
Verifying LTL Specifications for Discrete-Time
Dynamical Systems

Bachelor Thesis

Erik Voogd, University of Groningen

First supervisor Second supervisor
Dr. ir. B. Besselink Dr. J.A. Perez Parra

University of Groningen University of Groningen

July 19, 2018

Abstract

Linear-time temporal logic (LTL) is a class of
logics whose formulas can express global,

eventual, or repeated satisfaction of properties.
We explore how to use LTL formulas for

specifying properties of Discrete-time
Dynamical Systems (DDS) on a continuous
domain, and to verify them. To this end, a

finite abstraction from the infinite system is
constructed. The main result is that we can

rigorously verify an LTL formula for a DDS
using this abstraction and tools proposed in the

literature.

Contents
1 Introduction 3

2 Problem Statement 4

3 Linear Temporal Logic 5
3.1 Syntax . 5
3.2 Semantics . 5
3.3 Derived Formulas . 6
3.4 Problem Revisited . 7

4 Transition Systems 8
4.1 Definition and Examples . 8
4.2 Simulation . 10

5 Finite State Abstractions 12
5.1 Construction . 12
5.2 Computation . 14
5.3 Mixed Monotonicity . 16
5.4 Removing Spurious Self-loops . 17

6 Verification of LTL Formulas 18
6.1 Finite State Automaton . 19
6.2 Büchi Automata . 20
6.3 Product Automaton . 22

7 Main Results 24

8 Conclusions 25

Appendices 28

A Proof of Proposition 1 28

B Introduction to SPIN 30

C Case Study 33

2

1 Introduction
Control theory for discrete-time dynamical systems is generally concerned with the analysis of
properties like stability and robustness, which describe how the trajectory of a system will con-
verge to equilibrium points, and stay close to it under perturbations. These asymptotic properties
alone, however, are not sufficient to characterize a wide variety of desired criteria for systems.
Consider, for example, a system that models the traffic flow of a signalized intersection. The cri-
terion that the waiting time for two successive green lights should be no longer than, say, forty
seconds, does not refer to asymptotic behavior, and can therefore not be expressed in terms of the
traditional control objectives of stability and robustness.

These kinds of specifications are required for many other types of systems, particularly for
cyber-physical systems. A cyber-physical system can be thought of as a group of communicating
computing devices that interact with the physical world. The study of these systems has become
increasingly important over the last few decades, as pointed out in [8], and typical examples are
found in areas such as robot operation, medical monitoring, control of traffic flow, and smart build-
ings.

A way to express the more complex criteria is through so-called Linear-time Temporal Logic
(LTL), whose language can formally encode system specifications [1]. LTL specifications can
however not immediately be verified for dynamical systems that arise from physical or engineer-
ing processes. This is because such systems typically evolve on an infinite, continuous state space,
whereas LTL has been developed for systems with a finite number of states. In this thesis, we
will therefore discuss a method for verifying LTL specifications for discrete-time dynamical sys-
tems. Specifically, the continuous state space domain is partitioned so as to construct a finite state
abstraction (FSA, or simply abstraction). Each element of the partition, which is a subset of the
continuous domain, will be a state of the FSA. With this abstraction, logically expressed system
specifications can be then rigorously verified.

Results by the authors of [2] and [3] are used for constructing the abstractions using mixed
monotonicity and interval partitions. The construction of automata from LTL formulas is based on
the translation procedure presented in [5] and the online tool that the authors published. The aim
of this thesis is then to show a constructive way of verifying LTL specifications for a discrete-time
dynamical system, and to prove that it is correct.

In Section 2, we introduce a discrete-time dynamical system and the aim of this research, after
which we will present in Section 3 the language that is used to formulate system specifications.
Section 4 introduces a general framework called a transition system, which will be used in Section
5 to construct a finite abstraction. After that, we present the notion of a Büchi automaton in
Section 6, which can accept the same language as a given LTL formula. This section will also
define a product automaton, which can be used to verify specifications for systems with a finite
number of states. Every section includes illustrative examples. In Section 7 we present the main
results, and Section 8 contains a summary and a discussion of the results. Appendix C contains a
case study showing how the theory can be applied in practice.

3

2 Problem Statement
In this section we present some notations and the model of our discrete-time dynamical system.
Because we will also introduce notions of other types of systems in this article, we will refer to
this system as the continuous, or the original system, where the word continuous will refer to the
state space domain.

A discrete-time dynamical system without input control or disturbance can be modeled as

x[t+ 1] = F (x[t]),

where x[t] ∈ X for some domain X ⊂ Rn. The infinite sequence x[·] = x[0]x[1] . . . defines a
trajectory of the system starting at some x[0] = x0. The ith component of a state is indicated with
a superscript, so we write x = (x1, ..., xn).

If W is a possibly infinite set, then the powerset 2W denotes the set of all possible subsets of
W . If W is finite, the number of elements it contains is denoted by |W |.

We are looking to verify system specifications, which requires us to observe the system in some
sense. We therefore assume the existence of a map o : X → 2O belonging to the system, for some
finite set of observations O. The system we consider is then described by

Σ :

{
F : X → X ,
o : X → 2O.

(1)

A trajectory x[·] then gives rise to an observed infinite output word y[·] = o(x[·]) by y[k] =
o(x[k]) for k ∈ Z≥0, where each y[k] is a set of observations. A word that repeats some finite
sequence of substates z1 . . . zn ad infinitum is denoted by (z1 . . . zn)ω. In particular, zω = zzz

Example 1 shows how a map o and a set O can be defined in practice. In the next section, we
define a logic that can express system specifications in a formula φ using the set of observations O
as atomic propositions. In this article we aim to verify that a given Σ satisfies a given formula φ.

Example 1. Suppose that Σ in (1) describes the movement of a robot, where X = R2. The
robot’s environment, as illustrated in Figure 1, is labeled by E. We further have a dangerous
region D, and two regions with specific purposes A and B. The set of observations of Σ is
O = {A,B,D,E}. Then, if x = (x1, x2), an observation map o for Σ can be given by

A ∈ o(x), iff 3 ≤ x1 < 4 and 3 ≤ x2 < 4,

B ∈ o(x), iff 0 ≤ x1 < 1 and 0 ≤ x2 < 1,

D ∈ o(x), iff 1 ≤ x1 < 3 and 1 ≤ x2 < 3,

E ∈ o(x), iff 0 ≤ x1 < 6 and 0 ≤ x2 < 4,

Be aware that o maps to sets of observations. For example, o(2, 2) = {D,E}, and o(7, 5) =
Ø.

4

1 2 3 4 5 6

1

2

3

4

B

A

D E

x1

x2

Figure 1: Labeled regions for a robot environment. See also Examples 1 and 2.

3 Linear Temporal Logic
Simply put, a logic consists of syntax and semantics, which will be formally defined in this sec-
tion. After that, the syntax is conveniently extended, to show how we can express very useful
specifications.

3.1 Syntax
The syntax of a logic merely describes how formulas are built. Formulas in Linear-time Temporal
Logic (LTL) are built from logical operators, temporal operators, and atomic propositions. In the
context of this thesis, the atomic propositions will be elements of the finite set of observations O
belonging to Σ in (1).

Definition 1. A propositional Linear Temporal Logic formula over a given set of observations O
is recursively defined as follows:

• > is a formula;

• Every element p ∈ O is a formula;

• If φ and ψ are formulas, then ¬φ, φ ∧ ψ, φ ∨ ψ, #φ, and φ U ψ are also formulas.

Whereas the classical logical operators should be familiar to the reader, the new temporal
operators # and U might not be. For now, it suffices to know that they are pronounced as “next”
and “until”, respectively. An example of an LTL formula is ¬(>U(p1 ∧ (p2 ∨#p3))), where each
pi ∈ O. At this point, the formula has no meaning, because we have yet to define the semantics.

3.2 Semantics
The semantics of a logic models the interpretation of formulas with a set of rules on how to evaluate
them. The evaluation can be regarded as a mapping to true or false, and we say that a formula is
satisfied if it is evaluated as true. In LTL, temporal operators will make claims about observations
or formulas in future states. Knowing this, it would seem natural to evaluate LTL formulas over an

5

infinite word ξ = y0y1 . . . , where each yk is a (possibly empty) set of observations. The subscripted
ξk will then denote the infinite suffix of ξ starting at position k ≥ 0, so ξk = ykyk+1

Definition 2. The satisfaction of a formula φ over a set of observations O by an infinite word
ξ = y0y1 . . . at position k ∈ Z≥0, denoted by ξk |= φ, is defined recursively as follows:

• ξk |= >,

• ξk |= p iff p ∈ yk, for p ∈ O,

• ξk |= ¬φ iff not ξk |= φ,

• ξk |= φ ∧ ψ iff ξk |= φ and ξk |= ψ,

• ξk |= φ ∨ ψ iff ξk |= φ or ξk |= ψ,

• ξk |= #φ iff ξk+1 |= φ,

• ξk |= φ U ψ iff there exists j ≥ k such that ξj |= ψ and ξi |= φ for all k ≤ i < j.

An infinite word ξ satisfies a formula φ, written ξ |= φ, iff ξ0 |= φ. The language of a formula
φ, written Lφ is the set of all infinite words that satisfy φ. Two formulas φ and ψ are equivalent,
written φ ≡ ψ, if Lφ = Lψ.

The first item models the formula for true in such a way that it is always satisfied at any point
in an infinite word. Indeed, we want this formula to always be evaluated as true. An observation
p is satisfied if it is in the current set of observations. The classical logical operators for negation,
conjunction, and disjunction are modeled in the familiar way. The circle in “#φ” means that φ
should be satisfied by the suffix directly following the current set of observations. A formula
φ U ψ is satisfied if φ remains satisfied until ψ is satisfied, and ψ should indeed be satisfied at
some point in the future. If, specifically, ψ = p for some p ∈ O, and p ∈ yk, then the formula
is satisfied. To see this, put j = k, then, since p ∈ yj , indeed ξj |= p and ξi |= φ for all i in the
half-open interval k ≤ i < j, which is empty. This means that if p is satisfied now, then φ U p is
also satisfied.

