by maximization of entropy, the expected
values for the sufficient statistics is fixed. However, the relation between the pa-
rameters and the sufficient statistics is also in term of variability and correlation
between them. The cumulant generation function of P, is

ko(u) = Fla+u) — F(a). (2.31)

Therefore, when « is fixed, the expected value of the sufficient statistics is the
gradient of the log partition function:

Ea(7(X)) = VaF () = (- F(@) . (2.32)

do;

j =1,...,m, which is the same as equation 2.12. The variance matrix of f(X)
is the Hessian of F(«):

V1 00) = HoF (o) = () 233)

dodoy,

for j,hin 1,...,m.

Two distributions in the same family, differs only in the parameters, in this
case the log-ratio and the relative entropy have explicit formulas and decompo-
sitions. Fix three possible values of the parameter vector ag,a; and as in A.
The log-ratio between P,, and P,, is

Aawoo (o) =log 2208 — (0 = ) 1(0) = (Flan) = Fla)), (238

multiplying both term of the ratio by pa,, the ratio can be decomposed as

o (P @@ )
Aayao(o) = tog (L2 P0E) A 0) 4 M), (235)

The relative entropy is the expected value of the log-ratio, with respect to
the distribution ”in the numerator”, for exponential families is

D(PouHPao) = Em(Aahao (X))

= (o1 — a0)  Ea, (f(X)) — (Fay) — F(ap)). (2.36)
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The decomposition 2.35 implies
D(Po,[|Pag) = D(Po, [|Pay) + D(Pas || Pag)- (2.37)

Note that for general distributions P and @ is not even guaranteed that the
divergence D(P||Q) respects the triangular inequality. So the properties of the
relative entropy tend to be optimal in the exponential family.

2.4 Geometry of Exponential Families

The exponential family is often used because it has optimal mathematical prop-
erties. Most of them arise because of the structure of the log-space of densities.
In particular, the family depends on x only through the sufficient statistics f(x),
so the space of log-densities is actually a vector space of sufficient statistics, de-
noted with F. For absolutely continuous distributions, the sufficient statistics
are continuous functions of a Lebesgue space, so the vector space is infinite di-
mensional, whereas for the discrete case, F is m dimensional. This section is
inspired by Jorgensen and Labouriau (2012), and the results in linear algebra
needed for the discussion are taken from Cailotto (2004).

Affine Geometry of Finite Dimensional Families

Linear transformations do not change the structure of the vector space. Denote
with pg : F — F the linear function defined as ¢ (f(z)) = Bf(z), where B is
a m X m dimensional matrix. If B is nonsingular, ¢g is bijective, corresponds to
a change of basis in F and will be called isomorphism. The parameters link the
vector space of sufficient statistics and the distributions in the family. A fixed
xo € X defines a reference point f(xg) in the vector space. For simplicity it can
be assumed that f(xzg) = 0 (see Jorgensen and Labouriau (2012), theorem 1.3
for more details). The parameters are the coordinates of the sufficient statistics
f(z) with respect to the reference point f(zg) = 0. Therefore, if the vectors
in F are transformed by g, the link between the distribution in the family
and the points in the vector space remains the same when the new parameter
is f(a) =B~ la.

The interest is when the linear function is not a isomorphisms, as we can
use sufficient statistics in a lower dimensional vector space to approximate the
complete model. In particular, consider the family

Qo(x) = PO, (2.38)

where w(z) = Wf(z), W is a ¢ x m dimensional matrix with ¢ < m. W
induces the linear function pw : F — W, where W is a linear subspace of F.
If rank(W) = ¢, ow is surjective and dim(W) = t.

If P, is approximated by Qg, the information loss corresponds to the null
space of W, defined as the space of vectors that pw sends to 0. This space
is denoted as U, it is orthogonal to W (F = W @ U) and its elements are
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u(z) = Uf(x), where U is (m —t) x m dimensional such that WU = 0. Then
the residual of the approximation of P, with Qg is

R, (z) = e u@-U0) (2.39)

which is a family of distribution with sufficient statistics in U.

Note that if the models P,, Q¢ and R, are minimal, their sufficient statistics
belong to a m, t and m — ¢ dimensional vector space respectively. For identifi-
cability the link between the vector space and the distribution has to be one to
one, so it’s assumed that the components of «, # and ~y are not equal. Therefore,
as P, is equivalent to every model in which the sufficient statistics are trans-
formed by Bf(z), when B nonsingular. For identificability, assume that the
components of BT« are different. Qg is equivalent to all models with sufficient
statistics By,w(z), with B,, m-dimensional nonsingular, and B/ # has different
components. Analogously R, is equivalent to all family with sufficient statistics
B,u(x) and parameter B, v, where B, is an (m — k) x (m — k) nonsingular
matrix. WU = 0 implies that

B,W - (B,U)" =0; . (2.40)

So, the decomposition F = W @& U is maintained after the transformation of
w(z) and u(x).

Infinite Dimensional Exponential Families

The algebraic results introduced so far, works only when the configuration space
is finite dimensional. In fact, in this case every endomorphisms (invertible linear
functions from a space to itself) are bijective, and so they are isomorphisms.
Instead when the space of sufficient statistics is infinite dimensional, there are
endomorphisms which are injective but not surjective or vice versa (Cailotto
(2004), chapter 2).

In an infinite dimensional space we can define a infinite dimensional expo-
nential family of distributions with densities

Py p(x) = /O FDdy, (), (2.41)

where dvy (z) = h(x)dv(z) is the base measure of the space, v is the counting or
the Lebesgue measure if X is discrete or continuous respectively. The measur-
able function f : X — R serves as parameter in an infinite dimensional space
of real functions F, which is a linear space as af + bg € F, when f,g € F and
a,beR.

A t-dimensional approximation of Py, is

de,O,h;t(m) = eZZ=1 Oiwri(x)—Wt(G)dl/h(x)’ (2.42)

where Z§=1 O;w;(x) < oo for all x € X, t can be both finite or infinite, and fix
the precision of the approximation. The set of linearly independent functions
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w1, ..., wy is a basis of Wy, some examples are polynomials, splines or trigono-
metric functions. In some cases we have that

lim W, = 7, (2.43)

and the approximation error converges to 0. In fact, in this case exists an infinite
dimensional vector #* such that 22:1 OFw;(x) 5N fx), W(6%) 5N F(f) and

AQu o+ it (1) =25 APy (), (2.44)

for all f € F.

Not all density functions can be written as 2.41, however in some cases
it is still possible having no approximation error, but only when ¢ is infinite
dimensional. Moreover, in some cases it’s possible derive the convergence rate
D(P||Qy) for finite ¢, where P is the real distribution with unknown density,
and Qf = Qu,6+,n;t is the finite dimensional exponential family generated by
wy, ..., ws. QF is called information projection and

0* e 0, = {(91,...,9,5) 1 0, € R} (245)

The theory of this approximation method will be developed in the next section,
in particular the information projection does not always exist.

If P can not be written as 2.41, also the base measure h have to be chosen.
When the base measure of the real density v, is unknown, it can be replaced
with v; only if

supp(vj,) = supp(vs). (2.46)

Intuitively, the base measure should approximate as much as possible vy, how-
ever the base measure can not be estimated (remaining in the context of expo-
nential families). If the sufficient statistics w; are infinitely differentiable, like
polynomials for example, the function % fixes the smoothness of the family, in
term of how many times Q,, is differentiable. The principle of maximum en-
tropy can be used also when there is no information available, if X is bounded,
the solution is the uniform reference measure:

argmax; H(Q;) = 1. (2.47)

This choice can be used also when P, the real density can not be written as 2.41.
The only information needed of P is its support, as h fixes the support of all
distributions in the approximating family. In the most general form of infinite
dimensional exponential families the sufficient statistic f(x) can be modelled
directly in the function space without using basis of polynomials, considering f
in a reproducing kernel Hilbert space, see Canu and Smola (2006). This theory is
famous in statistics especially for the support vector machine or more generally
in nonparametric Bayesian statistics.
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Curved Families

So far, the approximating family has been derived using a lower dimensional
space of sufficient statistics, both in the finite or infinite cases. In the first one
has been used a linear transformation of low rank, in the second case the space
of all real functions has been reduced with a finite or infinite dimensional space
with continuous basis functions. A completely different approach is reducing
the dimension of the parametric space. If the problem is discrete, this method
is particularly useful when a minimal exponential family is too large to describe
the system under study, because most combinations of the parameters lead to a
“pathological” distributions, called degenerate. Also, the method can be useful
to reduce the correlation between the sufficient statistics.

A curved exponential family Py (x), where o : R™ — A, C R™, and A,
is curved subspace of R™, parametrized by the t-dimensional parameter n. For
different values of 7, the densities in the family are

APy () = €0 s @=F ) gy () (2.48)

where F(n) = F(a(n)). The log space of this family is not an affine space, as
A, does not contain a m-dimensional neighborhood. For more information on
curved exponential families see Efron et al. (1978).

2.5 Minimum Information Projection

In the previous section has been shown how the geometric properties of the
exponential family allow to obtain an approximation of a “complete” family P,
with a “low rank” approximating family @p. This approach works only when
the log-space of P, is a finite dimensional vector space, or if the true density
can be written as an infinite dimensional exponential family. However not all
distributions belong to this class. The method introduced in this section finds
the distribution in a family closest to a convex set of distributions, specified by
some restrictions.

Denote with P the set of distributions that describe the system under study.
Fix Qg € P, and consider the information sphere of radius p of distributions
close to Qg in information sense:

S(Qo,p) = {P € P : D(P||Qo) < p}. (2.49)

Let C C P a convex set of probability distributions such that C N.S(Qq, 00) # 0.
If exist @Q* € C such that

Q" = argmin D(P||Qo), (2.50)
PecC

then Q* is unique (by convexity of C) and it’s called information projection of

QO in C.
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The existence of Q* will be described later. First note that when such Q*
exists, the relative entropy respects the triangular inequality

D(P[|Qo) = D(P[|Q") + D(Q™[|Qo), (2.51)

for all P € C. Moreover if for all P € C, exists P’ € C such that Q* =
aP + (1 — «)P’, then
D(P[|Qo) = D(P[|Q") + D(Q"[|Qo), (2.52)

for all P € C (Csiszar (1975), theorem 2.2). Equation 2.51 assures that the
information loss on approximating P with Q¢ is greater than the information
loss using @* as an intermediate point. For specific sets C the stronger result in
equation 2.52 allows a decomposition of the approximation loss similar to the
one in equation 2.37 for exponential families.

