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Abstract: Fish are able to sense movement in the water around them with an organ called a
lateral line. This organ consists of neuromast detectors along the body of the fish that detect
water flow. For an artificial lateral line, artificial water flow sensors are used. Fisher matrix
heatmaps of these bi-axial sensors show that there are areas where parameter detection accuracy
is low. The goal of this paper is to reduce these dark corners for the position of the source of
the flow. The assumption is that regularly spaced out sensors, such as in a grid configuration,
have the least dark corners. Sensor configurations generated by a Continuous Genetic Algorithm,
K-means, Kohonen SOM and a grid configuration were compared. Extreme Learning Machines
were trained and tested on a dataset of moving sources and compared with dark corners from
Fisher matrix heatmaps. The parameter errors of the ELM are approximately 4 times larger than
the lower bounds of the Fisher matrices. The dark corners shown by Fisher matrix heatmaps,
however, are not visible in the ELM parameter errors. The CGA configurations had the highest
ELM errors, except for an outlier, and had the most dark corners. The grid configuration had the
least dark corners and shared the lowest ELM errors with the sensor configurations generated
by K-means and Kohonen SOM.

1 Introduction

Fish can sense fish or other moving objects in the
water around them. They do this with a sensing
organ called the lateral line. Lateral lines contain
sensing organelles called neuromasts that react to
water flow. Fish use this sense for tasks such as
detecting prey (Hoekstra and Janssen, 1985) and
schooling with other fish (Partridge and Pitcher,
1980).

Being able to know the position and motion of
underwater objects can be very important. Sub-
marines and other submersibles can have their sen-
sory capabilities upgraded by employing artificial
lateral lines. These would supplement sonar, radar
and touch sensors. Collections of artificial lateral
lines can be used to keep track of the traffic in ports
and therefore be used to prevent collisions. The mi-
gration of fish along a river can also be recorded.

An artificial lateral line was created in the lab
and was able to detect and localize the vibrating
tail of a crayfish (Yang et al., 2010). The artificial

neuromasts , like the neuromasts of the fish, pro-
duce electrical signals when bent by water flow. In
this lateral line, mono-axial sensors in two orienta-
tions were used.

These mono-axial, but also bi-axial sensors, can
be analyzed to reveal the capabilities and limits of
the sensors. It is useful to know what sources can
and cannot be detected. One such way is by using
Fisher Information.

Fisher information matrices for artificial lateral
line sensors are calculated with a model for the de-
tected water flow. The model calculates the sensor
reading from a number of source parameters and
the sensor position. For artificial lateral line sen-
sors these source parameters are the position of the
moving source, the source velocity vector and the
source radius. The problem is reconstructing the
values of these parameters from sensor readings.
Fisher information provides a theoretical limit on
the accuracy of the reconstruction and prediction.
These limits are separate for the different source
parameters and components of these parameters.
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Figure 1.1: Source position (qx, qy) Cramér-Rao
lower bounds 25 centimeters above a single bi-
axial sensor. The heatmap grid points are cal-
culated with smaller Fisher matrices. There are
no rows or columns for the z components or the
source velocity vector. For single sensors the
dropoff is radial with a dark corner above the
center of the sensor.

This is called the Cramér-Rao lower bound which
is an unbiased lower bound of the parameter esti-
mation error.

The individual values in the Fisher information
matrix are calculated from the partial derivatives
of the water flow model. The Cramér-Rao bound
varies for different source positions, movements and
sizes as a consequence. The Cramér-Rao bounds of
various locations around mono-axial, biaxial and
tri-axial sensors were looked at with the potential
flow model as the water flow model (Pirih and van
Netten, 2018). This lead to the discovery of dark
corners surrounding the sensors in single and multi-
sensor configurations. In these dark corners, one or
more of the position parameters or velocity param-
eters can not be measured accurately.

In rivers and ports the position and movement
along the z-axis may not be important. If the num-
ber of parameters is reduced then the number of
rows and columns in the Fisher matrices are also re-
duced. This leads to different Cramér-Rao bounds
and so the dark corners change. Figure 1.1 shows
the errors around a sensor as calculated with re-
duced Fisher matrices. The error increases mostly
radially from the sensor and only marginally di-
rectly above.

