univers ltY of faculty of science mathematics and applied
E gr Onin g en / and engineering / mathematics

Supersingular Isogeny
Diffie-Hellman:

Finding the Distribution
of the Secret Key by
Computation of Brandt
Matrices

Bachelor’s Project Mathematics
July 2018

Student: H.E.H. van der Laan

First supervisor: Dr. M. Derickx

Second assessor: Dr. J.S. Miiller



Abstract

Quantum computing poses a threat to classical cryptosystems, so new protocols are needed.
One possible candidate to replace currently used key exchange protocols is Supersingular
Isogeny Diffie-Hellman (SIDH). The security of SIDH depends on a uniform distribution of
the secret key, for which heuristic estimations exist. These heuristics have been verified by
Thormarker (2017), via simulation of random walks on isogeny graphs.

This thesis studies the theoretical background of SIDH and investigates the relation between
supersingular elliptic curves and quaternion algebras. Through this relation it is shown that
the distribution of the secret key in SIDH can be found by computing Brandt matrices. This
is then compared to the results from the heuristic estimations.
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1. Introduction

A widely used protocol for establishing a shared secret key between two parties is the elliptic
curve Diffie-Hellman key exchange (ECDH). This can for example be used in the classical
cryptosystem AES. The safety of this protocol relies on the difficulty of solving the discrete
logarithm problem for elliptic curves.

Problem 1 (Discrete logarithm problem for elliptic curves). Let E be an elliptic curve over
a finite field K. For P € E and Q € (P) where (P) c E is the cyclic subgroup generated by P,
find an integer x such that xP = Q.

The ECDH protocol allows two parties, say Alice and Bob, to encrypt data with a shared
secret key and then share this data via a public channel. They construct this key together,
following the Diffie-Hellman method (see [Gall2, chapter 20]). Let [, be a finite field of size
p. The ECDH protocol is as follows ([Was08, section 6.2]):

1. Alice and Bob choose an elliptic curve E/[F, so that problemis difficult to solve. They
pick a point P € E(F,) of order N.

2. Alice and Bob each choose their respective secret elements a,b € Z/ NZ. Alice com-
putes aP, Bob computes bP and they publicly share this result with each other.

3. Now Alice computes abP and Bob computes baP. Since abP = baP, this can be used
as their shared key.

A schematic representation of ECDH is shown in table 1.1. It is believed to be difficult to
solve problem 1 using currently existing computers. Once a third party is able to solve this
problem, they can also find abP when given P, aP, bP. Possible methods of attack are the
Pohlig-Hellman algorithm, Pollard’s rho algorithm and the MOV algorithm (see [Thol7, sec-
tion 3.2]).

Alice Public Bob
Pick public parameter Pe E(Fp)
Pick secret keys ac€ZINZ beZINZ
Generate public keys aP bP
Compute shared key abP=(ab)P baP=(ab)P

Table 1.1: Schematic overview of the ECDH protocol. Here P € E(F) is a point of order N.

Although problem|1]is currently difficult to solve, this may not be the case in the near future
due to the development of quantum computers, which use qubits rather than regular bits
(see [DPV06), chapter 10]). This danger was first addressed in [Sho97], by the construction of
Shor’s algorithm. This algorithm can successfully perform a quantum attack on the RSA sys-
tem in polynomial time. There currently exist several other algorithms that allow quantum
computers to break classical cryptosystems in polynomial time.

This indicates a need for encryption methods that are safe from quantum attacks. A po-
tentially quantum-resistant protocol that can replace ECDH is the supersingular isogeny



Diffie-Hellman key exchange (SIDH).

The goal of this thesis is to study the security of SIDH, which depends on the uniformity
of the distribution of the generated shared secret in the space of shared secrets. The the-
oretical basis for a uniform distribution has not yet been proven, but there exist heuristics
that show that this distribution is indeed uniform. These heuristics have been verified by
simulation by [Thol7] for isogenies of degree 2 and 3. The correspondence between su-
persingular elliptic curves and maximal orders in a quaternion algebra suggests a relation
between Brandt matrices and the distribution of the shared secret in SIDH. This paper in-
vestigates the background theory of this relation and aims to recreate the results in [Thol7,
chapter 7] by generating Brandt matrices. Moreover, it addresses the question whether it is
more efficient to use the quaternion algebra approach rather than the supersingular elliptic
curve approach.

The first part of this thesis focuses on the theory behind SIDH. To this end, chapter 2 treats
background theory on elliptic curves and chapter 3 treats theory on isogenies and isogeny
graphs. In chapter 4 the SIDH protocol and the results of [Thol7] are discussed. The sec-
ond part of this thesis treats the necessary background information to define a correspon-
dence between supersingular elliptic curves and quaternion algebras. Chapter 5 contains
background theory on quaternion algebras. Chapter 6 justifies the interpretation of Brandt
matrices as the distribution of secret keys by the existence of an equivalence of categories.
In chapter 7 the heuristic estimations are verified by using said Brandt matrices. Chapter 8
contains concluding remarks and addresses topics for further research.

The reader is assumed to be familiar with group, ring and field theory, modules and basic
concepts of cryptography.



2. Elliptic curves

The SIDH protocol uses supersingular isogenous elliptic curves. Before discussing the pro-
tocol, background theory on elliptic curves will be treated in this chapter. In section[2.1]the
group structure and the j-invariant of elliptic curves will be discussed. Section treats
torsion points and supersingularity. The content of this chapter mainly follows [Sil09] and
[Was08].

2.1. The group law and j-invariant

Definition 2.1.1 (Elliptic curve). Let F be a field with char(F) #2,3. An elliptic curve E/F is
the graph of the Weierstrass equation

y*=x>+Ax+B, 2.1

where A, B € F and —16(4A3 +27B%) #0. The set of points {(x, y) € E} u{O} is denoted by
E(F), where O is the point at infinity.

Remark 2.1.2. In this paper only elliptic curves over fields of characteristic not 2 or 3 will be
considered. For this reason the generalized Weierstrass equation will not be discussed here
and all elliptic curves will be assumed to take the form (2.1).

Definition mentions the point at infinity O, which exists for every elliptic curve E. This
point can be interpreted as the point that lies at the "top" of the y-axis. A strict definition
can be made in terms of the projective space.

Definition 2.1.3 (Projective space). Let F be a field and let (x1, y1, z1), (X2, 2, 22) € F3\(0,0,0).
If there exists a A € F* such that (x1, y1,21) = (Ax2,A1y2,125), then (x1, y1,21) and (x2, y2, 22)
are called equivalent. The projective space IP% contains all equivalence classes (x: y: z) of
triples (x,y,2) € F3,

Definition 2.1.4 (Point at infinity). The point at infinity O on an elliptic curve E/F is given
by (0:1:0) € P%.

For a further discussion of definition[2.1.4} see [Was08, section 2.3].

Following [Sil09, p. 51], an elliptic curve E/F c IP% of the form is of degree 3. By a
special case of Bézout’s theorem a line [ c P% intersects E in exactly 3 points, which are not
necessarily distinct. For a detailed discussion of this topic, see [His14]. The above allows the
construction of the following composition law.

Definition 2.1.5 (Composition law). Let P and Q be points on elliptic curve E and let [ be
the line through both points. Line [ then intersects E in a point R'. Let k be the vertical line
through O and R’, which intersects E in a point R. The composition law + : Ex E — E is given
by P+Q=R.

The composition law is illustrated in figure



Figure 2.1: The composition law on an elliptic curve. The left figure shows addition of separate points
P and Q. The right figure shows addition of P with itself, in which case line [ is the line tangent to P.

Theorem 2.1.6. Let F bea field. The composition law+ on elliptic curve E/ F has the following
properties:

1. (P+Q)+R=P+(Q+R) forall BQ,R € E (associativity);
2. P+O =P forall P € E (identity element);
3. ForallP=(x,y) € E, there existsa P' = (x,—y) € E such that P+P' = O (inverse element);
4. P+Q=Q+P forall P,Q € E (commutativity).
This makes (E(F),+, O) an abelian group.
Proof. See [Was08, theorem 2.1]. O

Definition 2.1.7 (Isomorphic elliptic curves). Let E; and E, be elliptic curves. If there exist
morphisms ¢; : E; — E» and ¢, : E> — E; such that

@201 =idg,,
@1o@2=idg,,

then E; and E; are said to be isomorphic. This is denoted by E; = E>.

By [Feol7, chapter 2, the first paragraph], an isomorphism between two elliptic curves can
be given as follows. Let the following be Weierstrass equations of two elliptic curves:

y2 = x>+ au*x+bub,

(y*) = () +ax'+b.

An isomorphism between these curves that preserves both their Weierstrass form and the
group law is given by the map
(x,y) — W, u’y'.