The case which is most interesting to us is when the set C is defined by linear
constraints

Ep(fi(X)) = / fil@)dP(x) = s < oo, (2.53)

fori=1,...,m < 0o, and P € P is a fixed (real) distribution of the experiment.
Denote with P, C P the set

P, = {13 EP: Epfilx) = pi = Epfi(z)} . (2.54)
Then

C=P,=()Pu (2.55)
k=1

is the set of probability distributions with same expected sufficient statistics as
P.

Theorem 3.1 in Csiszér (1975) gives the necessary condition that the infor-
mation projection of Qo in P, if exists, it has density

dQ*(x) o exp (Z Ofwi(w)> dQo(x). (2.56)
k=1

But, when 0 = 0, Qg is the uniform distribution, so the information projection
Q" has probability density function

qr () = exp(0™ - w(zx) — Wy, (87)). (2.57)

Then, for the same theorem, @Q* allows the decomposition 2.52. Combining this
decomposition with 2.37, we have that

D(P[|Qo) = D(P[|Q") + D(Q™||Qs, ), (2.58)

for every fixed 6y € ©. Therefore Q* can be seen as the projection of the whole
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family Qg. If it exists is unique and

Q" = Qo =P, NQo. (2.59)

If a sample from X is available, let
- 1¢
=~ > i), (2.60)
i=1

for j =1,...,m, 6 is the solution of
Eq, (f(X)) = i (2.61)

The distribution @ = @ is the estimator of Q* that approximates P. By

2.58 the information lost from P to @ is the sum of the approzimation error
D(P||Q*) and the estimation error D(Q*]|Q).

Parametric Density Estimation

This approach has been used in the problem of estimating continuous distri-
bution P € P in a bounded domain, say X = [-1,1]. In Crain (1977) the
assumption is that P is an infinite dimensional exponential family as 2.41, and
the approximating density is its t-dimensional approximation, using orthogonal
polynomials as sufficient statistics. Then, Barron and Sheu (1991) generalize
the set P and shows that the information projection converges to an infinite
dimensional exponential family when the number of sufficient statistics goes to
infinity. Their theory shows that distributions in some spaces P can be approx-
imated with arbitrary accuracy by the information projection when m — oo.
The accuracy depends on the rate of convergence, which is derived when the
sufficient statistics of the approximating family are orthonormal.
If the density is strictly positive in its domain than it can be written as

p(x) o exp (Z kak(w)> : (2.62)

k=0

where z € [—1,1] and @ (z) is the Legendre polynomial of degree k, these
polynomials are orthogonal with respect to the La-norm in [—1, 1]:

1
/ wi(x)p;(x)dr < 6;5, 0<1i,j < oo. (2.63)
—1

Then, using the fact that filp(x)dx = 1, the density can be written as

p(x) = exp <Z Oror(z) — Foo(9)> : (2.64)
k=0
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and can be approximated with

P () = exp (Z Orepr () — Fm(9)> : (2.65)
k=0

using m Legendre polynomials as sufficient statistics.

In this context, it is explicit how the approximation works. The approxi-
mating density is the information projection of p,,, the exponential family with
Legendre polynomials as sufficient statistics. The knowledge of all infinite ex-
pected values of these polynomials corresponds to all information in p. Therefore
the exponential family p,, is dense in the set of bounded continuous densities
in [-1,1]. There are generalizations of this result to more difficult cases, such
as densities in unbounded domains, however for each problem, there are as-
sumptions in the form of p. These assumptions reflect some properties on the
real density are generally in the tails of the distribution, and the smoothness of
log(p), in term of how many time is differentiable with respect to z.

Barron and Sheu (1991) develop further this approach considering the cases
in which the log-density is approximated by a spline or a linear combination
of orthogonal polynomials or trigonometric series. They derive the rate of con-
vergence of the approximation in term of the Kullbach-Leibler divergence in
different set up of smoothness assumptions and in all three cases of sufficient
statistics. However, for the polynomial case, which is the only one exposed
here, the rate of convergent is derived only when the polynomials are stan-
dardized to be orthonormal as this condition leads to an optimal rate. Let
A (z) =logp(x) —logps, (z) the log-ratio between the real and approximating
density. The rate of convergence is

D(P||Py,) = O(||Am(@)]3). (2.66)

This rate of convergence is valid when ||A,,, (2)|| is bounded, exist A4, such that
[|1og pmlloo < Aml|logpml|2 for all densities p,, of distributions in the family

Py and Ay, ||Ay (2)]]2 2 0. If a n dimensional sample from P is available, the
estimation error converges to 0 in probability if A,,1/m/n, as

D(P},, Pum) < Opy (%) : (2.67)

where ﬁm,n € P, is the distribution with parameter 0 that corresponds to the
maximum likelihood estimator, which is the value that solves equation 2.61.
The number of sufficient statistics in the approximating family can be chosen
“automatically”, specifying m = m(n). For example, consider the Sobolev space
of functions WJ. This space contains the functions such that their (r — 1)-
th derivative f"~1 is absolutely continuous and [(f")(x))?dz < oco. If the
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logarithm of the real density f(z) = logp(z) belong to W3 then

D(pllpnm) = Opr ((;)QT + T:) : (2.68)

and if m(n) oc n?/ 7+ then

D(pllpnm) = Opr (n=27/Cr 1)), (2.69)

which is the optimal minimaz rate for distributions with log-densities in W3,
see Barron and Sheu (1991) for more information.
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Chapter 3

Random Networks

Introduction

The term network is widely used and somehow vague in what represents. In fact
numerous systems from very different fields can be represented using a network.
A very intuitive definition is a collection of connected objects, which are called
nodes, actors or vertices, the connections between them are ties, edges or links.
An example from chemistry is a molecule, which can be seen as collection of
atoms (nodes) linked by chemical bonds which are the edges. Completely differ-
ent examples are the airline network, where the airports are connected by flight
routes, or the brain, where the vertices are neurons and the edges are synapses.
The interest is typically in the structure of these networks, which in the previous
examples influences the function of the molecule, the air traffic and the capacity
of the brain. Of course the systems described by a network in the examples are
very different from each other. Nevertheless the mathematical formalism allows
to define and analyse properties of the network regarding the source of the data.
In mathematics networks are called more frequently graphs. In this thesis the
focus will be on random networks, in which the connections between vertices
are random according to a probability distribution. Statistically, this formalism
allows to analyse the network as an object, rather then model each probability
of a connection.

In this chapter is introduced the mathematical formalism of networks. In
particular is exposed the information that we can gather from a graph, which is
in term of descriptive statistics. Many of them are based on the counts of par-
ticular (usually small) pattern of ties in the network, these structures are called
subgraphs. The emphasis is in the ones involved with the eigenvalue distribu-
tion of the network, which will be shown that it contains all the information
on the network, when it is homogeneous. The graph that represents the system
under study is formed by ties and the information we can gather is based in
their placement. If two vertices are connected by a tie they are adjacent, this
chapter starts with a discussion of which relations between vertices the ties can
represent.
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3.1 Adjacency Relations

Like stated previously in the introduction, a network is a collection of nodes and
edges. For random graphs, the nodes are considered fixed and the connections
between them are random. The network is so a form of relational data, “the
information contained in the object can not be reduced to the characteristics
of the nodes” (Handcock et al. (2008)). The observed ties (i.e. the observed
graph), in the context of random networks, can be considered as an event in
the sample space of possible edge sets. The relations between actors can be of
various types, each of them leads to a different class of networks.

The first distinction depends if the edges are binary (the relation between
individuals can be present or not) or weighted (the relations have weights, de-
pending on their strength). These types of edges lead to the classes of unweighted
and weighted networks. In the first case “only” the structure of the network is
the object of the analysis, in the second case the network includes all possible
edges (eventually with weight 0 if there is no connection) and the object of the
analysis is the weight distribution. The last main distinction is in directed and
undirected networks if the relations are unilateral or bilateral respectively. For
directed networks the edges are represented using arrows and sometimes the
relations can be interpreted causally, for undirected graphs the connections are
represented by lines between nodes. Often there are restrictions on edges that
connect vertices to themselves (called loops or self-loops), or if multiple connec-
tions between two nodes are allowed or not. The mathematics involved in these
classes of network is often very different, in this thesis the focus will be only on
undirected networks without self-loops and multiple edges between, these are
called simple networks.

In a simple graph, the edges can be codified as binary variables. The net-
work is so represented by the adjacency matriz A = A(G) defined as A;; =1
if ij € E(G), 0 elsewhere. On the other way around, every symmetric n-
dimensional matrix, with null entries in the diagonal, and either 0 or 1 outside
the diagonal is the adjacency matrix of a simple network. Therefore this matrix
is a proper representation of a network and thus it has all information of the
graph. Functions of the adjacency matrix can be interpreted as functions of the
represented network.

Many properties of the graph depend on the structures present in the net-
work. For example the triangles represent the construct in which if the actors
x and y are friends, and also y and z, then the probability that = and z are
friends too is usually higher than the probability of friendship between random
actors. Many other structures can represent non-trivial patterns in the ties.
These are called subgraphs (or subnetworks) and they are important especially
when they are low dimensional. More formally if G = (V, E) is a simple graph,
a subgraph is G* = (V*, E*) such that V* C V and E* C E. By counting of
small subgraphs we can measure local properties of the network, useful in the de-
scription of the system when ties which are close to each other are conditionally
dependent.
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Some important subgraphs are:

e k-dimensional walk (or k-walk): sequence of actors vy, vs, ..., Ukt1, V; €
V(G). If v1 = vg41 is a close walk, the total number of k-dimensional
close walks is denoted as Wy, = Wi (G).

o cycle of length k: close walk vq,vs, ..., Vx+1 = v1 such that v; # v; for all
i # j. Is denoted as C}, C5 is a triangle, the total number of close walks
in 03 is M3(03) = 0.

e k-star: k+1 dimensional graph with one node called root connected to all
other k vertices, which are not connected between themselves, therefore
they have degree 1. The k-star is denoted as Sk.

e k-triangle: union of k triangles with a common edge between all of them.

e j-dimensional complete graph: set of vertices in which every combination
of actors is connected. This graph is denoted with K.

e clique, maximal complete subgraph of a network, i.e. set of actors vy, ..., vg,
v; € V(G) such that the subgraph of G spanned by these vertices is
complete. The set of k-dimensional cliques of G is denoted with ‘d?;; =
6% (G). The same set without multiple occurrences is denoted as €.

If the vertices are unlabelled, it is not important which vertices connect an
edge. However in this case every structure of ties can be represented by different
adjacency matrices. The way to introduce equivalence classes of matrices that
represent the same network is done through the notion of isomorphism. This is
the bijective map

a:V(G) = V(H) st.zye B(G) < a(z)a(y) € E(H), (3.1)

the isomorphism « preserves adjacency (edges mapped to edges) and non-
adjacency (non-edges mapped to non-edges).

