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Abstract

The quantum brachistochrone problem – to find the time-optimal
transition between given initial and final quantum states – is inves-
tigated in this bachelor’s thesis. First the quantum equivalent of
distance (the Fubini-Study metric) is formulated, using geometry of
spheres. Together with constraints, it is used to create the quantum
action. Functional derivatives are then taken of said action to find
equations of motion (eoms). For the unconstrained case (excluding
finite energy), these eoms are solved in closed form, whilst general to
be solved formulae are obtained for the constrained case. The latter
is used to explicitly solve an example quantum brachistochrone prob-
lem: a spin-1/2 particle in a controllable magnetic field constrained
to an x-y plane. Finally, the link with quantum computing is illus-
trated through the time-optimization of unitary transformations that
the quantum brachistochrone yields us.
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1 Introduction

During his tenure as professor of mathematics at the University of Groningen
(1694-1705), Johann Bernoulli posed the following problem:

”Given two points A and B in a vertical plane, what is the curve traced
out by a point acted on only by gravity, which starts at A and reaches
B in the shortest time.”

The problem was subsequently named the brachistochrone problem, derived from
the Greek words for ”shortest time.” In true Bernoulli style, he had cracked the
problem less than a year later, with the conclusion being that the time-optimal
curve is the section of a cycloid.

Although Bernoulli solved it using different means, the problem is commonly
posed as an introduction to the optimization of functions using the calculus of
variations. In particular, the well-known Euler-Lagrange equation can be used to
solve the problem quite easily. And since it is quite an instructive example, we
shall briefly go over it below.

We wish to minimize the total travel T . Using that

v =
ds

dt
⇐⇒ dt =

ds

v
, (1.1)

we thus see

T =

∫ T

0
1 dt =

∫ s2

s1

1

v
ds
∗
=

∫ x2

x1

√
1 + (y′)2

2gy
dx, (1.2)

where ∗ is the application of ds2 = dx2 + dy2, v =
√

2gy and y is treated as a
function of x. It is then a matter of applying the Beltrami identity – a derivative
of the Euler-Lagrange equation – which upon solving yields the system{

x = A(t− sin(t))
y = A(1− cos(t))

with A =
1

4gC2
, (1.3)

where C is an arbitrary constant. This system indeed maps out a cycloid, as
predicted by Bernoulli.

Upon shrinking to the quantum level, the similarity shared between the problem
outlined above and the quantum brachistochrone is that they both seek to minimize
a certain transition time. The quantum version, however, seeks to find the shortest
possible transition time between two particular states of quantum particle, and the
Hamiltonian that goes along with that time. In the paper by Carlini et al [4], the
problem is formulated thusly:

”We want to minimize the total amount of time necessary for changing
a given initial state |ψi〉 [...] to a given final state |ψf 〉, by suitable
choice of a (possibly time-dependent) Hamiltonian H(t).”

Being the seminal paper on the topic, further research into the quantum brachis-
tochrone (or investigated usages of it) commonly refers back to this paper.

Sadly, the quantum brachistochrone is not as easily solved as the classical one;
more mathematical machinery will need to be brought to the table, as well as
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equations and interpretations from quantum mechanics, in order to understand
the problem and solve it. As this brings with it quite involved derivations, a
particular aim of this thesis is to present findings as candidly and completely as
possible, using the structure of mathematical writing.

Before we commence with the gist of the thesis, we do a recap of materials the
reader should be familiar with. These include the calculus of variations, so that
we can take variations of the functions to optimize, and the theory of Lagrange
multipliers, so that we can work constraints into our problem.

In the second section of this thesis, we will derive the total action S for a given
transition in integral form, with the variable being time. This is the equivalent of
finding the total time T in the example above. We will touch on the Fubini-Study
line element, a quantum mechanical equivalent of distance, and how we use it to
formulate our action. We then discuss constraints to our system, and show how
these are implemented using Lagrange multipliers.

Next, we use the aforementioned action to derive the solution of the problem
– applying the Euler-Lagrange equation in the classical brachistochrone. This is
accomplished by taking the variation of the action functional with respect to the
different variables, so that we obtain ”equations of motion” for our system. These
are then solved for the particular cases of having only one constraint (the so-called
”finite energy” constraint), and for arbitrary constraints. The former is solved in
closed form, whilst the latter solution depends only on the constraints.

The fourth section will focus on working an example of the constrained version
of the quantum brachistochrone: a spin-1/2 particle in a controllable magnetic
field. Using the obtained methodology, we solve the example to find the optimal
paths and optimal transition time.

Finally, we discuss a particular application of the quantum brachistochrone:
quantum computing. Namely, at the core of a quantum computer are qubits which
change states (many times) in order to work a calculation. Facilitating the optimal
transition time by means of the optimal Hamiltonian thus allows for increasing the
speed of quantum computers, as the time spent changing states is minimized.

The goal of this thesis is to provide its reader with a complete picture of the
quantum brachistochrone, both mathematically and physically speaking, and as
its author I hope that it accomplishes this goal.

Robbert Scholtens, July 2018.
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A note on notation

Throughout the report, several notation conventions are utilized. These are out-
lined here for general reference.

Notation 1.1. We shall use the following abbreviations in this thesis.

1. ∂t := d/dt, ∂2
t := d2/dt2

2. P := |ψ〉〈ψ|
3. 〈A〉 := 〈ψ|A|ψ〉, where A is any operator

4. Tr(A) is the trace of an operator A, i.e. the sum of its diagonal elements (or
the sum of its eigenvalues).

5. H̃ := H − Tr(H)/n

6. (∆E)2 := 〈H2〉 − 〈H〉2, where the expectations are w.r.t, ψ, as in 3.

Notation 1.2. We take the reduced Planck constant to be unity, i.e. ~ ≡ 1.

Notation 1.3. Whenever an operator is written inside a bra or ket, it is taken to
act upon said bra or ket. That is,

|Aψ〉 ≡ A |ψ〉 and 〈Aψ| ≡ A 〈ψ|

for all operators A and quantum states ψ.

4



Scholtens, R.W. Optimized Quantum State Transitions

2 Some required theory

Before we commence with the particular substance of this thesis, it is imperative
to discuss some necessary theory. The reasoning for this is twofold. Firstly, the
material to be discussed heavily relies on the frameworks we present in this section.
As such, without a relatively strong recap of these frameworks, understanding the
material might be trickier than it has to be. Secondly, it provides us with an
opportunity to present the theory behind the utilized methods. This way, it will
become clearer why the methods work, and invite application elsewhere as well.

The first subsection is concerned with giving a brief overview of the calculus
of variations. That is, the section will introduce the reader to the functional
derivative, concretize its connection to the Euler-Lagrange equation and illustrate
the chain rule for functional derivatives.

The second subsection treats the method of Lagrangian multipliers. This
method gives a very easy way to transform a constrained optimization problem
into an unconstrained one, which are much easier to work with in general. Here
we will also find a condition for optimization of functionals.

2.1 Calculus of Variations: a 101

Since taking variations will play an important part in Section 4, it is good to give
a brief reminder of (or introduction to) the calculus of variations. The long and
short of it is that, when differentiating, we are interested in how a quantity changes
compared to an independent variable it depends on. When taking a variation, we
look at how a quantity depending on a function – a so-called functional – changes
when that ”independent” function is slightly altered by means of a perturbation
function – for an illustration, see Figure 2.1.

Since nothing beats mathematical notation, let us utilize some. Suppose we
have a functional J : Y → R : y 7→ J [y], defined by

J [y] =

∫ x2

x1

F (x, y(x), y′(x)) dx. (2.1)

Here, Y is the space of all allowed functions y. Then, when taking the variation of
this function, we obtain the functional derivative, which is the topic of the following
definition.

Definition 2.1. The quantity δJ/δy is called the functional derivative of J , and
is defined by∫ x2

x1

δJ

δy
η dx :=

d

dε

∣∣∣
ε=0

∫ x2

x1

F (x, y(x) + εη(x), y′(x) + εη′(x)) dx. (2.2)

Here, η is a (small) perturbation to y which vanishes at the end points, i.e. η(x1) =
η(x2) = 0. See Figure 2.1 for a visualization of η and its effect on y.

Notation 2.2. When writing |0 we imply |ε=0.
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Figure 2.1: An illustration of the function y and its perturbation η. Notice how η is such
that at the end points of the interval we wish to perturb, it vanishes.

Notation 2.3. From now on, the bounds on the integral signs will be omitted.
However, this is done with the understanding that all integrals are still definite
integrals.

Since Definition 2.1 might seem a little abstract, it is instructive to work a
specific example of finding a functional derivative. Suppose we have a functional
defined by

J =

∫
ay′y + b(y′)2x2 − cy dx, (2.3)

where a, b and c are constants and y depends on x, i.e. y = y(x). Then, in staying
with the definition, we do∫

δJ

δy
η dx =

d

dε

∣∣∣
0

∫
a(y′ + εη′)(y + εη) + b(y′ + εη′)2x2 − c(y + εη) dx

=

∫
∂

∂ε

∣∣∣
0
a
[
y′y + ε(yη′ + y′η) + ε2ηη′

]
+ bx2

[
(y′)2 + 2εy′η′ + ε2(η′)2

]
− c[y + εη] dx

=

∫
a(yη′ + y′η) + 2bx2y′η′ − cη dx

∗
=

∫
2bx2

(
(y′η)′ − y′′η

)
− cη dx

∗
=

∫
η
(
−2bx2y′′ − 4bxy′ − c

)
dx

∗∗
=⇒ δJ

δy
= −2bx2y′′ − 4bxy′ − c. (2.4)

In the above, the steps ∗ use integration by parts – to work the prime off of η –
and the product rule.
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The step ∗∗ is actually a little bit of a cheat. In general, it does not hold that
whenever the integrals are equal, the integrands are equal as well. However, since
our exclusive use of the variations is minimization (which is done by setting them
to zero, as shown in the next section) the step ∗∗ effectively does hold – provided
we also recognize that the entire expression should equal zero. As for why, this is
because of the fundamental lemma of the calculus of variations, more information
of which is provided in, for instance, [10].

The very astute mathematician will notice that the right-hand side of equa-
tion (2.4) is actually the Euler-Lagrange equation as applied to F with dependent
variable y. This is a general result: the variation of a functional is given by the
Euler-Lagrange equation, i.e.

δJ

δy
=
∂F

∂y
− d

dx

∂F

∂y′
. (2.5)

However, we will not be using the Euler-Lagrange equation. In Section 4 it will
become clear that we will be required to take variations with respect to bras (in
the Dirac formalism), a non-scalar object. Were we to use the Euler-Lagrange
equation, it would require us to take derivatives with respect to said object, which
would be awkward at best and incorrect at worst. As such, it is easiest (and
mathematically safest) for us to stick to the definition of the variation as given in
Definition 2.1.

One final point comes in the form of the chain rule.

Remark 2.4. We have that the chain rule holds for functional derivatives. That
is, supposing we have two functionals

Jg =

∫
g(F (x, y, y′)) dx, and JF =

∫
F (x, y, y′) dx, (2.6)

we have that
δJg
δy

=
∂g

∂F

δJf
δy

. (2.7)

This can be seen by using the Euler-Lagrange equation and the chain rule for
regular derivatives.

We shall require this later on. Namely, as functionals get more complicated
(which they will), it will help greatly that we can do some simple differentiation
prior to finding the functional derivative.

For further reference and background on functional derivatives, we refer the
reader to [6].

2.2 Lagrangian multipliers

One notable feature of the classical brachistochrone problem covered in the intro-
duction is that it was an unconstrained optimzation problem. That is, there were
no restrictions on the function y(x), i.e. y(x) could be any function as long as it
minimized the total travelling time.
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However, this does not represent the totality of minimization problems that can
be encountered. One example is ours: we shall see later on that we need to put
restrictions on our system so that it represents a physical system (the Schrödinger
equation comes to mind). A problem which has such a kind of restriction put on
it is called a constrained optimization problem.

In general, unconstrained problems are much easier to work with than con-
strained problems (consider once more the classical brachistochrone: all we had to
do was apply the Euler-Lagrange equation). It is therefore beneficial to somehow
be able to rewrite any constrained problem into an unconstrained problem. This
is the main use for the method of Lagrange multipliers.

The method goes as follows. Given are a quantity to minimize, L(z), z ∈ Rn
and k constraints, formulated as

gi(z) = 0 for i = 1, 2, ..., k. (2.8)

Then, the method of Lagrangian multipliers says that a minimizing solution to the
unconstrained problem defined by

L(z, λ) = L(z) +
k∑
i=1

λigi(z) (2.9)

is also a solution to the constrained problem. In equation (2.9), λ := (λ1, λ2, ..., λk)
is called the Lagrangian multiplier. A full proof of this method can be found in
various sources and textbooks, such as [10] that this thesis officially references.

The method as outlined above, though, treats the problem in a rather static
manner. In particular, λ is assumed to be a constant vector and the minimizing
solution is merely a single point. For our purposes, we would like to have a method
based on the Lagrangian multiplier which handles functions as minimizing solu-
tions, rather than single points. This will also necessitate ditching the assumption
that λ is constant.

Fortunately, such a method exists. Suppose we have a functional we wish to
optimize,

J [x, u] =

∫ T

0
L(x(t), u(t)) dt, (2.10)

where u : [0, T ]→ R is some function in some function space U that we can choose
so as to minimize J . Furthermore, x varies according to

ẋ = f(x, u). (2.11)

Thus, we have a constrained minimization problem: J needs to be minimized whilst
x has to obey the relation (2.11) at all time. But, since we prefer unconstrained
problems, our Lagrangian multipliers senses start tickling. In that spirit, let us
define the following quantity:

K(x, ẋ, p, u) := L(x, u) + pT · (f(x, u)− ẋ), (2.12)

8
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Figure 2.2: A graphical representation of Lagrange multipliers. The red line is the
constraint, whilst the surface indicates the value of to be optimized function. As can
be seen, the constraint is parallel to some level set of f where f is optimized. Source:
khanacademy.com.

where p : [0, T ]→ Rn. Notice the similarity with Lagrangian multipliers: f(x, u)−
ẋ = 0 is a constraint whilst p acts as Lagrange multiplier. Thus, the unconstrained
problem associated with (2.10) is given as minimizing simply

J ′[x, u] =

∫ T

0
K(x, ẋ, p, u) dt. (2.13)

And we know how to minimize unconstrained problems: simply set the variations
equal to zero. Setting all the variations equal to zero implies that whichever func-
tion we vary a little bit, the functional does not increase or decrease. 1 Therefore,
in order to minimize our functional K, we have to look for those functions x, p
and u which satisfy

δK

δx
=
δK

δp
=
δK

δu
= 0. (2.14)

We have now reduced finding the solution to the unconstrained problem of minimiz-
ing K to (simply) calculating some variations and determining for which functions
they vanish. This is the strategy we will apply in Section 4 in order to find the min-
imizing solution of the quantum action, and so solve the quantum brachistochrone
problem.

1It is like when finding the extrema of a function one looks at the (partial) derivatives and finds a
point where they all vanish. If at some point they did not vanish, you could follow the derivative to go
to a point which has lower value, implying that the point you are looking at is not the lowest.
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There is one final note to give, though. Just as with derivatives it is imperative
to check that the stationary point you have found is one you are looking for, so
too it is with variations. Although there exist various tests to determine whether a
minimum or maximum is found, we will not utilize these in this thesis, and assume
that the solution we will find is the minimum solution.

For more information regarding Lagrangian multipliers – for instance a proof
of their working – we refer the reader to [10].

10



Scholtens, R.W. Optimized Quantum State Transitions

3 Derivation of the action

This section concerns itself with finding the functional which describes the amount
of time required to transition from one state in quantum space to another. This
way, we can apply the calculus of variations as we learned it in Section 2.1 to
optimize this functional by finding suitable state and Hamiltonian.