Aside from the Fisher information there is a dif-
ferent way to look at the performance of artificial
lateral line configurations and dark corners. There
has been some success with Extreme Learning Ma-
chines (ELM) to predict source position and ve-
locity vectors (Boulogne et al., 2017). The Mean
Squared Error (MSE) and Mean Euclidean Dis-
tance (MED) are used as measures of the perfor-
mance of the ELM. Fisher information only gives a
lower bound on the standard deviation of the source
parameters. Comparing ELM performance with the
Cramér-Rao lower bound can therefore give a more
realistic view of ALL capabilities. Dark corners can
also be found in the ELM predictions and be com-
pared to earlier findings.

The main goal in this paper is to compare the
performance of the ELM to the predicted optimum
of the Fisher matrices. This is done by comparing
the Cramér-Rao lower bound of various locations
to the ELM error at those locations. The focus lies
on the source position.

The second goal is to reduce the amount of dark
corners. This is done by varying the positions of
the sensors in the sensor configuration. The config-
urations will be compared with a fitness score that
has its basis in Fisher Information. The ELM Mean
Squared Errors and Mean Euclidean Distance are
also used. The configurations with the least dark
corners have then the lowest values of these met-
rics.

2 Background

Several methods from previous research into Arti-
ficial Lateral Lines have been used. The Potential
Flow model was used as model of the water flow
that is sensed by the sensors. Fisher Information
Matrices were used to analyze the area around sen-
sors and sensor configurations. Extreme Learning
Machines were used to test the performance of the
sensor configurations with respect to a dataset of
moving sources.

2.1 Potential Flow

The water flow is calculated with the sensor po-
sition ~s and source position ~q vectors. The poten-
tial flow equation simplifies to equation 2.1 by plac-
ing the sensor at the origin (Pirih and van Netten,
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2018). Here ~r is the difference in postion between
the sensor and source ~r = ~q−~s. The other parame-
ters in this equation are the source radius a = 0.06
meters and the source velocity vector ~w. The re-
sulting vector ~v is the waterflow as observed at the
sensor position.

~v =
−a3

2|r|3
(~w − 3(~r · ~w)~r

|r|2
) (2.1)

2.2 Fisher information

Fisher information matrices are used to calculate
the Cramér-Rao bound. This is an unbiased lower
bound on the prediction error of the parameters of
a model. For this and previous research, the model
is the Potential Flow model of water flow.

Partial derivatives of the Potential Flow model
are used to calculate the values of the Fisher matri-
ces. These are the partial derivatives over the water
flow speed ~v. The Fisher information matrix and
thus the partial derivatives are calculated for a set
of Potential Flow parameters. The Fisher matrix
for a source location, sensor location and a source
velocity vector is calculated with a list of partial
derivatives D as shown in equation 2.2. Calculat-
ing the matrix F is shown in equation 2.3 which
creates a square matrix. Here σ signifies the stan-
dard deviation of guassian sensor noise.

Inversing the square matrix yields the covariance
matrix for the parameters corresponding to those of
the partial derivatives. Combining multiple sensors
together can be done by calculating matrices for all
sensors s1 through sn and summing them before
inverting into the covariance matrix. This is shown
in equation 2.4 where i is the sensor number.

~Di = (
∂vi
∂qx

,
∂vi
∂qy

) (2.2)

Fi =
1

σ2
vi

∗ ~Di
T
∗ ~Di (2.3)

C = (

n∑
i=1

Fi)
−1 (2.4)

2.2.1 Fisher heatmap

The partial derivatives have to be filled in to cal-
culate the Fisher matrix. The heatmap points are

used as source positions when creating a Cramér-
Rao heatmap. For w, Fisher matrices are calcu-
lated for m velocities w1 through wm and averaged.
To represent all directions equally the positive and
negative directions along the x and y axes as well as
the normalized diagonals between them are used.
This gives a total of eight directions. These are
scaled with a velocity of 0.13 meters per second
which is taken over from the previous ELM work
(Boulogne et al., 2017). The 0.06 meters source ra-
dius is also taken from the same source.

