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Abstract

In this report the optimal control problem with packet drop-out is investigated. First the Kalman
filter is analyzed and simulations are done on different types of state estimation for a cascaded system.
We made a distinction between local and global estimation, where local refers to using multiple outputs
for the Kalman filter process and global to using only one output. In a similar fashion the construction
of the optimal controller for stochastic systems is analyzed and simulations are done on an optimal
controller for a cascaded system. We simulated that a part of the state is arrived at the controller with
different arrival probabilities and relate the dependence of the controller performance to this probability.
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1 Introduction

Wireless sensor technology is of growing interest for process and automation industry. The driving force
behind using wireless technology in monitoring and control applications is its lower deployment and recon-
figuration cost. Furthermore, wireless devices can be positioned where wires cannot go, or where there is
no steady electricity supply, for transmitters can use energy from a possibly rechargeable battery or a local
source like a solar cell.

In classical wired communication systems the probability of information getting lost is very low and there
are many ways to minimize the influence of external noise sources. This is in contrast to wireless communica-
tion technology where information loss is much more probable due to a lack of energy for transmittance, data
corruption or external electric fields. Besides this, the external noise is more prominent and very difficult if
not impossible to reduce.

Earlier research on wireless communication systems was done in [1] [2]. This research was followed up
by a stability analysis in [3] and and extension to packet loss under energy harvesting constraints in [4] [5].
The research done so far concentrates on the communication of the state estimate and control of a single
system. With the increase in computational power and the renewed interest in complex systems, the concept
of wireless communication might be extended to a network of systems. Computer networks or multi-agent
power grids are only two out of many applications of networks of systems. Throughout this report we will
be mainly interested in a network consisting of two systems. In particular we consider cascaded systems,
which are systems where the output of one system acts as input to the second system. These systems occur
regularly in practice and examples are often systems representing physical phenomena. One can think of a
water tank, whose level is controlled by a pump, or even two vehicles following each other with a specified
distance.

The main difference with respect to the optimal control problem as it is defined for a single system, is
that we have access to information from different sensors in a cascaded setting. This means that we are
able to estimate states from different sensors and that gives rise to the question of how to get the optimal
estimates. This is also known as the distributed Kalman filtering problem. The main goal of this research is
to get some insights in this problem with respect to cascaded systems and show that it is not always obvious
from which sensors one should estimate the states. Furthermore, we aim to establish some results on the
performance requirements of the wireless communication system with packet dropout.

In order to do so, we will start by giving an introduction to the Kalman filter problem for a single system
in the next section. Once this is fully understood, we will compare two cases to estimate the states of a
cascaded system in Section 3. By means of a simulation study we will show that it is not straightforward
which method of estimation is optimal. In the section thereafter, Section 4, we will investigate the optimal
control problem for stochastic systems. As it will turn out, the separation principle with respect to state
estimation and actuation also holds for stochastic systems. Finally, in Section 5, we will perform a simulation
study where we will investigate the influence of packet dropout on the controller performance.

2 Kalman Filtering

2.1 Filter construction

As mentioned above, we will start by introducing the Kalman filter for state estimation of a linear system.
Let us first define our system Σ, from which we desire to estimate the state, as follows

Σ =

{
xk+1 = Axk +Buk + wk,

yk = Cxk + vk,
(2.1)

where xk ∈ Rn is the state vector at a discrete time step k, uk ∈ Rm an input function, yk ∈ Rp an output
function and A : X → X , B : U → X and C : X → Y linear maps of appropriate dimension. Here, wk and vk
are the process and measurements noise vectors respectively, which are both assumed to be i.i.d. Gaussian
with zero mean and covariances W = E{wkw

T
k } ≥ 0 and R = E{vkvTk } > 0. E{·} denotes the expected

value. The initial state x0 is also Gaussian with mean x̄0 and covariance P0.
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Due to the process and measurement noise, the state of the system becomes a stochastic variable. This
implies that it is impossible to have an observe that generates the state with full certainty. This means that
we desire to have an observer that generates the expected value of the state x̂k = E{xk}. The Kalman filter
problem deals with finding such an observer, such that the error of the estimate is minimized. To be more
specific, if we define the error of the estimate to be ek = xk − x̂k, we would like to minimize the expected
value of the square of the norm of ek, i.e. E{||ek||2}. As it turns out, minimizing this norm is equivalent to
minimizing the trace of the error covariance matrix. To see this, consider the following equation

E{||ek||2} = E{eTk ek},
= E{tr ekeTk },
= trE{ekeTk }.

(2.2)

The key concepts in the Kalman filtering process are prediction and correction. The main idea is to first
use the knowledge of the system dynamics to predict the next state based on the previous estimate. This
will be influenced by the process noise. Therefore, secondly, we use the output y to correct the predicted
state. In order to differentiate between the predicted state and the corrected state, the predicted state is
denoted x̂k|k−1 and the corrected state x̂k|k. So in the Kalman filtering process we first make a prediction
on the state given the system dynamics and a previous estimate xk−1|k−1:

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1, (2.3)

The prediction is then corrected using the difference between the measurement and the expected measurement
Cx̂k|k−1. This yields

x̂k|k = x̂k|k−1 +Kk(yk − Cx̂k|k−1). (2.4)

Combining equations (2.3) and (2.4), we can recognize the structure of a state observer. The remaining
question is, however, how we should choose our matrix Kk such that the estimation error is minimized. To
this extend we consider the error ek = xk − x̂k|k. Denote the covariance of the error

E{ekeTk } = E{(xk − x̂k|k)(xk − x̂k|k)T } := Pk|k. (2.5)

Given this structure an expression for the update equation of Pk|k in terms of Kk and Pk−1|k−1 can be
constructed. Based on this we can calculate how to choose Kk. If we substitute equation (2.4) in equation
(2.5) we see that

Pk|k = E{(xk − x̂k|k)(xk − x̂k|k)T },
= E{(xk − x̂k|k−1 −Kk(yk − Cx̂k|k−1))(xk − x̂k|k−1 −Kk(yk − Cx̂k|k−1))T },
= E{(xk − x̂k|k−1 −Kk(Cxk + vk − Cx̂k|k−1))(xk − x̂k|k−1 −Kk(Cxk + vk − Cx̂k|k−1))T },
= E{((I −KkC)(xk − x̂k|k−1) +Kkvk)((I −KkC)(xk − x̂k|k−1) +Kkvk)T }.

(2.6)

Note that (xk − x̂k|k−1) is the error of the prior estimate before the correction has been applied. This term
is clearly uncorrelated to the measurement noise and hence we can rewrite equation (2.6) as

Pk|k = (I −KkC)Pk|k−1(I −KkC)T +KkRK
T
k

= Pk|k−1 −KkCPk|k−1 − Pk|k−1C
TKT

k +Kk(CPk|k−1C
T +R)KT

k

(2.7)

As mentioned earlier, minimizing the error of the estimate, is equivalent with minimizing the trace of
the error covariance matrix. Since we have derived a full expression for the error covariance matrix, we can
minimize its trace. To do so, we need to calculate the gradient of the trace of Pk+1|k+1 from equation (2.7)
with respect to the coefficients of Kk and set it equal to zero, i.e.

∂(trPk|k)

∂Kk
= −2CPk|k−1 + 2(CPk|k−1C

T +R)KT
k = 0, (2.8)
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which leads to the solution for Kk

Kk = Pk|k−1C
T (CPk|k−1C

T +R)−1. (2.9)

Substituting Kk back into equation (2.7) and rewriting some terms leads to the Riccati difference equation
as an update equation for Pk+1|k+1:

Pk|k =Pk|k−1 − Pk|k−1C
T (CPk|k−1C

T +R)−1CPk|k−1. (2.10)

If we then consider the prior estimation error of the next step somewhat closer and take into account
that the prior estimation error is also not correlated to the process noise we can calculate

Pk+1|k = E{(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)T }
= E{(A(xk − x̂k|k) + wk)(A(xk − x̂k|k) + wk)T },
= APk|kA

T +W.