Definition 2.1.8 (j-invariant). Let E be an elliptic curve over a field F of the form (2.1). The
j-invariant E(F) is given by
3

(B)=1728—— 2 ¢ F
J(E) 443+ 2782



Theorem 2.1.9. Let F be a field with algebraic closure F and let E, and E; be elliptic curves
over F. Then j(E,) = j(E») if and only if E, and E, are isomorphic over F.

Proof. See [Sil09, proposition II1.1.4.b]. O

Theorem [2.1.9|states that all elliptic curves over F in an isomorphism class have the same
unique j-invariant, independent of the chosen representative for the class.

2.2. Torsion points and supersingular elliptic curves

For a positive integer n and an elliptic curve E with P € E, write

nP=P+---+P.
—_—

n times

Definition 2.2.1 (Torsion group). Let E be an elliptic curve over a field F. For a positive
integer n, the n-torsion group of E(F) is defined as

E(F)[n]={P€ E(F):nP=0}.

Theorem 2.2.2. Let E be an elliptic curve over a field F and n a positive integer. If char(F) #0
does not divide n, then
E(F)[nl=Z/nZ&®ZInZ.

Proof. See [Was08, section 3.2]. O
By theorem 2.2.2} there exist generators P;, P, € E(F)[n] such that
ER) [ nl={mP;+maPy:-myj,mreZ/nz}.

Definition 2.2.3 (Supersingular elliptic curves). Let p be a prime and F a field of character-
istic p and E/F an elliptic curve. If E(F)[p] = {O}, E is called supersingular. If E(F)[p] = Z,,
E is called ordinary.

Definition 2.2.4 (Endomorphism ring). Let E be an elliptic curve. The endomorphism ring
End(E) is the ring containing all endomorphisms ¢: E — E.

Theorem 2.2.5. IfE is a supersingular elliptic curve, End(E) is a non-commutative ring.

Proof. See [Sil09, theorem V.3.1]. O

Theorem suggests a relation between supersingular elliptic curves and quaternion al-
gebras, which are also non-commutative. This will be investigated further in section 5.2.
Let [, be a finite field of size p, where p is prime, and denote by [, an algebraic closure. In

the rest of this paper elliptic curves will mainly be defined over Fp.

Theorem 2.2.6 ([Thol7], theorem 5.4.1). Let E /Fp be a supersingular elliptic curve. Then
J(E)€F 2.

Proof. See [Sil09, theorem V.3.1(a)(iii)]. O

Proposition 2.2.7 ([Thol7], proposition 5.4.2). Let jo € F 2 be a supersingular j-invariant.
Then there exists a supersingular elliptic curve E/F 2 such that j(E) = jo and

E([sz) = Zp+l &b Zp+1.



3. Isogenies

Isogenies are a particular type of morphisms between elliptic curves. In section[3.1]they will
be defined and some of their properties will be discussed. Section[3.2]treats basic notions of
graph theory, followed by the definition of isogeny graphs.

3.1. Isogenies between elliptic curves

Definition 3.1.1 (Isogenies). Let F and let Ej, E» be elliptic curves over F. An isogeny is a
non-constant homomorphism of abelian groups, given by

@ : E1(F) — Ex(F), 3.1)
(x,y)— (r(x, ), r2(x,¥),

where 1, (x, y), r2(x, y) are rational functions. If such an isogeny exists, E; and E- are said to
be isogenous.

Remark 3.1.2. Isogenies are not only homomorphisms between elliptic curves as abelian
groups, but also morphisms between said curves as algebraic varieties. However, the theory
of algebraic varieties lies beyond the scope of this thesis and will not be discussed further
here. See [Sil09, chapter 1] for background theory on this topic.

Any isogeny ¢ of the form is equivalent to
@(x,y) = (R1(x), yR2(x)), (3.2)
where R; (x), R»(x) are rational functions (see [Was08, section 2.9 and 12.2]).

Definition 3.1.3 (Degree of an isogeny). Let ¢ be an isogeny of the form Since R (x)
is a rational function, R;(x) = % for some polynomials p(x) and g(x). The degree of ¢ is
defined by

deg ¢ = max{deg (p),deg(q)}.

If ¢ is an isogeny with deg ¢ = n, then ¢ is called an n-isogeny.

Definition 3.1.4 (Separability). Anisogeny ¢ of the formis separableif R} (x) is not iden-
tically 0.

Definition 3.1.5 (Dual isogeny). For any isogeny ¢ : E; — E, there exists a dual isogeny
(ﬁ . Ez - E1 ,

such that for a point P € E,
Qow:P— (degp)P.

The dual isogeny ¢ is uniquely determined, with the property that ¢ = ¢.



Proposition 3.1.6. Let E/F be an elliptic curve and H < E(F) a finite subgroup. Then there
exists an isogeny ¢ : E — E/ H with ker ¢ = H.

Proof. See [Sil09, proposition 111.4.12 and remark I11.4.13.1]. O

There are methods to construct specific isogenies given an elliptic curve, for example via
application of Vélu'’s formulas (see [Was08, theorem 12.16]).

Proposition 3.1.7. Let F be a field with algebraic closureF, let Ey and E» be elliptic curves over
F and let ¢ : Ey — E> be an isogeny. If ¢ is separable, degg = #ker@. Otherwise, degy > #ker.

Proof. See [Was08, proposition 12.8]. O
The kernel of an isogeny ¢ : E; (K) — E(K) is a finite subgroup of E; (K).

Proposition 3.1.8. Let F be a field and E, E», E3 elliptic curves over F, for which there exist
separable isogenies ¢ : Ey — E» and ¢, 3 : Ey — E3 defined over F. If ker ¢, = ker @13, E»
and E3 are isomorphic.

Proof. See [Was08, proposition 12.12]. O

The isomorphism in proposition [3.1.8|is given by an isogeny v : E» — E3, which gives that
Wop2=;3. This is illustrated by commutativity of the following diagram:

E;
1,2 v
/ ¥13 \‘
Ey —— E3
In fact proposition can be formulated as an if and only if statement.
Proposition 3.1.9. IfE, = Es, then ker @12 = ker ¢13.
Proof. Let E» = E3 again be given by isogeny v : E» — E3. Because the kernel of v is trivial,
ker @13 =ker (o)
=deg (Y o¢p1,2)

= deg P1,2
=ker ¢ ».

O

Definition 3.1.10 (Equivalent isogenies). Let ¢1, @2 be separable isogenies. If ker ¢; = ker ¢,
(1 and ¢, are said to be equivalent. Otherwise they are called distinct.

By definition|3.1.10|it is possible to define equivalence classes of isogenies, where each class
contains isogenies that have identical kernels.

Proposition 3.1.11. Let E, and E, be elliptic curves over K, where K is an extension of the
field F, and let ¢ : E\ — E» be an isogeny. Then ¢ is surjective.

Proof. See [Was08, theorem 12.9]. O

Theorem 3.1.12 ([Feo17], theorem 13). Let p be a prime. Two elliptic curves E and E' defined
over a finite field F,, are isogenous if and only if #E(F ,) =#E' (F ).

8



3.2. Isogeny graphs

Isogenous elliptic curves can be represented by isogeny graphs. This section will treat basic
notions of graph theory, following [Wil96, chapter 2], and the construction of isogeny graphs.

Definition 3.2.1 (Graph). A graph G consists of an ordered pair (V,£), where ) denotes a
finite set of vertices and £ a multiset of unordered pairs of vertices.

In definition [3.2.1|the elements of £ are unordered pairs, in which case G is called an undi-
rected graph. If £ consists of ordered pairs of vertices, G is called a directed graph.

Vertices v;, vj € V are called adjacent if they form a pair (v;, v;) = (v}, v;) in £. This deter-
mines the structure of the graph and can be represented in matrix form.

Definition 3.2.2 (Adjacency matrix). Let G = (V, &) with V ={vy,---, v,,}. The matrix A € Z™*"
with A; ; the number of pairs (v;, v;) € £ is the adjacency matrix of G.

If G is an undirected graph, its adjacency matrix is symmetric, because (v;, v > =(vj,v;) for
all (v;,vj) e €.

Definition 3.2.3 (Walk). Let G = (V,€) be a graph with V = {vy,---,v,}. A walk of length
m € Z in G is represented by a finite sequence of vertices

{Vko» Vky» " k1 Vkipn )+ 3.3)
In this sequence any two consecutive vertices are adjacent.

Backtracking occurs in a walk if in a sequence of the form Vk,,, = Vi, , fori € {1,---, m}.

i+l
Definition 3.2.4 (Isogeny graph). Let V), be the set of isomorphism classes of isogenous
elliptic curves over the field Fp, where ¢ € Z.y. Such a class is denoted by [E], where E is a
representative and elliptic curves are in the same class if they are isomorphic. Let £, » be the

multiset of distinct /-isogenies between elements of V), ,. Then the graph G, o = (V) ¢, &), )
is an ¢-isogeny graph.

By theorem|2.1.9} each vertex [E] in an isogeny graph can be denoted by its unique j-invariant
J(B)€F,.