If such function « exist, then the graphs G and H represent the same rela-
tions between actors. Note that the number of vertices |V (G)| has to be equal to
|V (H)|, more generally also the number of edges, triangles and all other struc-
tures are the same in both graphs. If the network is unlabelled a good model
has to be invariant with respect to the permutation isomorphism. Other models
include the possibility that the vertices belong to different classes. In this case
the invariance can be with respect to permutations between vertices of the same
class.

3.2 Descriptive Statistics
Our interest is on properties of the system that the network represents, whether

it is biological, social and so on. Some of its properties are related with math-
ematical quantities associated with the graph that represent the system. If
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network is random the ties have a joint probability distribution in the space of
possible adjacency matrices. So, we can gather information contained in the
probability distribution of the network using sufficient statistics of the adja-
cency matrix. This section introduces many quantities related to properties of
a network. They are usually one or n dimensional, some of them describe the
network focusing on local properties, others are more influenced by the global
structure of the network.

Given a graph G with n vertices, the simplest information that we have on
the distribution of the edges is the average degree. This is

AE@G)] _ %1TA1, (3.2)

d=
n
d is really important in modelling the network because the models perform
very differently depending on the relation between d and n. Let’s define G,,,
n =1, ... the sequence of growing graphs with n vertices. A random network is
called sparse if nd = 2|E(G,,)| = O(n), and dense if |E(G,)| = O(n?). Even
though only one n-dimensional network is observed, most of the properties of a
random model depend on the sequence G,,, so a model may perform well only
for a certain range of total number of connections. Almost all real world net-
works are sparse, especially when they are large. Another important statistics
are the number of connected components and number of isolates nodes. Some
descriptive statistics and models are useful only when the graph is connected,
for example when they involve the use of the eigenvectors. Also, we may want
restrictions on the information contained in different components, for exam-
ple forcing conditional independence between actors (or ties) if they belong to
different components.

In many real world networks, the number of triangles observed is often higher
than expected for a random model. This effect is measured by the cluster
coefficient
_ 3[Cs]

G2 7

the denominator is the number of two stars, C' measure how many of them
are “closed” to form a triangle (the constant in the numerator is because every
triangle contains three 2-stars). Many other subgraphs can be measured to
compare the observed network with a random model. These subgraphs are

called motifs, and with every network G is associated the significance profile
SP(G)=(SP,...,SPy,)

C (3.3)

SP(G) = Z]ZZ(]C(%)Q 7,(G) = W (3.4)

where |.7;(G)| is the count of the motif . in G, ., and 0.5, are the expected
mean and standard deviation of the subgraph count in the random model used
for comparison (Estrada (2012), chapter 4). The occurrence of motifs in various
networks (gene regulation, neurons, food webs, electronic circuits and World
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Wide Web) has been studied in Milo et al. (2002).

To compute the significance profile, the subnetworks .77, ..., %, have to be
counted. The subgraphs counts are functions of the adjacency matrix, for some
of them this function is explicit. Important subgraphs that describe the local
topology of the network are the closed walks. In Van Mieghem (2010) is shown
that the number of k step walks from the i-th to the j-th actor is (A*);;, so the
i-th diagonal elements of the powers of the adjacency matrix are the number of
closed walks that start and end in the i-th actor. Since the sum of the diagonal
elements of a adjacency matrix is equal to the sum of its eigenvalues, the total
number of k step closed walks is

Wi =>_ A =tr(AF), (3.5)
i=1

where A = (A1, ..., \) is the eigenvalue sequence of the graph. The eigenvalues
are almost only used in undirected network, because the adjacency matrix is
symmetric, therefore they are real numbers.

There is an explicit relation between the counts of particular subgraphs and
the closed walks Wy, the first term are

Wy = 2|
W3 = 6|Cs

Wy = 2|E| + 4[S>| + 8|C4|

Wi = 30|C5| + 10[>—| + 10|Cs|.

(3.6)

For k > 6 the relation become more difficult. Up to k < 5 the odd walks are
influenced only by “odd” sugbraphs (structures that does not involve triangles),
while even walks are influenced only by “even” subgraphs. Instead Wy is influ-
enced also by the number of 2-triangles, essentially an odd structure. However,
the small subgraphs tend do be important in W when k is big, except for F,
which influences all even subgraphs by the same factor 2|E|. In a small sub-
graph spanned by a long closed walk, there are many possibilities in which the
walks can cross multiple times some edges, while the walk remain close, so W,
also when k is big, are heavily affected by counts of small graph. This explain
intuitively why the closed walks are important in describing the local topology.

It is possible to combine walks of different length in a one dimensional statis-
tic. The following linear combination can be used

S W@ < 3 eWiF) = S exlln— 1F 4 (n—1)- (<)), (37)
k=0 k=0 k=0

where ¢y, is a sequence of constants that guarantee that the sum converges for
every possible graph, i.e. it converges for the complete graph K,. The main
one-dimensional index defined in this way is the Estrada index of the graph G
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(Estrada (2012), chapter 5), which is

e} [es] oS} k
EE(G) =) Kf => %tr(Ak) =tr (Z ‘;) =tr(e®),  (3.8)

k=0

where A is the adjacency matrix of G.
The index is bounded by
n—1

n=EE(0,) < EE(G) < EE(K,) <e" ! + — (3.9)

The index uses ¢ = % as standardization constants, this can be generalized to

ck = %, B > 0 and is called parametrized Estrada index
EE(G, ) = tr(eP4). (3.10)

This statistics gives a statistical mechanics interpretation of the network. The
system represented by the graph can bee seen as immersed in a heat bath at tem-
perature T', that is an external situation that affect equally all possible ties. The
parameter § = kE%T is the inverse temperature (kg is the Boltzmann constant).
Therefore the inverse temperature weight all possible edges of the network. In
the limit 8 — 0, the network converges to the empty graph, and the vertices
can be seen as particle of a gas, while when 8 — oo the network is a complete
graph in which all edges have infinite weight, this configuration reminds a solid

state. In the last case
EE(G,f) o, |

eBA1 ’

(3.11)

so only the biggest eigenvalue is relevant in the structure. Other results in
statistical mechanics are in Estrada (2012), chapter 5 and in Estrada and Hatano
(2007).

Other two important indexes are derived from the decomposition

Wi Wi
EE(G) =tr(e®) = > ot ST
k odd : k even : (312)

= tr(sinh(A)) + tr(cosh(A)) = EEoqd(G) + EEeven(G).

A bipartite graph is a network in which the vertices can be divided in two com-
munities such that there are no edges between vertices in the same community
(a tree is an example of bipartite graph). In this case there are no odds walks
in the network, therefore FFE,q4(G) = 0. If the index is close to 0, or in general
much smaller than the even counterpart the network is almost bipartite, so rela-
tions between people in the same community are possible but much more rare
than relations between people in different communities.
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Centrality Measures

A network is an n(n — 1)/2 dimensional binary object, we can summarize some
of the information contained in it with a sequence of n numbers that hopefully
describes properties of the network. The first way introduces measure the im-
portance of the n actors based on the disposition of the ties. These are called
centrality measures, the simplest one is the degree sequence or degree centrality
d defined as

d=(dy,....,d,), d;=|N(®)], (3.13)

where N (i) is the neighborhood of the i-th vertex, i.e. how many friends the
i-th actor has. The statistical properties of this sequence are in the degree
distribution:

@) = > b (@) (3.14)

where dq(x) is the Dirac’s delta function, defined as dq(z) = 1 if x = a, 0
elsewhere. Thus, d(z) is the proportion of vertices with degree x.

The degree sequence is a first order centrality measure, only neighbours affect
the importance of a vertex. Consider a random walk in the graph G (assume
G connected) that starts from a fixed vertex and in each point move to a ver-
tex in the neighborhood with constant probability. If the walk is long enough,
the starting vertex is not important as it can explore the whole network, so its
distribution became independent on the starting position. Every d; is propor-
tional to the time spent in the i-th vertex by infinite dimensional random walk
defined as before. This is called sometimes random walk centrality measure and
is essentially equivalent of the degree centrality d.

The degree distribution can be relevant on explaining pattern of ties when
actors with many friends are more important in the global structure of the
network. The degree distribution is the statistic that has been studied the most
in analysis of random networks. The subgraphs associated with this distribution
are the k-stars Si. Each Sj contains (];) j-stars for all j < k (Frank and Strauss
(1986)), so there is the one-to-one relation

5i1= % (7). (315)

jzk

The last equation shows the explicit relation between a network statistic, the
degree distribution, and the count of particular subgraphs, the k-stars.

On the other extreme, a centrality measure that characterize the global
structure of the network is the eigenvector centrality u = (uq, ..., u,) where u is
the eigenvector of the adjacency matrix associated with the biggest eigenvalue.
This centrality is defined only when the network is connected, in this case the
elements of u are all positive. Every element u; is equal to the ratio by all
infinite dimensional open walks that start in ¢, with the total number of infinite
dimensional open walks. If the open walk is very long, after some point he
will has crossed all vertices, so he lost the information in the neighborhood of
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the starting point, i.e. the local structure around the i-th actor. That’s why
long open walks characterize the global structure of the network, whereas closed
walks are associated with the local structure. The values u; give the relative
importance of the vertices in the global structure of the network and v is a global
centrality measure.

A compromise between the two centrality measures previously defined is an
index influenced by the local behaviour of the network, however considering
more structure than d, which can be considered as a first order centrality mea-
sure. This index is associated with the eigenvalue sequence of the adjacency
matrix A = (A1,...,A,). Like for the degree case, more information is in the

etgenvalue distribution
1 n
== Z Sx, (2). (3.16)
=1
The moments of this distribution are

We _ /kd/\ Z/\k ftrAk) (3.17)

n

k =1,2,.... These quantities are important because W}, is the number of closed
walks of k-steps in the network represented by the adjacency matrix A.

The indices introduced below can be generalized to some local centrality
measures, counting close walks that start from all vertices. The Estrada (or
subgraph) centrality is

oo

1

EFE = diag(e® => —ydiag( (AF), (3.18)
k=0

(A¥),; is the total number of walks that start and end in node i. There are
explicit formulas that link these closed walks to the subgraphs that contains the
node ¢. They are similar to the ones in equation 3.6, however “non-symmetric”
subgraphs (like >— for example) appear multiple times because the location of
in the subgraph is important (see Estrada (2012), chapter 7). Similar to the one
dimensional statistics, the parametrized, odd and even Estrada centrality can be
defined considering the matrix SA with inverse temperature 5 > 0 for the first,
and only the odd, or even, powers of A for the last ones.