The functional we shall justify in this section is given below already. This is
done so that we may associate each part of its structure to a particular subsection
which will discuss it.

S[ψ,H, φ, λ] =

∫ √
〈∂tψ|(1− P )|∂tψ〉

∆E

+ (−i 〈φ|∂tψ〉+ 〈φ|H|ψ〉 − i 〈ψ|∂tφ〉+ 〈ψ|H|φ〉) (3.1)

+ λ1(Tr(H̃2)/2− ω2) +
m∑
j=2

λj · fj(H) dt,

where φ and λ are Lagrange multipliers, and ω is a constant which can be inter-
preted as the energy uncertainty associated with the transition.2

Remark 3.1. In the original paper by Carlini et al [5], they instead use the
nomenclature action to describe the functional (3.1) (whence also the symbol S).
Why this is done specifically, I could not find out. However, in keeping with their
naming, it has been adapted into this thesis.

Before we continue, there is a point that needs to be clarified: the bounds on
the integral have been omitted for simplicity. As in Notation 2.3, though, we still
consider the integrals to be definite by implicitly defining the bounds to be the
initial and final states.

On to a brief summary of this section. In the first subsection, we will discuss
what the first line of (3.1) represents: the quantity ds/v as phrased in quantum
mechanical terms. In these terms, ds is the quantum line element on the space in
which quantum states live, and v represents the ”speed” at which they transition
to other states. We shall derive the form of ds as grassroots as possible, by means
of geometry on the sphere, and then work our way to the infinitesimal.

The second and third lines feature the constraints that our system has to obey –
to name: the Schrödinger equation, the ”finite energy” condition and miscellaneous
constraints. These, as well as their incorporation into the integral by means of
Lagrangian multipliers, will all be touched upon individually in the second part of
this section.

3.1 The Quantum Line Element

In this section we will derive the main ingredient used in the quantum action (3.1):
the infinitesimal time element dt associated with a certain transition. This way, in

2The energy uncertainty is indeed a constant, as we show further ahead in Lemma 4.8.
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the spirit of the classical brachistochrone (equation (1.2)), we can then integrate
to find the total time.

Since we are working in a finite dimensional Hilbert space, we consider our
quantum states to be elements of Cn, with additional structure provided by pro-
portionality in C. This yields the complex projective space, our first stop in this
section.

We will derive the time element mainly by deriving the quantum line element
ds – that is, the ”distance” between two quantum states. In the first subsection,
we will show that the aforementioned complex projective space can be thought
of as a sphere with an equivalence relation. On this sphere, then, geometry will
be conducted in order to find the distance between different quantum states –
the Fubini-Study distance. Armed with a general formula, we then derive the
infinitesimal form to obtain ds.

Definitions

Since we shall quite intensively use some geometrical concepts, it serves us well to
give some definitions from the start.

Definition 3.2. The norm of a vector X ∈ Cn (or X ∈ Rn) is given by

|X|2 := X ·X =
n∑
I=0

XI ·XI
, (3.2)

where n is the dimension of the space and the overbar indicates complex conjugate
(for real vectors, this is simply transposition).

Definition 3.3. The unit sphere embedded in Rn+1 is Sn, and is defined by

Sn := {X ∈ Rn+1 : |X|2 = 1}. (3.3)

The sphere itself is n-dimensional, whence the superscript.3

Definition 3.4. The unit sphere embedded in Cn+1 is S2n+1, defined as in Defini-
tion 3.3. The superscript still indicates the dimension of the sphere: this dimension
is apparent from the observation that C ∼= R2 =⇒ Cn ∼= R2n.

3.1.1 Complex Projective Space

We start off by giving the definition of complex projective space.

Definition 3.5. The complex projective space CPn is the object

CPn = Cn+1/ ∼, (3.4)

where
x ∼ y ⇐⇒ y = λx, with λ ∈ C. (3.5)

3For instance, the sphere embedded in R3 is a two-dimensional surface.
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In layman’s terms, this means that the equivalence class of some z ∈ CPn

consists of all those points which are proportional to it, where proportionality is
in C. There are two things of particular importance we need to note.

1. The equivalence class of any point contains a point which has unity norm.
This follows trivially from the observation that for any z ∈ Cn+1 \ {0}, there
is z′ = z/|z| ∈ [z] which has |z′| = 1. Therefore, in complex projective
space, Cn+1 can be thought of as having been ”brought back” to simply
those elements with unity norm.

2. Membership of an equivalence class is invariant under phase change. That
is, for any z ∈ Cn+1, z′′ = eiθz ∈ [z] for arbitrary θ. As such, all the points
which lie on the same ”great circle”4 belong to the same equivalence class.

Hopefully, the above two observations convince the reader of the truth of the
following theorem.

Theorem 3.6. We have that

CPn = S2n+1/S1 := {[x]∼ : |x| = 1 for x ∈ Cn+1}, (3.6)

where [x]∼ = {y ∈ Cn+1 | ∃θ : y = eiθx}.

Crucially, this allows us to think of the complex projective space as a sphere
with equivalence between those elements differing by a phase.

This observation also justifies us investigating the complex projective space: it
fits precisely with the quantum physicist’s needs for a space, as i) it provides unity
norm for all its elements, and ii) elements are equivalent under change in phase.

3.1.2 Geometry On Spheres

In the previous subsection we learned that, through CPn, quantum states live on a
spherical surface. This allows our quest for the quantum line element to be limited
to geometry on spheres. In this section, we will seek to find an expression for the
distance on spheres using geodesics.

Starting off our discussion is the notion of ”distance” on a given surface (in our
case a sphere).

Definition 3.7. The distance between two points is defined to be smallest path-
length connecting both points. That is,

distance = min
all paths X

length(X) (3.7)

heuristically. That path which minimizes the length (and hence yields the distance)
is called a geodesic.

Thus, our problem is reduced to finding the geodesic on a sphere: once we know
the geodesic, we simply find the length of that geodesic between two given points
to find the distance.

4Great circle is in quotations as the analogy breaks down for higher dimensional spaces.
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Since from Definition 3.7 we learn that finding the geodesic is essentially a
minimization problem, we employ the calculus of variations. In this spirit, we
propose the following functional which gives the length of a certain path X.

Lemma 3.8. The functional to be minimized in order to find the geodesic is given
by

L[X] =

∫
F (τ,X(τ), X ′(τ)) dτ =

∫
1

2
|X ′|2 + λ(|X|2 − 1) dτ (3.8)

where X(τ) is a path on the sphere, the derivative is with respect to τ and λ is a
Lagrange multiplier.

Proof. Consider the second term first. This is simply the constraint that X ·X = 1
for all τ , as should this not be fulfilled, X is no longer part of the sphere. Multiplied
with this constraint is λ, in the spirit of Lagrange multipliers.

The first term dictates the thing we wish to minimize, namely |X ′|2. We wish
to minimize this instead of the linear term, as this simplifies calculations down the
line (Euler-Lagrange).

We make one further assumption: that X is parametrized by arclength, or
equivalently that |X ′|2 = 1. Being parametrized by arclength essentially means
that the ”time” defining the path (in our case τ) reflects the length of the path.
This is a standard assumption/condition geometers put on their functions as it
makes life easier, as it does for us.

We may then apply the Euler-Lagrange equation to (3.8). This yields:

X ′′ = −2λX, (3.9)

a second order differential equation which has as its solution

XI(τ) = kI cos(τ) + `I sin(τ), with |k|2 = |`|2 = 1 and k · l = 0. (3.10)

In equation (3.10), the vectors k and ` are constant and represent the initial po-
sition and direction of travel, respectively (through evaluating X(0) and X ′(0)).
Furthermore, we used for the solution that λ = 1/2, a fact which follows from
using that |X| = |X ′| = 1.

Since X is parametrized by arclength, we have that the distance between points
X(τ1) and X(τ2) is given by

d = |τ1 − τ2| (3.11)

(this is a key element of what being parametrized by arclength entails; details can
be found in textbooks on geometry). Notice that this is the first instance for which
we have concretized the notion of distance on the sphere: we now know what we
are talking about, as it were. We now present the main proposition of this section,
relating distances to geodesics.

Lemma 3.9. Let X be a geodesic on a sphere parametrized by arclength in τ .
Then,

cos(d) = X(τ1) ·X(τ2), (3.12)

for some τ1 and τ2, and d is as in equation (3.11).

14
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Proof. We simply work out the multiplication.

X(τ1) ·X(τ2) = (k cos(τ1) + ` sin(τ1))(k cos(τ2) + ` sin(τ2))

= k2 cos(τ1) cos(τ2) + `2 sin(τ1) sin(τ2) + k · l(cos(τ1) sin(τ2) + cos(τ2) sin(τ1))

= cos(τ1) cos(τ2) + sin(τ1) sin(τ2)
∗
= cos(|τ1 − τ2|)
= cos(d), (3.13)

where for ∗ we used the trigonometric identity.

Lemma 3.9, in effect, gives us a formula for finding the distance between points
on the sphere. This simple formula will prove more than important as we advance
to the next section

3.1.3 Adding complexity

The treatment of the previous subsection (and the results derived there) have
concerned spheres embedded in real spaces. However, it will come as no surprise
that there exist analogs of these results for spheres embedded in complex spheres.
In particular, since our minimizing Lagrangian still holds, the solution also still
holds – at least to some degree.

Proposition 3.10. The geodesic on a sphere S2n+1 embedded in complex space is
given by

Zα(τ) = mα cos(τ) + nα sin(τ), (3.14)

where for mα, nα ∈ Cn+1 it holds that

|m|2 = |n|2 = 1, m · n+ n ·m = 0. (3.15)

Assuming moreover that Z is parametrized by arclength as well, we retain
equation (3.11) and Lemma 3.9 transforms into the following.

Proposition 3.11. Let Z be a geodesic on S2n+1 ⊆ Cn+1 parametrized by arclength
in τ . Then,

cos(d) =
1

2
(Z(τ1)Z(τ2) + Z(τ2)Z(τ1)), (3.16)

where
d = |τ1 − τ2| (3.17)

as in equation (3.11).

Proof. The proof involves the same working out as in the proof of Proposition 3.9,
and is thus omitted.

We have just entered the final stretch to finding the line element. Consider now
the family of geodesics defined by

nα = imα =⇒ Zα(τ) = mα exp(iτ), (3.18)
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of which
Aα = Aα0 exp(iτ), Bα = Bα

0 exp(i(τ + τ0)), (3.19)

with A0, B0 ∈ Cn+1 constant, are evidently members (τ0 is a free parameter and
will be of importance shortly). Note that although on the sphere these are two
geodesics (”great cirles” of sorts), in the complex projective space it holds that

Aα ∼ Aα0 , Bα ∼ Bα
0 (3.20)

for all τ . This way, if we consider the geodesics as living on CPn, we are in effect
looking at the distance between two points. Thus, we can use the formula as given
in Proposition 3.11. Filling this in, we obtain

cos(d) =
1

2
(A ·B +B ·A) =

1

2
(eiτA0 · e−i(τ+τ0)B0 + ei(τ+τ0)B0 · e−iτA0)

=
1

2
(A0 ·B0e

iτ0 +B0 ·A0e
iτ0)

∗
=
r

2
(ei(φ−τ0) + ei(τ0−φ))

= r · cos(φ− τ0), (3.21)

where we took r and φ as defined by

A0 ·B0 = reiφ. (3.22)

This final step is legitimate, since A0, B0 ∈ Cn+1, so that their inner product
should give an element in C, of which we have chosen the polar representation.

The obtained expression (3.21) still contains an unused τ0, though, which we
will utilize as follows. Since the distance between two points is the shortest possible
path length between them, we can use τ0 to minimize the length between A0 and
B0.5

Since cos(d) ≈ 1 − d2/2, a smallest possible value of d is accomplished by the
highest possible value of cos(d). Thus, we are looking for the highest possible of
r cos(φ − τ0) – evidently r. The value of r can be obtained by choosing τ0 = φ,
so that r cos(φ − τ0) = r cos(φ − φ) = r. Now dub that d which accomplishes
cos(d) = r0 the distance d0, i.e. we have that cos(d0) = r, where d0 is the distance
between two points on CPn.

This measurement of distance on the complex projective space is known as the
Fubini-Study metric, which is the most natural definition of distance we have on the
complex projective space and, by extension, in the quantum world. As such, the
quantum line element is in fact the infinitesimal form of the Fubini-Study metric.
This is the topic of the following theorem, the apotheosis of our derivation.

Theorem 3.12. (Fubini-Study line element) Let d0 as has been defined earlier.
Then, we have that infinitesimal version of the Fubini-Study metric is given by

ds2 = dA · dA− dA ·AA · dA, (3.23)

when expanded up to second order in both d0 and dA.

5Actually, with this step we are looking at the smallest length possible between all the elements in
the equivalence classes A0 and B0, and the τ0 that accomplishes that smallest length.
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Proof. First of all, notice that we have

cos2(d0) = r2 = reiφ · re−iφ = A0 ·B0B0 ·A0 = A ·BB ·A. (3.24)

We start by expanding the left-hand side of (3.24). We see that

cos2(d0) = cos(0) +
d[cos2(d0)]

dd0

∣∣∣
0
ds+

1

2

d2[cos2(d0)]

dd2
0

∣∣∣
0
ds2 +O(ds3)

= 1− 2 cos(0) sin(0)ds− 2 cos(2 · 0)

2
ds2

= 1− ds2, (3.25)

where we used ds as the infinitesimal version of d0.
Expansion of the right-hand side of (3.24) is slightly trickier. First, we must

slightly adjust the right-hand side slightly to read

A ·BB ·A
A ·AB ·B

(3.26)

instead. This is called the projective cross ratio κ. The format is quasi-justified
by taking into account A · A = B · B = 1. The denominator is critical for the
derivation, though, and so cannot be omitted.

Then, since we want to find the infinitesimal version of the distance, we effec-
tively wish to find the distance between A and A + εdA, where ε = 1.6 We set
B := A+ εdA, so that the quantity to be expanded is thus

A · (A+ εdA) (A+ εdA)A

A ·A (A+ εdA) · (A+ εdA)
=: κ(ε) (3.27)

with respect to epsilon. This results in

κ(ε) = κ(0) +
dκ

dε

∣∣∣
0
ε+

1

2

d2κ

dε2

∣∣∣
0
ε2 +O(ε3)

= 1 + 0 +
1

2

2(A · dAdA ·A−A ·AdA · dA)

(A ·A)2
ε2

= 1 + ε2
A · dAdA ·A−A ·AdA · dA

(A ·A)2
. (3.28)

We make two final adjustments to equation (3.28), being i) we use A ·A = 1, and
ii) we set ε ≡ 1, so that we are finding the distance between A and A+ dA. This
yields us

κ(1) = 1 +A · dAdA ·A− dA · dA. (3.29)

Finally, then, we put together equations (3.25) and (3.29) to find

1− ds2 = 1 +A · dAdA ·A− dA · dA, (3.30)

i.e.
ds2 = dA · dA−A · dAdA ·A, (3.31)

proving the theorem.7

6We find the infinitesimal distance this way so we can expand with respect to a scalar, instead of a
vector.

7Do not forget to breathe.
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3.1.4 Wrapping up

Theorem 3.12 thus yields us the quantum line element. However, we might prefer
the following version of it, to comply with the standard – Dirac – notation of
quantum mechanics.

Corollary 3.13. The Fubini-Study line element as derived in Theorem 3.12 can
be written in quantum mechanical notation as

ds2 = 〈dψ|(1− P )|dψ〉 , (3.32)

where P = |ψ〉〈ψ| and 1 is the unit operator.

