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Abstract

It is well known that independence of rational points on an elliptic curve may be
proved using canonical heights. In this thesis, an alternative method is explained and
implemented in the computer algebra system PARI. Given a set of rational points on an
elliptic curve points, we can prove their independence by constructing an injective ho-
momorphism from the Mordell-Weil group (modulo doubles) to a binary vector space.
If the images of these points by this homomorphism are independent, then the points
are. We may also find dependence relations using this homomorphism. This has a great
advantage over finding dependence relations using canonical heights, in which case we
can only be certain they hold numerically. If a number of rational points on an elliptic
curve is shown to be independent, then this number is a lower bound on the rank of the
elliptic curve. Finding the rank is a necessary first step for finding the generators of the
Mordell-Weil group.
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1 Introduction

1.1 Motivation

This thesis aims to explain a method to prove independence or dependence of rational
points on an elliptic curve, and to implement it in the computer algebra system PARI. To
give some motivation, consider the following. A diophantine equation is an equation of the
form

F (x1, x2, . . . , xn) = 0

for some polynomial F with integer or rational coefficients, c.f. page 1 of (Stoll, 2010).
A classical problem is to find solutions (x1, . . . , xn) in integers or rationals, respectively.
Suppose we restrict our attention to rational coefficients and solutions. If it turns out that
F can be reduced to the form

F (x, y) = y2 − x3 − ax2 − bx− c for a, b, c ∈ Q (1.1)

we could determine whether the curve C consisting of all points (x, y) ∈ R2 satisfying (1.1)
contains any rational points. According to a famous theorem by Louis J. Mordell, if C is the
affine part of an elliptic curve E, then the group of rational points on C (in the projective
sense) composes a finitely generated abelian group. We may therefore describe the set of
solutions to the diophantine equation by finding the generators of this group. Finding the
rank of this group is a necessary first step if we want to find these generators. We can
find a lower bound on this rank if we prove some set of rational points on the curve is
independent.

1.2 Outline of the method

For now, define an elliptic curve E over Q as a smooth curve given by an equation

y2 = x3 + ax+ b, where a, b ∈ Q,

along with a point at infinity. We will make things more precise in the next section, but for
the time being, assume we can impose a group structure on the set E(Q) of rational points
on E. Because this group turns out to be finitely generated and abelian,

E(Q) ∼= Zr × T, implying E(Q)/T ∼= Zr

for some nonnegative integer r, called the rank of E. Here T is the torsion subgroup of
E(Q). If we have points P1, . . . , Pn ∈ E(Q)/T (which are the technically cosets Pi + T the
points Pi ∈ E(Q) represent) at our disposal and prove they are independent, then n must
be a lower bound for r. Independence means that for any c1, . . . , cn ∈ Z,

c1P1 + · · ·+ cnPn = Q
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where Q is a points of finite order (with respect to the group structure), implies

c1, . . . , cn = 0.

To prove independence of the points Pi, we first constructing a homomorphism

ε : E(Q)/2E(Q)→ (Z/2Z)M for some positive integer M, (1.2)

which should be injective. If the images vi of the points Pi under ε turn out to be linearly
independent, then the points Pi must be independent in E(Q)/2E(Q), and so forth, in
E(Q). It needs to be emphasized that finding a suitable homomorphism ε will comprise
the majority of the theoretical part of this thesis.

The remainder of this thesis is organized as follows: Section 2 explains some back-
ground material on elliptic curves and projective geometry. In Section 3, we have a brief
look at how independence of rational points on an elliptic curve can be proved using
canonical heights instead. Section 4 illustrates the method in detail, and presents the con-
struction of the homomorphism E(Q)/2E(Q) → (Z/2Z)M . The method is tested on three
examples (two with independent and one with dependent points) in Section 5, for which
the source codes used can be found in Appendix A. At last, an outlook is given in the final
section of this thesis.
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2 Preliminaries

2.1 The projective plane

In order to fully understand the material in this thesis, the reader should at the very least
have a basic understanding of group theory and modular arithmetic. That is, we will as-
sume concepts like and revolving around (sub)groups, factor groups, homomorphisms and
isomorphisms to be well understood. Any introductory book on group theory may serve
as a reference, for instance (Lang, 2005).

Since elliptic curves are defined in the projective plane, we will first need to address
this concept. Let us denote the affine plane by

A2 := { (x, y) | x, y are numbers } .

We will call pairs (x, y) representing points in A2 affine coordinates. In A2, pairs of lines
have a unique intersection point if and only if they are not parallel. We can extend A2 in
a way that ensures parallel lines have a unique intersection point corresponding to their
direction (from a non-oriented point of view).

Definition 1 (Projective plane). A homogeneous coordinate triple is a triple [a, b, c] with num-
bers a, b, c not all zero. The numbers a, b, c are called homogeneous coordinates. Two homoge-
neous coordinates triples [a1, b1, c1], [a2, b2, c2] represent the same point if there exists some
nonzero t such that

[a1, b1, c1] = [ta2, tb2, tc2],

In this case, we say they are equivalent (w.r.t. the equivalence relation ∼), so

[a1, b1, c1] ∼ [a2, b2, c2].

We define the projective plane P2 to be the set of equivalence classes of homogeneous coor-
dinates, that is

P2 = { [a, b, c] is a homogeneous coordinate triple } / ∼

Analogously, the projective line P1 is the set of equivalence classes of coordinate pairs
[a, b] for numbers a, b, not both zero. Two pairs [a1, b1], [a2, b2] are again equivalent when
there exists some nonzero t such that

[a1, b1] = [ta2, tb2].

The points on [a, b] ∈ P1 represent intersection ‘points’ of lines parallel to `, given by

` : ay = xb.
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For b 6= 0, this is simply the slope of such a line. Otherwise, [a, b] = [a, 0] is the point at
infinity, corresponding to the intersection point of any pair of vertical lines.

So, in a sense, P2 is the union of A2 and P1. For a point [a, b, c] ∈ P2, if c 6= 0, we may
dehomogenize the coordinate triple to

(a · c−1, b · c−1)

in affine coordinates. In case c = 0, we obtain the point [a, b] ∈ P1. Moreover, points
(a, b) ∈ A2 and [c, d] ∈ P1 are can be homogenized to

[a, b, 1] and [c, d, 0],

respectively.

2.2 Elliptic curves

We need to briefly address the notion of a field before defining elliptic curves.

Definition 2. A field is 5-tuple (F,+, ·, 0, 1) where F is a set, + and · are operators and 0, 1
are elements in F , such that for a, b, c ∈ F ,

(F1) a+ (b+ c) = (a+ b) + c and a · (b · c) = (a · b) · c;
(F2) a+ b = b+ a and a · b = b · a;

(F3) a+ 0 = a = a · 1;

(F4) there exists an element −a ∈ F such that a+ (−a) = 0;

(F5) for a 6= 0, there exists an element a−1 ∈ F such that a · a−1 = 1;

(F6) a · (b+ c) = (a · b) + (a · c).

Its characteristic char(F ) is the minimal number k such that

k · 1 = 1 + · · ·+ 1︸ ︷︷ ︸
k summands

= 0,

or 0 if no such k exists. This number is always zero or prime.

Definition 3. A finite field (or Galois field) is field with a finite number of elements. For a
prime power q, we denote the field with q elements by Fq , and this field is unique up to
isomorphism. The multiplicative group of Fq is denoted F×q .

Note that elliptic curves are curves defined on a projective plane.

Definition 4 (Elliptic curve). An elliptic curve E over a field K is a geometric object defined
by an equation

E/K : Y 2Z+a1XY Z+a3Y Z
2 = X3+a2X

2Z+a4XZ
2+a6Z

3, a1, a2, a3, a4, a6 ∈ K. (2.1)
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Such an equation is called a homogeneous Weierstrass equation. An elliptic curve is nonsingu-
lar, that is, it has a nonzero discriminant

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6,

where

b2 := a21 + 4a2,

b4 := 2a4 + a1a3,

b6 := a23 + 4a6,

b8 := a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 + a24.

The affine part of an elliptic curve consists of all points that can be dehomogenized to
affine coordinates. We may also dehomogenize a homogeneous Weierstrass equation by
substituting x = X/Z, y = Y/Z to obtain to an affine Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (2.2)

To consider only the affine Weierstrass equation is sufficient for most purposes, as an ellip-
tic curve only has one point on the projective line. To see this, note that such a point will
necessarily be of the form [X,Y, 0]. Substituting this into (2.1), we find X3 = 0, or X = 0.
So, the only point not included in its affine part is O := [0, 1, 0], which we will refer to as
its base point. To simplify notation, we will generally consider affine Weierstrass equations,
always remembering there is an additional point O.

Suppose we have an elliptic curve E/K given by an equation of the form (2.2), where K
is some field with characteristic not equal to 2. Applying the coordinate change

y 7→ 1
2 (y − a1x− a3),

allows us to complete the square on the left-hand side of (2.2), yielding

y2 = 4x3 + b2x
2 + 2b4x+ b6,

c.f. Section II.1, page 42 in (Silverman, 2009). After performing another coordinate change

(x, y) 7→ (x/4, y/4)

we find, after multiplication each side of the resulting equation by 16,

y2 = x3 + b2x
2 + 8b4x+ 16b6.

Hence, each elliptic curve over a field K with characteristic not equal to 2 can be expressed
by an equation

y2 = x3 + ax2 + bx+ c, a, b, c ∈ K. (2.3)

Suppose now that K = Q (note Q has characteristic 0 6= 2), and write

a =
p

P
, b =

q

Q
, c =

r

R
for integers p, q, r ∈ Z and P,Q,R ∈ Z \ {0},
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Figure 2.1: Two examples of elliptic curves

in (2.3). Applying another coordinate change

(x, y) 7→
(

x

(PQR)2
,

y

(PQR)3

)
and multiplying each side by (PQR)6, we find

y2 = x3 + pQR(PQR)x2 + qPR(PQR)3x+ rPQ(PQR)5.

This shows any elliptic curve over Q can be represented by an equation

y2 = x3 +Ax2 +Bx+ C, A,B,C ∈ Z. (2.4)

Two examples of elliptic curves over Q are shown in Figure 2.1, along with appropriate
affine Weierstrass equations.

2.3 The group of K-rational points

Let E/K be an elliptic curve over a field K. It will be convenient to assume char(K) 6= 2,
so that we may assume E/K is given by an equation of the form (2.3). This simplification
will not cause problems, since in the method we will explain in Section 1.2 we can simply
choose primes in a manner that avoids this situation. We will denote the group of K-
rational points (points with coordinates in K) by E(K). Note this includes the base point
O, which we will define to be its unit element. The group law ‘+’ acts on E(K) as follows.
Take P,Q ∈ E(K), and draw a line L1 through them. If P = Q, take this line to be the line
tangent toE at P . By a special case of Bezout’s theorem, there is a unique third intersection
point between L1 and E. Section A.4 of (Silverman & Tate, 2015) supplies a proof of this
theorem (Theorem A.1 in this section). We consider P to be a double intersection point if
P = Q. This third intersection point is denoted P ∗Q (note P ∗Q = Q if L1 happens to be
tangent to E at Q). We now draw a second line L2 throughO and P ∗Q. Again by Bezout’s
theorem, there is a third intersection between L2 and E, which we will define to be P +Q.
This construction is depicted in Figure 2.2.
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Figure 2.2: The group law on E(Q)

Remark that the line through P ∗ Q and O is necessarily vertical, by the definition of
O. Because char(K) 6= 2, the affine part of E can be represented by an equation of the
form (2.3), which is symmetric about the x-axis. We therefore obtain P + Q in the above
construction by negating the y-coordinate of P ∗ Q. We will adopt the convention that
P1 intersects E at O with multiplicity 3, and that the line tangent to E at O is P1. This
ensures O acts as the identity element of E(K). From this, we derive that the negative (or
inverse) of a point P = (x, y) ∈ E(K)\{O} is simply−P = (x,−y), as elliptic curves given
by an equation (2.3) are symmetric about the x-axis. Recall that we can write P in affine
coordinates since the only point not in A2 is O, which is its own inverse.

It remains to be verified that P + Q indeed lies in E(K). Since this is trivial if P or Q
equals O, suppose the contrary. Write P = (x1, y1), Q = (x2, y2) and P ∗ Q = (x3, y3). Let
the line L1 through P,Q and P ∗Q be given by

L1 : y = λx+ ν,

where necessarily λ, ν ∈ K. Let the affine part of E be given by

y2 = x3 + ax2 + bx+ c, a, b, c ∈ K.

The x-coordinates of the intersection points between L1 and E are the solutions to

(λx+ ν)2 = x3 + ax2 + bx+ c,

that is, the zeros of a third degree polynomial F (x) with coefficients in K. Suppose now
that x3 /∈ K, then in

F (x) = (x−x1)(x−x2)(x−x3) = x3− (x1 +x2 +x3)x2 + (x1x2 +x1x3 +x2x3)x−x1x2x3,

the coefficient of x2 is not an element of K, a clear contradiction. So, x3 ∈ K. It follows
y3 ∈ K as well, since

y3 = λx3 + ν.