Although the isogeny graph G, , depends on both p, ¢, its vertex set VV,, , depends exclusively
on p. Since £, contains only distinct /-isogenies, it is a multiset containing /-isogeny
classes.

Remark 3.2.5. In case p =1 mod 12, /-isogeny graph G, , is undirected. Here for any
isogeny ¢ € £, ¢ also ¢ € £, . For other primes p it can happen that two non-equivalent
isogenies have equivalent dual isogenies. For an isogeny ¢ : E; — E», this occurs when
#Aut(E>) > 2. (see [Gall2, remark 25.3.2]).

Proposition 3.2.6. Let E be an elliptic curve over Fp and let ¢ # p be prime. Then there exist
¢ +1 distinct ¢ -isogenies with domain E (Fp).

Propositionimplies that there are £ +1 edges connected to each vertexin G, s.
Isogeny graphs can be defined for both supersingular and ordinary elliptic curves. For the
SIDH protocol only supersingular isogeny graphs are of interest, because here there is more
algebraic structure on the endomorphism ring than in the case of ordinary isogeny graphs
(see [Feol7, chapter 9]). In the remainder of this paper the explicit mention of supersingu-
larity will be omitted and 'isogeny graph’ will refer to a supersingular isogeny graph only.



4. Supersingular isogeny Diffie-Hellman

A potential candidate for a quantum resistant key exchange is supersingular isogeny Diffie-
Hellman (SIDH), first described in [JF11]. In section[4.1]the details of SIDH will be discussed,
followed by its security in terms of uniformity of the distribution of the secret key in section
4.2

By theorem and proposition ‘ any supersingular elliptic curve E/ Fp used in SIDH is
isomorphic to a supersingular elliptic curve over [ .. Therefore, this chapter considers such

curves over [F p? rather than over Fp. Furthermore, all isogenies mentioned here are assumed
to be separable. By theorem this implies that for any such isogeny ¢, deg ¢ = #ker ¢.

4.1. Keyexchange

In this section supersingular isogeny Diffie-Hellman (SIDH) will be discussed, following
JF11], [FJP14] and [Feol7|]. First some preliminaries and a general overview of the proto-
col will be given, followed by a discussion of its details.

SIDH is based on making non-backtracking random walks of length e over the edges of an
¢-isogeny graph. This yields a unique composition ¢ = ¢, 0---o¢, of e £-isogenies, where ¢;
represents the ith step in the walk (see [BCNE™18, proposition 4.3]). For a non-backtracking
walk, ¢ is an £°-isogeny with deg(¢p) = ¢° = #ker ¢. The kernel of an ¢-isogeny corresponds
to a cyclic subgroup in E[£]. So for ¢ there exists (P) < E[¢°] such that ker ¢ = (P), where

P € E[¢°]. The kernel of isogeny ¢ is cyclic of order ¢¢ if and only if the walk is non-backtracking.
The goal of the protocol is for Alice and Bob to compute a shared secret key, to which they
both contribute. They each use their own isogeny graph with the same set of vertices
(j-invariants), where Alice uses isogenies of degree ¢ 4 as edges and Bob isogenies of degree
¢p # ¢ 4. Here the numbers ¢ 4, ¢ are primes, which are chosen small to increase security.
Denote the graph of Alice by G, ¢, and the graph of Bob by G, /,. Alice makes e4 non-
backtracking random walks in G, ¢, by choosing a random cyclic subgroup (A) c E [[2’*].
Similarly, Bob makes a walk of length ep in G p,ep Dy choosing (B) c E [(;B ]. This is done so
that £ A ~ly °s making both sides of the protocol approximately equally resistant to attacks.
They then compute respective corresponding separable isogenies a, § such that

a:E— Ep:=E/{A), 4.1)
B:E— Eg=E/(B). 4.2)

The goal is to let Alice compute a new isogeny @ and Bob isogeny f such that

@:Ep— E/{A,BY), (4.3)
B:Ea— EI{A,B). (4.4)

Then the j-invariant j(E/(A, B)) can be used as secret key. The remainder of this section will
discuss the details of this process.
Alice and Bob start the protocol by picking public parameters. The first is a prime of the
form

=0 ] (4.5)
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The number f is an additional factor to ensure that p is prime, while f remains as small as
possible. Alice and Bob also choose a supersingular elliptic curve E over [ > such that

EFe) =2 ZIMY NZe 20 )Z. (4.6)

Such a curve exists by [Feol7, theorem 54]. Then j(E) is the starting vertex in the isogeny
graphs. By theorem[2.2.2]

BN =210 2821052,
EWP1=2ZI107ZeZI0}7.
So there exist points P4, Q4 € E([sz) and Pg,Qp € E([sz) such that
(Pa,Qa) =E[52A],
(Pp,Qp)=E[(}].

Summarized, Alice and Bob now have publicly known parameters p, E, (P4, Q4), (Pg,Qp).
The Diffie-Hellman key exchange then takes place as follows:

1. Key generation. Alice picks elements miy,ny € Z o not both divisible by ¢4, and
Bob picks mp,ngeZ 8 not both divisible by /5. These elements are their respective
private keys. They construct their own respective cyclic subgroups

(A =(maPs+naQ4),
(B) ={mpPp+ngQp).

Alice then computes the isogeny a of equation[4.1} She also computes

a(Pp),a(Qp) € E4 and shares these and E4 with Bob. In turn, Bob computes the
isogeny B of equationd.2Jand shares Eg and B(P,), B(Q4) € Eg with Alice. The 3-tuples
(Ea,a(Pp),a(Qp)), (Ep, B(P4), B(Q4)) are the public keys.

2. Encryption. With Ep Alice can compute a new isogeny

@:Ep — Epa:=Ep/{B(A)),

where ker a = ((A)) = (maf(Pa) + n4(Q4)). Similarly, Bob computes isogeny
B:En— Eap=Eal{a(B)),

where ker 8 = (a(B)) = (mpa(Pg) + nga(Qp)).
Since Eps = E/(A,B) = Esp (see [Thol7, section 6.2, remark 5]), the shared key is
J(Epa) = J(E/{A, B)) = j(EaB).

A schematic overview of SIDH is shown in table[4.1]

Alice Public Bob

Pick public parameters p,E,(Pa,Q4), (Pp,Qp)
Pick secret keys Mp,Np € Z jen mp, ng € Z jep
A B

(EA,“(PB),“(QB)),
(Eg, B(P4), p(Q4)
Compute shared key j(Epa)=j(EI{A,B)) J(EaB)=J(EI{A,B))

Exchange public keys

Table 4.1: Schematic overview of the SIDH protocol. The columns represent to whom the data are
known.
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It is believed that SIDH is a good candidate for a quantum-resistant key exchange protocol.
Its safety relies on the supersingular isogeny problem, which is allegedly difficult to solve.
This problem is formulated in problem 2]

Problem 2 ([GPST16], definition 1). Given a finite field F and supersingular elliptic curves
Ey, E> over F such that #E; (F) = #E»(F), compute an isogeny ¢ : E; — Es.

By theorem the condition #E; (F) = #E,(F) in problem [2| implies that E; and E, are
isogenous.

Another problem involves computation of the endomorphism ring of a supersingular ellip-
tic curve. Once this ring is known, the isogeny problem can be solved (see [GPST16]).

An important factor that contributes to the security of SIDH is uniformity of the distribution
of the secret key. This will be discussed in section

4.2. Security

For security of the SIDH protocol, it is important that j(E,), j(Ep) and the shared key j(E4p)
are uniformly distributed in the shared key space. A uniform distribution ensures optimal
security, as it makes it equally likely for any j-invariant to be chosen as the secret key. Al-
though it has not been proven theoretically that these distributions are uniform, there exist
heuristics that show that this is the case. In [Thol7] these heuristics have been verified by
simulation for /4 =2, g =3 and p =2°43°8 f — 1. This section will discuss these results.

Let E be a randomly chosen starting curve such that j(E) is a vertexin G, ¢, and G, ¢,,. Ac-
cording to the SIDH protocol, first a non-backtracking random walk of length e, is made
by Alice from j(E) to j(E,) via 2-power isogeny «. Similarly, Bob makes a walk of length ep
from j(E) to j(Ep) via 3-power isogeny .

Estimation 4.2.1 ([Thol7], estimation 7.3.1). Construct multisets S, and Sg as follows:

e Pick (ZA_l (€ 4 +1) vertices (j-invariants) in G, ¢, uniformly at random, allowing repe-
tition. Each time a vertex is picked, store itin S 4.

e Pick? ZB_I (¢+1) vertices in G, 7, uniformly at random, allowing repetition. Each time
a vertex is picked, store it in Sp.

The distribution of j(E,4) and j(Ep) in SIDH are estimated to be the same as when respec-
tively picking an element from S, and S uniformly at random.

In [Thol7] estimation is tested by simulation in the following way. First a procedure is
started to obtain a random starting vertex j(Ep). Then 500 random walks of length e, are
simulated, recording the number of distinct end vertices j(E4). The same is done for j(Ep)
by simulating 500 random walks of length ep.