(2.11)

By plugging in (2.10) we see that

Pk+1|k = APk|k−1A
T −APk|k−1C

T (CPk|k−1C
T +R)−1CPk|k−1A

T +W. (2.12)

We can rewrite this equation in as what will turn out, to be a very useful formulation

Pk+1|k = APk|k−1A
T −APk|k−1C

T (CPk|k−1C
T +R)−1CPk|k−1A

T +W

= APk|k−1A
T −AKkCPk|k−1A

T +W

= APk|k−1A
T −AKkCPk|k−1A

T −APk|k−1C
TKT

k A
T +APk|k−1C

TKT
k A

T +W,

= APk|k−1A
T −AKkCPk|k−1A

T −APk|k−1C
TKT

k A
T +Kk(CPk|k−1C

T +R)KT
k A

T +W,

= APk|k−1A
T −AKkCPk|k−1A

T −APk|k−1C
TKT

k A
T +ATKkCPk|k−1C

TKkA
T

+AKkRK
T
k A

T +W,

= (A−AKkC)Pk|k−1(A−AKkC)T +AKkRK
T
k A

T +W,

(2.13)

Hence we we have constructed to following update equation for Pk+1|k as an alternative for (2.10)

Pk+1|k = (A−AKkC)Pk|k−1(A−AKkC)T +AKkRK
T
k A

T +W. (2.14)

2.2 Filter convergence

Given this update equation the question arises what happens if k → ∞. If the error covariance grows
unbounded, the state estimate becomes rather useless. In order to have the Kalman filter work properly,
that is, to generate an estimate with a bounded covariance, we need to make some assumptions on the
system. The two assumptions that we need to do, is that the system is (C,A) detectable and (A,W

1
2 )

stabilizable. Intuitively this makes sense. The detectability assumption is also a necessary condition for the
existence of an observer for a deterministic system. The stabilizability condition can be interpreted as the
condition that all states are excited by the noise. With these two assumptions we can guarantee the error
covariance to converge to a limit P ∗ ≥ 0, even if the state of the system grows unbounded.

The idea of the proof to this statement is captured in several steps. First we show that given the
observability condition, the sequence generated by equation (2.12), i.e. {Pk|k−1}, is monotonic and bounded
for zero initial condition, i.e. P0 = 0. This implies that the sequence converges and hence it follows from
equation (2.10) that {Pk|k} converges as well for zero initial condition. This means that Kk also converges
to some K∗. It will follow from the stabilizability condition that A − AK∗C is a stable matrix. With
this proven, we will be able to prove the final step, which says that given the conditions, the sequence will
converge for any initial condition. This method of filtering and the proofs, that we are about to see, originate
from [6] and can be found in many papers and book on Kalman filtering such as [7].

In the next lemma we will prove that if the system is detectable, the error covariance will remain bounded
in every step.
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Lemma 1. For all P (0) = P0 ≥ 0 and P0 < ∞, the sequence {Pk+1|k} is bounded by some P ≥ 0, if the
system is (C,A) detectable.

Proof. Since the system is (C,A) detectable, there exists a K such that A−KC has its eigenvalues strictly
within the complex unit circle. Consider a regular observer, which is a suboptimal filter

x̂k+1 = Ax̂k −K(Cx̂k − yk) +Buk. (2.15)

The equation for the error is then given by

ek+1 = xk+1 − x̂k+1,

= (A−KC)ek + wk +Kvk,
(2.16)

which results in an update equation for the error covariance matrix

Pk+1 = (A−KC)Pk(A−KC)T +KRKT +W. (2.17)

We can rewrite this in terms of P0 as follows:

Pk+1 = (A−KC)kP0((A−KC)T )k +

k∑
n=0

(A−KC)n(KRKT +W )((A−KC)T )n. (2.18)

By the singular value decomposition we have that, since A−KC has its eigenvalues strictly within the unit
circle that (A−KC) ≤ λZ for some Z and |λ| ∈ [0, 1). To see this, consider the singular value decomposition
of A−KC, where Σ is a diagonal matrix containing the singular values σ of A−KC.

A−KC = UΣV T ,

≤ UσmaxIV
T ,

≤ σmaxUV
T ,

= λZ.

(2.19)

Therefore the Pk+1|k is bounded by

Pk+1 = (A−KC)kP0((A−KC)T )k +

k∑
n=0

(A−KC)n(KRKT +W )((A−KC)T )n,

≤ λ2kZP0Z
T +

k∑
n=0

λ2n(Z(KRKT +W )ZT ).

(2.20)

Since this filter is suboptimal, it follows that the sequence is also bounded for the optimal filter.

Next we show that given an initial condition P0, the sequence is either increasing or decreasing, i.e.
monotonic.

Lemma 2. If PN+1|N ≤ PN |N−1, for some N then Pk+1|k ≤ Pk|k−1 for all k > N . On the other hand if
PN+1|N ≥ PN |N−1, for some N then Pk+1|k ≥ Pk|k−1 for all k > N

Proof. Define the function

g(Pk|k−1,K) = (A−AKC)Pk|k−1(A−AKC)T +AKRKTAT +W. (2.21)

Note that g is a positive monotonic function in Pk|k−1. Also Pk+1|k = minK g(Pk|k−1,K). Hence if Pk+1|k ≤
Pk|k−1 we see that

Pk+1|k = min
K

g(Pk|k−1,K),

= g(Pk|k−1,K
∗
k),

≥ g(Pk+1|k,K
∗
k),

≥ min
K

g(Pk+1|k,K),

= g(Pk+1|k,K
∗
k+1),

= Pk+2|k+1.

(2.22)

8
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Conversely we see that if Pk|k−1 ≤ Pk+1|k then

Pk+2|k+1 = min
K

g(Pk+1|k,K),

= g(Pk+1|k,K
∗
k+1),

≥ g(Pk|k−1,K
∗
k+1),

≥ min
K

g(Pk|k−1,K),

= g(Pk|k−1,K
∗
k),

= Pk+1|k.

(2.23)

With the proof that the sequence is monotonic, the next lemma is in fact a mere consequence. However,
it is worth stating and proving it.

Lemma 3. If P0 = 0, then Pk|k converges to a steady state error covariance matrix P ∗.

Proof. Since P0 = 0, we have that P1,0 = W , and P2,1 = (A−AK1C)W (A−AK1C)T +AK1RK
T
1 A

T +W
and hence P1,0 ≤ P2,1. By the previous lemma we have that Pk|k−1 ≤ Pk+1|k for all k. We are using an
optimal filter here, and hence the error covariance will be less then when a regular observer is used. Hence
by Lemma 1 we have for all k that {Pk|k−1} is bounded. Therefore {Pk|k−1} converges and hence according
to equation (2.10) we have that Pk|k → P ∗ for some P ∗.

With the previous results we have already proven that if we have an exact state estimate at a certain
time step k, the uncertainty will only grow. If the detectability condition is met, we have that the error
covariance will converge to a steady state value. The next lemma shows that for the steady state matrix K∗

we have that A−AK∗C is a stable matrix, i.e. has its eigenvalues within the complex unit circle.

Lemma 4. Let the system be (C,A) detectable and (A,W
1
2 ) stabilizable. Denote P ∗ = limk→∞ Pk|k and K∗

as the corresponding filter gain, then A−AK∗C has its eigenvalues strictly within the unit circle.