We conclude P +Q = (x3,−y3) must be a K-rational point.
An amazing result on E(Q) is Mordell’s theorem, credited to Louis J. Mordell (1888 –

1972).

Theorem 1 (Mordell). If E is an elliptic curve over Q, then E(Q) is a finitely generated group.
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Although interesting, a proof of this theorem would be far to lengthy for this thesis. A
detailed treatment can be found in Section VIII.4 of (Silverman, 2009). Mordell’s theorem is
a special case of the famous Mordell-Weil theorem, which states E(K) is finitely generated
for any number field K (actually, this holds more generally for A(K), where A is an abelian
variety over a number field K, but this is beyond the scope of this thesis). Using this
together with the fact that E(Q) is abelian, the fundamental theorem of finitely generated
abelian groups implies that

E(Q) ∼= Zr × T, (2.5)

where T := E(Q)tor is the torsion subgroup of E(Q). As noted before, the nonnegative
integer r is the rank of E. Note that for r = 0, the group E(Q) has finite order, implying
there are only finitely many rational points satisfying its affine Weierstrass equation.

Note that (2.5) implies that
E(Q)/T ∼= Zr.

This allows us to define the notion of independence of points P1, . . . , Pn ∈ E(Q), that is, the
points Pi are independent if for any Q ∈ T ,

c1P1 + . . .+ cnPn = Q implies c1 = · · · = cn = 0 (ci ∈ Z).

An important observation to make is the following. By Mazur’s theorem, c.f Theorem 8 in
(Mazur, 1977) (the proof of which is a notable triumph credited to Barry C. Mazur), T is
isomorphic to one of the following 15 groups:

Z/mZ for m = 1, 2, . . . , 10, 12, (m 6= 11)

Z/2Z× Z/2nZ for n = 1, 2, 3, 4.

So, E(Q)/2E(Q) must be isomorphic to one of the groups

(Z/2Z)r × (Z/mZ)/2(Z/mZ) for m = 1, 2, . . . , 10, 12,

(Z/2Z)r × (Z/2Z)/2(Z/2Z)× (Z/2nZ)/2(Z/2nZ) for n = 1, 2, 3, 4.

The group (Z/kZ)/2(Z/kZ) for a positive integer k can only be trivial or isomorphic to
Z/2Z, that is

(Z/kZ)/2(Z/kZ) ∼=

{
Z/2Z if k is even,
0 otherwise,

since Z/kZ = 2(Z/kZ) for k odd. So,

E(Q)/2E(Q) ∼= (Z/2Z)r+t,

for some t. Note that (Z/2Z)t corresponds to the subgroup E(Q)[2] of elements P ∈ E(Q)
such that 2P = O. Consequently, it must be that t equals the number of non-trivial 2-
torsion points in E(Q) needed to generate E(Q)[2]. Moreover, t is completely determined
by the structure of T , i.e.

t =


0 if T ∼= Z/m1Z for m1 = 1, 3, 5, 7, 9,

1 if T ∼= Z/m2Z for m2 = 2, 4, 6, 8, 10, 12,

2 if T ∼= Z/2Z× Z/2nZ for n = 1, 2, 3, 4.

This shows that after factoring E(Q) by doubles, the 2-torsion subgroup persists. It will
therefore be necessary to add generators of E(Q)[2] to our list of point P1, . . . , Pn ∈ E(Q)
when checking their independence, the procedure of which will be explained in Section
4.2.
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2.4 Reduction modulo a prime p

Let K be a field and define P2(K) to be the points in P2 with (homogeneous) coordinates
in K. Throughout this subsection, we assume primes p to be odd, so as to avoid having
char(Fp) = 2.

Definition 5 (Normalized coordinate triple). A homogeneous coordinate triple [A,B,C] ∈
P2(Q) is said to be normalized if A,B,C are integers with no common factors.

Every point [a, b, c] ∈ P2(Q) can be expressed by a normalized coordinate triple. This
is achieved by multiplying out any denominators and by subsequently dividing by any
common factors. The resulting triple is unique up to sign.

We are now ready to define reduction of an elliptic curve modulo a prime p, which will
be central to the method explained in Section 1.2.

Definition 6. Let p be a prime and let E be an elliptic curve over Q given by

E/Q : Y 2Z = X3 +AX2Z +BXZ2 + CZ3, A,B,C ∈ Z,

where A,B and C have no common factors. Let ∆ denote its discriminant. Then the reduc-
tion of E modulo p is given by

Ẽ/Fp : Y 2Z = X3 + ÃX2Z + B̃XZ2 + C̃Z3, Ã, B̃, C̃ ∈ Fp,

where
Ã = A mod p, B̃ = B mod p, C̃ = C mod p.

The discriminant of Ẽ/Fp is ∆̃ = ∆ mod p.

Note that Ẽ/Fp in the above definition will be an elliptic curve if and only if ∆̃ 6= 0, i.e.
if and only if p - ∆. We can also reduce points in P2(Q) to points in P2(Fp), and if Ẽ is an
elliptic curve, this moreover defines a map from E(Q) to Ẽ(Fp).

Definition 7. Let p be a prime and let P ∈ P2(Q) be given by a normalized homogeneous
coordinate triple [A,B,C]. The reduction of P modulo p is

P̃ := [Ã, B̃, C̃], where Ã = A mod p, B̃ = B mod p, C̃ = C mod p.

The reduction modulo p map is the map P2(Q)→ P2(Fp) that sends P to P̃ as above.

For an elliptic curve E over Q, assuming Ẽ is an elliptic curve, restricting the reduction
modulo p map to E(Q) now gives the desired map E(Q) → Ẽ(Fp). The reason that P ∈
E(Q) gets mapped to P̃ ∈ Ẽ(Fp), is because we assumed the normalized coordinate triple
representing P to have no common factors. This way, no prime p can divide all coordinates
simultaneously, ensuring P̃ 6= [0, 0, 0]. Moreover, E is represented by some equation

Y 2Z −X3 −AX2Z −BXZ2 − CZ3 = 0, A,B,C ∈ Z. (2.6)
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The fact that P = [U, V,W ] ∈ E(Q) (as a normalized coordinate triple) is a solution to (2.6)
implies that P̃ = [Ũ, Ṽ, W̃ ] is a solution to

Y 2Z −X3 − ÃX2Z − B̃XZ2 − C̃Z3 = 0, A,B,C ∈ Fp.

This shows P̃ ∈ Ẽ(Fp). There is one important result we will need later on.

Proposition 1. Let E be an elliptic curve over Q, and let Ẽ be the reduction of E modulo p for
a prime p. Assume Ẽ is an elliptic curve. The reduction modulo p map restricted to E(Q) is a
homomorphism from E(Q) to Ẽ(Fp).

Proof. We will not give complete proof here (in particular, we assume Proposition A.5 in
(Silverman & Tate, 2015)). The details can be found in Section A.5 in (Silverman & Tate,
2015) (from Proposition A.5 until the end of the section).

Let a line L be given by

L : ay = bx+ c, a, b, c ∈ Q.

Multiplying out any denominators and dividing any common factors, L can be written as

L : Ay = Bx+ C, A,B,C ∈ Q having no common factors.

If A = B = 0, then C 6= 0 and in this case L is the line at infinity. Define the reduction of L
modulo p, denoted L̃, by

L̃ : Ãy = B̃x+ C̃, A,B,C ∈ Fp.

Proposition A.5 in (Silverman & Tate, 2015) tells us that if

E ∩ L = {P,Q,R},

listing multiple intersections a number of times equal to their multiplicity, then

Ẽ ∩ L̃ = {P̃, Q̃, R̃}.

Here P̃ is the image of P ∈ E(Q) by the reduction modulo p map.
Now, suppose P,Q ∈ E(Q). Then the line L1 through P,Q (recall, tangent to E at P if

P = Q) intersects E in a third point P ∗Q. So,

E ∩ L1 = {P,Q, P ∗Q}.

A second line L2 through O and P ∗Q intersects E in a third point P +Q, that is

E ∩ L2 = {O, P ∗Q,P +Q}.

The line through P̃ and Q̃ is L̃1, and therefore

Ẽ ∩ L̃1 = {P̃, Q̃, P̃ ∗Q}

tells us the third intersection point with Ẽ is P̃ ∗Q. Similarly, the line through Õ and P̃ ∗Q
intersects Ẽ a third time in P̃ +Q, which completes the proof.
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3 Canonical heights

The method described in Section 1.2 is entirely based on (Cremona, 2002) (a paper by John
E. Cremona, a leading figure in the field of computations involving elliptic curves) and
(Silverman, 2000) (a paper by Joseph H. Silverman, a leading figure on arithmetic of elliptic
curves). According to Cremona, the method was described to him by Armand Brumer

Another well-known and rather straightforward way to prove independence of points
in E(Q)/T (again T := E(Q)tor) is by calculating the determinant of the height pairing
matrix. We will briefly explain how the method works, but we will refer the reader to
Section 8.5 of (Washington, 2008) for a detailed explanation and proofs. First, we need
some definitions.

Definition 8. For a rational number x = a/b written in lowest terms, the height H(x) is
defined as

H(x) = max{|a|, |b|}.

Definition 9. For an elliptic curve E over Q, the height H(P ) of a point P = (x, y) ∈ E(Q)
is defined as

H(P ) = H(x).

Conventionally, H(O) = 1.

Let h(P ) := logH(P ) and define a function ĥ : E(Q)→ R by

ĥ(P ) =
1

2
lim
n→∞

1

4n
h(2nP ) for P ∈ E(Q).

This is the canonical height function. The limit in the right-hand side exists, c.f the proof of
Theorem 8.18 in (Washington, 2008). Subsequently, we can establish the height pairing

〈P,Q〉 = ĥ(P +Q)− ĥ(P )− ĥ(Q)

for rational points P,Q on E. Now for rational points P1, . . . , Pn on E, if we let M be
the n × n matrix with 〈Pi, Pj〉 as its i, j-th value, then P1, . . . , Pn are independent (recall
independence is defined modulo the torsion subgroup of E(Q)) if and only if

detM 6= 0,

c.f. Theorem 8.25 in (Washington, 2008). Cremona implemented this method in the com-
puter algebra system SAGE; the code can be found in (Cremona, 2008). We can use M to
find dependence relations as well, should the points Pi be dependent. A major deficit of
this method is that we can only prove numerically that some linear combination of rational
points equates to a torsion point, as we can only approximate ĥ(P ) at a given point P . This
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is discussed in more detail in Appendix F of (Silverman, 2000). Apart from this shortcom-
ing, proving independence using canonical heights definitely has the advantage of being
much more straightforward than the method discussed in this thesis.

Nevertheless, using the homomorphism (1.2) is in a sense much ‘cleaner’. The algo-
rithm we will use is explained in even more detail in Appendices D and G of (Silverman,
2000). An implementation is included by default in SAGE, but to my knowledge, no imple-
mentation exists for PARI. As PARI is still widely appreciated for its speed, a PARI program
is included in the appendix of this thesis.
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4 Method

4.1 Constructing the homomorphism

Let the elliptic curve E/Q be given by

y2 = f(x) = x3 +Ax2 +Bx+ C, for A,B,C ∈ Z, (4.1)

where f(x) (and hence E) has a nonzero discriminant

∆ := A2B2 + 18ABC − 4B3 − 4A3C − 27C2.

Note the discriminant of E, as defined in Definition 4, is simply −16∆. We will refer
to primes not dividing 6∆ as “good” primes. This will ensure that the characteristic of the
field Fq for a good prime q is not 2 or 3, which would unnecessarily make matters more
complicated. It also implies that no prime different from 2 or 3 divides ∆, ensuring the
reduction of E modulo p yields an elliptic curve. Moreover, we assume the model (4.1)
is minimal at all odd primes. This means for any other equation of the form (4.1) with
discriminant ∆′ describing this curve, the p-adic valuation of ∆′ is larger than that of ∆ for
each odd prime p. For p prime, the p-adic valuation of an integer a is

vp(a) =

{
n if a = r · pn (r ∈ Z nonzero, n ∈ Z nonnegative and p - r),
∞ if a = 0.

We will require the map ψ : F×p → Z/2Z defined below.

Definition 10. For an odd prime p, the Legendre symbol
(
·
p

)
: Z→ {−1, 0, 1} is defined as

(
a

p

)
=


1 if ∃b ∈ F×p : b2 = a mod p 6= 0,

−1 if 6 ∃b ∈ F×p : b2 = a mod p 6= 0,

0 if a mod p = 0,

(a ∈ Z).

Let ψ : F×p → Z/2Z be the homomorphism such that
(
a
p

)
= (−1)ψ(a) for a ∈ F×p , that is

ψ(a) =

{
0 if ∃b ∈ F×p : y2 = a,

1 otherwise,
(a ∈ F×p ).

