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Abstract

Quantum computing poses a threat to classical cryptosystems, so new protocols are needed.
One possible candidate to replace currently used key exchange protocols is Supersingular
Isogeny Diffie-Hellman (SIDH). The security of SIDH depends on a uniform distribution of
the secret key, for which heuristic estimations exist. These heuristics have been verified by
Thormarker (2017), via simulation of random walks on isogeny graphs.
This thesis studies the theoretical background of SIDH and investigates the relation between
supersingular elliptic curves and quaternion algebras. Through this relation it is shown that
the distribution of the secret key in SIDH can be found by computing Brandt matrices. This
is then compared to the results from the heuristic estimations.
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1. Introduction

A widely used protocol for establishing a shared secret key between two parties is the elliptic
curve Diffie-Hellman key exchange (ECDH). This can for example be used in the classical
cryptosystem AES. The safety of this protocol relies on the difficulty of solving the discrete
logarithm problem for elliptic curves.

Problem 1 (Discrete logarithm problem for elliptic curves). Let E be an elliptic curve over
a finite field K . For P ∈ E and Q ∈ 〈P〉 where 〈P〉 ⊂ E is the cyclic subgroup generated by P ,
find an integer x such that xP = Q.

The ECDH protocol allows two parties, say Alice and Bob, to encrypt data with a shared
secret key and then share this data via a public channel. They construct this key together,
following the Diffie-Hellman method (see [Gal12, chapter 20]). Let Fp be a finite field of size
p. The ECDH protocol is as follows ([Was08, section 6.2]):

1. Alice and Bob choose an elliptic curve E/Fp so that problem 1 is difficult to solve. They
pick a point P ∈ E(Fp ) of order N .

2. Alice and Bob each choose their respective secret elements a,b ∈ Z/NZ. Alice com-
putes aP , Bob computes bP and they publicly share this result with each other.

3. Now Alice computes abP and Bob computes baP . Since abP = baP , this can be used
as their shared key.

A schematic representation of ECDH is shown in table 1.1. It is believed to be difficult to
solve problem 1 using currently existing computers. Once a third party is able to solve this
problem, they can also find abP when given P, aP,bP . Possible methods of attack are the
Pohlig-Hellman algorithm, Pollard’s rho algorithm and the MOV algorithm (see [Tho17, sec-
tion 3.2]).

Alice Public Bob
Pick public parameter P ∈ E(Fp )
Pick secret keys a ∈Z/NZ b ∈Z/NZ
Generate public keys aP,bP
Compute shared key abP=(ab)P baP=(ab)P

Table 1.1: Schematic overview of the ECDH protocol. Here P ∈ E(Fp ) is a point of order N .

Although problem 1 is currently difficult to solve, this may not be the case in the near future
due to the development of quantum computers, which use qubits rather than regular bits
(see [DPV06, chapter 10]). This danger was first addressed in [Sho97], by the construction of
Shor’s algorithm. This algorithm can successfully perform a quantum attack on the RSA sys-
tem in polynomial time. There currently exist several other algorithms that allow quantum
computers to break classical cryptosystems in polynomial time.
This indicates a need for encryption methods that are safe from quantum attacks. A po-
tentially quantum-resistant protocol that can replace ECDH is the supersingular isogeny
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Diffie-Hellman key exchange (SIDH).
The goal of this thesis is to study the security of SIDH, which depends on the uniformity
of the distribution of the generated shared secret in the space of shared secrets. The the-
oretical basis for a uniform distribution has not yet been proven, but there exist heuristics
that show that this distribution is indeed uniform. These heuristics have been verified by
simulation by [Tho17] for isogenies of degree 2 and 3. The correspondence between su-
persingular elliptic curves and maximal orders in a quaternion algebra suggests a relation
between Brandt matrices and the distribution of the shared secret in SIDH. This paper in-
vestigates the background theory of this relation and aims to recreate the results in [Tho17,
chapter 7] by generating Brandt matrices. Moreover, it addresses the question whether it is
more efficient to use the quaternion algebra approach rather than the supersingular elliptic
curve approach.
The first part of this thesis focuses on the theory behind SIDH. To this end, chapter 2 treats
background theory on elliptic curves and chapter 3 treats theory on isogenies and isogeny
graphs. In chapter 4 the SIDH protocol and the results of [Tho17] are discussed. The sec-
ond part of this thesis treats the necessary background information to define a correspon-
dence between supersingular elliptic curves and quaternion algebras. Chapter 5 contains
background theory on quaternion algebras. Chapter 6 justifies the interpretation of Brandt
matrices as the distribution of secret keys by the existence of an equivalence of categories.
In chapter 7 the heuristic estimations are verified by using said Brandt matrices. Chapter 8
contains concluding remarks and addresses topics for further research.
The reader is assumed to be familiar with group, ring and field theory, modules and basic
concepts of cryptography.
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2. Elliptic curves

The SIDH protocol uses supersingular isogenous elliptic curves. Before discussing the pro-
tocol, background theory on elliptic curves will be treated in this chapter. In section 2.1 the
group structure and the j-invariant of elliptic curves will be discussed. Section 2.2 treats
torsion points and supersingularity. The content of this chapter mainly follows [Sil09] and
[Was08].

2.1. The group law and j-invariant

Definition 2.1.1 (Elliptic curve). Let F be a field with char(F ) 6= 2,3. An elliptic curve E/F is
the graph of the Weierstrass equation

y2 = x3 + Ax + B , (2.1)

where A,B ∈ F and −16(4A3 + 27B 2) 6= 0. The set of points {(x, y) ∈ E }∪ {O} is denoted by
E(F ), where O is the point at infinity.

Remark 2.1.2. In this paper only elliptic curves over fields of characteristic not 2 or 3 will be
considered. For this reason the generalized Weierstrass equation will not be discussed here
and all elliptic curves will be assumed to take the form (2.1).

Definition 2.1.1 mentions the point at infinity O, which exists for every elliptic curve E . This
point can be interpreted as the point that lies at the "top" of the y-axis. A strict definition
can be made in terms of the projective space.

Definition 2.1.3 (Projective space). Let F be a field and let (x1, y1, z1), (x2, y2, z2) ∈ F 3\(0,0,0).
If there exists a λ ∈ F× such that (x1, y1, z1) = (λx2,λy2,λz2), then (x1, y1, z1) and (x2, y2, z2)
are called equivalent. The projective space P2

F contains all equivalence classes (x : y : z) of
triples (x, y, z) ∈ F 3.

Definition 2.1.4 (Point at infinity). The point at infinity O on an elliptic curve E/F is given
by (0 : 1 : 0) ∈P2

F .

For a further discussion of definition 2.1.4, see [Was08, section 2.3].
Following [Sil09, p. 51], an elliptic curve E/F ⊂ P2

F of the form (2.1) is of degree 3. By a
special case of Bézout’s theorem a line l ⊂ P2

F intersects E in exactly 3 points, which are not
necessarily distinct. For a detailed discussion of this topic, see [His14]. The above allows the
construction of the following composition law.

Definition 2.1.5 (Composition law). Let P and Q be points on elliptic curve E and let l be
the line through both points. Line l then intersects E in a point R ′. Let k be the vertical line
through O and R ′, which intersects E in a point R. The composition law + : E×E → E is given
by P +Q = R.

The composition law is illustrated in figure 2.1.
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Figure 2.1: The composition law on an elliptic curve. The left figure shows addition of separate points
P and Q. The right figure shows addition of P with itself, in which case line l is the line tangent to P .

Theorem 2.1.6. Let F be a field. The composition law + on elliptic curve E/F has the following
properties:

1. (P +Q) + R = P + (Q + R) for all P,Q,R ∈ E (associativity);

2. P +O = P for all P ∈ E (identity element);

3. For all P = (x, y) ∈ E, there exists a P ′ = (x,−y) ∈ E such that P +P ′ = O (inverse element);

4. P +Q = Q + P for all P,Q ∈ E (commutativity).

This makes (E(F ),+,O) an abelian group.

Proof. See [Was08, theorem 2.1].

Definition 2.1.7 (Isomorphic elliptic curves). Let E1 and E2 be elliptic curves. If there exist
morphisms ϕ1 : E1 → E2 and ϕ2 : E2 → E1 such that

ϕ2 ◦ϕ1 = idE1 ,

ϕ1 ◦ϕ2 = idE2 ,

then E1 and E2 are said to be isomorphic. This is denoted by E1
∼= E2.

By [Feo17, chapter 2, the first paragraph], an isomorphism between two elliptic curves can
be given as follows. Let the following be Weierstrass equations of two elliptic curves:

y2 = x3 + au4x + bu6,

(y2) = (x ′)3 + ax ′ + b.

An isomorphism between these curves that preserves both their Weierstrass form and the
group law is given by the map

(x, y) 7→ (u2x ′,u3 y ′.

Definition 2.1.8 (j-invariant). Let E be an elliptic curve over a field F of the form (2.1). The
j-invariant E(F ) is given by

j (E) := 1728
4A3

4A3 + 27B 2
∈ F.
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Theorem 2.1.9. Let F be a field with algebraic closure F and let E1 and E2 be elliptic curves
over F . Then j (E1) = j (E2) if and only if E1 and E2 are isomorphic over F .

Proof. See [Sil09, proposition III.1.4.b].

Theorem 2.1.9 states that all elliptic curves over F in an isomorphism class have the same
unique j-invariant, independent of the chosen representative for the class.

2.2. Torsion points and supersingular elliptic curves

For a positive integer n and an elliptic curve E with P ∈ E , write

nP = P + · · ·+ P︸ ︷︷ ︸
n times

.

