university of faculty of science
) / groningen / and engineering

Counting people in
videos

Bachelor thesis

June 27, 2018

Student: Twan Schoonen

Primary supervisor: André Sobiecki

Secondary supervisor: Alexandru C. Telea



Abstract

In a more and more media filled world, automation is needed for analyzing media sources.
In this thesis we focus on counting people in video collections. These videos collection
are to large to watch manually and have a low resolution. We compare 2 different face
detection techniques and 4 different image comparison techniques. With the optimal
setting we achieve a reduction rate of 95.36% on average.



Contents

3.1.2 ee eural Net| . . . . . . .
ompute An ompare Histograms|

.L__Correlationl .

»; 1-Square] .

.4 Bﬁattacﬁaryya alstancel

[E12 Tndividual Frames]

mage Oompariso.

3

mage xamples)

73,

3 1stogram Plot.

3

eople Count|.

3.1 Dlﬂerent Hlstogram Methods| -
.3.2  Multiple Detection Methods|. . .

3

.3 Variant [hreshold Levelsl
.4 TFinal Results] . .

3

5 Program Output] .

[E2—Stimulus For Future Worl]. .

[Appendiced

oftware Documentationl
A echno ogy stacEI

\.2

e:

quirements

uild lnmmm_ammmm

\.4 Software design|

M

23
23
23
25
32
32
33
36
39
39
40
41
42
44

45
46
47

47

50

51
51
51
53
54



Chapter 1

Introduction

Video surveillance methods become increasingly widespread and popular within many or-
ganizations, including law enforcement, traffic control, but also residential applications.
In particular, the police performs investigations based on searching specific people in
videos and in pictures. As the number of such videos is constantly increasing, manual
examination of all frames becomes impossible. Some degree of automation is strongly
needed.

Lets us start with an example, in China there are
already smart surveillance cameras used on daily
basis. These cameras do not only just record videos
but there is actually object detection being applied
as is seen in Figure In this Figure we see that =
the objects attributes are also recognized by these _
cameras. So a car color and model, and even if a I —L
person wears long or short sleeves. This means you Figure 1.1: A Chinese smart
can ask these cameras complicated queries like, was surveillance camera.

there a man walking by at 12 am? Even more in-

teresting, give a signal if you see person X. That being said in China alone there are
already 176 million of these surveillance cameras [3]. Consider that actual people would
have to manual watch through these days of footage.

The goal of this project is to support a number of the aforementioned automation tasks.
Specifically, given a large collection of videos, there are three main question that this
thesis tries to find the answer to. We will introduce these questions in order and give a
more detailed explanation below.



Question 1: How many different people are present in the video collection?

This is the most important question, and hence the main focus of this thesis. We do
however only consider a person’s face, and thus work with face detection. This means
motions detection methods are not used, or other object detection methods. The reason
that we only consider a face is due to the fact that recognizing a person only from his
body is very hard, while searching for people’s face is more acceptable. Once we are able
to find the answer to this question a lot of video surveillance work can be automated, in a
way that if there are no people present we do not have to watch the video manual again.
And thus police, or other people working with videos, can now only watch relevant frames.

Let us think of an other place where this is a logical question to ask, amusement parks.
We could inform visitors of these parks what areas are crowded and where less people
are. Doing this results in a win-win situation, for the park, we have a better distribution
of people and hence the whole park is being used. For the customers this is beneficial,
because in there experience it is less busy, thus less waiting times. Now assume that we
now have this large collection of videos, where we already not have to watch a big chunk
of the footage anymore, because no one was present. However we now want to search for
a specific person. We would still have to manually watch all the surveillance material, to
see when this person is present. This introduces another path where we can automate
the work of policemen.

Question 2: How to group faces (present in the individual frames) per per-
son, so that we can tell where and in which specific frames the same person
appears?

Answering this question implies that we can ask a large video collection, give me all
frames where person X is present. There are a lot of challenges for this to work, and
finding a general method that can do this a 100% accurate is never done before. One
of the challenges is aging. Lets assume we have recognized a person on particular day
and this person commits a crime. The desired result then would be if we ever see him
again to let the police know. However lets say 5 years later this person can look a
lot different. Now lets say we have this automation working, in case of a crime someone
would manually have to go though the (relevant) frames to see if they can find the frames
best displaying the face of an criminal. An example of these manual selected frames in
Figure [[.2] These manual selected frames are used to ask the public if they have seen
this person.



Figure 1.2: Manual frame selections

In this Figure we see that two frames of some criminals. These frames are manually
selected. Here an other problem with the possibility of automation is found. We will
again mainly focus on faces here so the resulting images of the criminals will be just
facial images. Doing this work manually is a task that is work intensive since analyzing
frame by frame costs time. This brings us to research question 3.

Question 3: How to select a good “representative face” for the above groups?
A representative face is one of good pose (orientation), resolution, lighting,
contrast, and image sharpness.

Solving this question would bring an other great aspect for automation. These represen-
tative faces do not have to be selected manually. Analyzing all results form a modern
day surveillance camera systems is virtually impossible. Since these groups are already
clustered in some similar way we now need to represent these groups with a representa-
tional face.

So ideally we would be able to feed a media stream to our program, and this program then
analyses the data, counting the persons present, displaying the most relevant faces, and
save the detected persons to a global database. This can system can have a widespread
of applications. We can think of a system monitoring parking spaces, or boarder control
that is fully automated, but mostly automating the work for crime related videos.

The system that we will try to develop will not be 100% accurate since there exist no
such method. We will however try to get the best results possible. In our results the
false positives are acceptable, since we will just detect more people then present. Not
detecting a person is worse since this means some people will come through our detection
system and thus maybe walk freely. All automation in this field means less work, so if
we can accurately cut the number facial images, then this would already help.



The project is done in cooperation with ZiuZ [4], a company interested in exploring these
ideas for actual future usage in video surveillance projects. In this bachelor project, we
present a method for summarizing faces from videos, many of these face images have
poor resolution, we uses two types of face detection and then compare these faces by
different type of histogram comparison techniques.

The structure of the thesis is as follows. In Section [2] we discuss the relevant work to
answer these three questions. After discussing several methods the selected and imple-
mented methods are more explained in Section [3] The results of these different methods
will be presented in Section ] And then we will compare these results to come to our
conclusions in Section [Bl



Chapter 2

Related Work

In order to find the best methods for counting people in videos, a literature study is
performed. An ideal result for this project will be a software system able to:

e Read a video and detect and crop all the faces present in a frontal position.
e Count how many people are in the video as accurate as possible.

e Group faces based on similarity; for each group, select the best “representative” face
based on quality criteria including resolution, sharpness, contrast, and lighting.

To obtain this ideal result multiple papers are discussed, on multiple topics. These papers
are about our four steps of recognizing people in videos. For each of these four steps a
more detailed description is given in the relevant section. In these sections we talk about
relevant papers that fall in the discussed topic. At the end of this chapter a summary is
given of some methods that we discuss and a small conclusion on our findings is provided.
The upcoming sections are:

1. Face Detection detecting the faces in each frame. After that the faces are
stored in a database or in memory.

2. Image Comparison [2.2] since we save the faces for each frame we need some method
to distinguish the frames that contain the same person, here image comparison
comes to help.

3. Face Clustering this process clusters different persons for example on race,
gender, and age range. This then can be used for to ask complicated questions to
the database. However we face the risk of losing identities by grouping them.

4. Face Recognition [2.4] this is the process of actually giving a label to each face, so
instead of saying this is a face, we are able to say this face belongs to person X.



2.1 Face Detection

There are multiple ways to count people in videos. One way of doing this would be to
look for shapes or motion. Another way would be to detect the faces. In this thesis we
focus on the second option, because persons are more recognizable from their faces then
from their body’s. Detecting shapes or body parts, can end up with a database filled
with people backs not being of any use.

The process of detecting faces is called face detection and for
humans is task is quite easy. Explaining this to a computer is a
more complicated task. Face detection can be seen as a specific
case of object detection. In object detection the goal is to find
all the locations and sizes of all objects in an image [1]. In face
detection we only try to find one object type being the face of
a human. A somewhat desired result is shown in Figure [2.1
Here we see that the green rectangles show where the faces are Figure 2.1: Face de-
in this picture. Of course one picture can also been seen as an tection example
individual frame. Factors that make it difficult to come up with

a general robust solution are:

e Head rotation and tilt

e Lightning intensity and angle.
e Facial expressions.

e Aging.

e Image resolution

e Occluding objects

To overcome these problems multiple methods are developed of the
last years. Each with their own advantages and disadvantages The
most optimal result would hence be, loading a video finding all the
faces that are present and saving these faces in a database. Again
doing this 100% accurate is hard, and having no false positives rarely
happens. Once a face detected, the face can be cut from the cor-
responding frame and resized to a desired output width and height.
Detecting faces is widely used in combination with other techniques.
In our project we use face detection in combination with image com- Figure 2.2: A
parison. However there are direct applications of face detection. In Snapchat filter
photography, we use face detection to focus our lens to this area.

This technique is already available on mobile phones. Snapchat [9] is another interesting
example. Looking at Figure we see one of Snapchat’s many available filters. Here
not only the face is detected but also the angle and then correctly drawing some overlay.