The matrices from all velocities are first averaged
into one matrix per heatmap point per sensor. The
matrices are then summed over all sensors so only
one matrix remains per point. All matrices are then
inverted yielding the parameter covariance matri-
ces. The diagonals are extracted and the square
roots taken so that only the standard deviations
(σqx , σqy ) remain.

2.3 Extreme Learning Machines

The ELM is a simplified neural network related
to the Echo State Network. Instead of a pool of
neurons the ELM has a hidden layer with random
weights to the input layer. The weights to the out-
put layer are directly calculated from the training
set in a single batch which makes training quick
compared to other algorithms.

2.3.1 ELM training

Each ELM is trained using a fixed dataset of
sources that are transformed through a sensor con-
figuration into water flow data according to section
2.1. For this investigation, 16 bi-axial sensors are
used. Each sensor detects water flow in the direc-
tions corresponding to the x and y axis of the pool.
These water flow components are the sensor out-
puts leading to 32 outputs for the 16 sensors. The
32 total sensor outputs and 1 bias mean the ELM
has 33 inputs. The hidden layer size is 5000 nodes
(taken from Boulogne et al. (2017)). The same hid-
den layer weight matrix is used for every ELM.

The sensor output for each source is linearly
scaled after the sensor noise has been added. Af-
ter scaling, the absolute value of the highest sensor
output is 1 with the other outputs scaled appropri-
ately. The sensor data of all samples with a bias
appended as 33rd input u is first multiplied with
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the hidden layer weights Wh. This output is trans-
formed with the activation function tanh to limit
the output of the hidden layer layer (eq. 2.5). The
next step is to multiply the output data d of the
training set with the Penrose-Moore pseudoinverse
(M†) (eq. 2.6). Not pictured is the bias row that is
appended to M as input 5001 between equation 2.5
and 2.6.

M = tanh(u ∗Wh) (2.5)

Wout = d ∗M† (2.6)

2.3.2 ELM testing

Predictions by the ELM can be made when the hid-
den layer weights Wh and the output layer weights
Wout are known. These predictions are made for a
single source at a time. The testing uses the same
scaled sensor input as the training. The interme-
diate output M is calculated in the same manner
as during training (section 2.3.1) with a bias row
added to the sensor data and to M . To get the pa-
rameter prediction p the intermediate output M is
multiplied with the weights of the output layer as
shown in equation 2.6.

p = M ∗Wout (2.7)

3 Methods

3.1 Sensor configuration testing

There are two ways by which a configuration can be
analysed and scored. An error heatmap for source
parameters can be made by calculating and invert-
ing a Fisher matrix for each heatmap point. This
gives the Cramér-Rao lower bound on error of the
model parameters. The second way is by letting
an extreme learning machine train on a dataset of
source location. This dataset is transformed by the
sensor configuration and the flow model into sensor
output. The errors of the predictions of the ELM
give an indication of the fit of the configuration to
the data given that the ELM is able to predict the
data.

For both scoring methods an underlying model is
needed. The Potential Flow model was chosen be-
cause ELMs are already able to predict source loca-

tion using this model. It has also been found to give
a good approximation of the responses by neuro-
masts in fish caused by oscillating spheres (Ćurčić-
Blake and van Netten, 2006). This is a valid model
for our experiment as the source velocity is not that
large compared to the source radius.

3.1.1 Source parameters

Equation 2.1 shows that the source velocity vector
~w and source radius cubed a3 are directly multi-
plied with each other. A large source moving slowly
may generate the same flow pattern using poten-
tial flow as a small source moving more quickly.
When the source radius is fixed, the true source
velocity ~w can be extracted from the sensor data.
The remaining source parameters are the three lo-
cation components (qx, qy, qz) and the three move-
ment components (wx, wy, wz). This is further re-
duced to (qx, qy, wx, wy) as the z components are
not predicted and so dropped. While qz and wz
are not predicted, they are still used in the sen-
sor model. The velocity component wz is always 0
and the source height qz was arbitrarily chosen to
be 0.25 meters. When the velocity components are
dropped the model parameters become (qx, qy).

