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Abstract—Where blind deconvolution is the recovery of a true image from a (noisy) convolved image, non-blind deconvolution is
the recovery of a true image from the point spread function it is convolved with and a (noisy) convolved image. Four blind and four
non-blind deconvolution methods were assessed and compared. Experimental evaluation was performed with different noise types
(i.e. shotnoise, Gaussian noise and impulse noise), noise intensities, point spread function types (i.e. out-of-focus blur, Gaussian
blur, linear motion blur and non-linear motion blur), point spread function sizes, and true images. The results of the said empirical
evaluation were presented in this document. Correlations were found between variables (such as method, noise type, noise intensity,
etc.) and reconstruction quality as well as runtime and memory usage. The in this document presented results indicated that the use

case dictates which deconvolution method is appropriate.

1 INTRODUCTION

The main sources of image degradation in many imaging systems are
convolution (resulting in a blurred image) and contamination with a
combination of different types of noise (resulting in undesired specks)
[21, 2]. Where convolution is caused by the band-limited nature of
imaging systems, bad focus or motion, noise is caused by the elec-
tronics of the recording and transmission processes [21, 2] or photons.

Reducing the said degradation without image processing may be
impossible in practice. For example, in x-ray imaging improved image
quality occurs with increased x-ray beam intensity, which is bad for
the x-ray subject’s health [15]. In areas ranging from microscopy to
astronomy, deconvolution of images is required to (partially) remove
undesired convolution from noisy images [9, 21].

The blurring and noise adding process may be modeled as the linear
shift-invariant system

g=f®h+e, (1)

where g denotes the blurred image with noise, f is the true image, ®
is the convolution operator, £ is the point spread function (PSF), and
€ is the additive noise [6, 15]. A is nonnegative and has a small sup-
port relative to the size of f [16]. N.B.: The system assumes uniform
blurring [20] and additive noise.

In non-blind deconvolution, f is estimated from a given g and A [6].
It may be hard in practice to obtain the PSF, giving rise to the blind
deconvolution problem. For example, in live video streaming the PSF
may not be pre-determinable to allow non-blind deconvolution [15].
In blind deconvolution, f and /i are estimated from a given g. An

estimate of f is denoted as fand an estimate of 4 is denoted as % in
the remainder of this document.

(c) Deconvolved image f

(a) True image f (b) Degraded image g
Fig. 1: A true image (a) was convolved and applied noise to, which
resulted in (b). Thereafter, (b) was deconvolved by a deconvolution
method, which resulted in (c). Fig. (c) is an estimate of (a).
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Both blind and non-blind deconvolution are ill-posed problems. In
blind deconvolution, multiple combinations of f, & and € may result
in one g.

In non-blind deconvolution with the absence of noise, deconvolu-
tion is equal to division in the frequency domain. Perfect deconvolu-
tion is hence performed (if §(%) # 0) by computing

where § is the Fourier transform operator and §~! is the inverse
Fourier transform operator. However, perfect deconvolution may be
impossible in the presence of noise. € may be unknown or only par-
tially known and can hence not e.g. be subtracted when there is con-
tamination with additive noise. Due to the existence of noise €, in-
version of the PSF is often ill-conditioned: The direct inverse of the
function usually has a large magnitude at high frequencies, resulting in
much more noise in the reconstructed image [15]. Furthermore, mul-
tiple combinations of f and € can generate one g, making the problem
ill-posed.

To overcome the ill-posed nature of the problem, deconvolution
methods embed hard constraints or regularization: prior knowledge
of f,hand € [2, 1].

Four blind [1, 14, 17, 12] and four non-blind [9, 13, 7, 8] deconvo-
lution methods were assessed and compared. Experimental evaluation
was performed with different noise types (i.e. shotnoise, Gaussian
noise and impulse noise), noise intensities, PSF types (i.e. out-of-
focus blur, Gaussian blur, linear motion blur and non-linear motion
blur), PSF sizes, and true images. The results of the said empirical
evaluation are presented in this document.

The compared methods are detailed in Section 2. The experimental
setup is described in Section 3. Experimental results are presented in
Section 4. Results are discussed in Section 5. Conclusions are drawn
in Section 6. Future work is outlined in Section 7.

2 DESCRIPTION OF METHODS

The evaluated deconvolution methods are detailed in this section. In-
formation provided in any subsection of this section is (obviously)
derived from the in that subsection referenced deconvolution method

proposing paper.

2.1 Blind Image Deblurring With Unknown Boundaries Us-
ing Alternating Direction Method Of Multipliers (mB7)

The blind deconvolution method proposed in [1] uses the optimization
tool “Alternating direction method of multipliers” (defined in [5]) and
initially focuses on main edges of an image and later takes details into
account. Unknown boundary conditions are assumed by the method
as well as a positive, uniformly applied PSF with limited support.

Let g, f, and & be lexicographically ordered vectors containing pix-
els during the remainder of the description of this method. g € R" is



Algorithm 1 Blind Image Deblurring With Unknown Boundaries Us-
ing Aternating Direction Method Of Multipliers.

Require: Blurred image g
Require: Parameters g, A, < 1,u>0,p
Require: Stopping criteria S and S3.

1: Set7 to the identity filter, f =g

2: repeat

3: G/ =F; forj=1,.,m

4  G"' =H

5: u(l) = .= u(’”> = U

6: ”m+l — p

7: dg =0 forj=1,.,m+1

8: ”0 = ij forj =1,....m+1

9: f ADMMF(ug, dg) ~ i.e. miny Cy (f, h)
10: = G'h forj =1,...m+1

11: h = ADMMH(ug, do)  i.e. min, Cy (f, h)
12: A= oA

13: until Stopping criterion Sy is satisfied
return Deconvolved image f.
return Kernel estimate /.

14: procedure ADMMF (uq,dp)

15: k=20

16: repeat

17: e = L (G (u] +df)

18: K = (pH'H+puY? F/F;)"!

19: a1 = KpHT (@ 4+ di ) + p X F1 (uy +d)))
20: for j = 1tom+1do

21: if j < m then

22: uj_ =v-shrink((G/zz —dl),A/u.q)

23: else ; ) )
24 ”k+1 = (pL+M'M) ' (M" g+ p(G/zy1 —dY))
25: end if ) )

26: d,iJrl = d (G]ZkJrl_uiJrl)

27: end for

28: k=k+1

29: until Stopping criterion S, is satisfied

30: return u

31: end procedure

32: procedure ADMMH (ug,dy)

33: k=20

34: repeat

35 rerr = Loy w(GHT (u] +df)

36: g = (IXTX 4 1) !

37: for j = 1to2do

38: if j == 1 then

39: = (uI+M M)~ (M7 g+ u(G/zpyy —df))
40: else ; ) )

41: . = proxy, (G/zp41 —dj)

42: end if

43: dj = = d/ —(GjZk+1—uk+1)

44: end for

45: k=k+1

46: until Stopping criterion S, is satisfied

47: return u

48: end procedure

the degraded image, f € R™ is the true image, and & € R™ is the PSF.
H € R" is a matrix representing convolution with 4. X is a matrix
representing convolution with f. M € {0, 1} is a masking matrix.

The cost function minimized by the method is

Cy(f,h) = ng MHfHZHZ|\F,f\|zq+zs+(h>
=
where
0 heS+
e = {2 4ot

S+ is the set of filters with positive entries in a given support to enforce
a kernel with positive entries, F; € R**™ is a matrix corresponding to
four directional Sobel edge filters at pixel i, and ¢ € [0, 1].

In a loop, until stopping criterion Sy is satisfied, the cost function
is first minimized keeping / constant, then it is minimized keeping f
constant. Both of the previous minimizations are performed with the
aforementioned alternating direction method of multipliers. Lastly,
regularization parameter A > 0 is decreased.

The complete algorithm is summarized in Algorithm (1). N.B.: I
denotes an identity matrix. The used vectorial shrinkage function
v-shrink(g, v, ¢) is defined as

if sl #0

s q-2
v-shrink(g, ,q) — {gshrmk(LgHg\b 4 gl

where  shrink(g, y,q) = min/ 3[|g— FI3+ yIf]7.

The MATLAB implementation provided by the algorithm’s authors
was used to generate results!. Free permission is given to use the
implementation for nonprofit research purposes.

2.2 Blind Deconvolution Using a Normalized Sparsity
Measure (mB2)

The blind deconvolution method proposed in [14] uses the ratio of the
¢1 norm to the ¢, norm (¢ / ¢5) on the high frequencies of an image
as regularization.