This is quite remarkable if we take into account that Snapchat does this in real time on
a mobile phone.

There are multiple categories for facial detection algorithms. We will list these categories
below and discuss relevant papers.

2.1.1 Traditional Face Detection

Traditional face detection algorithms identify facial features by extracting landmarks, or
features, from an image. One of the most used methods is proposed by Voila et al.[21].
Here multiple face features are combined to detect a face and thus this papar falls into
this category. This method was a break though, because it was the first to detect faces
in real time. The algorithm is fast while obtaining high detection rates, it has four main
stages.

1. Haar Feature Selection

2. Creating an Integral Image
3. Adaboost training

4. Cascading Classifiers

The haar features are using the fact that all faces share some

similar properties. For example the nose is a bit brighter
that the two areas next to it, see Figure Then the .:- n.
best haar features are combined. By doing this the speed .

of execution goes up. These best haar features are applied Figure 2.3: An example
to all smaller windows of the current frame The downside haar featilr.e

of this algorithm is that is struggles with face angles in any

direction (one of the problems stated). This is due to the

fact that it is trained with frontal faces. An upside is that this method is already available
in the OpenCV library [2] with trained cascades.

2.1.2 Skin Texture Analysis Face Detection

DU Cui-huan, et al.[8] uses AdaBoost in combination with a skin model, and hence falls
into this category. This method is applied to videos, and thus enhancing the relevance of
the paper to the main research questions. Two phases are discussed, first the motion area
is calculated. On this area the AdaBoost algorithm from Viola et al.[2I] is used. Once
this detection is successful clustering is done by a skin model. They obtain an accuracy
of 92.3% on a database of 3000 faces.



2.1.3 Motion Based Face Detection

In Paul, et al.[I8] a more general overview is given. Here it is not only focused on the
detection of face but also people in general. Also it talks specifically about surveillance
videos and hence is relevant. All methods are grouped in three categories: background
subtraction, optical flow and spatio-temporal filters. These methods are used for de-
tecting motion. Once motion is detected we can verify that it is a human by three
major types: shape-based, motion-based and texture based. In this paper Table is
presented.

Methods Accuracy Computational time Comments
Simple pattern-matching approach
can be applied with appropriate templates.
Shape-based Moderate Low It does not work well in dynamic
situations and is unable to determine

internal movements well

Does not require predefined pattern
Motion-based Moderate High templates but struggles to identify
a non-moving human
Provides improved quality with

Texture-based High High L . .
exture-base ' ' the expense of additional computation time

Table 2.1: Compaison of object classification methods in terms of accuracy and compu-
tational time [18]

However since our research is focused on the human face, this paper and DU Cui-huan,
et al.[8] are not relevant to our proposed solution.

2.1.4 Deep Learning Face Detection

An other approach is suggested by Farfade et al.[10]. Here deep learning is used to detect
faces and hence it falls into this category. All current benchmarks are done with deep
neural nets, or more specifically convolutional neural nets. In this paper the problem
of multi-view face detection is discussed. While there has been significant research on
this problem, current state-of-the-art approaches for this task require annotation of facial
landmarks. They also require training dozens of models to fully capture faces in all ori-
entations. In this paper Deep Dense Face Detector (DDFD) is proposed, a method that
does not require pose/landmark annotation and is able to detect faces in a wide range of
orientations using a single model based on deep convolutional neural networks. The pro-
posed method has minimal complexity; unlike other recent deep learning object detection
methods, it does not require additional components such as segmentation, bounding-box
regression, or SVM classifiers. Evaluations on popular face detection benchmark datasets
show that their single-model face detector algorithm has similar or better performance
compared to the previous methods, which are more complex and require annotations of



either different poses or facial landmarks.

One of the advantages about this paper is that the newest OpenCV [2] comes with
functionality for this method.

2.1.5 High Tech Camera Face Detection

High tech cameras have more functionality, for example the camera is able to detect
temperature or depth. This extra data could lead to even better face detection methods.
We do not have relevant literature in this category. In out problem we do not have these
high tech cameras.

After this literature research about face detection, we decide to implement both the Haar
cascade from Voila et al.[21] and the method from Farfade et al.[I0]. These methods will
be compared. These are both available in the newest version of the OpenCV library and
thus we will be using this. Implement one of these methods from scratch would not fit
in the time given for a bachelors project. Once we present our results of the comparison
we will choose one of these methods for our final people count method.

2.2 Image Comparison

Now that we discussed how we can detect faces and save these for each frame, we want
to have a method for comparing if a face is of the same person or if it is someone dif-
ferent. Image comparison is a big theme and there are multiple methods discussed in
this chapter. Methods of similarity between two images are useful for the comparison
of algorithms devoted to noise reduction, image matching, image coding and restora-
tion. In our thesis it is mainly focused on image matching. Facial images are a very
high-dimensional feature vector. Usually in modern applications some way of reducing
this dimensionality is used when working with faces. Most papers make a comparison
between different image comparison techniques.

The in Gesu et al.|7] described methods based on distance functions. Measures of similar-
ity are also used to evaluate lossy compression algorithms and to define pictorial indices
in image content based retrieval methods. In this paper they develop a distance-based
approach to image similarity evaluation and they present several image distances which
are based on low level features. The sensitivity and effectiveness are tested on real data.
Experimental results indicate better sensitivity of the functions by combining both global
intensity and local structural features with respect to conventional intensity-based mea-
sures.

10



The next paper describes an empirical comparison Stevens et al.[20]. Using 27 different
error functions on a set of 20 example problems. Each error function measures the
similarity between an observed and a predicted image. The goal of the paper is to select
an error best suited to guide a heuristic search algorithm through a space of possible
scene configurations.

Another approach is given in Jia et al.[12]. In this paper, three newly proposed histogram-
based methods are compared with other three popular methods, including conventional
histogram intersection (HI) method, Wong and Cheung’s merged palette histogram match-
ing (MPHM) method, and Gevers’ colour ratio gradient (CRG) method. They test their
methods on vehicle license plates to classify them. Experimental results disclose that,
the CRG method is the best choice in terms of speed, and the GWHI method can give
the best classification results. Overall, the CECH method produces the best performance
when both speed and classification performance are concerned.

As seen in the above mentioned papers, there are a lot of different methods for image
comparison. All papers make a comparison between different methods. We however will
also compare the in OpenCV [2] given histogram comparison methods. These methods
are explained in Section [3]

2.3 Face Clustering

Now that we are able to find the faces from a video, and know what face is the same,
we are left with a large database with faces. To further analyze all these faces, we need
somehow a way to simplify the dataset, i.e. reduce it to a small one. This is typically
done by putting very similar data items (faces) together, which in turn can be done by
what are known as clustering methods.

Essentially, any clustering algorithm is an optimization process which receives 2 inputs: a
distance function that compares data items, and a desired simplification level (expressed
either in the maximal distance that 2 elements in the same cluster can have, or by the
max size a cluster can have). Then, it partitions the data items into clusters. Of course,
there’s a trade-off: if you have fewer clusters, you’ll have more items per cluster (more
generalization or simplification, but higher error); and if you have more clusters, you'll
have fewer data items per cluster (less generalization, but less error). Being able to cluster
these faces will increase the functionality of our database. As an example use, if we want
to only look at all the woman we detected. Then the faces should be clustered on gender.

11



In Otto et al.[16] the best practices for efficient clustering of face images are explored.
They apply their clustering on a database of up to one million faces. This data set is then
clustered in a large set of approximately 200 thousand clusters. The main challenges for
clustering face images are:

e Large dataset size (millions of face images).

e Large number of classes: a crowd may contain a large number of individuals (tends
of thousands, if not more).

e High intra-class variability and small inter-class sepa-ration: images are captured
under unconstrained conditions, with uncooperative subjects, in difficult imaging
environments.

e Unknown number of clusters: the number of individuals present in the collected
data is not known a priori, but may contain tens of thousands of clusters.

e Variable number of samples per cluster: some individuals may be present in only
a few images or video frames, others in many.

In the conclusion it is stated that, Rank-Ordered clustering is a good trade off between
computational power and accuracy.

A paper discussing the given example about gender clustering is Orozco et al.[I5]. It
is stated that the good results obtained using deep convolutional neural networks in vi-
sion tasks make them an attractive tool to improve the capacities of gender recognition
systems. They propose a deep convolutional network architecture to classify as male or
female person. Haar features embedded in an AdaBoost are used to obtain candidate
regions. The used data set is the common Labeled Faces in the Wildand Gallagher’s
dataset. Their results on the proposed architecture are 95.42% and 91.48% accuracy for
the training set and for the test set.

In Otto et al.[I7] a method for clustering a large collection of unlabeled faces is given.
They address the problem of clustering faces into an unknown number of identities and
thus unknown amount of clusters. They state that the problem applies to social media,
law enforcement and other applications, where there can be hundreds of millions of faces
present. An approximate Rank-Order clustering is presented that preforms better then
other popular clustering algorithms. In their experiments there are up to 123 million
faces that are clustered over 10 million clusters. Clustering results are analyzed in terms
of external (known face labels) and internal (unknown face labels) quality measures, and
run-time. Their algorithm achieves an F-measure of 0.87 on the LFW benchmark (13 K
faces of 5,749 individuals), which drops to 0.27 on the largest dataset considered (13 K
faces in LFW + 123M distractor images).