To obtain shared secret key j(E4p), the random walk of length e 4 from j(Ejp) to j(E4) by Alice
via 2°4-isogeny « is followed by a random walk of length e from j(E,4) to j(Eag) by Bob via
3°8-isogeny B. The above is analogous for first letting Bob make a random walk of length ep
from j(Ep) to j(Ep) via B and then letting Alice make a random walk of length e 4 from j(Ep)
to j(Epa) via @. This results in secret key j(Epa) = j(Eap). Estimation [4.2.2] estimates the
distribution of j(E4p), which was verified by simulation.
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Estimation 4.2.2 ([Thol7], estimation 7.4.1). A multiset S is constructed as follows:

1. Randomly pick ¢ ZA_I (€ a+1) verticesin G, o, . Call the number of times each j-invariant
corresponding to the vertices is picked z.

2. Randomly pick ¢ ZB “L(¢p+1) verticesin G p,¢5- Each time a vertex is picked, put z copies
of its j-invariant in set S.

The distribution of j(E4p) in SIDH is estimated to be the same as when picking an element
from S uniformly at random.

In [Thol7] strong heuristic evidence is given for estimations |4.2.1|and 4.2.2| by conducting
simulations. This was done for £ 4 =2 and ¢z =3 in three cases:

e e4=8ep=5/[=1p=283-1
e ep=9,e3=6,f=5p=29355-1
e ep=10,ep=6,f=7,p=2193%7-1

In all cases the walks are short and the primes relatively small, but the distributions are
relatively uniform and coincide with the results obtained from the heuristic estimations.
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5. Quaternion algebras

This chapter treats preliminaries on quaternion algebras in section followed by section
on orders in a quaternion algebra and section[5.3|on quaternion ideals. The contents of
this chapter follow [Voil7, chapter 2, 16 and 17].

5.1. Preliminaries

Definition 5.1.1 (Algebra). An algebra B over a field F is a ring with a homomorphism
¢:F— B,
where

$(F) S Z(B)={aeB:af=PaVpe B}

Definition 5.1.2 (Quaternion algebra). Let F be a field such that char(F) #2 and B an algebra
over F. For a,b € F*,let (a, b| F) denote an F-vector space with basis {1, i, j, k}, where

i2

a,
j*=h,
k=ij=-

i

ji.
If B=(a,b| F), Bis called a quaternion algebra over F.

The dimension of an F-algebra B is the dimension of B as an F-vector space, denoted by
dimp B. If B is a quaternion algebra, dimp B = 4.

Definition 5.1.3 (Involution). Let B be an F-algebra with multiplicative identity element 1.
An involution ™ : B — B is an F-linear map such that

—

1. 1=1;
2. gzaforallaeB;
3. af=pPaforall a,BeB.

If aa € F forall a € B, ~ is called the standard involution.

Definition 5.1.4. (Reduced norm) Let ~ be the standard involution on F-algebra B. The
reduced norm is defined by

nrd: B— F,

a— aa.

14



5.2. Orders

This section will treat the theory necessary to understand the relation between elliptic curves
and quaternion algebras, stated explicitly in theorem Let B denote a quaternion alge-
bra over Q.

Definition 5.2.1 (Lattice). Let V be a finite-dimensional Q-vector space. A finitely generated
Z-submodule M c V such that M contains a basis for V, is called a lattice.

Definition 5.2.2 (Order). Let O < B be a subring of B. If O is a lattice, it is called an order in
B.

Definition 5.2.3 (Left/right order). Let I < B be a lattice. The left order and right order of I
are defined by respectively

Or()={ae€eB:al<Ij,
Or()={ae€eB:lacI}.

Left and right orders are lattices of B, while also being subrings of B (see [Voil7, para-
graph 10.2.5]). For lattices I, ] < B, I is called compatible with J when Og(J) = Or(1).

Definition 5.2.4 (Maximal order). Let O < B. Then O is called maximal if for any order
O' € Bsuch that O < O/, it is the case that O=O'.

The following theorem specifies the relation hinted at by theorem and provides an al-
ternate definition of a supersingular elliptic curve.

Theorem 5.2.5. Let F be a field of characteristic p and let E/ F be an elliptic curve. Then one
of the following holds:

* End(E) is isomorphic to an order in a number field Q[v —D] for D > 0, in which case E
is ordinary.

* End(E) is isomorphic to a maximal order in a quaternion algebra B over F, in which
case E is supersingular.
Proof. See [Sil09, corollary I11.9.4]. O

Remark 5.2.6. If an elliptic curve E is supersingular, the maximal order to which End(E) is
isomorphic is ramified at p and co. For more on ramification in terms of elliptic curves, see
[Was08, section 10.2].

5.3. Quaternion ideals

Let B again denote a quaternion algebra over ) and O an order in B. This section will study
ideals of O.
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Definition 5.3.1. (Invertibility) Let I B be a lattice. If there exists a lattice I’ < B such that
II'=0.(D),

I is called right invertible with right inverse I'.
Similarly, if there exists a left inverse I* c B such that

I"I=0g(D),

I is called left invertible with left inverse I*. If there exists a two-sided inverse J of I such
that

IJ7=01(I)=0r(),
JI=0r(J) =0gr(D),

I is called invertible. Its inverse ] is then uniquely defined as

J={a€eB:Ial<I}.

Definition 5.3.2. (Principal lattice) A lattice I < B is principal if there exists a € B such that
I is generated by a. That is,
I=0r(Da=aO0gr().

Definition 5.3.3. (Fractional ideal) Let O < B be an order and I c B a lattice. If O < O, (I), I
is called a left fractional O-ideal and if O < Og(I), I is called a right fractional O-ideal.

By definition[5.3.3} any fractional ideal in a quaternion algebra is a lattice. In the rest of this
chapter a fractional ideal will simply be referred to as 'ideal’.

The following definitions mention lattices and are therefore specifically applicable to O-
ideals.

Definition 5.3.4. (Reduced norm of I) The reduced norm of a lattice I c B is the Z-module
nrd(/) c Q that is generated by {nrd(a) : a € I}.

For alattice I < B, nrd(I) is an ideal of @ (see [Voil7, lemma 16.3.2]).
An equivalence relation between lattices I,/ < B is given by ~g, where I ~p J if al = J for
some «a € B*.

Definition 5.3.5. (Class) Let I < B be a lattice. The set
Ulp={JSB:1~r ]}
is called a right class of lattices.

Definition 5.3.6. (Right class set) Let O c B be an order. The set
Clsg O = {[I]g : I an invertible right O-ideal}

is the right class set of O.
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Left classes [I], and the left class set Cls; are defined analogously to their right equivalents
in definitions 5.3.5/and |5.3.6, In the rest of this paper only right classes and the right class
set will be considered. For a lattice I, this is denoted by [I] := [I]g and Cls O :=Clsg O.

Proposition 5.3.7 ([Voil7], proposition 17.5.6). The right class set Cls O is finite.
Proof. See [Voil7], proposition 17.5.6 and corollary 27.6.17. O
The following generalization can be made for ideals I = O when O is a maximal order.

Theorem 5.3.8 ([Voil7], theorem 18.1.2.(a)). Let O < B be a maximal order. If I < B is a lattice
for which Or(I) = O or Or(I) = O, then I is an invertible O-ideal.
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6. Equivalence of categories and Brandt matrices

To use Brandt matrices to represent walks on isogeny graphs, it must be shown that they
can be interpreted as adjacency matrices for such graphs. There exists an equivalence of
categories that can be used to prove that this is the case. Section [6.I] contains background
theory on categories. The equivalence of categories is then made explicit in section[6.2} in
particular by theorem In section Brandt matrices are defined and identified as
adjacency matrices for isogeny graphs.

6.1. Preliminaries of category theory
This section will treat basic notions of category theory, following [Awo06] and [AHSO04].

Definition 6.1.1 (Category). A category is a quadruple C = (Obg, Homg, o, 1¢}), that satisfies
the following properties:

* The class Obc contains elements that are called objects.

* Forany pair A, B € Obg there is a set of morphisms from A to B, denoted by Homg (A, B).
For f € Homc(A, B), then A=dom(f) and B = cod(f). The set of all morphisms in C is
denoted by Homc, of which the elements are all pairwise disjoint.

* For any A € Obc there exists an identity morphism 14 € Homc.
e For any f, g € Homg such that dom(g) = cod(f), the composition map is given by
o:Hom¢ x Hom¢ — Homg
(f,8)—geof.
And this quadruple satisfies the following laws:

* Associativity: for any f, g, h € Homg such that dom(g) = cod(f) and dom(h) = cod(g),
the map o satisfies
ho(gof)=(hog)of.

* Identity: for any f : A— B € Homg,

fola=f=1pof.