Definition 2.2.1 (Torsion group). Let E be an elliptic curve over a field F . For a positive
integer n, the n-torsion group of E(F ) is defined as

E(F )[n] := {P ∈ E(F ) : nP = O}.

Theorem 2.2.2. Let E be an elliptic curve over a field F and n a positive integer. If char(F ) 6= 0
does not divide n, then

E(F )[n] ∼= Z/nZ⊕Z/nZ.

Proof. See [Was08, section 3.2].

By theorem 2.2.2, there exist generators P1,P2 ∈ E(F )[n] such that

E(F )[n] = {m1P1 + m2P2 : m1,m2 ∈Z/nZ}.

Definition 2.2.3 (Supersingular elliptic curves). Let p be a prime and F a field of character-
istic p and E/F an elliptic curve. If E(F )[p] = {O}, E is called supersingular. If E(F )[p] ∼= Zp ,
E is called ordinary.

Definition 2.2.4 (Endomorphism ring). Let E be an elliptic curve. The endomorphism ring
End(E) is the ring containing all endomorphisms φ : E → E .

Theorem 2.2.5. If E is a supersingular elliptic curve, End(E) is a non-commutative ring.

Proof. See [Sil09, theorem V.3.1].

Theorem 2.2.5 suggests a relation between supersingular elliptic curves and quaternion al-
gebras, which are also non-commutative. This will be investigated further in section 5.2.
Let Fp be a finite field of size p, where p is prime, and denote by Fp an algebraic closure. In
the rest of this paper elliptic curves will mainly be defined over Fp .

Theorem 2.2.6 ([Tho17], theorem 5.4.1). Let E/Fp be a supersingular elliptic curve. Then
j (E) ∈ Fp2 .

Proof. See [Sil09, theorem V.3.1(a)(iii)].

Proposition 2.2.7 ([Tho17], proposition 5.4.2). Let j0 ∈ Fp2 be a supersingular j-invariant.
Then there exists a supersingular elliptic curve E/Fp2 such that j (E) = j0 and

E(Fp2 ) ∼= Zp+1 ⊕Zp+1.
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3. Isogenies

Isogenies are a particular type of morphisms between elliptic curves. In section 3.1 they will
be defined and some of their properties will be discussed. Section 3.2 treats basic notions of
graph theory, followed by the definition of isogeny graphs.

3.1. Isogenies between elliptic curves

Definition 3.1.1 (Isogenies). Let F and let E1,E2 be elliptic curves over F . An isogeny is a
non-constant homomorphism of abelian groups, given by

ϕ : E1(F ) → E2(F ), (3.1)

(x, y) 7→ (r1(x, y),r2(x, y)),

where r1(x, y),r2(x, y) are rational functions. If such an isogeny exists, E1 and E2 are said to
be isogenous.

Remark 3.1.2. Isogenies are not only homomorphisms between elliptic curves as abelian
groups, but also morphisms between said curves as algebraic varieties. However, the theory
of algebraic varieties lies beyond the scope of this thesis and will not be discussed further
here. See [Sil09, chapter 1] for background theory on this topic.

Any isogeny ϕ of the form (3.1) is equivalent to

ϕ(x, y) = (R1(x), yR2(x)), (3.2)

where R1(x),R2(x) are rational functions (see [Was08, section 2.9 and 12.2]).

Definition 3.1.3 (Degree of an isogeny). Let ϕ be an isogeny of the form 3.2. Since R1(x)
is a rational function, R1(x) = p(x)

q(x) for some polynomials p(x) and q(x). The degree of ϕ is
defined by

degϕ = max{deg (p),deg (q)}.

If ϕ is an isogeny with degϕ = n, then ϕ is called an n-isogeny.

Definition 3.1.4 (Separability). An isogenyϕ of the form 3.2 is separable if R ′
1(x) is not iden-

tically 0.

Definition 3.1.5 (Dual isogeny). For any isogeny ϕ : E1 → E2 there exists a dual isogeny

ϕ̂ : E2 → E1,

such that for a point P ∈ E1,
ϕ̂◦ϕ : P 7→ (deg ϕ)P.

The dual isogeny ϕ̂ is uniquely determined, with the property that ˆ̂ϕ =ϕ.
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Proposition 3.1.6. Let E/F be an elliptic curve and H ⊆ E(F ) a finite subgroup. Then there
exists an isogeny ϕ : E → E/H with ker ϕ = H.

Proof. See [Sil09, proposition III.4.12 and remark III.4.13.1].

There are methods to construct specific isogenies given an elliptic curve, for example via
application of Vélu’s formulas (see [Was08, theorem 12.16]).

Proposition 3.1.7. Let F be a field with algebraic closure F , let E1 and E2 be elliptic curves over
F and letϕ : E1 → E2 be an isogeny. Ifϕ is separable, degϕ = #kerϕ. Otherwise, degϕ > #kerϕ.

Proof. See [Was08, proposition 12.8].

The kernel of an isogeny ϕ : E1(K ) → E2(K ) is a finite subgroup of E1(K ).

Proposition 3.1.8. Let F be a field and E1,E2,E3 elliptic curves over F , for which there exist
separable isogenies ϕ1,2 : E1 → E2 and ϕ1,3 : E1 → E3 defined over F . If ker ϕ1,2 = ker ϕ1,3, E2

and E3 are isomorphic.

Proof. See [Was08, proposition 12.12].

The isomorphism in proposition 3.1.8 is given by an isogeny ψ : E2 → E3, which gives that
ψ◦ϕ1,2 =ϕ1,3. This is illustrated by commutativity of the following diagram:

E2

E1 E3

ψϕ1,2

ϕ1,3

In fact proposition 3.1.8 can be formulated as an if and only if statement.

Proposition 3.1.9. If E2
∼= E3, then ker ϕ1,2 = ker ϕ1,3.

Proof. Let E2
∼= E3 again be given by isogeny ψ : E2 → E3. Because the kernel of ψ is trivial,

ker ϕ1,3 = ker (ψ◦ϕ1,2)

= deg (ψ◦ϕ1,2)

= deg ϕ1,2

= ker ϕ1,2.

Definition 3.1.10 (Equivalent isogenies). Letϕ1,ϕ2 be separable isogenies. If ker ϕ1 = ker ϕ2,
ϕ1 and ϕ2 are said to be equivalent. Otherwise they are called distinct.

By definition 3.1.10 it is possible to define equivalence classes of isogenies, where each class
contains isogenies that have identical kernels.

Proposition 3.1.11. Let E1 and E2 be elliptic curves over K , where K is an extension of the
field F , and let ϕ : E1 → E2 be an isogeny. Then ϕ is surjective.

Proof. See [Was08, theorem 12.9].

Theorem 3.1.12 ([Feo17], theorem 13). Let p be a prime. Two elliptic curves E and E ′ defined
over a finite field Fp are isogenous if and only if #E(Fp ) = #E ′(Fp ).
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3.2. Isogeny graphs

Isogenous elliptic curves can be represented by isogeny graphs. This section will treat basic
notions of graph theory, following [Wil96, chapter 2], and the construction of isogeny graphs.

Definition 3.2.1 (Graph). A graph G consists of an ordered pair (V ,E ), where V denotes a
finite set of vertices and E a multiset of unordered pairs of vertices.

In definition 3.2.1 the elements of E are unordered pairs, in which case G is called an undi-
rected graph. If E consists of ordered pairs of vertices, G is called a directed graph.
Vertices vi , v j ∈ V are called adjacent if they form a pair 〈vi , v j 〉 = 〈v j , vi 〉 in E . This deter-
mines the structure of the graph and can be represented in matrix form.

Definition 3.2.2 (Adjacency matrix). Let G = (V ,E ) with V = {v1, · · · , vn}. The matrix A ∈Zn×n

with Ai , j the number of pairs 〈vi , v j 〉 ∈ E is the adjacency matrix of G.

If G is an undirected graph, its adjacency matrix is symmetric, because 〈vi , v j 〉 = 〈v j , vi 〉 for
all 〈vi , v j 〉 ∈ E .

Definition 3.2.3 (Walk). Let G = (V ,E ) be a graph with V = {v1, · · · , vn}. A walk of length
m ∈Z in G is represented by a finite sequence of vertices

{vk0 , vk1 , · · · , vkm−1 , vkm }. (3.3)

In this sequence any two consecutive vertices are adjacent.

Backtracking occurs in a walk if in a sequence of the form 3.3, vki +1 = vki−1 for i ∈ {1, · · · ,m}.

Definition 3.2.4 (Isogeny graph). Let Vp,` be the set of isomorphism classes of isogenous

elliptic curves over the field Fp , where ` ∈ Z>0. Such a class is denoted by [E ], where E is a
representative and elliptic curves are in the same class if they are isomorphic. Let Ep,` be the
multiset of distinct `-isogenies between elements of Vp,`. Then the graph Gp,` = (Vp,`,Ep,`)
is an `-isogeny graph.

By theorem 2.1.9, each vertex [E ] in an isogeny graph can be denoted by its unique j-invariant
j (E) ∈ Fp .
Although the isogeny graphGp,` depends on both p,`, its vertex setVp,` depends exclusively
on p. Since Ep,` contains only distinct `-isogenies, it is a multiset containing `-isogeny
classes.

Remark 3.2.5. In case p ≡ 1 mod 12, `-isogeny graph Gp,` is undirected. Here for any
isogeny ϕ ∈ Ep,` also ϕ̂ ∈ Ep,`. For other primes p it can happen that two non-equivalent
isogenies have equivalent dual isogenies. For an isogeny ϕ : E1 → E2, this occurs when
#Aut(E2) > 2. (see [Gal12, remark 25.3.2]).

Proposition 3.2.6. Let E be an elliptic curve over Fp and let ` 6= p be prime. Then there exist
`+ 1 distinct `-isogenies with domain E(Fp ).