12



Face clustering is not the best choice for our project. This is because we do not want
to lose any identity. This means at most one cluster per person which makes clustering
not very useful. Another reason is that face clustering is complex and not doable in the
given three months. As last face clustering is not possible in real time and there are not
test of images with low resolutions. These reasons lead us to the conclusion that we do
not implement or use any of the above given face clustering techniques.

2.4 Face Recognition

We discussed how to identify, compare and cluster faces. This means only the last step
is left undiscussed, being able to recognize people once a face is detected. A facial recog-
nition system is a technology capable of identifying or verifying a person from a digital
image or a video frame from a video source. There are multiples methods in which facial
recognition systems work, but in general, they work by comparing selected facial fea-
tures from given image with faces within a database. In this field there has been a lot
of recent advances. As an example usage, the Face ID introduced by Apple makes sure
that the owner of the phone can log in using his or her face. Here first face detection
is used to see where in the camera the face is present, hereafter face recognition is used
to see that it is indeed the owner of the phone. To do this securely Apple needs very
accurate recognition method, otherwise anyone can log into your phone. This technology
even learns from changes in a user’s appearance, and therefore works with hats, scarves,
glasses and many sunglasses, beard and makeup. The advantage that Apple has is that
the faces used to log in to a phone are mostly full frontal and of high resolution, or it
just does not work. For our research we want to detect all faces and these faces are of
low resolution so counting them complicates the process.

A paper discussing the current state-of-the-art is Schroff et al.[I9]. In this paper a
system, called FaceNet, that directly learns a mapping from face images to a compact
Euclidean space where distances directly correspond to a measure of face similarity, is
presented. Once this space has been produced, tasks such as face recognition, verifica-
tion and clustering can be easily implemented using standard techniques with FaceNet
embeddings as feature vectors. Their method uses a deep convolutional network trained
to directly optimize the embedding itself, rather than an intermediate bottleneck layer as
in previous deep learning approaches. To train this network, they use triplets of roughly
aligned matching / non-matching face patches generated using a novel online triplet min-
ing method. The benefit of this approach is much greater representational efficiency. The
results are achieved with only 128-bytes per face. On the widely used Labeled Faces in
the Wild (LFW) dataset, the system achieves a new record accuracy of 99.63%. On
YouTube Faces DB it achieves 95.12%. This system cuts the error rate in comparison to
the best published result by 30% on both datasets.

13



Another widely used method is discussed in Lei et al.[I4]. In this paper, a method is
proposed that is simple and efficient. It uses face representation feature that adopts
the eigenfaces of Local Binary Pattern (LBP) space, referred to as the LBP eigenfaces,
for robust face recognition. In the experiments, the proposed LBP eigenfaces are inte-
grated into two types of classification methods, Nearest Neighbor (NN) and Collaborative
Representation-based Classification (CRC). Experimental results indicate that the clas-
sification with the LBP eigenfaces outperforms that with the original eigenfaces and LBP
histogram.

Hmani et al.[IT] is interested in the reproducibility of face recognition systems. By repro-
ducibility they mean: is the scientific community, and are the researchers from different
sides, capable of reproducing the last published results by a big company, that has at its
disposal huge computational power and huge proprietary databases? With the constant
advancements in GPU computation power and availability of open-source software, the
reproducibility of published results should not be a problem. But, if architectures of
the systems are private and databases are proprietary, the reproducibility of published
results can not be easily attained. To tackle this problem, they focus on training and
evaluation of face recognition systems on publicly available data and software. Also they
are interested in comparing the best Deep Neural Net (DNN) based results with a base-
line “classical” system. This paper exploits the OpenFace open-source system to generate
a deep convolutional neural network model using publicly available datasets. It is stud-
ied what the impact of the size of the datasets, their quality is and they compare the
performance to a classical face recognition approach. The focus is to have a fully repro-
ducible model. To this end, they used publicly available datasets (FRGC, MS-celeb-1M,
MOBIO, LFEW), as well publicly available software (OpenFace) to train our model in
order to do face recognition. Our best trained model achieves 97.52% accuracy on the
Labelled in the Wild dataset (LFW) dataset which is lower than Google’s best reported
results of 99.96% but slightly better than FaceBook’s reported result of 97.35%.

This is a quite interesting point, since this means that it should be possible for researchers
to also reproduce these results. However face recognition does not work for face images
with poor resolution and they requires the face in standard position, light and distance.
There are methods for face recognition using face images with poor resolution [I3], but
understanding and implementing these methods are not doable for the given three months
of the bachelor project and the risk of not-success is high, that is the reason why we use
histograms.

2.5 Summary

Below the Table summarizing all relevant literature discussed in this chapter, is
summarized. We consider the following four criteria for evaluating the methods in the

14



papers, validation, availability, complexity and usability. The reason for this is that
we want next to pick an “optimal” method to build upon. Optimal here means that it
satisfies as much criteria as possible. A more detailed description of what the criteria are
is given below.

e Validation: How well the algorithm is tested by the authors in the paper, and how
promising the results are looking for this project;

e Availability: Whether the source code is available on the Internet, or if not, whether
the algorithm is described in enough detail for us to reproduce it;

e Complexity: Whether the algorithm could be executed fast enough to be close to
real time;

e Usability: Refers to the number of parameters and their meaningfulness. A large
number of parameters is bad for ease of use, and it should be easily understandable
what a parameter affects and what the result of adjusting it will be.

Subject Technique Validation Availability Complexity Usability
v L +
Face Detection Haar cascade | . + 3 parameters that
struggles with angles lot of sources online
(struggles with angles) (lot of sources online) all have default values
Deep neural net (Good detction problems: (hard to find examples ++ t- -
. at least 5 parameters
low resolution and far away) and code)
Motion +/- B
! lots of different -
based (No faces detected) (lots ot Crtferent o
solutions)
Image Comparison Distance + . + +
age part: functions (No source code found)
Empirical N - o\ n
comparison (Not available)
. +/- ++ +
istogram (Hard to have robust (Available in the (can be done v
methods (Only a few parameters)

comparison with histograms)

OpenCV library)

real time)

Face Clustering

Rank-ordered

CNN + Adaboost

(Good results on large datasets)

(Found some suggestions
not in OpenCV)

(No where found, not
suggested)

+’,',
(Can take time)

+
(Fast after training)

+/-

(Layers require settings)

Face Recognition

FaceNet

LBP eigenfaces

(99.63% state-of-the-art)

(Not available in the
OpenCV library
(examples online, not
in the OpenCV library)

o
(Fast after training)
+

(Reduces the

vector space)

Table 2.2: Comparison of different relevant techniques

2.6 Conclusion Of The Relevant Work

T
(Few parameters)

+
(Almost the same as
histograms)

As stated in the relevant sections, we will compare two different face detection algorithms.
One being the Haar cascade the other one being a deep neural net. Our image comparison
will be based on the predefined methods of histogram comparison. In our final result
we will combine image comparison with face detection to reduce the amount of faces as
much as possible without deleting persons.

15



Chapter 3

Proposed Solution

In the relevant work we discussed multiple methods on multiple topics. Given the ma-
terial reviewed in Chapter 2, we have seen that no ready-to-use method exist for our
specific task. Hence, we propose here a pipeline that aims to solve this problem. We
next describe the different steps of the pipeline, as follows.

Section describes the methods for detecting faces.

Section explains the process of computing and comparing the histograms.

Section puts the more detailed descriptions together and shows an overview.

The general pipeline is seen in Figure [3.I] In this image we also the stages without
relevant sections. These stages are mentioned in the overview. In this figure we also note
the data types that we use.

16



load media

Mat frame

detect faces i

vector of Rect with faces

crop faces '

vector of Mat with faces

[compute and compare histograms)

vector of Mat with distict faces

show progress

save distinct faces

database of jpg files

Figure 3.1: General pipeline of the proposed solution

3.1 Detect Faces

As stated in the conclusion of the relevant work, we use two different face detection
algorithms and test their performance. After evaluation of the obtained results we will
pick the best one to use in out final product. In the software we add an option to select
the desired method. We assume in this step that we have successfully loaded a video
source already. The flowchart for the whole face detection is shown in Figure 3.2

17



Mat frame
[use dnnDete-:t) [use haarDete-:t)

vector of Rect with faces

Figure 3.2: Detect face more elaborate

More detail about how dnnDetect and haarDetect work, is given in the upcoming sub-
sections.

3.1.1 Haar Cascade

For the Haar cascade [21], we use multiple trained cascade files provided with the opencv
library [2]. Not all these files are meant for face detection, we do only compare the files
that are trained for face detection. The provided xml files for face detection are:

e haarcascade frontalface alt2.xml

e haarcascade frontalface alt tree.xml
e haarcascade frontalface alt.xml

e haarcascade frontalface default.xml

In our results we remove the haarcascade frontalface part for a less wide output table.
If we do not choose a file as trained cascade the default file is used, being alt2.xml. We
load one of these files and then call the function:

void cv::CascadeClassifier::detectMultiScale(
InputArray image,
std: :vector<Rect> &objects,
double scaleFactor = 1.1,
int minNeighbors = 3,
int flags = 0,
Size minSize = Size(),
Size maxSize = Size()

)

Here we see that there are 5 parameters with default values. For our experiments we
choose to keep all the parameters at their default values. Before feeding the frame to
this function we first convert the frame to gray-scale.