Definition 6.1.2 (Functor). Let C and D be categories. Define the map
F:C—D

which maps from Obg to Obp and from Hom¢ to Homp. For any A, B € Obc and
f,g8 € Homc(A, B). If F satisfies the following conditions:
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1. F(f):F(A) — F(B),
2. F(gof)=F(g)oF(f),
3. F(10) = lpw,

then it is called a covariant functor. If F(f) : F(B) — F(A) instead of property 1, then F is
called contravariant.
The identity functor on a category C is denoted by 1.

The category of categories is denoted by Cat, where Obcy¢ contains categories and Homcae
functors between categories.

Definition 6.1.3 (Isomorphic objects). Let Cbe a category and A, B € Obc and let f € Homc(A, B).
If there exists g: B — A€ Homc such that

gof=14,
fog=1s,

then f is an isomorphism. In this case f and g are each others inverses and objects A and B
are called isomorphic. This is denoted by A = B.

As for other algebraic structures, inverses of morphisms in categories are unique.

Definition 6.1.4 (Faithful, full, essentially surjective). Let F : C — D be a functor between
categories C and D.

e If the map

F4 5 :Homc(A, B) — Homp(F(A), F(B)),
f—F
is injective for all A, B € Obg, F is faithful.
» IfF4 pis surjective for all A, B € Obc, F is full.
e If for all Ap € Obp there exists some Ac € Ob¢ such that F(Ac) = Ap, F is essentially

surjective.

While functors between categories are the morphisms in Cat, they can also be considered
as the objects. Functors between two specific categories form the set of objects in a new
category, in which the morphisms between the functors are called natural transformations.

Definition 6.1.5 (Natural transformation). Let C and D be categories with covariant functors
F:C—Dand G:C — D. A natural transformationn : F — G is a family of morphisms such
that

» To every A € Obc, n associates a morphism 14 : F(A) — G(A).

* Forevery f: A— Be Homg,

nee F(f)=G(f)ona.
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If the morphism 14 € Homg is an isomorphism for every A € Obg, 1 is called a natural iso-
morphism.

The second condition in definition is equivalent to commutativity of the following di-
agram:

F(f)
F(A) ——— F(B)

ml lnB

G(f)
G(A) —— G(B)

If F and G are contravariant functors, the arrows in the diagram are reversed.
For the two functors F and E, their compositions are denoted by EF and FE.

Definition 6.1.6 (Equivalence of categories). An equivalence of categories C and D consists
of functors

E:C—D,
F:D—-C,

and natural isomorphisms

a:1c— FE,
B:Tp — EF.

The categories C and D are then said to be equivalent.

The following proposition provides provides a criterion to check if a functor is part of an
equivalence of categories.

Proposition 6.1.7. Let C and D be categories and F : C — D a functor. The following are
equivalent:

1. F belongs to an equivalence of categories;

2. Fis full, faithful and essentially surjective.

Proof. See [Awo006, proposition 7.25]. O

The notion of skeletons of a category provides a second criterion to check for the existence
of an equivalence of categories, given in corollary|6.1.11

Definition 6.1.8 (Skeleton). Let C and C’ be categories such that the following hold:

e C’is asubcategory of C. That is,

Obc’ < Obg,
Homc (A, B) < Homg(A, B),

for all A, B € Obc. The composition operation and identities on C’ are the same as on
C, under restriction.
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* The inclusion functor C’ — C is full and essentially surjective.
* No distinct objects in C’ are isomorphic.
Then C’ is called a skeleton of C.

The last condition in definition implies that in a skeleton, each isomorphism class con-
tains just one object.

Definition 6.1.9 (Isomorphic categories). Let C and D be categories. If there exists functors
F:C—Dand G:D — C such that GF = I¢ and FG = Tp, then C and D are isomorphic as
categories.

Proposition 6.1.10. The following properties hold:
1. Every category has a skeleton.
2. IfC} and C, are both skeletons of the same category then they are isomorphic.

3. Let Cbe a category. For any skeleton C of C, there exists an equivalence relation between
C and C under the inclusion functor.

Proof. See [AHS04, remark 4.10.3 and proposition 4.14]. O

Corollary 6.1.11 ([AHS04], corollary 4.15). Two categories are equivalent if and only if their
skeletons are isomorphic.

6.2. Supersingular isogenous elliptic curves and modules of maximal
orders in quaternion algebras

The relation between supersingular isogenous elliptic curves and modules of maximal or-
ders in a quaternion algebra can be made explicit by an equivalence of categories, defined in
theorem|[6.2.9] The theorem, its proof and the preliminaries discussed in this section mainly
follow [Voil7, chapter 42].

For supersingular elliptic curves E and E, over Fp, define O := End(E), Op = End(E)) and
quaternion algebras B := O® Q and By := Op ® Q. The set of homomorphisms between E and
Ey is denoted by Hom(E, Ey).

Theorem 6.2.1 (|Gal12], theorem 25.3.17). Let E, E' be elliptic curves over Fp and let ¢ # p be
a prime. Then there exists an ¢ -power isogeny from E to E'.

Lemma 6.2.2 ([Voil7], lemma 42.1.11). Let E, Ey be supersingular elliptic curves over Fp.
Then Hom(E, Ey) is a free Z-module of rank 4, which is invertible as a right O-module and as
a left Og-module.

Proof. This proofis in part based on the proof given in [Voil7, lemma 42.1.11].
The first part of the proof will show that Hom(E, Ey) is a free Z-module of rank 4. By theorem
6.2.1} for a prime 7 there exists a nonzero n-isogeny ¥ € Hom(E, Ey) with ker y = n. Its dual
isogeny is 7 € Hom(Ej, E), such that y o/ = [n]. Define the map
ly - Hom(E, Ep) — Oy,
P—@ot.
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Let ¢1, 2 € Hom(E, Ey) and suppose

by (@1) =@1oW =@ 0 =1y (@2).

Then
P1lgEy= P21y (k)

which implies that ¢ = ¢,, because /(Ej) contains infinitely many points. So t is injec-
tive and therefore bijective. It is also a homomorphism of Z-modules, which then makes it
isomorphic to its image:

Hom(E, Ep) = 1y (Hom(E, Ep)) = Hom(E, Eo)tﬂ.

Here Hom(E, Ep)¥ < Og. Here Oy is a free Z-module that is of rank 4 by definition The
submodule [1](Op) = nOy < Oy is then also a free Z-module of rank 4. Define the map

Tu/ . O() - Hom(Ey EO))
¢ —q@oy.
Then for ¢’ € Oy,

Ly o Ty (9" =ty (@ o)
=g ooty
:(p'o[n]
=[n]o¢/,

where the last equality follows from the fact that ¢’ is an isogeny and therefore a homomor-
phism. This means that

Ly © Ty (Og) = nOy < Hom(E, Eg)y < Oy.

Since nOy and Oy are free Z-modules of rank 4, Hom(E, Ej) is as well.

Left to prove is invertibility of Hom(E, E) as a right O-module and a left Op-module. Let
again ¥ € Hom(E, Ey) be nonzero and let ¢ € Hom(Ey, E) be its dual. Since Hom(E, Ey){ <
Op was shown to be a free Z-module of rank 4, it is a left Oy-ideal. As Ogy is a maximal order,
Hom(E, Ey)V is invertible by theorem This argument can be repeated to show that
Hom(E, Eg)1 is a right O-module, which concludes the proof. O

Definition 6.2.3. Let I < O be a nonzero left ideal and « € I, with E[a] :=ker a. Define

E[Il = () Elal.

ael

Lemma 6.2.4 ([Voil7|, paragraph 42.2.1). Because E[I] < E is a finite subgroup, there exists
an isogeny
@r:E— E/E[].
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Throughout this section, let E; := E/E[I]. For a separable isogeny ¢ € I, definition [6.2.3]
implies that B
E[I(F)={P € E(F,): p(P)=0 Vg€ I}.

As a result, ¢; is also a separable isogeny. In this chapter only separable isogenies will be
considered. For more background theory and the case of inseparable isogenies, see [Voil7,
paragraph 42.2.4].

Lemma 6.2.5 ([Voil7], lemma 42.2.7). Let I < O be a nonzero left ideal. The map

@] :Hom(Ep,E)—1,
[Ama'A 0
is an isomorphism between left O-modules.

Proof. See [Voil7, lemma 42.2.7]. O

Proposition 6.2.6. Let I < Oy and define isogeny ¢ as in definition[6.2.3 Then
deg @ =nrd(I).

Proof. See [Voil7, proposition 42.2.16.(a)]. O

Corollary 6.2.7 ([Voil7], corollary 42.2.21). For every isogeny ¢ : E — E', there exists a left
O-ideal I and an isomorphism p : E; — E' such that ¢ = p@j.