3.3 Derived Formulas
The operator U allows us to express that formulas be satisfied eventually. Indeed, > is always
satisfied, and so > U ψ is satisfied iff ψ is fulfilled at some point in the future. This makes way for
a useful and widely applied unary operator, which we denote by “♦”. In some texts, the operator
is denoted by F , for future. Another useful operator is “�”, in some texts denoted G for global,
which says that a formula should always be satisfied. Equivalently, the negation of the formula
should never be satisfied at any point in the future. We can extend the syntax as follows:

⊥ := ¬>, (false)
φ→ ψ := ¬φ ∨ ψ, (conditional)
φ↔ ψ := (φ→ ψ) ∧ (ψ → φ), (biconditional)

♦φ := > U φ, (eventually)
�φ := ¬♦¬φ, (always)

φ R ψ := ¬(¬φ U ¬ψ). (release)

6

Defined this way, it is easily verified with the semantics in Definition 2 that the formula⊥ is always
evaluated as false. The classical operators for conditional and biconditional should be familiar. The
release operator is defined as the dual of U , which means that also ¬(¬φ R ¬ψ) ≡ φ U ψ. This
dual relation is completely analogue to the relation between ∧ and ∨, better known as De Morgan’s
laws. The intuition for a formula φ R ψ is that ψ must always be satisfied, but it might be that φ
is satisfied at some point, and this is when the necessity for the satisfaction of ψ is released. Note
that, as opposed to U , with R it is allowed that φ is never satisfied, in which case ψ should always
be true. Indeed, �ψ ≡ ⊥ R ψ, as can be checked using the syntax. The power of the derived
formulas is illustrated with a practical example.

Example 2. Consider again the robot dynamics from Example 1, with O = {A,B,D,E},
graphically presented in Figure 1. Assume that the robot is to deliver packages repeatedly
fromA toB, always staying inE, and always avoiding the danger zoneD. This specification
can be expressed in the formula

φ1 = �E ∧�¬D ∧�♦A ∧�♦B.

In words, the last two conjuncts say that the robot should “always eventually” reach (always
return to) region A, and also always eventually reach region B. We can refine the criterion
by realizing that the robot should not return to B as long as it has not got a package from A.
This can be expressed as

φ2 = �E ∧�¬D ∧�♦B ∧�(B → #(¬B U A)).

The last conjunct makes sure that it is always the case that the robot is not in B, or, if it is,
in the next state it will not be in B until it has been to A. The reader can verify that the
following infinite words do not satisfy φ2:

ξ = ({E})ω = {E}{E}{E}{E} . . .
ξ′ = ({E}{E,B}{E,A}{E,D})ω

ξ′′ = ({E,B}{E,B}{E,A})ω

A sequence that does satisfy φ2 is given by ζ = ({E,B}{E}{E,A}{E})ω. Note that
evaluating the words formally with the semantics is a job far from trivial.

3.4 Problem Revisited
The problem statement that was described in Section 2 can now be made formal, using the follow-
ing definition.

Definition 3. Let Σ be a system with F , o, and O as in (1), and let φ be an LTL formula over
O. Then Σ satisfies φ, written Σ ` φ, if for every initial x0, y[·] ∈ Lφ, where y[t] = o(x[t]) and
x[t+ 1] = F (x[t]) for all t ≥ 0, and x[0] = x0.

In other words, all infinite words of observations from the system must satisfy the formula for
every initial x0.

7

Problem 1. Given a pair (Σ, φ), where Σ is the system in (1) and φ an LTL formula as in Defini-
tion 1, verify whether Σ ` φ, using a constructive procedure.

The system Σ has trajectories that run through a real state space, where the number of states
is infinite. To answer the question whether Σ satisfies a given LTL formula does not have a trivial
answer. Tools and theory from computer science will be of great help in working towards a practi-
cal solution. This is why the next section introduces the notion of a transition system. A transition
system is a general framework that is widely used in theoretical computer science, in particular
formal methods.

4 Transition Systems
This section defines a transition system, and the reader will be familiarized with it by use of some
examples. Transition systems can have an infinite structure, which makes it difficult to compare
them. For this purpose, we will also define a relation on states and systems called simulation.

4.1 Definition and Examples
A transition system with an observation map is defined as follows.

Definition 4. A transition system is a tuple T = (S, U, δ, O, o) where

• S is a set of states,
• U is a set of inputs,
• δ : S × U → 2S is the transition map,
• O is a set of observations,
• o : S → 2O is an observation map.

Each of the sets S, U , and O can be either finite or infinite. A transition system is called finite
if all three are finite, and infinite otherwise. Furthermore, it is non-blocking if |δ(s, u)| > 0 for
all s ∈ S and u ∈ U . This means that every state has at least one possible transition. Lastly, a
system is deterministic if |δ(s, u)| ≤ 1 for all s, u. This means that if a transition system is both
non-blocking and deterministic, its transition map δ might be considered as a mapping to S, rather
than to 2S . We illustrate Definition 4 with an example.

. . .
+
** −2
{<}

+
++

−
jj −1

{<}

+
++

−
kk 0

{0}

+
**

−
jj 1

{>}

+
**

−
jj 2

{>}

+
((

−
jj . . .

−
jj

Figure 2: Graphical representation of an infinite transition system. See Example 3. The observations are written below
each state.

Example 3. The system presented graphically in Figure 2 is captured by the infinite transi-
tion system T = (S, U, δ, O, o), where

• S = Z,

8

• U = {+,−},

• δ(s, u) =

{
s+ 1 if u = +

s− 1 if u = −,

• O = {<, 0, >},

• and o(s) =


{>} if x > 0

{<} if x < 0

{0} otherwise.

Given a state n ∈ Z, the system jumps to state n+ 1 if it gets the symbol ′+′ as input, or to
n− 1 if the input is the symbol ′−′. Note that it is both non-blocking and deterministic. The
observation map only gives information about the sign of the number that a state represents.
In Figure 2, the observations are written below each state.

Similar to a trajectory in a continuous system, we refer to a run of the transition system by
s[·] = s[0]s[1]s[2] A run is defined by an infinite input sequence u[·] = u[0]u[1] . . . such that
s[k+ 1] ∈ δ(s[k], u[k]) for all k ≥ 0 and some chosen s[0] = s0. Note that one input sequence can
define multiple runs if the transition system is non-deterministic. The following example shows
that discrete-time dynamical systems as in (1) can be naturally represented as an infinite transition
system.

Example 4. The discrete-time dynamical system Σ in (1) is captured by the infinite transi-
tion system T = (S, U, δ, O, o), where O and o are already given, and

• S = X ⊂ Rn,
• U = {0} (or any singleton),
• and δ(s, 0) = {F (s)}.

The set of inputs U is taken as a singleton, because the transitions in the system should not
depend on input, as the continuous system does not have a control input.

Example 4 can easily be extended to model discrete-time dynamical systems with inputs, i.e.,
systems of the form

x[t+ 1] = F (x[t], u[t]),

where each u[t] ∈ U . This possibly infinite U will then be the set of inputs for the transition system.
There exist techniques to develop control strategies that make sure that systems with input satisfy
a given LTL formula φ. For example, in [2], a case study on traffic flow shows how to synthesize
a control strategy that ensures that the waiting queues for the traffic lights will never be too long.

This article however is restricted to verification of formulas only, and since the discrete set U
belonging to the system T in Example 4 is a singleton, we can omit it. We will therefore be mainly
interested in the infinite transition system

TΣ = (X , F, O, o), (2)

9

where S = X , O, and o are still as in Definition 4, but δ = F maps to X instead of 2X , since the
system is non-blocking and deterministic. For every initial x0 ∈ X , a run of TΣ gives rise to the
same infinite output word y[·] = y[0]y[1]y[2] . . . as Σ in (1), which should be verified against the
specification φ as in Definition 3. Then Σ satisfies φ if and only if TΣ satisfies φ, for which we also
write TΣ ` φ, as in Definition 3.

4.2 Simulation
In the next section, we transform the infinite transition system TΣ into a finite abstraction. In-
tuitively, this will cause a loss of some details of the original system. In the process, we must
however maintain the aspects that are important for our analysis. Specifically, all trajectories in the
continuous system have to correspond to one in the abstraction. Moreover, since we are verifying
an LTL formula over the observations that are done, it is necessary that the corresponding trajec-
tory in the abstraction produces the same infinite output word as in the original continuous system.
This motivates the following definition.

Definition 5. Let T = (S, U, δ, O, o) be a transition system. A relationR ⊂ S × S between states
is called a simulation if for every pair (s, t) ∈ R and all u ∈ U ,

(i) s and t are observationally equivalent, written o(s) = o(t),

(ii) if s′ ∈ δ(s, u), then there exists t′ ∈ δ(t, u) such that (s′, t′) ∈ R.

We say that a state t simulates s, if there exists a simulation relationR such that (s, t) ∈ R.

States as elements of the relation R in Definition 5 are defined in terms of transitions to other
states, but the relation has no base case. This gives rise to an infinite, circular-like definition, a con-
cept known formally as a coinductive definition. Simulations are known to be preorder relations,
which is easy to establish, see, for example, [9].

Simulation of states is useful in this context only when comparing two different transition
systems.

Definition 6. Let T = (S, U, δ, O, o) and T̂ = (Ŝ, Û , δ̂, Ô, ô) be transition systems. We say that T̂
simulates T if Ô = O and Û = U , and there exists a simulation R ⊂ S × Ŝ, such that for every
s ∈ S, (s, t) ∈ R for some t ∈ Ŝ.

In other words, T̂ simulates T if there exists a relation that shows that every state in T is
simulated by a state in T̂ . The corresponding observation map to both transition systems is used to
see whether the states are observationally equivalent. Specifically, o(s) = ô(t) if (s, t) ∈ R. The
following lemma is an important result for satisfying LTL formulas.

Lemma 1. If T and T̂ are transition systems, and T̂ simulates T , then every trajectory of T corre-
sponds to some trajectory of T̂ with the same infinite output word.

Proof. This is a direct consequence of Definitions 5 and 6.