3.3 Models for Random Networks

In the previous section have been introduced various ways to summarize the
information in a network. If the graph is random, these statistics are heavily
influenced by the joint probability distribution of the edge set, which is a network
model. The definition of a model assigns probabilities to all possible networks,
i.e. to all possible combinations of edges.

Formally, the model has to specify how the observed graph has been gener-
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ated. The first way to do so is fixing a generator mechanism. Various algorithms
for generating networks are proposed in this section, some of them mimic how
the network evolves. For example the generator mechanisms can be a process
in which the network grows until reach a configuration with the same number
of actors than the observed one, or the evolution of the network based on local
processes between the actors. If the model represent accurately the observed
network, it’s possible use it for prediction or to test hypothesis on the generator
mechanism.

The generator mechanism can be interpreted as an algorithm to generate
probability distributions over the space of simple networks. The simplest algo-
rithm is due to Erdés and Rényi (1959). In this model all the ties between n
actors are independent with constant probability p, which is the only parameter.
It’s called Erdds-Rényi random graph, despite the simplicity of the mechanism,
it presents many non trivial properties (see Newman (2010), chapter 12), one
of them is the degree distribution. Consider the n dimensional graph G, let p
depends on the size of G as p = ¢/(n — 1), so that ¢ is the expected number of
neighbours that has an actor in the network (p and n are linear related so the
graph is sparse). The probability that an actor hs d neighbours is

n—1\ 4 i _ qd
= L—p il et 3.19
pa= (" ria-n) ¢ (3.19)
Asymptotically, when the graph is sparse, the degree distribution is Poisson
with mean ¢ = np. When this happens the network is connected with high
probability. The cluster coefficient is

q
n—1

(3.20)

that goes to 0 when n — oo, this is one of the problem of this model when it’s
used to representing real networks.

In the Erdos-Rényi model the probability of having a tie is constant, so is
also the expected degree of a vertex. This is always an unrealistic assumption in
real world network. The configuration model is a generalization for generating
graphs uniformly from the ones with a fixed degree sequence. Starting from
d = (dy,...,dy), with ), d; even, the i-th vertex has d; “pieces of edges” attached
to it. Then the vertices are joined accordingly to their degree uniformly in the
space of all possible configurations available. Mathematically is simpler allowing
the mechanisms to form self loops or multiple edges, however, if the graph is
sparse (like in real world networks), the probability to obtain a graph which is
not simple vanish with n (Newman (2010), chapter 13).

Most real world network have a fat tailed degree distribution. The most im-
portant is the power law distribution pg = d~*/((«) often written in logarithmic
scale

logpy = —alogd — log ((a), (3.21)

where « is a positive parameter. The moments of order m > o — 1 diverge.
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For most real world network 2 < a < 3, in such cases the expected degree
is defined, however all higher moments diverge, therefore the average degree
d has infinite variance. In most cases the degree distribution of an observed
network fits the power law curve only in the right tail. Therefore, the degrees
greater than the parameter d,,;, are power law, and the remaining part of the
distribution is modelled in another way, or it is excluded if it’s assumed that only
the nodes with many neighbours (called hubs) are important for the structure
of the network.

In some networks the vertices are labelled depending on which community
they belong. In this case the straightforward generalization of the Erdos-
Rényi random graph is the stochastic block model. The ties are generated
independently according to the probabilities pg1, ..., pom if both actors belong
to the same community, instead, pi2,p13,...,Pm—1,m are the probability when
the actors belong to different communities. The total number of parameter
is m(m — 1)/2 + m, m is the number of communities. This model it’s like a
mixture of Erdos-Rényi graphs, so the degree distribution is a mixture of Pois-
son. Despite so, this model have computational advantages, especially when n
is large, and there are many algorithm for estimating the communities, so that
they doesn’t have to be known a priori. The stochastic block model is invariant
under permutations of actors in the same communities. The case with m = n is
sometimes called the Bernoulli model the tie that connect ¢ and j is generated
independently with probability p;;, for i = 1,...,n -1, j = ¢+ 1,...,n. If the
network is even moderately large, this model is too flexible despite (the usually
unrealistic) assumption that the ties are independent.

In the models introduced so far, the joint probability distribution of the ties
is derived defining a (stochastic) process that describe the network formation,
usually an algorithm that generates graphs. However, this process does not
mimic the generator mechanism of the real network, which typically is unknown,
and likely too complex to be defined as a mathematical algorithm. Looking the
model in a statistical perspective, allows a more direct relation between the
distribution of the edge set and the one of the statistics used to summarize the
information in the network. Moreover these statistics are counts of particular
subgraphs that have relations with properties of the network. Some choices of
subgraphs induce a link between the joint probability distribution and the local
behaviour of the generator mechanism.

The model is defined fixing the expected value of the sufficient statistics
included in the probability distribution. Then, using the principle of maximum
entropy, the most uncertain distribution is called exponential random graph
model (or p*-model) because the joint distribution of the graph belong to the
exponential family. Formally the graph G has distribution

Po(G) = exp{a- f(G) = ¢(a)}, (3.22)

where f(G) is a vector of sufficient statistics which are function of the adjacency
matrix of G, like counting of various subgraph, degree distribution and so on.
The maximum entropy principle and the properties of the exponential family
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give good reasons to use this model. Moreover, some choices of f(G) have an
interpretation in the description of the local stochastic process that describes
the conditional dependencies between different edges. The downsize is the esti-
mation process. Evaluate ¢(«) is often impossible, so the estimation is usually
carried on with Markov Chain Monte Carlo, however there are issues because
the method is still computationally very expensive. In the next chapter the the-
ory behind models will be developed more deeply, in the last chapter f(G) are
moments of the eigenvalue distribution, i.e. the distribution of the closed walks
in the network. A complete summary of exponential random graph models is
Robins et al. (2007).
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Chapter 4

Exponential Random
Graph models

Introduction

Some graphs are similar to each other in some sense. For example, two possible
networks may have similar average number of connected components, edges, tri-
angles, cluster of vertices, eigenvalues or degree sequence. These characteristics
are related to the joint distribution of the edges, which assign probabilities to
all possible graphs. However, despite these quantities can be measured in real
networks, the identification of the underline model is often really difficult, if not
impossible. Moreover, some models that mimic a completely different generator
mechanism can fit really well the data, because they lead to similar values for
the descriptive statistics of the network. In chapter 2, the maximum entropy
principle has been used to choose particular distributions for the data, which
correspond to choose an exponential family. For this model, there is an explicit
link between the distribution and a linear combination of sufficient statistics,
which in the network case are functions of the adjacency matrix. The model is
called Fxzponential Random Graph Model and the sufficient statistics are counts
of particular subgraphs in the network.

Often in real networks the joint distribution depends on local processes,
i.e. dependencies, that lead to the observed network. When this happens the
edges ij and kh are dependent if and only if they are sufficiently close to each
other. This is called local level dependency, if specified, lead to an explicit joint
probability distribution of the network that belong to the exponential family,
by the Hammersley-Clifford theorem. When the processes are “really local”,
meaning that only the neighbours of the vertices affect the probability of a tie
between them, the model is called Markov Random Graph Model, because of
the Markov dependency between actors.

38



4.1 Joint and Conditional Distributions

A network model is defined assigning probabilities in a reasonable way in the
space of simple graphs. In this way a network is generated by a stochastic pro-
cess that assigns the ties, the observed network is a realization of this process.
Sometimes the stochastic process is influenced only by local rules between the
vertices, which in this case are often called actors. In Robins et al. (2007),
the network is defined as a “self organizing system of relational ties”, the pro-
cess models the mechanism of self organizing ties, and the observed network is
assumed to be a realization of the process at one particular time. Of course,
the specific realization is representative of the process if the last one is in some
sort of thermodinamical equilibrium. When this is the case, the process gener-
ates networks with distribution close to the one with maximum entropy, with
constraints the expected values of the quantities that govern the process.

Since the network model is governed by the local behaviour of the vertices,
a big part of the information should be in small subgraphs, as they describe
patterns of relations between close vertices. The subgraph counts are functions
in the space G,, = {0, 1}(3)7 the set of simple graphs with n vertices, or equiva-
lently, in the space of symmetric adjacency matrices. A k-dimensional sufficient
statistic is f : {0,1}(3) — NF, and f(G) is a vector of subgraph counts. A
particular value of f(G) is called configuration. The probability distribution in
G,, defined by the sufficient statistics is a Gibbsian ensemble, so all networks
with the same configuration are equally probable.

In this section G denote both the random and observed network, the random
variables that correspond to the ties are X = (X192, X13, ..., X;i—1.,,), where X;;
is the binary random variable associated with the tie between ¢ and j. The first
assumption is that P(G) > 0 for every G € G, which means that every edge
appears in the network with positive probability, this is

PG>0V GegG, <<= PX;=1)€(0,1)V i#j. (4.1)

Using the approach of chapter 2, the sufficient statistics f(G) = (f1, ..., fm)
are functions of the adjacency matrix of GG, and they represent the information
that we have on the network GG. The expected values of the sufficient statistics
are the constraints for the maximization of entropy, which for random graph
can be written as

max — > log(P(G))P(G)

Geg
s.t. Z fi(G)P(G) = p;, fori=1,..,m, (4.2)
GEGn
P(G)>0for GEG,, Y P(G)=1
GEGn
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The solution is
Pa(@) = expla- f(G) — 1 — ag) = e/ (@=F (@), (4.3)

where the parameter oy is included in the log partition function

F(a) =14 ag =log ( Z exp(o - f(G))) . (4.4)

Gegn

The function F is the main obstacle of these model, because usually it can not
be computed explicitly as the dimension of G, is 2(3).

In this model the observed network G affects the probability distribution
only through the subgraph counts f(G) which is a point in the vector space of
the configurations. The Lagrange multipliers o are the canonical parameters of
the family P,, the parametric space is © C R™.

Since P, is a Gibbsian ensemble, the distribution over the microstates (net-
works) with same macrostate (configuration of sufficient statistics) is uniform.
The distribution over the possible configurations belongs to the exponential fam-
ily. This guarantees that networks with similar sufficient statistics are “close”
to each other, but also that the sufficient statistics have all the information
contained in the distribution, as different networks with same configuration are
indistinguishable. P, is therefore the most uncertain distribution, given the
information that we have on the expected value of the sufficient statistics.

Maximize the entropy with respect to P is equivalent to minimize the relative
entropy between P and a uniform prior distribution Py (in information sense).
The entropy H(P) is proportional to

D(P||Py) = Y P(G log<( )P(G)), (4.5)

Geg,

which is the relative entropy of P with respect to the uniform distribution over

the space of simple graphs
1

(2)

Note that the uniform distribution Py belong to the family P, with a = 0. In
this case all possible networks have the same probability, so the pattern of ties
can not contain information on the distribution of the network.