Proof. See [Voil7, corollary 42.2.21]. O

Lemma 6.2.8 ([Voil7], lemma 42.2.22). Let I, I' < O be nonzero left ideals. The map
Hom(E;, E) x Hom(Ep, Er) — Hom(Ep, E)
is a natural map, which is bijective. It gives rise to a further bijection

Hom(Ep,Ep) — 17T,
Y= @7y

Proof. See [Voil7, lemma 42.2.22]. O

Theorem 6.2.9. Let Crc be the category of supersingular elliptic curves under isogenies and
Co, the category of invertible left Oy-modules under left Oy-module homomorphisms. The
functor given by

G: CEC — COO
E— Hom(E, Eyp)

defines an equivalence of categories between Cgc and Co,.

Proof. The proof follows the proof given for [Voil7, theorem 42.3.2]. It will be shown that G
is indeed a functor and subsequently that it is essentially surjective and fully faithful.
The first step is to prove that G is a functor between categories. By lemma|6.2.2} the class of
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objects ObCOO contains left Op-modules of the form Hom(E, Ej). As Obc,. contains all ellip-
tic curves E, association G : E — Hom(E, Ej) is indeed functorial on the classes of objects of
both categories. For an isogeny ¢ € Homg,.(E, E'), let G(¢) = ¢* which is defined by

¢* :Hom(E', Ey) — Hom(E, Ey),
Y—yog.

Because ¢* is a left Op-module homomorphism, ¢* € HochO (Hom(E', Ey), Hom(E, Ep)).
This implies that G is also functorial on morphisms of both categories and therefore a func-
tor.

The next step is to show that G is essentially surjective. Let I € Obg, and tensor by Q to
obtain injection I — I ® Q. Since [ is a 4-dimensional Z-lattice, this injection is given by

Use notation M = Z* ®7 Q. It can be shown that there exists an isomorphism between M
and By as Bp-modules. To this end, let m € M be nonzero and define the map

¢:By— M,
b— bm.

Then ¢ is a By-module homomorphism. Since By is a division ring, ker(¢) as an ideal is
either trivial or By. If ker(¢) = By, then ¢ is the trivial map. Since m # 0 this cannot be the
case, so ker(¢p) = {0}. This makes ¢ injective as a By-homomorphism and therefore bijective.
So M = By and by map I — I ®Q, I < By up to isomorphism. After scaling with an integer,
I < Oy is a left Op-ideal. By lemma[6.2.5, I = Hom(Ej, Ey) under the pullback map. For
any such I, define E; := E/E[I]. So for any I € Obg,, there exists an E; € Obgc such that
G(E;) =Hom(Ey, Ep) = I. This makes G is essentially surjective.

The last step is to show that G is fully faithful. Define the map

Gg g : Hom(E, E') — Hom(Hom(E, Ep), Hom(E', Ep)),
P~

Showing that G is fully faithful is equivalent to showing that Gg g is bijective. By corollary
6.2.7} there exist left Op-ideals 1,1’ such that E = E ; := Eo/Ep[I] and E' = Ey  := Eo/ Ep[I'].
By lemmal|6.2.4} there exist isogenies

@o,1 :Eo — Eo 1,
@o,1 :Eo — Ep 1.

So by lemma|6.2.5, I = Hom(Ey,j, Eg)¢@o,; and I' = Hom(Ey 7, Eg)¢o,r- This reduces Gg g to
the map

Hom(Eo,;, Bo,r) — (I': Dr=1""1,
Y — Qo WP

So by lemma|6.2.8, G is bijective.
Because G is essentially surjective and fully faithful, property implies that it defines an
equivalence of categories. O
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6.3. Brandtmatrices as adjacency matrices of supersingular isogeny graphs

This section contains a justification for the use of Brandt matrices as adjacency matrices
for supersingular isogeny graphs. Such graphs will from here on be referred to as 'isogeny
graphs’.

Throughout this section, fix p to be a prime and let all elliptic curves be defined over Fp. For
the elliptic curve Ej as a starting curve, define Oy = End(Ey) so that Oy is an order in the
quaternion algebra By = Oy ® Q. Let I;, I; be representatives of distinct classes of invertible
Op-ideals. That is, [1;],[I;] € Cls Og with [I;] # [I;]. Let E;, E; be elliptic curves. Define the
sets

Sn,i,j = {HgEj(Fp) :Ej/H=E;,#H = n},
Toij =€ I inrd() = n-nrd(I), U] = 1),

Remark 6.3.1. The sets S, ; j and 7,,;,; also depend on the prime p. Since this number was
fixed earlier, this won't be denoted explicitly.

Let k be a positive integer and let S(n) € My (Z) such that S(n); ; = #Sn,l-,j, where i,j=1,.., k.
The matrix S(n) counts distinct isogenies between classes of elliptic curves, which makes it
the adjacency matrix of the n-isogeny graph.

Definition 6.3.2 (Brandt matrix). Let T(n) € M (Z) such that T(n); j =#7Tp,; jfori,j=1,..,k.
Then T(n) is called the n-Brandt matrix.

The n-Brandt matrix T'(n) is the adjacency matrix for a directed graph G, = Vp,n, Ep,n),
where

Vp'n = CIS O,

Epn =L, U : n-nrd(D) =nrd()), J € I;}.
Remark 6.3.3. The matrices S(n) and T'(n) depend on the distinct ordering of rows i =1, ..., k
and columns j =1,..., k, which in turn depends on the choice of Ey,. However, this does not

affect the properties of the matrices as adjacency matrices; the graphs that they represent
do not change with Ej.

By the result stated in [Voil7, paragraph 42.3.13], there exists a bijection between 7, ; ; and
Shn,i,j- Because the result includes no proof of this fact, one will be given in the remainder of
this section.

To this end, let I € Oy be a nonzero left Oy-ideal with J < I such that

nrd(J) = n-nrd(I). (6.1)
Denote Ey = Ey/ Eg[I] and Ey j := Ey/ Ep[J]. By lemmal6.2.4} there exist isogenies

¢1:Ey— Eop,
(,b] ZE() g E()y],

with ker ¢p; = Eg[I] and ker ¢p; = Ey[J]. Recalling definition J < I implies that Ey[I] <
Ey[J]. Then the homomorphism theorem implies that there exists an isogeny

¢r5:Eo,r— Eo (6.2)
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such that ¢p; = ¢y o ;. This is equivalent to commutativity of the following diagram:

/\”

Ey —> Eo,j
By proposition and by (6.1), the degree of isogeny ¢ is given by

deg¢p; nrd(J)
deg¢p; nrd(l)

deg ¢y =

)

so #ker ¢p;; = n. Amap 7, can then be defined as follows.

Definition 6.3.4. For J€ 7,,; ; such that J < I; < Oy, let

Tn:Tnij — Snyij»
]*—> ker (P[j]. (6.3)

To prove that 7, is a bijection, which is formulated in proposition|6.3.7} the following lemma’s
will be needed.

Lemma 6.3.5. If[I] =[]], then Ey 1 = Ey ;.

Proof. Let Cgc denote the category of supersingular elliptic curves over Fp under isoge-
nies and Cp, the category of left Op-modules under left Op-module homomorphisms. By
theorem these categories are equivalent under the functor G : E — Hom(E, Ep). For
1, ]EObCO , suppose that [I] = [/].

Construct a skeleton C’O ; containing I and a skeleton Co 0,, containing J which are both iso-
morphic to Cp, under respective inclusion functors (7 and ¢ J. By corollary[6.1.11} skeletons
of Cgc and Co, are isomorphic under F. So there exist (not necessarily distinct) skeletons of
Cgc containing Ey r and Ej,j, so that

Eo =1,
EOJ'E].

These skeletons are isomorphic to Cgc under inclusion functors tg,; and (g, ;. Since skele-
tons of the same category are isomorphic by proposition[6.1.102, [I] = [J] implies that I = J.
This gives that

Eor=1=J=E.

This is illustrated by the following diagram, where all isomorphic relations are denoted by
G;,i=1,..,6:

LEg g G l

Eoy I € > EO,] 2 > I < L I
LEy,y Gs Ly

Eoj < > Eo 5 > ] < > ]
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Lemma 6.3.6. Let Ey, E; and E, be elliptic curves over Fp such that Ey = E». Suppose there
exist isogenies @1 : Ey — E, and ¢, : Ey — E». Then there exists an isomorphism { : E1 — E»
such that g, ={o .

Proof. Suppose the isomorphism E; = E, is given by isogenyf E; — E». Because ¢, and ¢,
are isogenies, they are surjective by proposition 3.1.11} By comparing automorphlsms on
E,, it is then possible to find a € Aut(E;) such that ¢, oa o (= 2. Choose ( =« o( to obtain
the desired isomorphism. This is equivalent to commutativity of the following diagram:

EOL)EZ

A
(Pll f// TE

Ey —— E

Proposition 6.3.7. The map t,, is a bijection.

Proof. To prove the proposition, it suffices to constructamap o, : Sy i, j — 7Tp,i,j such that
On=T1,"

Let I; and I; be right invertible Og-ideals (from here on referred to as 'Op-ideals’) and use
notation E; := Eq,1;, Ej = Eo,1;- By lemma 4] there exist isogenies

(Pli : EO - Ei!
Pr; - Ey— Ej.
By lemma , then I; = Hom(E;, Eg)gy, and I = Hom(Ej, Eo)gy;.