18



3.1.2 Deep Neural Net

For the deep neural net [10] we use one trained model and one specification file. The
trained model has the file extension “.caffemodel”. Here we have no option to set
any one of these files, and thus we always use the default ones. These files are: “de-
ploy.prototxt.txt” and ‘“res10 _300x300 ssd _iter 140000.caffemodel”. An option that is
able to change is the confidence level. Since we use a neural net we get a list of faces
(rectangles) and there confidence. We only accept a face if the confidence is higher than
the specified confidence. The function that we use to get the output layers is:

Mat cv::dnn::blobFromImage (InputArray image,
double scalefactor = 1.0,
const Size & size = Size(),
const Scalar & mean = Scalar(),
bool swapRB = true,
bool <crop = true

)

Here we keep the scalefactor at the default. However we set the Size to the trained size
being (300, 300). Also we set the mean to (104, 117, 123). And both swapRB and crop
are set to false. This is done because it gave us the best results and the source for our
trained model suggested it.

3.2 Compute And Compare Histograms

We use histogram comparison because it works on all kinds of images that we have and
our main purpose here is to reduce the amount of repeated images. Computing and
comparing the histograms of the facial images has multiple steps. First for all images
that are found in a frame, we compare them with all faces in the detectedfaces vector.
This vector contains all the distinct faces so far. Alse this vector has variable size and
different values for this size will be tested. What this size means, the amount of faces in
memory where we compare with. So lets say we use a size of 20 then each new face will
be compared with the last 20 distinct faces. If we find a new distinct face we will save
the last modified face and update it to the new face. With last modified we mean the
longest not updated face. We update a face when a face is found the same as one in the
vector. The comparison of images is done with histograms.

To compute the histogram of an image we apply the following steps:
1. Convert the colors to hsv
2. Specify the number of bins

3. Specify the color ranges

19



4. Compute the histogram
5. Normalize the histogram

Once this is done we also save these histograms for later comparison.

To compare two histograms ( H; and Hs ), first we have to choose a metric (d(Hy, Hs)) to
express how well both histograms match. OpenCV [2] implements the function compare-
Hist to perform a comparison. It also offers 4 different metrics to compute the matching.
For all these metrics we have to set some settings being:

e The bins for hue and saturation, we pick 50 and 60
e The ranges for hue and saturation, we pick [0 — 180) and [0 — 256)
e The channels, we pick [0, 1]

We will list in the upcoming subsections the different histogram comparisons that we
will compare.

3.2.1 Correlation

The first method as metric is the correlation. The distance is given by the following
formula:

S (Hi(I) — Hy)(Ha(I) — Ha)

d(Hy, Hs) = — —
VEH(D) — H1)? S (Ha(I) — Ha)?

where

Hi= 3 Hi()
J

and N is the total number of histogram bins.

3.2.2 Chi-Square

The second metric is the Chi-Square it is given by the following formula:

. 2
it 1y - 5 U0 40
I

3.2.3 Intersection

The formula below defines the third metric:

d(Hy, Hy) =Y min(H1(I), Hy(I))
I

20



3.2.4 Bhattacharyya distance

As last the Bhattacharyya distance metric formulate is presented below:

d(Hy, Hs) = \/ - Ho(I
\/H1H2N2

3.3 Overview

Here we present a more detailed overview of the pipeline of our solution. We start with
the uncovered small steps from the large pipeline, being:

e Open media, the process of opening the media stream. This is done with the
--media flag. If this flag is not set we open the default media stream, this most of
the time is your webcam.

e Crop faces, once we got a frame and a vector of rectangle from the face detection
method. We make a new image corresponding to the returned rectangle. Then we
resize this rectangle to a square with variable size. This size is not changeable and
for the rest of the project we use a size of 128.

e Show progress, the video with the detected faces and the distinct vector is shown
to the user. The output example will be shown in the results section.

e Save distinct faces, here we can also have to option to save all faces and all frames.
This is done for obtaining the results that we will present in the results section. If
this option is set all the frames will be saved to: database/frames/ and all the
faces will be saved to: database/faces/. However if the option is not set these
folders remain empty. The final distinct faces are saved in: database/out.

Below we put all the smaller section together to get an image of the proposed solution
as a whole.

21



--media flag set

Use default camera
(webcam)

Load media file

Frame available?

Read frame

Into a cv:Mat cbject

YES_DNN flag set oo
(Use dnnDetect) (Use haarDetect)

Wector of face rectangles

Crop the faces from the frame
to the desired square size

Y Wector of face cv::Mat Objects A

[Co mpute histograms for new faoes)

Wector of faceObjects

Compare histograms with the
histograms of the faces in
the vector (size is vectsize)

3"fs<0ﬂrrpare histograms equals the same)n'i
Update the face that is the Save the last changed face
same to the new face and add the new face

L o N |

Post process
(save all faces still in memary)

®

Figure 3.3: A more detailed overview of the proposed solution

22



Chapter 4

Results

In this chapter we present the results of applying the proposed algorithms onto multiple
different videos. We have three sections with different type of results, all explaining one
broad topic. First in Section [£.I] we compare multiple algorithms on detecting faces. Also
we apply different configurations and parameter values. Here-after we show the results
of different type of histogram comparison methods, applied to the faces detected. This is
done is Section [1.2] Then we present the output of the final product in Section We
also present the software output interface. In this output both face detection and image
comparison are combined to find as accurate as possible the amount of people present
in a video. Our main goal for face detection is to first find as many faces as possible,
with low amount of false positives. We this try to reduce the faces in the database
as close as possible to the amount of persons present in the video, by the histogram
techniques.

4.1 Face Detection

In this section we will present the obtained results for different types of face detection. We
start this section with a table that shows an comparison of the different face detection
methods. This is done in Subsection In Section [£.1.2] we show one interesting
frame for every video in the table. We also briefly explain the scene in the different
videos.

4.1.1 Table Overview

Below we present Table [£.1] with the results for the face detection algorithms and con-
figurations, on four videos. Of these four videos the first three marked as is4, is11 and
ish are isis videos. The last video marked as randl is a random video of a boxing match.
All videos take approximately 4 minutes.

23



Fals Siti
Number of raw faces detected als¢ postive

Method Datafile (in the first 1000 images)
is4 is11 ish randl | is 4 | is1l | ish | randl
Haar cascade alt 23859 | 9751 | 7091 | 21318 | 13 | 77 87 | 103
alt2 25923 | 11525 | 8484 | 23775 | 16 | 113 | 178 | 202
alt_tree 2781 1845 | 32 1785 | 0 0 0 55
default 25216 | 12635 | 10778 | 25413 | 248 | 397 | 230 | 397

Deep Neural Net | res10 conf=0.7 | 30950 | 7347 | 7323 | 3220 | O 0 0 20
res10 conf=0.4 | 34632 | 9805 | 8790 | 4823 | O 1 10 | 136
res10 conf=0.2 | 37446 | 12020 | 10598 | 8563 | 55 |59 |94 | 301

Table 4.1: Comparison of different face detection algorithms in four videos

In the Table we see that for isis video 4 the deep neural nets performs well, since
the number of faces detected is quite high while the false positives are relatively low.
However if we compare this result with the result of random video 1 we see that the deep
neural nets performs worse. Especially the number of faces detected is low if we compare
this with the Haar cascades. Another observation is the low amount of faces detected
with the alt_tree cascade. For example in isis video 5 this cascade only detects 32 faces,
while alt2 detects 8484. This suggest that this method is quite useless, since it misses
identities in the output.

We choose the evaluate the false positives in the
first 1000 images since it is quite labor intensive to
go trough all detected faces. What we classify as
a false positive is any saved face that is not clearly
seen or usable. There are some examples of corner
cases here but we tried to evaluate as consistent as
possible. As an example if we look at Figure
we vaguely see a face, but it is not usable and hence
it is marked as false positive. Also if an zoomed in
version of the face with, for example only the eyes,

then this is also a false positive. Same is true for Figuyre 4.1: Face detection corner
faces that are to far away in the image. Next up (age

we will present some individual frames where the

detected face are marked with green rectangles.

From each video an interesting frame is selected and we provide some information on
what happens in that particular video. Keep in mind that from one frame it is hard
to say anything about the face detection methods. These individual frames merely act
as an example for understanding the performance, for comparison the table should be
used.

24



4.1.2 Individual Frames

In this subsection we show one frames for each of the four video’s. For all face detection
methods we show the same frame so we can compare the results.