The fact that ψ is a homomorphism will follow from Proposition 2. Define f̃ to be the
reduction of f modulo a prime p, that is

f̃(x) = x3 + Ãx2 + B̃x+ C̃,
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where a tilde on a coefficients of f̃ represents its residue modulo p. For a good prime p,
we will write kp = 0, 1 or 2 if the number of roots x ∈ Fp of f̃(x) is 0, 1 or 3, respectively.
Remark that kp equals the number of generators of the subgroup E(Fp)[2] of elements
P ∈ Ẽ(Fp) such that 2P = Õ. We need not consider the primes p for which kp = 0. Namely,
this would imply that 2 does not divide the number of elements of Ẽ(Fp) (as there are no
points in Ẽ(Fp) of order 2), and therefore Ẽ(Fp) = 2Ẽ(Fp). As the map to be constructed in
the next subsections factors through Ẽ(Fp)/2Ẽ(Fp), this would not be particularly useful.
Although it would be easier to consider only primes p for which kp = 1, for some elliptic
curves the are no such primes. This happens if ∆ is a perfect square, and so we will need
to consider both kp = 1, 2. For f(x) irreducible, the density of primes for which kp 6= 0 is
at least 1

3 , c.f. Section 2 in (Cremona, 2008) (as a consequence of the Chebotarev density
theorem, but this is beyond the scope of this thesis).

Case one: A unique root in Fp

Let p be a good prime for which kp = 1, and let θp be the unique root of f̃(x) in Fp. The fol-
lowing result will be important in the proof of Proposition 3. We let (F×p )2 be the subgroup
of squares of F×p .

Proposition 2. Let p be prime and let a, b ∈ F×p \ (F×p )2. Then ab is a quadratic residual, that is
ab ∈ (F×p )2.

Proof. This result trivially holds for p = 2, 3, as in this case F×p \ (F×p )2 is empty. Therefore,
from now on we consider only p > 3.

The multiplicative group F×p of the finite field Fp is cyclic. Hence, there exists some
generator g ∈ F×p such that each a ∈ F×p can be expressed as a = gk for some integer k.
Naturally, a is a quadratic residual if and only if k is even. This shows half of the elements
of F×p are quadratic residuals, because the order of F×p is even. Hence,

[F×p : (F×p )2] = 2.

Take any a, b ∈ F×p \ (F×p )2. We conclude that

F×p /(F×p )2 =
{

(F×p )2, a · (F×p )2
}
.

So,
a · (F×p )2 = b · (F×p )2,

and therefore

ab · (F×p )2 =
(
a · (F×p )2

)
·
(
b · (F×p )2

)
=
(
a · (F×p )2

)
·
(
a · (F×p )2

)
= a2 · (F×p )2 = (F×p )2.

Henceforth, ab ∈ (F×p )2.

We are now ready to establish an important component of our homomorphism. Let
Ẽ be the elliptic curve obtained by reducing E modulo p, and denote the unit element of
Ẽ(Fp) by Õ.

17



Proposition 3. For a good prime p with kp = 1, the map εp : Ẽ(Fp)→ Z/2Z defined by

εp(P ) =


ψ(x− θp) if Õ 6= P = (x, y) and x 6= θp,

ψ(f ′(θp)) if Õ 6= P = (x, y) = (θp, 0),

0 if P = Õ,

is a homomorphism.

Proof. First of all, for any P ∈ Ẽ(Fp),

εp(P + Õ) = εp(P ) = εp(P ) + 0 = εp(P ) + ε(Õ),

and since εp(P ) = εp(−P ),

εp(P + (−P )) = εp(Õ) = 0 = 2εp(P ) = εp(P ) + ε(−P ),

because εp maps into Z/2Z. We can therefore restrict our attention to combinations P,Q ∈
Ẽ(Fp) not including Õ where P and Q are not each others inverse.

Let Ẽ′ represent the elliptic curve over Fp with base point Õ′ obtained by shifting Ẽ

back by θp with respect to the x-axis (and so moving the unique 2-torsion point of Ẽ(Fp) to
the origin). Specifically, we map points [X,Y, Z] ∈ Ẽ to Ẽ′ according to

[X,Y, Z] 7→ [X − θpZ, Y, Z].

Then, Ẽ′ is given by an affine equation

y2 = g(x) = x3 +A′x2 +B′x.

for some A′, B′ ∈ Fp. Note the constant term on the right-hand side is zero as a result of
the shift by θp. Moreover, f ′(θp) = g′(0). We will thus define three maps

(i) ρ : Ẽ(Fp)→ Ẽ′(Fp) :

{
(x, y) 7→ (x− θp, y),

Õ 7→ Õ′,

(ii) ϕ : Ẽ′(Fp)→ (F×p )/(F×p )2 : P 7→


x mod (F×p )2 if P = (x, y) 6= (0, 0),

g′(0) mod (F×p )2 if P = (0, 0),

1 mod (F×p )2 if P = Õ′,

(iii) µ : (F×p )/(F×p )2 → Z/2Z : x mod (F×p )2 7→

{
1 if x /∈ (F×p )2,

0 otherwise.

This way εp = µ ◦ ϕ ◦ ρ. We will show that µ, ϕ and ρ are homomorphisms.

(i) Clearly ρ is an isomorphism (and hence a homomorphism) since it is a change of
coordinates.
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(ii) Let P = (x, y) ∈ Ẽ′(Fp) be different from Õ′ (since for Õ′ the following holds triv-
ially). Note that ϕ maps negatives to inverses:

ϕ(−P ) = ϕ(x,−y) = x mod (F×p )2

= x−1x2 mod (F×p )2

= x−1 mod (F×p )2

= (ϕ(P ))−1,

if P 6= (0, 0). Otherwise,

ϕ(−P ) = ϕ(0, 0) = f ′(0) mod (F×p )2

= (f ′(0))−1(f ′(0))2 mod (F×p )2

= (f ′(0))−1 mod (F×p )2

= (ϕ(P ))−1.

Hence, ϕ is a homomorphism if we now show that for P,Q,R ∈ Ẽ′(Fp)

P +Q+R = Õ′
implies

ϕ(P )ϕ(Q)ϕ(R) = 1 mod (F×p )2.

To see this, note that R must equal −(P +Q). Consequently,

ϕ(P )ϕ(Q)ϕ(−(P +Q)) = 1 mod (F×p )2,

and so
ϕ(P )ϕ(Q) = [ϕ(−(P +Q))]−1 = ϕ(P +Q).

So, suppose we have P,Q,R ∈ Ẽ′(Fp)\{Õ′} such that P +Q+R = Õ′. This can only
happen if P,Q and R lie on a line L.

Let us first treat the case where P,Q,R are all different from (0, 0). Let the line L be
given by the equation y = λx+ ν for some λ, ν ∈ Fp. Since none of P,Q,R is equal to
(0, 0), we find that ν is nonzero (otherwise L would intersect the curve at the origin)
and so, ν ∈ F×p . The x-coordinates of the intersections of this line and the elliptic
curve (i.e. the points P,Q,R) must be the solutions in x of

x3 +A′x2 +B′x = y2 = (λx+ ν)2 = λ2x2 + 2λνx+ ν2,

or equivalently, of

x3 + (A′ − λ2)x2 + (B′ − 2λν)x− ν2 = 0.

Let x1, x2, x3 be the x-coordinates of P,Q,R, respectively. By solving

(x− x1)(x− x2)(x− x3) = x3 + (A′ − λ2)x2 + (B′ − 2λν)x− ν2,

for x1, x2, x3, we easily acquire

x1 + x2 + x3 = λ2 −A′, x1x2 + x1x3 + x2x3 = B′ − λν, x1x2x3 = ν2.
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This shows that

ϕ(P )ϕ(Q)ϕ(R) = x1x2x3 mod (F×p )2 = ν2 mod (F×p )2 = 1 mod (F×p )2.

Let us now treat the case where one of P,Q,R equals (0, 0). This can happen for at
most one of the three points, as otherwise another point must equal Õ′ since E is as-
sumed to have good reduction modulo p, a contradiction. Without loss of generality,
assume that R = (0, 0). Now the line L must be given by some equation y = λx (the
line must go through the origin R) with λ,∈ F×p . Let again x1, x2, x3 = 0 be the x-
coordinates of P,Q,R, respectively. This time, the x-coordinates of the intersections
of this line and the elliptic curve (i.e. the points P,Q,R) must be the solutions of

x3 +A′x2 +B′x = λ2x2,

or equivalently, of
x3 + (A′ − λ2)x2 +B′x = 0.

As before, this yields
B′ = x1x2 + x1x3 + x2x3 = x1x2

since x3 = 0. Note furthermore that

g′(0) = 3x2 + 2A′x+B′
∣∣
x=0

= B′,

so we find

ϕ(R) = g′(0) mod (F×p )2 = B′ mod (F×p )2 = x1x2 mod (F×p )2 = ϕ(P )ϕ(Q).

Because R = −R = P +Q,

ϕ(P +Q) = ϕ(−R) = ϕ(R) = ϕ(P )ϕ(Q),

showing ϕ is a homomorphism.

(iii) Only for the remainder of this proof we shall denote x mod (F×p )2 by x for x ∈ F×p .
Note that by the proof of Proposition 2, the group F×p /(F×p )2 has order 2. So, letting
a ∈ F×p \ (F×p )2 allows us to write

F×p /(F×p )2 =
{

1, a
}
.

Now it is straightforward to verify

µ
(
1 · 1

)
= 0 = 0 + 0 = µ

(
1
)

+ µ
(
1
)
,

µ
(
1 · a

)
= µ (a) + 0 = µ (a) + µ

(
1
)
,

µ (a · a) = 0 = 1 + 1 = µ (a) + µ (a) ,

since a · a = 1 by Proposition 2 and µ maps into Z/2Z. Because both F×p /(F×p )2 and
Z/2Z are abelian, µ is hereby a homomorphism.
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The proof is complete since a composition of homomorphisms is a homomorphism.

To derive the important result that E(Fp)/2E(Fp) ∼= Z/2Z, we need to show the follow-
ing.

Proposition 4. For a good prime p with kp = 1, the homomorphism εp in Proposition 3 is surjec-
tive, and its kernel is precisely 2Ẽ(Fp).

Proof. If we fix P ∈ 2Ẽ(Fp), then there exists Q ∈ Ẽ(Fp) so that 2Q = P . Because εp is a
homomorphism by Proposition 3,

εp(P ) = εp(2Q) = 2εp(Q) = 0.

Hence, 2Ẽ(Fp) ⊂ ker εp.

For the other inclusion, take P ∈ ker εp and let the maps ρ, ϕ and µ and the elliptic
curve Ẽ′ be as in the proof of Proposition 3. If P = Õ, then trivially P ∈ 2Ẽ(Fp). To prove
P ∈ 2Ẽ(Fp) if P 6= Õ it now suffices to show P ′ = ρ(P ) is in 2Ẽ′(Fp), since P ′ ∈ kerϕ.
Recall that E′ is given by

y2 = g(x) = x3 +A′x2 +B′x, A′, B′ ∈ Fp.

Let the elliptic curve E′ over Fp be given by

y2 = x3 +A′x2 +B′x, A′, B′ ∈ Fp,

where

A′ = −2A′,

B′ = (A′)2 − 4B′.

Denote be the unit element of E′(Fp) by O′. Note that Ẽ′(Fp) and E′(Fp) a point of order
2, namely T = (0, 0). Define the maps

Φ : Ẽ′ → E′ : P ′ 7→

{(
y2x−2, y(x2 −B′)x−2

)
if P ′ = (x, y) 6= O′, T,

O′ if P ′ = Õ′, T,

Ψ : E′ → Ẽ′ : P ′ 7→

{(
y2x−2, y(x2 −B′)x−2

)
if P ′ = (x, y) 6= O′, T,

Õ′ if P ′ = O′, T.

The following argument is heavily based on Proposition 3.7 and the succeeding discussion
in (Silverman & Tate, 2015). Part (c) of Proposition 3.7 shows

Ψ ◦ Φ : Ẽ′ → Ẽ′

is the multiplication-by-two map (actually, the proposition only shows this for elliptic
curves over the rationals, but the proof is completely analogous if we consider an ellip-
tic curve over Fp). So,

(Ψ ◦ Φ)(Ẽ′(Fp)) = 2Ẽ′(Fp).
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Suppose now that P = (x, y) with x 6= 0 lies in Φ(E′(Fp)) Then there must exist some
P = (x, y) ∈ E′(Fp) such that x = y2x−2 ∈ (F×p )2. Conversely, if x = w2 for some w ∈ F×p ,
then the points (

1
2

(
w2 −A′ + y · w−1

)
, 12w

(
w2 −A′ + y · w−1

))
and (

1
2

(
w2 −A′ − y · w−1

)
,− 1

2w
(
w2 −A′ − y · w−1

))
lie on E′(Fp) and are mapped to P by Φ, so P ∈ Φ(E′(Fp)). Recall 1/2 = 2−1 is defined
since p is good. As such, for P ′ = (x, y) ∈ E′(Fp) with x 6= 0,

P ′ ∈ Φ(Ẽ′(Fp)) if and only if x ∈ (F×p )2.

If we now define another elliptic curve E′/Fp, with base point O′ = O′, by

y2 = x3 +A′x2 +B′x, A′, B′ ∈ Fp,

where

A′ = −2A′ = 4A′,

B′ = A′
2 − 4B′ = 16B′,

we see E′ and E′ are isomorphic by the coordinate change

E′ → E′ :
(x, y) 7→ (4x, 8y),

O′ 7→ O′.

