
Bachelor Project Computing Science
Adaptive Unsharp Masking for Image Enhancement

Student: Rick de Jonge, s2775832

University: Rijksuniversiteit Groningen
Course code: WBCS13000

Primary supervisor: Dr. MHF Wilkinson
Secondary supervisor: Prof. Dr. M. Biehl

July 19, 2018

1

Contents

1 Introduction 4

2 Unsharp Masking 4

3 Related concepts 5
3.1 Weber’s law . 5
3.2 The Machband effect . 5
3.3 Histogram Stretching . 6
3.4 Sobel and Laplacian Edge Detectors 7

4 Existing Unsharp Masking methods 7
4.1 Traditional Unsharp Masking . 7
4.2 Cubic Unsharp Masking . 8
4.3 Adaptive Unsharp Masking . 8
4.4 Non-linear Unsharp Masking . 9
4.5 A Rational Unsharp Masking Technique 9
4.6 Unsharp Masking using segmentation 10

5 Results of the Existing Methods 10
5.1 Traditional Unsharp Masking . 11

5.1.1 Conclusions . 11
5.2 Cubic Unsharp Masking . 13

5.2.1 Conclusions . 13
5.3 Rational Unsharp Masking . 13

5.3.1 Conclusions . 14

6 Adapting Existing Methods 14
6.1 Larger Implementations of the Basic Method 14

6.1.1 Comparisons . 16
6.1.2 Conclusions . 16

6.2 Larger Implementations of CUM 16
6.2.1 Comparisons . 19
6.2.2 Conclusions . 19

6.3 Adapting Rational Unsharp Masking 19
6.3.1 Comparisons . 20
6.3.2 Conclusions . 21

7 Sharpening Astronomy Images 21
7.1 2D Cubic Unsharp Masking . 26
7.2 Rational Unsharp Masking, using improved second term Cubic

Unsharp Masking . 29

8 Comparing previous results to results using ImPPG 31

2

9 Thesis Conclusions 33

10 Future work 34
10.1 RL Deconvolution . 34
10.2 Connected operators . 35

10.2.1 Connected flat zones . 35
10.2.2 Tree representations . 35

11 Code attachments 37

Abstract

This thesis will start with exploring the traditional method of Unsharp
Masking. Next, it will discuss a few improvements of the traditional method
that can be found in the literature. After these discussions, comparisons will
be made between the results of those algorithms to the results of my own
adaptations of these methods using a basic image. The algorithms with the
best results will then be tested on a few more relevant images. Finally, a
small comparison will be made between these results and the results from
a program called ImPPG, that has a build-in version of Unsharp Masking.
Concluding, there will be a section that explains which results failed, were
successful and which particular method looked most promising.

The main question this thesis will be answering is: ”In what ways can the
Unsharp Masking image sharpening method be improved upon?”

3

1 Introduction

In this document I will present the findings I did while working on my 2018 bach-
elor’s thesis, in order to answer the following question: ”In what ways can the
Unsharp Masking image sharpening method be improved upon?”.

The images needed in certain fields, like astronomy, need to have clear de-
tails. Some images however can be blurred, by for example the diffusion of light.
Unsharp Masking is a technique that can be used to make such images sharper.
Unsharp Masking has various different working implementations already, but this
field is far from optimized. In order to expand the knowledge of this particular
image sharpening algorithm, I will test and try to improve the existing techniques.
This technique is already being used in image editing programs such as Photoshop
and camera applications on phones.

Since the research question tries to explore Unsharp Masking with better re-
sults, the research I did focused on optimizing performance rather than optimizing
computation time. This means that I did not alter the program to reduce the time
it takes to process an image, but thought of different ways to make the existing
algorithms more effective at what they already do. I implemented my solutions
in Python, mainly because it has easy ways of loading and changing images and
I am already very familiar with the language. In the last section I will attach my
implementation of the methods described in this paper so that this research can be
extended and verified if desired.

2 Unsharp Masking

The Unsharp Masking technique can increase the quality of the details of an image
by using a lower detailed version of that image. It improves the visual quality of the
image using high-pass filtering and dynamic range compression. In more detail, the
lower quality image is obtained by averaging each pixel with its neighbours, using
a multiplier that is based on a Gaussian curve. The pixels of the original image
are then added to a small portion of the pixels in the created image, which results
in a clearer image. The expected result on an image of an eye is shown in the top
images of Figure 1.

There are several drawbacks of Unsharp Masking. It will amplify all details,
whether it is noise or not. It also will leave ringing artifacts around objects in the
image. There are several techniques that modify Unsharp Masking in a way that
benefits certain images, for example making the algorithm more noise resistant.
An extreme example of the effect of Unsharp Masking on a blurred noisy image
can be seen in the bottom pictures of Figure 1.

There are many specific algorithms using Unsharp Masking for specific fields,
such as medicine [1]. In this document I will primarily look at Unsharp Masking
techniques that would benefit astronomy. These images have in common that there
are a few bright areas and a big area of black with low-intensity lights.

4

Figure 1: The effect of Unsharp Masking on a blurred image (original top-left,
result top-right), and the effect it has on noise (original bottom-left, result bottom-
right)

3 Related concepts

First, I will explain a couple concepts related to Unsharp Masking and image en-
hancement in general.

3.1 Weber’s law

Weber’s law states that the perception of increase is relative. For image enhance-
ment this means that halving the amount of noise for example will seem the same
whether there is a lot or a little bit of noise. For the Unsharp Masking algorithms
this means that algorithms that just focus on removing the majority of noise are
preferable to algorithms that remove all the noise at the great cost of performance.
To illustrate this, while the difference from the two left images in Figure 2 to the
two right pictures are both 10 pixels, the difference between the top images is much
more noticable.

3.2 The Machband effect

When two areas with different luminance meet, our eyes will increase the contrast
at the border, as can be seen in Figure 3. This is called the Machband effect.
This has some implications for image enhancement. The Machband effect will
increase our perception of noise around borders in images, which is one of the big
downsides of the Unsharp Masking technique.

The Machband effect is very similar to Unsharp Masking itself, visualizing
points while taking information from surroundings. This may be why Unsharp
Masking is visually pleasing, it may change images in the same way we do.

5

Figure 2: Illustration of Weber’s law:
top-left: 10 white pixels, top-right: 20 white pixels
bottom-left: 100 white pixels, bottom-right: 110 white pixels

Figure 3: Illustration of the Machband effect

3.3 Histogram Stretching

Histogram stretching as described in [3] is a technique to redistribute an image
based on the contrast. In this technique, a histogram is made of the images grey-
levels. The histogram of images this technique is useful on will have a lower and
upper are with almost no values. A lower and upper bound are then decided upon
and the histogram is redistributed where the lower bound will become the new least
value and the upper bound the new highest value. This is a most basic technique on
which some of the later described Unsharp Masking algorithms are based. Figure
4 is an example of histogram stretching where the original (left) has a lower upper
bound than the result (right), resulting in every pixel becoming lighter.