3.2 Fisher Fitness Function

The Continuous Genetic Algorithm (section 3.3.1)
requires a fitness function to order the sensor con-
figurations. To create this fitness function, the vari-
ances of the parameters from a Fisher heatmap are
combined into a single score. This way we can as-
sign scores to sensor configurations.

In equation 3.1 the parameter variances are com-
bined into a score. The score is then averaged over
all heatmap points into the Fisher Fitness Func-
tion for the sensor configuration. This is shown in
equation 3.2 where 〈〉 indicate the heatmap grid
average.

Fscore
2 = σ2

qx + σ2
qy (3.1)

FFF = 〈
√
σ2
qx + σ2

qy 〉 (3.2)

3.2.1 Source dataset

The locations of the sources are uniformly dis-
tributed over the range [−1, 1] for both x and y
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coordinates. The source velocity vectors have a uni-
formly distributed angle over the range of φ =
[0, 2π]. The velocity of the movement is fixed at
0.13 meters per second.

3.2.2 ELM metric

The ELM errors, Mean Squared Errors (MSE) and
Mean Euclidean Distance (MED) should give a
more realistic evaluation of a configuration. The
results that the Fisher matrices provide are opti-
mal results and may not be attainable. The ELM
results should be a closer approximation of real life
performance compared to the Fisher information.

3.3 Configuration generation

In the interest of reducing dark corners, several
configurations can be compared. To generate an
optimal sensor configuration of 16 sensors, a Con-
tinuous Genetic Algorithm (CGA) (Chelouah and
Siarry, 2000) was trained with the Fisher Fitness
Function. Sensor configurations as generated by K-
means (MacQueen, 1967) and Kohonen Self Orga-
nizing Map (Rougier and Boniface, 2011) are also
used. Both K-means and Kohonen SOM were cho-
sen because of the radial accuracy falloff as indi-
cated by the Fisher heatmaps. A grid configuration
(figure 3.1) is used as a reference.

All the sensor configurations are bound to a 2 by
2 meter square sensor plane. The moving sources
are positioned on an identical square source plane
that lies 25 centimeters above the sensor plane.
These distances are arbitrary. However, they fit the
source velocities and size that were used and thus
the corresponding water flow and noise level.

3.3.1 Continuous Genetic Algorithm

The CGA performs like a normal genetic algo-
rithm but for continuous instead of discrete param-
eters. This requires that the crossover and mutation
methods be changed (Chelouah and Siarry, 2000).
Besides these two methods the algorithm was im-
plemented as usual. The parameters that the CGA
will try to optimize are the x and y position of
the sensors. For 16 sensor configurations this means
that the dna of each individual configuration con-
tains 32 floating point numbers.

Euclidian error for dipole position
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Figure 3.1: A euclidean error heatmap 25 cen-
timeters above the fixed point of reference con-
figuration. The bi-axial sensors are indicated by
the black circles. Note the dark corners directly
above each sensor.

The fitness function for the CGA is the Fisher
metric. To calculate the metric, a 51 by 51 grid
over the source plane is used.

3.3.2 The k-means clustering algorithm

The K-means algorithm is a well-known clustering
algorithm. The algorithm clusters groups into K
sets. (MacQueen, 1967) It does this by assigning
samples to centroids or neighbourhoods.

First all samples are assigned to their closest cen-
troid. The centroids are then moved to the mean
of all their assigned samples. This process repeats
until the movement stops or some predetermined
threshold is reached.

To generate our configurations the algorithm
stops when the Fisher metric, with the centroids
as bi-axial sensors, stops decreasing. This is calcu-
lated along a 201 by 201 grid over the source plane.
This calculation is done once every 10 cycles.