The following example defines a transition system T̂ that simulates T in Example 3.

10

N
−

::

+ $$

{<}

+
++
0
{0}

+
++

−
kk P

{>}−
kk

+zz

−
dd

Figure 3: Graphical representation of a finite transition system that simulates the infinite transition system from Ex-
ample 3. See Example 5

Example 5. Consider the finite transition system T̂ = (Ŝ, Û , δ̂, Ô, ô}, where

• Ŝ = {N, 0, P},
• Û = {+,−},
• Ô = {<, 0, >},

• ô(s) =


{<} if s = N,

{0} if s = 0,

{>} if s = P,

• δ̂ is given by the transition table:
u + −

δ̂(0, u) {P} {N}
δ̂(P, u) {P} {0, P}
δ̂(N, u) {0, N} {N}

The system is non-deterministic, and is presented graphically in Figure 3. The symbols
P and N represent the collection of positive and negative integers respectively. Also, let
T = (S = Z, U, δ, O, o) be the infinite transition system from Example 3. Observe that
Ô = O and Û = U , and define the relation

R := {(x,N) | x ∈ Z<0} ∪ {(0, 0)} ∪ {(x, P) | x ∈ Z>0}

Then for all s ∈ S, there is a pair (s, t) for some t ∈ Ŝ. We will now verify that R is a
simulation by considering the two properties in Definition 5 seperately.

(i) Indeed, for every pair (s, t) ∈ R, we have o(s) = ô(t).
(ii) Here, we verify (ii) for every (s, t) ∈ R and u ∈ U by a case analysis on the union of

the three sets.

• First, consider the case where (s, t) = (0, 0). For u = +, s′ must be 1, δ̂(0,+) =
{P} and indeed (1, P) ∈ R. For u = −, s′ must be −1, δ̂(0,−) = {N}, and we
also confirm that (−1, N) ∈ R.
• Consider now (s, t) ∈ {(x,N) | x ∈ Z<0}. If u = −, take the only two possible

transitions, and observe (s − 1, N) ∈ R. For u = +, δ(s,+) = {s + 1} and
δ̂(N,+) = {0, N}. If s + 1 = 0, pick t′ = 0 as the next state, and confirm
(0, 0) ∈ R. Otherwise, s+ 1 < 0, pick t′ = N , and indeed, (s+ 1, N) ∈ R.
• The case where (s, t) ∈ {(x, P) | x ∈ Z>0} is similar.

We conclude that R is a simulation, and hence, the infinite, deterministic transition system
T is simulated by the finite, non-deterministic system T̂ .

11

In Example 5, we saw a finite transition system simulating an infinite transition system. In
exchange, the finite system was constructed to allow non-deterministic behaviour. The next sec-
tion introduces a way of constructing a finite, non-deterministic transition system that simulates
TΣ in (2). This is done because satisfying LTL formulas for finite systems is more viable than for
infinite systems.

5 Finite State Abstractions
First, the general way of constructing a finite abstraction is shown in this section. After that,
we present methods and assumptions to make the construction computationally more feasible and
efficient. Finally, we show that, although an abstraction simulates TΣ, the converse is not true in
general. This has some unfavorable consequences that we will explore and partially solve.

5.1 Construction
When constructing a finite state abstraction from TΣ in (2), we discretize the continuous state space
X by constructing a partition.

Definition 7. For a (possibly infinite) set X , a partition of X is {Xq}q∈Q, where Q is finite and

(i) Xq ∩ Xq′ = Ø for all q, q′ ∈ Q,

(ii)
⋃
q∈QXq = X

Each Xq is called a part of X .

In other words, all the parts are subsets ofX , and every point inX is represented by exactly one
of the parts. Intuitively, the relation between X and Q identifies the relation between the transition
system TΣ and its abstraction, and it is the key in going from an infinite to a finite number of states.

Definition 8. Let TΣ be as in (2). A non-deterministic finite state abstraction of TΣ is a tuple
A = (Q, δ,O, oA) with Q finite, such that {Xq}q∈Q is a partition of X , and δ : Q → 2Q is the
transition map defined such that

∀x ∈ X : if x ∈ Xq and F (x) ∈ Xq′ , then q′ ∈ δ(q), (3)

and oA : Q→ 2O is the observation map such that

∀x ∈ X : if x ∈ Xq then o(x) = oA(q).

The set δ(q) is called the one-step reachable state set of Xq.

The finite state abstraction of TΣ is another transition system, where the input is again omitted.
Note that, defined this way, the observation map of Σ puts certain restrictions on the form of the
partition. Specifically, if two states of the orginal system are not observationally equivalent, they
cannot be in the same part of the partition by definition. We say that a partition of X respects the
observation map o of Σ if it allows for the construction of a finite state abstraction.

12

1 2 3 4 5 6

1

2

3

4

B

A

D

E

q0

q1

q2

q3

q4

q5

q6

x1

x2

q6

��

{E}

q3

{E,A}

q5

{E,D}

��

q1

rr

{E}

q4

~~
{E,D}

q2

{E}

kkq0
$$

{E,B}

Figure 4: Graphical representations for Example 6: arbitrary partition (a) that respects the observation map o, and
finite state abstraction (b) of the robot environment in Figure 1 using F (x) = (0.5, 0.5). Note that for every part
of the partition, no two points have different observation sets. The observations are written below the states in the
abstraction.

An abstraction A approximates the original system, and the construction of an abstraction can
be seen as a trade-off between infinite states in the deterministic system TΣ, and non-determinism
in the finite abstraction. Coarse partitioning of X will cause more non-determinism, and fine
partitioning will limit non-deterministic behaviour.

The following lemma is an important result of Definition 8, because it reduces the question
described in Problem 1 to satisfying a specification for a finite abstraction, rather than for the
continuous system.

Lemma 2. If A is a finite state abstraction of TΣ as in Definition 8, then A simulates TΣ.

Proof. This is proven by providing an explicit simulation relation R ⊂ X × Q, such that every
x ∈ X is in it. Consider the relation

R := {(x, q) ∈ X ×Q | x ∈ Xq}.

It follows immediately that the relationR then satisfies properties (i) and (ii) in Definition 5 by the
way A is constructed. Hence,R is a simulation relation.

We let the notation for Σ or TΣ satisfying an LTL formula φ as in Definition 3 extend naturally
to writing A ` φ for the abstraction A satisfying φ.

Example 6. Consider again the system Σ describing the dynamics of a robot, as given in
Example 1, but now assume that X = [0, 6) × [0, 4). Then, a partition that respects the
observation map is given in Figure 4a.
Let F of Σ be given by the constant function F (x) = (0.5, 0.5), i.e., F sends every state to
a point in Xq0 , where q0 ∈ Q. Then the finite state abstraction for F is the transition system
as shown in Figure 4b.
The reader can verify that the finite state abstraction satisfies, for example, the formulas #B
and �E ∧#�B.

13

5.2 Computation
Calculating the one-step reachable set of states for each state in the abstraction is a major challenge.
This is because we have to evaluate F at an infinite number of points in X if we want to determine
δ for the abstraction. To make the procedure more feasible, we introduce the notion of a grid and
we restrict the system Σ to the class of monotone systems.

Defining monotonicity of functions requires that the domain X has an order. Assume for
simplicity that X is a subset of the positive orthant of Rn, which is denoted here by Rn

≥0. Let the
partial order on X ⊂ Rn

≥0 then be given by: x ≤ y if and only if xi ≤ yi for all i ∈ {1, . . . , n}, and
x, y ∈ X . Note that not every pair of states in X can be compared in this way. Take as an example
the two states (0, 1) and (2, 0) in R2

≥0. A system (1) is monotone, if the function F : X → X
preserves an order on X . This means that F is either non-increasing or non-decreasing in its entire
domain.

In [2], two different algorithms are presented to compute the one-step reachable state sets. The
most efficient one assumes that X ⊂ Rn can be partitioned by a grid. This intuitively means that
every dimension of X is split into subintervals, and the cartesian product of subintervals, one from
each dimension, will make up a part of the partition.

Definition 9. Let X ⊂ Rn
≥0. For each i ∈ {1, . . . , n}, let Ni > 0 and γi = (γi1, . . . , γ

i
Ni+1) be a

strictly increasing sequence. A gridded partition of X is a partition of hyperrectangles {Iq}q∈Q,
where q = (k1, . . . , kn) and Iq =

∏n
i=1[γiki , γ

i
ki+1).

The sequences γi divide each state space dimension into exactly Ni subintervals [γij, γ
i
j+1) for

j ∈ {1 . . . Ni}. A state q ∈ Q can be identified by a sequence (k1, . . . , kn), where each ki is an
index for the sequence γi.

A hyperrectangle Iq can also be written as [aq, bq), where the ith coordinate of aq and bq are
determined by ki belonging to q = (k1, . . . , kn). Each hyperrectangle Iq then denotes the subset
{x ∈ X | aq ≤ x < bq}. The following example illustrates how a gridded partition can be con-
structed.

Example 7. Consider the robot environment of Examples 1 and 6 on X = [0, 6)× [0, 4). To
construct a gridded partition that respects the observation map, we can pick, for example,
N1 = 4 and N2 = 3, and we let γ1 = (0, 1, 3, 4, 6) and γ2 = (0, 1, 3, 4). Figure 5a shows
what the partition looks like.

Then, for computing the one-step reachable set of states, consider a hyperrectangle Iq =
[aq, bq) from the grid. Let F (Iq) = {F (x) | x ∈ [aq, bq)} naturally denote the image of the
box. Note that if δ(q) = {q′ ∈ Q | Iq′ ∩ F (Iq) 6= Ø} then property (3) in Definition 8 would
indeed be satisfied. Now define the hyperrectangle Gq as

Gq := {x ∈ X | F (aq) ≤ x < F (bq)}.

Note that by monotonicity of F , we have aq ≤ x < bq implies F (aq) ≤ F (x) < F (bq) for all x ∈
X . Hence, for every part Iq, it holds that F (Iq) ⊂ Gq. We therefore say that Gq overapproximates
the image of Iq. Then, monotonicity can be used to compute the abstraction very efficiently, by
defining the one-step reachable state set in the following way:

δ(q) := {q′ ∈ Q | Iq′ ∩Gq 6= Ø}.