The goal of this proof is to first define ¢, and then show that o, = 7,,!, which will be done in
three steps.

1. As the first step the map o, will be defined.
Let He Sy, sothat #H = nand E;/ H = E;. By proposition[3.1.6} there exists an isogeny
PH: Ej — E]'/H
with ker ¢ ;7 = H. Now define the map o, as follows:

O'n:Sn_’,Tny
H — Hom(E;/H, Ep)(pro¢r) =] (6.4)

For this map to be properly defined, it must be the case that /'€ 7, ;.

(a) Firstit must be shown that J' < I;.
Let f € Hom(E;/H, Ep). Then fo@py: Ej — Ey, so foe@y € Hom(Ej, Ep). For
fO(pHO(ij € Hom(Ej/H,Eo)((pHO(ij), then also fO(pHO(ij € Hom(Ej,Eo)(p]j.
This indeed implies that J' < I;.

(b) This step will show that [J'] = [I;].
Construct a map ¢ o ¢y, : Eg — Ej/H. Since E;/H = E;, by lemma 6.3.6] there
exists an isomorphism p : E; — E;/ H such that

PHOPI; =POPI,. (6.5)
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(9]

Now let f € Hom(E;/H, Eo) and g € Hom(E;, Eg). Then f o p € Hom(Ej;, Ep) and
gop~! e Hom(E i/ H, Ep). The situation is illustrated by the following (not neces-
sarily commutative) diagrams:

Ej/H Ej/H
p f p! f
E; /—>g 5 E, /—>g ~ Eo

This gives that
Hom(E;, Eg) = Hom(E;/ H, Eo) p. (6.6)

Combining (6.5) and results in

I; =Hom(E;, Eo) gy,
=Hom(E;/H, Ep)(po¢gy,)
=Hom(E;/H, Eo) (¢ ¢r;)
=y

By the above, [J'] = [I;].

This step will prove that nrd(J) = n-nrd(7;).
Since J' is an Oq-ideal by step [1a, use notation E, j := Eq/Eg[J']. By lemmal6.2.4}
there exists an isogeny

@y Eo i Eo,]/.

In step [1b] it was shown that [J'] = [I;], so by lemma Eoy = Ej,. Then it
follows from proposition that

deg @] =ker ¢y =ker ¢ =deg ;..
Applying then gives that

deg ¢ =deg ¢y,
=deg ¢, -deg ¢y,
=deg¢p-deg gy,
=n-degyj;.

The last equality follows from the fact that ker ¢y = H. By finally applying theo-
rem 6.2.6, the above implies that nrd (J') = n-nrd(I)).

Steps and[ldconfirm that J' € Ty,,;,;.

. In this step it will be shown that 7,00, = idgn'l. ;i

Let He S,,; j sothato,(H) =], where J' is defined as in (6.4). Following the reasoning
preceding (6.2), there exists an isogeny ¢ 1,7 Ej — Eo,p. This gives that

7,(J") =ker Py It will now be shown that ker ®1;y = H.

Because H € Sn,i,j, it is known that E;/H = E;. In stepit was shown that [J'] = [I;],
so Ey y = E;. This also implies that Ey = E;/H. By lemma|6.3.6|there then exists an
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isomorphism v : Ey,j» — E;/ H such that ¢y =y o @y, p. This is equivalent to commu-
tativity of the following diagram:

Eo,

"”ﬂ’/ \u;
PH

Ej —— Ej/H
Finally, this gives that

H=ker gy
=keryoq
~ker ¢y,
where the last equality follows from the fact that ker v is trivial. This proves that (7, 0
05,)(H) = H and therefore that 7,00, = idg

ni,j*

. In this step it will be shown that o, 07, = id7, , .
Let J € Tp,ij, so that nrd/ = n-nrd/; and [J] = [I;]. The latter implies by lemmam
that Ey ; = E;. Because J is an Op-ideal, use notation Ey j := Eo/ Eyp[J]. By lemmal6.2.4]
there exists isogeny

Qy: E() - EO,].

Following lemma [6.2.5} ideal J can also be written as J = Hom(Ey,;, Eg)@;. Define a
map ¢y, : Ej — Eo,j as in (6.2). Then 7,(J) = ker ¢1,; = H'. Tt will now be shown that
on(H)=].

Since H' is a finite subgroup of E;, by propositionthere exists an isogeny

(pH/ZEj—>Ej/H,

where ker ¢ = H' = ker ¢;;;. Then proposition implies that E;/H' = Ep ; and
therefore that E;/ H' = E;. By lemma|6.3.6} there exists an isomorphism
n: Epy— Ej/H' such that

PHOPI; =T OP]. (6.7)

This is equivalent to commutativity of the following diagram:

(Pfj
Ey —— E;

o

Epy —— E;/H'
A similar argument as given in step[Ibto justify (6.6), implies here that
Hom(Ey, ;, Eg) =Hom(E;/ H, Eg)7. (6.8)
Applying and then gives that
Hom(E;/H', Eo) (¢ o @1;) =Hom(E;/ H, Ey)(mo )
=Hom(Ey,j, Eo)py
=].

This proves that (o, 07,)(J) = J and therefore that 0,07, = idt

n,i,j*
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Steps 2 and 3 prove that o, =),}, so T, is a bijection. O

Proposition implies that 7y, ;,j = Sy, j and therefore T'(n) =#7,,;,j =#Sy,i,j = S(n). This
means that for an n-Brandt matrix T (n), entry T'(n);,; is the number of isogenies from vertex
J(E;) to vertex j(E;) in an n-isogeny graph.
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7. Non-backtracking walks on supersingular isogeny
graphs

In chapter 6 it was shown that Brandt matrices are adjacency matrices of supersingular
isogeny graphs. The current chapter describes how they can be used to recreate the results
in [Thol7, section 7.3 and 7.4]. The efficiency of this method is tested by timing the gener-
ation of Brandt matrices and adjacency matrices for supersingular isogeny graphs (referred
to as 'isogeny graphs’). Section[7.1]discusses preliminaries regarding the procedure in Sage
and a recurrence relation for non-backtracking matrices. This is followed by the results for
distributions of j(E,), j(Ep) and j(Ep) in sections and A discussion of the results
and concluding remarks follow in chapter 8.

7.1. Preliminaries

Where [Thol7|] simulates 500 walks on isogeny graphs to approximate the distribution of
Jj(Ea), j(Ep) and j(Eap), Brandt matrices can be used to compute a matrix containing the
exact distribution. The details and results of this are discussed in sections[7.2land 7.3

The following code creates the Brandt module B for a finite field [, (see [Koh]) and then
computes the Hecke matrix for this module and prime 7 (see [hec]).

B = Brandtmodule (p)
B.hecke_matrix (n)

Here the Hecke matrix is the n-Brandt matrix given a finite field [ ,. Similarly, the following
code creates a supersingular module M (see [sup]) for the supersingular elliptic curve case
followed by generating the Hecke matrix for this module and prime n.

M = Supersingular (p)
M.hecke_matrix(n)

Here the Hecke matrix is the adjacency matrix of the n-isogeny graph given a finite field F,.
The choice for Ej is made within the command that generates the Hecke matrix and is there-
fore not explicitly mentioned in this chapter. Since Ej is not the same for each generated
matrix, it can happen that T'(n) # S(n). However, they can still be considered equal as adja-
cency matrices of supersingular isogeny graphs (see also remark|6.3.3).

Fixing E, for the above reason and continuing the notation of section 6.3, let

S(n);j=#HC<E;Fy):Ej/H=E;,#H=n}.

The matrix S(n) is the adjacency matrix of a supersingular n-isogeny graph. In the SIDH
protocol only non-backtracking walks are of interest, so only cyclic subgroups H will be
taken into account. To count just the non-backtracking walks, define a new matrix

S’(n),-,]- =#{HC E; (Fp) :E;/H= Ej,#H=n,H cyclic}. (7.1)

For any prime ¢ then S'(¢) = S(¢), because subgroups of prime order are always cyclic. Where
S'(¢) f] =S ([)f'j is the number of walks of length e from a vertex i to a vertex j, then §'(¢¢); ;
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is the number of non-backtracking walks of length e between i and j. For Alice the ma-
trix S'(¢%}) gives the distribution of all possible non-backtracking walks of length e4 in £ 4-
isogeny graph G, ,, which is equal to the distribution of j(E4). Similarly, for Bob the ma-
trix S’ ((ZB) gives the distribution of j(Ep). The distribution of j(Esp) is given by the matrix
NGSNGHIENGINGB]

It is possible to construct a recurrence relation to obtain such a matrix S’'(¢£¢). Recall that
for e = 1, simply S'(¢1) = S(¢). For e =2, the only possible backtracking walk starting from
any vertex is to an arbitrary adjacent vertex and back to itself. By proposition3.2.6} for each
vertex in an ¢-isogeny graph this is possible in ¢ + 1 different ways. In terms of adjacency
matrices this is represented by (¢ + 1) I, where I is the identity matrix. The matrix of non-
backtracking walks of length 2 is then given by

S'(*=80)* -+ (7.2)
For e = 3, the following theorem and corollary give a recurrence relation to obtain S'(¢¢).