Proposition 3.2.6 implies that there are `+ 1 edges connected to each vertex in Gp,`.
Isogeny graphs can be defined for both supersingular and ordinary elliptic curves. For the
SIDH protocol only supersingular isogeny graphs are of interest, because here there is more
algebraic structure on the endomorphism ring than in the case of ordinary isogeny graphs
(see [Feo17, chapter 9]). In the remainder of this paper the explicit mention of supersingu-
larity will be omitted and ’isogeny graph’ will refer to a supersingular isogeny graph only.
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4. Supersingular isogeny Diffie-Hellman

A potential candidate for a quantum resistant key exchange is supersingular isogeny Diffie-
Hellman (SIDH), first described in [JF11]. In section 4.1 the details of SIDH will be discussed,
followed by its security in terms of uniformity of the distribution of the secret key in section
4.2.
By theorem 2.2.6 and proposition 2.2.7, any supersingular elliptic curve E/Fp used in SIDH is
isomorphic to a supersingular elliptic curve over Fp2 . Therefore, this chapter considers such

curves over Fp2 rather than over Fp . Furthermore, all isogenies mentioned here are assumed
to be separable. By theorem 3.1.7 this implies that for any such isogeny ϕ, degϕ = #kerϕ.

4.1. Key exchange

In this section supersingular isogeny Diffie-Hellman (SIDH) will be discussed, following
[JF11], [FJP14] and [Feo17]. First some preliminaries and a general overview of the proto-
col will be given, followed by a discussion of its details.
SIDH is based on making non-backtracking random walks of length e over the edges of an
`-isogeny graph. This yields a unique compositionϕ =ϕ1◦· · ·◦ϕe of e `-isogenies, whereϕi

represents the i th step in the walk (see [BCNE+18, proposition 4.3]). For a non-backtracking
walk, ϕ is an `e -isogeny with deg (ϕ) = `e = #kerϕ. The kernel of an `-isogeny corresponds
to a cyclic subgroup in E [`]. So for ϕ there exists 〈P〉 ⊂ E [`e ] such that kerϕ = 〈P〉, where
P ∈ E [`e ]. The kernel of isogenyϕ is cyclic of order`e if and only if the walk is non-backtracking.
The goal of the protocol is for Alice and Bob to compute a shared secret key, to which they
both contribute. They each use their own isogeny graph with the same set of vertices
(j-invariants), where Alice uses isogenies of degree `A as edges and Bob isogenies of degree
`B 6= `A. Here the numbers `A,`B are primes, which are chosen small to increase security.
Denote the graph of Alice by Gp,`A and the graph of Bob by Gp,`B . Alice makes e A non-
backtracking random walks in Gp,`A by choosing a random cyclic subgroup 〈A〉 ⊂ E [`e A

A ].
Similarly, Bob makes a walk of length eB in Gp,`B by choosing 〈B〉 ⊂ E [`eB

B ]. This is done so
that `e A

A ≈ `eB
B , making both sides of the protocol approximately equally resistant to attacks.

They then compute respective corresponding separable isogenies α,β such that

α : E → E A := E/〈A〉, (4.1)

β : E → EB := E/〈B〉. (4.2)

The goal is to let Alice compute a new isogeny α̃ and Bob isogeny β̃ such that

α̃ : EB → E/〈A,B〉, (4.3)

β̃ : E A → E/〈A,B〉. (4.4)

Then the j-invariant j (E/〈A,B〉) can be used as secret key. The remainder of this section will
discuss the details of this process.
Alice and Bob start the protocol by picking public parameters. The first is a prime of the
form

p = `e A
A `

eB
B f ±1. (4.5)
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The number f is an additional factor to ensure that p is prime, while f remains as small as
possible. Alice and Bob also choose a supersingular elliptic curve E over Fp2 such that

E(Fp2 ) ∼= Z/(`e A
A `

eB
B f )Z⊕Z/(`e A

A `
eB
B f )Z. (4.6)

Such a curve exists by [Feo17, theorem 54]. Then j (E) is the starting vertex in the isogeny
graphs. By theorem 2.2.2,

E [`e A
A ] ∼= Z/`ea

A Z⊕Z/`ea
A Z,

E [`eB
B ] ∼= Z/`eB

B Z⊕Z/`eB
B Z.

So there exist points P A,Q A ∈ E(Fp2 ) and PB ,QB ∈ E(Fp2 ) such that

〈P A,Q A〉 = E [`e A
A ],

〈PB ,QB 〉 = E [`eB
B ].

Summarized, Alice and Bob now have publicly known parameters p,E , (P A,Q A), (PB ,QB ).
The Diffie-Hellman key exchange then takes place as follows:

1. Key generation. Alice picks elements mA,nA ∈ Z
`

e A
A

, not both divisible by `A, and

Bob picks mB ,nB ∈Z
`

eB
B

, not both divisible by `B . These elements are their respective

private keys. They construct their own respective cyclic subgroups

〈A〉 = 〈mAP A + nAQ A〉,
〈B〉 = 〈mB PB + nBQB 〉.

Alice then computes the isogeny α of equation 4.1. She also computes
α(PB ),α(QB ) ∈ E A and shares these and E A with Bob. In turn, Bob computes the
isogenyβ of equation 4.2 and shares EB andβ(P A),β(Q A) ∈ EB with Alice. The 3-tuples
(E A,α(PB ),α(QB )), (EB ,β(P A),β(Q A)) are the public keys.

2. Encryption. With EB Alice can compute a new isogeny

α̃ : EB → EB A := EB /〈β(A)〉,

where kerα = 〈β(A)〉 = 〈mAβ(P A) + nAβ(Q A)〉. Similarly, Bob computes isogeny

β̃ : E A → E AB := E A/〈α(B)〉,
where ker β̃ = 〈α(B)〉 = 〈mBα(PB ) + nBα(QB )〉.
Since EB A

∼= E/〈A,B〉 ∼= E AB (see [Tho17, section 6.2, remark 5]), the shared key is
j (EB A) = j (E/〈A,B〉) = j (E AB ).

A schematic overview of SIDH is shown in table 4.1.

Alice Public Bob
Pick public parameters p,E , (P A,Q A), (PB ,QB )
Pick secret keys mA,nA ∈Z

`
e A
A

mB ,nB ∈Z
`

eB
B

Exchange public keys
(E A,α(PB ),α(QB )),
(EB ,β(P A),β(Q A))

Compute shared key j (EB A) = j (E/〈A,B〉) j (E AB ) = j (E/〈A,B〉)
Table 4.1: Schematic overview of the SIDH protocol. The columns represent to whom the data are
known.
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It is believed that SIDH is a good candidate for a quantum-resistant key exchange protocol.
Its safety relies on the supersingular isogeny problem, which is allegedly difficult to solve.
This problem is formulated in problem 2.

Problem 2 ([GPST16], definition 1). Given a finite field F and supersingular elliptic curves
E1,E2 over F such that #E1(F ) = #E2(F ), compute an isogeny ϕ : E1 → E2.

By theorem 3.1.12, the condition #E1(F ) = #E2(F ) in problem 2 implies that E1 and E2 are
isogenous.
Another problem involves computation of the endomorphism ring of a supersingular ellip-
tic curve. Once this ring is known, the isogeny problem can be solved (see [GPST16]).
An important factor that contributes to the security of SIDH is uniformity of the distribution
of the secret key. This will be discussed in section 4.2.

4.2. Security

For security of the SIDH protocol, it is important that j (E A), j (EB ) and the shared key j (E AB )
are uniformly distributed in the shared key space. A uniform distribution ensures optimal
security, as it makes it equally likely for any j-invariant to be chosen as the secret key. Al-
though it has not been proven theoretically that these distributions are uniform, there exist
heuristics that show that this is the case. In [Tho17] these heuristics have been verified by
simulation for l A = 2, lB = 3 and p = 2e A 3eB f −1. This section will discuss these results.
Let E be a randomly chosen starting curve such that j (E) is a vertex in Gp,`A and Gp,`B . Ac-
cording to the SIDH protocol, first a non-backtracking random walk of length e A is made
by Alice from j (E) to j (E A) via 2-power isogeny α. Similarly, Bob makes a walk of length eB

from j (E) to j (EB ) via 3-power isogeny β.

Estimation 4.2.1 ([Tho17], estimation 7.3.1). Construct multisets S A and SB as follows:

• Pick `e A−1
A (`A + 1) vertices (j-invariants) in Gp,`A uniformly at random, allowing repe-

tition. Each time a vertex is picked, store it in S A.

• Pick `eB−1
B (`B +1) vertices in Gp,`B uniformly at random, allowing repetition. Each time

a vertex is picked, store it in SB .

The distribution of j (E A) and j (EB ) in SIDH are estimated to be the same as when respec-
tively picking an element from S A and SB uniformly at random.

In [Tho17] estimation 4.2.1 is tested by simulation in the following way. First a procedure is
started to obtain a random starting vertex j (E0). Then 500 random walks of length e A are
simulated, recording the number of distinct end vertices j (E A). The same is done for j (EB )
by simulating 500 random walks of length eB .
To obtain shared secret key j (E AB ), the random walk of length e A from j (E0) to j (E A) by Alice
via 2e A -isogeny α is followed by a random walk of length eB from j (E A) to j (E AB ) by Bob via
3eB -isogeny β̃. The above is analogous for first letting Bob make a random walk of length eB

from j (E0) to j (EB ) via β and then letting Alice make a random walk of length e A from j (EB )
to j (EB A) via α̃. This results in secret key j (EB A) = j (E AB ). Estimation 4.2.2 estimates the
distribution of j (E AB ), which was verified by simulation.
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Estimation 4.2.2 ([Tho17], estimation 7.4.1). A multiset S is constructed as follows:

1. Randomly pick `e A−1
A (`A+1) vertices inGp,`A . Call the number of times each j-invariant

corresponding to the vertices is picked z.