The ¢; norm can penalize the high-frequency bands. As image noise
is present in high-frequency bands, minimizing the norm is a way of
denoising an image. Penalizing the high-frequency bands will (obvi-
ously) also favour blurry images.

The ¢, / ¢, function is a normalized version of ¢;, making it scale
invariant. Blur decreases the ¢, norm more than the ¢; norm, making
the presence of blur derivable from the ratio. Both blur and noise
increase the ratio.

Gaussian independent identically distributed noise is assumed to
have been added. Uniform blur is assumed, but the algorithm can be
extended to allow 3-D motion blur deconvolution.

The cost function which is minimized embeds the ¢; / ¢, norm as
second term:

1111
I1£1l2

where A and y control the relative strength of the kernel and image
regularization terms. ¢| regulularization is applied to % to reduce noise
in the kernel.

It should be noted that ¢; / #> and hence the cost function is non-
convex. To combat this, the image estimate and PSF estimate are in-
terchangeably minimized.

The image estimate is updated as

f;llnfl\lf(?@h gll3+ 7 + wllalh,

[1f111
[1f1l27

where the denominator is kept constant during a minimization itera-
tion because the minimized function is otherwise non-convex. Iterative
shrinkage-thresholding algorithm (ISTA) is a method to solve general

mind||f ©h— 83+ 7

lhttp ://www.lx.it.pt/~mscla/BID_ADMM_UBC.htm



linear inverse problems. The forenamed algorithm is used to update
the image estimate.
The PSF estimate is updated as (constrained by 2 > 0, ;h; = 1)

rr}linll\f®h—g\|§+vf||h|\1-

The complete algorithm is summarized in Algorithm (2). Please
note the following: H is the matrix which corresponds to convolution
with /; Derivative filters A, and A, are equal to [1,—1] and [1,—1]7
respectively; Multiscale estimation of the kernel using a coarse-to-fine
pyramid of image resolutions is looped over on line 2 to avoid some
local minima of the cost function; S is the soft shrinkage operation on
a vector:

Sa(x);i = max(|x;| — o, 0) sign(x;).

Algorithm 2 Blind Deconvolution Using a Normalized Sparsity Mea-
sure.

Require: Blurred image g
Require: Parameters a, A, y, M, N, ¢
1: Apply A, and A, to g, creating y
2: for coarse-to-fine levels do
3 x=XUPDATE(h,x)
7 = HUPDATE(h, x)
Interpolate solution to finer level as initialization.
: end for R N
: Deconvolve g using & to give sharp image f by minimizing

n;inll\fé@h —&l3+11Avgllo + |[Avella
return Deconvolved image f
return Kernel estimate /.

8: procedure XUPDATE(/,x0)
9: for j=0toM—1do

10: A= Al¥ s
11: xH = 1sTA(R, A X7)
12: end for

13: return Updated image x
14: end procedure

15: procedure HUPDATE(h,X)
16: Update & using unconstrained iterative
re-weighted least squares:

n1hin7L|\X®h—}’||%+‘I/HhH1~

17: Set negative elements to 0, and normalize.
18: return Updated kernel /
19: end procedure

20: procedure ISTA(, A,x0)
21: for j=0toN—1do

22: v;y—tHT(ij —y)
23: A =8, ()
24: end for

25: return Updated image x"
26: end procedure

The MATLAB implementation provided by the algorithm’s authors
was used to generate results?. Free permission is given to use the
implementation for research purposes.

2https://dilipkay.wordpress.com/
blind-deconvolution/

2.3 Efficient marginal likelihood optimization in blind de-
convolution (mB3)

The maximum a posteriori (MAPy ;) approach looks for a pair

(f,h) = maxlogp(f,h|g), which has sparse derivatives and mini-
mizes the convolution error. However, since the total contrast of all
derivatives in a blurred image is usually lower than in a sharp one,
MAP; ), tends to favor estimated pairs where 7 is a delta kernel and f
is the input blurred image g. To solve this problem, the blind decon-
volution method proposed in [17] optimizes the MAP, score instead.
Estimating the kernel alone is better conditioned because the number

of parameters to estimate is lower. The method estimates /4 by com-
puting

h = maxplhle) = max [ p(f,glh)df.
Taking the integral over all possible f is challenging. To combat this
problem, multiple strategies are proposed in the paper. The strategy
used to generate results was called “Free-energy algorithm with diag-
onal co-variance approximation” by the authors.

The method assumes Gaussian noise and a sparse kernel. The func-
tion minimized is

1Ay (I

202

hef—g|]?
~toep(e, i = ML E Ly
n iy

+c,

where ¢ denotes a constant, A; y(f) denotes the output of Ay ® f at
the ith pixel, n? is the variance of Gaussian noise, and A is a set of
derivative filters.

Minimization is performed by alternating between solving for the
kernel and solving for the image. Given 4, a mean latent image es-
timate f is computed using iterative reweighted least squares. A
weighted regularizer on the derivatives is added to the cost function
of convolution error minimized in this step. The covariance around
the mean image f is approximated with a diagonal matrix. Then, the
kernel is computed accounting for both the covariance and mean im-
age.

The complete algorithm is summarized in [17], Algorithm 1.

The MATLAB implementation provided by the algorithm’s authors
was used to generate results’. Free permission is given to use the
implementation for research purposes.

2.4 Blind deconvolution using alternating maximum a

posteriori estimation with heavy-tailed priors (mB4)

The blind deconvolution method proposed in [12] uses the MAPy ,
approach (see Section 2.3). The method assumes Gaussian noise.

Let during the remainder of the description of this method, g, f, and
h be vectors containing pixels (lexicographically ordered). As before,
g € R™ is the degraded image, f € R™ is the true image, and & € R”
is the PSE.

The function

L = —log(P(f,h|g))+const = g|f®h—g|%+Q(f)+R(h)-‘rconst

is minimized by chaining either f or & while keeping the other con-
stant. In each of the previous cases, the augmented Lagrangian method
is used. Q(f) and R(f) are regularizers.

0(f) = YA+ A1) 0<p<1,

l

where A, and A, are partial derivative operators. This term represents
the distribution of gradients of natural images.

Laplace distribution is enforced on the positive kernel values to
force sparsity and zero on the negative values through

R(r) = Y (), ®(h) = {fm M tse

3http://webee.technion.ac.il/people/anat.levin/



Algorithm 3 Blind deconvolution using alternating maximum a pos-
teriori estimation with heavy-tailed priors

Require: Blurred image g
Require: Parameters y, a, 3.
Require: Stopping criteria S and S3.
Require: Maximum number of iterations iter; x
1: for iﬁer =1to itelman do
2 f =FUPDATE(h, )
3: h= HUPDATE(E]?)
4: end for R
return Deconvolved image f.
return Kernel estimate /.

5: procedure FUPDATE(h, )
6:  W=0,1=0a0=0a)=0, j=0
7: repeat )
8: Solve (HH+ (AT A+ AT A))) [/ =
H g+ Q(Af(vfc +a) +AyT(v{v +a§)) for fit!
. i
o: {0 =
LUT,([Acf7 T —afli [Af7T — i), Vi
10: a,’é“ = a)jc:—AxfjH—i-vf:“
11: afvﬂ = a§fAyfj+]+v§+l
12: j=Jj+1
13: until Stopping criterion S is satisfied.

return Deconvolved image f.
14: end procedure

15: procedure HUPDATE(A, f)
16 W=0,a)=0,j=0

17: repeat

18: Solve (UTU+ B! = UTg+ B(v] +a]) for wi*!
19: WY = max((W/t —al); - §,0),Vi

20: a;;H = a;;fh-f‘*l +v;;+l

21: j=Jj+1

22: until Stopping criterion S, is satisfied.

return Kernel estimate 4.
23: end procedure

The complete algorithm is summarized in Algorithm (3). Please
note that LUT refers to a lookup table. U is convolutional operator
constructed from f.

The MATLAB implementation provided by the algorithm’s authors
was used to generate results*. Free permission is given to use the
implementation for research purposes.

2.5 Fast High-Quality non-Blind Deconvolution Using
Sparse Adaptive Priors (mNB1)

The non-blind deconvolution method proposed in [9] uses sparse adap-
tive priors which preserves strong edges, while penalizing ones below
a given threshold (noise level). The method assumes a linear blurring
model with Gaussian white noise. The reconstructed image is

5
f= mfin\lhf—gH%+ Y Alldsf —wsll3,
s=1

where the matrices dy, s € 1,..,5, represent the first and second-order-
derivative filter operators: Ay, Ay, Ayy, Ayy and Ayy. As > 0 are regular-
ization weights. wy allows to specify a set of priors on the derivatives

4http://zoi.utia.cas.cz/deconv_sparsegrad

of f, they are the expected or specified responses of these filters for the
true image f: wy = dgf. his a matrix representing convolution with
the blurring kernel. f and g are vectorized images as in mB1.