The data set that the algorithm runs on, con-
tains the positions of the sources that are used for
the fisher Heatmap. This means that the uniform
grid of 201 by 201 samples over the source plane is
used. At the start of the algorithm ,the centroids
are randomly distributed over this space.
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3.3.3 The Kohonen self organizing map

The Kohonen self organizing map (Kohonen SOM)
is a linked neural map that forms itself to a large
number of presented vectors. (Rougier and Boni-
face, 2011) For this experiment the vectors come
from a uniform distribution of positions on the
source plane. The neural map is made out of n code-
words, equal to the number of sensors. When the
codewords are replaced by sensors the algorithm es-
sentially fit the sensors so they encompass as much
of the pool area as possible.

Kohonen SOM training Each vector is as-
signed to a winning code bg in the neural map.
This is the code that has the smallest distance to
the vector c. The winning code as well as the other
codewords are then shifted towards the vector b de-
pending on their distance to the winning codeword,
the current learning rate and the neighbourhood
size.

With every vector the learning rate and neigh-
bourhood size decrease to reduce the changes over
time. This can be seen in equations 3.3 and 3.4
where t is the number of the current sample from 0
for the first up to tf for the last sample. Here τi and
εi are the initial neighbourhood size and learning
rate and τf and εf are the final size and rate.

This distance between the codes is normally
given by the connections between the codes that
make up the map lattice. Instead of using a lattice
and lattice distance the euclidean distance between
the codes is used. As a result of this the starting
and final neighbourhood sizes are required to be
smaller than the one used by Rougier and Boniface
in their similar test with a uniform square distri-
bution. The formula for the moving of the codes
can be seen in equations 3.5 and 3.6. At the end of
training the code positions are taken as sensors and
the codebook becomes the sensor configuration.

τ(t) = τi ∗ (
τf
τi

)t/tf (3.3)

ε(t) = εi ∗ (
εf
εi

)t/tf (3.4)

∆bi = ε(t)hτ (t, i, g)(c− bi) (3.5)

hτ (t, i, g) = e
− |bg−bi|

2

2τ(t)2 (3.6)

3.4 Experiment parameters

3.4.1 ELM Parameters

The source dataset was discussed in section 3.2.1
The training set contains 24000 samples to guar-
antee good training. The testing set, in compari-
son, is only 3000 samples. The hidden layer size
is 5000 as mentioned in section 2.3.1. The hidden
layer weights are fixed for every ELM. A gaussian
error (µ = 0, σ = 1 ∗ 10−6) is added as sensor noise
(in m/s) to each water flow component of each bi-
axial sensor.

3.4.2 Cramér-Rao heatmaps

The Cramér-Rao error bound heatmaps are made
with a 201 by 201 uniform grid over the source
plane. The amount of gridpoints can be increased
or decreased for higher resolution or faster compu-
tation time, respectively. The movements used are
the directions along the x and y axis as well as the
normalized diagonals between them scaled to 0.13
meters per second. The source radius used is 0.06
meters. The sensor noise used in the heatmaps is
the same gaussian noise that is used in the ELM.

3.4.3 CGA parameters

There were 30 CGA runs with 100 cycles each.
Each run the population went linearly from 40 in-
dividuals down to 10 over the course of the cy-
cles (rounded up to the nearest multiple of 2). The
crossover rate was 75% and the mutation rate was
1%. The mutation rate went down linearly to 0%
over the course of the cycles. The fitness function is
to calculate the Fisher metric with a 51 by 51 uni-
form grid over the sensor area but otherwise stan-
dard parameters.

3.4.4 Kohonen SOM and k-means

Both Kohonen SOM and K-means generated a con-
figuration 100 times. K-means configurations are
generated according to section 3.3.2 on the same
201 by 201 uniform grid that is used by most
Fisher matrix calculations. Kohonen SOM config-
urations are generated by training on 100000 ran-
domly picked vectors.
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Figure 4.1: A visualization of the best sensor
configurations. The top three configurations are
the best of the CGA, K-means and Kohonen
SOM methods when scored with the Fisher Fit-
ness Function. The bottom three configurations
are the best of those methods but according to
the ELM average Mean Squared Error of the qx
and qy parameters.