Proof. With this stationary filter gain K∗ we have that P ∗ is given by the Ricatti equation

P ∗ = (A−AK∗C)P ∗(A−AK∗C)T +AK∗RK∗TAT +W. (2.24)

Let x be an eigenvector of (A−AK∗C) then we have that

xTP ∗x = xT ((A−AK∗C)P ∗(A−AK∗C)T +AK∗RK∗TAT +W )x,

= |λ|2xTP ∗x+ xT (AK∗RKT∗AT +W )x.
(2.25)

From this it follows that

(1− |λ|2)xTP ∗x = xT (AK∗RK∗TAT +W )x. (2.26)

Since P ∗, R and W are positive (semi)-definite, λ cannot be greater than 1. If λ = 1 we have that the
following equations must hold:

xTW
1
2 = 0,a)

xTAK∗ = 0,b)

xT (A−AK∗C) = λxT .c)

But a) and b) together imply that xTA = λxT , i.e. xT (A − λI) = 0. Together with c) this means that

xT
(
A− λI W

1
2

)
= 0. However, we assumed that the system was (A,W

1
2 ) stabilizable. This means that

for all unstable eigenvalues of A, we assumed that (A−λI W
1
2 ) has rank n. Hence xT

(
A− λI W

1
2

)
= 0

if and only if x = 0. This means that λ cannot equal one.

9
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If we combine what we have proven so far, we come to the main result of Kalman filtering.

Theorem 1. Consider the system as in (2.1). If the system is (C,A) detectable and (A,W
1
2 ) stabilizable,

then for any P0 ≥ 0, it holds that Pk|k → P ∗.

Proof. From equation (2.14) we have that the update equation for the prior error covariance is given by
Pk+1|k = (A − AKkC)Pk|k−1(A − AKkC)T + AKkRK

T
k A

T + W . By Lemma 3 we have that {Pk,k−1}
converges to some limit, which we denote Φ, for zero initial condition. From this it follows that if P0 = 0:

lim
k→∞

Pk|k−1 = lim
k→∞

k∑
n=0

(A−AK∗C)n(AK∗R(K∗)TAT +W )((A−AK∗C)T )n,

:= Φ.

(2.27)

By Lemma 4 A−AK∗C has its eigenvalues strictly within the complex unit circle and by the singular value
decomposition we have that that A−AK∗C ≤ λZ for some Z and |λ| ∈ [0, 1). Then for all P0 ≥ 0 we have
that

lim
k→∞

(A−AK∗C)kP0((A−AK∗C)T )k ≤ lim
k→∞

λ2kZP0Z
T = 0. (2.28)

Suppose we have an arbitrary positive semi-definite initial condition and use the suboptimal steady state
Kalman gain Kk = K∗ for all steps. Then it holds for any initial condition P0 ≥ 0 that

lim
k→∞

Pk|k−1 = lim
k→∞

(
(A−AK∗C)kP0((A−AK∗C)T )k +

k∑
n=0

(A−K∗C)n(AK∗R(K∗)TAT +W )((A−AK∗C)T )n

)
,

= lim
k→∞

k∑
n=0

(A−AK∗C)n(AK∗R(K∗)TAT +W )((A−AK∗C)T )n,

= Φ.

(2.29)

This shows that, if K∗ is used in every step, {Pk|k−1} converges to Φ, for all P0 ≥ 0. Since K∗ is suboptimal
in every step, we have that, if the optimal gain matrix Kk is used in every step, {Pk|k−1} is bounded for all
P0 ≥ 0. By Lemma 2 the sequence {Pk|k−1} is also monotonic and thus it converges for any initial condition
P0 ≥ 0. It follows from (2.10) that limk→∞ Pk|k = P ∗ for some P ∗ for all P0 ≥ 0.

2.3 Filter performance

Now that we have conditions on the system for the convergence of the error covariance with a Kalman filter,
we will investigate the performance of a Kalman filter. The main question we would like to answer, is how
we can minimize the error covariance given the system. Would it be useful to reduce the process noise if the
measurement noise is really small? If one has access to two different measurements, which one is optimal to
use for a Kalman filter? Whereas the first question is rather straightforward to answer, the second one is
not straightforward to answer as we will show.

The answer to the question on noise reduction follows from Theorem 1. We state it as a corollary and it
says in fact that any reduction on the noise, both the process and measurement noise, will result in a lower
error covariance matrix.

Corollary 1. Consider a system xk+1 = Axk + Buk + wk, yk = Cxk + vk, where the the covariance
of the process and measurement noise is given by W and R respectively. If W and R are changed to some
W ≤W and R ≤ R, then the estimates of the state resulting from the Kalman filter have an error covariance
P
∗ ≤ P ∗.

10
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Proof. Let K∗ be the steady state Kalman gain resulting from R and W and K
∗

with respect to R and W .
We have that

lim
k→∞

Pk|k−1 = Φ := lim
k→∞

(
min
K

[
k∑

n=0

(A−AKC)n(AKRKTAT +W )((A−AKC)T )n

])
,

= lim
k→∞

k∑
n=0

(A−AK∗C)n(AK
∗
R(K

∗
)TAT +W )((A−AK∗C)T )n,

≤ lim
k→∞

k∑
n=0

(A−AK∗C)n(AK∗RK∗TAT +W )(A−AK∗C)nT ,

≤ lim
k→∞

k∑
n=0

(A−AK∗C)n(AK∗RK∗TAT +W )(A−AK∗C)nT ,

= Φ := lim
k→∞

Pk|k−1.

(2.30)

Then in a similar fashion we see

P ∗ = min
K

[
(I −KC)Φ(I −KC)T +KRKT

]
,

≤ min
K

[
(I −KC)Φ(I −KC)T +KRKT

]
,

= P ∗.

(2.31)

The second question is more difficult two answer. The filtering theory and current literature on it focuses
mainly on the optimization given a certain measurement. In a multi-agent network and also in the cascaded
setting as we will see later on, one might have access to multiple measurements. Therefore it is useful to see
how we can how the Kalman filter performs with respect to the measurements.

One might assume, that given two measurements y1 and y2 with the same noise and the system is
observable from both y1 and y2, that this might lead to the same error covariance, once a Kalman filter is
applied. This is however not true, as the following example will show. Consider the following system

Σ =


xk+1 =

(
1 3

2 1

)
xk +Buk + wk,

y1k =
(

0 1
)
xk + vk,

y2k =
(

1 0
)
xk + vk,

(2.32)

with covariance matrices R = W = I. If we take the initial error covariance matrix P (0) = 0 and run
the Kalman filter, we find the result in Figure 1.

11



Internship Uppsala P. Wijnbergen

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

k

T
ra

ce
Σ

Trace error covariance

ΣC1

ΣC2

Figure 1: The comparison of the error covariance using y1 and y2.

As a respons to this example, one would like to formulate necessary and sufficient conditions on C1 and
C2, such that we can tell by the system matrices how to estimate the states optimally. An intuition tells
us that it might be worth while investigating what the relative influence of the noise it compared to the
measurement part Cixk. Another suggestion might be to see how Kk evolves as a function of Ci. However,
these subjects are not trivial. Hence we will give some more straightforward results. In order to do so we
first need the next two lemma’s.

Lemma 5. Consider two positive definite matrices A and B, such that A ≤ B. Then we have that B−1 ≤
A−1.

Proof. First note that since 0 < A we have that 0 < AA−1A and hence 0 < A−1. Since A and B are positive
definite and B −A is positive semidefinite, by the Schur complement we have that:(

B I
I A−1

)
≥ 0. (2.33)

Since B is positive definite and hence invertible, we can take the Schur complement again to find

A−1 −B−1 ≥ 0. (2.34)

In order to prove the results we will use the next lemma.

Lemma 6. Consider a system xk+1 = Axk + Buk + wk with two outputs y1,k = C1xk + v1,k and y2,k =
C2xk + v2,k with E{v1,kvT1,k} = R1 and E{v2,kvT2,k} = R2. Let P1k|k−1 be the error covariance of the
prior estimate due to a Kalman filter using y1,k and let P2,k|k−1 be the error covariance if y2,k is used.
Denote P ∗C1

= limk→∞ P1,k|k−1 and P ∗C2
= limk→∞ P2,k|k−1. If P ∗C1

≤ P ∗C2
, then we have limk→∞ P1,k|k ≤

limk→∞ P2,k|k.

