
Learning to Rank - Feature engineering using a

click model

Bachelor’s Project Thesis

Klemen Voncina, s2900874, k.voncina@student.rug.nl

Supervisor: Dr. M.A. Wiering

Abstract: Effective ranking in information retrieval is done, in part, by proper feature engi-
neering. This paper explores a comparison between the functions of a click model and a ranking
function in information retrieval. It then uses the output of a basic bi-class click model as a
feature for training a ranking model. Training both of these different approaches on data from
a commercial search engine we find that click model performance improves as the threshold for
what is a click becomes more stringent and that using the output of a click model as a feature
for ranking performs empirically worse than without this added feature.

Keywords— Machine learning, Learning to
rank, Click model, Web search, Information re-
trieval, Feature engineering

1 Introduction

In information retrieval, the primary objective is
to present the user with the most relevant result
based on their query. A good metric of performance
for search engines would be to ask the question;
”has the user’s information need been satisfied?”.
A click model is something that attempts to answer
this question using user browsing data connected to
search queries. Research into click models follows
one of several paths, either simulating user interac-
tions or alternatively for use in ranking to attempt
to guess, based on user interaction and other rel-
evance scores, whether the page or document in
question was relevant to the user or not.

In a click model (Chuklin, Markov, and de Rijke,
2015), several things are taken into account, de-
pending on the complexity of the model and what
we desire to predict using it. Generally the main
considered set of events consists of four things; a
user examining an object returned by a search en-
gine, a user being attracted to an object’s repre-
sentation, a user clicking on an object in a search
engine and the last being that the user’s informa-
tion need is satisfied (Chuklin et al., 2015). For
the purpose of this model and given the datasets
available, it is not possible to model whether a
user has examined an object returned or if a user

was attracted to it only if a user has interacted
with it. So we consider the other two events; ob-
ject clicks and attempting to determine whether the
user’s information need was satisfied based on that
alone. The type of click model being referred to is
called a click through model (Chuklin et al., 2015;
Joachims, 2002)

Learning to rank (Pan, Luo, Tang, and Huang,
2011) is a subset of both the information retrieval
and machine learning fields of study. A ranking
function uses various relevance features computed
from the document to attempt to predict that doc-
ument’s relevance to the user, then score and order
it appropriately. This means that the performance
of a ranking algorithm may be improved through
either better error or performance metrics or by at-
tempting to improve the features through feature
engineering.

In light of this, the research question guiding this
thesis is the following; How does a ranking algo-
rithm compare to a click model and is it sensible, in
terms of ranking performance, to use a click model’s
output as a feature in ranking?

Features used for solving the learning to rank
problem include such relevance scores as TF-IDF
and Okapi-BM25 (Robertson and Zaragoza, 2009)
which are both measures of relevance derived from
term frequency. This is to say, for TF-IDF for ex-
ample, the score is calculated by taking the number
of times a query term appears in a document and
dividing it by the total amount of times it appears
in all the documents the query returned. These are

1

then weighed against human judged relevance la-
bels for a given query-document pair.

Both of these modelling types can be trained on
similar data as in both cases, the end goal is to
determine what feature or group of features holds
the greatest sway in predicting whether a document
will be relevant to a user and if viewing that docu-
ment will sate their information need.

The intended contribution of this paper is to
present a comparison between a click model and
a ranking function, then evaluate whether it is sen-
sible, in terms of ranking performance, to use the
output of a click model as a feature in ranking. The
proposed process requires the training of two mod-
els, a ranking model and a click model, then testing
them. First, testing each separately then using the
output of the latter as a feature for the former. The
remainder of this paper will be structured in the fol-
lowing way. First an in depth analysis of the pur-
pose of a click model and a ranking algorithm will
be made along with a more detailed explanation
of the contents of the LETOR dataset. Following
that, the methodology behind each of the two clas-
sifiers will be presented as well as the exact setup.
This will be proceeded by the experimental results
and then a conclusion drawn from the experimental
results obtained.

2 Background

2.1 Learning to Rank Data

Learning to rank data sets are formatted in the
following way, each data point is a query-document
pair positioned in N dimensional space where N is
the number of features. Each of the data points has
the following details; a relevance score, a query ID
followed by a feature vector of N features as shown
in Table 2.1.