Applying the previous result to E′ and E′, for P ′ = (x, y) ∈ E′(Fp) with x 6= 0,

P ′ ∈ Ψ(E′(Fp)) if and only if x ∈ (F×p )2.

We will now show that

P ′ ∈ Ψ(Φ(Ẽ′(Fp))) = 2Ẽ′(Fp),

to complete the proof. Let us first consider the case where P ′ = (x, y) 6= (0, 0). Then
P ′ ∈ kerϕ implies x = w2 ∈ (F×p )2 for some w ∈ F×p . Note that P ′ corresponds to the point

P ′ =
(
1
4w

2, 18y
)
∈ E′(Fp).

As before,
Q1 :=

(
1
2

(
1
4w

2 −A′ + 1
4y · w

−1) , 14w ( 14w2 −A′ + 1
4y · w

−1))
and

Q2 :=
(
1
2

(
1
4w

2 −A′ − 1
4y · w

−1) ,− 1
4w
(
1
4w

2 −A′ − y · 14w
−1))

are in E′(Fp) and must get mapped to P ′ by Ψ. Furthermore, they each lie in Ψ(Ẽ′(Fp) if
and only if

1
2

(
1
4w

2 −A′ + 1
4y · w

−1) ∈ (F×p )2 and 1
2

(
1
4w

2 −A′ − 1
4y · w

−1) ∈ (F×p )2,
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respectively. Now, letting xi represent the x-coordinate of Qi for i = 1, 2,

x1x2 =
1

4

((
1
4w

2 −A′
)2 − 1

16y
2 · w−2

)
=

1

4

((
1
4x−A′

)2 − 1
16y

2 · x−1
)

=
1

4

(
1
16x

3 − 1
2A
′x2 +A′2x− 4 1

64y
2
)
· x−1

= B′,

where the last equality follows from the fact that

1
64y

2 =
(
1
8y
)2

=
(
1
4x
)3

+A′
(
1
4x
)2

+B′
(
1
4x
)

= 1
64x

3 + 1
16 (−2A′)x2 + 1

4 (A′2 − 4B′)x.

Again, powers of 2 are defined, since p is good. We know that B′ = (A′)2 − 4B′ is not a
perfect square, for otherwise

x3 +A′x2 +B′x = x(x2 +A′x+B′)

would have three rational roots. This would in turn imply g and thus f̃ would have three
roots in Fp, contradicting kp = 1. Hence, it must be that one of x1, x2 is a square by Propo-
sition 2, showing that one of Q1, Q2 is mapped to P ′ by Ψ ◦ Φ.

Suppose now that P ′ = (0, 0). Then g′(0) = B′ must be a square, as well as

16B′ = B′ = A′
2 − 4B′

This implies that
x3 +A′x2 +B′x = x(x2 +A′x+B′)

has a nonzero rational solution in x. Hence, there exists a point (x, 0) ∈ E′(Fp) which is
mapped to (0, 0) by Ψ. This point must necessarily be either

R1 :=
(

1
2

(
A′ +

√
A′2 − 4B′

)
, 0
)

or R2 :=
(

1
2

(
A′ −

√
A′2 − 4B′

)
, 0
)
.

The product of their x-coordinates is

1
2

(
A′ +

√
A′2 − 4B′

)
· 12
(
A′ −

√
A′2 − 4B′

)
= B′,

which we know not to be a perfect square. As before, this must mean either R1 or R2 is lies
in Φ(Ẽ′(Fp)). Thus,

P ′ ∈ Ψ(Φ(Ẽ′(Fp))) = 2Ẽ′(Fp),
proving that ker εp = 2Ẽ(Fp).

In an effort to show εp is surjective, suppose the contrary. Then it must be that Ẽ(Fp) =

2Ẽ(Fp), so for any P ∈ Ẽ(Fp), there exists some Q ∈ Ẽ(Fp) such that 2Q = P . Of course,
the same holds for Q, and in turn for some R such that 2R = Q, and so on ad infinitum.
Since kp = 1, there exists an element of order 2 in Ẽ(Fp), and so 2 divides |Ẽ(Fp)|. This
implies the above sequence cannot be periodic, and so there exists an element in Ẽ(Fp) of
infinite order. This clearly contradicts the fact that Ẽ(Fp) is finite. In consequence, εp must
be surjective.
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Consequently, we have
Ẽ(Fp)/2(Ẽ(Fp) ∼= Z/2Z.

Composition with the reduction modulo p map and factoring through doubles gives the
desired homomorphism

εp : E(Q)/2E(Q)→ Ẽ(Fp)/2(Ẽ(Fp)→ Z/2Z : P 7→ P 7→ εp(P ).

Proposition 5. A non-identity point P ∈ E(Q) can be be written as P = (u/w2, v/w3) for
integers u, v, w, satisfying gcd(u,w) = gcd(v, w) = 1

This follows from inserting x = u/U and y = v/V with u, v, U, V ∈ Z and U, V 6= 0 in
the elliptic curve equation, and deriving U3 = V 2. Letting w = V/U now proves the claim.
A complete proof can be found in e.g. Section 3.2, pg. 71, 72 of (Silverman & Tate, 2015).

Now, define the map α : E(Q) \ {O} → F×p by

α(P ) =

{
ũ− θpw̃2 if ũ 6= θpw̃

2,

f ′(θp) otherwise,

for P = (u/w2, v/w3) ∈ E(Q) \ {O} with u, v, w ∈ Z and gcd(u,w) = gcd(v, w) = 1. Here,
a tilde on an integer denotes its residue modulo p. This allows us to write

εp(P ) =

{
ψ(α(P )) if P 6= O,
0 otherwise.

To see this, note that in normalized projective coordinates,

P = [uw, v, w3].

The reduction modulo p yields
P̃ = [ũw̃, ṽ, w̃3],

which, assuming w̃ 6= 0, translates to P̃ = (ũw̃−2, ṽw̃−3) in affine coordinates. The assertion
follows, in this case, because ũw̃−2 − θp is a square if and only if ũ − θpw̃2 is. So what if
w̃ = 0? Substitution of P̃ in the homogeneous Weierstrass equation for E,

Y 2Z = X3 +AX2Z +BXZ2 + CZ3,

yields
ṽ2w̃3 = ũ3w̃3 +Aũ2w̃5 +Bũw̃7 + Cw̃9.

Using w̃ = 0, we find
ṽ2 = ũ3 or ũ = ṽ2ũ−2 ∈ (F×p )2.

This insists ψ(α(P )) = 0, as required.
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Case two: Three roots in Fp

Fix a good prime p for which kp = 2, so f̃(x) has three (distinct) roots θi,p ∈ Fp, i = 1, 2, 3.
If we now take P = (x, y) to be a point not equal to a 2-torsion point in E(Fp), the elements
x− θi,p are in F×p . Their product is a square, for the reason that

f(x) =
∏
i

(x− θi,p) = y2.

Recall from proof of Proposition 3 that we may write

F×p /(F×p )2 = {1, a},

for any a ∈ F×p \ (F×p )2. The group
(
F×p /(F×p )2

)3 equipped with component-wise multi-
plication with identity element (1, 1, 1) therefore has order 8, and each of its elements has
order 2. The set H of elements with the product of their components equal to a square
forms a subgroup of order 4. It consists of all vectors with an even number of components
equal to a, that is

H :=


1

1
1

 ,

1
a
a

 ,

a1
a

 ,

aa
1


Before proving the following Proposition 6, we need to introduce the notion of congru-

ent polynomials.

Definition 11. A ring R is a field for which multiplication is not necessarily commutative
and nonzero elements need not have a multiplicative inverse. A polynomial ring over R is
a ring R[x], consisting of polynomials in the variable x with coefficients in R. Two poly-
nomials f(x), g(x) ∈ R[x] are said to be congruent modulo p(x) ∈ R[x] if p(x) divides their
difference, in which case we write

f(x) ≡ g(x) mod p(x).

Now, we can construct a map εp in a similar manner as in Proposition 3.

Proposition 6. For a good prime p with kp = 2, the map εp : Ẽ(Fp)→
(
(F×p )2

)3 defined by

εp(P ) = (ε1,p, ε2,p, ε3,p) (P ), P ∈ Ẽ(Fp),

where for i = 1, 2, 3,

εi,p(P ) =


x− θi,p mod (F×p )2 if Õ 6= P = (x, y) and x 6= θi,p,

f ′(θi,p) mod (F×p )2 if Õ 6= P = (θi, 0),

1 mod (F×p )2 if P = Õ,

is a homomorphism with image H and kernel 2Ẽ(Fp).
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Proof. Each component εp,i of εp is a homomorphism for the same reason that εp from
Proposition 3 was a homomorphism (in this case define the ‘shifted’ elliptic curve for each
i = 1, 2, 3, then the rest of the proof is identical). Seeing that each component of εp is a
homomorphism, the same must hold for εp.

To show the image of εp lies in H , note that P = (x, y) ∈ Ẽ(Fp) with x 6= θi,p for
i = 1, 2, 3 implies εp(P ) ∈ H , by the argument preceding Definition 11. Also, εp(Õ) =
(1, 1, 1) ∈ H because εp is a homomorphism. Consider now P = (θi,p, 0), and note that
all θi,p’s are distinct since p is good. Assume without loss of generality that P = (θ1,p, 0).
Then, since Ẽ is given by

y2 = x3 + Ãx2 + B̃x+ C̃, Ã, B̃, C̃ ∈ Fp. (4.2)

we find

f ′(θ1,p)(θ1,p − θ2,p)(θ1,p − θ3,p) = (3θ21,p + 2Ãθ1,p + B̃)(θ1,p − θ2,p)(θ1,p − θ3,p).

Since
x3 + Ãx2 + B̃x+ C̃ = f(x) =

∏
i

(x− θi,p),

we know

Ã = −(θ1,p + θ2,p + θ3,p) and B̃ = θ1,pθ2,p + θ1,pθ3,p + θ2,pθ3,p.

Doing some simple algebra, we find

f ′(θ1,p) = (θ1,p − θ2,p)(θ1,p − θ3,p),

so
f ′(θ1,p)(θ1,p − θ2,p)(θ1,p − θ3,p) = (θ1,p − θ2,p)2(θ1,p − θ3,p)2 ∈ (F×p )2.

As a consequence εp(P ) ∈ H , thus we derive εp(Ẽ(Fp)) ⊂ H . The other inclusion will
follow from ker εp = 2Ẽ(Fp).

By Proposition 2, it must be that 2Ẽ(Fp) ⊂ ker εp due to εp being a homomorphism. The
proof that ker εp ⊂ 2Ẽ(Fp) below is profoundly based on and nearly identical to the second
part of the poof of Theorem 8.14 in (Washington, 2008). Because p is good, char(Fp) 6= 3.
We may therefore perform the change of coordinates on Ẽ given by

(x, y) 7→
(

(x− 12B̃) · 36−1, y · 108−1
)
,

to transform (4.2) to an equation of the form

y2 = x3 + Ã′x+ B̃′,

c.f. pages 42, 43 in (Silverman, 2009). Again, 36 = 2232 and 108 = 2233 are defined since p
is good. Suppose first that P = (x, y) ∈ ker εp is such that 2P 6= 0. Then for i = 1, 2, 3,

x− θi,p := v2i

for some vi ∈ F×p . There exists a (unique) quadratic polynomial

f(T ) = u0 + u1T + u2T
2 ∈ Fp[T ] such that f(θi,p) = vi for i = 1, 2, 3,
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since for n points with distinct x-coordinates there is always a unique polynomial of degree
n− 1 whose graph contains all n points. Now,

g(T ) = x− T − (f(T ))2 satisfies g(θi,p) = x− θi,p − v2i = 0 for i = 1, 2, 3.

So, g(T ) can be factored as

g(T ) = (T − θ1,p)(T − θ2,p)(T − θ3,p)h(T )

for some h ∈ Fp[T ] with deg h < deg g. Since (T − θ1,p)(T − θ2,p)(T − θ3,p) = T 3 + Ã′T + B̃′,

g(T ) ≡ 0 mod (T 3 + Ã′T + B̃′),

and therefore

x− T ≡ (u0 + u1T + u2T
2)2 mod (T 3 + Ã′T + B̃′)

≡ u20 + 2u0u1T + (u31 + 2u0u2)T 2 + 2u1u2T
3 + u22T

4 mod (T 3 + Ã′T + B̃′).

Additionally, T 3 ≡ −Ã′T − B̃′ mod (T 3 + Ã′T + B̃′), so

x− T ≡ (u20 − 2B̃′u1u2) + (2u0u1 − 2Ã′u1u2 − B̃′u22)T

+ (u21 + 2u0u2 − Ã′u22)T 2 mod (T 3 + Ã′T + B̃′).

This must imply

u20 − 2B̃′u1u2 = x, (4.3)

2u0u1 − 2Ã′u1u2 − B̃′u22 = −1, (4.4)

u21 + 2u0u2 − Ã′u22 = 0. (4.5)

We know that u2 6= 0, since otherwise u1 = 0 and consequently f(T ) must be constant,
i.e

f(T ) = v1 = v2 = v3, so x− θ1,p = x− θ2,p = x− θ3,p.