The complete algorithm is summarized in Algorithm (4). .* repre-
sents complex conjugate. ./ represents element-wise matrix division.
* is the element-wise matrix-product operator. H = F(h), G = F(g),
D; = F(ds), and W5 = F(ws). EPS() is an edge-preserving filter. A
threshold representing some noise level is represented by y.

Algorithm 4 Fast High-Quality non-Blind Deconvolution Using
Sparse Adaptive Priors.

Require: Blurred image g

Require: Blurring kernel £

Require: Parameters A, Y
1I: wg =0

2 A = H «H+Y>_ | A,D}+Dy
3: B = H**G—i—Zf:l?L‘YDj*WS
4 f =3 '(A./B)

50 f = EPS(f).

6wy = %”;){H.

7. A = H* «H+ Y| A,D} «Dy
8 B = H'+xG+Y>_ A,D} W,
9. f = § '(A./B)

return Deconvolved image f

An initial approximation is obtained in line 1-4 using Tikhonov reg-
ularization (i.e. with wy = 0). A new estimate is obtained by applying
an edge-preserving smoothing filter to the initial estimate to reduce
noise while preserving important edges in line 5. The actual regular-
ization priors as a set of sparse first and second-order derivatives of f
are computed in line 6. The final version of the deconvolved image is
obtained in line 7-9.

It should be noted that the algorithm limits border ringing artifacts
caused by the fact that real word convolution isn’t circular. To that
end, the input image is padded before performing deconvolution and
the result is cropped to remove the extra pixels. Padding is done by
replicating the images first and last columns and rows a number of
times depending on the kernel size.

The MATLAB implementation provided by the algorithm’s authors
was used to generate results>. Permission to use the said implementa-
tion appears to be given for research purposes or is otherwise granted
through fair use.

2.6 Fast Image Deconvolution using Hyper-Laplacian Pri-
ors (mNB2)

The non-blind deconvolution method proposed in [13] uses the heavy-
tailed (hyper-Laplacian) distribution of gradients in natural scenes as
priors. The method assumes the presence of zero mean Gaussian
noise. Frequency domain operations are used which assume circular
boundary conditions.

The cost function which is minimized is

. A
mink (SUon-gf+ SOR w3+ IR - 0F1B)
W i=1

+|w}|“+\w%|°‘),

where f is the true image of N pixels. A is a regularization weight.
Ay = [1, —1]and Ay = [I, — 1T Flx=(x®4;);forj = 1,....J.
B is an optimization weight. |.|* is a penalty function.

The cost function is minimized by separately minimizing for w and
f while keeping the other fixed.

5http://www.inf.ufrqs.br/~oliveira/pubs_files/FD/
FD_page.html



The complete algorithm is summarized in Algorithm (5). H is the
matrix corresponding to convolution with /.

Algorithm 5 Fast image deconvolution using hyper-Laplacian priors.

Require: Blurred image g

Require: Blurring kernel £

Require: Parameters By, Binc, Bmax, &, A
Require: Maximum number of iterations itermax

1: ﬁ = B()vf:g

2: Precompute the constant terms used in line 7.

3: while 8 < B4x do

4: fori=0 to itermax do

5: v = F{f

6: w = minw|w|°‘—|—%(w—v)2

7. J? — ! <S(Fl)‘*S(W')+8(F2)**S(W'2)+(7L/B)3(H)**S(8))
’ TR «F(F )+ (F)+F(F)+(A/B)F (H) +F(H)

8: end for

9: B = Binc *ﬁ

10: end while

return Deconvolved image f.

The MATLAB implementation provided by the algorithm’s authors
was used to generate results®. Permission to use the said implementa-
tion appears to be given for research purposes or is otherwise granted
through fair use.

2.7 An augmented Lagrangian method for total variation
video restoration (mNB3)

The non-blind deconvolution method proposed in [7] uses the aug-
mented Lagrangian method for total variation for restoration. The
method can be used for deconvolution of videos as well as images.
The method stacks the frames of a video to form a 3-D data struc-
ture. By imposing regularization functions along the spatial and tem-
poral direction, both spatial and temporal smoothness is enforced.
Two minimization problems can be solved by the method.
The TV/L2 minimization problem

RTINS A
mf;n §||Hf*g|\2+||f|\Tv,

as well as the TV/L1 minimization problem

mf}n ul[HF =gl + I fllzv.

The TV norm || f||7v mentioned in the previous is defined as

1A lrv = Y (BelAxsTil + ByllAy flil + Bel (A 1))

1

where Ay, A, and A, are the forward finite-difference operators along
respectively the horizontal, vertical, and temporal directions. B, B,
and f; are constants, and f; denotes the ith component of the vector
representation of f.

The TV/L2 minimization problem was solved during the performed
experiments. The complete algorithm is summarized in [7], Algorithm
1.

The MATLAB implementation provided by the algorithm’s authors
was used to generate results’. Free permission is given to use the
implementation for research purposes.

Shttps://dilipkay.wordpress.com/
fast-deconvolution/
"http://zoi.utia.cas.cz/deconv_sparsegrad

2.8 Handling Outliers in Non-blind Image Deconvolution
(mNB4)

The non-blind deconvolution method proposed in [8] was designed to
be robust against saturated/clipped pixels (due to overexposure), non-
Gaussian noise, and nonlinear camera response curves which violate
the linear blur model presented in Equation (1). It is assumed only
for inliers that additive noise is spatially independent, and follows a
Gaussian distribution. A shift-invariant PSF is assumed.

The complete algorithm is summarized in Algorithm (6).

Algorithm 6 Handling Outliers in Non-blind Image Deconvolution

Require:
Require:
Require:
Require:
Require:
Require:

Blurred image g
Blurring kernel &
Probability that gy is an inlier Py,.
Probability that g, is an outlier P,;.
Noise intensity parameter A.
o is the standard deviation of the Gaussian distribution.
Require: Maximum number of iterations iter;,x
Lwl = 1,wh =1,w) = 1Vx

2 f= ming Lowlllge— (h® Pall2 +Aw(f)
3: for iter = 1 toiteryq, do

Aglfﬁkﬁifﬁﬁig, e 70
4: E[my] = { ¥ (g:lf?.0)PutCPous if f? € DR
0 else
6: end for

return Deconvolved image f

Please note that DR is the dynamic range in the input image.
w(f) = LML )alla +wil[Av(Hall2}-
X

A is a Gaussian distribution. C is a constant defined as the inverse
of the width of the dynamic range in the input image. Aj, and A, are
differential operators along the x and y directions, respectively.

Observed pixel intensities are classified as inliers if their formation
satisfies Equation (1) or as outliers otherwise. The outliers are ex-
cluded from the deconvolution process. Since the said classification
is unknown, an expectation-maximization method which alternatingly
computes the expectation of the classification mask m and deconvolu-
tion using the expectation.

The MATLAB implementation provided by the algorithm’s authors
was used to generate results®. Free permission is given to use the
implementation for research purposes.

3 EXPERIMENTAL SETUP

A synthetic dataset was created consisting out of triples of a true image
f, a point spread function 4, and a convolved image with noise added
to it g. The eight deconvolution methods were each given exactly the
same third (and second in case of a non-blind deconvolution method)
elements of the 576 triples. Each of the said triples was created using a
unique combination of a kernel type (one of 4), kernel size (one of 3),
noise type (one of 3), noise intensity (one of 4), and true image (one of
4). Reconstruction quality and efficiency were determined for 4.608
combinations of an algorithm (one of 8) applied to one of the 576 data
set entries.

Furthermore, a synthetic dataset was created consisting out of
triples of a constant true image f at one of eight scales, a constant
point spread function & scaled with the same factor as the image, and
a convolved image with a constant amount and type of noise added to
it g. Reconstruction efficiency was determined for 64 combinations of
an algorithm (one of 8) applied to one of the 8 data set entries.

The experimental setup is described in detail in the remainder of
this section.

8https://github.com/CoupeLibrary/handleoutlier



3.1 Noise

Image degradation due to noise may be caused by noise types such as
shot, impulse, and Gaussian noise [4].

Shot noise is caused by the fact that electromagnetic waves consist
out of photos which are units which cannot be subdivided (i.e. no
fraction of a photon is possible) and are emitted with random variation
[4, 22]. When an imaging system records an image consisting out of
two pixels by counting photons for a number of milliseconds where the
true image would be uniform in gray level, shot noise may cause the
pixels to differ in gray level because a different number of photons for
each pixel is recorded. Shot noise has a probability density function
equal to that of the Poisson distribution [4]. Note that Poisson noise is
neither additive nor multiplicative [22].