An important concept to grasp when considering
a learning to rank data-set is the concept of a query-
document pair. A query document pair is one data
point in a learning to rank data-set. A document
does not have a relevance score compared to all
the other documents at all times, it has a relevance
score relative to a query. As an example consider
two documents m and n relative to queries A and
B; for both queries both documents are returned,
document m may be very relevant to query A while

document n is not relevant at all, conversely docu-
ment n may be very relevant to query B while doc-
ument m is only slightly relevant. This is indicative
of the fact that the goal is not to find the most rel-
evant document for everything in the entire collec-
tion of documents, but we wish to use the ranking
model to bring to the forefront the most relevant
document for a particular query instead.

Rel. Lab. Query ID Feature Vector
1 quid:1 1:0.03 2:0.66 ...N:M
0 quid:1 1:0.03 2:0.00 ...N:M
0 quid:1 1:0.00 2:0.16 ...N:M
2 quid:2 1:0.99 2:0.00 ...N:M
0 quid:2 1:0.05 2:0.75 ...N:M

Table 2.1: The format of a learning to rank train-
ing set

In addition to document relevance scores being
assigned to the document relative to the query,
most of the features found in the query-document
feature vector are computed about the document
relative to the query they are returned by as well.

A learning to rank training dataset consists of a
set of labels, query IDs and feature vectors for each
data point. These feature vectors can vary widely in
size (Qin and Liu, 2013; Qin, Liu, Xu, and Li, 2010)
and generally consist of many of the same features
being computed for several separate fields of a doc-
ument. Most of these ’relevance features’ as they
are referred to are metrics derived from the con-
cept of term frequency, or how many times a term
or phrase from the query appears in the document
as compared to to total number of words in that
document. The most basic of these is a measure
called TF-IDF (term frequency, inverse document
frequency) which measures how many times a term
appears in a document versus how many times that
same term appears in all the documents retrieved
by the query.

As previously alluded to, there are some features
that are computed for a certain document based
on the query that returns it such as the example
with the term frequency metrics. There are, how-
ever several features about a document that can be
independent of the query. Some examples of fea-
tures that are query independent and are static
per document from the LETOR 4.0 dataset are the
number of outlinks or the number of slashes in the

2

URL. Features like this are not dependent on query
terms at all and can therefore be considered query
independent features.

It is important to note that these kinds of fea-
tures exist, because dwell time of a document is
generally a document specific feature rather than a
query-document computed relevance feature. It is
likely that, given an extensive amount of metadata
on user interaction per query and subsequently
per document it would be possible to have query-
document specific user dwell times, however this
data is generally not available in this format.

2.2 Ranking Function

Ranking algorithms or functions fall into several
different categories based on what is considered
a training step. There are point-wise ranking al-
gorithms, pair-wise ranking algorithms and list-
wise ranking algorithms (Ibrahim and Landa-Silva,
2017). Point-wise ranking algorithms operate on
one query document pair at once as a learning
instance, meaning that a query document pair is
given a relevance rating all of its own independent
of any other documents returned by the query. The
resulting ranking is then a series of independently
weighted documents for a certain query. A pairwise
ranking algorithm has two steps, first it performs
something called a par-wise transform, taking two
query document pairs, comparing their labels and,
if they have different labels they can be considered
a ’pair’. The reason the labels have to be different
within a pair is because one has to be considered
better than the other, otherwise re-ordering items
inside that pair or query document pairs is entirely
without purpose. A pair is then used as a learning
instance in the algorithm. Lastly, list-wise ranking
considers all the query document pairs in a given
query as a learning instance and every value judg-
ment that the ranking algorithm makes takes into
consideration all the other items in the list.

As would be expected, therefore, point-wise
ranking is the fastest in implementation but also
the least accurate as a result of not comparing any
query document pairs to each other, list-wise rank-
ing is the slowest in implementation as every ac-
tion considers every query document pair in the
list and lastly; pair-wise ranking is a middle of the
road technique that does some comparison between
query document pairs for a single query but as

it only compares two documents to each other at
once, its speed is also somewhere in the middle of
the other two.

Given that the purpose of a ranking algorithm
is to find weights for features such that the doc-
uments are ordered in or as close to the optimal
order, we would like to consider how this is ac-
complished. A ranking model with a linear ranking
function output, for example would find a vector in
k dimensional space such that, when all the points
in the training set are mapped onto this vector us-
ing perpendicular lines, the direction of the vector
matches the order of the items in the training set.
For explanatory purposes, we will call the candi-
dates and non-candidates for this vector w1 and w2.
As shown by Figure 2.1 and Figure 2.2, w1 is not
a good candidate for a ranking function, whereas
w2 most definitely is as it matches the order of the
items.