14

1 2 3 4 5 6

1

2

3

4

γ1
1 γ2

1 γ3
1 γ4

1 γ5
1

γ2
1

γ2
2

γ2
3

γ2
4

q
(1,1)

q
(2,1)

q
(3,1)

q
(4,1)

q
(1,2)

q
(2,2)

q
(3,2)

q
(4,2)

q
(1,3)

q
(2,3)

q
(3,3)

q
(4,3)

B

A

D

E

F (Iq)

x1

x2

q
(1,3)

{E}

��

q
(2,3)

{E}

{{ ��

q
(3,3)

{{

{E,A}

q
(4,3)

uu

{E}

{{
q
(1,2)

{E}

&&

��

q
(2,2)

{E,D}

&&
oo

��{{

q
(3,2)

{E}

{{

oo q
(4,2)

{E}

uu {{

tt
oo

q
(1,1)

{E,B}

GG
q
(2,1)

{E}

GG
oo q

(3,1)
oo

{E}

q
(4,1)

{E}

oo
jj

ii cc

Figure 5: The constructed grid (a) of Example 7 and a finite state abstraction (b) of the robot dynamics using F (x) =
Cx in Example 8. The grid respects the observation map. Each state is identified by a pair of indices for both
dimensions. The sets of observations for each state are written below the states.

In other words, the mapping of two corner points of a box are computed and compared to corner
points of every part of the partition. Now only two points need to be evaluated by F for each state
in the finite abstraction, instead of infinitely many.

The following example uses monotonicity to show how the grid from Example 7 is used to
construct a finite state abstraction.

Example 8. With the gridded partition from Example 7, and using the function F (x) = Cx
with

C =

(
0.5 0.1
0.1 0.5

)
,

we construct the finite state abstraction A = (Q, δ,O, oA). The map F is monotone, and the
system is stable. We have

Q = {q
(1,1)

, q
(2,1)

, q
(3,1)

, q
(4,1)

, q
(1,2)

, q
(2,2)

, q
(3,2)

, q
(4,2)

, q
(1,3)

, q
(2,3)

, q
(3,3)

, q
(4,3)
}.

For q = q(4,2), we have the two corner points aq = (4, 1) and bq = (6, 3). Using monotonic-
ity of F , we efficiently compute Gq as an overapproximation of F (Iq) and conclude that the
image intersects with at most four other boxes, so we set

δ(q
(4,2)

) := {q
(2,1)

, q
(3,1)

, q
(2,2)

, q
(3,2)
}.

Repeating this computation for all states, we find the finite state abstraction as presented in
Figure 5b. Notice that state q

(4,2)
has exactly four outgoing arrows. Notice also how all state

transition tend to go to q
(1,1)

, and that this is indeed the only state that does not have any
transitions going anywhere but to itself. This is expected, because the system is stable, and
converges to the origin (0, 0) in the continuous system.

15

5.3 Mixed Monotonicity
The previous result provides a huge computational advantage, but to require monotonicity is also
a significant restriction on the variety of systems that we can use. We therefore present a general-
ization of monotonicity.

Definition 10. A system (1) is called mixed monotone, if there exists a decomposition function
f : X × X → X , such that the following three properties hold:

1. F (x) = f(x, x) for all x ∈ X ,

2. For all x1, x2, y ∈ X such that x1 ≤ x2 : f(x1, y) ≤ f(x2, y),

3. For all x, y1, y2 ∈ X such that y1 ≤ y2 : f(x, y1) ≥ f(x, y2).

In words, the system is called mixed monotone if the function F can be decomposed into two
parts, one of which is non-decreasing, the other non-increasing. From this it immediately follows
that every monotone F is also mixed monotone. Namely, we can let f(x, y) ignore one of its ar-
guments and define it to be simply F (x) or F (y), depending on whether F is non-decreasing or
non-increasing. The following example provides an intuition of mixed monotonicity.

Example 9. Consider a simple one-dimensional system G(x) = x · 2−x on the domain R≥0.
Observe that G(0) = 0, G(2) = 1

2
, and G(4) = 1

4
. Since 0 < 2 < 4, but G(0) < G(4) <

G(2), the system is not monotone. Now, let g(x, y) = x · 2−y, then G(x) = g(x, x), and g
is indeed non-decreasing in its first, and non-increasing in its second argument. Hence, this
one-dimensional system is mixed monotone.

Let F of Σ in (1) be a mixed monotone function with a decomposition function f(x, y), and let
Iq be a hyperrectangle of a gridded partition. Notice that F (x) = f(x, x) by definition, and that

f(aq, x) ≤ f(x, x) ≤ f(bq, x), for all x ∈ X . (4)

We also have f(x, bq) ≤ f(x, x) ≤ f(x, aq) by Definition 10, and in particular f(aq, bq) ≤ f(aq, x)
and f(bq, x) ≤ f(bq, aq). Together with (4), this gives f(aq, bq) ≤ f(x, x) ≤ f(bq, aq) for all
x ∈ Iq. Now define the hyperrectangle Hq as

Hq := {x ∈ X | f(aq, bq) ≤ x ≤ f(bq, aq)}. (5)

Then it follows that F (Iq) ⊂ Hq. Mixed monotonicity can thus be used to compute the abstraction
by defining the one-step reachable state set in the following way:

δ(q) := {q′ ∈ Q | Iq′ ∩Hq 6= Ø}. (6)

Since, F (Iq) is contained in Hq, property (3) of Definition 8 is still satisfied.
We have thus shown a way to compute the one-step reachable set of states for each state in the

finite abstraction very efficiently for the class of mixed monotone dynamical systems. This class
is significantly larger than the class of monotone systems.

16

5.4 Removing Spurious Self-loops
A result of Lemma 1 and 2 is that every trajectory in TΣ, and hence in Σ, corresponds to a trajectory
in the abstraction A. The converse is however not necessarily true: the abstraction A may define
runs that do not correspond to any trajectory in the original continuous system. These runs are in
some sense not authentic, and are therefore referred to as spurious trajectories.

The most common form of a spurious trajectory in a finite abstraction is one that stays in the
same state forever. A state has a self-loop when its part in the partition of the continuous domain
intersects with its own image. If, however, the continuous system does not define any trajectory
that stays within this part of the partition indefinitely, then the self-loop in the abstraction is called
a spurious self-loop. The state that corresponds to this part of the partition is referred to as a stut-
tering state.

Example 10. The abstraction constructed in Example 8, depicted in Figure 5b, defines an
infinite trajectory q[·] = (q

(2,2)
)ω. Since the origin (0, 0) of the continuous system with

F (x) = Cx is stable, this is a spurious trajectory. The self-loop of q
(2,2)

is then also spurious,
and q

(2,2)
is a stuttering state. Similarly, q

(1,2)
and q

(2,1)
in the example are stuttering.

Finding a run of the finite state abstraction that does not satisfy a given LTL formula φ does
not prove that Σ does not satisfy φ. This is a consequence of the existence of spurious trajectories.
Identifying these trajectories is in general a difficult problem, but we illustrate here how to find and
eliminate the ones that are caused by spurious self-loops.

To remove all spurious self-loops, we first put Q′ := Q, and we will extend the set of states
in this set Q′. If q ∈ Q has a spurious self-loop, we neutralize it by creating a new state qs ∈ Q′,
whose only incoming transition will be that of q. We then compute the intersection of Iq with the
overapproximation of its image (5), and put Iqs := Iq ∩ Hq, which will be a hyperrectangle. For
Iqs as a subset of Iq, we compute the overapproximation of the image again. This image will then
determine all outgoing transitions of the new state qs. Specifically,

δ(qs) := {q′ ∈ Q | Iq′ ∩Hqs 6= Ø}.

Notice that then δ(qs) ⊂ δ(q) and o(qs) = o(q). After the creation of this new state, the self-loop
of q can safely be removed, without annihilating the simulation property of Lemma 2. If now
q ∈ δ(qs), there is still a spurious trajectory. This trajectory is not a self-loop anymore, but rather a
run that jumps back and forth between q and qs. The procedure should be applied again in a similar
way on the transition from qs to q.

This approach results in a refined partition {Xq}q∈Q′ , for a finite set Q′, such that Q ⊂ Q′. For
each q′ ∈ Q′ then, Xq′ ⊂ Xq for some q in the original Q, where Xq′ = Xq if and only if q′ = q.
Each state q′ ∈ Q′ such that q′ 6∈ Q has only one incoming transition by construction.

This algorithm describes how to eliminate the spurious self-loops, but not how to detect them.
Notice however that with some minor modifications we can turn this approach into a detection
algorithm. Namely, on each iteration we intersect Iq with a recursive overapproximation of the
image of F . When this intersection becomes empty, the trajectory in the continuous system can
not stay there indefinitely, and we conclude that the self-loop is spurious. If this does not happen for
a sufficiently large number of iterations, we can safely assume that the transition is not a spurious
self-loop. This procedure is presented more formally in Algorithm 1.

17

Data : Finite State Abstraction A = (Q, δ,O, oA) of a system Σ based on a partition
{Iq}q∈Q. System Σ has mixed monotone F with decomposition function f .

Input : State q with a candidate spurious self-loop.
Output: Returns True if q has a spurious self-loop.

iter := 1;
x1 := aq;
x2 := bq;
while iter ≤MAX ITER do

y1 := f(x1, x2);
y2 := f(x2, x1);
if y1 ≤ bq ∧ aq ≤ y2 then

(x1, x2) := intersect([y1, y2], [aq, bq));
iter := iter +1;

else
return True;

end
end
return False;

Algorithm 1: Detecting spurious self-loops in a finite state abstraction. Note that if False is returned, there is no
guarantee that the self-loop of q is not spurious.

For an LTL formula φ that does not contain the “next” operator #, we can simply remove
spurious self-loops. Intuitively, this is because subsequent occurrences of one set of observations
in an infinite word are ignored by definition of the operatorU , which is the only remaining temporal
operator. Even though this will mean that there will be trajectories of the original system Σ that
do not correspond to a run of the abstraction, the necessary implication still holds. This is made
formal in the following proposition.