Proof. By equation (2.11) we have

P ∗C1
= lim

k→∞
AP1,k|kA

T +W, (2.35)

and

P ∗C2
= lim

k→∞
AP2,k|kA

T +W. (2.36)

12
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By assumption we have that P ∗C1
≤ P ∗C2

and thus P ∗C1
− P ∗C2

≤ 0. Hence we see that

P ∗C1
− P ∗C2

= lim
k→∞

(
AP1,k|kA

T −AP2,k|kA
T
)
,

= lim
k→∞

A(P1,k|k − P2,k|k)AT ,≤ 0.
(2.37)

From this it follows that

lim
k→∞

(
P1,k|k − P2,k|k

)
= lim

k→∞
P1,k|k − lim

k→∞
P2,k|k ≤ 0. (2.38)

This last lemma means that optimizing our prior estimate, will result in a better posterior estimate.
Hence to increase the performance of a Kalman filter, we can do this by optimizing the prior or the posterior
estimate. Equipped with these lemma’s, we can prove the next theorem.

Theorem 2. Consider a system xk+1 = Axk + Buk + wk with two outputs y1,k = C1xk + v1,k and y2,k =
C2xk + v2,k with E{v1,kvT1,k} = E{v2,kvT2,k} = R. Let P1,k|k be the error covariance of the estimate due to a
Kalman filter using y1,k and let P2,k|k be the error covariance if y2,k is used. Denote P ∗C1

= limk→∞ P1,k|k−1
and P ∗C2

= limk→∞ P2,k|k−1. If

CT
2 (C2P

∗
C1
CT

2 +R)−1C2 ≤ CT
1 (C1P

∗
C1
CT

1 +R)−1C1, (2.39)

then P ∗C1
≤ P ∗C2

.

Proof. Recall that by equation (2.12)

P ∗C1 = AP ∗C1
AT −AP ∗C1

CT
1 (C1P

∗
C1
CT

1 +R)−1CP ∗C1
AT +W (2.40)

Hence we see

P ∗C1 = AP ∗C1
AT −AP ∗C1

CT
1 (C1P

∗
C1
CT

1 +R)−1C1P
∗
C1
AT +W

≤ AP ∗C1
AT −AP ∗C1

CT
2 (C2P

∗
C1
CT

2 +R)−1C2P
∗
C1
AT +W,

= P2,k+1|k.

(2.41)

By Lemma 2 P2,k+1|k will be increasing for all k, and hence P ∗C1
≤ P ∗C2

.

The next result shows that if the noise becomes relatively smaller compared to the measurement, or
differently stated, that Cxk is amplified, the error covariance of the estimate is reduced.

Theorem 3. If C2 = αC1 for some 1 < α then P ∗C2
≤ P ∗C1

.

Proof. Recall that by equation (2.12)

Pk+1|k = APk|k−1A
T −APk|k−1C

T
1 (C1Pk|k−1C

T
1 +R)−1C1Pk|k−1A

T +W. (2.42)

From this we see that in the limit that k →∞:

P ∗C1
= AP ∗C1

AT −AP ∗C1
CT

1 (C1P
∗
C1
CT

1 +R)−1C1P
∗
C1
AT +W

= AP ∗C1
AT −AP ∗C1

CT
2

1

α2

(
1

α2
C2P

∗
C1
CT

2 +R

)−1
C2P

∗
C1
AT +W,

= AP ∗C1
AT −AP ∗C1

CT
2

1

α2

(
1

α2
(C2P

∗
C1
CT

2 + α2R)

)−1
C2P

∗
C1
AT +W,

= AP ∗C1
AT −AP ∗C1

CT
2 (C2P

∗
C1
CT

2 + α2R))−1C2P
∗
C1
AT +W,

= AP ∗C1
AT −AP ∗C1

CT
2 (C2P

∗
C1
CT

2 +R))−1C2P
∗
C1
AT +W.

(2.43)

From this we see that P ∗C1
is the same error covariance as we would get by estimating the error covariance

using y2 = C2x+ vk, where vk has covariance R. However, since R ≤ R we have by using Corollary 1, that
using y2 = C2xk + vk would result in a lower error covariance.
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In the case that C1 and C2 are invertible, we can state the following result.

Theorem 4. Consider a system xk+1 = Axk + Buk + wk with two outputs y1,k = C1xk + v1,k and y2,k =
C1xk + v2,k. Assume both C1 and C2 are invertible and that R = R1 = R2. Then the state estimate can be
estimated optimally from y1,k if and only if

C2R
−1CT

2 ≤ C1R
−1CT

1 (2.44)

Proof. Consider the Riccati update equation

Pk+1|k = APk|k−1A
T −APk|k−1C

T
1 (C1Pk|k−1C

T
1 +R)−1C1Pk|k−1A

T +W. (2.45)

The second term in this equation, omitting A and AT and denoting (C−1)T = C−T , can be rewritten as

Pk|k−1C
T
1 (C1Pk|k−1C

T
1 +R)−1C1Pk|k−1 = Pk|k−1C

T
1 (C1C

−1
2 C2Pk|k−1C

T
2 C
−T
2 CT

1 +R)−1C1Pk|k−1,

= Pk|k−1C
T
1 (C1(C−12 C2Pk|k−1C

T
2 C
−T
2 + C−11 RC−T1 )CT

1 )−1C1Pk|k−1,

= Pk|k−1C
T
1 C
−T
1 ((C−12 C2Pk|k−1C

T
2 C
−T
2 + C−11 RC−T1 ))−1C−11 C1Pk|k−1,

= Pk|k−1(C−12 (C2Pk|k−1C
T
2 + C2C

−1
1 RC−T1 CT

2 )C−T2 )−1Pk|k−1,

= Pk|k−1C
T
2 (C2Pk|k−1C

T
2 + C2C

−1
1 RC−T1 CT

2 )−1C2Pk|k−1.

(2.46)

Then by Corollary 1 we have that if C2C
−1
1 RC−1T1 CT

2 ≤ R then y1 will result in a better estimate of the
state. This is equivalent with

C2R
−1CT

2 ≤ C1R
−1CT

1 . (2.47)

3 Extension to Cascaded systems

Now that we have a solid understanding of how the Kalman filter works for a single system, we will extend
the filtering problem to cascaded systems. With the extension to cascaded systems several questions arise,
namely how to estimates the states. First we will define what we mean by a cascaded system more explicitly.
Consider two systems of the form

Σi =

{
xi,k+1 = Aixi,k +Bui,k + wi,k,

yi,k = Cixi,k + vi,k,
, i ∈ {1, 2}, (3.1)

where xi,k ∈ Rn is the state vector for a discrete time step k, ui,k ∈ Rm an input function, yi,k ∈ Rp an
output function and Ai : X → X , Bi : U → X and Ci : X → Y linear maps of appropriate dimension. The
process and measurement noise is assumed to be i.i.d. Gaussian noise with both vectors with zero mean
and covariance Wi = E{wi,kw

T
i,k} ≥ 0 and Ri = E{vi,kvTi,k} > 0, respectively. The initial state xi,0 is also

Gaussian with mean x̄i,0 and covariance Pi,0. Furthermore, it is assumed that (Ai, Bi) and (Ai,W
1
2
i ) are

stabilizable and (Ci, Ai) is detectable for i ∈ {1, 2}.
A cascaded system is defined as the interconnection of two of these systems, where the output of the first

system serves as an input of the second system, such that y2 = u1. This is a cascaded system and a block
diagram is shown in Figure 2.