Figure 2.1: Showing a bad or non-candidate for
ranking function w, w1. Perceived order from
ranking function w1 is 1, 3, 2, 4, 6, 5.

The product of a ranking function or a learning
to rank algorithm is a ranking model which is used
in web search as shown in Figure 2.3. In this case,
we are specifically interested in the query-document
pairs that are used as input for the ranking algo-
rithm and what features are contained therein as
well as the process of query-document feature com-
putation based on returned documents for a user
query.

3

Figure 2.2: Showing a good candidate for rank-
ing function w, w2. Perceived order from ranking
function w2 is 1, 2, 3, 4, 5, 6.

2.3 Click Model

A click model, depending on its exact intended pur-
pose can be used for the following things; predict-
ing whether a user will interact with a document,
simulating user interaction in general and gauging
whether the user has achieved their desired goal.
This requires a large amount of user browsing meta-
data, or implicit data about documents. Several
click model types are proposed which cater to the
various goals of click modelling such as user brows-
ing models or click chain models (Chuklin et al.,
2015) . This paper considers only one type of model,
the click through rate model, specifically a subsec-
tion of this being the document based click through
rate model. This means that the model that is built
attempts to predict whether a document will be
clicked on by a user given the query-document pair
relevance features.

Click models attempt to predict the probability
of something being clicked. This can be replicated
by using a bi-class classifier that distinguishes be-
tween ’likely to click’ and ’unlikely to click’.

3 Method

This paper proposes that the output of a click
model trained on query-document data and the
dwell time of users on that document may be a

Figure 2.3: How learning to rank is integrated
into web search

viable feature to use in training a ranking function
on the same document set. The reasoning for this
is that user dwell time on a document can be taken
as an implicit rating of a document’s relevance to
a search (Chuklin et al., 2015). This quality dis-
tilled in a feature may provide something similar
to the assigned relevance rating that is provided in
the learning to rank dataset by human judgment.

3.1 Ranking Algorithm

The proposed method involves training a ranking
model using a ranking algorithm called RankNet
(Burges, Shaked, Renshaw, Lazier, Deeds, Hamil-
ton, and Hullender, 2005). RankNet is a pair-
wise ranking method that uses a neural network
as its backbone (Pedregosa, Varoquaux, Gram-
fort, Michel, Thirion, Grisel, Blondel, Prettenhofer,
Weiss, Dubourg, Vanderplas, Passos, Cournapeau,
Brucher, Perrot, and Duchesnay, 2011; Buitinck,
Louppe, Blondel, Pedregosa, Mueller, Grisel, Nicu-
lae, Prettenhofer, Gramfort, Grobler, Layton, Van-
derPlas, Joly, Holt, and Varoquaux, 2013; Schmid-
huber, 2015). The features that differentiate this
from a ’normal’ multilayer perceptron are twofold,
the pairwise transform (Ailon, 2012) of the training
data and the purpose of the .

Algorithm 3.1 describes the pairwise transform
operation that is performed on the data before it is

4

passed to the ranking algorithm.

Algorithm 3.1 Pairwise Transform Function

Input: A k length list of labels y and a k length
list of feature vectors X with the same query ID

Output: A list of pairwise comparisons at most
k2+k

2 items long
yPairs← emptyList
xPairs← emptyList
for i to k do
for j to k do

if yi 6= yj then
yPairs append yi − yj
xPairs append Xi −Xj

end if
end for

end for
return (yPairs, xPairs)

This pairwise transform, given k items returns
at most (k2 + k)/2 items, however given that the
dataset only consists of three classes this maximum
number of returned items will never occur when
k > 3. Because the pairwise transform is applied
on query groupings before training, it is then no
longer necessary to present the ranking algorithm
with batches of training data corresponding to the
number of query-document pairs for each query, in-
stead the batch size may now be adjusted to arbi-
trary size.

Training in RankNet is then done on these pair-
wise transformed learning instances. This means
that the RankNet algorithm becomes a compara-
tor discerning between ’better’ and ’worse’ in a pair
of items. The fact that items with equal labels are
not subject to the pairwise transform works bene-
ficially here as it reduces the number of categories
to two rather than three. In addition to this having
a ’same relevance’ category would be detrimental
to ranking as a stalemate between two items is not
desirable.

3.1.1 Evaluation Metrics - NDCG

Discounted cumulative gain (Wang, Wang, Li, He,
Chen, and Liu, 2013) is the measure of improve-
ment of a document ranking compared to the ideal
ranking. Each position in a set comes with its own
’multiplier’ given by a logarithmic function mean-

ing that items lower on the list will be worth much
less. This has the added benefit of hugely reward-
ing moving a very relevant document from lower in
the list to higher in the list.