Proposition 1. Let TΣ be as in (1) and A be its finite state abstraction as in Definition 8. If A′ is
a transition system equal to A, but with all spurious self-loops removed, and φ is an LTL formula
without the “next” operator #, then

A′ ` φ =⇒ TΣ ` φ

Proof. See Appendix A.

Note that the derived formulas “release” (R), “eventually” (♦) and “always” (�) can still be
verified after removing spurious self-loops, since they do not contain the “next” operator (#).

6 Verification of LTL Formulas
We have seen how we can formulate system specifications for dynamical systems in Linear-time
Temporal Logic. The dynamical system Σ can be seen as a transition system, and we have pre-
sented a way to make a finite abstraction of this system. In this section, we will exploit a fact we

18

// 0

−

��

+
))

1−
oo

+

		

3
− //

+

II

2

−

OO

+

ii

Figure 6: Finite state automaton representing the finite cyclic group of integers modulo four. The initial state is
0 (mod 4), as can be seen by the unlabeled incoming arrow. The states 0 (mod 4) and 2 (mod 4) are final states, and
have a double circle around them to show this.

know from the literature [5, 6], namely that any LTL formula can be expressed as a particular kind
of transition system, called a Büchi automaton. The reader will first be introduced with the general
notion of a finite state automaton. Finally, we present the Büchi product automaton, which is the
concept that is used to check if a system specification is satisfied.

6.1 Finite State Automaton
A finite state automaton is very similar to a transition system. The difference in this context is that
an automaton produces no output, but it has a designated initial state, and a designated set of final
states.

Definition 11. A (possibly non-deterministic) finite state automaton is a tupleM = (Q, q0, U, δ,F),
where

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• U is the input alphabet,

• δ : Q× U → 2Q is the transition map, and

• F ⊂ Q is the set of final states.

The input alphabet is sometimes referred to as the set of transition labels. Because of non-
determinism, finite words u[0] . . . u[n], for some n, will determine a number of runs p ≥ 0. For
each run q[0] . . . q[n+1] of the (possibly empty) collection of runs ofM determined by u[0] . . . u[n],
each q[0] = q0, and q[k+1] ∈ δ(q[k], u[k]) for 0 ≤ k ≤ n. An input word is said to be accepted by
M , if at least one of the runs ends in an accepting state, so q[n+1] ∈ F for some run q[0] . . . q[n+1].
The empty input word, denoted by ε, is accepted if and only if q0 ∈ F .

The collection of all finite words that M accepts is called the language of M , and is denoted
by LM . The language LM is a subset of U∗, which is informally defined here as the collection of
all finite words over the alphabet U .

19

Example 11. Consider the finite state automatonM = (Q, q0, U, δ,F) as shown in Figure 6,
where

• Q = Z/Z4 is the group of integers modulo four,
• q0 = 0 (mod 4) is the initial state,
• U = {+,−} is the input alphabet,

• δ(q, u) =

{
q + 1 if u = +

q − 1 if u = −,
• and F = {0 (mod 4), 2 (mod 4)} ⊂ Q.

Here, addition and subtraction by δ are done modulo four. The automatonM is deterministic
and non-blocking. It accepts for example the empty input word ε, and the words “ + +”,
“ +−”, “−−”, “ + + + +”, “ +−−+”. The words “ + ”, “− ”, “ +−+ ” are examples
that are not accepted by M . In fact, in general we have

LM = {w ∈ U∗ | length of w is even}.

Set inclusion from right to left can be shown using induction on the length of the word,
where the base case is the empty word ε, and the inductive step is a case analysis of which
pair of symbols, “ + +”, “ +−”, “−+”, or “−−”, was added to the word.

6.2 Büchi Automata
A Büchi automaton is a particular kind of finite state automaton. The major difference between
Büchi automata and finite state automata is that the semantics are defined over infinite input words,
rather than over finite words. This is very convenient, since satisfaction of LTL formulas is also
defined over infinite words.

It is known that every LTL formula φ has a corresponding Büchi automaton capable of accept-
ing the same language. Intuitively, output sequences of the system Σ in (1) should be the input
of the Büchi automaton if we want to check that Σ satisfies the specification φ. If an output word
generated by a trajectory of Σ is then accepted, this trajectory of Σ satisfies the formula φ. For this
reason, it is no coincidence that the input alphabet has been changed to 2O, where O is as in (1), in
the following definition:

Definition 12. A possibly non-deterministic Büchi automaton is a tuple B = (Q,Q0, 2
O, δ,F),

where

• Q is the set of states,

• Q0 ⊂ Q is the set of initial states,

• 2O is the input alphabet,

• δ : Q× 2O → Q is the transition function, and

• F ⊂ Q is the set of accepting states.

20

// q0

E

��
E∧B // q1

E∧B
��

Figure 7: Büchi automaton accepting the same language as φ = �E ∧ ♦�B in Example 12. The boolean formulas
represent the set of sets that enable the transitions.

A Büchi automaton will accept sets of observations y[k] as input, where y[k] ∈ 2O for all
k ≥ 0. A transition with a subset of O as input is possible if and only if the conjunction of all
observations in it is evaluated as true. Input and trajectories are defined completely analogue to
regular finite state automata, only the input words y[·] and the runs q[·] are infinite instead of finite.

An important note is that we changed the name of F ⊂ Q to the set of accepting states, rather
than final states. This is because acceptance is defined over infinite runs, and infinite runs evidently
have no last state. Acceptance for Büchi automatons is defined as follows:

Definition 13. Let B = (Q,Q0, 2
O, δ,F) be a Büchi automaton and let inf(q[·]) denote the set of

states ocurring infinitely often in q[·]. Then q[·] is called an accepting run ofB, if inf(q[·])∩F 6= Ø.
An infinite input word y[·] is accepted by B if it defines at least one accepting run.

We say that at least one accepting run should exist for an input, because the automaton is non-
deterministic. Intuitively, a run of B that is not accepting either reaches a state q and an input y for
which δ(q, y) = Ø, or it enters a cycle of states and none of the states are in F .

The collection of all infinite input words that is accepted by a Büchi automaton B is denoted
by LB. As shown in [5] and [6], there exists a Büchi automaton for every LTL formula, such that
they accept exactly the same language. The authors of [5] published an online software tool that
constructs a corresponding Büchi automaton when providing it with an LTL formula. A Büchi
automaton that accepts the same language as an LTL formula φ is denoted by Bφ. An example is
given as follows.

Example 12. Consider the robot as in Examples 1, 7, and 8, with O = {A,B,D,E}. We
wish to verify the LTL formula

φ = �E ∧ ♦�B.

A Büchi automaton accepting the same language as φ is Bφ = (Q,Q0, δ, 2
O,F), where

• Q = {q0, q1} is the set of states,

• Q0 = {q0} is the set of initial states,

• The input alphabet is {Ø, {A}, {B}, {D}, {E}, {A,B}, . . . , {A,B,D,E}},
• δ is defined such that

q0 ∈ δ(q0, y) iff E ∈ y
q1 ∈ δ(q0, y) iff E ∈ y and B ∈ y
q0 6∈ δ(q1, y) for all y
q1 ∈ δ(q1, y) iff E ∈ y and B ∈ y

• and F = {q1} is the set of accepting states.

21

The automaton is shown in Figure 7. It is non-deterministic, and it blocks for any input
y that does not contain E, as reflected by the conjunct �E. For the transitions going into
the single accepting state, observation B is necessary, as reflected by the conjunct ♦�B.
Note that non-determinism allows a run to stay in q0, even if E and B are both true. More
specifically, for the input {E,B} we have δ(q0, {E,B}) = {q0, q1}. In Figure 7, the set
of sets that enable a transition is represented by a boolean formula. For example, going
from q0 to q1, E ∧ B is written to represent all elements of 2O that contain both E and B:
{E,B}, {E,B,A}, {E,B,D} and {E,B,A,D}.

6.3 Product Automaton
Here we define the product automaton of a finite state abstraction A and a Büchi automaton Bφ for
an LTL formula φ. The product automaton will define all runs of A that satisfy φ. The set of states
for the product automaton is the cartesian product of the two sets of states, and a transition from
one pair of states to another is only possible under two conditions. First, for the two states of A in
the two pairs, the transition must have been possible in A. Second, for the two states of Bφ, the
transition must have been possible in Bφ given the input that is the output of A in the current state.

Definition 14. An uncontrolled Büchi product automaton P = A⊗ B of a finite state abstraction
A = (QA, δA, O, o) as in Definition 8 and a Büchi automaton B = (QB, Q0B, 2

O, δB,FB) as in
Definition 12, is a tuple P = (QP , Q0P , δP ,FP), where

• QP = QA ×QB is the set of states,

• Q0P = QA ×Q0B ⊂ QP is the set of initial states,

• δP : QP → QP is the unlabeled transition function such that

δP ((qA, qB)) = {(q′A, q′B) ∈ QP | q′A ∈ δA(qA) and q′B ∈ δB(qB, o(qA)), and (7)

• FP = QA ×FB is the set of accepting states.

The Büchi product automaton is a specific Büchi automaton, where the input is a singleton,
and therefore omitted. For this reason, it is also referred to as the uncontrolled Büchi product
automaton, because every run is non-deterministically defined by the same infinite input word.

The next lemma formalizes that runs of a product automaton P = A ⊗ Bφ correspond to a
trajectory of A whose output satisfies φ, and conversely, that every such run of A is indeed in P .
This is a very significant result, because we will have obtained a finite state automaton that contains
the necessary and sufficient information that we need in order to know whether a given system Σ
satisfies an LTL formula φ.

To prove the lemma, we need some extra notations. We define the mappings α : QP → QA

as (qA, qB) 7→ qA and β : QP → QB as (qA, qB) 7→ qB. Then α extends naturally to map-
ping subsets of QP , and an infinite sequence qP [·] to a sequence of states of A by α(qP [·]) =
α(qP [0])α(qP [1]) . . . , and similarly for β.