Isis Video 4

In isis video 4 a static scene with 8 people in total is shown. Also the camera moves
slowly from left to right. One of the 8 persons present in this video covers his face, this is
not detected by the face detection. This means it is already not possible to get an 100%
accuracy here. Furthermore the faces are clear in the video and their resolution is quite
high. We now present the very first frame of the video:

(a) alt (b) alt2

(c) alt_tree (d) default

25



(e) DNN conf=0.7 (f) DNN conf=0.4

(g) DNN conf=0.2

Figure 4.2: The first frame of isis video 4 with different face detection algorithms

In this Figure we directly see a difference between the different methods. Both DNN
conf 0.4 and DNN conf 0.2 have correctly identified all the faces in this frame, in contrast
to all the other methods. Here also clearly see that no Haar cascade has identified more
then 3 people, while there is no DNN that find less than four people. This suggests that
the DNN performs better on this frame. In Sub-figure we see an example of a false
positive face. Another observation we make is that Sub-figure is unable the find
any faces. This also corresponds to its results shown in the table. Next we look at an
interesting frame form isis video 11.

Isis Video 11

In this isis video 11 we see a leader giving a speech. There are a lot of moving object
behind him and there are also many people present. It starts with an zoomed out vision
of the scene while later there are more close up shots taken. Most of the face detection
methods start with 30-50 false positives, because of this.

26



(e) DNN conf=0.7 (f) DNN conf=0.4

27



(g) DNN conf=0.2

Figure 4.3: The 4850th frame of isis video 11 with different face detection algorithms

wd

We decided to present frame number 4850 in Figure since it shows nine detectable
faces. With detectable we mean that they are not to far away or only partially present.
Here we see that the Haar cascades perform better in comparison with the previous
presented frame. All Haar cascade detect eight out of nine faces except Sub-figure
However the only one detecting all present faces is Sub-figure being the DNN with
confidence equal to 0.2. Another interesting observation is the fact that none of the
methods have any false positives.

Isis Video 5

In isis video 5 a short news item is presented with multiple interviews. Almost all frames
have at most one person present and there is a lot of swapping between scenes. In this
video there are 5 people present, however they are spread over multiple scenes and in one
scene they are presented in black and white. This means to count exactly five persons is
going to be a difficult task. From this video we present the 2563th frame. We tried to find
a frame where it is more clear that a low confidence level also has some disadvantages.
This is since from previous examples it seems like the DNN with confidence 0.2 is the
best at detecting faces. Keep in mind that overall in this video all Haar cascades have
more false positives then the DNN.

28



(b) alt2

(a) alt

(d) default

alt tree

()

0.4

(f) DNN conf

=0.7

(e) DNN conf

29



(g) DNN conf=0.2

Figure 4.4: The 2563th frame of isis video 11 with different face detection algorithms

In this figure it is clearly seen that a lower confidence also makes more mistakes. If we
look at Sub-figure we see two false positives in one frame. This only happens with
a confidence level of 0.2 since in Sub-figure we see only one false positive. Now if
we would have taken a confidence level of 0.7 we would have correctly identified the face
in the given frame as is seen in Sub-figure The Haar cascades on the other hand
have no problem detecting the single person in this frame, with Sub-figure as an
exception.

Random Video 1

This video shows a summary of a boxing match. Here a lot of people are present of whom
mostly in the background, or vague. The resolution of the faces present is significantly
lower then those in previous videos. Counting the persons present is a difficult task since
whole overviews of the stadium are shown. We present frame number 1718.

30



(e) DNN conf=0.7 (f) DNN conf=0.4

(g) DNN conf=0.2

Figure 4.5: The 1718th frame of rand video 1 with different face detection algorithms

In this Figure we see clearly that the Haar cascades preform better then the DNN
methods. The DNN methods are not able to detect any face in the given frame, while the
Haar cascade method alt detects nine faces, as seen in Sub-figure [{.5al This difference
is noticed from the early presented table where the Haar cascades in total detect more
faces then the DNN methods. So this means that when a low resolution crowd in the
background is present the Haar cascade is actually preferred.

31



4.2 Image Comparison

In this section we will present the results of comparing the four histograms described in
the proposed solution. We start by giving a table overview Here all methods are
compared on 20 sets of three face images. The next Subsection shows some of the
20 images presented in the table. As last we present a plot for each of the compared
histogram methods, in Subsection 4.2.3

4.2.1 Table Overview

Here we present the Table with all the outputs of the different histogram comparison
methods. In this table we compare two pair of pictures. One pair are two faces that
are the same and one pair are two different face images. With the same image we mean
neighboring frames of the same person. Al pairs of three images are always from the same
video, this improves the relevance of our results to the project. This can be more clearly
seen from the examples given in Subsection We also made all the extreme values
bold face to make it more clear for the reader. In this table the first 10 images are of
resolution 256*256 pixels, the last 10 images are 128*128 pixels in resolution. The images
are obtained by the detected faces phase. The first 3 image sets are from isis-videos as
well as the images sets numbered from 10 till 16. The rest of the images are obtained
from the random videos.

Method Correlation Chi-Square Intersection Bhattacharyya distance
Image same different same different same different same different

1 0.963060  0.608164  23.264543  88.050640 20.500527  9.792500 0.235165  0.576172
2 0.988773  0.656220  2.666243 151.016672 15.743347  8.743163 0.136703  0.635783
3 0.986752  0.744598  5.814792 156.621258  20.542990  13.284405  0.152532  0.502573
4 0.998583  0.223442 0.304163 310.269375  9.477780 3.734679 0.075555  0.625890
5 0.995940  0.635320  0.937772 21.426114 22.124220  7.613316 0.068103  0.513184
6 0.989958  0.274751  1.216002 270.266692 16.964873  7.092532 0.105071  0.644647
7 0.980178  0.655459  5.841359 51.878833 22.170627  12.827869  0.139945  0.501622
8 0.988142  0.477425  1.348458 157.466081 11.110056  7.540237 0.087968  0.546642
9 0.981464  0.911165 1.872143 16.319383 12.144464  6.850345 0.101900  0.357090
10 0.981981  0.645688  1.140025 32.009531 13.766828  6.772082 0.111970  0.440944
11 0.984352  0.322726  2.872238 131.460977  12.577388  4.768708 0.169069  0.579799
12 0.949547  0.379059  25.334920 31.741039 28.088284  5.736572 0.247033 0.633223
13 0.966749  0.470153  8.660361 389.798948 30.815043 18.957516 0.164106  0.591578
14 0.947601 0.538319  7.277235 104.365186  16.354882  12.642059  0.209112  0.566071
15 0.998818 0.606611  0.150347  22.835556 23.928133  9.932561 0.039966 0.467661
16 0.994577  0.613956  0.638901 44.499219 8.198251  6.353394 0.103678  0.447084
17 0.994926  0.677362  0.796749 11.774120 14.011228  7.827896 0.090698  0.375195
18 0.997855  0.549256  0.672146 38.942771 11.189976  6.716741 0.114651  0.410974
19 0.998483  0.275613  0.467269 50.544479 8.409184 3.520963  0.117601  0.579656
20 0.995277  0.859771  1.413799 9.817797 18.985585  10.810241  0.126748  0.306647

Table 4.2: Histogram Comparison techniques

32



Our first observation is that in two of the four methods, we can draw a boundary be-
tween the different and the same images. This is seen in the Correlation (low=0.947601,
high=0.911165) and in the Bhattacharyya distance (low=0.306647, high=0.247033). In

the other two methods there is clear overlap, being Chi-Square (low=9.817797, high=25.334920)
and Intersection (low=8.198251, high=18.957516). This means if we would pick one of

the overlapping methods, we would then lose faces that are not the same, or end up

with more faces then desired. This means that the to the none overlapping histogram
methods probably with preform better.

In the Correlation and the Intersection methods, a high value means that two images are
the same, while in the Bhattacharyya distance and in the Chi-Square methods a higher
value means that two images are different. Some results that are worth mentioning are
image 12 since it got 3 bold face values, same is true for images 13 and 15. Another
interesting fact is that in the first 10 images only two extreme values are found. This
could suggest that a higher resolution has impact on the performance of the histogram
methods. We do however use a resolution of 128*123 for the rest of the results.

Next we present the images with some of the interesting results.

4.2.2 Image Examples

In this subsection we show four pairs of three images, that gave interesting results. We
start with the images 12, 13 and 15 since, as stated above, they all have 3 extreme
values. We talk in this Subsection about images be “least/most the same/different”. If
we for example say these images are marked most the same by the Chi-Square method,
we mean that the base and the same images are marked with the extreme value of being
most the same. As stated before if this is a high or low value depends on the method.
What is most interesting is the least the same and the least different since those cases
have influence on the later given threshold value.