4 Results

4.1 Best Configurations

With the three methods (section 3.3) a number
of sensor configurations were generated. The ones
with the lowest errors according to the Fisher Fit-
ness Function can be seen in the top row of figure
4.1. The best configurations according to the ELM
errors can be seen in the bottom row of the same
figure. The scoring method used here was the aver-
age of the qx and qy Mean Squared Error.

The sensor configurations that were generated by
the CGA, are the most varied. These have therefore
been used to directly compare the Fisher matrices
and ELM.

4.2 ELM compared to Cramér-Rao

The errors from testing with an ELM can be com-
pared to the Cramér-Rao lower bounds that were
calculated with Fisher matrices. The ELM errors
are all relatively normal (figure 4.2). This means
we can take the standard deviation of the qx and
qy errors. For the Cramér-Rao lower bound we can
use the Fisher heatmaps. These can be averaged
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Figure 4.2: The position (qx, qy) ELM errors of
one of the CGA configurations. The errors are
normally distributed around 0. The blue enve-
lope shows a normal distribution that fits the
errors.

over the entire pool to yield the average standard
deviation for each parameter.

This comparison was made with the 30 CGA con-
figurations (figure 4.3). The ELM is neatly sepa-
rated from the average lower bound. According to
the Fisher information, the difference between the
different CGA configurations should be small. On
the other hand, the ELM sees a larger difference
between configurations. The standard deviations of
the ELM error are approximately 4 to 5 times larger
than the Cramér-Rao lower bound.

4.2.1 Other configurations

The best configurations (section 4.1) where also
compared using this method (table 4.1). There is
not much difference between the σ that were cal-
culated with Fisher information. The largest dif-
ference between the sigmas of different configura-
tions is a single millimeter. The largest difference
between the ELM sigmas of the different configu-
rations is more than a centimeter. The difference
between Cramér-Rao lower bound and ELM per-
formance is again a factor 4 to 5.

4.3 Comparing heatmaps

It is also possible to create heatmaps from the ELM
errors. For this the best CGA configuration ac-
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Table 4.1: The standard deviations of the errors of source position (qx and qy) are consistently
around 4 times higher for the ELM compared to the predicted Cramér-Rao lower bound.

Configuration σqx (cm) σqy (cm)

Fisher ELM Fisher ELM
Best CGA (Fisher) 2.11 9.13 2.11 9.69

Best K-means (Fisher) 2.01 9.08 1.97 8.62
Best Kohonen SOM (Fisher) 1.99 9.14 1.99 8.69

Best CGA (ELM) 2.18 8.50 2.19 8.17
Best K-means (ELM) 1.99 8.74 2.00 8.59

Best Kohonen SOM (ELM) 2.00 8.33 2.00 8.46

Fixed 1.98 8.70 1.98 8.65

Fisher ELM
0

0.02

0.04

0.06

0.08

0.1

Standard deviation of q
x
 and q

y

s
td

. 
d

e
v
. 
in

 m

Figure 4.3: On the left the average σs of the
Fisher heatmaps are shown. On the right the σs
of the ELM error are shown. The figure shows
that the ELM errors are larger than the Cramér-
Rao lower bound.

cording to the Fisher Fitness Function was used.
Twenty different ELMs were trained and tested us-
ing the source dataset. The heatmap is generated
from the prediction errors of the test sets. The er-
rors are pooled into their closest grid point. This al-
lows the standard deviations of each heatmap point
to be calculated.

Figure 4.4 shows the Cramér-Rao heatmap
and an ELM heatmap of this configuration. The
heatmap shows the standard deviation of the posi-
tion parameters qx and qy.

The heatmaps cannot be compared on the same
scale because of the factor difference between Fisher
and ELM (section 4.2). There appear to be some
darker spots in the ELM but also some brighter
spots. The dark corner at the top of the sensor array
that is visible in the Fisher heatmap is not present
in the ELM heatmap.

4.4 Dark corners in sensor configu-
rations

Three different metrics were used to compare the
different sensor configurations (figure 4.5). For each
sensor configuration, the Mean Squared Errors
and Mean Euclidean Distance of the correspond-
ing ELM were calculated. For the fixed configura-
tion, 100 different ELMs were trained. Fisher Fit-
ness scores for each sensor configuration were also
calculated.