Impulse (salt and pepper) noise may be caused by bit errors in data
transmission and is either equal to the maximum or minimum value a
pixel can have (e.g. 0 or 255 in an 8-bit image) [4]. Impulse noise may
also be caused by dead pixels [8].

Gaussian noise arises in amplifiers and detectors in imaging sys-
tems and has a probability density function equal to that of the Gaus-
sian distribution [4].

The robustness to all of the forenamed noise types was evaluated.
Noise intensity of different types of noise was made comparable by ex-
pressing noise intensity in PSNR dB, i.e. the difference between f ® h
and g in terms of PSNR. The commonly used metric Blurred Signal-
to-Noise Ratio (BSNR) was not used because the said metric assumes
additive noise [11]. To apply the noise types, the MATLAB function
imnoise was modified. The function does not take a value in dB as
input by default. To convert the input of the function to noise intensity
in dB, a binary search algorithm was implemented. Furthermore, all
existing random number generators were assigned constant seed val-
ues which make sure the same noise is applied when the function is
called with the same parameters.

3.2 Point spread functions

Multiple types of point spread functions were used to create blurred
images, each is illustrated in Fig. (2). The choice of point spread
functions was inspired by those used in [1].

An image containing bokeh which is visible in out-of-focus blur
is produced by PSF (a). Gaussian blur which corresponds to a low
pass filter is produced by PSF (b). Linear motion blur of which the
reconstruction may be easier than that of PSF (d) is produced by PSF
(c). Non-linear motion blur is produced by PSF (d).

N.B.: Natural images may contain non-uniform blurring. For ex-
ample, the size of bokeh in images may be bigger for objects which
are further away from the focus plane of a camera. Furthermore, 3D
rotation of the camera may have caused motion blur. The point spread
functions considered in the experiments are all spatially invariant be-
cause only very few of the considered methods are able to deal with
non-uniform blur.

The point spread functions were re-sized into multiple sizes and
convolved with the in Section 3.3 presented true images.

\\
D
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Fig. 2: Point spread functions producing (a) Out-of-focus, (b) Gaus-
sian, (c¢) Linear motion, and (d) Non-linear motion blur.

3.2.1

Convolution between true image f with size M x N and PSF & with
kernel size s x s (before padding) may be performed assuming for ex-
ample that pixels outside the boundary are equal to a constant (e.g.

Boundary conditions

0), are equal to the value of the nearest border pixel or that the whole
image is cyclically repeated.

All of the forenamed assumptions may be false. The boundary con-
dition most true to nature was used to apply convolution to the true
images: f and & are multiplied in the frequency domain. Thereafter, g
is cropped such that only the pixels

) s s s S}
W = M— - = - =
{(x,y)e \x>2/\x< 2/\y>2/\y<N >

are kept which are unaffected by the ambiguous boundary.

3.3 True images

Textures may be characterized as being either grainy, rough/bumpy,
smooth or uniform. Images were collected which contain one or more
of these characteristics. In order to allow for the results presented in
this document to be compared with those presented in [19], the same
true images were used. The images were used to create synthetically
blurred and noisy images.

The sun images contain smooth streams. Due to the smoothness, it
may be more difficult for blind methods to recover the PSF.

The moon images contain a very bumpy and rough surface. The
sharpness of the relatively sharp edge between the dark background
and moon in deconvolved images is interesting as well as the sharpness
of other bumpy parts of the image.

Image m2 and su2 contain a uniform black background. It is inter-
esting to observe to what extent noise is removed from these regions.
Furthermore, the strong edge between the background and foreground
will show to what extent the deconvolution methods introduce ringing
artifacts which are commonly introduced by deconvolution methods
near strong edges [18].

The images were re-sized such that they each consist of approxi-
mately an equal number of pixels. A better possibility to find a cor-
relation between image type and time and memory usage is in this
way aimed for. Results should still be well comparable with those
presented in [19] since the used metrics are invariant to image size.

Details about each of the true images are provided in Table (1). The
true images are illustrated in Fig. (3).

(m1) The King crater

(sul) Sun surface

(su2) Solar prominence

Fig. 3: True images as detailed in Table (1).



[ Id | Name | Size | Source
ml | The King crater | 416 x 416 | NASA®
m2 | The south pole 682 x 254 | Dr. M.H.F. Wilkinson'?
sul | Sun surface 538 x 322 | Dr. M.H.F. Wilkinson
su2 | Solar prominence | 526 x 329 | Dr. M.H.F. Wilkinson

Table 1: True images.

3.4 Metrics

Comparing restoration results requires a measure of image quality. Be-
cause the dataset is synthetic, quality measures which use both the true
and reconstructed as input were used. In order to assess the alike-
ness of deconvolved images with respect to their true image, the Peak
signal-to-noise ratio PSNR) and Structural similarity index (SSIM)
were used. These measures were chosen because they are well-known
metrics [10] which allow linking the results detailed in this document
with those presented in related papers.

In order to determine whether results need to be expressed in both
the SSIM and PSNR (i.e. using one of them doesn’t suffice), both were
computed in all performed experiments. Subsequently, the Spearman’s
rho correlation (defined in [3]) between the two metrics was computed.
The said value which is equal to —0.75 indicates that the two metrics
are not derivable from each other. A correlation of -1/+1 of the said
type indicates perfect derivability where a value of 0 indicates there is
no correlation. R

In each experiment, both metrics were computed between f and f,

T and h,and g and f.

3.4.1 Peak signal-to-noise ratio PSNR

A mean-squared error is strongly influenced by the range of gray lev-
els in images [9, 10]. Peak Signal-to-Noise Ratio PSNR avoids this
problem by scaling the MSE according to the image range [9, 10]. In
the presence of images with equal gray level range, the Spearman’s
rho correlation between the two metrics is (as expected) —1, making
it unnecessary to include results expressed in MSE.

The peak signal-to-noise ratio PSNR is defined as [9, 10]:

2

I
PSNR=101 x|
0810 MSE’

where 1,4, is the maximum signal extent (e.g. 28 = 255 in eight 8-
images), and MSE is the mean square error defined in equation (2).

MsE= Y Y [F- /1 @

where n is number of pixels making up f, f is the true image, and j?is
the deconvolved image.

A higher PSNR value indicates a higher image quality since it
approaches oo as the MSE approaches zero.

3.4.2 Structural similarity index SSIM
Structural similarity index [23] differs from PSNR in that it is consid-

ered to be correlated with the quality perception of the human visual
system [10]. The structural similarity index is defined as [10]:

~ ~ -~

where

S~ Zpps+G
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https://spaceflight.nasa.gov/gallery/images/
apollo/apollol6/html/asl6-122-19580.html
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Ly is the average of f, Kz is the average of f oy is the variance of f,

o; is the variance of fA, and o 7 is the covariance of f and f

In Equation (3), the closeness of the mean luminance of the two
images is evaluated by the first term. The closeness of the contrast
of the two images is evaluated by the second term. The correlation
coefficient between the two images is evaluated by the third term. The
positive constants Cy, C; and C3 are added to avoid a null denominator.

Where a SSIM value of O indicated that there is no correlation be-
tween the images, a value of 1 means that they are equal.

3.4.3 Computational complexity and memory usage

The computational efficiency of the deconvolution methods was com-
pared by considering their runtime in seconds after each method was
given the same input. The memory efficiency of the deconvolution
methods was compared by considering the peak memory allocation of
the function call initiating the deconvolution method after each method
was given the same input. The MATLAB profile function was used to
determine both runtime and peak memory allocation.

The memory and time complexity of the algorithms were estimated
as a function of image size in kB and pixels respectively. The ml
image and Gaussian kernel were resized with the same eight factors,
as detailed in Table (2).

[ ImageId | Sizeinpx [ SizeinkB [[ PSF [ Sizein px |

ml 500 x 500 739 KB b 7Tx7

ml 1000 x 1000 | 2.946 KB b 15x 15
ml 1500 x 1500 | 6.636 KB b 21 x 21
ml 2000 x 2000 | 11.789 KB b 29 x 29
ml 2500 x 2500 | 18.409 KB b 35x35
ml 3000 x 3000 | 26.490 KB b 43 x 43
ml 3500 x 3500 | 36.025 KB b 49 x 49
ml 4000 x 4000 | 47.018 KB b 57 x 57

Table 2: Test cases for runtime and memory usage evaluation.

3.5 Parameters and Implementation settings

Method parameters were manually tweaked to give the best results in
the presence of mediocre (35 dB) noise while balancing between speed
and quality.