Proof. Rewrite equation (3.23) using A := 〈ψ|, A = |ψ〉, dA = 〈dψ| and dA =
|dψ〉.

We are almost there. The only ingredient we still require is the equation

ds

dt
= ∆E, (3.33)

where ∆E := 〈H2〉 − 〈H〉2. This relation is shown in [1].8 That is, in order to get
an infinitesimal time element dt (over which we need to integrate in order to get
the total time), we must have that

dt =
ds

∆E
=

√
〈dψ|(1− P )|dψ〉

∆E
=

√
〈∂tψ|(1− P )|∂tψ〉

∆E
dt. (3.34)

Note that for the final equality sign, we ”removed” a dt from the denominator,
transforming dψ to ∂tψ. The equation (3.34) thus represents the infinitesimal time
element, which we need to integrate in order to find the total time required for
quantum states to change.

3.2 Constraints

This subsection is concerned with finding the constraints to which we apply the
theory of Lagrange multipliers treated just now. The constraints we impose on the
quantum state are that i) the Schrödinger equation is satisfied at all times, and ii)
the energy uncertainty ∆E cannot be unbounded. Moreover, we allow for finitely
more constraints to be imposed by means of a general formulation.

3.2.1 The Schrödinger equation

Since we are using Dirac notation for our quantum mechanics, we will use the
Schrödinger equation in that format:

i |∂tψ〉 = H |ψ〉 ⇐⇒ i |∂tψ〉 −H |ψ〉 = 0. (3.35)

8Actually, the article shows that ds/dt = 2∆E, but we assume that we can rescale in order to cancel
the two.
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Then, in the spirit of Lagrange multipliers, we left-multiply the right-hand side of
the equivalence relation with the Lagrange multiplier 〈φ| to obtain

i 〈φ|∂tψ〉 − 〈φ|H|ψ〉 = 0. (3.36)

This is the term we will add to the action as contribution of the Schrödinger equa-
tion. Except, it is not the full picture. In order to fully capture the contribution,
we must also consider the Hermitian conjugate of the Schrödinger equation, given
by

− i 〈∂tψ| = H 〈ψ| ⇐⇒ −i 〈ψ| −H 〈ψ| = 0. (3.37)

In a similar spirit, now multiply with the suitable Lagrange multiplier to get

− i 〈∂tψ|φ〉 − 〈ψ|H|φ〉 = 0. (3.38)

Though usable, equation (3.38) is not the form we would prefer to use, as will
become clear once we take variations in the next section. Luckily, we can rewrite
using the following lemma.

Lemma 3.14. The Hermitian conjugate of the time derivative operator is the
negative of the time derivative operator, i.e.

∂†t = −∂t. (3.39)

Proof. Recall that 〈ψ|ψ〉 = 1. Then,

0 = ∂t[〈ψ|φ〉] = ∂t

∫
ψ∗φdx

=

∫
∂tψ
∗φ+ ψ∗∂tφdx

= 〈∂tψ|φ〉+ 〈ψ|∂tφ〉
=⇒ 〈ψ|∂tφ〉 = 〈−∂tψ|φ〉 . (3.40)

Thus, by definition of the Hermitian conjugate, ∂†t = −∂t.

In particular, we use Lemma 3.14 on the first term in equation (3.38) to obtain

− i 〈ψ|∂tφ〉+ 〈ψ|H|φ〉 = 0. (3.41)

This term, in conjunction with equation (3.36), is what we will add to the action
as representing the Schrödinger equation.

3.2.2 Boundedness of energy uncertainty

This condition is paramount in order to formulate a physically realistic system. For
one, if we were to let the energy uncertainty grow arbitrarily, we could make the
total action S arbitrarily small thanks to the appearance of ∆E in the denominator
of the Fubini-Study metric.

As such an energy uncertainty could be obtained by suitable choice of Hamil-
tonian, it thus makes sense to impose a condition on H instead of ∆E. However,
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the condition we elect to impose may seem to have simply fallen from sky. Namely,
we impose

Tr(H̃2) = 2ω2, (3.42)

where ω ∈ R and H̃ := H − Tr(H)/n. A little rephrasing is in order to clarify
what this condition means physically.

2ω2 = Tr(H̃2) = Tr
(
(H − Tr(H)/n)2

)
(3.43)

The right-hand side represents, in some sense, the energy uncertainty of the system.
Note that Tr(H) is the sum of all the eigenvalues of the Hamiltonian,9 so that
Tr(H)/n is the mean eigenvalue. Subtracting this from H so yields a Hamiltonian
operator which has its eigenvalues downshifted, so that its new mean is zero. This
way, the new eigenvalues represent a deviation from the mean. Then squaring this
reduced Hamiltonian also squares all its eigenvalues, which are then added to each
other by taking the trace once more. Thus, the ”spread” of energies associated
with the Hamiltonian is quantified, which in turn represents the energy uncertainty
assocaited with the Hamiltonian.

We take the imposed constraint into account by using Lagrangian multipliers.
Hence, the term we will add to our action to represent bounded energy uncertainty
is

λ1(Tr(H̃2)/2− ω2). (3.44)

3.2.3 Miscellaneous constraints

Despite the previous two constraints being important ones, these are not necessarily
the only ones put on the system. For instance, there may be specific limitations to
the equipment used in a laboratory setting, as such constraining the Hamiltonian
operator acting on the quantum state. Or, in a quantum computer there are very
specific voltages to work with so that only a restricted class of Hamiltonians can
be allowed. In order to account for this, in this section we touch upon how further
constraints can be added.

In particular, we consider only constraints imposed on the Hamiltonian; con-
straints on the state would be silly, as we can only indirectly affect it precisely
through the Hamiltonian. Consider n− 1 constraints phrased as

fj(H) = 0, with j = 2, 3, ..., n (3.45)

and where fj : H → R : H 7→ fj(H). In the spirit of Lagrangian multipliers, then,
multiply all these functions with a specific λ and add them together to form the
total constraint:

n∑
j=2

λjfj(H). (3.46)

This is the the contribution of miscellaneous to the total action integral.

9Since H is a linear operator, this holds.
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3.3 Final form

Collecting equations (3.34), (3.36), (3.41), (3.44) and (3.46) from the above sub-
sections, we thus present the final form of the action to be

S(ψ,H, φ, λ) =

∫ √
〈∂tψ|(1− P )|∂tψ〉

∆E

+ (−i 〈φ|∂tψ〉+ 〈φ|H|ψ〉 − i 〈ψ|∂tφ〉+ 〈ψ|H|φ〉)

+ λ1(Tr(H̃2)/2− ω2) +

m∑
j=2

λj · fj(H) dt.

(3.47)

With this action in hand, we are able to derive the ”equations of motion” for
optimized transition between states, by taking variations with respect to all the
different variables in play. This will the topic of the next section, where in addition
we shall narrow down our constraints and as such arrive at the solutions of the
quantum brachistochrone problem.
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4 Variations, Equations Of Motion and The

Solution

This section forms the heart of the thesis. Namely, here we will derive the equations
of motion associated with the quantum action discussed in the previous section.
These equations of motion will then be solved in order to obtain the optimal
solution pair |ψ〉 , H which minimizes the transition time.

In the first subsection, we will take variations of our action. This way, in
accordance with subsection 2.2, we then obtain the equations of motion.

Following this, the second subsection is concerned with solving these in the case
of no additional constraints. That is, no constraints beyond the one outlined in
subsection 3.2.2. This represents the ideal system, though not a realistic one.

The case where we do impose additional constraints is discussed in the final
subsection of this section. It will come as no surprise that this will leave the most
open-ended conclusion of the various subsections, as we cannot solve the system
any further than we will without being given the constraints.

4.1 Taking various variations

Before we commence with taking variations, it is good to once more give the formula
for the quantum action. This way, there will be no need for referencing to it in
another section altogether.

S(ψ,H, φ, λ) =

∫ √
〈∂tψ|(1− P )|∂tψ〉

∆E︸ ︷︷ ︸
(i)

+ (−i 〈φ|∂tψ〉+ 〈φ|H|ψ〉︸ ︷︷ ︸
(ii)

− i 〈ψ|∂tφ〉+ 〈ψ|H|φ〉)︸ ︷︷ ︸
(iii)

+ λ1(Tr(H̃2)/2− ω2) +

m∑
j=2

λj · fj(H)︸ ︷︷ ︸
(iv)

dt.

(4.1)

Then, we can commence with taking variations.
The first two are rather easy: the variations with respect to 〈φ| and λ. These

are the subject of the following lemmas.

Lemma 4.1. The variation of S with respect to 〈φ| is

δS

δ 〈φ|
= −i |∂tψ〉+H |ψ〉 . (4.2)

Proof. Since only the (ii) term contains 〈φ|, we can disregard the other terms and
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focus solely on this one. We have that∫
〈δφ| δS

δ 〈φ|
dt =

d

dε

∣∣∣
0

∫
−i 〈φ+ εδφ|∂tψ〉+ 〈ψ + εδφ|H|ψ〉 dt

=

∫
〈δφ| (−i |∂tψ〉+H |ψ〉) dt

=⇒ δS

δ 〈φ|
= −i |∂tψ〉+H |ψ〉 . (4.3)

Thus, the lemma is proven.

Lemma 4.2. The variation of S with respect to λ is

δS

δλ
=

(
δS

δλ1
,
δS

δλ2
, . . . ,

δS

δλm

)
=

(
Tr(H̃2)

2
− ω2, f2(H), . . . , fm(H)

)
(4.4)

Proof. We shall show that the lemma holds for each element separately, i.e. that
δS/δλk = fk(H) for all k = 1, 2, . . . ,m (and f1(H) = Tr(H̃2)− 2ω2). The lemma
then immediately follows.

Let it be seen that∫
δS

δλk
η dt =

d

dε

∣∣∣
0

∫
(λk + εη)fk(H) dt

=

∫
ηfk(H) dt

=⇒ δS

δλk
= fk(H). (4.5)

Thus, since the above holds for arbitrary k, it holds for all k, and so the lemma is
proven.

Notice that the previous two lemmas imply that the constraints we imposed on
our system have to hold for any optimal solution |ψ〉 and H – i.e. which satisfy
δS/δ 〈φ| = δS/δλ = 0. Thus, from now on we can effectively assume that |ψ〉 and
H fulfill

i |∂tψ〉 = H |ψ〉 , Tr(H)/2 = ω2, fj(H) = 0 (4.6)

for j = 2, 3, ...,m. Here we recognize the power of the Lagrange multipliers, now
brought out of theory and into practice. By working the constraints into the
functional by means of Lagrange multipliers, they are now part of the equations of
motion for which we have to solve to obtain an optimal solution instead of being
separate constraints we would have had to consider.

The variations with respect to 〈ψ| andH are a little trickier, though, and involve
more mathematical subtleties. We acknowledge that the derivations presented here
find their inspiration in [8]. Before we handle these, first some additional notation.

Notation 4.3. Upon defining a function G, the associated functional is denoted

RG :=

∫
Gdt. (4.7)
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Commencing with taking the variation w.r.t. 〈ψ|, we have the following propo-
sition.

Proposition 4.4. The variation of S with respect to 〈ψ| is

δS

δ 〈ψ|
= i∂t

[
H − 〈H〉
2(∆E)2

]
|ψ〉 − i |∂tφ〉+H |φ〉 (4.8)

Proof. Since the terms (ii) and (iv) in equation (4.1) do not contain a 〈ψ|, we can
disregard these for taking the variation.

(i): Define
A := 〈∂tψ|(1− P )|∂tψ〉 , B := (∆E)2 ≡ 〈H2〉 − 〈H〉2 (4.9)

so that, in effect, we need to find δR√
A/B

/δ 〈ψ|. We first utilize the chain

rule – Remark 2.4 – so as to simplify:

δR√
A/B

δ 〈ψ|
=

1

2

√
B

A
·
δRA/B

δ 〈ψ|

=
1

2

√
B

A

(
1

B

δRA
δ 〈ψ|

− A

B2

δRB
δ 〈ψ|

)
=

1

2

√
1

AB

δRA
δ 〈ψ|

− 1

2B

√
A

B

δRB
〈ψ|

, (4.10)

The next step is thus to find δA and δB, of which we will treat the former
first. Taking to heart the definition of taking a variation, we calculate∫
〈δψ| δRA

δ 〈ψ|
dt =

d

dε

∣∣∣
0

∫
[ 〈∂tψ + ε∂tδψ|(1− |ψ〉〈ψ + εδψ|)|∂tψ〉 ] dt

=

∫
d

dε

∣∣∣
0

[ 〈∂tψ + ε∂tδψ|∂tψ〉 ] +
d

dε

∣∣∣
0

[ 〈∂tψ + ε∂tδψ|ψ〉 〈ψ + εδψ|∂tψ〉 ] dt

=

∫
〈∂tδψ|∂tψ〉 − 〈∂tψ + ε∂tδψ|ψ〉 〈δψ|∂tψ〉 |ε=0

− 〈∂tδψ|ψ〉 〈ψ + εδψ|∂tψ〉 |ε=0 dt

=

∫
〈∂tδψ|∂tψ〉 − 〈∂tψ|ψ〉 〈δψ|∂tψ〉 − 〈∂tδψ|ψ〉 〈ψ|∂tψ〉 dt

=

∫
〈∂tδψ|(1− P )|∂tψ〉 − 〈δψ|∂tψ〉 〈∂tψ|ψ〉 dt

=

∫
〈δψ| (−∂t {(1− P ) |∂tψ〉} − 〈∂tψ|ψ〉 |∂tψ〉 ) dt

=⇒ δRA
δ 〈ψ|

= −∂t {(1− P ) |∂tψ〉} − 〈∂tψ|ψ〉 |∂tψ〉 . (4.11)
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A similar procedure for B yields∫
〈δψ| δRB

δ 〈ψ|
dt =

d

dε

∣∣∣
0

∫
〈ψ + εδψ|H2|ψ〉 − ( 〈ψ + εδψ|H|ψ〉)2 dt

=

∫
〈δψ|H2|ψ〉 − 2 〈ψ + εδψ|H|ψ〉 〈δψ|H|ψ〉 |ε=0 dt

=

∫
〈ψ|
(
H2 |ψ〉 − 2 〈H〉H |ψ〉

)
dt

=⇒ δRB
δ 〈ψ|

= H2 |ψ〉 − 2 〈H〉H |ψ〉 . (4.12)

Now that we have taken variations of A and B, we can set their values to
be A = B = (∆E)2.10 Then, combining the expressions (4.10), (4.11) and
(4.12), assuming that ∆E is constant11 (and using the Schrödinger equation
a bunch of times), we obtain

δR√
A/B

δ 〈ψ|
=

1

2(∆E)2

(
δRA
δ 〈ψ|

− δRB
δ 〈ψ|

)
=

1

2(∆E)2

(
−∂t {(1− P ) |∂tψ〉} − 〈∂tψ|ψ〉 |∂tψ〉 −H2 |ψ〉+ 2 〈H〉H |ψ〉

)
=

1

2(∆E)2

(
i∂t {(1− P )H |ψ〉} − 〈H〉H |ψ〉 −H2 |ψ〉+ 2 〈H〉H |ψ〉

)
=

1

2(∆E)2

(
i∂t {[H − 〈H〉] |ψ〉}+ 〈H〉H |ψ〉 −H2 |ψ〉

)
=

1

2(∆E)2

(
i∂t {H − 〈H〉} |ψ〉+ [H2 − 〈H〉H] |ψ〉+ 〈H〉H |ψ〉 −H2 |ψ〉

)
= i∂t

[
H − 〈H〉
2(∆E)2

]
|ψ〉 , (4.13)

which concludes the variation of term (i).