2. Randomly pick `eB−1
B (`B +1) vertices in Gp,`B . Each time a vertex is picked, put z copies

of its j-invariant in set S.

The distribution of j (E AB ) in SIDH is estimated to be the same as when picking an element
from S uniformly at random.

In [Tho17] strong heuristic evidence is given for estimations 4.2.1 and 4.2.2 by conducting
simulations. This was done for `A = 2 and `B = 3 in three cases:

• e A = 8,eB = 5, f = 1, p = 2835 −1

• e A = 9,eB = 6, f = 5, p = 29365−1

• e A = 10,eB = 6, f = 7, p = 210367−1

In all cases the walks are short and the primes relatively small, but the distributions are
relatively uniform and coincide with the results obtained from the heuristic estimations.
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5. Quaternion algebras

This chapter treats preliminaries on quaternion algebras in section 5.1, followed by section
5.2 on orders in a quaternion algebra and section 5.3 on quaternion ideals. The contents of
this chapter follow [Voi17, chapter 2, 16 and 17].

5.1. Preliminaries

Definition 5.1.1 (Algebra). An algebra B over a field F is a ring with a homomorphism

φ : F → B ,

where

φ(F ) ⊆ Z (B) = {α ∈ B :αβ =βα∀β ∈ B}.

Definition 5.1.2 (Quaternion algebra). Let F be a field such that char(F ) 6= 2 and B an algebra
over F . For a,b ∈ F×, let (a,b |F ) denote an F -vector space with basis {1, i , j ,k}, where

i 2 = a,

j 2 = b,

k = i j = − j i .

If B ∼= (a,b |F ), B is called a quaternion algebra over F .

The dimension of an F -algebra B is the dimension of B as an F -vector space, denoted by
dimF B . If B is a quaternion algebra, dimF B = 4.

Definition 5.1.3 (Involution). Let B be an F -algebra with multiplicative identity element 1.
An involution : B → B is an F -linear map such that

1. 1 = 1;

2. α =α for all α ∈ B ;

3. αβ =βα for all α,β ∈ B .

If αα ∈ F for all α ∈ B , is called the standard involution.

Definition 5.1.4. (Reduced norm) Let be the standard involution on F -algebra B . The
reduced norm is defined by

nrd : B → F,

α 7→αα.
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5.2. Orders

This section will treat the theory necessary to understand the relation between elliptic curves
and quaternion algebras, stated explicitly in theorem 5.2.5. Let B denote a quaternion alge-
bra overQ.

Definition 5.2.1 (Lattice). Let V be a finite-dimensionalQ-vector space. A finitely generated
Z-submodule M ⊂V such that M contains a basis for V , is called a lattice.

Definition 5.2.2 (Order). Let O ⊆ B be a subring of B . If O is a lattice, it is called an order in
B .

Definition 5.2.3 (Left/right order). Let I ⊆ B be a lattice. The left order and right order of I
are defined by respectively

OL(I ) = {α ∈ B :αI ⊆ I },

OR (I ) = {α ∈ B : Iα⊆ I }.

Left and right orders are lattices of B , while also being subrings of B (see [Voi17, para-
graph 10.2.5]). For lattices I , J ⊂ B , I is called compatible with J when OR (J ) = OL(I ).

Definition 5.2.4 (Maximal order). Let O ⊆ B . Then O is called maximal if for any order
O′ ⊆ B such that O ⊆O′, it is the case that O = O′.

The following theorem specifies the relation hinted at by theorem 2.2.5 and provides an al-
ternate definition of a supersingular elliptic curve.

Theorem 5.2.5. Let F be a field of characteristic p and let E/F be an elliptic curve. Then one
of the following holds:

• End(E) is isomorphic to an order in a number field Q[
p−D] for D > 0, in which case E

is ordinary.

• End(E) is isomorphic to a maximal order in a quaternion algebra B over F , in which
case E is supersingular.

Proof. See [Sil09, corollary III.9.4].

Remark 5.2.6. If an elliptic curve E is supersingular, the maximal order to which End(E) is
isomorphic is ramified at p and ∞. For more on ramification in terms of elliptic curves, see
[Was08, section 10.2].

5.3. Quaternion ideals

Let B again denote a quaternion algebra over Q and O an order in B . This section will study
ideals of O.
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Definition 5.3.1. (Invertibility) Let I ⊂ B be a lattice. If there exists a lattice I ′ ⊂ B such that

I I ′ = OL(I ),

I is called right invertible with right inverse I ′.
Similarly, if there exists a left inverse I∗ ⊂ B such that

I∗I = OR (I ),

I is called left invertible with left inverse I∗. If there exists a two-sided inverse J of I such
that

I J = OL(I ) = OR (J ),

J I = OL(J ) = OR (I ),

I is called invertible. Its inverse J is then uniquely defined as

J = {α ∈ B : IαI ⊆ I }.

Definition 5.3.2. (Principal lattice) A lattice I ⊂ B is principal if there exists α ∈ B such that
I is generated by α. That is,

I = OL(I )α =αOR (I ).

Definition 5.3.3. (Fractional ideal) Let O ⊆ B be an order and I ⊂ B a lattice. If O ⊆ OL(I ), I
is called a left fractional O-ideal and if O ⊆OR (I ), I is called a right fractional O-ideal.

By definition 5.3.3, any fractional ideal in a quaternion algebra is a lattice. In the rest of this
chapter a fractional ideal will simply be referred to as ’ideal’.
The following definitions mention lattices and are therefore specifically applicable to O-
ideals.

Definition 5.3.4. (Reduced norm of I ) The reduced norm of a lattice I ⊂ B is the Z-module
nrd(I ) ⊂Q that is generated by {nrd(α) :α ∈ I }.

For a lattice I ⊂ B , nrd(I ) is an ideal ofQ (see [Voi17, lemma 16.3.2]).
An equivalence relation between lattices I , J ⊆ B is given by ∼R , where I ∼R J if αI = J for
some α ∈ B×.

Definition 5.3.5. (Class) Let I ⊆ B be a lattice. The set

[I ]R = {J ⊆ B : I ∼R J }

is called a right class of lattices.

Definition 5.3.6. (Right class set) Let O ⊂ B be an order. The set

ClsR O := {[I ]R : I an invertible right O-ideal}

is the right class set of O.
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Left classes [I ]L and the left class set ClsL are defined analogously to their right equivalents
in definitions 5.3.5 and 5.3.6. In the rest of this paper only right classes and the right class
set will be considered. For a lattice I , this is denoted by [I ] := [I ]R and ClsO := ClsR O.

Proposition 5.3.7 ([Voi17], proposition 17.5.6). The right class set Cls O is finite.

Proof. See [Voi17], proposition 17.5.6 and corollary 27.6.17.

The following generalization can be made for ideals I ⊂O when O is a maximal order.

Theorem 5.3.8 ([Voi17], theorem 18.1.2.(a)). Let O ⊆ B be a maximal order. If I ⊆ B is a lattice
for which OR (I ) = O or OL(I ) = O, then I is an invertible O-ideal.
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6. Equivalence of categories and Brandt matrices

To use Brandt matrices to represent walks on isogeny graphs, it must be shown that they
can be interpreted as adjacency matrices for such graphs. There exists an equivalence of
categories that can be used to prove that this is the case. Section 6.1 contains background
theory on categories. The equivalence of categories is then made explicit in section 6.2, in
particular by theorem 6.2.9. In section 6.3 Brandt matrices are defined and identified as
adjacency matrices for isogeny graphs.

6.1. Preliminaries of category theory

This section will treat basic notions of category theory, following [Awo06] and [AHS04].

Definition 6.1.1 (Category). A category is a quadruple C = (ObC,HomC,◦,1Ob), that satisfies
the following properties:

• The class ObC contains elements that are called objects.

• For any pair A,B ∈ ObC there is a set of morphisms from A to B , denoted by HomC(A,B).
For f ∈ HomC(A,B), then A = dom( f ) and B = cod( f ). The set of all morphisms in C is
denoted by HomC, of which the elements are all pairwise disjoint.

• For any A ∈ ObC there exists an identity morphism 1A ∈ HomC.

• For any f , g ∈ HomC such that dom(g ) = cod( f ), the composition map is given by

◦ : HomC ×HomC → HomC

( f , g ) 7→ g ◦ f .

And this quadruple satisfies the following laws:

• Associativity: for any f , g ,h ∈ HomC such that dom(g ) = cod( f ) and dom(h) = cod(g),
the map ◦ satisfies

h ◦ (g ◦ f ) = (h ◦ g )◦ f .

• Identity: for any f : A → B ∈ HomC,

f ◦1A = f = 1B ◦ f .

Definition 6.1.2 (Functor). Let C and D be categories. Define the map

F : C → D

which maps from ObC to ObD and from HomC to HomD. For any A,B ∈ObC and
f , g ∈ HomC(A,B). If F satisfies the following conditions:
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1. F ( f ) : F (A) → F (B),

2. F (g ◦ f ) = F (g )◦F ( f ),

3. F (1A) = 1F (A),

then it is called a covariant functor. If F ( f ) : F (B) → F (A) instead of property 1, then F is
called contravariant.
The identity functor on a category C is denoted by 1C.

The category of categories is denoted by Cat, where ObCat contains categories and HomCat

functors between categories.