More interestingly, when f;(G) « |E(G)|, equation 2.37 allows the decom-
position

Py(G) =

D(Pal|lPo) = D(FallPa1,0) + D(Fa,.0)|[Fo), (4.6)

because all three distributions belong to P,. F(a,,0) is

Pla, 0) = exp (a1|E( )| — < ) log(1 + eal)) (4.7
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If the expected number of edges is fixed to u; = E|E(G)|, then

d (n oy [T 1
Mdal@ los(1 1 ¢ >(2)1+em, (48)

and the probability of an edge between i and j in V(&) is the constant

_ 1 m
S lenr (7))

p (4.9)

(Newman (2010), section 15.2), therefore P,, ¢ is the distribution of an Erdds-
Rényi random graph.

The decomposition 4.6 can be interpreted in term of information. The second
term D(P,, o||Fo) is the information gained after knowing the expected number
of edges, in this case the most uncertain distribution with this constraint is the
Erdos-Rényi random graph, with probability p in equation 4.9. The first term
D(P,||Pa,,0) is the difference in term of information of P, from P,, o, which
is the non-informative distribution in the case in which the expected number
of edge is known. Given this sufficient statistic, the ERGM can be interpreted
as the information gain from the Erdds-Rényi random graph, after that the
expected values of the other sufficient statistics f2(G), ..., fm(G) are known.
Thus, the Erdés-Rényi random graph is the noninformative prior when only the
expected average degree is known.

Suppose that G is has two connected components G; and Gy. Then there
are no subgraphs with some vertices in G; and some in G5. Therefore the counts
f can be separated in f1 and fy such that f; + fo = f, where f; and f; are the
counts of the same subgraphs as f in G; and G5 respectively. The distribution
of G has density

P, o e@F(G) = g2 (J1(G1)+12(G2)) = carfi(Gr) g f2(G2) (4.10)

This shows the third axiom of Shore and Johnson (1980) introduced in section
2.2. In this case the network can be decomposed two independent subsets (two
ties in different components are conditional independent, given the rest of the
network) and the inference on « can be done separately.

Conditional distribution

Equation 4.3 is the joint probability distribution function of an exponential ran-
dom graph model. Now is exposed the relation between 4.3 and the behaviour
of the graph at the local scale. Denote with G;; the network G when the edge ij
is forced to be present, G;; when ij is absent. Denote with G§; the set E(G)\ij,
which is the observed network G without the edge between ¢ and j, with regard
17 is present or not.

The local behaviour affects the substructures in the generated graph, the
probability of an edge can be modelled such that depends by a linear combina-
tion of substructures. Equivalently, to have an unbounded linear term, consider
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the logarithm of the odds

P(X;;=1) P(X;; =1)
1 dds(X;; =1)) =1 X =1 X . 4.11
Now, the log-linear model is
P(X;; =1) exp(a - X;;)
log—— 7 —q-f(X);; P(X;=1)= ——— "7 _ (412

where f(X);; is a function of the adjacency matrix which has to be defined.

In summary, we know the joint probability distribution of the network and
the marginal distribution of an edge. Since the ties are dependent, in Van
Der Pol (2017) and Strauss and Ikeda (1990) is suggested to use the conditional
odds
P(Xi; = 1]G5))

log —————~
®P(X,; = 0[C)

=a- f(GF))- (4.13)
Then the function f (ij) can be fixed considering the joint distribution 4.3.
Since the sufficient statistics (quantities that contains all information on the dis-
tribution) are subgraphs, the function f(X);; has to be related to sub-network
counts. G7; is fixed, so are the subgraphs in G7;. If X;; = 0, the sub-networks

are the same as in Gf;, so f(G¢;) = f(G;;). Then the model equivalent to 4.3 is

K
P(Xi; = 1|GY;)
1-P(Xy; = 1|G5)

log — - (F(GF) - F(G3)). (4.14)

The parameter « regulates the average change of sufficient subgraphs when one
edge is modified.

The last equation can be used to generate a Markov Chain of networks in
which the difference between two successive graphs is at most one edge. This
is the main tool in estimation, as we can choose an algorithm which doesn’t
need to compute the log partition function F(«). Moreover, the Markov Chain
can be used to mimic the unknown process that generates the network, at least
in an approximate way such that at each time, one tie can be modified. The
assumption is that the network is observed in a time such that the generative
process is in thermodynamic equilibrium, the Markov Chain is often a good in-
dicator if this assumption can be reasonable. More details about the estimation
process will be given later in this chapter.

4.2 Sufficient Statistics and Local Dependencies

The model 4.3 specifies a distribution over the space of simple random graphs.
Often in real networks this distribution depends on local processes, i.e. depen-
dencies, that lead to the observed network. When this happens the edges X;;
and Xy, are dependent if and only if they are sufficiently close to each other.

42



This is called local level dependency, if specified, leads to an explicit joint prob-
ability distribution of the network, that belongs to the exponential family, by
the Hammersley-Clifford theorem.

If the assumption 4.1 is fulfilled, every network model can be written as

P(G) x exp A(G), (4.15)

with A(G) = log P(G) — log P(G*). For a fixed graph G* € G,,. On the other
way around, a network model can be defined with density as in 4.15 for every
A - Ao, 1}(3) — R. The Hamiltonian A(G) is a log-ratio and the problem is
binary, so the reference configuration can be chosen to be the empty graph:
G* = 0,. Every network distribution is so a log ratio between the observed
network G and the empty graph.

In Frank and Strauss (1986)) is shown that the graph Hamiltonian A(G) can
be written as

A(G) =log P(G) —log P(0,) = a - (f(G) = f(0n)), (4.16)

and f can be chosen such that f(0,) = 0. This choice allows to use only
subgraph counts as sufficient statistics of every network, because the difference
f(G) — f(0,,) = f(G) depends only on the edges of G, the location of non-edges
is not important. Therefore f(G*) = f(0,) = 0 is the reference point in the
vector space of log densities as is shown in section 2.4 and the parameters o
are the coordinates of the vector f(G) in this space. In order to choose which
subgraphs include in the Hamiltonian, we need to specify which sets of edges
are conditional dependent.

The (local) dependence assumption is a rule in E(G) x E(G) that assigns
conditional dependencies between ties, i.e. fix which couples of edges can affect
each other, given the rest of the network. For example in the Markov dependence
exposed below, two ties are conditionally dependent if they are incident (they
share a vertex). Following Frank and Strauss (1986), let’s define the dependence
graph D(G) as the network with (g) vertices, which correspond to the edge set
of G and they are denoted as V(D(G)) = {12,13, ..., (n — 1)n}, the edge set of

the dependence graph is
(ij)(kl) € E(D(G)) if {ij,kl} C E(G), (4.17)

withl < .. <i<j<..<nandl<..<k<l<..<n. Notethat
the dependence graph usually have self-loops, but these can be excluded as the
self-loop implies the obvious fact that an edge is conditionally dependent to
itself. In figure 4.1 there is a network G and its associated D(G) with Markov
dependence assumption.

After the dependency rule is chosen, there is an explicit relation between the
dependence graph and the sufficient count statistics of the ERGM. In particu-
lar, the dependence assumption gives an explicit formula for A(G), the log-ratio
between the observed network and the empty graph. The Hammersley-Clifford
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Figure 4.1: Network G and correspondent D(G) with Markov dependency: two edges
are conditionally dependent if they share a vertex.

theorem (Besag (1974)) implies that A(G) is a linear combination of the sub-
graphs of G associated with the cliques of D(G).

Theorem 1. (Hammersley-Clifford) Any simple graph G, with associated de-
pendence graph D(G), can be written as

P(G) x exp Z o, (4.18)
€% (D(G))

where € (D(G)) is the set of maximal cliques of the dependence graph D(G).

There is an explicit relation between some subgraphs of G and the maximal
cliques of D(G). For example, in figure 4.1 D(G) is computed using Markov
dependency. The clique (12)(23)(25) correspond to the 3-star centred in 2,
(25)(45)(56)(57) correspond to the 4-star centred in 5, which contains itself the
3-stars correspondent to the cliques (25)(45)(56), (25)(45)(57), (25)(56)(57) and
(45)(56)(57). The triangle 5,6, 7 correspond to the clique (56)(57)(67).

Since the vertices are unlabelled, subgraphs of G (cliques of D(G)) of the
same type are equivalent in the distribution. This is called homogeneity condi-
tion: as the model is invariant under permutation of the labelling, the param-
eters a. in equation 4.18 are not affected by which actors form the subgraph.
This type of graph is called homogeneous network. For example, in figure 4.1
there are four 3-stars, (three of them centred in 5 and one in 2). The pa-
rameters «. are equal for all the cliques ¢ that correspond to a 4-star. The
Hammersley-Clifford theorem combined with the homogeneity condition, de-
fines every possible network model invariant under permutation of the vertices.
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The family distribution of homogeneous networks is so

P,(G) =exp Z ael-Z(G)] — Y(a) | . (4.19)
ce€(D(G))

where € (D(G)) is the set of cliques such that each of them correspond to a
different subgraph .#.. Note that because of 4.15, every network distribution
invariant under relabelling can be written in this way. Therefore, with the
subscript « is emphasized that P, is a family of distribution over the space of
homogeneous simple networks, which is actually an exponential family in which
the sufficient statistics are the subgraphs counts associated with the cliques
in the dependence graph. Every fixed value o™ specifies a distribution in this
family, i.e. a random graph. The parameters « lie in the canonical parametric
space A C RIT(P@G)I,

It’s reasonable to assume that a relevant part of the information can be
explained by “small” subgraphs, like triangles, stars and so on, in this way only
a finite amount of parameters a,. are non-zero. The properties of the exponential
family imply that all the information contained in the distribution, is contained
in the sufficient statistics 7.(G), when «. # 0.

ERGM for Nonhomogeneous and Directed Graphs

While homogeneity of a network is easy to define, using invariance under relabel-
ing, non-homogeneity can take very different forms. In principle every network
model can be represented using P(G) in equation 4.18, but this specification
involves way too many parameters, as all possible conditional dependencies be-
tween actors is included. If there are information on the specific vertices, this
form of non-homogeneity can be modelled including this information as covari-
ates in the vertex set, this approach is not developed in this thesis, except for the
simplest case in which there is only one covariate that denotes the community
in which the vertex belongs.