Figure 4: Illustration of histogram stretching

6

Figure 5: The original image (left) processed with the Sobel edge detector (middle)
and the Laplacian edge detector (right)

3.4 Sobel and Laplacian Edge Detectors

Since an aim of our new approach is to decrease ringing artifacts around edges in
the image, it is good to look at a pair of well known edge detectors. Both the So-
bel and Laplacian edge detectors [3] scans each pixel and looks at the surrounding
values to find high differences between neighbouring pixels. The Laplacian edge
detector compares the current pixel with the pixels horizontally and vertically next
to it. The Sobel detector is different in that it only looks for either differences hor-
izontally or vertically, it looks at 2 opposite neighbouring pixels and the difference
between their neighbours. This marks the biggest difference between the two ap-
proaches. The Sobel edge detector is a second derivative, while the Laplacian edge
detector is a first derivative. This can be noticed in Figure 5, where the edges de-
tected by the Sobel edge detector are thicker. Furthermore, because the Laplacian
method only compares with horizontal and vertical neighbours, diagonal edges are
harder to detect and are less clear. The edges in the Sobel edge detector are clear
in all directions.

4 Existing Unsharp Masking methods

There are plenty of improvements that build upon Unsharp Masking. Certain al-
gorithms have a special way of calculating the mask that will be added. Others
introduce new terms into the standard equation, and there are methods that take
information from the picture as a whole to improve the results. In this section I
will show examples of a few of those improvements upon Unsharp Masking, going
into detail what approach they take.

4.1 Traditional Unsharp Masking

The basic formula for creating the image is

yn,m = xn,m + λzn,m (1)

7

Here, y is the output image, x is the original image and z is the blurred image
constructed using

zn = 2xn − xn−1 − xn+1 (2)

for 1D approaches and

zn,m = 4xn,m − xn−1,m − xn+1,m − xn,m−1 − xn,m+1 (3)

for the 2D approach. This most basic form of Unsharp Masking creates the mask
by taking information from the surrounding pixels to create a blurred image.

4.2 Cubic Unsharp Masking

The Cubic Unsharp Masking operator [9], abbreviated CUM, is an Unsharp Mask-
ing technique that aims to reduce noise sensitivity severely. In addition to the
standard filter that subtracts a portion of the surrounding pixels to gain the blur ef-
fect, the CUM filter multiplies the resulting value with the square of the difference
between the opposite surrounding pixels. This formula looks like

zn = (xn−1 − xn+1)
2(2xn − xn−1 − xn+1) (4)

where the image zn makes up the image based on the coordinate x. This makes
the filter perform better in high gradient parts of the image and less susceptible to
noise. The downside of this filter will then be in the lower gradient parts of the
image, which may be regarded on the same level as noise by the filter. This method
can be applied in both horizontal, vertical, both or diagonally for different results.
The 2-D formula would look like

z(n) =(xm−1,n − xm+1,n)
2(2xm,n − xm−1,n − xm+1,n)+

(xm,n−1 − xm,n+1)
2(2xm,n−1 − xm,n+1)

(5)

for the horizontal and vertical version, and like

z(n) =(xm−1,n + xm+1,n − xm,n−1 − xm,n+1)
2

(4xm,n − xm−1,n − xm+1,n − xm,n−1 − xm,n+1)
(6)

for the diagonal version, Inseparable Cubic Unsharp Masking.

4.3 Adaptive Unsharp Masking

The Adaptive Unsharp Masking technique [7] differs from linear Unsharp Mask-
ing by changing the weight of the high-pass image dynamically. This results in
better results in both high and low contrast areas of the original image. The values
to be averaged will be taken from horizontal, vertical and diagonal directions for
the total of nine pixels. Each pixel will then be classified in one of three levels,
signifying how much contrast the area contains and thus the weight value of the

8

high-pass image. The algorithm then assigns weight values for each pixel, and fi-
nally computes the resulting image. This algorithm can give sufficient results on a
wider range of images since it has multiple adjustable variables, but also lacks in
focus to achieve better results consistently compared to the other algorithms it was
compared to in the paper. The tests showed that the images were less noisy overall
and worked well in more detailed portions of the image. The worst results could
be observed between smooth and detailed parts of the image.

4.4 Non-linear Unsharp Masking

Non-linear Unsharp Masking as proposed in [2] uses quadratic filters [8] to combat
noise. This method replaces the standard high-pass image from Formula 1 with a
normalized quadratic filter, like in the formula

zn =

i=M∑
i=−M

h(i)x(n− i)x(n+ i) ∧
i=M∑
i=−M

h(i) = 0 (7)

This approach proved to be useful for a wide range of images, without the need
to adjust parameters such as the standard weight factor. The same paper [2] also
shows an algorithm to specifically tackle really noisy images. Instead of using
the original image, this algorithm uses a low-pass added to an image created by
multiplying a pass using a 3×3 Laplacian filter with a Sobel filtered image [3, 4],
and the usual weight factor. This approach works because it uses both high- and
low-pass images, one horizontally and one vertically, to sharpen the image.

4.5 A Rational Unsharp Masking Technique

Another of Ramponi’s papers [10] proposes adding a Laplacian filter multiplied by
a polynomial instead of the blurred image, along with the standard λ multiplier, as
in

y(n) = x(n) + λc(n)L(n) ∧ c(n) = g(n)

kg2(n) + h
(8)

The polynomial is based on the local signal activity and has the property of gener-
ally being low when noise is present. This function sets itself apart from previously
mentioned algorithm because it has two adjustable values, namely k and h, to make
the choice between low noise susceptibility and low ringing effects. The algorithm
was developed for a single dimension and later extended to two dimensions with
good results.

The proposed formula to calculate the local activity, g(n) in the previous for-
mula, is as follows

g(n) = (x(n+ 1)− x(n− 1))2 (9)

9

Figure 6: The original Lenna picture

4.6 Unsharp Masking using segmentation

An approach from the medical field [12] could be build upon using connected
operators. The original algorithm separates the image into three parts, based on
the amount of detail in the area. The paper then introduces an improved high pass
filter, which is obtained by subtracting a low-pass filtered image from the original
image. A big difference with previously shown methods is that this filter averages
over a 5×5 area instead of the usual 3×3. This approach was shown to keep clear
edges of mammographic masses which are, similarly to astronomy, light areas in a
bigger dark area.

5 Results of the Existing Methods

The older papers the methods were presented in had poor quality. In order to see
a bigger picture and to better compare my own results with the original image, I
will implement older techniques again and describe my own general findings using
those methods on the well known Lenna picture, an image of 512 by 512 pixels,
see Figure 6. After that I will use the techniques on photos of sun prominence, to
see if the methods work as well on astronomy pictures.