Σ2 Σ1
u y2 y1

w1w2

Figure 2: A cascaded system
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The interconnection of these two systems can be modelled as follows

Σ1 × Σ2 =



xk+1 =

(
A1 B1C2

0 A2

)
xk +

(
0

B2

)
uk + wk,

= Axk +Buk + wk,

y1,k =
(
C1 0

)
xk + v1k,

y2,k =
(

0 C2

)
xk + v2k,

(3.2)

where xk =

(
x1,k
x2,k

)
and wk =

(
w1,k

w2,k

)
and the corresponding (error) covariance matrices are given by

P =

(
P11 P12

PT
12 P22

)
, and W =

(
W1 0
0 W2

)
, (3.3)

respectively, where we omitted the dependence on k for clarity reasons. By P we mean however Pk|k−1.

3.1 Detectability and Stabilizability

As we have seen that detectability is an important notion for the existence of an optimal filter, we start by
investigating the detectability of a cascaded system, consisting of two detectable subsystems. We will prove
a stronger result, namely on observability of a cascaded system with observable subsystems. As it will be
shown, since both system Σ1 and Σ2 are observable from y1 and y2, respectively, and B1C2 6= 0 it follows
that Σ1 × Σ2 is also observable from y2. By proving this result, the case where the systems are detectable
instead of observable is guaranteed as well.

Theorem 5. Consider two systems of the form of (3.1). Σ1 × Σ2 as in (3.2) is observable from y1 if and
only if Σ1 and Σ2 are observable from y1 and y2 respectively and B1 6= 0.

Proof. (⇒) Assume that the cascaded system Σ1 × Σ2 is observable. Then we have for all complex λ

rank

A1 − λI B1C2

0 A2 − λI
C1 0

 = n1 + n2. (3.4)

Then by Fact 2.11.8 in [8] it holds that

rank

A1 − λI B1C2

0 A2 − λI
C1 0

 ≤ rank(A1 − λI
C1

)
+ rank

(
B1C2

A2 − λI

)
. (3.5)

Since the rank of

(
A1 − λI
C1

)
and

(
B1C2

A2 − λI

)
are at most n1 and n2 respectively, it holds that if Σ1 ×Σ2 is

observable, these matrices have maximum rank for all λ ∈ C. So we can conclude that (C1, A1) is observable.
To see that (C2, A2) is observable as well, note that by Corollary 2.5.10 in [8]

rank

(
B1C2

A2 − λI

)
= rank

((
B1 0
0 I

)(
C2

A2 − λI

))
,

≤ min

(
rank

(
B1 0
0 I

)
, rank

(
C2

A2 − λI

))
.

(3.6)

Hence the rank of

(
C2

A2 − λI

)
is at least n2 and (C2, A2) is thus observable as well.

(⇐) Now assume that (C1, A1) and (C2, A2) are observable. Since Σ1 and Σ2 are observable from y1 and
y2, we have for all λ ∈ C that

rank

(
C1

A1 − λI

)
= n1, rank

(
C2

A2 − λI

)
= n2. (3.7)
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If we consider the following we see that

rank

A1 − λI B1C2

0 A2 − λI
C1 0

 = rank

A1 − λI B1 0
0 0 I
C1 0 0

I 0
0 C2

0 A2 − λI

 , (3.8)

Since we have that (C2, A2) is observable, we have that for all λ

rank

I 0
0 C2

0 A2 − λI

 = n1 + n2. (3.9)

Since this matrix is of full rank we have

rank

A1 − λI B1C2

0 A2 − λI
C1 0

 = rank

A1 − λI B1 0
0 0 I
C1 0 0

I 0
0 C2

0 A2 − λI

 ,

= rank

A1 − λI B1 0
0 0 I
C1 0 0

 ,

= n1 + n2.

(3.10)

A second condition for the convergence of the Kalman filter is the stabilizability question with respect
to the covariance noise of the process noise. To ascertain ourselves that this won’t pose a problem, we proof
the following theorem.

Theorem 6. Consider two systems of the form of (3.1). Σ1 × Σ2 is (A,W
1
2 ) stabilizable if and only if Σ1

and Σ2 are (A1,W
1
2
1 ) and (A2,W

1
2
2 ) respectively.

Proof. We have that Σ is (A,W
1
2 ) stabilizable if and only if for all unstable eigenvalues λ

rank

(
A1 − λI B1C2 W

1
2
1 0

0 A2 − λI 0 W
1
2
2

)
= n1 + n2. (3.11)

Premultiplying this matrix with some vector
(
xT yT

)
yields

(
xT yT

)(A1 − λI B1C2 W
1
2
1 0

0 A2 − λI 0 W
1
2
2

)
=
(
xT (A1 − λI) xTB1C2 + yT (A2 − λI) xTW

1
2
1 yTW

1
2
2

)
(3.12)

If (A1,W
1
2
1 ) is stabilizable, then for all unstable eigenvalues of A1 we have that xT

(
A1 − λI W

1
2

)
= 0

if and only if xT = 0, see [9]. If (A2,W
1
2
2 ) is stabilizable as well and xT = 0, then (3.12) is zero if and only

if yT = 0 too, and thus (A,W
1
2 ) is stabilizable. Conversely, assume (A,W

1
2 ) is stabilizable. Then we have

n1 + n2 ≤ rank
(
A1 − λI W

1
2
1

)
+ rank

(
A2 − λI W

1
2
2

)
, (3.13)

which implies the stabilizability of (A1,W
1
2
1 ) and (A2,W

1
2
2 ).

3.2 Local and Global estimation

The previous theorems prove that if we are dealing with a cascaded system as in (3.2) and there exists an
optimal filter based on the measurement y1, there also exist optimal estimators of the states of the two
subsystems based on y1 and y2. This poses the problem of how to estimate the states optimally. We can
distinguish two cases
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Case 1: Local estimation The Kalman filter is applied after the output y1 and y2. The update equations
for the error covariance matrices would be given by

P1,k+1|k = A1P1,k|k−1A
T
1 −A1P1,k|k−1C1(C1P1,k|k−1C

T
1 +R1)−1CT

1 P1,k|k−1A
T
1 +W1, P1,k=0 = P1,0.

(3.14)

P2,k+1|k = A2P2,k|k−1A
T
2 −A2P2,k|k−1C2(C2P2,k|k−1C

T
2 +R2)−1CT

2 P2,k|k−1A
T
22 +W2, P2,k=0 = P2,0.

(3.15)

In this way the states of the subsystems are estimated locally. For the estimation of the states of Σ1,
one could however argue, that it is not reasonable to have perfect information about the input signal C2x2k
for Σ1. It is for a Kalman filter however necessary to have information on the input signal to the system.
Therefore it is suggested to use the measurement y2 as an input for the Kalman filter. This results in the
following Kalman prior estimate:

x̂1,k|k−1 = A1x̂k−1|k−1 +B1(C2x2,k−1 + v2,k−1),

= A1x̂k−1|k−1 +B1C2x2,k−1 +B1v2,k−1,
(3.16)

and posterior update

x̂1,k|k = x̂1,k|k−1 −Kk(C1x̂1,k|k−1 − y1,k). (3.17)

From the prior and posterior estimate we can see that the Kalman filter gain Kk will be influenced by this
noise in the input. The exact influence of this noise on the filter gain is, however, beyond the scope of this
thesis. We modeled a penalty for this noise by increasing the process noise. This yields that we model
system 1 as

Σs =

{
x1,k+1 = Ax1,k +B1uk + w̄1,k,

y1,k = C1x1,k + v1,k,
(3.18)

where w̄1,k has covariance W1 + B1R2B
T
1 . The error covariance of the prior estimate will thus be updated

according to

P1,k+1|k = A1P1,k|k−1A
T
1 −A1P1,k|k−1C1(C1P1,k|k−1C

T
1 +R1)−1CT

1 P1,k|k−1A
T
1 +W1 +B1R2B

T
1 ,

P1,k=0 = P1,0.
(3.19)

Case 2: Global estimation The cascaded system is treated as one system and only the output y1 is used
and the filter is applied to jointly optimize the estimates of the states. In this case we are estimating the
state of the system as given in (3.2). The update equation for the error covariance due to a Kalman filter is
given by

Pk+1|k = APk|k−1A
T −APk|k−1C

T (CPk|k−1C
T +R1)−1CPk|k−1A

T +W, Pk=0 = P0, (3.20)

were P0 =

(
P11,0 P12,0

PT
12,0 P22,0

)
.