From this it would follow the θi,p are equal, contradicting p being good. Thus, we may
multiply (4.4) by −u−22 , and using u21 + 2u0u2 − Ã′u22 = 0, we acquire(

u−12

)2
=
(
u1u
−1
2

)3
+ Ã′

(
u1u
−1
2

)
+ B̃′.

showing Q̃ = (x̂, ŷ) with x̂ = u1u
−1
2 , ŷ = u−12 lies on Ẽ(Fp). From (4.5) we have

u0 = 1
2 (Ã′u22 − u21)u−12 = 1

2 (Ã′ − u21u−22 )u2 = 1
2 (Ã′ − x̂2)ŷ−1.

From substitution of this into (4.3) follows

x = 1
4 (Ã′2 − 2Ãx̂2 + x̂4)ŷ−2 − 2B̃′u1u2

= 1
4 (Ã′2 − 2Ãx̂2 + x̂4 − 8B̃′x̂)ŷ−2

= (x̂4 − 2Ãx̂2 − 8B̃′x̂+ Ã′2)(4x̂3 + 4Ã′x̂+ 4B̃)̃
−1
.
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This is the duplication formula, c.f. page 27 in (Silverman & Tate, 2015) (actually, the one
referenced is for E(Q), but it generalizes to E(K) for a general field K). This means x is the
x-coordinate of 2(x̂, ŷ). The y-coordinate is determined by the x-coordinate up to sign, so

P = 2(x̂, ŷ) or P = 2(x̂,−ŷ),

whereby P ∈ 2E(Q).
Assume now that P = (θi,p, 0) ∈ ker εp and that, without loss of generality, i = 1. This

must mean that
(θ1,p − θ2,p), (θ1,p − θ3,p) ∈ (F×p )2,

since f ′(θ1,p) = (θ1,p − θ2,p)(θ1,p − θ3,p). Apply the same procedure, this time letting

θ1,p − θi,p = v2i ,

where vi ∈ F×p if i 6= 1 and vi = 0 otherwise. The rest of the proof is then the same as
before. This concludes ker εp = 2Ẽ(Fp).

The argument given in the proof of Proposition 4 to prove that εp from Proposition 3 is
surjective also shows the image of εp cannot be trivial. So, it contains at least one nontrivial
element of H . This implies the other nontrivial elements of H must lie in the image of εp
as well, so this image of εp must equal H .

Since all nontrivial elements of H have order 2, H ∼= (Z/2Z)2. This remains true if we
project onto the first two coordinates of εp and H , and switch to additive notation. Hence,
we obtain an isomorphism

Ẽ(Fp)/2Ẽ(Fp)→ (Z/2Z)2,

which we can again compose with the reduction modulo p map, yielding

εp : E(Q)/2E(Q)→ (Z/2Z)2.

Define the map αi : E(Q)→ F×p by

αi(P ) =

{
ũ− θi,pw̃2 if ũ 6= θpw̃

2,

f ′(θi,p) otherwise,
(i = 1, 2, 3)

for a non-identity point P = (u/w2, v/w3) ∈ E(Q), where u, v, w are integers such that
gcd(u,w) = gcd(v, w) = 1. A tilde on an integer once more denotes its residue modulo p.
This allows us to write

εp(P ) = (ψ(α1(P )), ψ(α2(P )))

for P ∈ E(Q) \ {O}, analogous to the case where kp = 1.

The final homomorphism
Take a set of good primes {p1, p2, . . . , pm} with kpi 6= 0 for i = 1, . . . ,m, and define the
homomorphism

ε : E(Q)/2E(Q)→ (Z/2Z)M : P 7→ (εp1(P ), εp2(P ), . . . , εpm(P )), M =
∑
i

kpi .
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Before showing this map is injective for a sufficient amount good primes, let us consider
how to halve a point Q = 2R ∈ 2E(Q) (we will need it in the proof of Lemma 1). If
Q = (α, β), the x-coordinate of R is computed by finding a rational x such that (c.f. the
duplication formula on page 27 in (Silverman & Tate, 2015))

α =
U

V
=
x4 − 2Bx2 − 8Cx+B2 − 4AC

4x3 + 4Ax2 + 4Bx+ 4C
(U, V ∈ Z, V 6= 0)

where U, V ∈ Z and V 6= 0. This is equivalent to finding a rational root of

F (x) := V (x4 − 2Bx2 − 8Cx+B2 − 4AC)− U(4x3 + 4Ax2 + 4Bx+ 4C). (4.6)

This may be accomplished with use of the quartic formula or by factoring the 4th degree
polynomial F . The y-coordinate is obtained by substituting this value of of x into the affine
Weierstrass equation. Note that the same procedure can be used when halving points in
2Ẽ(Fp), putting tildes over the coefficients A,B,C if preferred.

We require one more ingredient to prove Lemma 1. The following result is stated with-
out proof, so as to avoid having to get into Galois theory and algebraic number theory. This
is Theorem 3.1.7 from (Pesiri, 2007), which also contains a proof.

Theorem 2. Let f(x) ∈ Z[x] be an irreducible polynomial that does not have a root modulo only
finitely many primes. Then f(x) has degree 1.

Lemma 2.1 from (Cremona, 2002) is as follows.

Lemma 1. For a rational point P /∈ 2E(Q) onE, there exists a good prime pwith kp 6= 0 satisfying
εp(P ) 6= 0.

Proof. Take P = (α, β) ∈ E(Q) \ 2E(Q) where α = U/V , with U, V ∈ Z and V 6= 0. Let
F (x) be as in (4.6). Suppose first that F (x) is irreducible. If we assume F (x) has no roots
modulo only finitely many primes, then F (x) is linear by Theorem 2, a contradiction. So,
F (x) has no roots modulo infinitely many primes. Suppose now that F (x) is reducible. Let
G1(x), . . . , Gk(x) ∈ Q[x] be irreducible polynomials such that

F (x) = G1(x) · · ·Gk(x).

Because P /∈ 2E(Q), F (x) cannot have any roots in Q. Therefore, k = 2, and G1(x), G2(x)
are both of degree 2. Because we are only interested in the roots of G1(x) and G2), we may
multiply out any denominators and divide by any common factors, to make sureGi(x) has
integer coefficients for i = 1, 2. Again, Gi(x) does not have a root modulo infinitely many
primes for i = 1, 2 by Theorem 2. Hence, F (x) has no roots modulo infinitely many primes.

Because there are only finitely primes that are not good, there must also be infinitely
many good primes for which this holds. For these primes p, there exists no R̃ ∈ Ẽ(Fp) such
that the P̃ = 2R̃, where P̃ is the reduction modulo p of P . Consequently P̃ /∈ 2̃E(Fp). Note
that we cannot have kp = 0, as this would imply Ẽ(Fp) = 2Ẽ(Fp), even though P̃ ∈ Ẽ(Fp).
This completes the proof.

Lemma 1 says that for a sufficient amount of good primes p for which kp 6= 0, the ho-
momorphism ε will have a trivial kernel, in which case it must be injective. The following
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proposition from Appendix D in (Silverman, 2000) shows that a ‘sufficient’ amount will, in
practice, not be infeasibly large. A proof can be found there as well, and since it is quite
straightforward, we will not repeat it here. As is easily seen, the given probability rapidly
tends to 1 as we increase M .

Proposition 7. For randomly chosen homomorphisms ξ1, . . . , ξM : Zn → Z/2Z, the map

Ξ = (ξ1, . . . , ξM ) : Zn → (Z/2Z)M (M > n)

is injective with probability
n−1∏
i=0

(
1− 1

2M−i

)
.

4.2 Checking independence or finding an explicit depen-
dence relation

Now that we have constructed a homomorphism ε : E(Q)/2E(Q)→ (Z/2Z)M , assume we
have rational points P1, . . . , Pn on E, which include generators of E(Q)[2] (we explained
the reason for this in Section 2.3). We denote by vi = ε(Pi) the image of Pi under ε. The
points Pi are independent if the images vi are; in particular if the rank of

A := (v1, . . . , vn)

equals n. If not, we can first add more good primes until we reach a certain threshold.
Using Proposition 7, we find that the probability that ε is not injective for n points on E(Q)
is less than 10−6 if we have M > n + 20. Since M is greater than the number of good
primes p for which kp 6= 0, we can let the maximum number of primes used equal n + 20.
So, say we have reached this threshold, however A still has rank less than n. In that case,
we take any nontrivial vector from kerA, and substitute 1 for 1 mod 2 and 0 for 0 mod 2. In
this manner we obtain a vector c = (c1, . . . , cn) with each ci ∈ {0, 1}, and we subsequently
compute

Q := c1P1 + · · ·+ cnPn.

There are three cases to consider.

1. If Q has finite order, we have found an explicit dependence relation.

2. If Q does not have finite order and moreover Q /∈ 2E(Q), then increasing the number
of good primes will prove the points Pi are independent. The reason is that ε is not
injective for the current amount of good primes.

3. If Q does not have finite order and Q ∈ 2E(Q), then we attempt an iterative pro-
cedure, which will certainly terminate when the points Pi are independent (we will
elaborate on this in a moment). If they are not, however, we may face some compli-
cations.
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Lifting the dependence relation from E(Q)/2E(Q)

Suppose therefore that we have obtained some linear combination

Q := c1P1 + · · ·+ cnPn (ci ∈ {0, 1}),

and that Q ∈ 2E(Q) \ T , where T := E(Q)tor. There must exist some point R ∈ E(Q) \ T
that satisfies Q = 2R. We now replace a point Pi for which ci = 1 by R, so that we obtain a
new set of points {

P
(1)
1 , . . . , P (1)

n

}
to which we apply the same procedure as before until, hopefully, at some step k one of
three cases occurs:

1. The set
{
P

(k)
1 , . . . , P

(k)
n

}
is independent, whereby the original points were indepen-

dent. If the original set of points is independent, this is bound to happen after finitely
many iterations. This is due to the span of the set of points being strictly larger than
the span of the previous set of points, where the span of a set of points R1, . . . , Rd on
E(Q) is defined as

span{R1, . . . , Rd} = { z1R1 + · · ·+ zdRd | zi ∈ Z } .

Namely, after replacing a point Pi in a combination 2R =
∑
i ciPi for which ci = 1 by

R, the new set of points spans{∑
i

zi
(
1
2ci + (1− ci)

)
Pi

∣∣∣∣∣ zi ∈ Z

}
) { z1P1 + · · ·+ znPn | zi ∈ Z } .

2. We find some combination

c
(k)
1 P

(k)
1 + · · ·+ c(k)n P (k)

n = Q ∈ T,

from which we can construct an explicit dependence relation by recursively substi-
tuting

P
(k)
i = R(`) :=

1

2

(
c
(`)
1 P

(`)
1 + · · ·+ c(`)n P (`)

n

)
,

for i = 1, . . . , n, where ` was the step after which P
(`)
i was replaced by R(`). After-

wards, we can multiply the coefficients by a suitable power of 2 if we want them to
be integer.

3. We obtain some Q(k) := Q̂1 given by

c
(k)
1 P

(k)
1 + · · ·+ c(k)n P (k)

n = Q̂1,

which has a difference with some earlier encountered combination that is torsion, i.e.
for

c
(`)
1 P

(`)
1 + · · ·+ c(`)n P (`)

n = Q̂2 (` < k),

ord(Q̂1 − Q̂2) < ∞. Analogous to the previous case, this allows us to construct an
explicit dependence relation. This procedure is illustrated in the example in Section
5.3.