The existing implementations which were used to generate results
were stripped to only include their core functionality, i.e. plotting and
printing of results as well as needless storing intermediate results were
disabled. Furthermore, methods which use lookup tables were config-
ured such that the tables need to be computed each time an image is
deconvolved. The previous was done to allow fair time/memory com-
parison.

MATLAB version 2018a was used to generate results.

4 EXPERIMENTAL RESULTS

Correlations were found between variables (such as method, noise
type, noise intensity, etc.) and reconstruction quality as well as run-
time and memory usage. The correlations which were discovered are
presented in this section. Note that when no correlation between vari-
ables is mentioned, none was observed.



4.1 Quantitative comparison
411

The influence of the noise type and intensity on reconstruction quality
is presented expressed in SSIM in Table (4) and expressed in PSNR in
Table (5).

Both of the forenamed tables consist out of two horizontal blocks.
The top one indicates results of the four blind and the bottom one in-
dicates the results of the four non-blind deconvolution methods. The
column named “N” indicates the noise type which was applied. “G” is
Gaussian noise, “S” is salt-and-pepper noise and “P” is Poisson noise.
The column named “I” indicates the intensity of the applied noise in
dB. Said values were calculated as explained in Section 3.1. Obvi-
ously, a noise intensity of e indicates the absence of noise. Each pair
of columns to the right of column “I” indicates the performance of
one of the eight compared methods. For each of the methods, the

SSIM/PSNR value between reconstructed image f and true image f
is indicated in the SSIM/PSNR columns. The “gain” columns indicate
how much the SSIM/PSNR value of the reconstructed image has in-
creased or decreased relative to the SSIM/PSNR value of convolved
and noised image g and true image f. A large value indicates a great
improvement, where a negative value indicates a reduction in quality.

Convolved and noised images g can differ in noise type and amount,
but also in true image, PSF type, and size. All non-bold values are
therefore medians of all results obtained for the indicated method,
noise type and amount.

The bold values underneath each of the two horizontal blocks indi-
cate overall median values. The bold values at the bottom of a noise
type block indicate the median of all results where the specified noise
type was applied.

Influence of noise on reconstruction quality

41.2

The influence of the point spread function type and size on reconstruc-
tion quality is presented expressed in SSIM in Table (6) and expressed
in PSNR in Table (7).

Both of the forenamed tables consist out of two horizontal blocks.
The top one indicates results of the four blind and the bottom one in-
dicates the results of the four non-blind deconvolution methods. The
column named “P” indicates the PSF type which was applied. Kernel

@,

a” creates out-of-focus blur, kernel “b” creates Gaussian blur, kernel
“c” creates linear motion blur and kernel “d” creates non-linear mo-
tion blur. The column named “S” indicates the width/height of the
applied blurring kernels in pixels. Each pair of columns to the right
of column “I” indicates the performance of one of the eight compared
methods. For each of the methods, the SSIM/PSNR value between re-
constructed image f and true image f is indicated in the SSIM/PSNR
columns. The “gain” columns indicate how much the SSIM/PSNR
value of the reconstructed image has increased or decreased relative to
the SSIM/PSNR value of convolved and noised image g and true im-
age f. A large value indicates a great improvement, where a negative
value indicates a reduction in quality.

Convolved and noised images g can differ in PSF type and size,
but also in true image, noise type, and size. All non-bold values are
therefore medians of all results obtained for the indicated method, PSF
type and amount.

The bold values underneath each of the two horizontal blocks indi-
cate overall median values. The bold values at the bottom of a PSF
type block indicate the median of all results where the specified PSF
type was applied.

Influence of PSF on reconstruction quality

41.3

The influence of true image on reconstruction quality is presented in
Table (8). The “Img” column indicates which true image was de-
convolved. The image identifiers are linked to image name, size and
source in Table (1). The true images are illustrated in Fig. (3).

Each pair of columns to the right of column “Img” indicates the
performance of one of the eight compared methods. For each of the
methods, the SSIM and PSNR “gain” value is indicated. The values
indicate either in terms of SSIM or PSNR how the reconstructed image

Influence of true image on reconstruction quality

has increased or decreased relative to the SSIM/PSNR value of con-
volved and noised image g and true image f. A large value indicates
a great improvement, where a negative value indicates a reduction in
quality.

Convolved and noised images g can differ in true image, but also in
PSF type and size, and noise type and size. All non-bold values are
therefore medians of all results obtained for the indicated true image.
The bold values indicate overall median values.

41.4

The influence of which point spread function type was used for convo-
lution on the reconstruction quality of the kernel by the blind decon-
volution methods is presented in Table (3). The column named “PSF”
indicates the PSF type which was applied. Kernel “a” creates out-of-
focus blur, kernel “b” creates Gaussian blur, kernel “c” creates linear
motion blur, and kernel “d” creates non-linear motion blur.

Each pair of columns to the right of column “PSF” indicates the per-
formance of one of the four blind methods. For each of the methods,
the SSIM and PSNR value is indicated between kernel approximation
7 and true kernel 4. All non-bold values are medians of all results
obtained for the indicated PSF type. The bold values indicate overall
median values.

Influence of PSF type on its reconstruction quality

[ Method B1 i Method B2 ]
[PSF][ SSIM | PSNR || SSIM_ | PSNR |
[a || 088727 | 3901393 || 092167 | 43.09829 |
[ b [ 001164 | 38.1657 || 001537 | 42.33528 |
[ c || 084416 | 3549457 [ 090296 | 38.77692 |
[ d ]| 076249 | 3564483 || 086715 | 39.27326 |

[ 0.85044 | 36.07067 || 090299 | 40.52819 |

[ Method B3 i Method B4 ]
[PSF]] SSIM | PSNR || SSIM_| PSNR |
[a || 089334 | 3974011 || 095936 | 47.28601 |
[ b ]| 079003 | 3347610 ][ 094175 | 4145865 |
[ c [ 084218 | 3677014 || 094792 | 45.03301 |
[ d || 081497 | 3685534 || 094694 | 44.15327 ]

[ 0.82048 | 3655461 || 0.95029 | 44.66997 |

Table 3: Influence of PSF type on its reconstruction quality. Table is
explained in Section 4.1.4.

4.1.5 Computational efficiency

The total runtime divided by image size of g in pixels was constant
for all algorithms for images with a size greater than 500 x 500. The
previous suggests that the algorithms have a linear time complexity as
a function of the number of pixels in the input image g. The runtime
of mB1, mB2, mB3, mB4, mNBI, mNB2, mNB3 and mNB4 is equal to
index 16.25, 5.1, 752.3, 13.5, 1, 1, 3.6, and 64.1 respectively. Given
the same inputs, mB1 will hence take about 16.25 times longer to ter-
minate than mNB2.

No other significant correlations were found between variables (e.g.
noise intensity) and the total runtime of methods.

4.1.6 Memory usage

The peak memory usage divided by image size of g in kB was constant
for all algorithms. The previous suggests that the algorithms have a
linear memory complexity as a function of image size in kB. For mB1,
mB2, mB3, mB4, mNB1, mNB2, mNB3 and mNB4 said value is equal
to index 1.55, 1.45, 1.5, 1.5, 1.10, 1, 2, and 1 respectively. Given the
same inputs, mB1 will hence consume about 1.55 times more memory
than mNB2.

No other significant correlations were found between variables (e.g.
noise intensity) and peak memory usage of methods.



Table 4: Influence of noise on reconstruction quality in SSIM. Table is explained in Section 4.1.1.