Definition 6.1.3 (Isomorphic objects). Let C be a category and A,B ∈ObC and let f ∈ HomC(A,B).
If there exists g : B → A ∈ HomC such that

g ◦ f = 1A,

f ◦ g = 1B ,

then f is an isomorphism. In this case f and g are each others inverses and objects A and B
are called isomorphic. This is denoted by A ∼= B .

As for other algebraic structures, inverses of morphisms in categories are unique.

Definition 6.1.4 (Faithful, full, essentially surjective). Let F : C → D be a functor between
categories C and D.

• If the map

FA,B : HomC(A,B) → HomD(F (A),F (B)),

f 7→ F ( f )

is injective for all A,B ∈ObC, F is faithful.

• If FA,B is surjective for all A,B ∈ObC, F is full.

• If for all AD ∈ ObD there exists some AC ∈ ObC such that F (AC) ∼= AD, F is essentially
surjective.

While functors between categories are the morphisms in Cat, they can also be considered
as the objects. Functors between two specific categories form the set of objects in a new
category, in which the morphisms between the functors are called natural transformations.

Definition 6.1.5 (Natural transformation). Let C and D be categories with covariant functors
F : C → D and G : C → D. A natural transformation η : F 7→G is a family of morphisms such
that

• To every A ∈ObC, η associates a morphism ηA : F (A) →G(A).

• For every f : A → B ∈ HomC,

ηB ◦F ( f ) = G( f )◦ηA.
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If the morphism ηA ∈ HomC is an isomorphism for every A ∈ ObC, η is called a natural iso-
morphism.

The second condition in definition 6.1.5 is equivalent to commutativity of the following di-
agram:

F (A) F (B)

G(A) G(B)

F ( f )

ηA ηB

G( f )

If F and G are contravariant functors, the arrows in the diagram are reversed.
For the two functors F and E , their compositions are denoted by EF and F E .

Definition 6.1.6 (Equivalence of categories). An equivalence of categories C and D consists
of functors

E : C → D,

F : D → C,

and natural isomorphisms

α : 1C → F E ,

β : 1D → EF.

The categories C and D are then said to be equivalent.

The following proposition provides provides a criterion to check if a functor is part of an
equivalence of categories.

Proposition 6.1.7. Let C and D be categories and F : C → D a functor. The following are
equivalent:

1. F belongs to an equivalence of categories;

2. F is full, faithful and essentially surjective.

Proof. See [Awo06, proposition 7.25].

The notion of skeletons of a category provides a second criterion to check for the existence
of an equivalence of categories, given in corollary 6.1.11.

Definition 6.1.8 (Skeleton). Let C and C’ be categories such that the following hold:

• C’ is a subcategory of C. That is,

ObC′ ⊆ ObC,

HomC’(A,B) ⊆ HomC(A,B),

for all A,B ∈ ObC’. The composition operation and identities on C’ are the same as on
C, under restriction.
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• The inclusion functor C’ ,−→ C is full and essentially surjective.

• No distinct objects in C’ are isomorphic.

Then C’ is called a skeleton of C.

The last condition in definition 6.1.8 implies that in a skeleton, each isomorphism class con-
tains just one object.

Definition 6.1.9 (Isomorphic categories). Let C and D be categories. If there exists functors
F : C → D and G : D → C such that GF = 1C and FG = 1D, then C and D are isomorphic as
categories.

Proposition 6.1.10. The following properties hold:

1. Every category has a skeleton.

2. If C′
1 and C′

2 are both skeletons of the same category then they are isomorphic.

3. Let C be a category. For any skeleton C′ of C, there exists an equivalence relation between
C′ and C under the inclusion functor.

Proof. See [AHS04, remark 4.10.3 and proposition 4.14].

Corollary 6.1.11 ([AHS04], corollary 4.15). Two categories are equivalent if and only if their
skeletons are isomorphic.

6.2. Supersingular isogenous elliptic curves and modules of maximal
orders in quaternion algebras

The relation between supersingular isogenous elliptic curves and modules of maximal or-
ders in a quaternion algebra can be made explicit by an equivalence of categories, defined in
theorem 6.2.9. The theorem, its proof and the preliminaries discussed in this section mainly
follow [Voi17, chapter 42].
For supersingular elliptic curves E and E0 over Fp , define O := End(E), O0 := End(E0) and
quaternion algebras B := O⊗Q and B0 := O0 ⊗Q. The set of homomorphisms between E and
E0 is denoted by Hom(E ,E0).

Theorem 6.2.1 ([Gal12], theorem 25.3.17). Let E ,E ′ be elliptic curves over Fp and let ` 6= p be
a prime. Then there exists an `-power isogeny from E to E ′.

Lemma 6.2.2 ([Voi17], lemma 42.1.11). Let E, E0 be supersingular elliptic curves over Fp .
Then Hom(E ,E0) is a free Z-module of rank 4, which is invertible as a right O-module and as
a left O0-module.

Proof. This proof is in part based on the proof given in [Voi17, lemma 42.1.11].
The first part of the proof will show that Hom(E ,E0) is a freeZ-module of rank 4. By theorem
6.2.1, for a prime n there exists a nonzero n-isogeny ψ ∈ Hom(E ,E0) with ker ψ = n. Its dual
isogeny is ψ̂ ∈ Hom(E0,E), such that ψ◦ ψ̂ = [n]. Define the map

ιψ : Hom(E ,E0) →O0,

ϕ 7→ϕ◦ ψ̂.
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Let ϕ1,ϕ2 ∈ Hom(E ,E0) and suppose

ιψ(ϕ1) =ϕ1 ◦ ψ̂ =ϕ2 ◦ ψ̂ = ιψ(ϕ2).

Then
ϕ1|ψ̂(E0)=ϕ2|ψ̂(E0),

which implies that ϕ1 = ϕ2, because ψ̂(E0) contains infinitely many points. So ιψ is injec-
tive and therefore bijective. It is also a homomorphism of Z-modules, which then makes it
isomorphic to its image:

Hom(E ,E0) ∼= ιψ(Hom(E ,E0)) = Hom(E ,E0)ψ̂.

Here Hom(E ,E0)ψ̂⊆O0. Here O0 is a free Z-module that is of rank 4 by definition 5.2.1. The
submodule [n](O0) = nO0 ⊆O0 is then also a free Z-module of rank 4. Define the map

τψ : O0 → Hom(E ,E0),

ϕ′ 7→ϕ′ ◦ψ.

Then for ϕ′ ∈O0,

ιψ ◦τψ(ϕ′) = ιψ(ϕ′ ◦ψ)

=ϕ′ ◦ψ◦ ψ̂
=ϕ′ ◦ [n]

= [n]◦ϕ′,

where the last equality follows from the fact that ϕ′ is an isogeny and therefore a homomor-
phism. This means that

ιψ ◦τψ(O0) = nO0 ⊆ Hom(E ,E0)ψ̂⊆O0.

Since nO0 and O0 are free Z-modules of rank 4, Hom(E ,E0) is as well.
Left to prove is invertibility of Hom(E ,E0) as a right O-module and a left O0-module. Let
again ψ ∈ Hom(E ,E0) be nonzero and let ψ̂ ∈ Hom(E0,E) be its dual. Since Hom(E ,E0)ψ̂ ⊆
O0 was shown to be a free Z-module of rank 4, it is a left O0-ideal. As O0 is a maximal order,
Hom(E ,E0)ψ̂ is invertible by theorem 5.3.8. This argument can be repeated to show that
Hom(E ,E0)ψ̂ is a right O-module, which concludes the proof.

Definition 6.2.3. Let I ⊆O be a nonzero left ideal and α ∈ I , with E [α] := kerα. Define

E [I ] :=
⋂
α∈I

E [α].

Lemma 6.2.4 ([Voi17], paragraph 42.2.1). Because E [I ] ⊂ E is a finite subgroup, there exists
an isogeny

ϕI : E → E/E [I ].
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Throughout this section, let E I := E/E [I ]. For a separable isogeny ϕ ∈ I , definition 6.2.3
implies that

E [I ](F ) = {P ∈ E(Fp ) :ϕ(P ) = 0 ∀ϕ ∈ I }.

As a result, ϕI is also a separable isogeny. In this chapter only separable isogenies will be
considered. For more background theory and the case of inseparable isogenies, see [Voi17,
paragraph 42.2.4].

Lemma 6.2.5 ([Voi17], lemma 42.2.7). Let I ⊆O be a nonzero left ideal. The map

ϕ∗
I : Hom(E I ,E) → I ,

ψ 7→ψϕI

is an isomorphism between left O-modules.

Proof. See [Voi17, lemma 42.2.7].

Proposition 6.2.6. Let I ⊆O0 and define isogeny ϕI as in definition 6.2.3. Then
deg ϕI = nrd(I ).

Proof. See [Voi17, proposition 42.2.16.(a)].

Corollary 6.2.7 ([Voi17], corollary 42.2.21). For every isogeny ϕ : E → E ′, there exists a left
O-ideal I and an isomorphism ρ : E I → E ′ such that ϕ = ρϕI .

Proof. See [Voi17, corollary 42.2.21].

Lemma 6.2.8 ([Voi17], lemma 42.2.22). Let I , I ′ ⊆O be nonzero left ideals. The map

Hom(E I ,E)×Hom(E I ′ ,E I ) → Hom(E I ′ ,E)

is a natural map, which is bijective. It gives rise to a further bijection

Hom(E I ′ ,E I ) → I−1I ′,

ψ 7→ϕ−1
I ψϕI ′ .

Proof. See [Voi17, lemma 42.2.22].

Theorem 6.2.9. Let CEC be the category of supersingular elliptic curves under isogenies and
CO0 the category of invertible left O0-modules under left O0-module homomorphisms. The
functor given by

G : CEC → CO0

E 7→ Hom(E ,E0)

defines an equivalence of categories between CEC and CO0 .