The results that will be presented were judged by visual inspection, because
a high priority of the results is that they look visually pleasing. The basis for the
judgment of the images in a mathematical or other scientific method is hard to
define and therefore not included in this thesis.

10

Figure 7: The Lenna picture, processed with traditional Unsharp Masking, λ = 1
(left), and traditional Unsharp Masking, horizontally and vertically, λ = 0.5 (right)

5.1 Traditional Unsharp Masking

The best results using the traditional algorithm, applied only horizontally, were
while setting the variable λ around 1. The resulting picture, the left picture in
Figure 7, is sharper than the original, Figure 6. This can be seen best around
the shoulder, eyes and especially the hair. The most prevalent side-effects are the
increase in contrast, most notably the hat, and increased noise over the whole of
the picture.

The 2-dimensional version of the traditional method performed best around
λ = 0.5. The right picture in Figure 7 is very comparable to the picture resulting
from horizontally applied Unsharp Masking. The most notable differences are in
the eyes and the hair. The hair is even sharper, because of the vertical alignment in
the picture. The overall picture is also a little bit sharper at the exact value of λ I
used here, but that may differ when adjusted.

5.1.1 Conclusions

The traditional method makes the image clearer, as is its intention, but has major
problems with noise in the image and increases contrast a lot at sharp boundaries.

When setting λ at an unusually high number, see Figure 9, the Lenna picture
seems to obtain a pattern of cubes, while the sun prominence picture only gains
an unusual pattern in the darkest area of the picture. This is most probably the
result of the noise of the way the prominence picture was taken or, in the case of
Lenna, the result of the original image being in the JPEG format, which holds less
information than the resulting PNG image.

11

Figure 8: Difference between the pictures in Figure 7 and the original Lenna picture

Figure 9: An extreme of processing with traditional Unsharp Masking in 2 dimen-
sions, at λ = 1000 (left) and λ = 100 (right)

12

Figure 10: The Lenna picture, processed with Cubic Unsharp Masking, horizon-
tally, λ = 0.005, (left), and Cubic Unsharp Masking, horizontally and vertically,
λ = 0.002, (right)

5.2 Cubic Unsharp Masking

Using the horizontally applied Cubic Unsharp Masking algorithm, the left picture
in Figure 10, we can obtain a similar sharpness using λ = 0.01. In this figure,
you can see that the noise in the background has definitely decreased, while the
foreground keeps the sharpness. I do notice a decrease in quality when an area has
a lot of contrast changes, for example in the hat.

When comparing 1D to 2D traditional Unsharp Masking, Figure 7, we can
see the same improvements as when comparing the pictures resulting from Cubic
Unsharp Masking and 2-dimensional Cubic Unsharp Masking, Figure 10. The
background noise has increased, while Lenna herself has increased in sharpness.
When comparing horizontal CUM with horizontal and vertical CUM, we can see
that, like with the traditional approach, the hair has severely increased in contrast,
but with that also a few more white spots became more notable in the background.

5.2.1 Conclusions

Cubic Unsharp Masking is a much more effective method than traditional Unsharp
Masking. It is a lot less sensitive to noise overall, although the noise it did react to
is now amplified, resulting in better results in flat areas in the image.

5.3 Rational Unsharp Masking

When comparing 1 dimensional Rational Unsharp Masking to the original Lenna
picture as in Figure 8, we can see that the effect of the chosen variables give an
effect comparable to using CUM, as in Figure 10. The 1-dimensional version of

13

Figure 11: Difference between the pictures in Figure 10 and the original Lenna
picture

Rational Unsharp Masking has more differences with the original picture compared
to the 1-dimensional version of CUM. The 2-dimensional result however has a
similar effect in high-detail areas, such as Lenna’s hair, but shows better results in
flat areas. Also notable is the much clearer definition of the two white beams in the
right and middle of the image.

5.3.1 Conclusions

Using the Rational Unsharp Masking method results in better looking flat-areas
compared to CUM, but at the cost of having to adjust more variables to achieve
that result.

6 Adapting Existing Methods

In this section, I will show you adaptations of the methods described above. I will
explain what changes I made, why I made them and compare the results to the
original methods.

6.1 Larger Implementations of the Basic Method

For the first adaptation, I decided to extend the basic 2-dimensional formula to also
take into account the diagonally adjacent pixels, inspired by the approach given in
the paper on Unsharp Masking for Mammographic Masses [12]. I hope to improve
the stability of the algorithms by doing this. I will also take various weights into
account.

14

Figure 12: The Lenna picture, processed with Rational Unsharp Masking horizon-
tally, with λ = 2 (left), compared to horizontally and vertically, with λ = 1 (right).
In both cases holds: k = 0.001 and h = 250

Figure 13: The difference between the pictures of Figure 12 and the original Lenna
picture

15

Table 1: The kernels of the first (left) and second (right) adaptation of 2-
dimensional Unsharp Masking

-1 -1 -1 -1 -2 -1
-1 8 -1 -2 12 -2
-1 -1 -1 -1 -2 -1

Table 2: The kernels of the third (left) and fourth (right) adaptation of 2-
dimensional Unsharp Masking

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -2 -2 -2 -1
-1 -1 24 -1 -1 -1 -2 32 -2 -1
-1 -1 -1 -1 -1 -1 -2 -2 -2 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

6.1.1 Comparisons

I used the weight formulas described in Table 1 and Table 1 to create the pictures
shown in Figure 14 As can be seen in Figure 14, adding diagonal pixels to the
calculation added next to nothing to the result except computing time. The lines on
the hat seem to be a bit more black in the left picture, with even weight spreading,
than in the right picture, where diagonal pixels had less weight. This is because
the lines on the hat are diagonally placed. From this I could conclude that small
adjustments can be made easily to the original method for pictures with a high ratio
of a similar pattern.

6.1.2 Conclusions

Extending the traditional method by increasing the area of the edge detector has
some small improvements to the result of the algorithm. The main conclusion
however is that this filter is highly adaptable. If the image to be sharpened has
some a certain pattern (in certain areas), this table can be easily adapted to optimize
results for that pattern.

6.2 Larger Implementations of CUM

With this adaptation, I changed variables in the CUM formulas, namely the power
and the pixels that are in the power section. By changing the importance of the
added function I wanted to amplify the effects this method has, and by changing
the pixels it looks at I wanted to decrease the local nature, and with that the sus-
ceptibility to noise, of the formula.