From now on we will omit the dependence on k of the error covariance matrix P unless it is necessary for
clarity reasons. The trace of P11 and P22 correspond to the error in the estimate of Σ1 and Σ2 respectively.
Since eventually we are interested in minimizing these traces we are mainly interested in P11 and P22. To
make a comparison with Case 2, we will derive an explicit expression for these update equations from equation
(3.20). Denote A12 = B1C2 and note that we are dealing with the following matrices:

A =

(
A11 A12

0 A22

)
, C =

(
C1 0

)
, W =

(
W1 0
0 W2

)
, (3.21)
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P =

(
P11 P12

PT
12 P22

)
, R = R1, (3.22)

First we compute APAT and APCT , such that we can alos compute APCT (CPCT +R)CPAT :

APAT =

(
A11(P11A

T
11 + P12A

T
12) +A12(P12A

T
11 + P22A

T
12) 0

0 A22P22A
T
22

)
+

(
0 A11P12A

T
22 +A12P22A

T
22

A11P12A
T
22 +A12P22A

T
22 0

)
,

(3.23)

APCT =

(
A11P11C

T
1 +A12P21C

T
1

A22P21C
T
1

)
, (3.24)

APCT (CPCT +R)−1CPAT =

(
A11P11C

T
1 +A12P21C

T
1

A22P21C
T
1

)
(C1P1C

T
1 +R)−1

(
A11P11C

T
1 +A12P21C

T
1

A22P21C
T
1

)T

.

(3.25)

Multiplying these results in a block matrix P , where the blocks are given by

P22(k + 1) = A22P22A
T
22 −A22P21C

T
1 (C1P11C

T
1 +R)−1C1P12A22 +W2, (3.26)

P11(k + 1) =A11P11A
T
11 −A11P11C

T
1 (C1P11C

T
1 +R)−1C1P11A

T
11

+A11P12A
T
12 −A11P11C

T
1 (C1P11C

T
1 +R)−1C1P12A

T
12

+A12P12A
T
11 −A12P21C

T
1 (C1P11C

T
1 +R)−1C1P11A

T
11

+A12P22A
T
12 −A12P21C

T
1 (C1P11C

T
1 +R)−1C1P12A

T
12 +W1,

(3.27)

P12(k + 1) = (A11P11 +A12P21)AT
22 − (A11P11C

T
1 +A12P21C

T
1 )(C1P11C

T
1 +R)−1C1P12A

T
22. (3.28)

Whereas there is not much rewriting of P22(k+1) or P12(k+1), we can rewrite P11(k+1) in the following
ways

P11(k + 1) =
(
A11 A12

)
P
(
A11 A12

)T
−
(
A11 A12

)(P11 0
0 P12

)
C1(C1P11C

T
1 +R1)−1CT

1

(
P11 0
0 P12

)(
AT

11

AT
12

)
+W1,

(3.29)

3.3 Performance comparison

The estimation error covariances resulting from estimating the states in Case 1 and Case 2 will in general not
be the same. This has bee proven by [10]. This means that one of the two cases will in general be optimal,
given the parameters. It is, however, difficult to predict on forehand from the parameters which case will be
the optimal case.

If one considers the error covariance matrices from the Σ2 in both cases one notices that the global
estimation of the state of Σ2 depends not only on the measurement y1. It also depends on the cross
covariance P12. The local estimation depends mainly on y2 and hence one has to compare two very different
filters. As an example, consider the systems

Σ2 =

 x2,k+1 =

(
1
2 1

2 1
2

)
x2,k +B2uk + w1,k,

y2,k = x2,k + v2,k,

(3.30)
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and

Σ1 =

 x1,k+1 =

(
1 1

0 2

)
x1,k +B1x2k + w1,k,

y1,k = x1,k + v1,k.

(3.31)

If we have that W1 = W2 = I and take B1 = 10I, then we have that with two different covariance matrices
R2 we get two relatively different error covariance matrices for the state. The result of a simulation with
R1 = R2 = 0.1 and a simulation with R1 = 0.1I and R2 = 2I is shown in Figure 3.
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(a) The trace of the error covariance with R2 = 0.1I and
B1 = 10I.
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(b) The trace of the error covariance with R2 = 2I and
B1 = 10I.

Figure 3: A comparison of Kalman filter performance with different noise covariance.
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Figure 4: The trace of the error covariance with R2 = 2I and B1 = I.

The results of this simulation come with a rather intuitive explanation. As the measurement y2 becomes
worse, i.e. has noise with a large covariance, the measurement y1 will become favourable to use for estimating
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x2. Similarly, if there is a weak coupling between Σ1 and Σ1, that is, the influence of x2 on x1 can be
considered small, then the estimate of x2 from y1 will become worse. This is shown in Figure 4. Here we
modelled the weak coupling by having B1 = I instead of B1 = 10I.

Measurements with a low covariance matrix R2 will not only result in a good estimation of x2, but also
in a good estimation of x1. As one can see in equation (3.19), the error covariance of x1 also depends on R2.
This is due to the fact that having a very accurate measurement y2, is equivalent to knowing the input of
Σ1 very accurately. The optimal Kalman filter assumes that the input of a system is known, and therefore
one obtains the best linear estimate if R2 = 0. This means that the error covariance of the local estimate of
x1 tends to the optimal estimate of x1 as R2 tends to zero.

As an example, consider the system

Σ2 =

 x2,k+1 =

(
1
2 0

1 1
2

)
x2,k +B2uk + w1,k,

y2,k = x2,k + v2,k,

(3.32)

and

Σ1 =

 x1,k+1 =

(
1 1

0 2

)
x1,k + x2,k + w1,k,

y1,k = x1,k + v1,k,

(3.33)

with covariance matrices R2 = 5I, R1 = I and W1 = W2 = I. The result of a simulation is shown in Figure
5a. The fact that the local estimation of x1 becomes worse than the global estimation does not necessarily
mean that the overall global estimation of x1 and x2 is better than the sum of the local ones. This is shown
in Figure 5b, where we modelled R2 = 2.5I instead of 5I.

This shows that in general, the better the measurement y2, the better both local estimates become. In
general one can conclude that if one has a very good sensor to measure y2, it is very likely that the local
Kalman filters will result in a general lower error covariance of x1 and x2. If it is, however, the case, that
the sensor measuring y1 is much better than the sensor of y2, it will be more probable that using global
estimation will result in a better state estimate.
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(a) The trace of the error covariance with R2 = 5I.
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Figure 5: A comparison of Kalman filter performance with different noise covariance.

4 Optimal control

Now that we have investigated the Kalman filtering problem, we can start investigating the optimal control
problem for our cascaded system. Since we can model our cascaded system as a system of the form xk+1 =
Axk + Buk + wk, we can design an optimal controller for this system. To do so properly, we will first
investigate the optimal control problem for stochastic systems. This is followed by a simulation, where we
investigate the influence of packet dropout on the performance of the controller.