All the metrics seem to show that there are no
big differences between the different configurations.
This means that the amount and magnitude of the
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Figure 4.4: Fisher heatmaps compared to
heatmaps that were generated from multiple
sets of ELM errors. The scales of the colormaps
are not the same because the ELM has larger
errors! The dark corners visible in the Fisher
heatmaps are not clearly visible in the ELM
heatmaps.

dark corners in these configurations should be ap-
proximately the same. Both the MSE and MED
graphs show that there appears to be an outlying
CGA configuration that is better than all other con-
figurations for the ELM. It does not appear to be
better according to the Fisher Fitness Function.

4.4.1 Fisher Fitness Function

According to the Fisher Fitness Function scores
(figure 4.6), the CGA configurations are decidedly
worse than the other configurations. There is no
overlap between the CGA scores and those of the
other methods. The difference in scores between the
K-means configurations, Kohonen SOM configura-
tions and the grid configuration are small. There is
a lot of overlap between them. There does not ap-
pear to be a configuration with a better score than
the fixed/grid configuration.

4.4.2 Mean Euclidean Distance

The Mean Euclidean Distance (figure 4.7) shows
a larger overlap between the methods. The sensor
noise does cause a variance in the performance of
the ELMs. This is shown in the boxplot of the fixed
configuration.

The CGA configurations, on average, seem to
have higher errors than the other configurations.
There is one outlying CGA configuration that has
lower errors than all other configurations. There is
almost no difference between the K-means and Ko-
honen SOM configurations as well as the fixed/grid
configuration. Their distributions of the ELM Mean
Euclidean Distance seems to be the same.

5 Conclusion

5.1 Fisher and ELM

The Extreme Learning Machine is capable of pre-
dicting the positions of moving sources via the sen-
sor output of square artificial lateral line sensor
configurations. The ELM errors are significantly
larger than the Cramér-Rao lower bound. The dark
corners that were visible in the Fisher information
heatmaps do not appear in the ELM output.

5.2 Different configurations

The fixed/grid configuration reduces the dark cor-
ners the most according to the Fisher Fitness Func-
tion. The CGA did not find the best configuration
for this fitness function. The grid or grid-like sensor
configurations reduced the dark corners the most
when looked at with Fisher information heatmaps.

For the ELM the configurations that were gen-
erated by K-means and Kohonen SOM are approx-
imately equal to each other. They are also com-
parable to the fixed/grid configuration. The best
configuration was one of the CGA configurations.

6 Discussion

6.1 Fisher and ELM

The result from the Fisher information matrix
heatmaps seem to correspond to the previous study
(Pirih and van Netten, 2018). In the previous study,
there was also a dip in detection distance of the x
and y components above the bi-axial sensor. This
was in comparison to the volume above the sen-
sor instead of a plane. The circumstances are not
perfectly identical but the results seem in line with
each other.
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Figure 4.5: The different configuration scoring metrics for all configuraitons. All plots are scaled
differently but all start at 0. They show the same trend, the CGA configurations are on average
worse as they are associated with higher errors and scores.
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Figure 4.6: The Fisher Fitness Function scores of
the different configurations from 4.5 but zoomed
in. The scores of the CGA configurations are far
appart from the others. No configuration clearly
beats the fixed/grid configuration.
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Figure 4.7: The Mean Euclidean Distance of
ELM corresponding to the different configura-
tions from 4.5 but zoomed in. There is heavy
overlap between all the methods. The CGA
configurations have, on average, higher MEDs.
There is one CGA configuration that is sig-
nificantly better than all other configurations
(shown in figure 4.1, bottom left).

The ELM shows no extreme dark corners com-
pared to the Fisher heatmaps. This is in corre-
spondence with earlier results. The error only in-
creased when sources were increadibly close to the
sensor line (Boulogne et al., 2017). In this experi-
ment, sources cannot get closer than 25 centimeters
to any sensor. Furthermore, there are always other
lines that are still able to detect the source.