16

Figure 14: The Lenna picture, processed with Traditional Unsharp Masking using
equal weights, as in Table 1, λ = 0.2 (top-left), and processed with less weight
diagonally, as in Table 1, λ = 0.2 (top-right), with a 5×5 system as in Table 2,
λ = 0.05 (bottom-left), and with a weighted 5×5 system as in Table 2, λ = 0.03
(bottom-right)

17

Figure 15: Difference between the pictures in Figure 14 and the original Lenna
picture

18

Figure 16: The increased significance of the power term of the CUM method, with
λ = 0.005 (left) compared to the increased range from one to two pixels, with
λ = 0.001 (right)

6.2.1 Comparisons

Contrary to what I suspected, increasing the significance of the power term, as
can be seen in Formula 10, makes the image a bit sharper, but also increases the
susceptibility to noise by a fair amount.

zn = (xn−1 − xn+1)
4(2xn − xn−1 − xn+1) (10)

Extending Cubic Unsharp Masking to look at the two neighbouring pixels us-
ing

zn = (xn−1 − xn+1)
2(4xn − xn−1 − xn+1 − xn−2 − xn+2) (11)

however, resulted in a picture that remained as sharp as the original version
of CUM. This picture also had less unusual high-contrast points on the hairs and
around the eyes. The pictures of both adaptations can be found in Figure 16.

6.2.2 Conclusions

While increasing the wight of the first term seemed to only decrease performance,
increasing the pixels of the second term had the expected effect of increased detail
in high areas and did not create as much extremes as the original method.

6.3 Adapting Rational Unsharp Masking

Since Rational Unsharp Masking makes use of the standard Laplacian term, it can
easily be extended with a few of the methods I used to adapt the previous methods.

19

Figure 17: Difference between the pictures in Figure 16 and the original Lenna
picture

It also can replace the Laplacian term entirely with one of the previous methods.
Next to that, the function g(n) of the standard Rational Unsharp Masking for-
mula, Formula 8, can be adapted as well. The original paper [10] only shows two
versions of g(n) of the most basic variant. Finally, the original paper suggest a
2-dimensional variant in which the algorithm regards the horizontal and vertical
lines separately. I will also approach this differently by computing g(n) only once
for both directions.

6.3.1 Comparisons

Two possible extensions could be extending g(n) in the horizontal direction using
the formula

g(n) = (x(n+ 1)− x(n− 1) + x(n+ 2)− x(n− 2))2 (12)

In the top-left of Figure 18 you can see that this effect is very minimal. The
most significant change can be observed in the left of the picture, where there
is a bigger unaffected area compared to the traditional method. The rest of the
picture has a better effect than the traditional method, but a worse effect compared
to the presented version of Rational Unsharp Masking. This is probably because
the algorithm is still only applied horizontally and because the picture is relatively
small, and therefore has more details close together.

The second version shown in Figure 18 is while using the formula

g(n) = (x(n+ 1,m)− x(n− 1,m) + x(n,m+ 1)− x(n,m− 1))2 (13)

20

I implemented this version, because extending the rational control term could
increase the performance in the more detailed areas of the image. This was indeed
the case when we compare the result in her hair. This improvement already comes
very close to 2-dimensional Rational Unsharp Masking. This could mean a slight
decrease in execution time if needed.

The bottom-left image in Figure 18 was created by replacing the standard
Laplacian operator by the 1-dimensional Cubic Unsharp Masking operator. This
result is very comparable to traditional CUM, but performed a little better in the
most detailed areas of the image, like the eyes and in the hair.

The result was even better when using the 5×5 Laplacian operator instead of
CUM. This is probably because the rational control term and the cubic term have
similar functions, while the 5×5 Laplacian term does the basic function of deter-
mining whether there is noise in the current area better that the original Laplacian
operator. In the resulting picture, the details on the hat and the distinction between
strands of hair were more clear than the previously shown adaptation with CUM.

Since the paper [10] calculated the 2D version of Rational Unsharp Masking
for horizontal and vertical directions separately, I wanted to compare this with
a version that would calculate this in a single formula. This calculation speed
optimization has too much loss in performance, however, see the top pictures in
Figure 20. Calculating separate rational control terms significantly decreased the
sensitivity to noise in areas without much contrast.

After that, I used the CUM method, both the original 2-dimensional version
and my second term adaptation to create the bottom images in Figure 18. This
resulted in the best pictures so far, with the algorithm having great performance in
both detailed and flat areas of the image and having less extreme white highlights.

6.3.2 Conclusions

Improving the 1-dimensional version of Rational Unsharp Masking had only minor
benefits. Using a 2-dimensional version of the Rational Unsharp Masking method,
and therefore using this formula as a basis to insert previously shown techniques
into, proved more successful. Determining the local variance and noise separately
for horizontal and vertical directions worked much better than trying to generalize
these directions into a single rational control term and Laplacian operator.

7 Sharpening Astronomy Images

We have seen before that the Unsharp Masking technique and all its adaptations
have visually pleasing results on a general image like the Lenna image. Now I
would like to inspect if the same good results can be achieved on pictures that are
used in current research, like pictures of sun prominence used in astronomy. These
images are a bit different. Aside from the subject in the image, they were saved
in the TIFF format, a format that can hold more information that the previously

21

Figure 18: A comparison of four Lenna images, processed with Rational Unsharp
Masking, with a wider g(n), λ = 2 (top-left), where g(n) is 2 dimensional, λ = 1
(top-right), using the wider adaption of the CUM method, λ = 0.005 (bottom-left),
and where the Laplacian operator has been switched with the 5×5 version, λ = 0.1
(bottom-right)

22

Figure 19: The difference between the original Lenna picture and the images of
Figure 18

23

Figure 20: The 2 dimensional version of the Rational Unsharp Masking technique,
as shown in the paper, λ = 1 (top-left) and calculated in a single calculation,
λ = 1 (top-right), using CUM, λ = 0.01 (bottom-left) and using the second term
adaptation of CUM, λ = 0.003 (bottom-right)

24

Figure 21: The difference between the original Lenna picture and the pictures of
Figure 20

25

Figure 22: A sun prominence, very visible but blurred

Figure 23: A sun prominence, neither very visible nor sharp

used JPEG and PNG formats. In this section, I will look at three images of sun
prominence, see Figures 22, 24 and 23. These images have three different levels
of sharpness to begin with and with them we can see whether the algorithm also
works for very subtle parts in the image.

Since I already have shown before which algorithms will most likely have the
best results, I will only show a few algorithms that have shown the best results with
the prominence images.

7.1 2D Cubic Unsharp Masking

Since 2D CUM showed a good base for comparing the best results, I decided to
start applying that to the first prominence image. The TIFF format however did
not have the same results as the PNG format shown before. The resulting image is
definitely sharper than the original when we look at the prominence itself. When
we look at the amount of work the algorithm had to do with the right of the image,
we can see that the whole of the sun has a lot of differences with the original,
where the details of the sun were decreased in intensity by the mask. The dark
area on the left was also affected, which was predictable. The original image had

26

Figure 24: Multiple small prominence at the blurry edge of the sun

Figure 25: Figure 22, processed with 2D CUM, λ = 0.00015 (left) and the differ-
ence with the original picture (right)

some distinct sections in that area, which should have been a flat area. The result
of the most interesting area, the prominence, was much clearer but has a clear high
intensity edge. This edge also has clear black spots all over.