If the points are actually dependent, there is no guarantee that one of the last two cases
ever occurs, c.f. Appendix D in (Silverman, 2000). In this case, we may result to using
heights to find a dependence relation, that is to the method described in Section 3.
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5 Examples

5.1 The Martin-McMillan curve

The following example was treated in (Cremona, 2002), and repeating it here is a good
way to verify our implementation is correct (or at least not completely off). The “Martin-
McMillan curve” is given by the equation

E : y2 + xy + y =x3 − 19252966408674012828065964616418441723x

+ 32685500727716376257923347071452044295907443056345614006,

and along with it, 23 points in E(Q) are listed:

P1 = (2509558762692426075,−417088861635582776427838628),

P2 = (−3152306069115988905, 7877320130079209226656589052),

P3 = (15693029027991085860,−59960725518716592640454389523),

P4 = (−15685545762070490045/9, 210784183032708200332415773604/27),

P5 = (2698930732460382795, 618629431350432390388941352),

P6 = (3055828716067659795,−1545100017628983460760462648),

P7 = (5176107139118431770,−8468104093201669542836552123),

P8 = (3784518081907585155, 3745177334989174939461966292),

P9 = (3375602798684599395, 2481752453981065849886565352),

P10 = (50254260027721383195, 354939157845809277536295633352),

P11 = (−142695966546348885, 5952303401545410666113166952),

P12 = (−3221315322202018425, 7828039241604579170601658372),

P13 = (2537753825844495495, 412116180825557654373555652),

P14 = (2593670816475114795,−444522199100420910170282648),

P15 = (3653122955244689466, 3332280856915069273216378309),

P16 = (16913850473547768195,−67422028572509502534315689048),

P17 = (91407152955412578142189035/137217796,

− 7216319709021278239948381788080225026537/1607369262344),

P18 = (2318736179743409595,−713948812262364148421306948),

P19 = (854939343706550155/9,−149983616867035973534953843496/27),

P20 = (2291515542997719795, 774517082921333828245497352),

P21 = (−1722575558649090805,−7793513279470674099171802548),

P22 = (−5015906559699694713,−1749225525806449612884005132),

P23 = (1207582564254353598375/49, 41339900234776936657866972980836/343).
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p 7 31 43 47 53 59 67 71 83 89 97 109 113 127 131 139 149 151 157 163
P1 0,1 1 1 1 1,0 1 0 0 0 1 0 0 0 0 0,1 0 0 1,1 1 1
P2 1,0 1 0 0 0,1 1 1 1 0 1 1 1 0 0 1,1 0 0 1,1 1 1
P3 1,1 1 0 0 1,0 0 1 1 1 1 1 1 0 0 0,0 0 0 1,1 1 0
P4 0,1 0 1 1 1,0 1 1 0 1 1 1 0 0 1 0,0 0 1 1,0 1 0
P5 0,0 1 1 0 1,0 0 1 1 0 1 0 1 0 0 0,1 0 0 1,0 1 0
P6 0,0 1 1 0 0,1 0 0 0 1 1 1 1 0 1 0,1 0 0 0,1 0 1
P7 0,1 0 0 1 1,0 1 1 1 0 0 1 0 0 1 0,0 1 1 0,0 0 1
P8 1,1 0 0 1 0,0 0 1 1 1 1 1 1 1 1 1,1 1 0 1,0 1 0
P9 1,0 0 1 0 1,1 1 0 0 1 0 0 1 1 1 0,0 1 1 1,0 1 1
P10 0,1 1 0 1 1,0 1 1 1 0 1 0 1 1 1 0,1 0 1 1,0 0 1
P11 0,1 0 1 0 1,0 1 0 1 0 1 0 0 1 1 1,1 1 0 0,0 1 0
P12 0,1 0 0 1 1,1 1 1 0 1 0 0 0 0 1 1,1 0 1 0,0 0 1
P13 1,0 1 0 1 1,1 1 0 0 0 1 1 0 0 1 0,1 0 0 0,0 1 1
P14 1,0 1 0 0 1,0 1 1 0 0 0 0 1 0 1 1,1 1 1 0,1 0 0
P15 0,1 0 1 0 1,0 1 1 1 0 0 0 1 1 0 1,0 1 1 0,1 0 1
P16 1,1 0 0 1 1,1 0 0 0 0 0 0 0 0 1 1,1 0 1 1,1 1 0
P17 1,0 0 0 0 1,0 1 0 0 1 0 1 0 0 1 1,1 0 0 1,1 1 0
P18 0,1 0 1 1 1,0 1 1 0 0 0 0 1 1 1 1,0 1 0 1,0 1 1
P19 0,1 0 0 0 0,0 1 0 0 0 1 1 1 1 0 0,1 1 1 0,0 1 0
P20 0,1 0 1 0 1,1 0 1 1 0 1 0 1 1 1 1,1 1 1 0,1 1 0
P21 1,1 0 0 0 1,1 0 0 1 0 1 1 1 0 0 0,0 0 0 1,0 0 0
P22 0,1 0 1 0 1,0 0 1 1 1 0 1 1 0 1 0,1 0 0 0,1 0 1
P23 0,0 0 0 1 0,1 1 1 1 0 1 0 1 1 0 1,0 1 1 1,1 1 0

Table 5.1: The images of the points on the Martin-McMillan curve under ε

With 19 good primes less than or equal to 157, we obtain a 23 × 23 matrix which has
rank 22. Once we add 163 to the set of good primes, we acquire the final matrix presented
in Table 5.1, which has rank 23. This proves the points Pi, . . . , P23 are independent.

Apart from the columns corresponding to the boldface good primes, this matrix is iden-
tical to the one presented at the end of Section 2.3 in (Cremona, 2002). The difference stems
from the choice of the roots of f̃(x) in Fp for primes p with kp = 2, and is not relevant to
the independence or dependence of the points.

5.2 The Elkies curve

Of particular importance is the “Elkies curve”; this curve has rank 28, c.f. (Klagsbrun,
Sherman, & Weigandt, 2018), which is the highest currently observed. It is given by

E : y2 + xy + y = x3 − x2 − 20067762415575526585033208209338542750930230312178956502x

+ 34481611795030556467032985690390720374855944359319180361266008296291939448732243429,

and we have a list of 28 points in E(Q),

P1 = (−2124150091254381073292137463, 259854492051899599030515511070780628911531),
P2 = (2334509866034701756884754537, 18872004195494469180868316552803627931531),

P3 = (−1671736054062369063879038663, 251709377261144287808506947241319126049131),
P4 = (2139130260139156666492982137, 36639509171439729202421459692941297527531),

P5 = (1534706764467120723885477337, 85429585346017694289021032862781072799531),

P6 = (−2731079487875677033341575063, 262521815484332191641284072623902143387531),
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P7 = (2775726266844571649705458537, 12845755474014060248869487699082640369931),

P8 = (1494385729327188957541833817, 88486605527733405986116494514049233411451),

P9 = (1868438228620887358509065257, 59237403214437708712725140393059358589131),

P10 = (2008945108825743774866542537, 47690677880125552882151750781541424711531),

P11 = (2348360540918025169651632937, 17492930006200557857340332476448804363531),

P12 = (−1472084007090481174470008663, 246643450653503714199947441549759798469131),
P13 = (2924128607708061213363288937, 28350264431488878501488356474767375899531),

P14 = (5374993891066061893293934537, 286188908427263386451175031916479893731531),

P15 = (1709690768233354523334008557, 71898834974686089466159700529215980921631),

P16 = (2450954011353593144072595187, 4445228173532634357049262550610714736531),

P17 = (2969254709273559167464674937, 32766893075366270801333682543160469687531),

P18 = (2711914934941692601332882937, 2068436612778381698650413981506590613531),

P19 = (20078586077996854528778328937, 2779608541137806604656051725624624030091531),

P20 = (2158082450240734774317810697, 34994373401964026809969662241800901254731),

P21 = (2004645458247059022403224937, 48049329780704645522439866999888475467531),

P22 = (2975749450947996264947091337, 33398989826075322320208934410104857869131),

P23 = (−2102490467686285150147347863, 259576391459875789571677393171687203227531),
P24 = (311583179915063034902194537, 168104385229980603540109472915660153473931),

P25 = (2773931008341865231443771817, 12632162834649921002414116273769275813451),

P26 = (2156581188143768409363461387, 35125092964022908897004150516375178087331),

P27 = (3866330499872412508815659137, 121197755655944226293036926715025847322531),

P28 = (2230868289773576023778678737, 28558760030597485663387020600768640028531).

With 23 good primes between 29 and 197 we obtain a 28 × 28 matrix with rank 26.
Adding 211 to our list of good primes, the new matrix has dimension 28 × 30 and rank
27. After adding the prime 227, we obtain a 28 × 31 matrix of rank 28, showing the points
P1, . . . , P28 are independent. This final matrix is depicted in Table 5.3.

5.3 Elliptic Curve 44755.a1

An important functionality of this method is that we can find explicit dependence relations.
We will test this functionality on the (rather arbitrarily chosen) elliptic curve with Cremona
label 44755b1 is given by

E′ : y2 + y = x3 + x2 − 410x+ 3306.

We choose four integral points on E,

P ′1 = (105, 1062),

P ′2 = (680, 17737),

P ′3 = (1653, 67221),

P ′4 = (2470, 122777).

and since E has rank 3, they must be dependent. We first make a coordinate change to get
the affine Weierstrass equation in the form

y2 = x3 +Ax2 +Bx+ C, A,B,C ∈ Z,
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yielding
E : y2 = x3 + 4x2 − 6560x+ 211600.

and

P1 = (420, 8500),

P2 = (2720, 141900),

P3 = (6612, 537772),

P4 = (9880, 982220).

Allowing for a maximum of 24 = 4 + 20 good primes for each iteration, no addition to
the set of existing good primes can render the rank of the resulting matrix above 3, as
expected). When the threshold of 24 is reached, we end up with

P1 + P2 + P4 = Q = 2R =

(
39537880

233289
,

227677109500

112678587

)
with ε(Q) = 0 ∈ FM2 . We can write Q = 2R since Q ∈ 2E(Q). Repeating the procedure
yields

R+ P2 + P4 = Q(1) = 2R(1) =

(
−630262195630680

19945950955921
,−55725465958675974323500

89080392158778262969

)
,

R(1) + P2 + P3 + P4 = Q(2) = 2R(2) =

(
6564070977660

357851614849
,

67283049566140425820

214069340963975743

)
,

R(2) = Q(3) = 2R(3) =

(
66120

961
,

9648500

29791

)
,

R(3) + P4 = Q(4) =

(
39537880

233289
,

227677109500

112678587

)
= Q.

where each ε
(
Q(j)

)
= 0. An explicit dependence relation can be obtained e.g. by backward

substitution, as follows:

O = Q(4) −Q = R(3) + P4 − P1 − P2 − P4

= 1
2R

(2) − P1 − P2

= 1
4 (R(1) + P2 + P3 + P4)− P1 − P2

= 1
8 (R+ P2 + P4)− P1 − 3

4P2 + 1
4P3 + 1

4P4

= 1
16 (P1 + P2 + P4)− P1 − 5

8P2 + 1
4P3 + 3

8P4

= − 15
16 −

9
16P2 + 1

4P3 + 7
16P4.

It is therefore given by
−15P1 − 9P2 + 4P3 + 7P4 = O.

Recall that this also holds for the points P ′i on the original curve E′, because the coordinate
change we applied is an isomorphism.

35



p 29 31 41 43 47 59 67 71 83 89 101 103 107 109 131 137 139 157 163 173 181 193 197 211 227
P1 0 0 0,1 1 1 1,1 1 0 0 0 1 1 1,0 0 1,0 1,0 1 0 0 1 1 0 0 1,0 1
P2 0 0 1,1 1 0 1,0 0 0 1 0 0 0 0,0 0 1,1 1,0 0 1 1 1 0 1 1 0,0 0
P3 1 0 1,1 0 1 1,0 0 0 1 1 0 0 1,1 1 1,0 1,1 0 1 1 1 0 0 1 0,1 1
P4 0 0 0,0 0 0 1,0 0 1 0 0 0 1 0,1 0 1,0 0,1 0 0 0 1 1 0 1 0,0 1
P5 0 1 1,0 0 0 0,1 0 0 0 1 0 0 0,1 0 1,0 1,1 0 0 0 1 1 0 1 1,1 1
P6 0 0 1,1 0 0 1,0 0 1 0 1 0 0 0,1 1 0,1 1,0 0 0 1 0 1 1 1 1,1 0
P7 1 1 0,1 1 1 0,1 1 1 1 1 0 1 1,1 0 1,0 0,0 0 0 1 0 0 0 1 0,0 0
P8 0 1 0,0 0 1 1,1 1 1 1 1 1 1 0,1 0 1,1 0,0 0 0 1 0 0 0 0 0,0 0
P9 0 0 0,0 0 0 1,0 0 0 0 1 0 0 1,1 1 1,0 1,1 0 1 0 1 0 0 1 0,0 1
P10 1 1 0,0 1 1 1,0 0 0 0 1 1 1 0,0 0 0,0 1,1 0 1 0 1 0 1 0 0,0 0
P11 0 0 1,1 0 0 0,0 0 1 0 0 0 0 0,0 1 1,0 1,1 0 1 0 0 0 1 0 0,1 0
P12 1 0 1,1 1 0 0,0 0 1 0 1 0 1 1,1 0 0,0 1,0 0 1 1 1 0 0 1 0,1 0
P13 0 1 0,1 1 0 0,1 0 1 1 0 0 1 0,0 1 1,1 1,1 0 1 1 1 0 1 0 0,1 0
P14 1 0 1,1 0 0 1,0 1 1 1 0 0 1 1,1 1 0,0 0,1 0 1 0 0 0 1 1 1,0 0
P15 1 0 0,1 1 0 0,1 1 0 0 1 0 0 1,1 0 0,1 0,1 0 1 0 1 0 1 1 1,1 1
P16 1 0 1,1 0 1 0,0 1 0 1 0 0 1 0,1 1 0,1 1,1 1 1 0 1 0 0 1 0,0 1
P17 1 0 0,1 0 0 1,0 0 1 0 0 0 0 0,1 1 0,0 1,0 0 0 1 1 0 1 1 1,1 1
P18 0 1 1,1 0 0 0,0 0 0 0 1 1 0 0,1 0 1,1 0,1 0 0 0 1 1 0 0 0,0 0
P19 1 0 1,0 1 0 1,0 1 0 0 0 0 0 1,1 0 0,1 0,0 1 1 1 1 1 0 1 0,0 0
P20 0 0 1,1 1 0 1,1 0 0 0 1 0 0 0,0 1 0,0 0,0 1 1 0 0 0 0 1 0,1 0
P21 0 0 0,1 0 1 0,0 0 1 0 0 0 1 0,0 1 1,1 0,0 0 1 0 0 1 1 1 1,1 0
P22 1 1 0,0 0 1 0,0 0 1 0 1 0 1 0,0 1 0,1 0,0 0 0 1 0 0 0 1 0,0 0
P23 0 1 0,0 1 0 1,1 0 0 1 0 1 0 1,1 1 0,1 0,1 1 0 0 1 0 1 1 1,1 0
P24 0 0 1,1 1 0 0,1 1 0 1 1 1 0 0,0 1 0,1 1,1 0 1 1 0 0 1 1 1,1 0
P25 1 0 1,1 1 1 0,0 0 0 1 1 1 0 1,1 0 1,0 1,0 1 1 0 0 0 1 1 1,0 0
P26 0 0 0,0 0 1 1,0 1 1 0 0 0 1 1,1 0 1,1 1,0 1 0 1 1 0 0 0 1,0 0
P27 1 0 1,1 0 0 0,1 0 0 1 0 0 1 1,1 1 1,1 0,1 1 0 0 0 0 1 1 1,0 0
P28 0 1 0,0 1 0 1,1 0 0 0 0 1 1 1,0 0 1,1 0,0 1 0 1 1 1 0 0 0,0 1