Theorem 7.1.1. Let a, b be positive integers and let (a, b) = gcd(a, b). Then

b
S@S b=y dS’(%).
d|(a,b)

Proof. See [Ap090, theorem 6.13]. O

Corollary 7.1.2. The matrix containing all non-backtracking walks of length e on ¢-isogeny
graph G, o is given by

S =8-S -¢-5?. (7.3)
Proof. Choose a=¢°"', b=/ and apply theoremm O

The results of section 6.3 imply that T'(¢¢) = S'(¢¢), where T'(¢¢) is the non-backtracking
version of T'(¢)°. To obtain the results in sectionsand T (ZZA) and T’ ((ZB ) were com-
puted using the recurrence relation in equation[7.3}

To compare efficiency of the quaternion algebra method and the supersingular elliptic curve
method, the generation of matrices T'(¢ 4) and T'(¢g) by both methods was timed for £ 4 =
2,0 =3 and p = 283° — 1. This was done by timing the generation of the Hecke matrix 10
times for both modules, giving the results in table The results show that the Brandt ma-
trixis not generated faster than the matrix based on supersingular elliptic curves (SSEC). The
Brandt matrix for Bob is computed faster than the one for Alice, while the opposite occurs
for the SSEC matrix.

‘ Brandt matrix ‘ SSEC matrix
Alice (¢ =2) 438.42961 14.82953
Bob (¢ =3) 286.90380 55.34492

Table 7.1: The time taken (in seconds) to generate Brandt matrices and supersingular elliptic curve
(SSEC) matrices for Alice and Bob. The table shows the mean results of 10 repetitions.
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7.2. Distribution of j(E,) and j(Ep)

Let Gp,¢, be the ¢ 4-isogeny graph for Alice and let p = ¢%*¢}’ — 1. Computing the matrix

T' ([;A) results in the distribution of all possible non-backtracking walks of length e4 in
Gp,¢,. From a single starting vertex there are (£ 4+ I)EZA_I such walks. The entries in each
column jsumupto (£4+1)¢ ZA_l. By remark the entries in each row i will sum up to
L+ 1)22’*_1 onlyif p=1 mod 12, in which case T’ (ZZA) is symmetric.

The heuristic estimation is given by[4.2.1} following estimation 7.3.1]. This estima-
tion was tested by computing T'(¢%") for £4 = 2,05 =3,e4 =8,ep =5. Here p =2°3° -1, for
which T’ (ZZA) € Ms5185(Z). For each column in T’ (ZZA) the nonzero entries are counted, in-
dicating the number of distinct end points of the walk. The results are shown in figure[7.1]
This process is repeated for Bob’s non-backtracking walks of length ep on ¢g-isogeny graph
Gp, 05, by generating T'(¢3) € Ms15(Z). Bob's results are shown in figure .
Similar to what was found in [Thol7], comparing figure to figure [7.1a| and figure
to figure the results for heuristic estimation approximate the distributions well,
even for a relatively small prime.

0.1
0.1}
0.08
0.08}
0.06
0.06
0.04 0.04
0.02 0.02}
— 0 L L
340 350 360 370 380 340 350 360 370 380
(a) Results for j(E4). (b) Results for S 4 (see estimation .

Figure 7.1: Alice’s results for p = 283% — 1. The histograms shows the fraction of starting vertices j(Ey)
(vertical axis) that result in x distinct vertices j(E4) (horizontal axis). These results are equivalent to
[Tho17], figures 2 and 3 in section 7.3.
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260 270 280 290 300 310 320 260 270 280 290 300 310 320
(a) Results for j(Ep). (b) Results for Sg (see estimation

Figure 7.2: Bob's results for p = 283% — 1. The histograms show which fraction of vertices (vertical axis)
has been chosen x times (horizontal axis). These results are compared to
[Thol7, figures 2, 3, 4 and 5, section 7.3].

7.3. Distribution of j(E 4p)

Let G, be the £ 4-isogeny graph for Alice and G, ¢, the £p-isogeny graph for Bob. For
respective non-backtracking walks of length e, and ep, as in section 7.2 the distribution
of these walks are represented by matrices T'(¢%") and T'(¢?). The matrix T'(¢5)T'(¢3F),
represents all possible walks by Alice from starting vertex Ey to E4 and then by Bob from
Eato Eap. Since T'(¢S)T'(0F) = T'(€3F) T'(£)), this is the same as Bob first walking from
Ey to Eg and Alice walking from Ep to Eps. The resulting matrix gives the distribution of
J(EaB) = j(Epa).

The heuristic estimation is given by[4.2.2] following estimation 7.4.1]. This estima-
tion was also tested for £, = 2,¢p = 3,e4 = 8,ep = 5, for which p = 283° — 1. To be able to
comment on the accuracy of estimation[4.2.2} it is compared to the following naive estima-
tion.

Estimation 7.3.1. Construct multiset S* as follows:

e Pick [;A_l (0 4+ 1)[;3_1 (¢p +1) vertices (j-invariants) uniformly at random. Each time
avertex is picked, store it in S*.

In a naive sense, the distribution of j(E4p) is estimated to be the same as when picking an
element from S* uniformly at random.

For each distinct entry x in T'(¢ ZA) T’ ((ZB) it was counted how many end nodes j(E4p) oc-
cur x times. The results are shown in figure When comparing figure to figure
the estimation approximates the distribution quite well. Moreover, figure also approxi-

mates figure well.
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(a) Results for j(E4p). (b) Results for S (see estimation i .
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0.06 |
0.04 |
0.02

10 20 30 40 50
(c) Results for S* (see estimation l .

Figure 7.3: The results for the secret key for p = 2835 — 1. The histograms show the fraction of possible
vertices j(Eap) (vertical axis) that occurs x times (horizontal axis). Figures (a) and (b) are compared
to [Thol7, figures 14 and 15, section 7.4].
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8. Conclusion

The theoretical background in chapters 2 to 5 and in particular chapter 6 allow the experi-
ments in chapter 7. The results in sections and show that in case p = 283° - 1, finding
the distributions of j(E,), j(Ep), j(Eap) through computation of Brandt matrices gives ap-
proximately equally strong results as found in [Thol7|] by simulating walks on supersingular
isogeny graphs. Generating Brandt matrices was also attempted for larger primes, where
T'(2%), T'(3%) € Mys55501(2) for p=29355—1 and T'(219), T'(3%) € My3s457(Z) for p =210367 -1,
The available memory capacity was not sufficient to compute and store dense matrices of
these sizes. In the first case, a rough estimation of the necessary amount of memory is given
by 8 bits times 1555212 entries, which would amount to approximately 180 GB. It is possi-
ble that additional data besides the matrix is stored by the Sage command that generates
the Hecke matrix, which causes it to increase memory usage even more. If all information
stored in a Brandt matrix of size k would be computed via simulation of walks on isogeny
graphs, in Alice’s case this is equivalent to performing k(¢4 +1)¢%4 random walks in a sim-
ulation. This is much more than necessary. Instead of finding the complete distribution by
computing an entire matrix, it may be possible to simulate a lower number of "walks" via
quaternion algebras, as was done for walks on supersingular isogeny graphs by [Thol7]. A
topic for further research is to look into the code for the Sage commands that were used and
how to optimize this for such a simulation.

The mean times taken to generate Brandt and supersingular elliptic curve (SSEC) matrices,
shown in table suggest that finding the distribution through Brandt matrices is slower
than through SSEC’s. A notable difference in both cases is whether the matrix is generated
faster for Alice or Bob. In the Brandt case this is Bob, but in the SSEC case this is Alice. A pos-
sible explanation for this is that a different amount of preparatory computations is made
and cached by Sage. For example, in the SSEC case first all j-invariants could be computed
and stored. Finding out where this difference comes from by again studying the code of the
built-in commands would make a good topic for further investigation. Furthermore, the ef-
ficiency of both methods has now only been tested by timing the matrix generation process.
Although it is a good indication of mutual differences between the methods (specially since
the difference between the Brandt and SSEC case is so large), the exact result depends on
the used hardware. The efficiency of both methods could be researched further and more
accurately, for example by tracking which and how much data is saved intermittently.
When improving the experiments in such a way that it is possible to use larger primes than
p =283% — 1, naive estimation should be compared to estimation to see if it pro-
duces notable differences. In section 7.3 it was shown that this does not truly happen for
p =2835 — 1. If this is also not the case for larger primes, that may indicate both estimations
work equally well.
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