[ Method B1 i Method B2 i Method B3 i Method B4
[NJ T[] SSIM [ SSIMgain [[ SSIM [ SSIMgain [ SSIM [ SSIMgain [[ SSIM [ SSIM gain
G| 30 0.21023 -0.16721 0.14408 -0.24692 0.3387 -0.091393 0.096589 -0.30035
35 0.32665 -0.1693 0.29038 -0.23646 0.55905 0.022595 0.19855 -0.31868
40 0.56317 -0.0079896 0.49065 -0.114 0.68433 0.096826 0.59107 -0.01136
) 0.67203 0.043548 0.64286 0.024796 0.68568 0.076189 0.66672 0.076465
0.42956 -0.1069 0.34264 -0.16822 0.56 0.05294 0.25729 -0.20628
S| 30 0.53373 -0.010884 0.52147 -0.043569 0.54716 -0.0006794 0.41742 -0.16675
35 0.58164 -0.0042171 0.55735 -0.020431 0.58677 -0.0037617 0.49464 -0.14882
40 0.61248 0.0092338 0.60148 0.0087899 0.62041 0.042721 0.44459 -0.28546
) 0.67203 0.043548 0.64286 0.024796 0.68568 0.076189 0.66672 0.076465
0.60765 0.0039694 0.575 -0.012893 0.62432 0.022612 0.48894 -0.10529
P | 30 0.25742 -0.16221 0.21809 -0.2439 0.44081 -0.056291 0.13946 -0.33041
35 0.42628 -0.14159 0.3574 -0.19493 0.58734 0.0013371 0.27324 -0.27997
40 0.60305 -0.032569 0.51136 -0.091589 0.6865 0.095757 0.56381 -0.060057
o 0.67203 0.043548 0.64286 0.024796 0.68568 0.076189 0.66672 0.076465
0.46273 -0.10264 0.40719 -0.16941 0.59692 0.045071 0.36963 -0.19712
[ 050062 | -0.045811 || 04578 | -0.11107 || 0.59406 | 0.036618 || 0.39576 | -0.17571
| Method NBI I Method NB2 I Method NB3 I Method NB4
[N[ T ][ SSIM [ SSIMgain || SSIM_ | SSIMgain || SSIM | SSIMgain || SSIM__ | SSIM gain
G| 30 0.17323 -0.22855 0.2922 -0.1066 0.045079 -0.36938 0.41703 0.040552
35 0.36555 -0.13468 0.60589 0.096831 0.18892 -0.30049 0.67702 0.15867
40 0.58478 0.061934 0.67097 0.079174 0.32244 -0.13261 0.75825 0.15107
oo 0.90001 0.22909 0.6862 0.068875 0.58231 0.0658 0.76889 0.137
0.45913 -0.061149 0.60017 0.070649 0.1978 -0.28213 0.67474 0.13923
S| 30 0.40562 -0.13864 0.47095 -0.067707 0.14623 -0.31235 0.76827 0.17908
35 0.66952 0.054373 0.61402 0.019025 0.44092 -0.062027 0.82947 0.14856
40 0.81888 0.15902 0.66727 0.05902 0.5055 0.026421 0.76881 0.14071
) 0.90001 0.22909 0.6862 0.068875 0.58231 0.0658 0.76889 0.137
0.70121 0.089328 0.59197 -0.0020654 0.43208 -0.16101 0.77892 0.15319
P | 30 0.1946 -0.25636 0.38354 -0.10745 0.051723 -0.38366 0.47759 0.036005
35 0.38943 -0.14247 0.60768 0.090866 0.1957 -0.30379 0.69699 0.12715
40 0.63742 0.089227 0.67285 0.078423 0.33178 -0.13211 0.76191 0.14107
) 0.90001 0.22909 0.6862 0.068875 0.58231 0.0658 0.76889 0.137
0.52133 -0.03527 0.59979 0.049188 0.23183 -0.27497 0.68227 0.12688
0.56815 0.019186 0.59614 0.039919 0.29928 -0.25077 0.7116 0.13847




Table 5: Influence of noise on reconstruction quality in PSNR. Table is explained in Section 4.1.1.

[ Method B1 i Method B2 i Method B3 Method B4
[N] T[] PSNR [ PSNRgain [ PSNR [ PSNRgain [ PSNR [ PSNR gain PSNR [ PSNR gain
G| 30 19.668 -3.352 13.948 -10.558 22.103 -2.573 14.085 -10.295
35 22.442 -3.1036 16.64 -9.0273 24.62 -0.65083 15.848 -9.8154
40 24.864 -0.93075 19.896 -5.5362 26.506 1.4302 23.513 -2.733
0 25.846 0.77792 24.006 -1.1153 26.794 1.6718 25.903 0.36761
23.174 -1.8524 17.991 -7.7081 25.034 0.6808 18.497 -7.6446
S| 30 22.967 -0.13603 20.447 -2.7989 23.364 -0.98153 17.846 -6.4775
35 24.006 -0.23487 21.546 -2.9517 23.86 -0.90797 17.625 -7.1423
40 24.82 -0.36948 22.655 -1.4471 25.829 0.13651 16.813 -10.885
0 25.846 0.77792 24.006 -1.1153 26.794 1.6718 25.903 0.36761
24.469 -0.11835 21.847 -2.1891 25.002 -0.1078 19.803 -6.132
P | 30 19.035 -3.8367 13.979 -10.762 21.202 -3.1954 13.725 -10.271
35 22.025 -3.2126 16.379 -9.3131 23.86 -1.2647 15.955 -9.6191
40 24.82 -1.3666 19.706 -5.9325 26.509 1.1721 22.119 -4.5056
oo 25.846 0.77792 24.006 -1.1153 26.794 1.6718 25.903 0.36761
22.983 -2.1933 17.899 -7.8726 24.602 0.44992 17.906 -7.8994
l 23.592 [ -1.3918 [ [ 19.894 [ -5.9799 [ [ 24.852 [ 0.21349 [ [ 18.742 [ -7.3545 ]
| Method NBI I Method NB2 I Method NB3 I Method NB4 ]
[N][ T ][ PSNR [ PSNRgain || PSNR | PSNRgain || PSNR | PSNRgain || PSNR | PSNR gain |
G| 30 16.575 -7.6149 17.748 -6.1816 9.1099 -14.438 21.608 -1.763
35 21.321 -3.631 21.946 -0.93767 15.209 -9.8949 26.69 2.0256
40 25.806 0.57472 22.336 -0.64258 16.672 -7.7756 27.579 2.6915
o0 31.807 4.2376 22.42 -0.62958 18.722 -5.759 27.841 2.7809
23.279 -1.8504 21.251 -3.5766 14.405 -10.464 26.726 2.0831
S| 30 17.635 -6.3787 17.171 -6.2965 11.184 -12.442 27.816 4.9671
35 22.083 -2.8758 20.081 -3.9084 16.2 -8.6465 29.77 4.9832
40 25.835 0.7641 21.763 -1.8796 17.206 -7.0053 27.839 3.4337
oo 31.807 4.2376 22.42 -0.62958 18.722 -5.759 27.841 2.7809
23.77 -1.2426 20.326 -4.2642 15.301 -9.6661 28.367 3.6893
P | 30 16.023 -8.0302 16.666 -6.4335 9.4325 -14.169 20.63 -2.55
35 20.651 -4.3652 21.78 -1.3048 14.631 -10.484 25.608 1.6022
40 25.489 0.41502 22.267 -0.62779 16.596 -7.9004 27.557 2.4682
oo 31.807 4.2376 22.42 -0.62958 18.722 -5.759 27.841 2.7809
22.841 -2.4215 21.012 -3.8685 14.31 -10.875 26.159 1.8442
23.467 -1.8504 20.899 -3.9048 14.852 -10.03 27.103 2.5501




Table 6: Influence of point spread function on reconstruction quality in SSIM. Table is explained in Section 4.1.2.