Proof. The proof follows the proof given for [Voi17, theorem 42.3.2]. It will be shown that G
is indeed a functor and subsequently that it is essentially surjective and fully faithful.
The first step is to prove that G is a functor between categories. By lemma 6.2.2, the class of
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objects ObCO0
contains left O0-modules of the form Hom(E ,E0). As ObCEC contains all ellip-

tic curves E , association G : E 7→ Hom(E ,E0) is indeed functorial on the classes of objects of
both categories. For an isogeny ϕ ∈ HomCEC (E ,E ′), let G(ϕ) =ϕ∗ which is defined by

ϕ∗ : Hom(E ′,E0) → Hom(E ,E0),

ψ 7→ψ◦ϕ.

Because ϕ∗ is a left O0-module homomorphism, ϕ∗ ∈ HomCO0
(Hom(E ′,E0),Hom(E ,E0)).

This implies that G is also functorial on morphisms of both categories and therefore a func-
tor.
The next step is to show that G is essentially surjective. Let I ∈ ObO0 and tensor by Q to
obtain injection I ,→ I ⊗Q. Since I is a 4-dimensional Z-lattice, this injection is given by

Z4 ,→Z4 ⊗ZQ =Q4,

(w, x, y, z) 7→ (
w

1
,

x

1
,

y

1
,

z

1
).

Use notation M := Z4 ⊗ZQ. It can be shown that there exists an isomorphism between M
and B0 as B0-modules. To this end, let m ∈ M be nonzero and define the map

ϕ : B0 → M ,

b 7→ bm.

Then ϕ is a B0-module homomorphism. Since B0 is a division ring, ker(ϕ) as an ideal is
either trivial or B0. If ker(ϕ) = B0, then φ is the trivial map. Since m 6= 0 this cannot be the
case, so ker(ϕ) = {0}. This makes ϕ injective as a B0-homomorphism and therefore bijective.
So M ' B0 and by map I ,→ I ⊗Q, I ⊆ B0 up to isomorphism. After scaling with an integer,
I ⊆ O0 is a left O0-ideal. By lemma 6.2.5, I ∼= Hom(E I ,E0) under the pullback map. For
any such I , define E I := E/E [I ]. So for any I ∈ ObO0 , there exists an E I ∈ ObEC such that
G(E I ) = Hom(E I ,E0) ∼= I . This makes G is essentially surjective.
The last step is to show that G is fully faithful. Define the map

GE ,E ′ : Hom(E ,E ′) → Hom(Hom(E ,E0),Hom(E ′,E0)),

ϕ 7→ϕ∗.

Showing that G is fully faithful is equivalent to showing that GE ,E ′ is bijective. By corollary
6.2.7, there exist left O0-ideals I , I ′ such that E ' E0,I := E0/E0[I ] and E ′ ' E0,I ′ := E0/E0[I ′].
By lemma 6.2.4, there exist isogenies

ϕ0,I :E0 → E0,I ,

ϕ0,I ′ :E0 → E0,I ′ .

So by lemma 6.2.5, I = Hom(E0,I ,E0)ϕ0,I and I ′ = Hom(E0,I ′ ,E0)ϕ0,I ′ . This reduces GE ,E ′ to
the map

Hom(E0,I ,E0,I ′) → (I ′ : I )R = I ′−1I ,

ψ 7→ϕ−1
0,I ′ψϕ0,I .

So by lemma 6.2.8, GE ,E ′ is bijective.
Because G is essentially surjective and fully faithful, property 6.1.7 implies that it defines an
equivalence of categories.
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6.3. Brandt matrices as adjacency matrices of supersingular isogeny graphs

This section contains a justification for the use of Brandt matrices as adjacency matrices
for supersingular isogeny graphs. Such graphs will from here on be referred to as ’isogeny
graphs’.
Throughout this section, fix p to be a prime and let all elliptic curves be defined over Fp . For
the elliptic curve E0 as a starting curve, define O0 := End(E0) so that O0 is an order in the
quaternion algebra B0 := O0 ⊗Q. Let Ii , I j be representatives of distinct classes of invertible
O0-ideals. That is, [Ii ], [I j ] ∈ Cls O0 with [Ii ] 6= [I j ]. Let Ei ,E j be elliptic curves. Define the
sets

Sn,i , j := {H ⊆ E j (Fp ) : E j /H ' Ei ,#H = n},

Tn,i , j := {J ⊆ I j : nrd(J ) = n ·nrd(I j ), [J ] = [Ii ]}.

Remark 6.3.1. The sets Sn,i , j and Tn,i , j also depend on the prime p. Since this number was
fixed earlier, this won’t be denoted explicitly.

Let k be a positive integer and let S(n) ∈ Mk (Z) such that S(n)i , j = #Sn,i , j , where i , j = 1, ...,k.
The matrix S(n) counts distinct isogenies between classes of elliptic curves, which makes it
the adjacency matrix of the n-isogeny graph.

Definition 6.3.2 (Brandt matrix). Let T (n) ∈ Mk (Z) such that T (n)i , j = #Tn,i , j for i , j = 1, ...,k.
Then T (n) is called the n-Brandt matrix.

The n-Brandt matrix T (n) is the adjacency matrix for a directed graph Gp,n = (Vp,n ,Ep,n),
where

Vp,n = ClsO,

Ep,n = {〈[Ii ], [J ]〉 : n ·nrd(I ) = nrd(J ), J ⊆ Ii }.

Remark 6.3.3. The matrices S(n) and T (n) depend on the distinct ordering of rows i = 1, ...,k
and columns j = 1, ...,k, which in turn depends on the choice of E0. However, this does not
affect the properties of the matrices as adjacency matrices; the graphs that they represent
do not change with E0.

By the result stated in [Voi17, paragraph 42.3.13], there exists a bijection between Tn,i , j and
Sn,i , j . Because the result includes no proof of this fact, one will be given in the remainder of
this section.
To this end, let I ⊆O0 be a nonzero left O0-ideal with J ⊂ I such that

nrd(J ) = n ·nrd(I ). (6.1)

Denote E0,I := E0/E0[I ] and E0,J := E0/E0[J ]. By lemma 6.2.4, there exist isogenies

φI :E0 → E0,I ,

φJ :E0 → E0,J ,

with kerφI = E0[I ] and kerφJ = E0[J ]. Recalling definition 6.2.3, J ⊂ I implies that E0[I ] ⊆
E0[J ]. Then the homomorphism theorem implies that there exists an isogeny

φI J : E0,I → E0,J (6.2)
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such that φJ =φI J ◦φI . This is equivalent to commutativity of the following diagram:

E0,I

E0 E0,J

φI JφI

φJ

By proposition 6.2.6 and by (6.1), the degree of isogeny φI J is given by

deg φI J =
deg φJ

deg φI
=

nrd(J )

nrd(I )
= n,

so #ker φI J = n. A map τn can then be defined as follows.

Definition 6.3.4. For J ∈ Tn,i , j such that J ⊆ I j ⊆O0, let

τn : Tn,i , j →Sn,i , j ,

J 7→ ker φI j J . (6.3)

To prove that τn is a bijection, which is formulated in proposition 6.3.7, the following lemma’s
will be needed.

Lemma 6.3.5. If [I ] = [J ], then E0,I
∼= E0,J .

Proof. Let CEC denote the category of supersingular elliptic curves over Fp under isoge-
nies and CO0 the category of left O0-modules under left O0-module homomorphisms. By
theorem 6.2.9, these categories are equivalent under the functor G : E 7→ Hom(E ,E0). For
I , J ∈ ObCO0

, suppose that [I ] = [J ].
Construct a skeleton C′

O0,I containing I and a skeleton C′
O0,J containing J which are both iso-

morphic to CO0 under respective inclusion functors ιI and ιJ . By corollary 6.1.11, skeletons
of CEC and CO0 are isomorphic under F . So there exist (not necessarily distinct) skeletons of
CEC containing E0,I and E0,J , so that

E0,I
∼= I ,

E0,J
∼= J .

These skeletons are isomorphic to CEC under inclusion functors ιE0,I and ιE0,J . Since skele-
tons of the same category are isomorphic by proposition 6.1.10.2, [I ] = [J ] implies that I ∼= J .
This gives that

E0,I
∼= I ∼= J ∼= E0,J .

This is illustrated by the following diagram, where all isomorphic relations are denoted by
Gi , i = 1, ...,6:

E0,I E0,I I I

E0,J E0,J J J

ιE0,I

G1

G2

G3

ιI

G4 G5

ιE0,J G6 ιJ
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Lemma 6.3.6. Let E0, E1 and E2 be elliptic curves over Fp such that E1
∼= E2. Suppose there

exist isogenies ϕ1 : E0 → E1 and ϕ2 : E0 → E2. Then there exists an isomorphism ζ : E1 → E2

such that ϕ2 = ζ◦ϕ1.

Proof. Suppose the isomorphism E1
∼= E2 is given by isogeny ζ̃ : E1 → E2. Because ϕ1 and ϕ2

are isogenies, they are surjective by proposition 3.1.11. By comparing automorphisms on
E1, it is then possible to find α ∈ Aut(E1) such that ϕ1 ◦α◦ ζ̃ =ϕ2. Choose ζ = α◦ ζ̃ to obtain
the desired isomorphism. This is equivalent to commutativity of the following diagram:

E0 E2

E1 E1

ϕ2

ϕ1 ζ̃
ζ

α

Proposition 6.3.7. The map τn is a bijection.

Proof. To prove the proposition, it suffices to construct a map σn : Sn,i , j → Tn,i , j such that
σn = τ−1

n .
Let Ii and I j be right invertible O0-ideals (from here on referred to as ’O0-ideals’) and use
notation Ei := E0,Ii , E j := E0,I j . By lemma 6.2.4, there exist isogenies

ϕIi : E0 → Ei ,

ϕI j : E0 → E j .