Lemma 3. Let A be a finite state abstraction, φ be an LTL formula, and Bφ a corresponding Büchi
automaton. Also, let P = A ⊗ Bφ be the Büchi product automaton as in Definition 14. Let qP [·]

22

q
(1,3)

{E}

��

q
(2,3)

{E}

|| ��

q
(3,3)

||

{E,A}

q
(4,3)

uu

{E}

||
q
(1,2)

{E}

��

q
(2,2)

{E,D}

oo

��||

q
(3,2)

{E}

||

oo q
(4,2)

{E}

uu ||

tt
oo

q
(1,1)

{E,B}
LL

q
(2,1)

{E}

oo q
(3,1)

oo

{E}

q
(4,1)

{E}

oo
jj

ii bb
// q0

>
��

B // q1

B

��

Figure 8: Finite state abstraction (a) of the robot dynamics using F (x) = Cx in Example 8, with the spurious self-
loops removed, and Büchi automaton (b) accepting the same language as φ = ♦�B. See Example 13.

be a run of P . Then qP [·] is an accepting run if and only if α(qP [·]) is a run of A that defines an
output satisfying φ.

Proof. For the implication from left to right, let qA[·] = α(qP [·]) and qB[·] = β(qP [·]). By defini-
tion of P , more specifically (7), we have qP [k + 1] ∈ δP (qP [k]) implies qA[k + 1] ∈ δA(qA[k]) for
each k ≥ 0, so qA[·] is indeed a run of A. Next, we show that this trajectory qA[·] defines an infinite
output word o(qA[·]) that satisfies φ, or equivalently, that is accepted by Bφ.

• First, observe that qB[0] ∈ Q0B by construction of the set of initial states.

• By construction (7), qP [k + 1] ∈ δP (qP [k]) implies qB[k + 1] ∈ δB(qB[k], o(qA[k])) for all
k ≥ 0. Hence, o(qA[·]) is an infinite word that defines the run qB[·] of Bφ.

• Since qP [·] is an accepting run of P , by Definition 13, inf(qP [·]) ∩ FP 6= Ø. Then also
β(inf(qP [·])) ∩ β(FP) = inf(qB[·]) ∩ FB 6= Ø, and the infinite word o(qA[·]) defines an
accepting run of Bφ.

So indeed, α(qP [·]) is a run of A that defines an output that satisfies φ. The converse implication
also follows readily from the definition of P in a similar way.

Using Lemma 3, we can prove a lemma that is the last missing step in providing an answer to
the question described in Problem 1.

Lemma 4. Let A, φ, Bφ, and P = A ⊗ Bφ be as in Lemma 3. If every run of P is an accepting
run, then A ` φ.

Proof. First, we apply Lemma 3 to conclude that all runs of P map to runs of A that define an
output satisfying φ. What remains to show is that there are no runs of A that do not satisfy φ.
Working towards a contradiction, we assume there exists qA[·] of A that defines y[·] = o(qA[·])
such that y[·] 6` φ. Then y[·] is not accepted by Bφ, and hence, it does not define an accepting
run. By construction of P there should then also exist a run that is not an accepting run, and this
would contradict the assumption of the lemma. We conclude that there is no run of A that defines
an output sequence that does not satisfy φ, and hence, A ` φ.

23

q
(1,3)

, q0

!!

q
(2,3)

, q0

�� !!

q
(3,3)

, q0

��

q
(4,3)

, q0

�� ��

q
(1,3)

, q1 q
(2,3)

, q1 q
(3,3)

, q1 q
(4,3)

, q1

q
(1,2)

, q0

!!

q
(2,2)

, q0oo

�� !!

q
(3,2)

, q0oo

��

q
(4,2)

, q0

�� ��

ww
oo

q
(1,2)

, q1 q
(2,2)

, q1 q
(3,2)

, q1 q
(4,2)

, q1

q
(1,1)

, q0

��

q
(2,1)

, q0oo q
(3,1)

, q0oo q
(4,1)

, q0oo
gg

YY \\

q
(1,1)

, q1
RR

q
(2,1)

, q1 q
(3,1)

, q1 q
(4,1)

, q1

Figure 9: The resulting product automaton from the two finite systems in Figure 8. Many states are unreachable, and
all runs go to (q(1,1), q1) and remain there indefinitely. See Example 13.

Example 13. Consider the system that describes the robot dynamics on [0, 6)× [0, 4) with a
set of observations O = {A,B,D,E}, as in Examples 1, 7, and 8. A finite state abstraction
for this is given in Figure 5b. For this abstraction, we wish to verify the formula

φ = ♦�B.

This formula does not contain the “next” operator #, so by Proposition 1, we can remove
the spurious transitions that were discussed in Example 10. The resulting abstraction A′

without spurious self-loops is given in Figure 8a. The Büchi automaton Bφ that accepts the
same language as φ is given in Figure 8b. The resulting product automaton P = A′ ⊗Bφ is
shown in Figure 9. Notice that many states are unreachable. This is due to the fact that q1

can only be reached if observation B is done. It can be seen that all runs of P are accepting,
and applying Lemmas 1, 2, and 4, we can conclude that the continuous system satisfies the
formula φ.

7 Main Results
In the following results, we let Σ be the system as in (1), with a set of observationsO. The transition
system TΣ is then as in (2), and A will denote a finite state abstraction of TΣ as in Definition 8.
Also, let φ be a given LTL formula over the set of observations O, as in Definition 1. Recall that
we write Σ ` φ if Σ satisfies φ as in Definition 3. As in Definition 12, the Büchi automata denoted
by Bφ and B¬φ are given such that they accept the same language as φ and ¬φ respectively. Also,

24

accepting runs of a Büchi automaton are defined in Definition 13. Finally, Pφ will denote the
uncontrolled Büchi product automaton A⊗Bφ as in Definition 14, and similarly for P¬φ.

The following result is realized directly from Lemmas 1, 2, and 4.

Theorem 1. If every run of Pφ is an accepting run, then Σ ` φ.

Software tools can be used to check all runs of a Büchi automaton for acceptance, which makes
this result very significant. For practical reasons, it is easier to check the negation of a formula.
Specifically, tools allow us more easily to check the uncontrolled Büchi product automaton for
emptiness, which means that no run is accepting. The following result, which is logically equiva-
lent to Theorem 1, is therefore often applied in practice.

Corollary 1. If no run of P¬φ is an accepting run, then Σ ` φ.

Proof. For contradiction, assume Σ 6` φ, then using the contrapositive of Theorem 1, there would
exist a run of Pφ that is not an accepting run. Then, by Lemma 3, there exists a trajectory in Σ
that does not satisfy φ. This trajectory satisfies ¬φ by Definition 2. Then, again by Lemma 3, P¬φ
would have a run that is accepting, which is a contradiction. We conclude that Σ ` φ.

Spurious self-loops often are a hindrance when we want to apply these results. For many
applications, LTL formulas without the “next” operator suffice, so the next corollary is a powerful
result. We denote the abstraction A with all spurious self-loops removed by A′. Also, P ′φ denotes
the uncontrolled Büchi product automaton A′ ⊗Bφ, and similarly for P ′¬φ.

Corollary 2. If φ does not contain the “next” operator #, then

(i) If every run of P ′φ is an accepting run, then Σ ` φ.
(ii) If no run of P ′¬φ is an accepting run, then Σ ` φ.

Proof. This is a consequence of Lemma 4 and Proposition 1, and using similar reasoning as in the
proof of Corollary 1.

8 Conclusions
To formulate specifications expressing non-asymptotic properties of discrete-time dynamical sys-
tems, we can use Linear-time Temporal Logic. To verify that a system Σ satisfies an LTL formula φ
is not a trivial job. This is because in principle, the number of possible trajectories defined by Σ is
infinite.

Here, we summarize the procedure of verifying a specification φ for a system Σ. Figure 10
illustrates the steps that were taken in the theory of this procedure. We also discuss the relevance
of the results, and how they can be applied in practice.

To make the number of possible trajectories finite, a non-deterministic abstraction of Σ is con-
structed. This construction is done by partitioning the state space of Σ in a convenient way. Con-
structing the one-step reachable set of states for the abstraction can be done very efficiently by
computing an overapproximation of the image of each part by using mixed monotonicity.

The abstraction simulates the original system, which means that all possible infinite output
sequences generated by Σ are also generated by its abstraction. Satisfaction of a formula φ by an
abstraction would thus imply that the system Σ also satisfies the specification.

25

Σ

��

`? φ

��

A

##

Bφ

{{

A⊗Bφ

Figure 10: Illustration of the procedure to answer the question formulated in Problem 1.

Büchi automata can be constructed in such a way that they accept the same language as LTL
formulas. The Büchi product automaton can capture all trajectories of the abstraction that satisfy a
formula. Using this theory, we know that the original system satisfies the specification, if the runs
of the product automaton of the abstraction and the Büchi are all accepting runs.

To our knowledge, proving correctness of the procedure of model checking for discrete-time
dynamical systems has not yet been made as explicit as in this thesis. In most texts, bisimulation
is used to define correspondence between a system and its abstraction. In this thesis, we have in-
troduced simulation of states and systems directly, which significantly simplifies the theory. Also,
although commonly applied, a proof of Proposition 1 was nowhere to be found in the literature.

The theory allows us to verify LTL specifications for dynamical systems using software that
can check product automata for accepting runs. For example, the tool SPIN (Simple Promela
Interpreter) [7] is a very popular tool for model checking. An introduction to the language Promela
and the tool SPIN can be found in Appendix B. A report of a case study involving a system
modeling the dynamics of a population of beetles can be found in Appendix C.

Application of the theory suffers from the “curse of dimensionality”, because the number of
states of the abstraction increases exponentially with the number of dimensions of the continuous
system. Model checking for systems with three, four, or more dimensions can then quickly become
infeasible for state-of-the-art computers, depending also on the size of the partition.

The case study in the appendix failed to prove a specification for the entire domain. However,
restricting the initial values to a certain region, we were able to prove the that the specification
was satisfied. An interesting problem for future work is to explore how we can find the greatest
satisfying region as a subset of the domain, where any initial value chosen from this region will
define trajectories satisfying the specification. This theory is discussed more elaborately in [1].