[ Method B1 i Method B2 i Method B3 i Method B4 ]
PT S SSIM [ SSIM gain || SSIM [ SSIM gain || SSIM | SSIM gain | SSIM [ SSIM gain |
a 0.60492 0.023662 0.51709 -0.13066 0.63425 0.033176 0.46315 -0.23929
11 0.46069 0.0096906 0.43652 -0.079783 0.52318 0.063262 0.31778 -0.15433
15 0.32307 -0.026333 0.36181 -0.051538 0.40543 0.05873 0.31865 -0.1146
0.48887 -0.010884 0.42578 -0.085282 0.5451 0.047244 0.34829 -0.16773
b| 7 0.71686 0.017839 0.59558 -0.22189 0.72488 0.034461 0.58606 -0.23933
11 0.5787 0.068201 0.51358 -0.13976 0.6248 0.027141 0.47001 -0.16332
15 0.47704 0.040418 0.44663 -0.087804 0.5752 0.016528 0.46185 -0.16655
0.59791 0.036573 0.47808 -0.10768 0.64521 0.026554 0.49173 -0.17705
C 7 0.65824 -0.036716 0.60081 -0.17385 0.72696 0.010707 0.50912 -0.27779
11 0.59247 -0.04612 0.57285 -0.0858 0.55856 0.034954 0.48433 -0.20054
15 0.51414 -0.039142 0.51865 -0.076467 0.47566 0.013611 0.44889 -0.12618
0.58725 -0.042681 0.57117 -0.082204 0.57992 0.014129 0.46991 -0.18949
d 7 0.46911 -0.086399 0.43369 -0.19529 0.60997 0.017893 0.3888 -0.25641
11 0.24051 -0.21234 0.3476 -0.1312 0.53181 0.057561 0.39646 -0.075761
15 0.23274 -0.19193 0.32071 -0.12873 0.4552 0.063322 0.28979 -0.072169
0.32863 -0.16935 0.36888 -0.1356 0.55895 0.053749 0.34805 -0.14545
[ 050062 | -0.045811 || 04578 | -0.11107 || 0.59406 | 0.036618 | 0.39576 | -0.17571 |
| Method NBI I Method NB2 I Method NB3 I Method NB4 ]
P[ S || SSIM | SSIMgain || SSIM | SSIMgain || SSIM | SSIMgain || SSIM__ | SSIM gain |
a 7 0.53694 -0.072714 0.62516 -0.0094179 0.28721 -0.36662 0.73119 0.13021
11 0.47075 -0.0094272 0.49508 -0.027223 0.17425 -0.28258 0.60856 0.15615
15 0.43526 0.0010673 0.4225 -0.045828 0.085778 -0.28818 0.55792 0.16429
0.47944 -0.034396 0.47654 -0.026837 0.1391 -0.31692 0.67556 0.15313
b| 7 0.69981 0.0040137 0.74748 0.045649 0.46959 -0.28722 0.86167 0.12685
11 0.59428 0.024728 0.59099 0.067477 0.34403 -0.29679 0.77845 0.15166
15 0.5251 0.026635 0.50653 0.062984 0.24622 -0.30261 0.71509 0.14266
0.58025 0.020222 0.66192 0.060657 0.34331 -0.29679 0.7923 0.13544
c 7 0.68705 -0.052316 0.72349 -0.0078685 0.58752 -0.13082 0.79458 0.082892
11 0.57492 -0.038751 0.61217 -0.020441 0.49785 -0.16074 0.71589 0.13402
15 0.53318 -0.016473 0.54332 -0.053999 0.42036 -0.18936 0.67235 0.123
0.59104 -0.03158 0.58571 -0.038877 0.45969 -0.15744 0.7116 0.10236
d| 7 0.7199 0.066431 0.7524 0.12315 0.42204 -0.17044 0.76726 0.14716
11 0.68447 0.093751 0.70616 0.18099 0.23506 -0.25789 0.63173 0.17904
15 0.61963 0.103 0.6553 0.18537 0.18892 -0.20464 0.61858 0.19806
0.6522 0.09385 0.70593 0.15673 0.26375 -0.22057 0.67695 0.16644

[ 056815 | 0.019186 || 0.59614 | 0.039919 [ 0.29928 | -0.25077 || 0.7116 | 0.13847 |




Table 7: Influence of point spread function on reconstruction quality in PSNR. Table is explained in Section 4.1.2.

[ Method B1 i Method B2 i Method B3 i Method B4 ]
l P [ S H PSNR [ PSNR gain H PSNR [ PSNR gain H PSNR [ PSNR gain H PSNR [ PSNR gain ]
a | 7 25.55 0.010308 19.741 -8.1435 25.725 0.27163 18.194 -9.5283
11 23.87 -0.018478 19.593 -5.6983 24.451 0.61446 18.206 -7.691
15 22.823 -0.22195 20.565 -3.0732 23.928 0.4634 19.7 -5.1841
24.278 -0.1178 19.894 -5.1191 25.018 0.37445 18.791 -7.3008
b| 7 26.667 -0.34048 20.364 -10.249 27.295 0.14608 19.208 -10.871
11 26.114 0.75099 19.999 -7.1808 23.846 0.0059521 18.997 -1.3724
15 24.468 0.69874 20.839 -5.0981 23.695 -0.50425 18.884 -7.1211
25.779 0.5538 20.531 -6.4612 25.307 -0.1556 18.966 -7.4491
c| 7 24.025 -3.2653 19.457 -9.0991 26.509 -0.6538 17.815 -10.268
11 23.057 -2.3294 20.922 -6.6516 24.176 -0.026613 19.446 -8.724
15 22.606 -0.99553 21.175 -4.0477 23.146 -0.34069 20.919 -5.2753
23.233 -2.2114 20.13 -6.2588 25.266 -0.37919 19.641 -8.2839
d| 7 22.895 -2.7229 18.795 -7.5474 25.475 -0.28644 17.157 -9.7937
11 20.031 -3.7069 18.201 -5.2544 24.678 1.0384 19.078 -5.5459
15 19.442 -3.0362 18.378 -4.4545 23.75 0.69906 18.409 -4.2695
20.711 -3.146 18.466 -6.033 24.57 0.67174 18.346 -6.4452
[ 23592 | -1.3918 || 19894 | -59799 | 24852 | 021349 | 18742 | -7.3545 |
| Method NBI I Method NB2 I Method NB3 Method NB4
l P [ S H PSNR [ PSNR gain H PSNR [ PSNR gain H PSNR [ PSNR gain PSNR [ PSNR gain
a | 7 22.814 -3.8045 19.854 -5.4359 14.463 -11.966 27.823 2.3107
11 21.47 -2.8943 18.199 -5.6754 12.569 -11.492 26.719 2.7645
15 20.671 -2.3237 16.841 -6.0743 10.398 -11.827 26.06 2.8076
21.514 -3.2449 18.335 -5.6754 12.34 -11.827 26.346 2.6273
b| 7 26.151 -2.023 22.39 -4.5238 17.842 -8.9569 30.228 3.0652
11 24.118 -1.1348 20.084 -2.8462 15.426 -9.3902 27.903 2.728
15 23.068 -0.69677 19.16 -2.7366 13.452 -10.03 27.069 2.9281
23.834 -1.3026 21.575 -4.5107 16.033 -9.7651 28.384 2.9592
c| 7 25.882 -2.3646 23.008 -3.4222 19.323 -9.4288 28.647 2.0337
11 23.894 -2.397 20.341 -4.2771 16.156 -90.2194 27.103 2.1032
15 22.714 -2.5133 19.365 -3.9021 13.117 -9.6861 25.876 1.8802
23.894 -2.485 20.969 -3.9081 15.654 -9.5718 27.142 1.9376
d| 7 25.239 -0.71112 24.257 -1.8906 18.008 -7.6727 28.225 2.7719
11 24.125 0.27619 21.932 -1.8796 14.903 -9.8416 26.789 2.9846
15 22.989 0.25305 20.757 -1.8474 14.178 -0.1843 26.213 3.2262
24.005 -0.33895 21.973 -1.8796 15.678 -9.1167 26.806 3.1719
[ 23.467 [ -1.8504 [ [ 20.899 [ -3.9048 [ [ 14.852 [ -10.03 [ [ 27.103 [ 2.5501 ]
Table 8: Influence of true image on reconstruction quality. Table is explained in Section 4.1.3.
[ Method B1 | Method B2 i Method B3 i Method B4 ]
Img [[ PSNR gain [ SSIMR gain [[ PSNRR gain | SSIMR gain [[ PSNRgain | SSIMgain [[ PSNRgain [ SSIM gain |
ml -0.45176 -0.021864 -3.6415 -0.06247 0.67467 0.077227 -3.6163 -0.016016
m2 -1.4533 -0.075467 -2.6125 -0.06348 0.75681 0.05361 -4.7316 -0.12991
sul -1.1805 -0.026495 -5.3089 -0.042745 -0.0094282 0.045466 -8.9364 -0.22622
su2 -3.278 -0.12072 -12.442 -0.26744 -0.90141 -0.0012658 -11.79 -0.26216
[ 13918 | -0.045811 || -59799 | -0.11107 || 0.21349 | 0.036618 [ -7.3545 | -0.17571 |
| Method NBI Method NB2 I Method NB3 Method NB4 ]
Img || PSNRgain [ SSIMgain [[ PSNRgain | SSIMgain || PSNRgain | SSIMgain [| PSNRgain [ SSIM gain |
ml 1.1084 0.14663 0.15536 0.1301 -4.5443 -0.00977 3.334 0.22456
m2 -0.36697 -0.013749 -5.4192 -0.010045 -10.103 -0.31903 3.3397 0.15622
sul -1.8504 0.082856 -0.23788 0.085353 -6.9796 -0.10181 1.5289 0.14165
su2 -8.2236 -0.3031 -14.726 -0.14391 -20.283 -0.59035 2.6607 0.052952
[ 18504 | 0.019186 || -3.9048 | 0.039919 [ -10.03 | -0.25077 [ 2.5501 | 0.13847 |
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Fig. 4: Reconstruction of f in the presence of 40 dB noise. Fig. 5: Reconstruction of f in the presence of 30 dB noise.
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Fig. 6: Reconstruction of / in the presence of 40 dB noise.
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Fig. 7: Reconstruction of % in the presence of 30 dB noise.