When we use Cubic Unsharp Masking on only a part of the first picture that
has been converted to the PNG format, it made the edges of the sun a lot more
clear. As can be seen in Figure 26, the algorithm mostly just sharpened the edge
of the sun, the prominence and some of the irregularities on the surface of the sun.
Increasing λ results in more extreme white highlights in these areas, so a λ of 0.03
gave the best results.

When applied to Figure 23, 2D CUM is able to sharpen the prominence around
the edge of the sun, but at a cost in overall quality. As seen in the right of Figure 27,
the algorithm has to apply a relatively large λwhich increases noise in the resulting
image.

Since the most interesting parts of Figure 24 are the barely visible prominence,
I will not compare the picture as a whole but look at those details. I have processed
the whole picture, then cropped a part of that image to show results for. Unfortu-

27

Figure 26: A smaller piece of Figure 22 converted to PNG and then processed with
2D CUM, λ = 0.03 (left) and the difference with the original picture (right)

Figure 27: A smaller piece of Figure 23 converted to PNG and then processed with
2D CUM, λ = 0.0002 (left) and the difference with the original picture (right)

28

Figure 28: A smaller piece of Figure 24 processed with 2D CUM, λ = 0.001

nately, even with an extreme λ, namely 0.001, 2D Cubic Unsharp Masking could
not make the prominence sharp. The prominence is barely visible compared to the
noise in Figure 28.

7.2 Rational Unsharp Masking, using improved second term Cubic
Unsharp Masking

Looking at Figure 29, we can see that, again, the surface of the sun is very detailed
and therefore affected a lot by the algorithm. The dark area on the left half however
has mostly been ignored because of the way the λ value changes based on the local
activity.

When comparing this image to the previous, Figure 25, we can also see a dif-
ference between pictures in the area of the prominence. Where 2D CUM made the
prominence into a more solid grey area, this version of Rational Unsharp Masking
has more clearly defined black gaps and smaller prominence. The extreme white
highlights are also not as bright as in the previous method.

Comparing Figure 30 to Figure 27, we can immediately see that the algorithm
did not enhance noise as much in the large dark area. Besides that, the detail on the
surface of the sun remained more detailed using Rational Unsharp Masking. Just
by looking at the difference between the result from the adapted Rational Unsharp
Masking and the original picture, we can spot a few prominence quite easily.

When we take a close-up of the biggest prominence in Figure 23, see Figure
31, we can see that the 2D CUM method has left a white overshoot around the
biggest edge, while close to the edge there still is a more black area. In addition,
the adapted Rational Unsharp Masking method has a more clearly defined edge
and prominence.

Like in the previous section, using the adapted 2D Rational Unsharp Masking
method, the prominence did not become visible at earlier used λ values. Using the

29

Figure 29: Figure 22, processed with my adaptation of Rational Unsharp Mask-
ing, using a modified second term CUM filter, λ = 0.0005, k = 0.0000008, h =
150000 (left) and the difference with the original picture (right)

Figure 30: Figure 23, processed with my adaptation of Rational Unsharp Mask-
ing, using a modified second term CUM filter, λ = 0.0005, k = 0.0000008, h =
150000 (left) and the difference with the original picture (right)

30

Figure 31: Comparing the area around the brightest prominence from Figures 30
(left) and 27 (right)

extreme λ = 0.01 resulted in a better quality image than using 2D CUM. As can
be seen in Figure 32, processing with these parameters did not make the sun as
bright and did not result in an extreme amount of noise. The prominence is still
barely visible, but the result is better because of the lack of noise surrounding the
prominence.

Since on the weakest prominence picture, Figure 24, the prominence is almost
as weak as noise, using a variation of Rational Unsharp Masking that looks at a
bigger area seemed appropriate. This will make sure that actual noise stays sup-
pressed, while the prominence will remain visible.

8 Comparing previous results to results using ImPPG

Finally, I will share some results from a program that implements the Unsharp
Masking method. This program allows the user to change two variables, namely
sigma and amount. The amount variable seems the same, or at least similar, to
the previously used λ. With this program, I tried to get thesame results as in the
previous section, using Figures 22, 24 and 23.

When we compare the result from ImPPG, Figure 33 to either Figure 25 or 29,
we can see that the image processed by ImPPG is much smoother overall. The
clear differences between the flat areas in the left of the images has completely
smoothened out, and the pixels showing in either of the earlier pictures are not as
visible. The results on the borders are comparable to those in Figure 29, but a little
less defined.

In addition to being more smooth compared to the images in Figure 31, Figure

31

Figure 32: A smaller piece of Figure 24 processed with adapted 2D Rational Un-
sharp Masking, λ = 0.01, k = 0.0008, h = 3000

Figure 33: ImPPG’s Unsharp Masking on Figure 22, Sigma = 1.5, Amount = 20

32

Figure 34: ImPPG’s Unsharp Masking on Figure 23, Sigma = 2, Amount = 20

Figure 35: ImPPG’s Unsharp Masking on Figure 24, Sigma = 2, Amount = 20

34 shows more of the white highlights that form the center of the prominence.
This results in better visible smaller prominence surrounding the middle and most
visible prominence.

Comparing Figures 32 and 35, we can see that, despite the extreme adaptation,
the prominence in the Rational Unsharp Masking picture is better distinguishable
than in the picture produced by ImPPG. The background in this last picture is also
more distorted and noisy than the result of the Rational Unsharp Mask.

The program ImPPG uses a more demanding version of the Unsharp Masking
technique, namely Gaussian Linear Unsharp Masking, to great effect. The resulting
images are more smooth than the images resulting from my own implementations.

9 Thesis Conclusions

While traditional Unsharp masking is a fast and effective solution to blurry images,
the algorithm can be improved in many ways. The algorithms can be adapted to
be more effective against certain patterns in a picture or to make better distinction
between what is noise and what are details.

33

Currently, there already exist multiple great improvements that will enhance
the algorithm. I have found that these improvements are good stand-alone algo-
rithms, but can be even more effective by combining them together, most notably
the adaptation where Rational Unsharp Masking and Cubic Unsharp Masking were
combined into a single algorithm. These algorithms can be significantly improved
using various methods. Increasing the area around the current position to more ac-
curately determine the local variance and having smarter ways of determining that
variance in the first place are two concepts that can be used here.

We can conclude from the multitude of examples in this paper that the algo-
rithm is highly adaptable and can therefore work for almost any picture it is used
for. While this adaptability can show great results, it still has to be researched fur-
ther for optimal results and to filter out more parameters that are not as beneficial
to those results.

Existing programs that implement different adaptations of Unsharp Masking
can probably also benefit from being combined with the adaptations presented here
that have shown good results.