For systems modeled with input, it would be interesting to synthesize a control strategy such
that a given specification holds. Research into control synthesis has been done in for example [1, 3].
The results are for finite-state transition models, and it would be exciting to explore the possibilities
of translating the control strategy for an abstraction back to the continuous domain.

An acknowledgement of great gratitude goes out to the supervisors of this thesis for the contin-
uous guidance and a repeated provision of constructive feedback during the process of the research.
The author would also like to thank Samuel Coogan for providing help with the case study in the
appendix.

26

References
[1] C. Belta, B. Yordanov, and E. A. Gol. Formal Methods for Discrete-Time Dynamical Systems,

volume 89. Springer, 2017.

[2] S. Coogan and M. Arcak. Efficient finite abstraction of mixed monotone systems. In Pro-
ceedings of the 18th International Conference on Hybrid Systems: Computation and Control,
HSCC ’15, pages 58–67, New York, NY, USA, 2015. ACM.

[3] S. Coogan, M. Arcak, and C. Belta. Formal methods for control of traffic flow. 2016.

[4] R. Costantino, J. Cushing, B. Dennis, and R. A. Desharnais. Experimentally induced transi-
tions in the dynamic behaviour of insect populations. Nature, 375(6528):227, 1995.

[5] P. Gastin and D. Oddoux. Fast ltl to büchi automata translation. In International Conference
on Computer Aided Verification, pages 53–65. Springer, 2001.

[6] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of
linear temporal logic. In Protocol Specification, Testing and Verification XV, pages 3–18.
Springer, 1995.

[7] G. Holzmann. Spin model checker, the: primer and reference manual. Addison-Wesley Pro-
fessional, 2003.

[8] S. K. Khaitan and J. D. McCalley. Design techniques and applications of cyberphysical sys-
tems: A survey. IEEE Systems Journal, 9(2):350–365, 2015.

[9] D. Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University Press,
New York, NY, USA, 2011.

27

Appendices
A Proof of Proposition 1
This section contains a proof for Proposition 1, which is stated again here for convenience.

Proposition 1. Let TΣ be as in (1) and A be its finite state abstraction as in Definition 8. If A′ is
the abstraction A with all spurious self-loops removed, and φ is an LTL formula without the “next”
operator #, then

A′ ` φ =⇒ TΣ ` φ

For the given O, let W = (2O)ω denote the collection of all infinite words ξ = y0y1 . . .
where each yk ∈ 2O for 0 ≤ k ∈ Z. Next, let Ω(T) ⊂ W denote the collection of all possible
infinite output words generated by a transition system T with observation set O. Note that by
Lemma 1 and 2, Ω(TΣ) ⊂ Ω(A).

We first coinductively define a relation R on infinite words. For any possible infinite output
word ξ ∈ Ω(TΣ) then, there exists a word ξ′ ∈ Ω(A′) such that (ξ, ξ′) ∈ R. For the proof then,
we will use induction on the structure of the formula φ to show that ξ |= φ ⇐⇒ ξ′ |= φ for all
(ξ, ξ′) ∈ R.

Definition 15. The relationR ⊂ W×W is coinductively defined as follows: whenever (µ, ξ) ∈ R,
then

(i) If µ = yµ′ for some y ∈ 2O and µ′ ∈ W , then there exists ξ′ ∈ W such that ξ = yξ′ and
(µ′, ξ′) ∈ R,

(ii) If µ = yyµ′ for some y ∈ 2O and µ′ ∈ W , then there exists ξ′ ∈ W such that ξ = yξ′ and
(yµ′, yξ′) ∈ R.

The first property says that for any ξ ∈ W , we have (ξ, ξ) ∈ R. The second property intuitively
allows repetitions in the first word to be removed in the second. This reflects the fact that spurious
transitions are removed in A′. Indeed, the reader should now be convinced that for every ξ ∈
Ω(TΣ), there exists ξ′ ∈ Ω(A′) such that (ξ, ξ′) ∈ R.

Consider the following examples with a, b, c ∈ 2O. By property (i), (bcω, bcω) ∈ R and
(bbcω, bbcω) ∈ R. Then, considering property (ii), also (bbcω, bcω) and (aabbbcω, abbcω).

Proof. The proof is to show that the biconditional ξ |= φ⇐⇒ ξ′ |= φ holds for all (ξ, ξ′) ∈ R. The
proof for this is done by induction over the structure of φ and applying the rules of the semantics,
where we can omit the rule for #. For (ξ, ξ′) ∈ R, we write ξ = y0y1 . . . and ξ′ = y′0y

′
1

• The base case for φ = > is immediately satisfied.

• For φ = p with p ∈ O, it follows that ξ |= p ⇐⇒ ξ′ |= p by properties (i) or (ii) of R
regardless.

• The classical logical operators for negation, conjunction, and disjunction are all done in
similar ways, so we only show negation here. If φ = ¬ψ, we may assume using the induction

28

hypothesis that for all (ξ, ξ′) ∈ R, indeed ξ |= ψ ⇐⇒ ξ′ |= ψ. We then use this and the
semantics to show that

ξ |= ¬ψ ⇐⇒ ξ 6|= ψ ⇐⇒ ξ′ 6|= ψ ⇐⇒ ξ′ |= ¬ψ,

and hence, ξ |= φ⇐⇒ ξ′ |= φ.

• The important and only remaining case is when φ = ψ U η. Here, the induction hypothesis
is that for every (ξ, ξ′) ∈ R, ξ |= ψ ⇐⇒ ξ′ |= ψ and ξ |= η ⇐⇒ ξ′ |= η.

First, assume ξ′ |= ψ U η. Then there exists j′ such that ξ′j′ |= η and ξ′i′ |= ψ for 0 ≤ i′ < j′.
Since (ξ, ξ′) ∈ R, we can repeatedly apply one of the coinductive steps (i) or (ii) to arrive
at some j ≥ j′ such that (ξj, ξ

′
j′) ∈ R. Since ξ′j′ |= η, by the induction hypothesis then

also ξj |= η. Moreover, by definition of R, (ξi, ξ
′
i′) ∈ R for every 0 ≤ i < j and some

0 ≤ i′ < j′. Then, applying the induction hypothesis will give us ξ′i′ |= ψ for some i′ implies
that ξi |= ψ for all 0 ≤ i < j. We have now shown that ξ′ |= ψ U η =⇒ ξ |= ψ U η
for arbitrary (ξ, ξ′) ∈ R by finding j ≥ 0, more specifically, j ≥ j′, such that ξj |= η and
ξi |= ψ for 0 ≤ i < j.

The converse is shown analogously by finding a j′ ≤ j that shows that ξ |= φ =⇒ ξ′ |= φ.

This concludes the proof of the claim that ξ |= φ⇐⇒ ξ′ |= φ for all (ξ, ξ′) ∈ R.
If now TΣ 6` φ, then by Definition 3, there is a trajectory of TΣ that defines an output ξ such

that ξ 6|= φ. Then A′ has an output ξ′ such that (ξ, ξ′) ∈ R, and by the claim that was just shown it
must be that ξ′ 6|= φ. Then A 6` φ. This shows the contrapositive of the proposition, and the proof
is thus finished.

29

B Introduction to SPIN
The software tool Simple Promela Interpreter (SPIN) was originally developed for formal verifica-
tion of multi-threaded software applications. For us, this is useful, because the language Promela
(Process Meta Language) allows us to encode the finite state abstraction as an active process. This
means that a software tool will be able to go through every possible trajectory of the abstraction.
The following lines encode the abstraction given in Figure 8 in the Promela language.

/* Found 4 candidate stutter states

* and removed 3 actual spurious self-loops.

*/
bool a = 0;
bool b = 0;
bool d = 0;
bool e = 0;

active proctype FSA() {
q_init:
if
:: (true) -> goto q_0;
:: (true) -> goto q_1;
:: (true) -> goto q_2;
:: (true) -> goto q_3;
:: (true) -> goto q_4;
:: (true) -> goto q_5;
:: (true) -> goto q_6;
:: (true) -> goto q_7;
:: (true) -> goto q_8;
:: (true) -> goto q_9;
:: (true) -> goto q_10;
:: (true) -> goto q_11;
fi

q_0: /* I_q = [(0,0) , (1,1)] */
atomic { a=0; b=1; d=0; e=1; }
if
:: true -> goto q_0;
fi

q_1: /* I_q = [(1,0) , (3,1)] */
atomic { a=0; b=0; d=0; e=1; }
if
:: true -> goto q_0;
fi

q_2: /* I_q = [(3,0) , (4,1)] */
atomic { a=0; b=0; d=0; e=1; }
if
:: true -> goto q_1;
fi

q_3: /* I_q = [(4,0) , (6,1)] */

30

atomic { a=0; b=0; d=0; e=1; }
if
:: true -> goto q_1;
:: true -> goto q_2;
:: true -> goto q_5;
:: true -> goto q_6;
fi

q_4: /* I_q = [(0,1) , (1,3)] */
atomic { a=0; b=0; d=0; e=1; }
if
:: true -> goto q_0;
fi

q_5: /* I_q = [(1,1) , (3,3)] */
atomic { a=0; b=0; d=1; e=1; }
if
:: true -> goto q_0;
:: true -> goto q_1;
:: true -> goto q_4;
fi

q_6: /* I_q = [(3,1) , (4,3)] */
atomic { a=0; b=0; d=0; e=1; }
if
:: true -> goto q_1;
:: true -> goto q_5;
fi

q_7: /* I_q = [(4,1) , (6,3)] */
atomic { a=0; b=0; d=0; e=1; }
if
:: true -> goto q_1;
:: true -> goto q_2;
:: true -> goto q_5;
:: true -> goto q_6;
fi

q_8: /* I_q = [(0,3) , (1,4)] */
atomic { a=0; b=0; d=0; e=1; }
if
:: true -> goto q_4;
fi

q_9: /* I_q = [(1,3) , (3,4)] */
atomic { a=0; b=0; d=0; e=1; }
if
:: true -> goto q_4;
:: true -> goto q_5;
fi

q_10: /* I_q = [(3,3) , (4,4)] */
atomic { a=1; b=0; d=0; e=1; }
if
:: true -> goto q_5;

31

// T0

>

�� ¬b // S9

¬b

��

Figure 11: Büchi automaton accepting the same language as ¬♦�b

fi
q_11: /* I_q = [(4,3) , (6,4)] */
atomic { a=0; b=0; d=0; e=1; }
if
:: true -> goto q_5;
:: true -> goto q_6;
fi

}

The assignments within the atomic statement update the set of observations for each state ac-
cordingly. Note that the booleans are initialized as false, which is a minor unsatisfactory feature of
this encoding. For the LTL formula that we will work with, this is however not an issue.