4.1 Optimal control for stochastic systems

It is well known that for deterministic systems the optimal controller consists of an optimal state estimator
and an optimal linear actuator. This is due to the fact that there is perfect communication assumed between
the controller and the estimator. This would yield a standard LQG controller that aims to minimize the
control cost function and it is assumed that the controller has access to the exact value of the state. When
dealing with stochastic systems this is not a feasible assumption, and one has to deal with imperfect state
information. Therefore, if one is dealing with a stochastic system such as

Σ =

{
xk+1 = Axk +Buk + wk,

yk = Cxk + vk,
(4.1)
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with covariance matrices W and R for the process and measurement noise respectively, the main goal in
the optimal control problem, is to find an input sequence {u(k)}, such that the expected value of the cost
function is minimized. This means that we desire to minimize

JN = E

{
xTNQNxN +

N−1∑
k=0

(xTkQkxk + uTk Vkuk)

}
. (4.2)

As it will turn out, we can reduce this problem, to a problem with perfect state information. We will show
that for the system in equation (4.1) the optimal controller is also separable into a state estimator and an
actuator. Once this problem is understood, we can investigate it’s application to our cascaded control system
as we have done in the previous section. The investigation of this problem follows very similar lines as [11].

To reformulate this problem such that it is a perfect state information problem, define as a new state of
the system the information vector

Ik = (y0, y1, ..., yk, u0, u1, ..., uk−1). (4.3)

Assume that this information vector is available at the controller. This means that the controller has access
to the observations and inputs up to time step k and k−1, respectively, and thus we have perfect knowledge
of this new state. For this new state, Ik, the input is uk and yk+1 can be viewed as a random disturbance.
Furthermore we have

P(yk+1 | Ik, uk) = P(yk+1 | Ik, uk, y0, ..., yk), (4.4)

since y0, ..., yk are part of the information vector Ik. Here P(x | y) denotes the probability of event x
occurring given the occurrence of event y. This means that the probability distribution of yk+1 depends
explicitly only on the state Ik and the input uk. Denote Ea,b{·} for calculating the expected value for · with
respect to a and b and setting all other variables to constant. By writing

E{Axk +Buk + wk} = E{Exk,wk
{Axk +Buk + wk | Ik, uk}}, (4.5)

we can similarly reformulate the cost per stage as a function of the new state Ik and the control input uk:

JN−1(IN−1) = min
uN−1

[EuN−1,wN−1
{xTN−1QN−1xN−1 + uTN−1VN−1uN−1

+ (AxN−1 +BuN−1 + wN−1)T

·QN ((AxN−1 +BuN−1 + wN−1) | IN−1}].

(4.6)

Since E{wN−1 | IN−1} = E{wN−1} = 0, this expression can be written as

JN−1(IN−1) =ExN−1
{xTN−1(ATQNA+QN−1)xN−1 | IN−1},

+ EwN−1
{wT

N−1QNwN−1}
+ min

uN−1

[uTN−1(BTQNB + VN−1)uN−1 + 2E{xN−1 | IN−1}TATQNBuN−1].

(4.7)

Equation (4.7) is minimized when the last term is zero. To find the value for uN−1 we take the derivative
with respect to uN−1 and set it equal to zero. This gives an optimal input u∗N−1 as follows

u∗N−1 = −(BTQNB + VN−1)−1BQNAE{xN−1 | IN−1}, (4.8)

and upon substitution in (4.7) we obtain

JN−1(IN−1) =ExN−1
{xTN−1Mk−1xN−1 | IN−1,

+ ExN−1

{
(xN−1 − E{xN−1 | IN−1})TSN−1(xN−1 − E{xN−1 | IN−1

}
)

+ EwN−1
{wT

N−1QNwN−1},
(4.9)

where the matrices MN−1 and SN−1 are given by

MN−1 = ATQNB(BQNB + VN−1)−1BQNA,

SN−1 = ATQNA− PN−1 +QN−1.
(4.10)
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Note that E{xN−1 | IN−1} is the expected value of the state at the time instance N − 1 given the inputs
and outputs up to time step N − 2 and N . This is exactly equal to the estimate of xN−1 generated by a
Kalman filter. If we continue the dynamic programming algorithm for period N − 2, we have that

JN−2(IN−2) = min
uN−2

[
ExN−2,wN−2,yN−2

{xTN−2QN−2xN−2 + uTN−2VN−2uN−2 + JN−2(IN−2 | IN−2, uN−2)}
]

=E{xTN−2QN−2xN−2 | IN−2}
+ min

uN−2

[
uTN−2VN−2uN−2 + E{xTN−1SN−1xN−1 | IN−2, uN−2}

]
+ E{wT

N−1QNwN−1}
+ E

{
(xN−1 − E{xN−1 | IN−1})T

}
MN−1E{(xN−1 − E{xN−1 | IN−1})

(4.11)

The last line in equation (4.11) is left out of the minimization, for it does not depend on uN−2. This is
proven by the next lemma. The lemma essentially says that the quality of the estimate E{xk | Ik} is not
influenced by the choice of control input.

Lemma 7. For every k, there is a function Mk such that we have

xk − E{xk | Ik} = Mk(x0, w0, ..., wk−1, v0, ..., vk−1), (4.12)

independently of the input being used.

Proof. Fix an input and consider the following two systems. In the first system, the control input is used,

xk+1 = Axk +Buk + wk, yk = Cxk + vk, (4.13)

whereas it is not considered in the second system,

x̄k+1 = Ax̄k + w̄(k), ȳ(k) = Cx̄(k) + v̄(k). (4.14)

Consider the evolution of these two systems when their initial conditions are identical, i.e. x0 = x̄0 as well
as the noise vectors w(k) = w̄(k), v(k) = v̄(k), for all k. Consider the vectors

Yk = (y0, ..., yk)T , Ȳk = (ȳ0, ..., ȳk)T

Wk = (w0, ..., wk)T , Vk = (v0, ..., vk)T , Uk = (u0, ..., uk)T .
(4.15)

Linearity implies the existence of matrices Fk, Gk and Hk such that

xk = Fkx0 +GkUk−1 +HkWk−1k,

x̄k = Fkx̄0 +HkWk−1.
(4.16)

Since the vector Uk−1 is part of the information vector Ik, we have Uk−1 = E{Uk−1 | Ik}, so

E{xk | Ik} = FkE{x0 | Ik}+GkUk−1 +HkE{Wk | Ik}
E{x̄k | Ik} = FkE{x̄0 | Ik}+HkE{W̄k | Ik}

(4.17)

From this we can see that

xk − E{xk | Ik} = x̄k − E{x̄k | Ik}. (4.18)

From the equations for yk and ȳk in equations (4.13) and (4.14), we see that

Ȳk = Yk −RkUk−1 = SkWk−1 + TkVk, (4.19)

where Rk, Sk and Tk are some matrices of appropriate dimension. Thus, the information provided by
Ik = (Yk, Uk−1}) regarding x̄k is summarized in Ȳk, and we have E{x̄k | Ik} = E{x̄k | Ȳk}, such that

xk − E{xk | Ik) = x̄k − E{x̄k | Ȳk} = Mk(x0, w0, ..., wk−1, v0, ..., vk). (4.20)
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If we now return to (4.11), we see that the dynamic programming algorithm for period N−2 is optimized
by

u∗N−2 = −(BTSN−1B + VN−2)−1BTSN−1AE{xN−2 | IN−2}. (4.21)

This proves that we can proceed similarly to obtain the optimal input sequence {u(k)} for every stage where
u(k) is given by

u∗(k) = LkE{x(k) | Ik}, (4.22)

where the matrix Lk is given by

Lk = −(BTSk+1B + Vk)−1BTSk+1A, (4.23)

with the matrices Kk given recursively by the Riccati equation

SN = QN ,

Ek = ATSk+1B(BTSk+1B + Vk)−1BTSk+1A,

Sk = ATSk+1A− Ek +Qk.

(4.24)

An interesting observation is that the optimal controller for the imperfect state information case is again
a linear combination of an optimal state estimator and an actuator. This make the Kalman filtering problem
in the previous section an even more important topic. For the better the state estimate will be, i.e. the
better the Kalman filter performs, the lower the control cost will be. With this understanding of how the
the optimal controller works, we can continue applying this theory the cascaded setting.