The answer to the question I posed at the start of the paper, ”In what ways
can the Unsharp Masking image sharpening method be improved upon?”, can be
summarized with the following: The Unsharp Masking technique can be adapted
with multiple parameters and various optimizations, and while further research is
needed the techniques already present can already combine to give good results.

10 Future work

All the comparisons and implementations I have shown in before all only just the
surface of the Unsharp Masking technique. The methods I have implemented can
be extended in more ways than I have shown and the methods I have only described
can be researched in the same way. This means that I have only began this process.

From using ImPPG and looking at how easily you can see the pixels in my
implementations, we can conclude that even my current implementations are far
from perfect. They will need to be adapted to not show as much contrast between
individual pixels.

10.1 RL Deconvolution

The Richardson-Lucy algorithm based on their papers[11, 5] could be used before
applying any of the Unsharp Masking techniques. The algorithm iteratively in-
creases the sharpness of an image in a different way than using an unsharp mask.
Since this algorithm is used to great effect, combining the two techniques can re-
sult in better results. This algorithm is also build into the ImPPG program, but was
not used for the previous results.

34

10.2 Connected operators

10.2.1 Connected flat zones

A different but related field I looked into, but did not get to implementing is about
connected operators. Connected operators [6] can be useful in the Unsharp Mask-
ing algorithms because they can separate the image in multiple sectors based on a
property. Since the main drawbacks of Unsharp Masking come from images with
high contrast or gradients, isolating parts of the image with roughly the same con-
trast or gradient will reduce susceptibility to noise or ringing. The simplest form
of a connected operator is as follows. The image is split into connected areas with
the exact same value, named flat zones. These flat-zones can then be merged to
partitions by combining flat zones where the values are within a certain threshold.
The first connected operator only worked on binary images. It was used to remove
the flat-zone by eroding the same-value pixels around the starting point.

10.2.2 Tree representations

Another way of separating the image into sectors is by using trees to represent
them. There are different kinds of trees, namely the min-tree, max-tree and inclu-
sion tree. In these trees, the nodes represent an area of the original image each. The
root of the trees consist of the entire image and the leaves represent the maxima,
minima or surrounded areas for max-trees, min-trees and inclusion trees respec-
tively.

References

[1] V. Digalakis et al. “Automatic adaptive contrast enhancement for radiologi-
cal imaging”. In: 1993 IEEE International Symposium on Circuits and Sys-
tems. 1993, 810–813 vol.1. DOI: 10.1109/ISCAS.1993.393846.

[2] Sanjit K. Mitra Tian-Hu Yu Giovanni Ramponi Norbert Strobel. “Nonlinear
unsharp masking methods for image contrast enhancement”. In: Journal of
Electronic Imaging 5.3 (July 1996), pp. 353 –366.

[3] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing (2nd
Ed). Prentice Hall, 2002.

[4] Anil K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall In-
formation and System Sciences Series. Prentice-Hall, 1989.

[5] Leon B. Lucy. “An iterative technique for the rectification of observed dis-
tributions”. In: The astronomical journal 79.79 (1974), p. 745.

[6] Michael H.F. Wilkinson Philippe Salembier. “Connected Operators”. In:
IEEE Signal Processing Magazine (Nov. 2009), pp. 136 –157.

35

[7] A. Polesel, G. Ramponi, and V. J. Mathews. “Image enhancement via adap-
tive unsharp masking”. In: IEEE Transactions on Image Processing 9.3
(2000), pp. 505–510. ISSN: 1057-7149. DOI: 10.1109/83.826787.

[8] G. Ramponi and G. L. Sicuranza. “Quadratic digital filters for image pro-
cessing”. In: IEEE Transactions on Acoustics, Speech, and Signal Process-
ing 36.6 (1988), pp. 937–939. ISSN: 0096-3518. DOI: 10.1109/29.
1611.

[9] Giovanni Ramponi. “A cubic unsharp masking technique for contrast en-
hancement”. In: Signal Processing 67.2 (June 1998), pp. 211 –222.

[10] Giovanni Ramponi and Andrea Polesel. “A Rational Unsharp Masking Tech-
nique”. In: Journal of Electronic Imaging 7 (1998), pp. 333–338.

[11] William Hadley Richardson. “Bayesian-Based Iterative Method of Image
Restoration∗”. In: J. Opt. Soc. Am. 62.1 (1972), pp. 55–59. DOI: 10.1364/
JOSA.62.000055. URL: http://www.osapublishing.org/
abstract.cfm?URI=josa-62-1-55.

[12] Siddharth, R. Gupta, and V. Bhateja. “An improved Unsharp Masking al-
gorithm for enhancement of mammographic masses”. In: 2012 Students
Conference on Engineering and Systems. 2012, pp. 1–4. DOI: 10.1109/
SCES.2012.6199066.

36

11 Code attachments

Listing 1: Recreation of earlier methods and the adaptations on them
1 from PIL import Image
2 import numpy
3 import datetime
4
5
6 # Variable setup including source and resulting files and

path
7 IMAGE = ’source_image_name’
8 TYPE = ’folder/type name’
9 FILTER_LAMBDA = 1

10
11 if IMAGE.endswith(’tif’):
12 COLOR_MAX = 65535
13 ARRAY_TYPE = "uint16"
14 SAVE_AS = f’images/{TYPE}/sun2_[]{FILTER_LAMBDA}.tif’
15 else:
16 COLOR_MAX = 255
17 ARRAY_TYPE = "uint8"
18 SAVE_AS = f’images/{TYPE}/sun1a_[]{FILTER_LAMBDA}.png’
19
20
21 # Accepts filepath to image
22 # Returns image, height, width
23 def load_image(path):
24 im = Image.open(path)
25 h, w = im.size
26 return numpy.asarray(im), h, w
27
28
29 # Unsharp masking techniques
30 def use_mask(original_image, height, width, blurfunc):
31 result = numpy.zeros((height, width), dtype=ARRAY_TYPE)
32 for x in range(0, height):
33 for y in range(0, width):
34 try:
35 f = max(0, min(COLOR_MAX, original_image[x

][y] + FILTER_LAMBDA * blurfunc(
original_image, x, y)))

36 result[x][y] = f
37 except IndexError:
38 result[x][y] = original_image[x][y]
39 return result
40
41
42 # Traditional Unsharp Masking

37

43 def basic(ori, x, y):
44 blur = (2 * ori[x][y] - ori[x - 1][y] - ori[x + 1][y])
45 return blur
46
47
48 def basic_vertical(ori, x, y):
49 blur = (2 * ori[x][y] - ori[x][y - 1] - ori[x][y + 1])
50 return blur
51
52
53 # 2D Traditional Unsharp Masking (plus pattern)
54 def basic2d(ori, x, y):
55 blur = (4 * ori[x][y] - ori[x - 1][y] - ori[x + 1][y] -

ori[x][y - 1] - ori[x][y + 1])
56 return blur
57
58
59 # Unsharp Masking 3x3, equal weights
60 def basic_plus(ori, x, y):
61 blur = 8 * ori[x][y] - ori[x - 1][y] - ori[x + 1][y] -

ori[x][y - 1] - ori[x][y + 1] - ori[x - 1][y - 1] -
ori[x + 1][y - 1] - ori[x - 1][y + 1] - ori[x + 1][y
+ 1]