Figure 4.6: Base Figure 4.7: Same Figure 4.8: Different

Figure 4.9: Comparison of image 12

33



The results on these three images seen in Figure [£.9] are, that they are least the same
using the Chi-Square and the Bhattacharyya distance. Also they are most different in
the Bhattacharyya distance. Especially the fact that the base and same images are
least the same is remarkable. It looks like the images are only shifted a small distance

vertically.
L |
1
Figure 4.10: Base Figure 4.11: Same Figure 4.12: Different

Figure 4.13: Comparison of image 13

In Figure we see the images corresponding the image 13 in the Table The
Chi-Square classifies this image set as the most different. The Intersection classifies this
image set as least the same, and least different. These are quite interesting since if we
look at the differences between the base and the different image, we can clearly see the
difference. For example the person in the different image wears sunglasses while the
person in the base image does not. And this time the difference between the base and
the same images is only a small shift horizontally. Now we look at image 15:

Figure 4.14: Base Figure 4.15: Same Figure 4.16: Different

Figure 4.17: Comparison of image 15

34



This image set seen in Figure [£.17]is rated as most the same in three of the four methods.
It is excepted since there is almost no movement of the face. The different image does not
result in any extreme results. Now we look at image 20 since it is marked least different
in two of the four methods. This means we expect that the base and different images
look a lot like each other.

Figure 4.18: Base Figure 4.19: Same Figure 4.20: Different

Figure 4.21: Comparison of image 20

It is indeed seen in Figure[4.21]that the base and different image look a lot like each other.
Almost the whole picture is filled with the face so there is no difference in background.
Furthermore the skin color is also quite similar so for our histogram methods it looks quite
the same. As last we look at an image with no extreme values, a “normal”’ case.

Figure 4.22: Base Figure 4.23: Same Figure 4.24: Different

Figure 4.25: Comparison of image 6

And indeed in Figure [£.25] we see a different person in a different position. Hence ex-
plaining that we find no extreme values here.

35



4.2.3 Histogram Plots

In this Subsection we present four plots for each of the four histogram methods. In these
plots the blue dots, are the base-same scores, we will refer to these points are the same
images/line. The gold crosses are the base-different scores, we will refer to these points
as the different images/line. There is also a stripped line, the boundary line. This line
is calculated as follows:

least same + least different
2

The exact value of this boundary value is given in the title of the corresponding plots.
The purpose of showing these plots is to make it more clear on the different performance
for the image comparison methods

Correlation

Here we show the plot of the correlation method.

T

10 |

0.8 - =
jou)
.9
=

EJ 0.6 - =
3
(@)

0.4} s

0.2 L ! ! ! ]

0 5 10 15 20

Image

Figure 4.26: Correlation, boundary at 0.93

In Figure [£.26] we see that the boundary separates the same images from the different
ones. Another observation from the figure is that there is a lot of fluctuation in the
different line, while the same line is almost constant. This is expected, since the same
images are always neighboring frames while the different images are just random so more
fluctuation in the different images is to be expected.

36



Chi-Square

Below we show the plot of the Chi-Square distance measure.

400 .
300 |- A
)
2
g 200 .
-
(@)
100 |- .
O [ -
| | | | |
0 ) 10 15 20
Image

Figure 4.27: Chi-Square, boundary at 17.57

Here in Figure [1.27] we see an example of the boundary line intersecting the same and
different lines. Again a lot of spread in the different line while the same line seems more
stable.

Intersection

Next we present the plot for the Intersection method.

37



T
30 | |
g
2 20| :
o
z
g
=
10 :
| | | |
0 5 10 15 20

Image

Figure 4.28: Intersection, boundary at 13.58

For this measurement the points in Figure seem to be spread. This is true for both
the same line as well as for the different line. It is hard to see where the boundary line
should be because of this. This also shows that this method probably is not very effective

for comparing facial images.

Bhattacharyya Bistance

For the last plot, the Bhattacharyya distance is presented

0.6 |- -
@
>
>
Z 04 -
=
Q
]
f@ ----------------------------
<
M 0.2 -
O 7 | | | | 1
0 ) 10 15 20
Image

Figure 4.29: Bhattacharyya, boundary at 0.28

38



In this Figure [£:29 we see a very clear boundary. The points are spread for both the
difference and for the same lines. However because of this clear boundary this method
is most favorite and will probably work the best.

4.3 People Count

In this Section we are going to present the final results of our project. First we compare
different vector sizes and histogram methods. This is done in Subsection [£.3.1] Once we
have shown this table we continue with a comparison between the face detection methods,
in Subsection As last in Subsection we present a table showing what different
threshold values do with the output. In these results we pick one video with many people
present (crowded) and also one video that is more static with a countable number of
persons present. After we have seen the best vectsize, histogram method, face detection
method and threshold we pick the best values and apply this to all isis videos. The
results for these videos is shown in Subsection In all these tables we present the
output of our program, meaning all the distinct faces present in the video. To give some
understanding of the software output we also present one example in Subsection In
all tables we accept a face to be the same if the images are equal or more the same than
the boundary.

4.3.1 Different Histogram Methods

This Subsection shows a comparison of the different histograms methods and different
vector sizes. We present Table [1.3] where we have picked two videos for comparison.
In isis video 4 a static scene is shown and in isis video 6 many people are present. For
all the threshold values we pick the boundaries shown in the plots for each method.
This corresponds to 0.93 for Correlation, 17.57 for Chi-Square, 13.58 for Intersection and
0.28 for the Bhattacharyya distance. The vector size corresponds to how many faces we
remember to compare with. So if the vector size is 20 (the default value) we compare
with the last 20 faces.

39



Video isis 4 isis 6
(34632 faces) (66371 faces)
Histogram Vector size Vector size
method 10 20 40 10 20 40
Correlation 1893 1873 1850 9985 2624 2516
(5.46%) | (5.41%) | (5.34%) | (15.04%) | (3.95%) | (3.94%)
Chi-Square 1960 1802 1695 9689 3651 3270
(5.66%) | (5.20%) | (4.89%) | (14.60%) | (5.50%) | (4.93%)
Intersection 3423 3278 3181 10808 10023 9756
(9.88%) | (9.46%) | (9.18%) | (16.28%) | (15.10%) | (14.70%)
Bhattacharyya 1050 1045 1046 10777 2009 1927
(3.03%) | (3.01%) | (3.01%) | (16.24%) | (3.03%) | (2.90%)

Table 4.3: The amount of distinct faces saved for several histogram methods and vector
sizes. We use the DNN with confidence 0.4 for detection. All of the tested algorithms
had at least one face of each person in the video in the output.

What is clearly seen is that in the video where only 8 persons are present (isis 4), the
vector size does not have a significant influence on the output. On the other hand
if we look at the more crowded video we see a clear drop in detected persons. For the
Bhattacharyya it drops from 10777 distinct face to 2009 distinct faces, this is an 81% drop.
However the trade-off in performance for making the vector size 40 does not seem worth
it, since it only improves the output a little. We also observe that the Bhattacharyya
distance method has general speaking the best performance. This is what we expected
when we analyzed the graphs for each histogram comparison method. For both videos
this method reduces the database with roughly 97%. As last we see that the Intersection
method shows the worse results, this was also expected if we look at the graph of this
method.

4.3.2 Multiple Detection Methods

This Subsection shows the different face detection algorithms, configurations on the final
output. We show Table were the distinct persons are presented. We also added
percentages and averages to make the results more clear. The cascade alt_tree is not
covered since it had a very low detection rate. In this graph the crowded video is isis
video 11 and the more static video is isis video 7.

40



Face Detection DNN 0.7 DNN 0.4 DNN 0.2 Alt Alt2 Default

Video Total  Distinct Total Distinct Total Distinct Total Distinct Total — Distinct  Total —Distinct
isis 7 10668 ;3555%) 11727 222%) 15012 ?;Es%) 8511 ?;18090/0 7542 ?522%> 13309 ?(?15%)
o M e e T M2 s P 0L
Average 9007.5 ?21:;6%) 10766 ?324%) 13516 ?fi;%) 9131 ?;325%) 9533.5 588928%) 12972 ?fg%?%)

Table 4.4: The amount of distinct faces saved for different face detection methods. We
use the Bhattacharyya distance as comparison method, with confidence 0.28 and vectsize
is equal to 20.

From this table we can again clearly see difference in performance between the deep
neural nets and the Haar cascades. All deep neural nets have at a reduction of less then
5% with the DNN with confidence 0.7 performing the best having a reduction of 2.36%
on average. While the Haar cascades on the other hand all score higher then 6% on
average. We also observe that all methods perform better on isis video 7 then on isis
video 11. While the DNN with confidence 0.7 performs the best, we still choose the DNN
with confidence 0.4. This is because if only performs a bit less (2.84% instead of 2.36%)
while it got significant higher detection rates.

4.3.3 Variant Threshold Levels

The last setting we want to test before presenting the final output, is the influence of
threshold values. We test three different threshold values on the Bhattacharyya distance
histogram method. We pick three values, the least the same value (0.25), the least
different value (0.30). These both come from the histogram comparison table. As last
value we pick the actual earlier seen boundary value (0.28). Again in this table we have
a crowded video (isis 9) and a more static video (isis 5).

) Threshold
Video 0.25 028 0.3
isis 5
(7323 faces) 150 | 93 ) 7
isis 9
(30018 faces) 803 | 552 | 4dd

Table 4.5: The distinct people for three threshold values from the Bhattacharyya dis-
tance. For detection we use the DNN with confidence 0.7.

From the Table we see that, as expected, a higher threshold ends up with less distinct
faces. However the difference between 0.25 and 0.28 is quite high in comparison with the
difference between 0.28 and 0.3. Choosing a higher threshold increases the risk of losing

41



faces. Because of this risk and not very significant improvements in output, we choose
to go for a threshold of 0.28.