4.2 The cascaded setting and packet drop-out

As has been shown in the previous section, the expected value of the cost function is minimized by applying a
linear actuator and an optimal state estimator. In the first section we have investigated how to estimate the
state of a cascaded system optimally. As it turned out, in some cases, estimating the states of the subsystems
locally was optimal compared to estimating them globally. With respect to wireless communication systems,
this means that both estimates also have to be send and received by the controller. This might pose a
problem, in case one of the two state estimates does not arrive for some reason. To investigate this, we will
consider such a setting. Recall that we consider the cascaded setting of the form

Σ1 × Σ2 =



xk+1 =

(
A1 B1C2

0 A2

)
xk +

(
0

B2

)
uk + wk,

= Axk +Buk + wk,

y1,k =
(
C1 0

)
xk + v1,k,

y2,k = C2x2,k + v2,k.

(4.25)

Let us define a control cost as follows:

JT = E

{
xTTWxT +

T−1∑
k=0

xT1,kW1x1,k + xT2,kW2x2,k + uTk Uuk

}
. (4.26)

It follows from the theory above that the input sequence {uk}, that minimized the expected value of the
cost function, can be computed backwards by the following formula

uk = −(BTQk+1B + U)−1BTQk+1Ax̂2k|k

= −G−1k Lkx̂k|k,
(4.27)

with

Qk = ATQk+1A+Wk −ATQk+1B(BTQk+1B + U)−1BTQk+1A, QN =

(
W1 0
0 W2

)
. (4.28)
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If we consider a cascaded system with an optimal controller, where the states are estimated locally by a
Kalman filter and sent to the controller, we are dealing with a setting as is depicted in Figure 6. We can
assign a probability to the event of a packet arriving. Some properties of the performance of the controller
in relation to the packet arrival probability will be investigated in a simulation study.

Controller System 2

Disturbance w2

System 1

Disturbance w1

Receiver

u

Kalman Filter 2

Kalman Filter 1Transmitter

Transmitter

y2 y1

x̂m

x̂n

zm

zn

x̂ck

Rx-block

Tx-block

Figure 6: Block diagram of the cascaded system with control block

As an example, consider the system

Σ2 =

 x2,k+1 =

(
1
4 0.9

0 1
2

)
x2,k + uk + w2,k,

y2,k = 2x2k + v2,k,

(4.29)

and

Σ1 =

 x1,k+1 =

(
1 1

0 2

)
x1,k + x1,k + w1,k,

y1,k = x1,k + v1,k,

(4.30)

with covariance matrices W1 = W2 = I and R1 = R2 = 0.1I. These matrices guarantee that the local
estimation is indeed optimal. As a cost function consider

JT = E

{
xTT IxT +

T−1∑
k=0

xT1,kIx1,k + 4xT2,kIx2,k + uTk Iuk

}
. (4.31)

In most engineering applications Σ1 is an unstable system and hence loosing information on the state of
Σ1 can pose a big problem. Since Σ2 is often a stable system, information loss on the state of Σ2 is often
less of a problem. Investigating packet drop-out between the state estimator of Σ1 is, however, beyond the
scope of this research. Therefore we will focus on the packet drop out between the estimator of Σ2 and the
controller. It is thus assumed that the state of Σ1 is always delivered. In this case one can think of the
state of Σ2 being communicated wireless, whereas the state of Σ1 is communicated via a wire. We denote
the Boolean variable γ = 1 if a packet arrives and hence the probability of the packet arrival is denoted
P(γ = 1). The results of three simulations are shown in Figures 7, 8 and 9. The probability of a packet
dropout for the wireless link is given by P(γ = 1) = 0.85, P(γ = 1) = 0.90 and P(γ = 1) = 0.95 respectively.
We plotted the mean cost, which is the sum over every cost per step, devided by the amount of steps.
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Figure 7: The mean cost and cost per step of when 85% of the packages arrive.
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Figure 8: The mean cost and cost per step of when 90% of the packages arrive.
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Figure 9: The mean cost and cost per step of when 95% of the packages arrive.

As one can see, the average control cost per step decreases for growing packet arrival probability. One
sees also that at a certain pack-out probability the stability is not guaranteed anymore. This is in accordance
with the results in [3]. In order to find the expected value of the control cost,the simulations were repeated
500 times for different packet arrival probabilities. The results are shown in Figure 10.
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Figure 10: Expected mean control cost per step.
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Figure 11: The mean cost and cost per step for estimating the state globally.

A simulation where we estimate the state globally is shown in Figure 11. Running these simulations also
500 times and calculating the average mean control cost, result in an expected average mean control cost of
5.7278∗103. This also shows, that for a sufficiently low packet arrival probability of the second Kalman filter,
estimating the state globally becomes more favorable, if the packet arrival probability of the first Kalman
filter is P{γ = 1} = 1 in both cases.

5 Conclusion and recommendation

In retrospect we have investigated the optimal control problem for cascaded stochastic systems and analyzed
the Kalman filtering problem for this type of systems. We analyzed the Kalman filter and proved under
which conditions the resulting error covariance matrix converges to a steady state value. As it turned out,
having less process and measurement noise, results in a lower error in the state estimate. We have also seen
that if there are multiple outputs available for the Kalman filter, they do not necessarily result in the same
error covariance. We achieved some results on the dependence of the steady state error covariance on the
choice of measurement, but there are still questions unanswered and lead to our first recommendation for
further research.

In our analysis of the dependence on the choice of output, we have results depending on the steady state
value of the error covariance. Furthermore we have results comparing outputs with an invertible C matrices
or C matrices which where scalar multiples. It remains to investigate how one can predict what output will
result in the optimal error covariance matrix without computing the steady state values for at least one
output. Similarly, one would like to obtain results for comparing outputs of different dimensions. This could
also help in the analysis of the performance of a distributed Kalman filter.

So far we have compared two ways of state estimation for a cascaded system, which we called local and
global estimation. We did this by means of a simulation. These simulations show that the performance
of the two cases mainly depended on the covariance of the measurement noise and the coupling strength
between the two systems. The fact, that there are no firm theorems on the conditions for a specific case to
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result in an optimal state estimate, gives rise to more research.
As it seems so far, the current paradigm in doing research on (distributed) Kalman filtering is to inves-

tigate a given system with a given output. Given a specific set up, there are many papers on optimizing
algorithms and combining information from the given sensors. The question of which general output equa-
tion is more favorable compared to another one is a relatively new question resulting from the increase of
system complexity and networks. Therefore, a lot of results are yet to be obtained in this area.

After the investigation of the Kalman filter problem for the cascaded setting, we gave an introduction
to optimal control for stochastic systems. It turned out, that the optimal controller was separable into an
optimal state estimator and a linear actuator. With this theory, we designed an optimal controller for a
cascaded system and investigated the influence of packet drop-out on the performance of the controller. By
means of a simulation study we have shown that the expected control cost increases as the packet arrival
probability decreases. In the simulation it was assumed that only a part of the state was communicated
wireless, whereas one could also investigate the case where the arrival of the whole state is uncertain. An
interesting question would be if the results of [3] could be extended to the cascaded setting. The simulations
suggest, that the stabilizing property of the controller can be guaranteed if the arrival probability is above
a certain threshold. However no firm claims can be made based on these simulations.

Furthermore, the simulation study shows, that estimating the states globally becomes favorable compared
to local estimation if the packet arrival probability of the second Kalman filter drops below a certain threshold
value. It remains to investigate the case where the communication link between the first Kalman filter and the
controller also becomes uncertain. Perhaps one can find a trade off between the Kalman filter performance
and the packet arrival probabilities. It remains to investigate how the behaviour of the controller would be
influenced by the packet drop-out between the estimator of Σ1 and the controller.

In general, one can conclude that extending the optimal control problem with packet drop out to cascaded
systems is not straight forward. There are a lot of questions yet to be answered.
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