(iii): We set I := 〈ψ|∂tφ〉+ 〈ψ|H|φ〉. Then, we have that∫
〈δψ| δRI

δ 〈ψ|
dt =

d

dε

∣∣∣
0

∫
−i 〈ψ + εδψ|∂tφ〉+ 〈ψ + εδψ|H|φ〉 dt

=

∫
〈δψ| (−i |∂tφ〉+H |φ〉) dt

=⇒ δRI
δ 〈ψ|

= −i |∂tφ〉+H |φ〉 . (4.14)

We then combine the equations (4.13) and (4.14) so that we obtain the full varia-
tion, being

δS

δ 〈ψ|
= i∂t

[
H − 〈H〉
2(∆E)2

]
|ψ〉 − i∂t |ψ〉+H |ψ〉 . (4.15)

10For A, this is justified upon assuming the Schrödinger equation to hold and working out the original
expression.

11This is not a trivial assumption, as H is assumed to be time-dependent. However, as is shown in
Lemma 4.8, (∆E)2 is constant indeed. Since the lemma does not use δS/δ 〈ψ|, this is thus a consistent
assumption to make.
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This is precisely what we are looking for, so the proposition is proven.

And now, the variation with respect to H.

Proposition 4.5. The variation of S as in equation (4.1) with respect to H is
given by

δS

δH
=

2 〈H〉P − {H,P}
2(∆E)2

+ |ψ〉〈φ| + |φ〉〈ψ| + λ1H̃ +

m∑
j=2

λj
δfj
δH

. (4.16)

Here, {H,P} := HP + PH denotes the anticommutator between H and P .

Proof. We follow once more the lead of [8], where we now look at the derivation
of equation (65). Looking at equation (4.1), we see that all terms involve an H, so
that we need to consider all terms in taking this variation. In the end, we add up
all the variations to get the grand total.

(i) As with Proposition 4.4, we choose A := 〈∂tψ|(1− P )|∂tψ〉 and B := (∆E)2.
Then,

δR√
A/B

δH
=
−1

2B

√
A

B

δRB
δH

. (4.17)

Notice that δRA/δH = 0 as A does not (explicitly) depend on H. Then, we
determine∫
δH

δRB
δH

=
d

dε

∣∣∣
0

∫ 〈
(H + εδH)2

〉
− 〈H + εδH〉2 dt

=

∫
d

dε

∣∣∣
0

〈
H2 + ε(HδH + δHH) + ε2(δH)2

〉
− d

dε

∣∣∣
0
〈H + εδH〉2 dt

=

∫
〈HδH + δHH〉 − 2 〈H〉 〈δH〉 dt

=⇒ δRB
δH

=
〈HδH〉
δH

+
〈δHH〉
δH

− 2 〈H〉 〈δH〉
δH

, (4.18)

so that we now effectively have to look at three different quantities: 〈δH〉,
〈HδH〉 and 〈δHH〉. Let us consider the former of the triple first. Expanding
in an arbitrary basis {αi}ni=1, we have that

〈δH〉 = 〈ψ|δH|ψ〉 = 〈ψ|αj〉 〈αj |δH|αk〉 〈αk|ψ〉 , (4.19)

where summation over j and k is implied.12 Then, dubbing δHjk := 〈αj |δH|αk〉,
we obtain

〈ψ|αj〉 〈αj |δH|αk〉 〈αk|ψ〉 = δHjk 〈αk|ψ〉 〈ψ|αj〉 = δHjkPkj , (4.20)

where, recall, P := |ψ〉〈ψ|. As such, we have that

〈δH〉
δHjk

= Pkj =⇒ 〈δH〉
δH

= P. (4.21)

12Otherwise known as the Einstein summation convention.
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One down, two to go. Consider now 〈δHH〉. We proceed similarly as before:

〈δHH〉 = 〈ψ|δHH|ψ〉 = 〈ψ|αj〉 〈αj |δH|αk〉 〈αk|Hψ〉 . (4.22)

Then,

〈ψ|αj〉 〈αj |δH|αk〉 〈αk|Hψ〉 = δHjk 〈αk|Hψ〉 〈ψ|αj〉 = δHjk(HP )kj ,
(4.23)

resulting in
〈δHH〉
δHjk

= (HP )kj =⇒ 〈δHH〉
δH

= HP. (4.24)

In a similar way, it can be determined that

〈HδH〉
δH

= PH. (4.25)

Then, joining equations (4.21), (4.24) and (4.25) with (4.12) yields

δB

δH
= PH +HP − 2 〈H〉P, (4.26)

so that (4.17) becomes (recall that A = B = (∆E)2)

δ
[√

A/B
]

δH
=

2 〈H〉P − (HP + PH)

2(∆E)2
=

2 〈H〉P − {H,P}
2(∆E)2

, (4.27)

the contribution of (i) to the total variation.

(ii)&(iii): We first direct our attention to 〈φ|H|ψ〉, leading us to determine 〈φ|δH|ψ〉.
As we did for (i), we expand in a basis {αi}ni=1, obtaining

〈φ|δH|ψ〉 = 〈φ|αj〉 〈αj |δH|αk〉 〈αk|ψ〉 = δHjk 〈αk|ψ〉 〈φ|αj〉 . (4.28)

Therefore,

〈φ|δH|ψ〉
δHjk

= ( |ψ〉〈φ| )kj =⇒ 〈φ|δH|ψ〉
δH

= |ψ〉〈φ| . (4.29)

Similarly,
〈ψ|δH|φ〉
δH

= |φ〉〈ψ| . (4.30)

(iv): For the cases where j > 1, this is moot; we cannot take variations of functions
we do not know. Thus, the best we can do is

δ

δH

m∑
j=2

λjfj(H) =

m∑
j=2

λj
δfj
δH

. (4.31)

For j = 1, we can do something. First off, note that

λ1 δTr(H̃2)

2
=
λ1 Tr(δ[H̃2])

2
=
λ1

2

(
Tr(H̃δH̃) + Tr(δH̃H̃)

)
. (4.32)
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Then, the definition of the trace (sum of diagonal elements) allows us to
rewrite:

λ1

2

(
Tr(H̃δH̃) + Tr(δH̃H̃)

)
=
λ1

2

[
H̃jiδH̃ij + δH̃ijH̃ji

]
= λ1H̃jiδH̃ij .

(4.33)
As a consequence,

λ1

2

δTr(H̃2)

δH̃ij

= λ1H̃ji =⇒ λ1

2

δTr(H̃2)

δH
= λ1H̃, (4.34)

where in the last step switching from δH̃ to δH is justified as . Then, col-
lecting everything, we get

λ1H̃ +

m∑
j=2

λj
δfj
δH

(4.35)

as the contribution of (iv) to the total variation.

Thus, upon combining equations (4.27), (4.29), (4.30) and (4.35), we find that the
total variation of S with respect to H becomes

δS

δH
=

2 〈H〉P − {H,P}
2(∆E)2

+ |ψ〉〈φ| + |φ〉〈ψ| + λ1H̃ +
m∑
j=2

λj
δfj
δH

, (4.36)

which proves the proposition.

Now that we have taken all the variations, it is time to utilize the fact that we
are working with an unconstrained problem (in the sense that we have worked all
the constraints into the extremand by means of Lagrange multipliers). Since our
problem is unconstrained, the minimizing solution can be found by simply setting
all the variations equal to zero, i.e. our solution pair |ψ〉 , H has to ensure that

δS

δ 〈φ|
=
δS

δλ
=

δS

δ 〈ψ|
=
δS

δH
= 0 (4.37)

is satisfied. The former two of these we already assumed to hold; these are the
constraints of our system being fulfilled. Thus, what is left for us to solve are the
latter two equations. That is, we need to solve

i∂t

[
H − 〈H〉
2(∆E)2

]
|ψ〉 − i |∂tφ〉+H |φ〉 = 0, (4.38)

and

2 〈H〉P − {H,P}
2(∆E)2

+ |ψ〉〈φ| + |φ〉〈ψ| + λ1H̃ +
m∑
j=2

λj
δfj
δH

= 0. (4.39)

Thus, recapping: as a result of taking variations, we have found the various equa-
tions of motion of the quantum brachistochrone system. Our next task, naturally,
shall be to solve these, which is the topic of the following subsections.
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4.2 Case with no constraints

At this point, it serves us to consider the case where we impose solely the trivial
constraint separately from when we have m different constraints. The reason is
that, when no additional constraints but the trivial one is imposed, the problem
is simpler (less constraints means less stress), still somewhat represents a phys-
ical system and can be solved in closed form. Moreover, its derivation is very
instructive, also with an eye to when additional constraints are imposed.

Thus, from now on we treat fj ≡ 0 for j = 2, 3, ...,m. Immediately, we notice
a simplification of equation (4.16):

δS

δH
=

2 〈H〉P − {H,P}
2(∆E)2

+ ( |ψ〉〈φ|+ |φ〉〈ψ| ) + λH̃, (4.40)

where we wrote λ ≡ λ1 for convenience. Thus, the equations we need to solve for
H̃ and |ψ〉 become

i∂t

[
H − 〈H〉
2(∆E)2

]
|ψ〉 − i∂t |φ〉+H |φ〉 = 0 (4.41)

and
{H,P} − 2 〈H〉P

2(∆E)2
− λH̃ − ( |ψ〉〈φ|+ |φ〉〈ψ| ) = 0. (4.42)

Our strategy in solving these shall be two-fold. First, we will reduce the equations
to a simpler form by performing extensive algebra. Secondly, we will solve these
simplified equations in order to find the solution for the quantum brachistochrone.
These are the topics of the following two subsections, respectively.

4.2.1 Setting Up The Equations

In this section, we shall aim to simplify the found expressions for the two variations.
Namely, in their current state, the equations are hard and some work can be done
in order to simplify.

Our first aim shall be to find an expression for |φ〉. Then, we shall see that
we can plug this back in and so simplify both variations into more manageable
formats.

Before we commence with that, though, we present a triplet of lemmas which
we will need for our derivations.

Lemma 4.6. We have that 〈ψ|φ〉 is purely imaginary, i.e.

〈ψ|φ〉 = −〈φ|ψ〉 . (4.43)

Proof. Taking the trace of equation (4.42) yields

Tr(HP ) + Tr(PH)− 2 〈H〉Tr(P )

2(∆E)2
− λTr(H̃)− Tr ( |ψ〉〈φ| )− Tr ( |φ〉〈ψ| ) = 0.

(4.44)
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But, using the facts that

Tr(HP ) = Tr(HP 2) = Tr(PHP ) = Tr( |ψ〉〈ψ|H|ψ〉〈ψ| ) = 〈H〉Tr(P ), (4.45)

ditto for Tr(PH) and

Tr(H̃) = Tr(H)− Tr(Tr(H)/n) = Tr(H)− Tr(H)/n · n = 0, (4.46)

we as such have that equation (4.44) simplifies to

Tr ( |ψ〉〈φ| ) = −Tr ( |φ〉〈ψ| ) . (4.47)

Now,

Tr ( |ψ〉〈φ| ) = Tr (P |ψ〉〈φ| ) = Tr ( |ψ〉〈φ|P ) = 〈 |ψ〉〈φ| 〉 = 〈φ|ψ〉 , (4.48)

and ditto for Tr ( |φ〉〈ψ| ). Therefore,

Tr ( |ψ〉〈φ| ) = −Tr ( |φ〉〈ψ| ) =⇒ 〈ψ|φ〉 = −〈φ|ψ〉 . (4.49)

The last statement proves the lemma.

Lemma 4.7. We have that 〈H̃〉 = 0, from which it immediately follows that

〈H〉 = Tr(H)/n. (4.50)

Proof. We take the expectation w.r.t |ψ〉 of equation (4.42), yielding〈
{H,P} − 2 〈H〉P

2(∆E)2

〉
− λ 〈H̃〉 − ( 〈 |ψ〉〈φ| 〉+ 〈 |φ〉〈ψ| 〉) = 0. (4.51)

The first and third terms cancel (by definition of P , the expectation and Lemma
4.6), so that remains

λ 〈H̃〉 = 0 =⇒ 〈H̃〉 = 0. (4.52)

From the definition of H̃ it then readily follows that

0 = 〈H̃〉 = 〈H〉 − 〈Tr(H)/n〉 = 〈H〉 − Tr(H)/n =⇒ 〈H〉 = Tr(H)/n, (4.53)

proving the lemma.

Lemma 4.8. We have that

(∆E)2 = 〈H̃2〉 = Tr(H̃2)/2 = ω2; (4.54)

notably, (∆E)2 is constant.

Proof. The first equality holds, as

〈H̃2〉 = 〈H2 + 〈H〉2 − 2 〈H〉H〉 = 〈H2〉 − 〈H〉2 = (∆E)2. (4.55)

In justifying the second equality, we use that

〈H̃2〉 = Tr(H̃2P ) = Tr(H̃PH̃) (4.56)
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by means of

Tr(H̃PH̃)
∗
= Tr(H̃2 − H̃PH̃) = Tr(H̃2)− Tr(H̃PH̃) (4.57)

where ∗ holds by Proposition 4.9.1314 Therefore,

2 Tr(H̃PH̃) = Tr(H̃2) =⇒ 〈H̃2〉 = Tr(H̃PH̃) = Tr(H̃2)/2. (4.58)

And, by constraint, the latter equality holds:

Tr(H̃2)/2 = ω2. (4.59)

As such, the lemma is proven.

Using the above lemmas, then, we can proceed with simplifying the equations.
Since we have two equations to begin with, we also need to end up with two other
equations to solve. This will be the topic of the two following propositions.

Proposition 4.9. Equation (4.42) implies that instead of solving it, we can equiv-
alently solve

H̃ = H̃P + PH̃. (4.60)

Proof. Apply |ψ〉 to (4.42) to obtain

0 =

[
{H,P} − 2 〈H〉P

2(∆E)2
− λH̃ − ( |ψ〉〈φ| + |φ〉〈ψ|)

]
|ψ〉

=
H |ψ〉+ 〈H〉 |ψ〉 − 2 〈H〉 |ψ〉

2(∆E)2
− λH̃ |ψ〉 − 〈φ|ψ〉 |ψ〉 − |φ〉

⇒ |φ〉 =

[(
1

2(∆E)2
− λ

)
H̃ + 〈ψ|φ〉

]
|ψ〉 , (4.61)

where we used Lemma 4.6. We insert the obtained expression for |φ〉 back into
(4.42) to obtain (after some working out)

0 =
{H,P} − 2 〈H〉P

2(∆E)2
− λH̃ − P

[(
1

2(∆E)2
− λ
)
H̃ − 〈ψ|φ〉

]
−
[(

1

2(∆E)2
− λ

)
H̃ + 〈ψ|φ〉

]
P

=
1

2(∆E)2

[
HP + PH − 2 〈H〉P − PH̃ − H̃P

]
+ λ

[
−H̃ + PH̃ + H̃P

]
∗
= λ

[
−H̃ + PH̃ + H̃P

]
⇒ H̃ = PH̃ + H̃P, (4.62)

where for ∗ we used H̃ = H − 〈H〉 – the topic of Lemma 4.7 – and the last
implication holds as λ 6= 0. Thus, the proposition is proven.