We can then reduce the number of parameters in P(G) in the following way.
We need to introduce counts of equivalent subgraphs, but in this case not only
their form is important, but also the labels of the vertices that compose them.
The Hammersley-Clifford implies that the model takes the form

Pa;k = exXp Z Q¢ j yc’j(G” - ’(/Jk(Oé) y (420)

c€€(D(G)) jeJ.
where |.7; ;(G)| is the count of the subgraph ., with labels j € J. defined as
Je = {d1, o diviz st Gi € {1, k}}, (4.21)
|V ()] is the size of the subgraph .#.. The number of parameters is still too

large but, with some dependence assumptions, the model can be approximated
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reasonably well.

Exponential random graph models can be used also for directed networks. In
this case the edges have a direction, therefore (if self loops are not allowed) there
are in total n(n — 1) possible edges. The directed Erdés-Rényi random graph is
the usual extension of the undirected version, in which the only parameter fix
the probability p of an edge between two vertices. In this model, the probability
of a dyad (there is an edge from i to j and one from j to i) is p?. Also the
binomial random graph can be extended with the same approach, the number
of parameters is n(n — 1), one for each potential edge.

The first nontrivial ERGM for directed graph is the dyad independent ran-
dom graph, in which the edge from 7 to j and the one from j to i are conditionally
dependent, while all other pairs are conditionally independent. In this model
there are two parameters, one for the edge density, and the other to model the
dependence between edges that connect the same vertices, which it’s usually
positive. In fact if i — j € E(G), then it’s likely that j — 4 is also in E(G)
(if 7 considers j his friend, it’s likely that also j considers i as friend). Also
for directed networks more complicated dependence assumptions can be used,
in the next section is introduced the random graph with Markov dependency,
both for undirected and directed networks.

4.3 Markov Random Graphs

The most local dependence assumption is the Markov dependency, the relation
between i and j is influenced only by their neighborhoods and the intersection
between them. At edge level, the subgraphs associated with neighborhoods are
the k-stars, k = 1,...,n — 1 and the one associated with intersection between
neighborhoods of two vertices is the triangle. The Markov Random Graphs has
distribution

P. o(G) x exp <T|C3(G)| + z_: 9i|Si(G)|> ) (4.22)

where |C5(G)| is the number of triangles and |S;(G)| is the number of i-stars.
Of course the distribution is both in form 4.19 and 4.3.
Using the reparametrization

1Sil=>" (’Z) dp and g =) (?) 0;, (4.23)

h>i i<h

where Jh is the proportion of vertices with degree h, the distribution 4.22 can
be written as

n—1
P, ,(G) o exp <T|03 +>° uhdh> . (4.24)
h=1

In this form the parameter p; control the bias for or against vertices of degree
h (Frank and Strauss (1986)). This model is an ERGM, and is the distribution
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with maximum entropy with given expected degree distribution. In many real
cases, especially for network which are large, the variance of the average degree
is unbounded, like in the power law (equation 3.21) when 2 < « < 3. When
this happens, the sufficient statistics can have very large values and the model
is not useful (more generally, the maximization of entropy is not constrained by
an inequality if its variability is very large or unbounded).

The correspondent conditional distributions can be written explicitly and is

P(X;; = 1‘ij)

I
BT-P(X,; = 11G%)

=7A(C3) + ki) + 1), (4.25)

where A(C3) = |Cs (Gj;)| —|C3(G;)l; piy is the parameter associated with Jz),
the proportion of vertices with degree equal to ¢ when ij € E(G). If ¢ and j
have the same degree, then p(;) = p;)-

For the next discussion, without loss of generality it can be assumed that
7 = 0, so the triangles are not relevant in the model. Therefore the Hamiltonian
of the Markov random graph depends only on the degree distribution d. Let
¢ : D — R a function defined in the space of degree distributions D, which is
a vector space because every degree distribution is a n dimensional vector with
entries in {0,...,n — 1}. If ¢ is bounded, then

n—1 n—1
o(d) =" phdn =Y 0;1S:(G)] (4.26)
h=1 =1

(Snijders et al. (2006), section 3), The parameter vectors p* and 6* depend on
o and are related by 4.23.

We can consider approximate models using the geometrical properties of the
exponential family introduced in section 2.4. If the first parameters pq, ..., i
are fixed to 0, the model

n—1
Q1 o exp ( > um%) (4.27)

h=t+1

is a m — 1 — ¢ dimensional approximating family of Py , in which only vertices
with degree higher than ¢ + 1 are important in the model. The quality of the
approximation depends on how important are the vertices with low degree.
Markov random graphs can be extended to nonhomogeneous networks with
community structure. In this case the Hammersley-Clifford theorem implies
that we need to counts the subgraphs distinguishing the labels of the vertices.
Suppose that there are k communities, the degree of the i-th vertex in this
case is a vector di = (d;1), ..., di(x)), Where d;(;y is the number of neighbours
of the i-th vertex in the j-th community. Denote with Dy the vector space
of degree distributions with vertices belonging to k communities. In principle
every function ¢ : Dy — R can be written using an Hamiltonian like for
homogeneous network, however the number of parameters grows very quickly.
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Figure 4.3: Directed subgraphs with less than 3 vertices.

In this set up is so necessary to consider approximate models, also when there
are few communities. For example, with two communities the smallest relevant
subgraphs are in figure 4.2, in this case there are 13 relevant parameters.

Markov dependency can be used also for directed networks but the number of
parameters tend to grow quickly. In fact for every undirected subgraph, there
are many combinations of directions of the edges. Likewise Markov graphs
with community structure, all useful models are approximate, as only the small
subgraphs are included in the Hamiltonian. In figure 4.3 there are all possible
subgraphs with less than 3 vertices, the double arrow represents the two edges
i — j and j — 4. The model with subgraphs in the figure has 15 parameters.

Markov random graphs in canonical form, like 4.22 or 4.24 are not useful
because the Hamiltonian is too flexible. This is an usual problem of discrete
exponential families, and it’s the main topic of the next section.

4.4 Theoretical and Computational Problems
Most of the literature on exponential random graph models heavily empha-

sizes their computational problems. This is not unexpected, as most models
in canonical form, such 4.3, 4.19 or 4.22, simply doesn’t work. However, many
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computational issues, such the problems in convergence of the Markov chain for
example, are caused by some theoretical characteristics of discrete exponential
families. The theoretical problems of these models are instability, sensitivity
and near-degeneracy. The first one, if present, implies the two others. It seems
that these characteristics are not pathological, meaning that they don’t invalid
the whole approach behind ERGM. In fact, when these characteristics are taken
into account in the development of the model, most issues are solved.

Another difficulties in working with exponential random graph models is the
consistency of the estimates. Sometimes the network is relatively small so the
limit behaviour is not an issue. However, in any case in which the observed
network is sampled from a (much) larger graph, consistency is critical. The
thermodynamic interpretation of the exponential random graph model does not
help, as the generative process does not model how the graph “grows”. In
particular, consistency is important when we are interested to make the results of
the analysis independent on the size of the network. Unfortunately, exponential
random graph models seem not to be consistent in the graph space.

Instability and Related Properties

In short, there are constraints in the configuration space given by the fact that
the system is a network, rather than a variable in which all possible configura-
tions in N* are allowed. Therefore, the canonical parametric space A is always
too large, and the mean value M = pu(A) is bigger than the space of allowed
configurations (which is not even convex). However for Markov random graphs,
one of the most general and flexible ERGM, has been found a lower dimensional
curved families in which most of these issues are solved and it seems that these
parametrizations perform well in practise (Snijders et al. (2006)). Despite so,
a general procedure to specify an exponential random graph models without
worry of theoretical/computational issues is not yet known, so they need to be
taken into account when a model is used in practise.

Following Schweinberger (2011), the first notion introduced is instability.
Let’s rewrite the exponential random graph model in a way such that the size
of the model is taken into account:

P.(G,) = eaN(ﬂ)'fN(Gn)—FN(YI)’ (4.28)

where N = n(n — 1)/2 are the degrees of freedom and G, is an n dimensional
graph. A canonical family can be written in a way that 6 does not depend on
the dimensionality, however the form 4.28 gives more insight to the problem.

A discrete exponential family is stable [unstable] if exist C > 0 and N¢ > 0
such that

Gmgé On(n) - fn(Gr) < [>] CN forall N > Ne¢. (4.29)

This is a constraint on the asymptotic maximum size of the Hamiltonian, which
can grow with a rate of at most O(N) = O(n?). The dependence of the size in
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On(n) has been emphasized because the instability of an Hamiltonian depends
on the instabilities of the sufficient statistics that compose them. However stan-
dardize fn ; dividing it by maxg, fn j(Gy) is useless because this transforma-
tion is an isomorphisms, so the problem has just been moved in the parametric
space, instead of the configuration space. As stated before, if the family is un-
stable, then is also too sensitive and near degenerate. Therefore unstability is
a necessary condition for obtaining a useful model.

Consider the n dimensional graphs GL ; and G ;. equal except in the edge
17, which can be seen an update of the Markov Chain Monte Carlo. The logit
in equation 4.14 is equal to O () - (fN(GZT;) — f(Gy;))- If the model is unstable,
then exist no C' > 0 and N¢ > 0 such that

On(n) - (fn(G) = (G < C (4.30)

for all possible graphs that differs of one edge. This condition is called sensitivity,
if n is large some log-odds are unbounded.
Lastly, consider the set of modes

Men = {Gn : P(Gr) > (1 —¢€) max Ox(n) - fN(Gn)}, (4.31)

Grn€Gn

where N = n(n — 1)/2 are the degrees of freedom. The distribution is near-
degenerate if

Po(Gp € Mcn) — 1. (4.32)

When this happens most of the probability mass is concentrated on a few con-
figurations, usually very different than each other. If the model is unstable, then
is near-degenerate (Schweinberger (2011), theorem 2). In section 2.3, has been
shown that if the exponential family is minimal, the mean value parameter lies in
M = int(K, ), the interior of the convex hull of the support. In Handcock et al.
(2003) is shown that when the model is near degenerate, the mean value pa-
rameter tend to the boundary of M. Moreover, in the same paper is shown that
degenerate models diverge in relative entropy from the non-degenerate models.