62 return blur
63
64
65 # Unsharp Masking 3x3, more weights on the horizontal and

vertical pixels
66 def basic_plus2(ori, x, y):
67 blur = 12 * ori[x][y] - 2 * ori[x - 1][y] - 2 * ori[x +

1][y] - 2 * ori[x][y - 1] - 2 * ori[x][y + 1] - ori
[x - 1][y - 1] - ori[x + 1][y - 1] - ori[x - 1][y +
1] - ori[x + 1][y + 1]

68 return blur
69
70
71 # Unsharp Masking 5x5, equal weights
72 def basic_plus3(ori, x, y):
73 blur = -1*ori[x - 2][y - 2] - ori[x - 2][y - 1] - ori[x

- 2][y] - ori[x - 2][y + 1] - ori[x - 2][y + 2] \
74 - ori[x - 1][y - 2] - ori[x - 1][y - 1] - ori[x

- 1][y] - ori[x - 1][y + 1] - ori[x - 1][y +
2]\

75 - ori[x][y - 2] - ori[x][y - 1] + 24 * ori[x][y]
- ori[x][y + 1] - ori[x][y + 2]\

76 - ori[x + 1][y - 2] - ori[x + 1][y - 1] - ori[x
+ 1][y] - ori[x + 1][y + 1] - ori[x + 1][y +
2]\

38

77 - ori[x + 2][y - 2] - ori[x + 2][y - 1] - ori[x
+ 2][y] - ori[x + 2][y + 1] - ori[x + 2][y +
2]

78 return blur
79
80
81 # Unsharp Masking 5x5, more weight closer to the center
82 def basic_plus4(ori, x, y):
83 blur = -1*ori[x - 2][y - 2] - ori[x - 2][y - 1] - ori[x

- 2][y] - ori[x - 2][y + 1] - ori[x - 2][y + 2] \
84 - ori[x - 1][y - 2] - 2 * ori[x - 1][y - 1] - 2

* ori[x - 1][y] - 2 * ori[x - 1][y + 1] - ori
[x - 1][y + 2] \

85 - ori[x][y - 2] - 2 * ori[x][y - 1] + 32 * ori[x
][y] - 2 * ori[x][y + 1] - ori[x][y + 2] \

86 - ori[x + 1][y - 2] - 2 * ori[x + 1][y - 1] - 2

* ori[x + 1][y] - 2 * ori[x + 1][y + 1] - ori
[x + 1][y + 2] \

87 - ori[x + 2][y - 2] - ori[x + 2][y - 1] - ori[x
+ 2][y] - ori[x + 2][y + 1] - ori[x + 2][y +
2]

88 return blur
89
90
91 # Cubic Unsharp Masking
92 def cubic(ori, x, y):
93 cub = ori[x - 1][y] - ori[x + 1][y]
94 blur = cub*cub*(2 * ori[x][y] - ori[x - 1][y] - ori[x +

1][y])
95 return blur
96
97
98 def cubic_vert(ori, x, y):
99 cub = ori[x][y - 1] - ori[x][y + 1]

100 blur = cub*cub*(2 * ori[x][y] - ori[x][y - 1] - ori[x][
y + 1])

101 return blur
102
103
104 # Cubic Unsharp Masking, first term power=4
105 def cubic_plus(ori, x, y):
106 cub = ori[x - 1][y] - ori[x + 1][y]
107 blur = cub*cub*cub*cub*(2 * ori[x][y] - ori[x - 1][y] -

ori[x + 1][y])
108 return blur
109
110
111 # Cubic Unsharp Masking, second term uses 4 pixels in a

single direction

39

112 def cubic_plus2(ori, x, y):
113 cub = ori[x - 1][y] - ori[x + 1][y] + ori[x - 2][y] -

ori[x + 2][y]
114 blur = cub*cub*(4 * ori[x][y] - ori[x - 1][y] - ori[x +

1][y] - ori[x - 2][y] - ori[x + 2][y])
115 return blur
116
117
118 def cubic_plus2_vert(ori, x, y):
119 cub = ori[x][y - 1] - ori[x][y + 1] + ori[x][y - 2] -

ori[x][y + 2]
120 blur = cub*cub*(4 * ori[x][y] - ori[x][y - 1] - ori[x][

y + 1] - ori[x][y - 2] - ori[x][y + 2])
121 return blur
122
123
124 # 2D Cubic Unsharp Masking
125 def cubic2d(ori, x, y):
126 cub1 = ori[x - 1][y] - ori[x + 1][y]
127 cub2 = ori[x][y - 1] - ori[x][y + 1]
128 cub3 = ori[x - 1][y] + ori[x + 1][y] - ori[x][y - 1] -

ori[x][y + 1]
129 blur = cub1 * cub1 * (2 * ori[x][y] - ori[x - 1][y] -

ori[x + 1][y]) + \
130 cub2 * cub2 * (2 * ori[x][y] - ori[x][y - 2] -

ori[x][y + 1]) + \
131 cub3 * cub3 * (4 * ori[x][y] - ori[x - 1][y] -

ori[x+1][y] - ori[x][y-1] - ori[x][y+1])
132 return blur
133
134
135 # Rational Unsharp Masking
136 # Traditional
137 def rational_mask(ori, x, y, um_func):
138 k = 0.001
139 h = 250
140 global SAVE_AS
141 SAVE_AS = SAVE_AS.replace(’[]’, f’k={k}_h={h}_’)
142
143 # g_n = (ori[x][y]*ori[x][y] - ori[x+1][y] * ori[x-1][y

])
144 g_n = (ori[x + 1][y] - ori[x - 1][y])
145 g_n = g_n*g_n
146 rational_control_term = g_n / ((k * g_n*g_n) + h)
147 return rational_control_term * um_func(ori, x, y)
148
149
150 # g(n) with 2 pixels wide
151 def rational_mask_plus(ori, x, y, um_func):

40

152 k = 0.001
153 h = 250
154 global SAVE_AS
155 SAVE_AS = SAVE_AS.replace(’[]’, f’k={k}_h={h}_’)
156
157 # g_n = (ori[x][y]*ori[x][y] - ori[x+1][y] * ori[x-1][y