Table 5.2: The images of the points on the Elkies curve under ε
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6 Further research

One might ask where to go from here. The fact that dependence relations found by using
this method need not be verified is one of its major features. The question is: can we use
it to find all dependence relations? After computing the images vi of a set of n points
Pi ∈ E(Q) by the homomorphism ε, we could branch out from all vectors in the kernel of
A = (v1, . . . , vn). Subsequently, we can de the same when it comes to replacing a point Pi
which appeared in some combination Q =

∑
j cjPj (cj ∈ {0, 1}) with ci = 1. However,

there might be dependence relations which cannot be uncovered in this manner, and this
remains a question for further research.

Moreover, in Section 4.2 we mentioned the process described there might not terminate,
and in that case we may resort to using heights instead. In (Silverman, 2000), this is only
remarked, and no example of such a set of rational points on an elliptic curve is given. It
would be interesting to find an explicit example where this occurs, as to find out why the
method central to this thesis fails.

Finally, a natural next step would be to try to extend this algorithm to Jacobians J of
genus 2 curves over Q. The Jacobian variety of a genus 2 curve is a geometric object on
which we can impose an abelian group structure similar to one on the K-rational points
of an elliptic curve E/K (for a field K). It turns out that group J(Q) of rational points on
J is finitely generated, by the Mordell-Weil theorem. Finding the rank of J(Q) gives us
information about the set of rational points on the genus 2 curve in question, and we can
again bound this rank from below by proving a set of points on J(Q) is independent.
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de l’IHÉS, 47, 33–186.

Pesiri, A. (2007). The chebotarev density theorem applications (Unpublished masters the-
sis, UNIVERSITA DEGLI STUDI ROMA TRE). Retrieved from http://www.mat
.uniroma3.it/users/pappa/sintesi/16 Pesiri.pdf

Silverman, J. H. (2000, April). The xedni calculus and the elliptic curve discrete logarithm
problem. Des. Codes Cryptography, 20(1), 5–40.

Silverman, J. H. (2009). The arithmetic of elliptic curves (2nd ed.). Springer New York.

Silverman, J. H., & Tate, J. T. (2015). Rational points on elliptic curves (2nd ed.). Springer
Publishing Company, Incorporated.

Stoll, M. (2010, February). How to Solve a Diophantine Equation. ArXiv e-prints.

Washington, L. C. (2008). Elliptic curves: Number theory and cryptography (2nd ed.). Chapman
& Hall/CRC.

38



A Source codes

elldep(E, P)

Remark 1. The program given below has one major shortcoming. As explained in section
2.3, it is necessary to add generators of the 2-torsion subgroup to the list of points, prior to
calculating any images by the homomorphism we constructed. A consequence is that we
may find a dependence relation that only includes these added points.

With a little bit of work, however, this may be avoided. For instance, we can include
a verification step, and re-run the algorithm using different vectors from the kernel of A
should the found dependence relation not include any of the supplied rational points. Here
A is the matrix with the images of the points by the homomorphism ε as its columns.

/∗ Thi s f u n c t i o n d e t e r m i n e s i f a s e t P o f n r a t i o n a l p o i n t s on an
e l l i p t i c c u r v e E i s i n d e p e n d e n t . I f not , i t r e t u r n s an e x p l i c i t d e p e n d e n c e
r e l a t i o n in t h e form o f a v e c t o r o f c o e f f i c i e n t s [ c1 , . . . , cn ] . I f
dep form == 0 ( which i t i s by d e f a u l t ) , t h e c o m b i n a t i o n c1∗P1 + . . . + cn∗Pn
always e q u a t e s t o t h e i d e n t i t y e l e m e n t . For some p u r p o s e s t h i s i s not
p r e f e r r e d , in which c a s e we j u s t want t o f i n d some r e l a t i o n such t h a t
c1∗P1 + . . . + cn∗Pn i s t o r s i o n . In t h a t c a s e , make s u r e dep form == 1 . These
v e c t o r s o f c o e f f i c i e n t s a r e a lways g i v e n with e l e m e n t s w i t h o u t common f a c t o r s .
The v a r i a b l e s maxprimes and maxi t ( by d e f a u l t n + 20 and 20 , r e s p e c t i v e l y )
d e t e r m i n e how many good pr im es t o c o n s i d e r b e f o r e a t t e m p t i n g t o f i n d an
e x p l i c i t d e p e n d e n c e r e l a t i o n , and how many i t e r a t i o n s t o per form ,
r e s p e c t i v e l y .

The o u t pu t [ dep , rhs , d e p r e l ] c o n s i s t s o f
− dep : 1 i f P i s i n d e p e n d e n t , 0 o t h e r w i s e ,
− r h s : t h e e v a l u a t i o n o f c1∗P1 + . . . + cn∗Pn ,
− d e p r e l : t h e e x p l i c i t d e p e n d e n c e r e l a t i o n g i v e n as a v e c t o r o f

c o e f f i c i e n t s , a lways a v e c t o r o f z e r o s i f dep == 1 . ∗ /
e l ldep ( E , P , depform , maxprimes , maxit ) = {

l o c a l ( nold , Eold , Pold , n , v , F , D, f , deprel , tors , t o r s p o i n t s , twotors ,
ntwotors , rhs , dep ) ;

dep = 0 ;
nold = #P ;
Eold = E ;
Pold = P ;

/∗ Check i f e a c h p o i n t in Pold l i e s on E ∗ /
for ( i = 1 , nold ,

i f ( e l l i s o n c u r v e ( E , P [ i ] ) == 0 ,
e r r o r ( ” not a l l points l i e on the s p e c i f i e d e l l i p t i c curve ” ) ;
return (NULL) ;

) ;
) ;

/∗ S e t maxprimes and maxi t t o d e f a u l t v a l u e s i f n o n s p e c i f i e d ∗ /
i f ( maxprimes == 0 , maxprimes = nold + 2 0 ) ;
i f ( maxit == 0 , maxit = 2 0 ) ;
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/∗ Determine t h e c o m p l e t e t o r s i o n subgroup . ∗ /
t o r s p o i n t s = e l l t o r s p o i n t s ( E ) ;

/∗ Determine g e n e r a t o r s o f t h e 2− t o r s i o n subgroup o f E , i f non−t r i v i a l . ∗ /
ntwotors = 1 ;
twotors = vec tor ( 0 ) ;
for ( i = 1 , # t o r s p o i n t s ,

i f ( e l l o r d e r ( E , t o r s p o i n t s [ i ] ) == 2 ,
twotors = concat ( twotors , [ t o r s p o i n t s [ i ] ] ) ;

) ;
) ;
i f (# twotors == 0 , twotors = NULL) ;
i f (# twotors == 3 , twotors = [ twotors [ 1 ] , twotors [ 3 ] ] ) ;

/∗ Keep t h e o r i g i n a l c u r v e and l i s t o f p o i n t s t o use l a t e r on , and add t h e
g e n e r a t o r s o f t h e 2− t o r s i o n subgroup t o t h e l i s t o f p o i n t s . ∗ /

i f ( twotors != NULL, P = concat ( P , twotors ) ) ;
n = #P ;

/∗ Put t h e c u r v e e q u a t i o n i n t o t h e form y ˆ2 = F ( x ) wi th i n t e g e r c o e f f . ∗ /
v = [ 1 , 0 , −E [ 1 ] / 2 , −E [ 3 ] / 2 ] ;
E = el lchangecurve ( E , v ) ;
P = e l l changepoint ( P , v ) ;
E = e l l i n t e g r a l m o d e l ( E , &v ) ;
P = e l l changepoint ( P , v ) ;

/∗ l h s o f t h e e l l i p t i c c u r v e e q u a t i o n ∗ /
F = Pol ( [ 1 , E [ 2 ] , E [ 4 ] , E [ 5 ] ] ) ;
D = pold isc ( F ) ;
f = deriv ( F ) ;

/∗ S t o r e d e p e n d e n c e r e l a t i o n s . ∗ /
r e l a t i o n s = matrix ( maxit , 3 ) ;

for ( i t = 1 , maxit ,
l o c a l ( goodPr , goodR , kp , A) ;

/∗ I n i t i a l i z a t i o n ∗ /
goodPr = vector ( 0 ) ; goodR = vector ( 0 ) ; kp = vector ( 0 ) ;
A = matrix ( n , 0 ) ;

/∗ Keep add ing c o o r d i n a t e s t o t h e homomorphism f o r a d d i t i o n a l good pr i mes ∗ /
while ( matrank (A) < n & #goodPr < maxprimes ,

l o c a l ( prev , temp , end , p , roots , ncol ) ;

i f ( matsize ( goodPr ) [ 2 ] == 0 , prev = 3 , prev = goodPr [# goodPr ] ) ;

/∗ Find t h e nex t good pr ime with kp > 0 and s t o r e r o o t s o f F mod p ∗ /
temp = nextgoodprime (D, F , prev ) ;
goodPr = concat ( goodPr , [ temp [ 1 ] ] ) ;
goodR = concat ( goodR , [ temp [ 2 ] ] ) ;
kp = concat ( kp , [ temp [ 3 ] ] ) ;

/∗ A b b r e v i a t e t o d e c l u t t e r ∗ /
end = #goodPr ;
p = goodPr [ end ] ;
r o o t s = goodR [ end ] ;

/∗ R e s i z e A ∗ /
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i f ( kp [ end ] == 1 , A = concat (A, vec tor ( n ) ˜ ) , A = concat (A, matrix ( n , 2 ) ) ) ;
ncol = matsize (A) [ 2 ] ;

/∗ Loop through a l l p o i n t s P1 , . . . , Pn and u pd a t e t h e l a s t column ( s ) o f A ∗ /
for ( i = 1 , n ,

l o c a l (Q, u , w) ;

Q = P [ i ] ;
u = numerator (Q[ 1 ] ) ;
w = denominator (Q[ 2 ] ) / denominator (Q[ 1 ] ) ;

i f (Mod( u , p ) != Mod( r o o t s [ 1 ]∗wˆ 2 , p ) ,
A[ i , ncol − kp [ end ] + 1] = quadChar ( u − r o o t s [ 1 ]∗wˆ 2 , p ) ;

,
A[ i , ncol − kp [ end ] + 1] = quadChar ( subst ( f , x , r o o t s [ 1 ] ) , p ) ;

) ;

i f ( kp [ end ] == 2 ,
i f (Mod( u , p ) != Mod( r o o t s [ 2 ]∗wˆ 2 , p ) ,

A[ i , ncol ] = quadChar ( u − r o o t s [ 2 ]∗wˆ 2 , p ) ;
,

A[ i , ncol ] = quadChar ( subst ( f , x , r o o t s [ 2 ] ) , p ) ;
) ;

) ;
) ;

) ;

/∗ We can on ly c o n c l u d e t h e p o i n t s a r e i n d e p e n d e n t i f A has rank A. I f A
d o e s not have rank n , we t r y t o f i n d an e x p l i c i t d e p e n d e n c e r e l a t i o n . ∗ /

deprel = NULL;
i f ( matrank (A) == n ,

deprel = vec tor ( n ) ;
dep = 1 ;

,
l o c a l ( kervec , combvec , Q, R , k , eq , d i f f ) ;

/∗ Find a v e c t o r in t h e k e r n e l o f A˜ ∗ /
kervec = matker (A˜ ) [ , 1 ] ;
combvec = vector ( length ( kervec ) , i , ( kervec [ i ] == Mod( 1 , 2 ) ) ) ;

/∗ C o n s t r u c t t h e f i r s t c o m b i n a t i o n G = c1P1 + . . . + cnPn . ∗ /
r e l a t i o n s [ i t , 1 ] = combvec ;