A solution that seems to work well in practise is to consider curved ex-
ponential families, so distributions in which the parametric space is a curved
low-dimensional subspace of A. This can force the expected values of the suffi-
cient statistics to be “far away” from the boundaries of the support. Consider
the Markov random graph defined in equation 4.24, for simplicity assume 7 = 0
so that the Hamiltonian is a linear combination of the degree distribution. We
need to impose constraints so that Oy (n) - fn(Gy) does not grow too quickly
with n, for Markov random graphs this Hamiltonian is influenced mostly by the
vertices with high degree. A solution is to use a geometrically decreasing degree

distribution
n—1

ul(G) =" e Mdu (@), (4.33)

h=1
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which is equivalent to

(@) = S () "S;ff’;)‘. (4.34)

The model can be written in canonical form as in equation 4.22 and 4.24 using

pn(e) =e " and 6;(\) = (/;})21 (4.35)

Therefore for scaling exponentially the degrees we need to counterbalance the
effect of the k-stars. In fact |S;(G)| and |S;4+1(G)| are heavily correlated, so
0;(A) and 6;41(\) have a different sign. The model is stable if o > log(2) and
therefore A = e®/(e* — 1) > 2.

Curved exponential random graph models are introduced in Snijders et al.
(2006), in the paper there are also other examples of curved Hamiltonians that
can be used in practice. In figure 4.4 is shown why this approach is useful.
Forcing the Hamiltonian to stay in the support of the family we can avoid
degeneracy, when the parametrized curve is far away from the boundaries of the
support. The statistics 4.33 and 4.34 can be computed quickly after the update
of an edge, this is useful because the estimation uses a Markov Chain Monte
Carlo.

Using the conditional distribution 4.14, if at time ¢, ij is updated to 1 in the
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Metropolis-Hastings algorithm, the update is accepted with probability

Po (XM = 1/G5;) = min {1, ea'<f<G$>—f<GZj>>} . (4.36)
If ij is updated to 0, the formula is the same with f(G;;) — f(G;;) The advan-
tage of this algorithm is that we don’t need to compute the partition function
F(«). This algorithm allows us to generate samples from P,, so the chain can
be interpreted as an approximation of the generative thermodynamic process.
If we observe a network, we can make inference using the estimated generative
process, which is obtained from the chain with stationary distribution Pj.

The algorithm is used also for the estimation which, by the properties of
the exponential family, is a convex problem. In the estimation, the chain 4.36
is used with parameter &™), for m = 1,..., M. Then the m-th sample is used
to update &™) to &(™*1 using a convex optimization algorithm, like Newton-
Raphson for example. An optimization procedure is described in more detail in
Snijders (2002). This method of inference is the usual procedure with dependent
data, see Geyer and Thompson (1992). Examples of these algorithms in R are
in Van Der Pol (2017).

Consistency of ERGMs

The main issue of exponential random graph models is consistency. In fact, the
generative stochastic process has been specified fixing the number of vertices.
However, when n — oo we need to specify a model that describes how the graph
grows and the convergence of sequences in a graph space is complicated. This
theory is called graph limit, the main reference is Lovédsz (2012). However, the
theory is applicable only for dense networks (average degree O(n)). For dense
exponential random graph models consistency has been studied in Chatterjee
et al. (2013).

Let G1, Go, ... a sequence of graphs of increasing dimension. If the elements of
the sequence are dense, then G,, converges to a continuous function & : [0,1]* —
[0,1] called graphon. This function is symmetric in its two arguments, and it
can be chosen to be nondecreasing, in the sense that h(z,y) < h(z,y + ¢), if
€ > 0 and y + € < z. Every function that satisfies these properties is obtained
by a sequence of graphs for a specific probability distribution. Therefore, the
graphon space H is the appropriate limit object for sequences of dense random
graphs. For exponential random graph models, the distribution of G,, depends
on the sufficient statistics

Si7 Gn
fi(Gn) = % (4.37)

where 51, ..., Sy, are subgraphs and ¢(H, &) counts the occurrences of the sub-
graph H in the network G.
The counts are rescaled by n!¥V (59l in order to have a nontrivial limit in the
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dense regime. This limit is

fi(h) = lim fi(Gy). (4.38)
For n finite, the distribution of GG, is obtained by the graphon h, with a partition
of [0,1]% in n? blocks. The limit object of the exponential random graph model
is

pa(h) = e 1=0n(0), (4.39)
where 1
29, r3
on(0) = — D entim, (4.40)
g"“b

If f1(G,) =n"2|E(G,)| and 65, ...,0,, are nonnegative, then

lim ¢,(0) = ¢oo = sup ( Opul B — I(u)) , (4.41)
n— oo 0<u<1 im1
where 1 .
I(u) = §u10gu + iulog(l —u), (4.42)

and ¢, is constant. Moreover, if the maximization 4.41 has one solution u*,
then G, is indistinguishable from an Erdés-Rényi graph Chatterjee et al. (2013).
These results seem to preclude strong forms of consistency, like in almost
sure sense. A particular form is consistency under sampling, useful when the
observed network is sampled form a larger graphs. The graphon is interpreted
as an infinite dimensional dense networks from which the (dense) observed one
is sampled. Stochastic block models, the main non-parametric statistical ap-
proach for network data, perform very well in this context, as the graphon can
be estimated consistently, Airoldi et al. (2013). In Shalizi and Rinaldo (2013)
is shown that consistency under sampling is a problem for some types of expo-
nential families for dependent random variables, which include ERGMs.

In information context, the interest is on the probability distribution of the
system. In particular, we may only been interested on the weak consistency of
& as estimator of «, for example if we have an hypothesis on the properties of
the generative process in a macro scale. In this setting, exponential families are
usually well behaved. However, for weak consistency we have at least to specify
how the expected value and variance of the sufficient statistics grow with n in
order to have a non-trivial limit for &.

In the next chapter the assumption of Markov dependency (and associated
degree distribution as sufficient statistic) is dropped. The exponential random
graph model introduced in the next chapter has sufficient statistics related to
the eigenvalue distribution.
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Chapter 5

Exponential Random
Graph Models with
Spectral Statistics

Introduction

Exponential random graph models have been introduced starting from the local
dependence assumption, which specifies the relevant subgraphs in the network
distribution, that belongs to the exponential family. Markov dependency is
the most used, because it is particularly well behaved mathematically, and it
can be used both in homogeneous networks, but also in inhomogeneous graphs
with community structure. More general dependencies are way less tractable,
however for homogeneous networks, spectral moments of the adjacency matrix
can be used as sufficient statistics. As introduced in chapter 3, these quantities
are associated with number of closed walks in the network. In this section it’s
used an exponential random graph model as approximating family of a general
homogeneous random graph model, with family of distributions specified by a
general dependence rule. In the approximating model the sufficient statistics
are number of closed walks. If the dimension of the graph is fixed and we use
enough sufficient statistics, i.e. we consider counts of closed walks up to a length
big enough, the approximating model is equivalent to the original, so there is
no information loss.

5.1 Higher Order Local Dependencies

Markov random graphs use as configurations triangles and k-stars, however
many other subgraph counts may be important as sufficient statistics. Looking
the tie placement near the edge 7j, Markov dependency assumptions is that only
actors in the neighborhood of i and j affect the probability that the tie ij is in

o4



the network. This may be not enough, as the presence of ij can be influenced
by the tie placement in a bigger neighborhood around ¢j.

A way to define this type of extended neighbour of the edge ij is through the
use of closed walks that pass through ij. Let Ni(ij) the set of edges hl € E(G)
such that exist a closed walk of k step that cross both ij and hl (note that
ij always belong to Ny (ij)). If the total number of k-step closed walks that
cross ij is Wy(ij), then the importance of every hl € N (ij) in determinate
the presence of ¢j is given by the proportion Wy (ij; hl)/Wi(ij). Therefore the
weighted influence of hl in i¢j can be defined as

~ Wi(ij; hl)
kzﬂakiwk(ij) . (5.1)

Analogous formulas can be derived at vertex level, considering the number of
k-step closed walks Wy, (i) and Wy (; 7), that cross the vertex ¢ and the vertices
1 and j respectively.

A dependence assumption specifies the vector of parameters « in the family
4.19. In particular a dependence rule allows a finite amount of o, € « to
be different than 0. However, in a dependence rule in which some subgraphs
are specified as relevant, there may be cliques in the dependence graphs that
are associated with subgraphs specified as non-relevant, but the Hammersley-
Clifford theorem force their counts to be important in P,. For example, in
figure 5.1 the dependence rule has been defined such that only the number of
edges and C}y are relevant, but because of the Hammersley-Clifford theorem,
all other subgraphs are relevant, including the one that represent the whole
structure. The graph in the figure is a 3-triangle and often appears in real
networks. The only subgraphs that does not add new relevant structures are
k-stars and triangles, the ones considered for the Markov dependency.

The Hammersley-Clifford theorem and the homogeneity assumption define
the original family of distribution

P(G) = e (@)=v(e), (5.2)

where 1(«) is the log-partition function and «-.%(G) is the graph Hamiltonian

Z ac|yc(G)|v (53)

c€€(D(G))

% is the set of different maximal cliques, |.7.(G)] is the count of the subgraph as-
sociated with the clique ¢. Therefore, the exponential family 5.2 is characterized
by the vector of sufficient statistics

which are subgraph counts. When n = V(G) is fixed, |¢] is finite and |.7| are
bounded for all c.
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Figure 5.1: 3-triangle and associated dependence graph, with this dependence rule
all subgraphs are relevant in the distribution of G.

The family P, is invariant under bijective linear transformations of the suf-
ficient statistics. Let ¢y : RI?l — RIZl defined as

@B,b(y) =B.Y +b, (5.5)

where b and B are a fixed vector and nonsingular matrix respectively. The
Hamiltonian remains the same if « is modified as

‘Pl_a,lb(a) =B 'a—q, (5.6)

note that a does not need to be specified as the « - b can be included in the
partition function. Therefore, the model P, is equivalent to all other families
obtained with isomorphisms in the space of sufficient statistics.

A lower dimensional family can be used as “low rank” approzimating dis-
tribution of the real family P,. The transformation is W = pw () = W.%,
where pw : Rl — R™~1 W is the vector of counts of closed walks, with
elements

Wi(G) = r(AG)) = A, (5.7)

where A(G) is the adjacency matrix of G, k = 2,...,m. Therefore W can be
used as sufficient statistics for a minimal exponential random graph model of
order m — 1. The approximating family is

Qo(G) = " WA=, (5.8)

where - W = Z?:z 0, W,,. Later will be shown that the Hamiltonian 6 - W and
the log partition function ¢(#) are explicit functions of - . and ¥ («).
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There are some technical assumptions for identificability, they are not neces-
sary because every nonminimal family can be reduced to a minimal one. More-
over, equation 2.26 implies that there are no problems with the inference, after
reduction to a minimal sufficient statistic. Thus it can be assumed that @y is
minimal, so © C R™~! with full dimension (it contains an m — 1 dimensional
open sets). If we assume that P, is minimal, then we have to assume that the
“transformation matrix” W has full rank m — 1, so has m — 1 linearly indepen-
dent rows. If not, first reduce P, to a minimal family with dimension ¢ < |%,
then use a (m — 1) x t dimensional matrix W has full rank m — 1.