])
158 g_n = (ori[x + 1][y] - ori[x - 1][y] + ori[x + 2][y] -

ori[x - 2][y])
159 g_n = g_n*g_n
160 rational_control_term = g_n / ((k * g_n*g_n) + h)
161 return rational_control_term * um_func(ori, x, y)
162
163
164 # 2D g(n)
165 def rational_mask_plus2(ori, x, y, um_func):
166 k = 0.001
167 h = 250
168 global SAVE_AS
169 SAVE_AS = SAVE_AS.replace(’[]’, f’k={k}_h={h}_’)
170
171 # g_n = (ori[x][y]*ori[x][y] - ori[x+1][y] * ori[x-1][y

])
172 g_n = (ori[x + 1][y] - ori[x - 1][y] + ori[x][y + 1] -

ori[x][y - 1])
173 g_n = g_n*g_n
174 rational_control_term = g_n / ((k * g_n*g_n) + h)
175 return rational_control_term * um_func(ori, x, y)
176
177
178 def rational(ori, x, y):
179 return rational_mask(ori, x, y, basic)
180
181
182 def rational_plus(ori, x, y):
183 return rational_mask_plus(ori, x, y, basic)
184
185
186 def rational_plus2(ori, x, y):
187 return rational_mask_plus2(ori, x, y, basic)
188
189
190 def rational_cubic(ori, x, y):
191 return rational_mask(ori, x, y, cubic)
192
193
194 def rational_cubic_plus2(ori, x, y):
195 return rational_mask(ori, x, y, cubic_plus2)
196

41

197
198 # 2D Rational Unsharp Masking
199 # Original: using 2 rational control terms
200 def rational_mask2d(ori, x, y, um_func, um_func_vert):
201 k = 0.0008
202 h = 3000
203 global SAVE_AS
204 SAVE_AS = SAVE_AS.replace(’[]’, f’k={k}_h={h}_’)
205
206 g_nx = (ori[x + 1][y] - ori[x - 1][y])
207 g_nx = g_nx * g_nx
208 g_ny = (ori[x][y + 1] - ori[x][y - 1])
209 g_ny = g_ny * g_ny
210
211 def rational_ct(g_n):
212 return g_n / ((k * g_n * g_n) + h)
213
214 return um_func(ori, x, y) * rational_ct(g_nx) +

um_func_vert(ori, x, y) * rational_ct(g_ny)
215
216
217 # Using a single rational control term
218 def rational_mask2d_alt(ori, x, y, um_func):
219 k = 0.001
220 h = 250
221 global SAVE_AS
222 SAVE_AS = SAVE_AS.replace(’[]’, f’k={k}_h={h}_’)
223
224 # g_n = (ori[x][y]*ori[x][y] - ori[x+1][y] * ori[x-1][y

])
225 g_n = (ori[x + 1][y] - ori[x - 1][y] + ori[x][y + 1] -

ori[x][y - 1])
226 g_n = g_n*g_n
227 rational_control_term = g_n / ((k * g_n*g_n) + h)
228 return rational_control_term * um_func(ori, x, y)
229
230
231 def rational2d(ori, x, y):
232 return rational_mask2d(ori, x, y, basic, basic_vertical

)
233
234
235 def rational2d_cubic(ori, x, y):
236 return rational_mask2d(ori, x, y, cubic, cubic_vert)
237
238
239 def rational2d_cubic_plus2(ori, x, y):
240 return rational_mask2d(ori, x, y, cubic_plus2,

cubic_plus2_vert)

42

241
242
243 def rational2d_plus4(ori, x, y):
244 return rational_mask2d(ori, x, y, basic_plus4,

basic_plus4)
245
246
247 def rational2d_alt(ori, x, y):
248 return rational_mask2d_alt(ori, x, y, basic2d)
249
250
251 def rational_plus4(ori, x, y):
252 return rational_mask2d(ori, x, y, basic_plus4)
253
254
255 # Main project type functions
256 def unsharp_masking_proj(type, image, height, width):
257 new_image_array = None
258 if type == ’basic’:
259 new_image_array = use_mask(image, height, width,

basic)
260 elif type == ’basic2d’:
261 new_image_array = use_mask(image, height, width,

basic2d)
262 elif type == ’cubic’:
263 new_image_array = use_mask(image, height, width,

cubic)
264 elif type == ’cubic_plus’:
265 new_image_array = use_mask(image, height, width,

cubic_plus)
266 elif type == ’cubic_plus2’:
267 new_image_array = use_mask(image, height, width,

cubic_plus2)
268 elif type == ’cubic2d’:
269 new_image_array = use_mask(image, height, width,

cubic2d)
270 elif type == ’basic_plus’:
271 new_image_array = use_mask(image, height, width,

basic_plus)
272 elif type == ’basic_plus2’:
273 new_image_array = use_mask(image, height, width,

basic_plus2)
274 elif type == ’basic_plus3’:
275 new_image_array = use_mask(image, height, width,

basic_plus3)
276 elif type == ’basic_plus4’:
277 new_image_array = use_mask(image, height, width,

basic_plus4)
278 elif type == ’rational’:

43

279 new_image_array = use_mask(image, height, width,
rational)

280 elif type == ’rational_plus’:
281 new_image_array = use_mask(image, height, width,

rational_plus)
282 elif type == ’rational_plus2’:
283 new_image_array = use_mask(image, height, width,

rational_plus2)
284 elif type == ’rational_plus4’:
285 new_image_array = use_mask(image, height, width,

rational_plus4)
286 elif type == ’rational_cubic’:
287 new_image_array = use_mask(image, height, width,

rational_cubic)
288 elif type == ’rational_cubic_plus2’:
289 new_image_array = use_mask(image, height, width,

rational_cubic_plus2)
290 elif type == ’rational2d’:
291 new_image_array = use_mask(image, height, width,

rational2d)
292 elif type == ’rational2d_cubic’:
293 new_image_array = use_mask(image, height, width,

rational2d_cubic)
294 elif type == ’rational2d_cubic_plus2’:
295 new_image_array = use_mask(image, height, width,

rational2d_cubic_plus2)
296 elif type == ’rational2d_plus4’:
297 new_image_array = use_mask(image, height, width,

rational2d_plus4)
298 elif type == ’rational2d_alt’:
299 new_image_array = use_mask(image, height, width,

rational2d_alt)
300 if new_image_array is not None:
301 return new_image_array
302 raise ValueError
303
304
305 if __name__ == ’__main__’:
306 start = datetime.datetime.now()
307
308 # Retrieve image and image information from file
309 image, width, height = load_image(f’images/{IMAGE}’)
310
311 # Apply mask
312 result = unsharp_masking_proj(TYPE, image, height,

width)
313
314 # Convert array back to image and save to file
315 result = Image.fromarray(result)

44

316 try:
317 result.save(SAVE_AS.replace(’[]’, ’’))
318 except FileNotFoundError:
319 print(’ERROR: Directory does not exist’)
320 result.show()
321 print(’Execution took’, (datetime.datetime.now() -

start).seconds, ’seconds’)
322 print(f’Saved as {SAVE_AS.replace("[]", "")}’)

45