4.2 Qualitative comparison

Noise has a great influence on reconstruction quality (as was explained
in Section 1 and observable in Table (4) and Table (5)). Said influence
is illustrated in Fig. (4-7). True image m1 (f) was convolved with a
linear motion blur kernel of size 15 x 15 and 40 dB of Gaussian noise
was added to it, resulting in degraded image g49. The methods were
used to deconvolude g49. The estimates of f are illustrated in Fig. (4).
The by the blind methods reconstructed kernels are illustrated in Fig.
(6).

Thereafter, true image m1 (f) was convolved with a linear motion
blur kernel of size 15 x 15 and 30 dB of Gaussian noise was added to
it, resulting in degraded image g3¢. The methods were used to decon-
volved g39. The estimates of f are illustrated in Fig. (5). The by the
blind methods reconstructed kernels are illustrated in Fig. (7).

5 DISCUSSION
5.1 Influence of noise on reconstruction quality
The influence of noise type and intensity on reconstruction quality is
presented in Table (4) and Table (5), and illustrated in Fig. (4) and Fig.
(5).

In the absence of noise, method mB2, mNB2 and mNB3 did not have
positive PSNR gain values. The previous suggests that the methods are

unable to improve degraded images (all methods generally decreased
reconstruction quality when more noise was added). The methods do
have positive (but relatively small) SSIM gain values in the same situa-
tion. Perfect deconvolution in the non-blind setting is easy to obtain in
the absence of noise and if F(h) # 0 through division of F(g) by F(h).
The best performing non-blind deconvolution method mNB1 obtained
a non-optimal SSIM of 0.9 (not 1) and an PSNR of 31.807 (not oo).
The best reconstructing blind deconvolution method in the absence of
noise was mB3.

Where mNBI was the best performing method in the absence of
noise, mNB4 was the most noise resistant. Method mNB4 was the only
method which has positive SSIM gain values for any noise type and
intensity. Methods mB3, mNBI and mNB4 stand out as being relatively
noise resistant.

In terms of both SSIM and PSNR gain, all noise types are best dealt
with by method mNB4. Among the blind methods, mB3 was best able
to cope with all noise types in terms of both SS/M and PSNR gain.
N.B.: mB3 was unable to improve in terms of median PSNR gain when
there was contamination with salt and pepper noise.

None of the methods are better able to cope with Poisson noise than
any other noise type. Method mB3 and mNB2 are better able to cope
with Gaussian noise than any other noise type. Method mB1 and mNB1
are better able to cope with salt-and-pepper noise than any other noise
type.

In deconvolved noisy images, (ringing) artifacts can be observed
primarily in the result of mB2, mB4, mNB2 and mNB3 as is illustrated
in Fig. (4).

In the result of mNB2, the center of the image is relatively sharp,
yet there are significant artifacts visible at the border. The result of
mNB4 was arguably the best for both noise intensities. The sensitivity
to noise of mB4 was highlighted by the significant difference in the
quality of the result between 40 dB and 30 dB noise. Conversely, the
robustness to noise of mNB4 was highlighted by the small difference
in quality of the result between 40 dB and 30 dB noise.

5.2 Influence of PSF on reconstruction quality

The influence of point spread function type and size on reconstruction
quality is presented in Table (6) and Table (7).

In terms of both SSIM and PSNR gain, the best performing method
in the presence of any PSF type is mNB4. Please note the good per-
formance of method mNB2 on by non-linear motion blurred images.
Among the blind methods, mB3 was best able to cope with out-of-
focus, linear and non-linear motion blur. Method mBI was best able
to cope with Gaussian blur.

Method mB3, mNB1, mNB2 and mNB4 are best able to cope with
non-linear motion blur relative to other PSF types. Method mBI is
best able to cope with Gaussian bur relative to other PSF types.

5.3 Influence of true image on reconstruction quality

The influence of true image on reconstruction quality is presented in
Table (8).

All images were best deconvolved by method mNB4. Among the
blind methods, all images were best deconvolved by mB3. N.B: no
positive median SSIM or PSNR gain value was obtained by mB3 when
given a convolved version of image su2.

The su2 image appears to be particularly difficult to deconvolute for
all methods. An explanation for this could be that the image contains
few sharp edges and a lot of uniform blackness. m1 was, in general,
the easiest to deconvolute, and does not contain any of said proper-
ties. A presence of uniform blackness may also explain the relatively
bad performance of the algorithms when given a convolved version of
image m2.

5.4 Influence of PSF type and noise on its reconstruction
quality

The influence of which point spread function type was used for convo-
lution on the reconstruction quality of the kernel by the blind decon-
volution methods is presented in Table (3).



All PSF types are best reconstructed by method mB4 except the
Gaussian one which is when measured in PSNR best reconstructed
by mB2. The previous is interesting because the reconstructed images
of method mB3 were generally better than those of the other blind
methods. Where mB3 is the worst at reconstructing the true kernel, it
is best at reconstructing the true image.

The good reconstruction performance of mB4 is also visible in Fig.
(6) and Fig. (7). A relatively great robustness to noise of mB4 can be
observed in the said images.

6 CONCLUSION

Four blind and four non-blind deconvolution methods were assessed
and compared. Experimental evaluation was performed with different
noise types (i.e. shotnoise, Gaussian noise and impulse noise), noise
intensities, PSF types (i.e. out-of-focus blur, Gaussian blur, linear mo-
tion blur and non-linear motion blur), PSF sizes, and true images. The
results of the said empirical evaluation were presented in this docu-
ment.

Correlations were found between variables (such as method, noise
type, noise intensity, etc.) and reconstruction quality as well as run-
time and memory usage.

The results show that the use case dictates which deconvolution
method is appropriate.

When a low amount of noise (up to about 40 dB) is present in a
convolved image, the use of method mB3 and mNBI are advised if
reconstruction quality is significantly more important than computa-
tional efficiency and memory usage. The use of mBI and mNBI are
advised otherwise.

In case there is a high amount of noise in the convolved image, the
best method also depends on time and memory constraints:

Methods mB1 or mB3 and mNB2 or mNB4 are advised for respec-
tively blind and non-blind deconvolution when reconstruction qual-
ity is significantly more important than computational efficiency and
memory usage.

Method mB3 performed relatively badly when there was salt-and-
pepper noise and is much less computationally efficient than mB1. The
difference between the two in terms of reconstruction quality may be
considered relatively small in this case. The usage of mB] is therefore
advised when there is contamination with salt and pepper noise and
the use of mB3 is advised otherwise.

Method mNB2 reconstructed particularly well when given a by non-
linear motion blurred image and is much more computationally effi-
cient than mNB4. The difference between the two in terms of recon-
struction quality is relatively small in this case. The usage of mNB2 is
therefore advised when there is contamination with non-linear motion
blur and the use of mNB4 is advised otherwise.

Method mB1 and mNBI or mNB2 are advised for respectively blind
and non-blind deconvolution if reconstruction quality is less important
than computational efficiency and memory usage. The use of method
mNBI is advised in the presence of linear motion blur, and the use of
mNB?2 is advised otherwise.

7 FUTURE WORK

The evaluated deconvolution methods can be improved and assessed
more extensively:

The quality of blurring kernels estimated by mB2 was better than
those estimated by mB/ and mB3. Still, the reconstruction quality of
true images estimated by mB2 was worse than those estimated by mB1
and mB3. The previous suggests that line 7 in Algorithm 2 is a cause of
mB2’s worse performance. Method mB2 uses mNB2 to perform what’s
to be done in said line. The reconstruction quality of method mB2 may
be increased when method mNB4 replaces line 7 in Algorithm 2.

Likewise, even though the reconstruction quality of blurring kernels
estimated by mB4 was the best among all methods, the reconstruction
quality of true images estimated by mB4 was worse than those esti-
mated by mB3. The reconstruction quality of method mB4 may be
increased when method mNBI, mNB2 or mNB4 are ran after termina-
tion of mB4 and non-blind deconvolute g using the by mB4 estimated
kernel.

Artifacts at the borders of deconvolved images created by method
mNB2 may be reduced by padding convolved images before deconvo-
lution and removing the introduced padding after deconvolution.

Reconstruction quality may be increased (especially in the presence
of impulse noise) by applying a thresholded median filter as a prepro-
cessing step to the methods. Likewise, it may be beneficial to reduce
Poisson noise using e.g. a non-local mean or bilateral filter.

Other deconvolution methods could be investigated using the same
experimental setup which was used to generate the results presented
in this document. Furthermore, the performance of the considered
methods when there is contamination with other noise types could be
investigated as well as other uniform PSF types such as one creating
box blur.
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