For example, consider the case with . = (|E|,|Cs],|Sz2],|C4l, |>—],|C5])
and o € A = RS, The approximating family has dimension 4, with sufficient
statistics W = W.¢ equal to

2.0 00 0 0 2| E|

06 00 0 0. 6|Cs|

2 0 48 0 0|77 2B+45|+slcy (5.9)
03 0 0 10 10 30|Cs| + 10[>—| + 10|C5|

Also the approximating family is invariant under bijective linear transfor-
mation of W. Similarly to 5.5, every ¢g ; : R™~1 — R™~! defined as

e (W) =BW +b (5.10)

induces a model equivalent to Qy, if B is nonsingular. Therefore, Qg can be
interpreted as a low rank approximation of P,, W is an interpretable sufficient
statistics, and can be explicitly computed from G from its eigenvalues. All other
m—1 dimensional families which are linear approximations of P,, have sufficient
statistics BIW and they are equivalent to Qg.

A reasonable choice is the transformation P80 defined as

/2! ... 0
W=BW-=| : .. |W (5.11)
0 ... 1/ml

In this case B standardize the walks in the same way as the Estrada index,
defined in chapter 3. This transformation of the sufficient statistics is useful
because the closed walks W does not “explode” when m is big. Moreover,
the small walks are more important because they are formed only by small
subgraphs. The correspondent parametrization is 6, = k!- 0y, and the family Qg
with density proportional to exp (é - W) is equivalent to Qg. So the two families
represent the same information. When n is finite, as it has been assumed so far,
also W, is finite. Therefore

o7



so the bigger sufficient statistics are heavily penalized. Since @y and @9 are
equivalent, to keep the notation simpler in the chapter is always used Qg, despite
the transformed family offers a better parametrization, in term of interpretation
of the parameters.

The information loss depends on how large is m. If m — 1 = RI%l and W
has full rank, than it is invertible and Qg is equivalent to P,. So if |%]| is
bounded, as in the case of a network model with fixed number of vertices, exists
m large enough such that P, and @y are equivalent. The first family, because of
the Hammersley-Clifford theorem, can represent every network model invariant
under relabeling. Thus, exists m big enough such that the first m moments
of the eigenvalue distributions contain all the information of an homogeneous
network model.

The most interesting cases are when m — 1 < Rl or m — 1 <« RI?I,
Note that for every dependence assumption beyond Markov dependency, |€| is
extremely large. However, it’s reasonable to assume that smaller walks are more
important than long ones, so we need to characterize the lost of information by a
small rank approximation. The rows of W generate an m — 1 dimensional affine
subspace of RI?! so it is possible to find a (|%| — (m — 1)) x |€| dimensional
matrix U with full rank |€’| — (m — 1) such that

wu? =o, (5.12)

where 0 is the matrix of zeros. The rows of U generate the affine subspace
orthogonal to the one generated by W, so a family equivalent to P, has sufficient

statistics
—~ w W
- (1) (%) 619

If P, is approximated with Qg, the loss of information is U. This information
is in the orthogonal complement of the space spanned by the rows of W.

The decomposition of RI?! in the two orthogonal affine subspaces spanned by
W and U implies a similar decomposition of the parametric space. The families
P, and Qp have parametric spaces A = RI%l and © = R™~! respectively. The
approximating family is parametrized by § € © = R™~!. The relation 5.12
implies that

Ua=Uay <= WecR™': a=a+ W70 (5.14)

Then
{a € R Ua = Uag } = {ao + WT0,0 ¢ R™ 1}, (5.15)

(Jorgensen and Labouriau (2012)). The real low rank family is denoted as
P, +wre, and it’s called affine hypothesis for P,.

The decomposition of the original space in two orthogonal subspaces is es-
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pecially useful for exponential families. The original family can be written as

P.(G) = eao-,7+(WT9)<5ﬂf1/)(ao+WTt9) a0 S +0- (W) —p(ao+WT0) _

=e

5.16
_ ea0~:7+9‘W—1/;(ao+WT9). ( )
If ap = 0, then P,(G) = Qp(G) = e”W=2 and the relation between the
partition functions of the real and approximating family is explicit:

6(0) = H(WT0). (5.17)

In this case the parameters of the original family P, are in the linear subspace
spanned by the rows of W. Therefore the minimal sufficient statistics are W.%
and @y is obtained from reduction to sufficiency.

Information Projection

So far it has been exposed the decomposition of the model in the approximating
family and information loss. When the last one is zero, the real and approx-
imating families are equivalent. However this is usually not the case, so we
want to choose a specific distribution in the approximating family, which is the
closest to the real distribution. This is the information projection introduced in
chapter 2, it is the distribution that minimizes the approximation loss between
the real and all distributions in the approximating family. Differently than the
density estimation problem in chapter 2, for random graphs the relative entropy
can be computed explicitly, and depends on the algebraic decomposition of A
and . outlined above.

For a fixed a* € A, we can find the distribution in the family Qg which
is closer to P* = P,«, the real distribution of the network. The solution is
Q* = Qy~, and it is an approximation of the real distribution (Q* can be
interpreted as an estimator of P* in information sense). Q* is the information
projection of the family Qy to the set of distributions with same moments than
P>. More precisely consider the following

pr =Ep-(S) = Vaih(a)| _.
pw =Ep« (W) = WEp- (&) = Wpy (5.18)
nw () = Eq, (W) = Vo(0)

The information projection is @* = Qg~, where 6* is the only solution of
nw(l) =pw = 0 =n (Wuy). (5.19)
The relation between 6* and the approximation error is
0* = argmin D(P*||Qy), (5.20)
0co

so for a fixed a*, @ is the distribution in Qg closest to P*. The minimum exist
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and is unique by theorem 3.1 in Csiszar (1975).
Using 5.16 and 5.17, the approximation error can be written explicitly as

D(P*|Q") = D(Paz ywro-||Qo+) =
=af Ep:(F) — (Y(af + WTO*) — ¢(6%)) = (5.21)
=aj - Ep-() — (¥(af + WT0*) —p(WT0%)).

Then, the difference of partition functions can be expanded using Taylor series:
1
af - pM(WTo*) + 5% A (WTONah + .., (5.22)

where

w(l)(wT&*) - vaw(a”asz@* = ]EPWTQ* (‘y%

5.23
77[}(2) (WTQ*) = Haw(a”asz@* = VPWTG* (y) ( )

The Hessian is positive definite because the log-partition function ¢ is convex.
Therefore if af is close to 0, the approximation loss is

D(P*||Q") ~ af - (Eq+ () — Ewre (F)) — %ag -Vwre: ()ag. (5.24)

5.2 ERGM as Parametrized Centrality Measure

One of the main descriptive statistics of network data are the centrality mea-
sures, which rank the vertices based on their importance in the structure of
the network. Markov random graphs parametrize the degree distribution, while
the method introduced in the previous section parametrizes the moments of
the eigenvalue distribution. Therefore the exponential random graph models
induces a parametrized centrality measure.

The degree centrality introduced in section 3.2 assigns importance to the
vertices based on the size of the neighbourhoods. Markov random graphs can
be written with the family of distributions

Py (G) = ¢TSI wdi=Dlran), (5.25)

K

Therefore the parametrized degree centrality is
dp = (1) = diy ooy fin) * dn), (5.26)

where fi(;) is the parameter associated to J(i), the proportion of vertices with
degree equal to d;. Therefore, the parameter p rescale the importance of the size
of the neighbourhoods. The centrality d,, as it is looks too flexible, this because
the original Markov graph P, is indeed too flexible because it’s degenerate for
most values for 7 and u. However, the centrality 5.26 can be easily defined for
a non-degenerate curved model as d,(,), where 7 is lower dimensional.
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In equation 3.18 the Estrada or subgraph centrality has been defined as

—_ > 1
EE = diag(e®) = diag(n Z o diag(AF). (5.27)
k=2
This measure can be extended as
N mg*
EEg+ yn = diag(n) + k—’?diag(Ak), (5.28)
k=2

which is the diagonal of a parametrized matrix exponential function, and will
be denoted as parametrized subgraph centrality. The last equation is equivalent

to
_ . . "0 &
EFEy- ,, = diag(n) + diag <I‘ (Z k—’? Z Af) FT) ; (5.29)
k=2 " i=1

where I' is the matrix of eigenvectors of A and Ay, ..., A\, are its eigenvalues.
The Estrada centrality is EFg- ,, where % =1 and m = co. When m diverges,
the approximating family is equivalent to the original, therefore in this case
the parametrized subgraph centrality ranks its vertices using all “homogeneous
information” contained in the network.

5.3 Final Remarks

The approximating model Qg ., can be used to approximate every homogeneous
distribution P,. However, the approximation error has been evaluated only
in term of information, but both models are useful only when they are non-
degenerate. This section is a short discussion on the next steps of the research.

Qo,m has a natural interpretation in term of closed walks of the network,
therefore uses particularly the information of the tie placement at local level.
Counts of closed walk of different length are associated with moments of the
eigenvalue distribution of the network. The first moments are explicit functions
of small subgraphs. The number of sufficient statistics m included in the Hamil-
tonian can be related with how much the properties of the generative process
are reflected in the local behaviour. When m grows all the information is used
and the exponential random graph model can approximate arbitrarily well an
homogeneous network.

However, P, and Qg ., have been introduced in canonical form, therefore
both models are unstable. The approximation error, in term of information can
be written explicitly, in practise have to be evaluated only for non-degenerate
models. Therefore, a future research question will the study of

D(P*|Q%) = ag - Ep- (&) — (v(ag + W) — p(WT6*))

~ o - (B () — Ewrg- (L)) — o - Vyrg- ()i /2, (5.30)
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for two stable curved parametrizations a* = a(n*) and 0* = 6(8*), where n*
and §* are low dimensional parameters.

The approximating ERGM, contains as sufficient statistics the first m mo-
ments of the eigenvalue distribution. The eigenvalues does not contain infor-
mation on non-homogeneous structures of the network, like communities for
example, as this information is only in its eigenvectors. Therefore, (Jy cannot
be used to model inhomogeneous networks. Despite so, we can choose which
sufficient statistics include in the model, so it can be used a “combined” Hamil-
tonian

m n—1
D OWi+ | Y mlCayl + > 0> il Sigl | (5.31)
k=4 jeTs i=1 jeJ;

where
Ji ={(1, - di) st g€ {1,...,C}}. (5.32)

The second part of equation 5.31 is the Hamiltonian of a Markov graph with
vertices in C' communities, the first part models homogeneously the residual
non-Markov dependency.
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