For this abstraction, we wish to verify φ = ♦�B. For this, a Büchi automaton can also be
encoded in Promela. In fact, SPIN itself provides the means to translate an LTL formula into an
automaton. To acquire the automaton corresponding to ¬φ in Promela code, one enters spin -f

’!<>[]b’ in a command-line interface. In SPIN, we use lower-case letters for propositions. This
results in the automaton encoded in Promela code, given as

never { /* ! <> [] b */
T0_init:
do
:: (! ((b))) -> goto accept_S9
:: (1) -> goto T0_init
od;

accept_S9:
do
:: (1) -> goto T0_init
od;

}

This Büchi automaton within the never-claim is also shown graphically in Figure 11. The
never-claim makes sure that the automaton modeled within it has no accepting runs. After putting
both the process and the automaton together in one file named model-example.pml, and running
the command spin -run model-example.pml, the tool will start checking the cycles of the
product automaton. Within a second, zero errors are detected, which means that the never-claim is
satisfied. We conclude that the Büchi product automaton with the negation of φ has no accepting
runs, and by Corollary 2, the continuous system in Example 8 satisfies φ = ♦�B.

32

C Case Study
In this appendix we make an attempt at applying Corollary 2 to a system that models the population
dynamics of a cannibalistic beetle, similarly to the case study in [2], based on [4]. For this, the
software tool SPIN is used. See also Appendix B.

Dynamical System
The discrete-time dynamical system Σ is given by x[t + 1] = F (x[t]), where each x[t] ∈ R3, and
o : R3 → O, where O = {p, q, r}. The functions F and o are given by

F (x) =

 0 0 b · exp(−celx1 − ceax3)
µl 0 0
0 exp(−cpax3) µa

x1

x2

x3

 ,

o(x) :


p ∈ o(x) iff x1 < 10,

q ∈ o(x) iff x3 ≥ 40,

r ∈ o(x) iff x1 ≥ 150,

(8)

where x = (x1, x2, x3) ∈ R3. Here, x1 represents the size of the population of larvae, x2 that
of the pupae, and x3 is the number of adult beetles. The parameters µl, µa ∈ (0, 1] are survival
probabilities of larvae and adults. The quantity b is the number of new larvae that are born in one
time step in the absence of cannibalism. The parameters cel and cea model the probability of eggs
being eaten by larvae and adults. The parameter cpa models the probability of a pupa being eaten
by an adult.

The system is known to exhibit oscillating behaviour, which is a non-asymptotic property. We
will try to verify a specification that says that it is always true that if there are very few larvae (p),
but sufficient adult beetles (q), then at some point, the number of larvae will be high again (r). The
following LTL formula specifies this behaviour:

φ = �
(
(p ∧ q)→ ♦r

)
. (9)

Notice that the formula is free of the “next” operator.

Abstraction
As shown in [2], the system is domain invariant on X = [0, (265, 225, 450)). Using this, we may
create a gridded partition as in Definition 9, where we pick N1 = 12, N2 = 11, and N3 = 18, and

γ1 = (0,10, 20, 40, 50, 60, 80, 100, 125,150, 175, 200, 265)
γ2 = (0, 20, 40, 50, 60, 80, 100, 125, 150, 175, 200, 225)
γ3 = (0, 10, 20,40, 50, 60, 80, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 450).

Notice how this gridded partition respects the observation map. The partition gives us a finite state
abstraction with exactly 12×11×18 = 2376 states. For constructing δ using (6), we require that the

33

// T0

>
��

¬r∧p∧q // S2

¬r
��

Figure 12: Büchi automaton accepting the same language as the negation of φ in (9)

system is mixed monotone, as in Definition 10. This can be shown by providing a decomposition
function f(x, y) such that F (x) = f(x, x). Let x = (x1, x2, x3) and y = (y1, y2, y3), then

f(x, y) =

 0 0 b · exp(−cely1 − ceay3)
µl 0 0
0 exp(−cpay3) µa

x1

x2

x3


is non-decreasing in x, and non-increasing in y. Also, F (x) = f(x, x), and hence, the system is
mixed-monotone.

With a small C program that implements the function f , we compute the one-step reachable
state set for each state. An implementation of Algorithm 1 detects that 14 out of 16 candidate self-
loops are spurious. Corollary 2 says that we can safely remove these in the process of verification.
The C program outputs the abstraction in the Promela language. The abstraction is modeled in
such a way that entering a new state will update the set of observations accordingly.

Model Checking
A Büchi automaton that accepts the same language as the negation of φ is given as the following
snippet of Promela code:

never { /* ! G ((p && q) -> F r) */
T0_init : /* init */
if
:: (1) -> goto T0_init
:: (!r && p && q) -> goto accept_S2
fi;

accept_S2 : /* 1 */
if
:: (!r) -> goto accept_S2
fi;

}

The Büchi automaton in the never-claim is also shown graphically in Figure 12.
With the never-claim and the finite state abstraction running as an active process, SPIN runs

every possible trajectory of the synchronous product automaton, and checks for acceptance. The
tool returns an error, and we can conclude that the abstraction does not satisfy φ in (9). We are
therefore unable to conclude that Σ in (8) satisfies φ.

If we restrict ourselves to the trajectories of Σ starting in Xr ⊂ X defined as

Xr = [(80, 80, 80), (125, 125, 125)),

34

then the abstraction has exactly eight designated initial states. The model for this abstraction with
the never-claim is partly shown below.

Executing the command spin -run model-insect.pml takes almost four hours, and
requires a computer with more than 4GB of memory. For this small initial region Xr, the tool
returns zero errors. By Corollary 2, we have thus verified that Σ in (8) satisfies φ in (9) for the
initial region Xr.

Many attempts of verification have failed, because of a poor choice of a partition. Understand-
ing the dynamics of the original system is of utmost importance when choosing a partition for the
abstraction. For this case study, in the lower regions, finer partitioning is necessary because there
are the parts that are popular destinations, and spurious trajectories are likely to appear. On the
other hand, coarser partitioning suffices for the higher regions, because of the exponentials, and
because they are less often reached by other states.

/* Found 16 candidate stutter states

* and removed 14 actual spurious self-loops.

*/
bool p = 0;
bool q = 0;
bool r = 0;

active proctype FSA() {
q_init:

if
:: (true) -> goto q_858;
:: (true) -> goto q_859;
:: (true) -> goto q_870;
:: (true) -> goto q_871;
:: (true) -> goto q_990;
:: (true) -> goto q_991;
:: (true) -> goto q_1002;
:: (true) -> goto q_1003;
fi

q_0: /* I_q = [(0,0,0) , (10,20,10)] */
atomic { p = 1; q = 0; r = 0; }
if
:: (true) -> goto q_0;
:: (true) -> goto q_1;
:: (true) -> goto q_2;
:: (true) -> goto q_3;
:: (true) -> goto q_4;
:: (true) -> goto q_5;
:: (true) -> goto q_132;
:: (true) -> goto q_133;
:: (true) -> goto q_134;
:: (true) -> goto q_135;
:: (true) -> goto q_136;
:: (true) -> goto q_137;
:: (true) -> goto q_264;
:: (true) -> goto q_265;
:: (true) -> goto q_266;
:: (true) -> goto q_267;
:: (true) -> goto q_268;
:: (true) -> goto q_269;
fi

q_1: /* I_q = [(10,0,0) , (20,20,10)] */
atomic { p = 0; q = 0; r = 0; }
if
:: (true) -> goto q_0;
:: (true) -> goto q_2;

...

q_2374: /* I_q = [(175,200,350) , (200,225,450)] */

35

atomic { p = 0; q = 1; r = 1; }
if
:: (true) -> goto q_1404;
:: (true) -> goto q_1416;
:: (true) -> goto q_1536;
:: (true) -> goto q_1548;
:: (true) -> goto q_1668;
:: (true) -> goto q_1680;
:: (true) -> goto q_1800;
:: (true) -> goto q_1812;
fi

q_2375: /* I_q = [(200,200,350) , (265,225,450)] */
atomic { p = 0; q = 1; r = 1; }
if
:: (true) -> goto q_1416;
:: (true) -> goto q_1428;
:: (true) -> goto q_1440;
:: (true) -> goto q_1548;
:: (true) -> goto q_1560;
:: (true) -> goto q_1572;
:: (true) -> goto q_1680;
:: (true) -> goto q_1692;
:: (true) -> goto q_1704;
:: (true) -> goto q_1812;
:: (true) -> goto q_1824;
:: (true) -> goto q_1836;
fi

}

never { /* ! G ((p && q) -> F r) */
T0_init : /* init */

if
:: (1) -> goto T0_init
:: (!r && p && q) -> goto accept_S2
fi;

accept_S2 : /* 1 */
if
:: (!r) -> goto accept_S2
fi;

}

36

	Introduction
	Problem Statement
	Linear Temporal Logic
	Syntax
	Semantics
	Derived Formulas
	Problem Revisited

	Transition Systems
	Definition and Examples
	Simulation

	Finite State Abstractions
	Construction
	Computation
	Mixed Monotonicity
	Removing Spurious Self-loops

	Verification of LTL Formulas
	Finite State Automaton
	Büchi Automata
	Product Automaton

	Main Results
	Conclusions
	Appendices
	Proof of Proposition 1
	Introduction to SPIN
	Case Study