By lemma 6.2.5, then Ii = Hom(Ei ,E0)ϕIi and I j = Hom(E j ,E0)ϕI j .

The goal of this proof is to first define σn and then show that σn = τ−1
n , which will be done in

three steps.

1. As the first step the map σn will be defined.
Let H ∈Sn , so that #H = n and E j /H ∼= Ei . By proposition 3.1.6, there exists an isogeny

ϕH : E j → E j /H

with ker ϕH = H . Now define the map σn as follows:

σn : Sn → Tn ,

H 7→ Hom(E j /H ,E0)(ϕH ◦ϕI j ) =: J ′. (6.4)

For this map to be properly defined, it must be the case that J ′ ∈ Tn,i , j .

(a) First it must be shown that J ′ ⊆ I j .
Let f ∈ Hom(E j /H ,E0). Then f ◦ϕH : E j → E0, so f ◦ϕH ∈ Hom(E j ,E0). For
f ◦ϕH ◦ϕI j ∈ Hom(E j /H ,E0)(ϕH ◦ϕI j ), then also f ◦ϕH ◦ϕI j ∈ Hom(E j ,E0)ϕI j .
This indeed implies that J ′ ⊆ I j .

(b) This step will show that [J ′] = [Ii ].
Construct a map ϕH ◦ϕI j : E0 → E j /H . Since E j /H ∼= Ei , by lemma 6.3.6 there
exists an isomorphism ρ : Ei → E j /H such that

ϕH ◦ϕI j = ρ ◦ϕIi . (6.5)
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Now let f ∈ Hom(E j /H ,E0) and g ∈ Hom(Ei ,E0). Then f ◦ρ ∈ Hom(Ei ,E0) and
g ◦ρ−1 ∈ Hom(E j /H ,E0). The situation is illustrated by the following (not neces-
sarily commutative) diagrams:

E j /H

Ei E0

fρ

g

E j /H

Ei E0

fρ−1

g

This gives that
Hom(Ei ,E0) = Hom(E j /H ,E0)ρ. (6.6)

Combining (6.5) and (6.6) results in

Ii = Hom(Ei ,E0)ϕIi

= Hom(E j /H ,E0)(ρ ◦ϕIi )

= Hom(E j /H ,E0)(ϕH ◦ϕI j )

= J ′.

By the above, [J ′] = [Ii ].

(c) This step will prove that nrd(J ′) = n ·nrd(I j ).
Since J ′ is an O0-ideal by step 1a, use notation E0,J ′ := E0/E0[J ′]. By lemma 6.2.4,
there exists an isogeny

ϕJ ′ : E0 → E0,J ′ .

In step 1b it was shown that [J ′] = [Ii ], so by lemma 6.3.5 E0,J ′ ∼= E Ii . Then it
follows from proposition 3.1.9 that

deg ϕJ ′ = ker ϕJ ′ = ker ϕIi = deg ϕIi .

Applying (1a) then gives that

deg ϕJ ′ = deg ϕIi

= deg ϕρ ·deg ϕIi

= deg ϕH ·deg ϕI j

= n ·deg ϕI j .

The last equality follows from the fact that ker ϕH = H . By finally applying theo-
rem 6.2.6, the above implies that nrd (J ′) = n ·nrd(I j ).

Steps 1a, 1b and 1c confirm that J ′ ∈ Tn,i , j .

2. In this step it will be shown that τn ◦σn = i dSn,i , j .
Let H ∈Sn,i , j so thatσn(H) = J ′, where J ′ is defined as in (6.4). Following the reasoning
preceding (6.2), there exists an isogeny ϕI j J ′ : E j → E0,J ′ . This gives that
τn(J ′) = ker ϕI j J ′ . It will now be shown that ker ϕI j J ′ = H .
Because H ∈ Sn,i , j , it is known that E j /H ∼= Ei . In step 1b it was shown that [J ′] = [Ii ],
so E0,J ′ ∼= Ei . This also implies that E0,J ′ ∼= E j /H . By lemma 6.3.6 there then exists an
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isomorphism ψ : E0,J ′ → E j /H such that ϕH =ψ◦ϕI j J ′ . This is equivalent to commu-
tativity of the following diagram:

E0,J ′

E j E j /H

ψ
ϕI j J ′

ϕH

Finally, this gives that

H = ker ϕH

= ker ψ◦ϕI j J ′

= ker ϕI j J ′ ,

where the last equality follows from the fact that ker ψ is trivial. This proves that (τn ◦
σn)(H) = H and therefore that τn ◦σn = i dSn,i , j .

3. In this step it will be shown that σn ◦τn = i dTn,i , j .
Let J ∈ Tn,i , j , so that nrdJ = n ·nrdI j and [J ] = [Ii ]. The latter implies by lemma 6.3.5
that E0,J

∼= Ei . Because J is an O0-ideal, use notation E0,J := E0/E0[J ]. By lemma 6.2.4,
there exists isogeny

ϕJ : E0 → E0,J .

Following lemma 6.2.5, ideal J can also be written as J = Hom(E0,J ,E0)ϕJ . Define a
map ϕI j J : E j → E0,J as in (6.2). Then τn(J ) = ker ϕI j J := H ′. It will now be shown that
σn(H ′) = J .
Since H ′ is a finite subgroup of E j , by proposition 3.1.6 there exists an isogeny

ϕH ′ : E j → E j /H ′

where ker ϕH ′ = H ′ = ker ϕI j J . Then proposition 3.1.8 implies that E j /H ′ ∼= E0,J and
therefore that E j /H ′ ∼= Ei . By lemma 6.3.6, there exists an isomorphism
π : E0,J → E j /H ′ such that

ϕH ′ ◦ϕI j =π◦ϕJ . (6.7)

This is equivalent to commutativity of the following diagram:

E0 E j

E0,J E j /H ′

ϕI j

ϕJ ϕH ′

π

A similar argument as given in step 1b to justify (6.6), implies here that

Hom(E0,J ,E0) = Hom(E j /H ,E0)π. (6.8)

Applying (6.7) and (6.8) then gives that

Hom(E j /H ′,E0)(ϕH ′ ◦ϕI j ) = Hom(E j /H ,E0)(π◦ϕJ )

= Hom(E0,J ,E0)ϕJ

= J .

This proves that (σn ◦τn)(J ) = J and therefore that σn ◦τn = i dTn,i , j .
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Steps 2 and 3 prove that σn = τ−1
n , so τn is a bijection.

Proposition 6.3.7 implies that Tn,i , j
∼= Sn,i , j and therefore T (n) = #Tn,i , j = #Sn,i , j = S(n). This

means that for an n-Brandt matrix T (n), entry T (n)i , j is the number of isogenies from vertex
j (Ei ) to vertex j (E j ) in an n-isogeny graph.
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7. Non-backtracking walks on supersingular isogeny
graphs

In chapter 6 it was shown that Brandt matrices are adjacency matrices of supersingular
isogeny graphs. The current chapter describes how they can be used to recreate the results
in [Tho17, section 7.3 and 7.4]. The efficiency of this method is tested by timing the gener-
ation of Brandt matrices and adjacency matrices for supersingular isogeny graphs (referred
to as ’isogeny graphs’). Section 7.1 discusses preliminaries regarding the procedure in Sage
and a recurrence relation for non-backtracking matrices. This is followed by the results for
distributions of j (E A), j (EB ) and j (E AB ) in sections 7.2 and 7.3. A discussion of the results
and concluding remarks follow in chapter 8.

7.1. Preliminaries

Where [Tho17] simulates 500 walks on isogeny graphs to approximate the distribution of
j (E A), j (EB ) and j (E AB ), Brandt matrices can be used to compute a matrix containing the
exact distribution. The details and results of this are discussed in sections 7.2 and 7.3.
The following code creates the Brandt module B for a finite field Fp (see [Koh]) and then
computes the Hecke matrix for this module and prime n (see [hec]).

B = Brandtmodule(p)
B.hecke_matrix(n)

Here the Hecke matrix is the n-Brandt matrix given a finite field Fp . Similarly, the following
code creates a supersingular module M (see [sup]) for the supersingular elliptic curve case
followed by generating the Hecke matrix for this module and prime n.

M = Supersingular(p)
M.hecke_matrix(n)

Here the Hecke matrix is the adjacency matrix of the n-isogeny graph given a finite field Fp .
The choice for E0 is made within the command that generates the Hecke matrix and is there-
fore not explicitly mentioned in this chapter. Since E0 is not the same for each generated
matrix, it can happen that T (n) 6= S(n). However, they can still be considered equal as adja-
cency matrices of supersingular isogeny graphs (see also remark 6.3.3).
Fixing E0 for the above reason and continuing the notation of section 6.3, let

S(n)i , j = #{H ⊆ E j (Fp ) : E j /H ' Ei ,#H = n}.

The matrix S(n) is the adjacency matrix of a supersingular n-isogeny graph. In the SIDH
protocol only non-backtracking walks are of interest, so only cyclic subgroups H will be
taken into account. To count just the non-backtracking walks, define a new matrix

S′(n)i , j = #{H ⊆ Ei (Fp ) : Ei /H ∼= E j ,#H = n, H cyclic}. (7.1)

For any prime ` then S′(`) = S(`), because subgroups of prime order are always cyclic. Where
S′(`)e

i , j = S(`)e
i , j is the number of walks of length e from a vertex i to a vertex j , then S′(`e )i , j
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is the number of non-backtracking walks of length e between i and j . For Alice the ma-
trix S′(`e A

A ) gives the distribution of all possible non-backtracking walks of length e A in `A-
isogeny graph G`A , which is equal to the distribution of j (E A). Similarly, for Bob the ma-
trix S′(`eB

B ) gives the distribution of j (EB ). The distribution of j (E AB ) is given by the matrix
S′(`e A

A )S′(`eB
B ) = S′(`eB

B )S′(`e A
A ).