13Multiply both sides by H̃ and use that the trace is invariant under cyclic permutations.
14Although this might seem like a cyclic argument, it is not as Proposition 4.9 does not use the

contents of this lemma.
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Proposition 4.10. Equations (4.41) and (4.42) together imply that another equa-
tion to solve is given by

∂tH̃ |ψ〉 = 0. (4.63)

Proof. We can also plug equation (4.61) into (4.41), resulting in

0 = i∂t

[
H − 〈H〉
2(∆E)2

]
− i∂t

{[(
1

2(∆E)2
− λ

)
H̃ + 〈ψ|φ〉

]
|ψ〉
}

+H

[(
1

2(∆E)2
− λ

)
H̃ + 〈ψ|φ〉

]
|ψ〉

= i∂t[λH̃] |ψ〉+ H̃

(
1

2(∆E)2

)
[H − i∂t] |ψ〉

= ∂t[λH̃] |ψ〉 , (4.64)

where we used the product rule, the Schrödinger equation, ∂t[〈ψ|φ〉] = 0 15 and
the fact that H and H̃ commute. To transform this into a condition purely on H̃,
though, we require to say something about λ. Fortunately, though, we have that
∂tλ = 0.

To see this, left-multiply equation (4.64) by 〈ψ|H, such that we obtain

0 = 〈ψ|H∂t[λH̃]|ψ〉 = 〈H̃∂t[λH̃]〉+ 〈H〉 〈∂t[λH̃]〉
= λ 〈H̃∂t[H̃]〉︸ ︷︷ ︸

(1)

+λ 〈H〉 〈∂tH̃〉︸ ︷︷ ︸
(2)

+ ∂tλ 〈H〉 〈H̃〉︸ ︷︷ ︸
(3)

+∂tλ 〈H̃2〉︸ ︷︷ ︸
(4)

. (4.65)

We proceed with all terms in (4.65) separately.

(1): By assurances of the author of [4], we have that this term disappears. In a
written exchange, he made clear that this is due to 〈∂tH̃2〉 = ∂t 〈H̃2〉 = 0,
where the first equality comes from Ehrenfest’s theorem. Although I could
not directly make the connection, this is the implied reason that the term (1)
is cancelled.

(2): Since [H, H̃] = 0, by Ehrenfest’s theorem we have that 〈∂tH̃〉 = ∂t 〈H̃〉.
Then, since 〈H̃〉 = 0 by Lemma 4.7, we so have that 〈∂tH̃〉 = 0, and the
term (2) is cancelled.

(3): Again, by Lemma 4.7, 〈H̃〉 = 0 so that the term (3) is cancelled.

(4): By the first equality in Lemma 4.8, we have that

〈H̃2〉 = (∆E)2 =⇒ ∂tλ 〈H̃2〉 = ∂tλ(∆E)2. (4.66)

Thus, equation (4.65) becomes

∂tλ(∆E)2 = 0 =⇒ ∂tλ = 0. (4.67)

15This is justified, for ∂t[〈ψ|φ〉] = 〈∂tψ|φ〉+ 〈ψ|∂tφ〉 = 〈∂tψ|φ〉 − 〈∂tψ|φ〉 = 0.
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Combining this fact and equation (4.64), we are thus justified to say

∂tH̃ |ψ〉 = 0, (4.68)

showing the proposition.

Although this is a nice equation, it is not as nice as it could be. Since we
have now formulated our problem in terms of H̃, it is only natural to want a
corresponding state with which it satisfies the Schrödinger equation – after all, the
Schrödinger equation is the foremost tool of the quantum physicist. This is the
topic of the following definition.

Definition 4.11. We define |ψ̃〉 := exp
(
i
∫ t

0 〈H〉 dt
′
)
|ψ〉. In this way, the Schrödinger

equation holds with H̃, i.e.
i∂t |ψ̃〉 = H̃ |ψ̃〉 . (4.69)

In particular, we also note that P̃ = |ψ̃〉〈ψ̃| = P , as the additional phases cancel.

Therefore, we rephrase equation (4.63) into

∂tH̃ |ψ̃〉 = 0. (4.70)

This rewriting is allowed, as the difference between |ψ〉 and |ψ̃〉 is merely a phase
factor, so that it cannot affect the total expression equaling to zero.

Thus, to recap this subsection, the equations we need to solve have become

H̃ = H̃P + PH̃ (4.71)

and

∂tH̃ |ψ̃〉 = 0. (4.72)

The solution to this system will be presented in the following subsection.

4.2.2 Solving The Equations

Now that we have simplified the equations, we are almost in a position to solve
them. We shall have to do only a little more algebra, after which we find we are
solving the physicists’ favorite – a harmonic oscillator.

First of all, we would like to do something with equation (4.71). Notice that,
since P̃ = P , we have H̃ acting upon bra and ket ψ̃ states. And, by the very
definition of |ψ̃〉, the Schrödinger equation applies. Therefore, we can rewrite
(4.71) using the Schrödinger equation – namely to

H̃ = i
(
|∂tψ̃〉〈ψ̃| − |ψ̃〉〈∂tψ̃|

)
. (4.73)

Regarding H̃, we also have the following lemma.

Lemma 4.12. We have that H̃ is independent of time, i.e.

∂tH̃ = 0. (4.74)
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Proof. Let us carry out the derivation and see what we work with.

∂tH̃ = i
(
|∂2
t ψ̃〉〈ψ̃|+ |∂tψ̃〉〈∂tψ̃| − |∂tψ̃〉〈∂tψ̃| − |ψ̃〉〈∂tψ̃|

)
= i
(
|∂2
t ψ̃〉〈ψ̃| − |ψ̃〉〈∂2

t ψ̃|
)
.

(4.75)
Then, notice that we have

H̃2P = H̃2 |ψ̃〉〈ψ̃| = − |∂2
t ψ̃〉〈ψ̃| , (4.76)

and similarly PH̃2 = − |ψ̃〉〈∂2
t ψ̃|. Then, using equation (4.71), we can rewrite

H̃2P = PH̃2 = H̃2 − H̃PH̃. It then becomes clear that

∂tH̃ = i
(
PH̃2 − H̃2P

)
= i
(
H̃2 − H̃PH̃ − H̃2 + H̃PH̃

)
= 0, (4.77)

so that the lemma is proven.

This allows us to rewrite (4.73) slightly: since it does not change with time,
H̃ = H̃(0). That is,

H̃ = i
(
|∂tψ̃(0)〉〈ψ̃(0)| − |ψ̃(0)〉〈∂tψ̃(0)|

)
(4.78)

Now, having found an expression for H̃ which does not depend on itself, we can
have a go at solving equation (4.72). The following lemma aids in this, as it allows
us to rewrite this equation into a more familiar form.

Lemma 4.13. Using equation (4.73) as H̃, (4.72) is equivalent to

(1− P̃ ) |∂2
t ψ̃〉 = 0. (4.79)

Proof. We start by taking the derivative of H̃ as in (4.73),16 yielding

∂tH̃ = i∂t

[
|∂tψ̃〉〈ψ̃| − |ψ̃〉〈∂tψ̃|

]
= i
(
|∂2
t ψ̃〉〈ψ̃| − |ψ̃〉〈∂2

t ψ̃|
)
.

Therefore, by right-multiplying with |ψ̃〉 we get

0 = ∂tH̃ |ψ̃〉 = i
(
|∂2
t ψ̃〉〈ψ̃| − |ψ̃〉〈∂2

t ψ̃|
)
|ψ̃〉

= i
(
|∂2
t ψ̃〉 − |ψ̃〉 〈∂2

t ψ̃|ψ̃〉
)

= i
(

1− |ψ̃〉〈ψ̃|
)
|∂2
t ψ̃〉

⇒
(

1− P̃
)
|∂2
t ψ̃〉 = 0,

showing the lemma.

16This is slightly awkward due to to Lemma 4.12, but it is only the form we care about, not the actual
value of the derivative.
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Equation (4.79) is an equation that looks recognizable: it is almost an harmonic
oscillator, owing to its double derivatives. The one requirement missing, though,
is the constant – the ”angular frequency.” In the current form, there is no mention
of it. However, the following lemma will introduce it.

Lemma 4.14. We have that

P̃ |∂2
t ψ̃〉 = −ω2 |ψ̃〉 , (4.80)

where ω2 := Tr(H̃)/2.

Proof. Using the definition of P̃ , we find

|ψ̃〉〈ψ̃| |∂2
t ψ̃〉 = 〈ψ̃|∂2

t ψ̃〉 |ψ̃〉 = −〈∂tψ̃|∂tψ̃〉 |ψ̃〉 = −〈H̃2〉 |ψ̃〉 . (4.81)

Since we know from Lemma 4.8 that 〈H̃2〉 = ω2, the lemma is proven.

Hence, the equation to be solved now becomes simply(
∂2
t + ω2

)
|ψ̃〉 = 0, (4.82)

which is precisely the harmonic oscillator we were on about earlier. This we can
solve. We assume initial conditions |ψ̃(0)〉 and |∂tψ̃(0)〉, and make an ansatz for
our solution to be of the form

|ψ̃〉 = A cos(ωt) +B sin(ωt), (4.83)

where A and B belong to state space. Then, evaluating at t = 0 implies A = |ψ̃(0)〉,
and evaluating the derivative at t = 0 implies B = 1

ω |∂tψ̃(0)〉. Our expression for

|ψ̃〉 so becomes

|ψ̃〉 = cos(ωt) |ψ̃(0)〉+
sin(ωt)

ω
|∂tψ̃(0)〉 . (4.84)

We are now very close to the solution. What still rests us to do is to incorporate
the initial and final states – |ψi〉 and |ψf 〉 respectively – into this expression, as
well as into the expression of the Hamiltonian (4.73). The initial state is easy: we
simply set |ψ̃(0)〉 := |ψi〉.

A word needs to be said regarding the final state, though: we must first or-
thonormalize the final state w.r.t. the initial state. Were we to not carry out this
orthonormalization, and simply write |ψ̃〉 as a superposition of |ψi〉 and |ψf 〉, then
in guaranteeing that |ψ̃〉 is normalized – as physical states need to be – the inner
product 〈ψf |ψi〉 would play a role. And since we cannot know the inner product
(as the initial and final states are arbitrary), we need to anticipate and make sure
that it no longer plays a role.

This is precisely achieved by orthonormalizing the final state w.r.t. the initial
state. The relevant inner product will then be zero, which is what we require
to show that |ψ̃〉 is normalized. The orthonormalization is carried out using the
Gram-Schmidt orthonormalization algorithm, which we assume the reader is famil-
iar with. This the topic of the following definition.
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Definition 4.15. In agreeance with the Gram-Schmidt orthonormalization algo-
rithm, the orthonormalized version of |ψf 〉, |ψ′f 〉, is defined as follows:

|ψ′f 〉 :=
|ψf 〉 − 〈ψf |ψi〉 |ψi〉√

1− | 〈ψf |ψi〉 |2
. (4.85)

Lemma 4.16. We have that

|ψ′f 〉 = 1
ω |∂tψ̃(0)〉 . (4.86)

Proof. By construction of |ψ′f 〉, it holds that 〈ψi|ψ′f 〉 = 0. Furthermore,

〈ψ̃|∂tψ̃〉 = −i 〈ψ̃|H̃|ψ̃〉 = 〈H̃〉 = 0, (4.87)

which holds for all t – in particular, it holds for t = 0. Evaluating at t = 0 gives us

〈ψ̃(0)|∂tψ̃(0)〉 = 〈ψi|∂tψ̃(0)〉 , (4.88)

by definition of |ψi〉. Thus, since |ψ̃〉 is spanned by { |ψi〉 , |ψ′f 〉}, we must have
that

|ψ′f 〉 ∝ |∂tψ̃(0)〉 . (4.89)

For now, let us dub the proportion constant C, i.e. |ψ′f 〉 = C |∂tψ̃(0)〉. Then,
substitution into equation (4.84) yields

|ψ̃〉 = cos(ωt) |ψi〉+
sin(ωt)

Cω
|ψ′f 〉 . (4.90)

Finally, utilizing |ψ̃|2 = 1 for all t we get

1 = cos2(ωt) +
sin2(ωt)

C2ω2
=⇒ C =

1

ω
, (4.91)

so that |ψ′f 〉 = 1
ω |∂tψ̃(0)〉 as desired.

Using Lemma 4.16 and the definition of |ψi〉, we can rewrite equations (4.78)
and (4.84) into the solutions of the unconstrained problem. We present

|ψ̃〉 = cos(ωt) |ψi〉+ sin(ωt) |ψ′f 〉

= |ψi〉

(
cos(ωt)−

〈ψf |ψi〉 sin(ωt)√
1− | 〈ψf |ψi〉 |2

)
+ |ψf 〉

(
sin(ωt)√

1− | 〈ψf |ψi〉 |2

)
(4.92)

H̃ = iω
(
|ψ′f 〉〈ψi| − |ψi〉〈ψ′f |

)
(4.93)

as the solution to the unconstrained quantum brachistochrone problem.
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Remark 4.17. We have phrased our solution in terms of the traceless Hamiltonian
H̃ only, for we solved the problem using it rather than the full Hamiltonian H.
This effectively means that the unconstrained quantum brachistochrone problem
is solved by any Hamiltonian H which has as its traceless part the determined H̃.
A suggested form is H(t) = H̃ + 〈F (t)〉, for

H(t)− Tr(H(t))/n = H̃ − Tr(H̃)/n+ 〈F (t)〉 − Tr(〈F (t)〉)/n = H̃, (4.94)

for any appropirate F and H̃ as in (4.93).

In Figure 4.1, we have parametrized some solutions to the problem in t, with
varying inner products 〈ψf |ψi〉. Note that in this modelling, we only considered
real inner products: complex inner products would be harder to take into account.
Ultimately, the shortest time in which a transformation of state can take place is
the subject of the following proposition.

Proposition 4.18. The shortest time in which a transition from |ψi〉 to |ψf 〉 can
take place is

T =
1

|ω|
arccos| 〈ψf |ψi〉 |. (4.95)

Proof. We require that |ψ̃(T )〉 := |ψf 〉. Utilizing equation (4.92), then, we obtain

〈ψf |ψ̃(T )〉 = 1 = cos(ωT ) 〈ψf |ψi〉+ sin(ωT ) 〈ψf |ψ′f 〉 . (4.96)

Or, using Definition 4.15,

1 = cos(ωT ) 〈ψf |ψi〉+ sin(ωT )
1− 〈ψf |ψi〉2√
1− | 〈ψf |ψi〉 |2

. (4.97)

Evidently, T = arccos| 〈ψf |ψi〉 |/|ω| is a solution, using the conversion formula

sin(A) =
√

1− cos2(A). This finishes the proof.
Notice that taking the absolute value of 〈ψf |ψi〉 is necessary, as that ensures

the square root resulting from the sine cancels against that from the substitution
of |ψ′f 〉.

Thus, from this point onward, the quantum brachistochrone problem can be
considered to have been solved. Remember, though, that this solution only holds
in an ideal world, as no constraints other than a trivial one have been imposed on
the system. The next subsection will examine the case where additional constraints
are imposed on the system, and the solution such a system has.

4.3 Case with constraints

The previous subsection discussed what happens when we assume there are no
constraints on the Hamiltonian H besides the trivial one. However, this does not
represent a physical system – in the real world, we have limitations, for instance
on equipment. Thus, it is also imperative to see how these constraints play into
the quantum brachistochrone problem.
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(a) Case where 〈ψf |ψi〉 = 0. (b) Case where 〈ψf |ψi〉 = 0.2.

(c) Case where 〈ψf |ψi〉 = 0.4. (d) Case where 〈ψf |ψi〉 = 0.6.

(e) Case where 〈ψf |ψi〉 = 0.8. (f) Case where 〈ψf |ψi〉 = 0.99.