4.3.4 Final Results

Here we present the earlier discussed “best” settings, on all the given videos. Before
testing the final settings, we check if for all the videos that have a countable number of
persons in them, at least one face images is still present in the output. Lets take video
4 for example, here 7 different persons are detected, so at least one picture of all these
7 person should be present in the output folder. We did this check for our final settings
being, vectSize = 20, DNN conf=0.4, Bhattacharyya threshold=0.28, on all videos with
countable amount of persons. These videos being isis video 4,5 and 7. Our method
passed all these test and thus does not delete any identity.

42



Video Total faces Distinct faces
Isis 4 34632 (13422%)
Isis 5 8790 :(1;1868%)
Isis 6 66371 ?g%%%)
Isis 7| 11727 ?3.702%)
Isis 8 31841 ?5%4%)
Isis 9 36757 f;‘_ozg%)
Isis 10 | 19970 g.?)?%%)
Isis 11 9805 ?;_582%)
Isis 12 | 9593 ?S.Z:aﬁ%)
Rand 1 | 4823 ?ffﬁ?%)
Rand 2 | 1332 ?3,21%)
Rand 3 | 28647 ?17??.%1%)
Rand 13 | 44438 §§_1633%)
Rand 14 | 2201 ?ff.m%)
Average | 22209.07 %4(1)26%1%7)

Table 4.6: The number of distinct people counted on all the videos in the database. As
settings a vectSize of 20 is used, for detection we use the DNN with confidence 0.4 and
for comparison the Bhattacharyya distance with threshold equal to 0.28 is used.

From this table we see that we obtain an average reduction of 95.36%. We have an
average detection of 22209.07 faces per video.
a higher threshold for the Bhattacharyya distance, or if we use a higher vector size.
However the trade of in performance is not worth it as earlier discussed. Again we see
that the solution works better on the isis video in comparison to the random videos. This
can be explained by the fact that all settings are trained on the isis videos since they are

mote relevant to the problem we try to solve.

43

This result could be even lower with



4.3.5 Program Output

Below the present an image of the real time output of the program.

Figure 4.30: An example of the program real time output.

Here we see in the upper half of the image the running video with the faces detected.
In the bottom half we see the different faces detected. The vectsize is clearly 20 in this
images since we see 20 different images. The images that are being updated seem to move
in the bottom half. Another observation we make is that some images in the distinct
vector look quite similar. For example the person with the red hat has three distinct faces
that all look like each-other. This phenomenon is also seen in the examples we gave in the
histogram comparison methods. Here we saw that a small shift vertically or horizontally
can cause the images to look different in therms of the histogram method.

44



Chapter 5

Conclusion

In this thesis, we have researched and implemented different methods for face detection,
image comparison and combined them to count people in videos. The aim was to detect
all persons in a video of low resolution and to reduce the facial images that we obtain
without deleting any identity. In order to test our solutions and obtain the results, we
made an command line software program that clearly shows it progress and is highly
configurable. Next we review of the original goals and requirements, and in what prox-
imity we achieved them.

Research question 1: How many different people are present in the video
collection?

After a literature study, we found the two different methods for detecting faces. From
these methods we choose to compare two of them being the Haar cascade and the deep
neural net. We discussed multiple techniques to compare these faces and choose to use
histograms. After evaluating the results we conclude that a Deep Neural Net is preferred
over the Haar cascade and that the Bhattacharyya distance is the best method for com-
paring facial images. With these methods we reduce the initial obtained facial images
with 95.36% on average.

Research question 2: How to group faces (present in the individual frames)
per person, so that we can tell where and in which specific frames the same
person appears?

In our literature study we found multiple solutions to this problem, however we did not
implement or test any in our program or thesis. This has to do with the complexity of
these methods in combination on the low amount of results on low resolution images.
This could be the next step for future work, to group the output we obtained and try to
come even closer to the amount of persons present, without losing any identities.

45



Research question 3: How to select a good “representative face” for the above
groups? A representative face is one of good pose (orientation), resolution,
lighting, contrast, and image sharpness.

This question is not answered in this thesis. However it would be nice to use the results
obtained from this project to help solve this question, it can be an project on its own if
we take into account the estimated time it will take. We can select images with higher
resolution and detect whether an image has blur or not, still that is not enough for
automatic selection of the most representative face.

The algorithms can be demonstrated and used in a program we built. The requirements
for this software were: video reading, selection and adjustment of algorithms and param-
eters to use and show the progress in a organized fashion. All these functionalities were
successfully implemented. A practical requirement was that video could be previewed
and that the distinct faces could be shown in real-time. The upcoming section is about
the limitations [5.1] then we talk about future work (.21

5.1 Limitations

In the upcoming list we presents aspects where research was limited or could be im-
proved.

e Time performance of applied methods. We did not measure nor talk about the time
that the program took for different face detection algorithms. This could change
the conclusion about which of the methods is most applicable.

e The amount of tested videos. Our problem states that we try to automate oper-
ations on large databases of video sources, however we only tested out results on
sixteen videos. This can also mean that the preferred settings on these videos do
not apply in general.

e Proper comparison with low resolution face recognition. We did not have the time
to implement or test face recognition, this could help to verify that indeed it does
not properly work for our problem.

46



5.2 Stimulus For Future Work

From the earlier conclusions it follows that we only partially answered research questions
one. Here is the first stimulus for future work, to improve om my work to come closer
to the actual amount of persons present in the presented videos. The other two research
questions are also future work challenges. To cluster the received facial output and to
recognize the persons present would improve the usability of our research.

On the scientific aspect, it should be noted that during this project we have worked with
several existing methods from the related literature, on the topic of face detection. We
made comparison between two available techniques and evaluated the results. However
for the image comparison we only used one technique being the histogram method, here
improvements can be made to try other kind of image comparison techniques.

On the software aspect, many improvement can be made. For example an actual user
interface can be build, so that it is possible for non command line users to understand
the program. Furthermore implementing more image comparison techniques or adding
post-processing can improve the output.

47



Bibliography

[1]
2]
3]
4]
15]
[6]
7]

18]

19]

[10]

[11]

[12]

Face detection. https://en.wikipedia.org/wiki/Face_detection. Accessed:
2018-06-24.

Opencv library. http://opencv.org. Accessed: 2018-05-09.

Welcome to the surveillance state: China’s ai cameras see all.  https:

//www.huffingtonpost.com/entry/china-surveillance-camera-big-brother_
us_ba2ff4dfedb01598ac484acc?guccounter=1. Accessed: 2018-05-31.

Ziuz holding b.v. http://www.ziuz.com/nl. Accessed: 2018-06-27.

F. Brokken. icmake v9.02.07, copyright (c) gpl. https://github.com/fbb-git/
icmake, 1992-2018.

F. Brokken. bobcat v4.08.03, copyright (c) gpl. https://github.com/fbb-git/
bobcat) 2005-2018.

V. Di Gesu and V. Starovoitov. Distance-based functions for image comparison.
Pattern Recognition Letters, 20(2):207-214, 1999.

C.-h. DU, Z. Hong, L.-m. LUO, L. Jie, and X.-y. HUANG. Face detection in video
based on adaboost algorithm and skin model. The Journal of China Universities of
Posts and Telecommunications, 20:6-24, 2013.

B. M. Evan Spiegel and R. Brown. Snapchat, proprietary software. www.snapchat.
com, 2011-2018.

S. S. Farfade, M. J. Saberian, and L.-J. Li. Multi-view face detection using deep
convolutional neural networks. In Proceedings of the 5th ACM on International
Conference on Multimedia Retrieval, pages 643-650. ACM, 2015.

M. A. Hmani and D. Petrovska-Delacrétaz. State-of-the-art face recognition perfor-
mance using publicly available software and datasets, March 2018.

W. Jia, H. Zhang, X. He, and Q. Wu. A comparison on histogram based image
matching methods. In Video and Signal Based Surveillance, 2006. AVSS’06. IEEE
International Conference on, pages 97-97. IEEE, 2006.

48


https://en.wikipedia.org/wiki/Face_detection
http://opencv.org
https://www.huffingtonpost.com/entry/china-surveillance-camera-big-brother_us_5a2ff4dfe4b01598ac484acc?guccounter=1
https://www.huffingtonpost.com/entry/china-surveillance-camera-big-brother_us_5a2ff4dfe4b01598ac484acc?guccounter=1
https://www.huffingtonpost.com/entry/china-surveillance-camera-big-brother_us_5a2ff4dfe4b01598ac484acc?guccounter=1
http://www.ziuz.com/nl
https://github.com/fbb-git/icmake
https://github.com/fbb-git/icmake
https://github.com/fbb-git/bobcat
https://github.com/fbb-git/bobcat
www.snapchat.com
www.snapchat.com

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

M. F. Karaaba. Face recognition in low-resolution images under small sample con-
ditions with face-part detection and alignment. University of Groningen, 2016.

L. Lei, D.-H. Kim, W.-J. Park, and S.-J. Ko. Face recognition using lbp eigenfaces.
IEICE transactions on Information and Systems, 97(7):1930-1932, 2014.