It is possible to construct a recurrence relation to obtain such a matrix S′(`e ). Recall that
for e = 1, simply S′(`1) = S(`). For e = 2, the only possible backtracking walk starting from
any vertex is to an arbitrary adjacent vertex and back to itself. By proposition 3.2.6, for each
vertex in an `-isogeny graph this is possible in `+ 1 different ways. In terms of adjacency
matrices this is represented by (`+ 1)I , where I is the identity matrix. The matrix of non-
backtracking walks of length 2 is then given by

S′(`2) = S′(`)2 − (`+ 1)I . (7.2)

For e ≥ 3, the following theorem and corollary give a recurrence relation to obtain S′(`e ).

Theorem 7.1.1. Let a,b be positive integers and let (a,b) := gcd(a,b). Then

S′(a)S′(b) =
∑

d |(a,b)
dS′(

ab

d 2 ).

Proof. See [Apo90, theorem 6.13].

Corollary 7.1.2. The matrix containing all non-backtracking walks of length e on `-isogeny
graph Gp,` is given by

S′(`e ) = S′(`e−1) ·S′(`)−` ·S′(`e−2). (7.3)

Proof. Choose a = `e−1, b = ` and apply theorem 7.1.1.

The results of section 6.3 imply that T ′(`e ) = S′(`e ), where T ′(`e ) is the non-backtracking
version of T (`)e . To obtain the results in sections 7.2 and 7.3, T ′(`e A

A ) and T ′(`eB
B ) were com-

puted using the recurrence relation in equation 7.3.
To compare efficiency of the quaternion algebra method and the supersingular elliptic curve
method, the generation of matrices T ′(`A) and T ′(`B ) by both methods was timed for `A =
2,`B = 3 and p = 2835 − 1. This was done by timing the generation of the Hecke matrix 10
times for both modules, giving the results in table 7.1. The results show that the Brandt ma-
trix is not generated faster than the matrix based on supersingular elliptic curves (SSEC). The
Brandt matrix for Bob is computed faster than the one for Alice, while the opposite occurs
for the SSEC matrix.

Brandt matrix SSEC matrix
Alice (` = 2) 438.42961 14.82953
Bob (` = 3) 286.90380 55.34492

Table 7.1: The time taken (in seconds) to generate Brandt matrices and supersingular elliptic curve
(SSEC) matrices for Alice and Bob. The table shows the mean results of 10 repetitions.
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7.2. Distribution of j (E A) and j (EB )

Let Gp,`A be the `A-isogeny graph for Alice and let p = `e A
A `

eB
B − 1. Computing the matrix

T ′(`e A
A ) results in the distribution of all possible non-backtracking walks of length e A in

Gp,`A . From a single starting vertex there are (`A + 1)`e A−1
A such walks. The entries in each

column j sum up to (`A + 1)`e A−1
A . By remark 3.2.5, the entries in each row i will sum up to

(`A + 1)`e A−1
A only if p ≡ 1 mod 12, in which case T ′(`e A

A ) is symmetric.
The heuristic estimation is given by 4.2.1, following [Tho17, estimation 7.3.1]. This estima-
tion was tested by computing T ′(`e A

A ) for `A = 2,`B = 3,e A = 8,eB = 5. Here p = 2835 −1, for
which T ′(`e A

A ) ∈ M5185(Z). For each column in T ′(`e A
A ) the nonzero entries are counted, in-

dicating the number of distinct end points of the walk. The results are shown in figure 7.1.
This process is repeated for Bob’s non-backtracking walks of length eB on `B -isogeny graph
Gp,`B , by generating T ′(`eB

B ) ∈ M5185(Z). Bob’s results are shown in figure 7.2.
Similar to what was found in [Tho17], comparing figure 7.1b to figure 7.1a and figure 7.2b
to figure 7.2a, the results for heuristic estimation 4.2.1 approximate the distributions well,
even for a relatively small prime.

(a) Results for j (E A). (b) Results for S A (see estimation 4.2.1).

Figure 7.1: Alice’s results for p = 2835 −1. The histograms shows the fraction of starting vertices j (E0)
(vertical axis) that result in x distinct vertices j (E A) (horizontal axis). These results are equivalent to
[Tho17], figures 2 and 3 in section 7.3.
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(a) Results for j (EB ). (b) Results for SB (see estimation 4.2.1)

Figure 7.2: Bob’s results for p = 2835−1. The histograms show which fraction of vertices (vertical axis)
has been chosen x times (horizontal axis). These results are compared to
[Tho17, figures 2, 3, 4 and 5, section 7.3].

7.3. Distribution of j (E AB )

Let Gp,`A be the `A-isogeny graph for Alice and Gp,`B the `B -isogeny graph for Bob. For
respective non-backtracking walks of length e A and eB , as in section 7.2 the distribution
of these walks are represented by matrices T ′(`e A

A ) and T ′(`eB
B ). The matrix T ′(`e A

A )T ′(`eB
B ),

represents all possible walks by Alice from starting vertex E0 to E A and then by Bob from
E A to E AB . Since T ′(`e A

A )T ′(`eB
B ) = T ′(`eB

B )T ′(`e A
A ), this is the same as Bob first walking from

E0 to EB and Alice walking from EB to EB A. The resulting matrix gives the distribution of
j (E AB ) = j (EB A).
The heuristic estimation is given by 4.2.2, following [Tho17, estimation 7.4.1]. This estima-
tion was also tested for `A = 2,`B = 3,e A = 8,eB = 5, for which p = 2835 − 1. To be able to
comment on the accuracy of estimation 4.2.2, it is compared to the following naive estima-
tion.

Estimation 7.3.1. Construct multiset S∗ as follows:

• Pick `e A−1
A (`A + 1)`eB−1

B (`B + 1) vertices (j-invariants) uniformly at random. Each time
a vertex is picked, store it in S∗.

In a naive sense, the distribution of j (E AB ) is estimated to be the same as when picking an
element from S∗ uniformly at random.

For each distinct entry x in T ′(`e A
A )T ′(`eB

B ) it was counted how many end nodes j (E AB ) oc-
cur x times. The results are shown in figure 7.3. When comparing figure 7.3a to figure 7.3b,
the estimation approximates the distribution quite well. Moreover, figure 7.3c also approxi-
mates figure 7.3a well.
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(a) Results for j (E AB ). (b) Results for S (see estimation 4.2.2).

(c) Results for S∗ (see estimation 7.3.1).

Figure 7.3: The results for the secret key for p = 2835−1. The histograms show the fraction of possible
vertices j (E AB ) (vertical axis) that occurs x times (horizontal axis). Figures (a) and (b) are compared
to [Tho17, figures 14 and 15, section 7.4].
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8. Conclusion

The theoretical background in chapters 2 to 5 and in particular chapter 6 allow the experi-
ments in chapter 7. The results in sections 7.2 and 7.3 show that in case p = 2835 −1, finding
the distributions of j (E A), j (EB ), j (E AB ) through computation of Brandt matrices gives ap-
proximately equally strong results as found in [Tho17] by simulating walks on supersingular
isogeny graphs. Generating Brandt matrices was also attempted for larger primes, where
T ′(29),T ′(36) ∈ M155521(Z) for p = 29365−1 and T ′(210),T ′(36) ∈ M435457(Z) for p = 210367−1.
The available memory capacity was not sufficient to compute and store dense matrices of
these sizes. In the first case, a rough estimation of the necessary amount of memory is given
by 8 bits times 1555212 entries, which would amount to approximately 180 GB. It is possi-
ble that additional data besides the matrix is stored by the Sage command that generates
the Hecke matrix, which causes it to increase memory usage even more. If all information
stored in a Brandt matrix of size k would be computed via simulation of walks on isogeny
graphs, in Alice’s case this is equivalent to performing k(`A + 1)`e A random walks in a sim-
ulation. This is much more than necessary. Instead of finding the complete distribution by
computing an entire matrix, it may be possible to simulate a lower number of "walks" via
quaternion algebras, as was done for walks on supersingular isogeny graphs by [Tho17]. A
topic for further research is to look into the code for the Sage commands that were used and
how to optimize this for such a simulation.
The mean times taken to generate Brandt and supersingular elliptic curve (SSEC) matrices,
shown in table 7.1, suggest that finding the distribution through Brandt matrices is slower
than through SSEC’s. A notable difference in both cases is whether the matrix is generated
faster for Alice or Bob. In the Brandt case this is Bob, but in the SSEC case this is Alice. A pos-
sible explanation for this is that a different amount of preparatory computations is made
and cached by Sage. For example, in the SSEC case first all j-invariants could be computed
and stored. Finding out where this difference comes from by again studying the code of the
built-in commands would make a good topic for further investigation. Furthermore, the ef-
ficiency of both methods has now only been tested by timing the matrix generation process.
Although it is a good indication of mutual differences between the methods (specially since
the difference between the Brandt and SSEC case is so large), the exact result depends on
the used hardware. The efficiency of both methods could be researched further and more
accurately, for example by tracking which and how much data is saved intermittently.
When improving the experiments in such a way that it is possible to use larger primes than
p = 2835 −1, naive estimation 7.3.1 should be compared to estimation 4.2.2 to see if it pro-
duces notable differences. In section 7.3 it was shown that this does not truly happen for
p = 2835 −1. If this is also not the case for larger primes, that may indicate both estimations
work equally well.
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