Figure 4.1: The coefficients of |ψi〉 and |ψf〉 as a function of time in optimized transition,
where different 〈ψf |ψi〉 are modelled. The points along the line represent timesteps of
π/20 each, with (1, 0) at t = 0. Note that the squares of the coefficients does not
necessarily add up to 1: this is due to 〈ψf |ψi〉 6= 0 in general. Moreover, notice that
with increasing 〈ψf |ψi〉, the time required to reach |ψf〉 decreases, as one would expect:
at 〈ψf |ψi〉 = 0.8, for instance, the time required is only approx. 40% of the orthogonal
case.
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For convenience, define

M :=

m∑
j=1

λj
δfj
δH

. (4.98)

Thus, the equations which now need solving become

i∂t

[
H − 〈H〉
2(∆E)2

]
|ψ〉 − i∂t |φ〉+H |φ〉 = 0, (4.99)

and
{H,P} − 2 〈H〉P

2(∆E)2
−M − ( |ψ〉〈φ| + |φ〉〈ψ| ) = 0. (4.100)

Fortunately, the way of solving these equations is quite similar to the previous
subsection. Before we commence with that, though, we direct your attention to
the following lemma.

Lemma 4.19. We have that

〈ψ|φ〉 = −〈φ|ψ〉 − 〈M〉 . (4.101)

Proof. We take the expectation of equation (4.100) to obtain〈
{H,P} − 2 〈H〉P

2(∆E)2

〉
− 〈M〉 − 〈φ|ψ〉 − 〈ψ|φ〉 = 0. (4.102)

Observing that
〈HP 〉 = 〈ψ|H |ψ〉〈ψ| |ψ〉 = 〈H〉 , (4.103)

the same holding for 〈PH〉 and 〈P 〉 = 1 trivially, we have that the first term
cancels. Thus, what is left is

− 〈M〉 − 〈φ|ψ〉 − 〈ψ|φ〉 =⇒ 〈ψ|φ〉 = −〈φ|ψ〉 − 〈M〉 , (4.104)

proving the lemma.

Notice the similarity between Lemmas 4.19 and 4.6: both say something about
the inner products of ψ and φ, though the route taken to show their respective
properties diverge considerably.

With Lemma 4.19 in hand, we can proceed with solving our equations. We
consider the following proposition first.

Proposition 4.20. Equation (4.100) implies that

F = {F, P} = FP + PF, (4.105)

holds. Here, F := M − 〈M〉P .
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Proof. The idea is similar to before. Let us first solve for |φ〉 by multiplying (4.100)
with |ψ〉, obtaining

0 =

(
{H,P} − 2 〈H〉P

2(∆E)2

)
|ψ〉 −M |ψ〉 − |ψ〉〈φ| |ψ〉 − |φ〉〈ψ| |ψ〉

=

(
H − 〈H〉
2(∆E)2

)
|ψ〉 −M |ψ〉 − 〈φ|ψ〉 |ψ〉 − |φ〉

=⇒ |φ〉 =

[
H − 〈H〉
2(∆E)2

−M − 〈φ|ψ〉
]
|ψ〉 . (4.106)

A similar equation can be obtained for 〈φ|. Then, we plug φ back into equation
(4.100) and behold

0 =
{H,P} − 2 〈H〉P

2(∆E)2
−M − P

[
H − 〈H〉
2(∆E)2

−M − 〈ψ|φ〉
]
−
[
H − 〈H〉
2(∆E)2

−M − 〈φ|ψ〉
]
P

=
1

2(∆E)2
(HP + PH − 2 〈H〉P − PH + 〈H〉 −HP + 〈H〉P )

−M + PM + 〈ψ|φ〉P +MP + 〈φ|ψ〉
∗
= −M + PM + (−〈φ|ψ〉 − 〈M〉)P +MP + 〈φ|ψ〉P
= −M + PM +MP − 〈M〉P, (4.107)

where for ∗ we used Lemma 4.19. Then, defining F := M − 〈M〉P , we see that

{F, P} − F = (M − 〈M〉P )P + P (M − 〈M〉P )− (M − 〈M〉P )

= MP + PM −M − 〈M〉P
∗∗
= 0, (4.108)

where ∗∗ holds as previously established. Therefore, we have that

F = {F, P}, (4.109)

which finishes the proof.

Before we go on to the next proposition, we offer the following lemma.

Lemma 4.21. We have that M and H commute.

Proof. It will be sufficient to show that δfj/δH commutes with H for all j; the
lemma then readily follows.

Recall that fj : H → R, i.e. fj(H) is simply a scalar. Trivially, Hfj(H) =
fj(H)H, which leads to

δ(fjH)

δH
=
δ(Hfj)

δH
. (4.110)

By the product rule, we can expand both sides of this equation to find

δfj
δH

H + fj = fj +H
δfj
δH

=⇒ H
δfj
δH

=
δfj
δH

H. (4.111)

Since the value of j is arbitrary, it holds for all j. Therefore, the lemma is proven.
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Proposition 4.22. Equations (4.99) and (4.100) together imply that(
∂tF + i[H̃, F ]

)
|ψ〉 = 0. (4.112)

This equation is also known as the quantum brachistochrone equation, cf. [5].

Proof. We take the obtained expression for |φ〉 (4.106) and plug it in to (4.99) to
obtain (after some working out and with aid of the Schrödinger equation)

(i∂tM + i∂t 〈ψ|φ〉+MH + 〈ψ|φ〉H −HM −H 〈ψ|φ〉) |ψ〉 = 0. (4.113)

The fourth and sixth terms cancel against each other. Furthermore, the second
term cancels as

∂t 〈ψ|φ〉 |ψ〉 = i 〈ψ|H|φ〉 − i 〈ψ|
(
H |φ〉+ ∂t

[
H − 〈H〉
2(∆E)2

]
|ψ〉
)

= i
〈∂tH − ∂t 〈H〉〉

2(∆E)2

= 0, (4.114)

where we used (4.99) for |∂tφ〉 and the last step holds as ∂t 〈H〉 = 〈∂tH〉 (Ehren-
fest’s theorem). Therefore, we have

(i∂tM +MH −HM) |ψ〉 = 0. (4.115)

An immediate consequence is ∂tM |ψ〉 = 0, as [H,M ] = 0 as established in Lemma
4.21. In order to get an F into (4.115), we require to find ∂t(〈M〉P ); combining
this with ∂tM we obtain ∂tF . To that end, we calculate

∂t(〈M〉P ) = 〈∂tψ|M |ψ〉P + 〈∂tM〉P + 〈ψ|M |∂tψ〉P + 〈M〉 ∂tP
= 〈∂tM〉P − i 〈[M,H]〉P + 〈M〉 ∂tP
= i 〈M〉 ∂tP
= i 〈M〉 (PH −HP )

= i 〈M〉 [P,H]. (4.116)

Therefore, equation (4.115) can be rewritten to

(∂tM − ∂t(〈M〉P )− i[M,H] + i 〈M〉 [P,H]) |ψ〉 = 0

=⇒ (∂tF + i[H,F ]) |ψ〉 = 0. (4.117)

The previous two propositions can be integrated into each other in order to
form a solution for F .
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Proposition 4.23. Propositions 4.20 and 4.22 can be integrated in order to yield
a solution

F = UF (0)U †, (4.118)

where F (0) is the evaluation of F at t = 0 and satisfies F (0) = {F (0), P (0)}. U
Is given as

U(t) = T exp

(
−i
∫ t

0
H̃(t′) dt′

)
⇐⇒ ∂tU = −iH̃(t)U(t) with U(0) = I,

(4.119)
where T is the time-ordered product. Notice that U is unitary, i.e. it satisfies
UU † = U †U = I.

Proof. Instead of deriving this solution, we will only show that it works by demon-
strating it satisfies the conditions on F as posed in Propositions 4.20 and 4.22.

To that end, let us first consider Proposition 4.22. We have that

∂tF = ∂t[UF (0)U †] = ∂tUF (0)U † + UF (0)∂tU
†

= −iH̃UF (0)U † + iUF (0)U †H̃

= −iH̃F + iF H̃

= −i[H̃, F ], (4.120)

so that therefore Proposition 4.22 holds.
Now consider Proposition 4.20. We have that

F = UF (0)U † = U(F (0)P (0) + P (0)F (0))U †

= UF (0)P (0)U † + UP (0)F (0)U †

= FP + PF, (4.121)

so that it too is satisfied.

Hence, with Proposition 4.23, the quantum brachistochrone problem for the
constrained case is settled: there are abundant equations which can be used to
fully solve a constrained quantum brachistochrone system.

In the next section, we shall apply the theory learned regarding constrained
quantum brachistochrone problems in order to solve an example problem.
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5 A Worked Example

In this section, we shall work an example utilizing the method we developed in
the previous section. This way, through illustration, the method will become more
tangible and, hopefully, will show how to use the derived formulas and such.

The setup is that we have a qubit – i.e. a two-state quantum particle – spin-
1/2 particle under the influence of a magnetic field. The constraints we set for our
system are

f1(H) = Tr(H̃2)/2− ω2 = 0 (5.1)

and
f2(H) = Tr(H̃σz) = 0, (5.2)

where σz is a Pauli matrix.
Although the constraints do not show it in their formulations, these actually

have easy physical interpretations. The first constraint, as we have posed before,
says that the energy involved only has a finite magnitude – basically, we do not
allow infinite energies to come into play. The second constraint restricts our mag-
netic field to exist in merely two dimensions (canonically x and y). We will shortly
formally prove the two implications mentioned here, specifically Lemma 5.4.

This section will carry on as follows. In the first section, we will define some
key terms and lemmas we require in order to start working on the problem. Sub-
sequently, we will find U(t) and H̃(t) – the most important operators we require in
order to solve the given problem. Finally, by defining boundary conditions for our
problem, we manage to deduce initial conditions and as such find a closed solution
to our problem. Our last hurrah shall be to find the optimal time to make the
given transition between the boundary states.

5.1 For starters

Before we begin with treating this problem, let us lay down some ground properties
that we require. First off, we begin with the Pauli matrices. These will feature
heavily in this example, and as such it is good to have a refresher as to their
definition.

Definition 5.1. The Pauli matrices are the matrices σx, σy and σz, defined as

σx :=

(
0 1
1 0

)
, σy :=

(
0 −i
i 0

)
, and σz :=

(
1 0
0 −1

)
. (5.3)

Furthermore, we define ~σ := (σx, σy, σz), a vector consisting of 2×2 matrices. Some
properties – which can be verified by inspection – are that they are Hermitian,
traceless and satisfy σjσk = δjkI.

The Pauli matrices are a well-known, special set of matrices: namely, they form
a basis for the space of 2× 2 traceless Hermitian matrices. This allows them to be
extremely useful in describing the spin state of any spin-1/2 particle. For further
information regarding these matrices, the reader can refer to any (introductory)
textbook regarding quantum mechanics.
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We now present two additional lemmas, which we need in order to get started
wiht our example.

Lemma 5.2. We have that Tr(F ) = 0.

Proof. This holds as

Tr(F ) = Tr(FP + PF ) = 2 Tr(FP ) = 2 〈F 〉 = 2 〈FP + PF 〉 = 4 〈F 〉 , (5.4)

so that the only way the equalities hold is if 〈F 〉 = 0 and, by extension, Tr(F ) =
0.

Lemma 5.3. The Hamiltonian for our system (spin-1/2 qubit with a magnetic
field) is given as

H = H̃ = −~σ · ~B, (5.5)

where ~B = (Bx, By, Bz) ∈ R3.

Proof. This Hamiltonian is based in the Pauli equation, which governs how spin-
1/2 particles behave in the presence of electric and magnetic fields. Our version
is obtained by considering a stationary particle, so that the kinetic part of the
Pauli equation vanishes and the scalar potential becomes irrelevant. Then choosing
constant appropriately yields the formula as posed in the lemma.

With these three points in mind, we are ready to tackle the problem.

5.2 Finding U and H̃

In this section, we will do the brunt of the work: finding U and H̃. As can be seen
from the formulae in the previous section, these are the workhorses of any solution
we hope to find.

We employ the given constraints to deduce the following lemma.

Lemma 5.4. We have that

1. Bz = 0

2. | ~B| = |ω|

Proof. We shall first show 1. Owing to Lemma 5.3, we have that

H̃ = −Bxσx −Byσy −Bzσz =⇒ H̃σz = −Bzσ2
z = −BzI, (5.6)

where I is the identity matrix. Therefore, the only way to ensure Tr(H̃σz) = 0 is
to set Bz = 0.

Regarding 2, we notice that

H̃2 = B2
xσ

2
x +B2

yσ
2
y +B2

zσ
2
z = (B2

x +B2
y)I, (5.7)

so that the trace is given by Tr(H̃) = 2(B2
x +B2

y). Therefore, if H̃ is to satisfy the
constraint (5.1), we must have that

B2
x +B2

y = ω2 ⇐⇒ | ~B| = |ω|, (5.8)

which finishes the proof.
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Furthermore, we have the following proposition.

Proposition 5.5. We have that

F = λ1H̃ + λ2σz. (5.9)

Proof. Since the variation of the first constraint yields H̃, and of the second σz,
we have that

F = λ1

(
H̃ − 〈H̃〉P

)
+ λ2 (σz − 〈σz〉P ) , (5.10)

cf. the definition of F as in Proposition 4.20. However, since we know Tr(F ) = 0
(Lemma 5.2), we can thus say

0 = Tr(F ) = Tr
[
λ1

(
H̃ − 〈H̃〉P

)
+ λ2 (σz − 〈σz〉P )

]
∗
= −Tr

[(
λ1 〈H̃〉+ λ2 〈σz〉

)
P
]

= −λ1 〈H̃〉 − λ2 〈σz〉 , (5.11)

where for ∗ we used that Tr(H̃) = Tr(σz) = 0. Therefore,

F = λ1H̃ + λ2σz −
(
λ1 〈H̃〉+ λ2 〈σz〉

)
P = λ1H̃ + λ2σz, (5.12)

proving the proposition.

Then, we recall the solution for F to be

F = UF (0)U †, (5.13)

as per Proposition 4.23. Furthermore, from the definition of U in Proposition 4.23,
we recall that

∂tU = −iH̃U. (5.14)

Thus, when right-multiplying equation (5.9) by U , we obtain

∂tU =
iλ2

λ1
σzU + U

−i
λ1
F (0) = iΩσzU − iU(H̃(0) + Ωσz), (5.15)

where we defined Ω := λ2/λ1, and used F (0) = λ1H̃(0)+λ2σz. Although this might
look like a daunting differential equation to solve, the solution is comparatively
simple:

U = exp

(
i

∫ t

0
Ωσz dt

′
)

exp

(
−i
∫ t

0
H̃(0) + Ωσz dt

′
)
. (5.16)

That the above expression satisfies the differential equation can be readily verified.
Notice that we cannot yet remove the integral signs, as we do not know anything
about the time evolution of the Lagrange multipliers λ1 and λ2. Fortunately, we
have the following lemma to our rescue.

Lemma 5.6. We have that λ1 and λ2 are constant.
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Proof. Let us explicitly write λ1 and λ2 as functions of time, i.e. λ1(t) and λ2(t).
Then, following their use in F , we have that

F (t) = λ1(t)H̃(t) + λ2(t)σz. (5.17)

However, recalling F = UF (0)U †, we rewrite so that

λ1(t)H̃(t) + λ2(t)σz = U(λ1(0)H̃(0) + λ2(0)σz)U
† = λ1(0)H̃(t) + λ2(0)σz. (5.18)

Thus, we conclude that λ1(t) = λ1(0) and λ2(t) = λ2(0) for all t, so that indeed
they are constant.

With Lemma 5.6 in hand, we can simplify equation (5.16) to read instead

U = exp (iΩσzt) exp
(
−iH̃(0)t− iΩσzt

)
. (5.19)

Note that we cannot contract the exponentials to simplify further. These are
matrix exponentials, and so in order to contract, we would need to have that the
exponents are commutative. Since this cannot be guaranteed in general, it is not
done.

Then, it rests us to calculate H̃. This is done in the following proposition.