C. L. Orozco, F. Iglesias, M. E. Buemi, and J. J. Berlles. Real-time gender recognition
from face images using deep convolutional neural network, Nov 2017.

C. Otto, B. Klare, and A. K. Jain. An efficient approach for clustering face images.
In Biometrics (ICB), 2015 International Conference on, pages 243-250. IEEE, 2015.

C. Otto, D. Wang, and A. K. Jain. Clustering millions of faces by identity. IFEE
transactions on pattern analysis and machine intelligence, 40(2):289-303, 2018.

M. Paul, S. M. Haque, and S. Chakraborty. Human detection in surveillance videos
and its applications-a review. EURASIP Journal on Advances in Signal Processing,
2013(1):176, 2013.

F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face
recognition and clustering. IEEE, 2015.

M. R. Stevens and J. R. Beveridge. Image comparison techniques in the context
of scene refinement. In Pattern Recognition, 2000. Proceedings. 15th International
Conference on, volume 1, pages 685-688. IEEE, 2000.

P. Viola and M. J. Jones. Robust real-time face detection. International journal of
computer vision, 57(2):137-154, 2004.

49



Appendices

50



Appendix A

Software Documentation

The software developed for this project is intended to be usable for everyone interested
to use and to improve. We provide some documentation to at least be able to use the
designed software. The program is made on a linux environment due to its dependencies
and philosophy it is only supported on an unix like environment. Note that we did not
include detecting wrong inputs since this is more of a final step and not necessary for
our purposes.

A.1 Technology stack

We choose to make the program in the C++ programming language. The OpenCV [2]
library supports only two languages, C++ and python and due to the experience in C++
this was the best choice. The program for now only has command line usage of which
it is described below. This can be extended to create an actual GUI, for example with
QT. We use the icmake [5] tools to maintain and build the project, also we use the Arg
class from the bobcat library [6] to parse the command line arguments in an structured
way. This software and library are both available in all major linux distributions.

A.2 Requirements

All requirements for the developed software are listed below. We first list the output of the
people_count -h command, we can use these explanations for the requirements.

people_count by Twan Schoonen
people_count VO0.00.10 2018

Usage: people_count [options]
Where:

51



[options] - optional arguments (short options between
parentheses) :

--help (-h) - provide this help

--version (-v) - show version information and
terminate

--debug (-4d) - show debug information

--media file - examine the file for faces, if not
specified standard input is used

--DNN - Use the Deep Neural Net instead of
the Haar cascade

--DNNconf - specify the confidence for the DNN
default = 0.7

--cascade file - if using the Haar cascade can be

used to specify the path of the .xml file
the default path: res/haarcascades/
haarcascade_frontalface_alt.xml

--detect - only detect faces from input

--saveraw (-s) - save all the detected faces and
frames in the database folder

--speed (-8) - set waiting times between frames 0
means waiting for a click

--clear (-r) - remove all files in the database
folder

--hist - specify the histogram method where 0

= Correlation, 1 = Chi-Square
2 Intersection and 3 =
Bhattacharyya distance, the
default is O

--histconf - specify the histogram confidence
default is 0.5

--vectsize - the amount of faces that is kept in
memory to compare with default = 20

The user can load a media source.

This is achieved with the --media options. This option lets you specify the file to be
read. If this is not specified the standard device is used, this most of the time is the
webcam.

The user can select different face detection methods.

This is realized with the --DNN options. If this option is set the deep neural net is used
with as confidence 0.7. The user can change this by using the --DNNconf option. However
using this option when the Haar cascade is selected means that it get ignored. Using the
Haar cascade means that we can specify an alternative cascade file with the --cascade
option.

52



N

S T = W

The user can select different histogram distance methods.
With the options --hist and --histconf we are able to select the desired histogram
method and to set the threshold. Hence this requirement is satisfied.

The user can save all faces and frames with rectangles.

This functionality is in particular useful when someone only whats to use my face de-
tection methods and work with the output of this process. It can be realized by setting
the -s flag. When this flag is set all frames and face will be stored in the database.
If the user desires to only use the detection part then the --detect option can be set.
Another option that will help the user manage the database is the -r option, this cleans
the database before running.

The user clearly sees what happens.

This requirement is achieved by the output shown in the results Section. We see a the
video with all detected faces in the top half of the screen. In the lower half of the screen
we see the progress by the presented vector of distinct faces.

A.3 Build instructions and user interaction

To build the program from source, install the dependencies get the code, go to the source
folder and run:

$ icmbuild

This recognizes the icmconf file and builds all the classes. After the process was successful
the program is located at /tmp/bin/binary.

An example of output when the program is run for the first time is shown below.

Using Haar cascade for detection

With as cascade: res/haarcascades/haarcascade_frontalface_alt
.xml

Using histogram method: 0, with conf = 0.5

Face Detection Started...

Press q to quit the window.

[ INFO:0] Initialize OpenCL runtime...

In line 1 the used face detection method is printed.

In line 2 the program shows the read cascade file.

In line 3 the selected histogram method is shown with the threshold value, of course if
the --detect flag is set then this is not printed.

The other lines are self explanatory.

93



Then when the program is finished we see the upcomming lines

Face Detection done!
Found: ... faces and saved: ... distinct faces

Where in line 2 the ... are numbers that actually present the performance.

A.4 Software design

In this Section we first present the total class diagram, hereafter we add some explanation.

For readability we did

not add any namespaces, const’s or references (&).

Figure A.1: Class diagram of the software

@ FaceDetect
options - Options

«cap : VideoCapture

frameDetector : FrameDetector
detectedFaces : vector<FaceObject>
faceSize = 128 - size_t
comparedFacePath = "database/out”™ : string
comparedFaceCount : size_t

rawFacePath = "database/faces/” : string
rawFaceCount : size_t

framePath = "database/frames/” : string
frameCount : size_t

Singleton class resposible
: :‘;“:E;‘e':g&) of tracking the options.
@ detectFaces() Relations are omitted for readability

m void openMedial)

m void cropFaces(Mat frame, vector<Rects faces, vector<Mats des);
m void compareFaces (vector<Mats faces);

m bool sameAs KnownF aces(FaceObject faceObij);

m void replaceElement| FaceObject faceObj);

m bool compareHistograms (MatND base, MatND test);

m void incrementCounters (size_t faces);

L] frame, tor<Mat> face);

m void showProcess(Mat &frame, vector<Rect- &faces, bool save);
m Mat makeCanvas (vector<FaceObjects vecMat, int windowHeight, int nRows);
m void postProcess();

m void saveFace(FaceObject faceObj);

@ Options
arg : Arg

fda : FaceDetectAlgorithm
mediaSet = false: bool

media - string
mediaSpeed : size_t
windowName = “counting peaple” : string
@ FaceObject verbase = false : bool
detectOnly = false - bool
@ FrameDelecior image : Mat saveRaw = false : bool
histogram : MaiND clearDir = false - bool
‘o virtual void deteciFacesFromFrame{Mat frame, vector<Rect faces) — 0 st isize t o cascadePath : sting
@ virtual ~FrameDatector(} o FaceObject{Mat image, size_t lastFrameModified) -
m computeHistogrami() dnnGonfidence : douible
® getiers)

histMethod : size_t
histConfidence : double
veciSize : size_t

@ instance()

© Options (Options other) = delete
@ sefters()
o getters()
(€) HaarcasDatect (©) onnDetect
@ FaceDetectAlgorithm
options : Options options : Options
cascade - CascadeClassifier net : Net HAAR
® HaarCasDetect() ® DNNDetect() DNN
© void detectFacesFromFrame(Mat frame, vector<Rect> faces) ° -aces FromFrame{Ma frame, vector<Rect> faces)

54



In Figure [A7T] we see the complete overview of the class diagram of the created soft-
ware. The main responsibility is handled by the class FaceDetect. Main calls the
detectFaces() function and then the rest of the program flow is handled by this class.
What is nice to notice is that we added an abstract base class for the different face detec-
tion methods. This makes it possible to extend he program with another face detection
method without too much effort. This functionality is a nice feature for the histogram
comparison as well however since we did only compare multiple distance functions and
not actually add multiple methods this is not implemented.

55



	Introduction
	Related Work
	Face Detection
	Traditional Face Detection
	Skin Texture Analysis Face Detection
	Motion Based Face Detection
	Deep Learning Face Detection
	High Tech Camera Face Detection

	Image Comparison
	Face Clustering
	Face Recognition
	Summary
	Conclusion Of The Relevant Work

	Proposed Solution
	Detect Faces
	Haar Cascade
	Deep Neural Net

	Compute And Compare Histograms
	Correlation
	Chi-Square
	Intersection
	Bhattacharyya distance

	Overview

	Results
	Face Detection
	Table Overview
	Individual Frames

	Image Comparison
	Table Overview
	Image Examples
	Histogram Plots

	People Count
	Different Histogram Methods
	Multiple Detection Methods
	Variant Threshold Levels
	Final Results
	Program Output


	Conclusion
	Limitations
	Stimulus For Future Work

	Bibliography
	Appendices
	Software Documentation
	Technology stack
	Requirements
	Build instructions and user interaction
	Software design