6.1.1 ELM dark corners

The heatmaps created from the ELM errors had
poor resolution. This is because of the way that
they were made. With increased resolution, actual
dark corners could be found. This would not nec-
essarily detect all dark corners. Dark corners that
only occur for specific position and velocity vector
pairs are hard to find with a random dataset of only
3000 samples.

The lack of dark corners may otherwise be at-
tributed to the increased error of the ELM com-
pared to the Cramér-Rao lower bound. The ELM
may have produced a general solution that has
fewer dark corners at the cost of some accuracy.
A general solution would have the same or similar
prediction errors for every case. There are no dark
corners when the ELM prediction errors vary little
over the source plane.

6.2 General performance of sensor
configurations

In general, the grid sensor configuration and the
grid-like sensor configurations that were generated
by K-means and Kohonen SOM performed well.
They had the lowest ELM errors and the best
Fisher Fitness Function scores and so the least
dark corners. The CGA, although it had the lowest
scores and highest errors, was still within a single
magnitude of the other methods.

It cannot be concluded that grid-like or evenly-
spaced sensor configurations of artificial lateral line
sensors are always the best option. No better config-
urations were found for the current setup. It would
be interesting to look into other environments and
whether or not the methods fare better or worse. It
is easy to add the third dimension or velocities back
into the Fisher matrices and other sensor spaces
and source spaces can be used.

11



It is hard to say if this setup would also work for
ships in ports. Potential flow does not mode. The
speeds and sizes of ships should, however, gener-
ate similar water flow patterns at larger distances.
Whether this is the case and if ELM can also be
used to detect model or real life ships is outside the
scope of this research.

6.2.1 CGA

The implementation of the CGA deviates slightly
from the source. Only the crossover and mutation
functions were taken from this source. This may
have reduced the effectiveness of the continuous ge-
netic algorithm. It did supply a varied set of con-
figurations for the other parts of the experiment.

The outlier configuration performed exception-
ally well with the ELM but not with the Fisher
Fitness Function. This sensor configuration and its
sensor data may have fit the source dataset better
than the other sensor configurations. As the same
two sets of sources are used for the training and
testing of every ELM, this can be a bias.

6.3 Kohonen SOM

The algorithm does not perform as in the source
material due to the use of the actual distance be-
tween codes instead of the lattice distance. This
occasionally caused codes and thus sensors to over-
lap. An enforced minimum on the distance could
have prevented this. However the algorithm still
gave many acceptable configurations.
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A Extra plots

Plots showing interesting information that was not
covered in the paper. Figure A.1 is an outdated
graph that shows how the sensor configuration
methods placed the sensors. Figure A.2 shows what
happens when the source plane is closer to the sen-
sor plane so that the sensor to noise ratio is shifted
toward the sensor. Figure A.3 shows what happens
when the source plane is further away from the sen-
sor plane so that the sensor to noise ratio is shifted
toward the sensor noise.

B Partial derivatives of water
flow

Equations B.1 and B.2 show the partial derivatives
of the Potential Flow model (from Pirih and van
Netten (2018)). The direction m of the water flow
indicates the axis over which the flow is measured.
Similarly, p and n are the axes for the source po-
sition and source movement vector. Here 1 is the
x-axis and 2 is the y-axis. The number 3 is reserved
for the z-axis and can be used as well for both mea-
suring and as component of the water flow or object
movement.

∂vm
∂wp

= − a3

2 ∗ |r|3

(
δm,p − 3 ∗ rm ∗ rp

|r|2

)
(B.1)

∂vm
∂qn

= − 3 ∗ a3

2 ∗ |r|4

(
w1 ∗ rn + wn ∗ r1

|r|
+

(
δ1,n − 5

r1 ∗ rn
|r|2

)(
w · r
|r|

))
(B.2)

δm,p =

{
1, if m = p

0, otherwise
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Figure A.1: The spread of the sensor positions that were generated by each algorithm.
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Figure A.2: When the source plane is closer to
the sensor plane the dark corner above the sen-
sor disappears.
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Figure A.3: When the source plane is further
away from the sensor plane the dark corner
above the sensor becomes larger.
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