Proposition 5.7. We have that H̃ is given as follows:

H̃ = exp (iΩσzt) H̃(0) exp (−iΩσzt) . (5.20)

Proof. Earlier, we established that ∂tU = −iH̃U . Right-multiply with U † and we
obtain H̃ = i∂tUU

†. So far the theory, now the practice.
First, we ascertain anew ∂tU from equation (5.15) and slightly rewrite it:

∂tU = iΩσzU − iU(H̃(0) + Ωσz)

= iΩσzU − i exp (iΩσzt) (H̃(0) + Ωσz) exp
(
−iH̃(0)t− iΩσzt

)
= iΩσzU − iΩσzU − i exp (iΩσzt) H̃(0) exp

(
−iH̃(0)t− iΩσzt

)
= −i exp (iΩσzt) H̃(0) exp

(
−iH̃(0)t− iΩσzt

)
, (5.21)

where for the second and third equalities we used that A exp(At) = exp(At)A.
Then, determining U † to be

U † = exp
(
iH̃(0)t+ iΩσzt

)
exp (−iΩσzt) , (5.22)

we right-multiply it with i∂tU to find

H̃ = i∂tUU
† = exp (iΩσzt) H̃(0) exp

(
−iH̃(0)t− iΩσzt

)
× exp

(
iH̃(0)t+ iΩσzt

)
exp (−iΩσzt)

= exp(iΩσzt)H̃(0) exp(−iΩσzt), (5.23)

as the second and third exponentials cancel to form I. Hence, the proposition is
proven.
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Having now found expressions for U and H̃, the rest of solving the problem is
nearly trivial. In the following subsection, we will add initial and final conditions
in order to further our example.

5.3 Boundary Conditions and The Solution

In the previous subsection we found the expressions for U and H̃ pertaining to our
specific constraints. However, we cannot fully complete the problem without also
imposing some initial and final values that our system should take.

In that spirit, we will set them. Our conditions are

P (0) =
1

2
(I + σx) =

1

2

(
1 1
1 1

)
, P (T ) =

1

2
(I − σx) =

1

2

(
1 −1
−1 1

)
. (5.24)

Notice in particular that these P matrices imply the corresponding states as well.
It can be shown trivially that

|ψ(0)〉 = |ψi〉 =
1√
2

(
1
1

)
and |ψ(T )〉 = |ψf 〉 =

1√
2

(
1
−1

)
(5.25)

by computing the outer products.
Then, we first pose the following lemma concerning H̃(0).

Lemma 5.8. We have that
H̃(0) = ωσy. (5.26)

Proof. Consider F (0) as

F (0) =

(
a b
c d

)
. (5.27)

Then, it should also hold that

F (0) = F (0)P (0) + P (0)F (0) =
1

2

(
a b
c d

)(
1 1
1 1

)
+

1

2

(
1 1
1 1

)(
a b
c d

)
=

1

2

(
2a+ b+ c 2b+ a+ d
2c+ a+ d 2d+ b+ c

)
, (5.28)

from which we infer that a+ d = b+ c = 0.
Now recall that the form of F (0) is given by F (0) ∝ H̃(0) + Ωσz, and that

H̃(0) = Bx(0)σx +By(0)σy =

(
0 Bx(0) + iBy(0)

Bx(0)− iBy(0) 0

)
. (5.29)

Therefore, recalling that σz only has only diagonal elements, we must have that

b+ c = 0 =⇒ (Bx(0) + iBy(0)) + (Bx(0)− iBy(0)) = 0 =⇒ Bx(0) = 0. (5.30)

Then, by Lemma 5.4, we have that By(0) = ±ω, of which we choose the positive
variant as the sign is irrelevant anyway. Hence,

H̃(0) =

(
0 iω
−iω 0

)
= ωσy, (5.31)

which proves the lemma.
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Having now found the initial Hamiltonian, the rest of the problem can be
”simply” solved by applying equations (5.19) and (5.20) to this initial Hamiltonian.
This is the topic of the following Theorem, where we get the solution of this
example.

Theorem 5.9. We have that the example in this section is solved by

1.
~B =

(
sin(2Ωt) cos(2Ωt) 0

)
2.

|ψ(t)〉 =
1√
2

(
exp(iΩt)

(
cos(Ω′t) + ω−iΩ

Ω′ sin(Ω′t)
)

exp(−iΩt)
(
cos(Ω′t) + iΩ−ω

Ω′ sin(Ω′t)
))

3.

〈~σ〉 (t) =

 〈σx〉 (t)〈σy〉 (t)
〈σz〉 (t)

 =

 cos(2Ωt) cos(2Ω′t) + Ω
Ω′ sin(2Ωt) sin(2Ω′t)

− sin(2Ωt) cos(Ω′t) + Ω
Ω′ cos(2Ωt) sin(2Ω′t)

ω
Ω sin(2Ω′t)


Here, Ω′ :=

√
Ω2 + ω2.

Proof. We will only give sketches of the proofs. For full calculations, we refer to
[8].

1. The matrix exponentials exp(±iΩσzt) can be readily calculated, as σz is a
diagonal matrix. Then, we utilize equation (5.20) to get

H̃(t) = exp(iΩσzt)H̃(0) exp(−iΩσzt)

=

(
0 iω exp(2iΩt)

−iω exp(−2iΩt) 0

)
= −ω sin(2Ωt)σx + cos(2Ωt)σy). (5.32)

Then, recalling that H̃ = −~σ · ~B, we have that

~B = ω
(
sin(2Ωt) cos(2Ωt) 0

)
. (5.33)

Thus, the first claim is proven.

2. We can find |ψ(t)〉 by utilizing the formula

|ψ(t)〉 = U |ψ(0)〉 , (5.34)

where U is – as we solved – given by equation (5.19). Then, using a nifty
formula for the matrix exponential,17 U can be found using H̃(0). The mul-
tiplication is then straightforward, so that |ψ(t)〉 can be found.

17The formula is

exp

(
a b
c d

)
=

1

∆

(
exp(a+d

2 )[∆ cosh(∆
2 ) + (a− d) sinh(∆

2 )] 2b exp(a+d
2 ) sinh(∆

2 )
2c exp(a+d

2 ) sinh(∆
2 ) exp(a+d

2 )[∆ cosh(∆
2 ) + (d− a) sinh(∆

2 )]

)
,

where ∆ :=
√

(a− d)2 + 4bc.
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3. Since we know |ψ(t)〉, 〈~σ〉 (t) =
(
〈σx〉 〈σy〉 〈σz〉

)
(t) can be calculated by

simply finding 〈ψ(t)|σj |ψ(t)〉 for j = x, y, z.

The previous theorem solves the example in closed form: we know everything
we need in order to calculate any other quantities. In particular, we can calculate
the optimal time duration needed to make the transition |ψi〉 → |ψf 〉. This is the
topic of the following proposition.

Proposition 5.10. We have that the following three statements hold.

1. The possible time durations are given by

|ω|T =
π

2

√
`2 − k2, (5.35)

where ` > k ≥ 0 and k + ` is odd.

2. Evidently, the optimal time duration corresponds to (`, k) = (1, 0), so that
|ω|T = π/2.

3. The possible frequencies Ω are given by∣∣∣∣Ωω
∣∣∣∣ =

|k|√
`2 − k2

. (5.36)

The same conditions apply to ` and k as in 1.

Proof. We shall mainly focus on point 1, as 2. and 3. follow naturally.

1. First off, notice that |ψ(T )〉 = |ψf 〉 ⇒ 〈ψ(T )|~σ|ψ(T )〉 =
(
−1 0 0

)
. Imme-

diately, we notice that 2Ω′t = `π for some ` ∈ Z, so as to ensure 〈σz〉 = 0.
Also, we deduce that 2Ωt = kπ for some k ∈ Z so that, with ` in mind,
〈σy〉 = 0 holds as well.

As a result, 〈σx〉 = cos(2Ωt) cos(Ω′t) = cos(`π) cos(kπ) = (−1)`+k. Thus, to
ensure negative unity, we must have that `+ k is odd.

Then, since Ω′2 > Ω2 (as ω 6= 0), we must have that ` > k, where strict
inequality holds as we still need to ensure ` + k is odd. If strict inequality
did not hold, one could choose ` = k, implying that `+ k is divisble by 2.

Using the definition of Ω′, we determine ω2 = Ω′2 − Ω2, leading to

ω2 =
1

4T 2

(
(2Ω′T )2 − (2ΩT )2

)
=

π2

4T 2

(
`2 − k2

)
. (5.37)

This implies

|ω|T =
π

2

√
`2 − k2, (5.38)

so that the formula in point 1. is shown.

2. The consequences for the optimal time duration are evident, so that point 2.
is shown.
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3. We can combine the formula derived under 1. together with 2ΩT = kπ to
obtain

2Ω

(
π

2|ω|
√
`2 − k2

)
= kπ =⇒

∣∣∣∣Ωω
∣∣∣∣ =

|k|√
`2 − k2

. (5.39)

All three points have been proven, so that the proposition is shown.

There are two things to remark regarding this proposition. One neat feature
is that it precisely matches the optimal time given in Proposition 4.18 for our
particular choice of |ψi〉 and |ψf 〉. Notable is that this occurs despite, in our
example, there being an additional constraint imposed. It thus seems that the
additional constraint (5.2) did not impact at all the system’s ability to transition
states in the globally optimal time.

Secondly, the expressions under 1. and 3. of the proposition can be combined
in order to yield the simple-looking formula

T =
|k|π
2Ω

. (5.40)

Therefore, the times in which the transition can take place – and hence the optimal
time – turn out to not depend on the strength of the magnetic field ω, instead only
on the frequency Ω. As expected, the relation is inverse proportional: the larger
Ω is, the smaller the transition time T is allowed to be. In general, though, it
would still be advisable to choose an ω of reasonable strength. This so that the
expression under 1. allows T to be as small as possible still.

5.4 Physical interpretation: Bloch sphere

One option for a physical interpretation of the solution is as its projection on the
Bloch sphere. The Bloch sphere is a visualization aid commonly used in quantum
mechanics, as it allows for a tangible link to the classically four-dimensional state
(two imaginary components). This is done by exploiting the fact that normalization
must hold, so that, effectively, one of the four coordinates becomes redundant, and
three remain. By constructing these three coordinates – known as the Bloch vector
– in a clever manner, normalization must also hold for them. Hence, in sum, every
state can be described by a point on a 2-dimensional sphere.

There are items that we will skip over in this treatise of the Bloch sphere (for
example showing that indeed the Bloch vector is normalized) for the sake of brevity.
For full details, we refer the reader to [7].

The Bloch vector is classically denoted by (u, v, w), where the quantities are
given by u = ρ01 + ρ10, v = i(ρ01 − ρ10) and w = ρ00 − ρ11, respectively. Here, ρij
indicates the ijth coordinate of the density matrix ρ = |ψ(t)〉〈ψ(t)|. And so, since
we know the state, the Bloch vector can be readily determined.

Omitting the calculations – as they are only calculations – we pose the Bloch
vector associated with |ψ(t)〉 to beuv

w

 =

 Ω
Ω′ sin(2Ωt) sin(2Ω′t) + cos(2Ωt) cos(2Ω′t)
Ω
Ω′ sin(2Ω′t) cos(2Ωt)− sin(2Ωt) cos(2Ω′t)

ω
Ω′ sin(2Ω′t)

 . (5.41)
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` k Ω T (×π/2)
1 0 0 1

2 1 1/
√

3
√

3

3 2 2/
√

5
√

5

4 3 3/
√

7
√

7
3 0 0 3
5 4 4/3 3

6 5 5/
√

11
√

11

Table 1: Possible values for (`, k) and their resulting Ω and T (we set ω ≡ 1). The
numbers have been ranked in ascending order of T .

Then, all that we need before we can draw the Bloch sphere and associated vectors
are some numbers to work with. For simplicity, we set ω ≡ 1. Then, by choosing
the constants ` and k, we can fully determine the system, i.e. the values of Ω, and
T . A list of possible choices is given in Table 1. We can then model these on the
Bloch sphere, which has been done in Figure 5.1 for the values given in Table 1.
As one can see, the globally optimal time is indeed where we choose (`, k) = (1, 0).
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(a) Trajectory for (`, k) = (1, 0). (b) Trajectory for (`, k) = (2, 1).

(c) Trajectory for (`, k) = (3, 2). (d) Trajectory for (`, k) = (4, 3).

(e) Trajectory for (`, k) = (5, 4). (f) Trajectory for (`, k) = (6, 5).

Figure 5.1: Some examples of trajectories on the Bloch sphere for the optimal state
transitions belonging to the example treated in this section. The starting point is
(u, v, w) = (1, 0, 0), and the end point (−1, 0, 0). Notice how the solutions have 0, 1, 2, . . .
nodes with the u-v plane for (a), (b), (c), etc. respectively. Moreover, notice how all
save (`, k) = (1, 0) do not define geodesics on the Bloch sphere despite being optimal
solutions.
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6 Quantum Computers: An Application

One might be surprised to find quantum computers discussed in a thesis which
has a (supposedly) markedly different topic. However, the time-optimization of
certain state transitions – the objective of the quantum brachistochrone problem
– shares considerable similarities with quantum computation. In computation,
the challenge has always been to do it faster and more efficiently. And considering
that quantum computation is founded in the transitions of qubits between different
states, optimizing these transitions thus yields faster computers.

The purpose of this section is thus to exemplify how the quantum brachis-
tochrone might be used in physical applications, instead of remaining in the theo-
rists’ realm. We shall do this by showing how the quantum brachistochrone method
can optimize unitary transformations between quantum states, the workhorse of
any quantum computation.

The first section is devoted to giving a brief introduction to quantum comput-
ing. We shall explain the concept of a qubit and attempt to get a feel for them.
Subsequently, we show that unitary transformations are to quantum computation
as Boolean gates are to classical computation, showing their necessity.

Then, we enter the heart of this section. Namely, here we show how the afore-
mentioned unitary transformations can be optimized using the methods of the
quantum brachistochrone. We shall obtain similar results as we did in Section 4,
except that they will be centered on the operator rather than the state.

Finally, we will apply the theory learned in the previous subsection to work the
example of a specific unitary transformation.

Before we continue with the material, there are two things that need to be
mentioned. First of all, provided here is a not a complete introduction to the
subject of quantum computation, and that is not its purpose. We only need to be
on the same page regarding the workings of qubits, which is what the first section
accommodates. Secondly, precise proofs are omitted in this section for the sake
of brevity and not losing sight of the goal – being convincing the reader of the
practical applicability of the quantum brachistochrone. Elaborate proofs would
eclipse this ultimate purpose.

6.1 Basics of Quantum Computing

6.1.1 Qubits

Just as a classical computer is at its heart served by bits, so a quantum computer
is served by so-called qubits. These qubits are what make quantum computers so
powerful, and namely for the following reason. Where bits can only attain two
values (being 0 and 1), qubits are a superposition of the states |0〉 and |1〉. That
is, any one qubit |ψ〉 can be described by

|ψ〉 = a |0〉+ b |1〉 , (6.1)

where a and b i) make sure that the state is normalized, i.e. |a|2 + |b|2 = 1, but
also ii) indicate which way the state is ”leaning.” That is, if a � b, then, when
measured, the state will more likely collapse to |0〉 than |1〉.
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For a physical example of a qubit, this can be found in the spin of, say, an
electron. Namely, spin is quantum property of the electron and can attain precisely
two values – up or down – corresponding to the |0〉 and |1〉 states.