/∗ E v a l u a t e c1∗P1 + . . . + cn∗Pn ∗ /
Q = ellsum ( E , P , combvec ) ;
r e l a t i o n s [ i t , 3 ] = Q;

/∗ I f Q i s a t o r s i o n p o i n t s , we have found a d e p e n d e n c e r e l a t i o n ,
so we a r e done . ∗ /

i f ( e l l o r d e r ( E , Q) != 0 ,
deprel = lincomb ( r e l a t i o n s , i t ) ;
break ;

) ;

/∗ Check i f Q has a t o r s i o n d i f f e r e n c e wi th some p o i n t Q ’ e a r l i e r
o b t a i n e d , in which c a s e we have found a d e p e n d e n c e r e l a t i o n as w e l l . ∗ /

i f ( i t >= 2 ,
eq = 0 ;

41



/∗ Find such a p o i n t . ∗ /
for ( k = 1 , i t − 1 ,

d i f f = e l ladd ( E , Q, e l l n e g ( E , r e l a t i o n s [ k , 3 ] ) ) ;
i f ( e l l o r d e r ( E , d i f f ) != 0 , eq = k ; break ; ) ; ) ;

/∗ I f such a p o i n t has be en found , c o n s t r u c t t h e f i n a l d e p e n d e n c e
r e l a t i o n and b r e a k from t h e main l o o p ∗ /

i f ( eq != 0 ,
deprel = 2 ˆ ( i t −1) ∗ ( lincomb ( r e l a t i o n s , i t ) − lincomb ( r e l a t i o n s , eq ) ) ;
break ;

) ;
) ;

/∗ Otherwise , we c h e c k i f Q i s in 2E (Q) by c h e c k i n g i f we can h a l v e Q.
I f so , we t r y t o l i f t t h e d e p e n d e n c e r e l a t i o n from E (Q) / 2 E (Q) . ∗ /

R = elldivbytwo ( E , Q, t o r s p o i n t s ) ;
i f (R == NULL,

/∗ In t h i s c a s e Q i s not in 2E (Q) , so t h e number o f good pr imes i s
not s u f f i e n t f o r t h e homomorphism t o be i n j e c t i v e . ∗ /

p r i n t ( ”Homomorphism not i n j e c t i v e f o r [ maxprimes ] good primes , ” ) ;
p r i n t ( ” i n c r e a s e [ maxit ] and repeat ” ) ;
return ( [NULL, NULL, NULL ] ) ;

,
/∗ Q = c1∗P1 + . . . + cn∗Pn i s in 2E (Q) , s o we r e p l a c e a p o i n t Pi f o r

which c i = 1 by R = Q/ 2 and r e p e a t t h e p r o c e s s ∗ /
for ( i = 1 , n , i f ( combvec [ i ] == 1 , k = i ; break ; ) ; ) ;
r e l a t i o n s [ i t , 2 ] = k ;
P [ k ] = R ;

) ;
) ;

) ;
i f ( deprel == NULL,

p r i n t ( ” Resul t s inconc lus ive , i n c r e a s e [ maxit ] . ” ) ;
return ( [NULL, NULL, NULL ] ) ;

) ;

/∗ Di v ide by any common f a c t o r s in t h e d e p e n d e n c e v e c t o r , and r e t u r n t h e
r e s u l t . ∗ /

deprel = deprel [ 1 . . nold ] ;
i f ( dep == 0 & gcd ( deprel ) != 0 , deprel /= gcd ( deprel ) ) ;
rhs = ellsum ( Eold , Pold , deprel ) ;
i f ( depform == 0 ,

deprel ∗= e l l o r d e r ( Eold , rhs ) ;
rhs = [ 0 ] ;

) ;
return ( [ dep , rhs , deprel ] ) ;

}
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elltorspoints(E)

/∗ Compute t h e t o r s i o n subgroup o f E from e l l t o r s ( E ) . Note t h i s may be
s h o r t e n e d us ing Mazur ’ s theor em . ∗ /

e l l t o r s p o i n t s ( E ) = {
l o c a l ( tors , t o r s p o i n t s ) ;
t o r s = e l l t o r s ( E ) ;
i f ( t o r s [ 1 ] == 1 ,

t o r s p o i n t s = [ [ 0 ] ] ;
,

t o r s p o i n t s = e l l t o r s p o i n t s h e l p e r ( E , e l l t o r s ( E ) , 1 ) ;
) ;
return ( t o r s p o i n t s ) ;

}

e l l t o r s p o i n t s h e l p e r ( E , tors , index ) = {
l o c a l ( t o r s p o i n t s , Q, new , newQlist ) ;

t o r s p o i n t s = vec tor ( 0 ) ;

/∗ Base s t e p ∗ /
i f ( index == length ( t o r s [ 2 ] ) ,

for ( i = 0 , t o r s [ 2 ] [ index ] − 1 ,
Q = el lmul ( E , t o r s [ 3 ] [ index ] , i ) ;
t o r s p o i n t s = concat ( t o r s p o i n t s , [Q ] ) ;

) ;

, /∗ R e c u r s i v e s t e p ∗ /
new = e l l t o r s p o i n t s h e l p e r ( E , tors , index + 1 ) ;

for ( i = 0 , t o r s [ 2 ] [ index ] − 1 ,
Q = el lmul ( E , t o r s [ 3 ] [ index ] , i ) ;
newQlist = vec tor (#new , k , e l ladd ( E , Q, new[ k ] ) ) ;
t o r s p o i n t s = concat ( t o r s p o i n t s , newQlist ) ;

) ;
) ;

return ( t o r s p o i n t s ) ;
}

ellsum(E, P, v)

/∗ E v a l u l a t e s v1∗P1 + . . . + vn∗Pn on E f o r a l i s t o f p o i n t s P and a v e c t o r
o f c o e f f i c i e n t s v . ∗ /

ellsum ( E , P , v ) = {
i f ( v == NULL, return (NULL ) ) ;
l o c a l (Q, n ) ;

n = min ( length ( P ) , length ( v ) ) ;
Q = i f ( v [ 1 ] != 0 , e l lmul ( E , P [ 1 ] , v [ 1 ] ) , [ 0 ] ) ;

for ( i = 2 , n ,
i f ( v [ i ] != 0 , Q = el ladd ( E , Q, el lmul ( E , P [ i ] , v [ i ] ) ) ) ;

) ;

return (Q) ;
}
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nextgoodprime(D, F, q)

/∗ Finds t h e nex t good pr ime p a f t e r q with kp != 0 , t h e r o o t s o f F mod p in
Z/ pZ and kp , where D i s t h e d i s c r i m i n a n t o f F . ∗ /

nextgoodprime (D, F , q ) = {
l o c a l ( p , roots , kp ) ;
r o o t s = vec tor ( 0 ) ;
p = q + 1 ;

/∗ Find t h e nex t good pr ime p with kp != 0 ∗ /
while (Mod(6∗D, p ) == Mod( 0 , p ) | | # r o o t s == 0 ,

p = nextprime ( p + 1 ) ;
r o o t s = polrootsmod ( F , p ) ;

) ;

kp = (# r o o t s == 1) + 2∗ (# r o o t s == 3 ) ;
return ( [ p , roots , kp ] ) ;

}

quadChar(x, p)

/∗ Returns 1 i f x i s a q u a d r a t i c r e s i d u a l mod p , 0 o t h e r w i s e ∗ /
quadChar ( x , p ) = {

i f ( kronecker ( l i f t ( x ) , p ) == −1, return (Mod( 1 , 2 ) ) , return (Mod( 0 , 2 ) ) )
}

elldivbytwo(E, Q, tors)

/∗ Thi s i s a s i m p l i f i c a t i o n o f t h e more g e n e r a l d ivideByTwo a l g o r i t h m from
Appendix G in ( Si lverman , 2000) t o c u r v e s g i v e n by an a f f i n e
e q u a t i o n o f t h e form y ˆ2 = x ˆ3 + a2x ˆ2 + a4x + a6 .

Find R such t h a t Q = [ 2 ]R on E , or r e t u r n NULL i f no such R e x i s t s ,
h e r e t o r s i s t h e c o m p l e t e t o r s i o n sugroup o f E , not t o be c o n f u s e d with
e l l t o r s ( E ) . ∗ /

el ldivbytwo ( E , Q, t o r s ) = {
l o c a l ( a1 , a2 , a3 , a4 , a6 , alp , bet , b2 , b4 , b6 , b8 , G, x , y ) ;
[ a1 , a2 , a3 , a4 , a6 ] = E [ 1 . . 5 ] ;
[ alp , bet ] = Q;

/∗ Now a1 = a3 = 0 . ∗ /
b2 = 4∗a2 ;
b4 = 2∗a4 ;
b6 = 4∗a6 ;
b8 = 4∗a2∗a6 − a4 ˆ 2 ;

G = Pol ( [ 1 , −alp ∗4 , −(b4 + alp∗b2 ) , −(2∗b6 + 2∗ alp∗b4 ) , −(b8 + alp∗b6 ) ] ) ;
x = f i n d r r (G) ;

i f ( x == NULL,

44



return (NULL) ;
,

l o c a l ( c0 , c1 , c2 ) ;
c2 = −3∗alp ;
c1 = −(2∗a2∗alp + a4 ) ;
c0 = −(a4∗alp + 2∗a6 ) ;

/∗ In c a s e b e t = 0 , Q i s a 2− t o r s i o n p o i n t , s o we must
c h e c k i f t h e r e i s a 4− t o r s i o n p o i n t R such t h a t 2R = Q. ∗ /

i f ( bet != 0 ,
y = ( x ˆ3 + c2∗x ˆ2 + c1∗x + c0 ) / (2∗ bet + a1∗alp + a3 ) ;

,
l o c a l ( f l a g ) ;
f l a g = 0 ;
for ( i = 1 , # tors ,

i f ( e l l o r d ( E , t o r s [ i ] ) == 4 ,
i f ( e l lmul ( E , t o r s [ i ] , 2 ) == Q,

[ x , y ] = t o r s [ i ] ;
f l a g = 1 ;
break ;

) ;
) ;

) ;
i f ( f l a g == 0 , return (NULL ) ) ;

) ;
return ( [ x , y ] ) ;

) ;
}

findrr(F)

/∗ Find a r a t i o n a l r o o t o f F , o r r e t u r n NULL i f f has no r a t i o n a l r o o t s ∗ /
f i n d r r ( F ) = {

l o c a l ( k , f a c t o r s , f ) ;

k = 0 ;
f a c t o r s = f a c t o r ( F ) ;

for ( i = 1 , matsize ( f a c t o r s ) [ 1 ] ,
i f ( poldegree ( f a c t o r s [ i , 1 ] ) == 1 , k = i ; break ; ) ;

) ;

i f ( k == 0 ,
return (NULL) ;

,
f = f a c t o r s [ k , 1 ] ;
return (−p o l c o e f f ( f , 0)/ p o l c o e f f ( f , 1 ) ) ;

)
}
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lincomb(relations, iteration)

/∗ C o n s t r u c t s a r e l a t i o n Q = c1P1 + . . . + cnPn from a s e q u e n c e o f r e l a t i o n s
Q( i ) = c1 ( i ) P1 ( i ) + . . . + cn ( i ) P1 ( i ) in ’ r e l a t i o n s ’ , where ’ i t e r a t i o n ’ i s
t h e i n d e x o f t h e l a s t i t e r a t i o n s t e p . ∗ /

lincomb ( r e l a t i o n s , i t e r a t i o n ) = {
l o c a l ( n , k , curr , prev , g , i n c r ) ;
n = length ( r e l a t i o n s [ 1 , 1 ] ) ;
k = matsize ( r e l a t i o n s ) [ 1 ] ;
g = r e l a t i o n s [1 . . i t e r a t i o n − 1 , 2 ] ;
i n c r = vector ( n ) ;

/∗ Base c a s e ∗ /
i f ( i t e r a t i o n == 1 ,

return ( r e l a t i o n s [ 1 , 1 ] ) ;

, /∗ R e c u r s i v e s t e p ∗ /
curr = r e l a t i o n s [ i t e r a t i o n , 1 ] ;

/∗ Loop through e a c h c o e f f i c i e n t ∗ /
for ( i = 1 , n ,

l o c a l ( index ) ;

/∗ Find t h e most r e c e n t i t e r a t i o n where Pi was r e p l a c e d ,
o r v e r i f y t h a t Pi has not be en r e p l a c e d ∗ /

index = 0 ;
f o r s t e p ( j = i t e r a t i o n − 1 , 1 , −1,

i f ( i == g [ j ] , index = j ; break ; ) ;
) ;

/∗ I f in f a c t a Pi was r e p l a c e d , a d j u s t t h e c o m b i n a t i o n a p p r o p r i a t e l y . ∗ /
i f ( index != 0 ,

/∗ Thi s i s where t h e r e c u r s i o n t a k e s p l a c e ∗ /
prev = lincomb ( r e l a t i o n s , index ) ;

prev ∗= curr [ g [ index ] ] / 2 ;
curr [ g [ index ] ] = 0 ;
i n c r += prev ;

) ;
) ;
curr += i n c r ;

) ;

return ( curr ) ;
}
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