However, having only one qubit at our disposal is not much to look at. Sup-
posing that our system is comprised of two qubits now, the superposition of both
qubits together can be described as

|ψ〉 = a |0〉1 |0〉2 + b |0〉1 |1〉2 + c |1〉1 |0〉2 + d |1〉1 |1〉2 , (6.2)

where a, b, c and d serve the same purpose as in the one qubit case. The joined
kets indicate the base state of the respective qubit. Since the notation we defaulted
to – subscripts indicating which qubit we are referring to – can be quite a hassle
to write, we introduce the notation commonly employed in the field of quantum
computation.

Notation 6.1. Instead of writing subscripts to indicate which qubit we are refer-
ring to, we join all qubits in the same ket and let the position in said ket indicate
the qubit. That is,

|00〉 ≡ |0〉1 |0〉2 . (6.3)

Or, more generally for {ai}ni=1, ai ∈ {0, 1},

|a1a2...an〉 ≡ |a1〉1 |a2〉2 ... |an〉n . (6.4)

In this notation, the qubit in equation (6.2) is expressed as

|ψ〉 = a |00〉+ b |01〉+ c |10〉+ d |11〉 . (6.5)

Some authors even take the notation a step further by taking the arguments of the
kets as binary notation for numbers. For instance, since in binary 10 ≡ 2, they
would write |2〉 for |10〉.

6.1.2 Unitary transformations

So far, we have seen that qubits are the quantum analogy of regular bits, and seen
how to express these qubits in notation. However, writing down the qubits is one
thing; now, we want to do something with them. After all, computers rely on
rapidly changing the states of bits – be it regular or quantum – to do calculations.

In a classical computer this rapid changing of states is done by using the well-
known Boolean gates. Famous examples include the NOT-, XOR- and AND-gates.
Essentially, a classical computer is a large array of Boolean gates strung together
in a particualr way such that calculations can be performed.

For qubits, a very similar methodology can be applied – we also need some type
of gate to manipulate qubits and make them perform calculations. The difference,
however, is in the type of gate: whereas classical computers use Boolean gates,
quantum computers use quantum gates, canonically designated as U . Not every
operation one could conceivably subject a qubit to can be classified as a quantum
gate, though. The properties a quantum gate U has to fulfill stand very close to
the postulates of quantum mechanics. For our purposes, though, we can formulate
the restrictions as three points, which are given below.
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1. The operation U should be linear, i.e. we must ensure that

U

n∑
j=1

aj |ψj〉 =

n∑
j=1

ajU |ψj〉 (6.6)

for given constants aj and qubit states |ψj〉. However, this is almost a given
as, generally, quantum operations are already assumed to be linear.

2. The operation U has to be length preserving. That is, if we apply a trans-
formation |ψ〉 → U |ψ〉, then |ψ|2 = |Uψ|2. Under the additional assumption
of normalization, this implies that, after U has been applied, we still are left
with a normalized state.

3. The inner product of two qubit states has to be preserved under application
of U . In other words, we must ensure that if (|φ〉 , |ψ〉)→ (U |φ〉 , U |ψ〉), then
〈φ|ψ〉 = 〈φ|U †U |ψ〉.

The three conditions above imply that the quantum gates are actually unitary
matrices. For a justification, let us treat the conditions point for point. The first
condition implies that U should be a matrix, due to the linearity; the second implies
that U has (negative) unity determinant; and the third implies that U †U = I ⇒
U † = U−1. These are precisely the properties of a unitary matrix, such it and the
quantum gate that are identical.

An example of a unitary transformation is the quantum XOR-gate, which truth
table is given in Table 2. The more natural way to write this down, though, is by

Input Output
|00〉 |00〉
|01〉 |01〉
|10〉 |11〉
|11〉 |10〉

Table 2: Truth table for UXOR, the quantum version of the XOR-gate

exploiting matrix notation in the canonical qubit basis {|00〉 , |01〉 , |10〉 , |11〉}:

UXOR :


a
b
c
d

 7→


a
b
d
c

 ⇐⇒ UXOR =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (6.7)

Further reference

Quantum computing is a vastly greater field than the two or so previous pages have
explained. In order to get a fuller overview of the topic, the reader is recommended
to explore introductory sources on the matter, for instance [9]
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6.2 Optimized Unitary Transformations

As we have seen in the previous subsection, unitary transformations are vital to
the existence of quantum computers. In fact, the speed at which these unitary
operations can be applied to qubit states directly influences the speed at which
your quantum computer performs, as you might expect. It is therefore only natural
to attempt to optimize the time in which these unitary transformations take place,
and investigate under which conditions optimization is ensured.

This is where the material discussed in this thesis comes in – specifically subsec-
tion 4.3. Namely, in this subsection we derived the solution for the generalized/con-
strained quantum brachistochrone problem, importantly using unitary matrices.
With only a minor modification, the method derived for finding the time-optimal
Hamiltonian can be altered to find the time-optimal unitary transformation.

In their paper on this very subject [5], Carlini et al. propose a five-step plan
in order to find the time-optimized unitary transformation corresponding to a
quantum gate f .

Plan 6.2. In order to find the time-optimal unitary transformation Uf corre-
sponding to some function f (e.g. a quantum gate), the five steps below need to
be followed.

1. Specify the constraints gj such that gj(H) = 0 for j = 1, 2, . . . ,m.

2. Write down the quantum brachistochrone equation, i.e.

i∂tF = [H,F ], (6.8)

where F =
∑m

j=1 λj(δgj(H)/δH). Note that this equation is the topic of
Proposition 4.22.

3. Solve this quantum brachistochrone equation to obtain the Hamiltonian H(t).

4. Integrate the equation

U = T exp

(
i

∫ t

0
H(t′) dt′

)
(6.9)

together with U(0) = I to obtain U(t). Note that this is the topic of Propo-
sition 4.23.

5. Fix any constants still remaining by demanding that

U(T ) = eiχUf , (6.10)

where T is the end time.

Additionally, since U(t) was the time-optimal way to carry out Uf , it follows that
T is the optimal time in which the operation could be completed.

Their derivation in this paper follows, in broad lines, the same derivation pub-
lished in [4]. However, one major difference is that here they refrain from ever
mentioning the state, conforming to the Heisenberg picture of quantum mechanics
in which only the operators vary with time, not the states. This last concept we
also touched upon in subsection 4.3.
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6.3 An example

Let us now treat a concrete example. We consider a two-qubit system, where we
allow these qubits interact with each other, and we impose a magnetic field in
the x- and y-directions. Then, we wish to implement the SWAP-gate, i.e. the
transformation

USWAP :


a
b
c
d

 7→


a
c
b
d

 ⇐⇒ USWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (6.11)

in the time-optimal manner; that is, we want to work through Plan 6.2 for Uf =
USWAP. Notice that the physical interpretation of USWAP is simply to swap the
amplitudes belonging to the states |01〉 and |10〉.

In our case, we shall only briefly sketch steps one through four of Plan 6.2, and
then treat the fifth step in detail. This way, we skip calculation-heavy parts of the
derivation, and focus only on setting parameters so that our unitary transformation
truly becomes the SWAP-gate.

Due to the coupling between the qubits and the magnetic field acting upon
them, we arrive at the following Hamiltonian:

H(t) =


−Jz +B+ 0 0 −J−

0 Jz +B− −J+ 0
0 −J+ Jz −B− 0
−J− 0 0 Jz −B+

 , (6.12)

where B±(t) = B1(t) ± B2(t) and J±(t) = Jx(t) ± Jy(t). The quantities B1 and
B2 represent the magnetic fields acting upon a 2-dimensional plane, whereas the
quantities Jx,y,z represent the coupling between the qubits along the respective
axes. Furthermore, for the finite energy constraint, we assume that

B2
+ +B2

− + J2
x + J2

y + 2J2
z = 2ω2, (6.13)

where ω is some real number.
It can be shown that the quantities B±(t) and J±(t) should be given by

B±(t) = B0± cos(2(γ±t+ ψ±)) (6.14)

and
J±(t) = ∓B0∓ sin(2(γ∓t+ ψ∓)) (6.15)

to ensure time-optimal evolution. Here, B0±, γ0± and ψ0± are to be determined
parameters.

Since we now effectively have obtained H(t), the related U(t) can also be found.
After some calculations,18 we obtain that the optimal unitary transformation is

18See the source text [5] for full details.
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given by

U(t) =


eiJzt(α0+ + iαz+) 0 0 eiJzt(αy+ + iαx+)

0 e−iJzt(α0− + iαz−) e−iJzt(αy− + iαx−) 0
0 e−iJzt(−αy− + iαx−) e−Jzt(α0− − iαz−) 0

eiJzt(−αy+ + iαx+) 0 0 eiJzt(α0+ − iαz+)

 ,

(6.16)
where

α0±(t) = cos(γ±t) cos(Ω±t) +
γ±
Ω±

sin(γ±t) sin(Ω±t) (6.17a)

αx±(t) =
±B0±

Ω±
sin(Ω±t) sin(γ±t+ 2ψ±) (6.17b)

αy±(t) = ±
(

sin(γ±t) cos(Ω±t)−
γ±
Ω±

cos(γ±t) sin(Ω±t)

)
(6.17c)

αz±(t) =
−B0±

Ω±
sin(Ω±t) cos(γ±t+ 2ψ±), (6.17d)

and Ω± =
√
B2

0± + γ2
±. In the above equations, we have also introduced Jz and

χ as constants which are to be determined. Together with the other parameters,
they have to ensure that

USWAP = e−iχU(T ), (6.18)

which precisely is step 5. of Plan 6.2. In total, we have eight constants for eight
functions – this is doable.

The equation for U(t), together with the expressions (6.17), is quite a hor-
rendous set to attempt to solve. Fortunately, there is a way to pick the various
constants such that the relation (6.18) can hold. This is the topic of the following
proposition.

Proposition 6.3. Regarding the constants so that e−iχU(T ) = USWAP, where U(t)
is as in equation (6.16), we have that

1. B0+ = 0

2. γ− = 0

3. B0−T = π
2 (1 + 2p)

4. 2ψ− = π
2 (1 + 2q)

5. JzT = −π
4 [1− 2(p+ q)− 4(m− n)]

6. χ = −π
4 [1− 2(p+ q) + 4(m+ n)]

Here, m, n, p and q are arbitrary integers and the end time T is yet to be deter-
mined.

Proof. We shall only show that using the given values, the SWAP-gate is obtained
– not actively derive the values ourselves. Though the latter would be instructive,
it would also be time-consuming and distract from the overall use of the quantum
brachistochrone.
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Having said this, let it be seen that if we implement the values under points 1.
through 4. into the functions (6.17) we obtain

α0+ = 1 α0− = 0
αx+ = 0 αx− = (−1)p+q+1

αy+ = 0 αy− = 0
αz+ = 0 αz− = 0

, (6.19)

upon evaluating the functions at t = T . Thus, U(T ) becomes

U(T ) =


eiJzT 0 0 0

0 0 ie−iJzT (−1)p+q+1

0 ie−iJzT (−1)p+q+1 0 0
0 0 0 eiJzT

 . (6.20)

Then, since we know the relation e−iχU(T ) = USWAP holds by definition, we mul-
tiply the obtained expression for U(T ) by e−iχ and then compare matrix elements
so we can determine JzT and χ.

Comparison of the matrix elements so reveals

exp(i(JzT − χ)) = 1 (6.21)

and
exp(i(−JzT − χ+ π(p+ q) + π/2)) = 1. (6.22)

Substituting the given values for JzT and χ under 4. and 5, respectively, will yield
that the equalities (6.21) and (6.22) hold.

Notice that in Proposition 6.3, we sneakily introduced the end time T into our
calculations so as to be able to say what happens at that time. Notice that as the
physical interpretation of T is the optimal time in which the SWAP-gate will have
been completed, it is only fitting to dub this end time TSWAP instead. Together
with the globally set constants – B0+ = 0, γ− = 0 and 2ψ− = π

2 (1 + 2q) – we are
able to distill an explicit expression for TSWAP.

Proposition 6.4. We have that the optimal time TSWAP is given by

ωTSWAP = π
√

3/4. (6.23)

Proof. We utilize the values found in points 1, 2. and 4. of Proposition 6.3 together
with the expressions in (6.14) and (6.15) to find

B+ = B− = J− = 0 and J+ = −B0−(−1)q. (6.24)

Filling these values into (6.13), we so obtain

B2
0− + 2J2

z = 2ω2 ⇒ 1

π2

(
8(B0−TSWAP)2 + 16(JzTSWAP)2

)
=

(
4ωTSWAP

π

)2

.

(6.25)
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We can now use the values found under points 3. and 5. of Proposition 6.3 by
swapping19 them into (6.25). The result is the lovely(

4ωTSWAP

π

)2

= 2(1 + 2p)2 + (1− 2(p+ q)− 4(m− n))2. (6.26)

It follows that since we are looking for the shortest time duration, that we need to
find m,n, p, q such that the right-hand side is minimized. This is the case for the
choice of p = 0 and q = −2(m− n), as can be readily verified.20 With this choice,
the right-hand side will equal 3, so that(

4ωTSWAP

π

)2

= 3 =⇒ ωTSWAP = π
√

3/4. (6.27)

This proves the proposition.

In addition, it can be shown that the Hamiltonian becomes

H =
ω(−1)q√

3


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 −1

 (6.28)

upon finding Jx = Jy = 2Jz = (−1)q+12ω/
√

3. Notable is that the Hamiltonian
is constant, just as in the solution of the unconstrained quantum brachistochrone
problem.

19Choice of word intentional.
20The choice for p minimizes the first term, whilst the subsequent choice for q then minimizes the

second term.
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7 Conclusion

We have come to the end of this thesis. All in all, quite a lot of material has been
treated in the sixty-or-so pages which span this thesis.

In the first section, we discussed preliminaries from the calculus of variations
– in particular the functional derivative – and the theory of Lagrange multipliers
and its application for us.

Following this, we looked at the geometry of quantum states in order to derive
an expression for the distance between them – the Fubini-Study metric. This was
implemented together with various constraints in order to construct the quantum
action, from which we could derive the equations of motion.

These were derived in the subsequent section. Furthermore, we managed to
solve the equations of motion when dropping all but the ”finite energy” constraint
in closed form, yielding an optimal transition time of ωT = cos−1 | 〈ψi|ψf 〉 |; we
also determined the associated state vector and Hamiltonian, which can be found
in equations (4.92) and (4.93), respectively. We also solved the constrained ver-
sion of the quantum brachistochrone problem, yielding several applicable formulae,
particularly those the topic of Proposition 4.23.

This latter result was used to solve a particular example: a spin-1/2 particle
under the influence of an x-y plane constrained magnetic field. We fully solved
this example, i.e. we found the optimal transition time and the optimal state
as a function of time, which results are in Proposition 5.10 and Theorem 5.9,
respectively. Visualizations of the various solutions were also made, using the
Bloch sphere.

Finally, we considered an application of the quantum brachistochrone to quan-
tum computing. A brief introduction was given on the topic, after which an exam-
ple was worked of the optimal unitary transformation to effect a given quantum
gate.

As closing words, I would like to say that the research project and its resultant
thesis were a success.

Topics for further research

In researching this problem, I have had to leave some avenues unexplored for the
sake of time or brevity of my thesis. These should not be left unexplored, though,
in my opinion.

For one, one could consider a different type of physics in which the quantum
brachistochrone plays. That is, one could work with, for instance, the Klein-
Gordon equation instead of the Schrödinger equation, and see in how so far the
problem remains similar and/or solvable.

Another would be to investigate the link between quantum computing and the
quantum brachistochrone more. For instance, to research whether companies/in-
stitutes working on quantum computers implement the theory learned from the
quantum brachistochrone problem to optimize state transitions.

Additionally, one could investigate the relationship between the found results
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for the (globally) optimal time of transitions and the uncertainity relation connect-
ing energy uncertainty and time.
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