Normalized discounted cumulative gain is calcu-
lated in the following manner:

NDCG@P =
DCG@P

IDCG@P
(3.1)

DCG@P =

p∑
i=1

2reli − 1

log2(i + 1)
(3.2)

IDCG@P =

|REL|p∑
i=1

2reli − 1

log2(i + 1)
(3.3)

In the above formula; p is the number of items
being considered, reli is the relevance score of the
document at position i and |REL|p refers to the
fact that, for this computation (Equation 3.3), the
ideal ranking of the top p documents in the set is
used.

If the top P items in a list are ordered in the
optimal manner when the metric is being applied,
then the following is true; DCG@P = IDCG@P .
In the event that the relevance scores are only ei-
ther zero or one, and the top P documents are all
relevant, then the same is true.

Normalized discounted cumulative gain is used
instead of discounted cumulative gain in learning
to rank because it is expected that queries will not
always return the same number of documents as
each other. This means that to be able to com-
pare the score between two queries, the score must
be normalized against the ideal discounted cumu-
lative gain across a certain number of elements.
NDCG normalized over P items would be noted
as NDCG@P .

This NDCG score is used as the loss function
we wish to minimize in stochastic gradient descent
when adjusting the weights of the network (Kingma
and Ba, 2014).

3.2 Click Model

In this section a click model is proposed. A very
simple multilayer perceptron that distinguishes be-
tween two classes; ’user likely to click’ or ’user not
likely to click’. Similarly to how the RankNet algo-
rithm works, this uses a neural net with two layers

5

of hidden rectified linear activation units is used.
In the same manner as before; adam (Kingma and
Ba, 2014) a method of stochastic gradient descent
is used as the optimization algorithm.

In order to up the stakes, three different click
models will be created, all using the same training
data, however the dwell time will determine the la-
bels differently in each of the three scenarios. The
three click models that are proposed use the fol-
lowing three ’thresholds’ or cutoff points for deter-
mining what is considered a click and what is not
considered a click. Keep in mind that the goal of
the click model is not only to determine whether
the user will click on a document but also whether
the user subsequently found that document useful.
As we know from previous literature, a user will
likely examine a document that is highly ranked
but not relevant to the search, however, given that
they generally do not find what they are looking
for, the user will leave shortly after.

The data extracted is compounded average dwell
time per user on a document. As these are averages,
and a user is unlikely to interact with a document
very long if they do not find what they are looking
for, it stands to reason that the longer a user spends
on a document, the more relevant they found it.

Given this information, the three different pro-
posed click models use three different cutoff points
to determine what is a click. First, any dwell time
above zero is considered a click. This postulates
that any interaction with a document signifies that
a user is interested in the information contained
therein and the interaction means they have found
what they were looking for. The second proposed
click model uses 10 seconds as a cutoff point. This
model postulates that any user interaction longer
than 10 seconds is considered as an indicator that
a document has been relevant to a user. Lastly, the
third click model uses 25 seconds as a cutoff point,
postulating that any document with average user
interaction lasting 25 seconds or longer is consid-
ered a document that has fulfilled the user’s infor-
mation need.

These relevance cutoffs are what replaces the rel-
evance label on the same base dataset that is used
for ranking. To be clear, the original relevance la-
bel of the dataset as used in the ranking model
and as presented in Table 2.1 is entirely removed
and not considered for this portion of training. It
is replaced with the binary consideration described

here. For example, regardless of the relevance label
that was present on the document beforehand, now
the labels are binary and determined by dwell time.
The label is either a 0 or a 1, 0 if something is not
considered a click, and 1 if something is considered
a click. As an example, consider the following; in
the 10 second cutoff click model a query-document
pair A with a previously assigned label of 0 has an
average user dwell time of 15.2 seconds, its label
therefore is 1. Conversely, document-query pair B
with a previous relevance label of 2 which has an
average user interaction time of 5 seconds, now has
a label of 0. Note that this is an example and not
an actual outtake of the dataset.

Contrasting again with the previous ranking
model, here the data is not grouped by query when
being considered for training. This is done for one
key reason. Whereas before, the labels assigned to
documents were query dependent, meaning that the
label applied to the document only when it is be-
ing considered in tandem with a specific query, the
dwell time is document specific and entirely inde-
pendent of query. This means that the training can
be done on arbitrary selections of data, rather than
using the queries for grouping.

3.3 Click Model as a Feature

For each of the three click models created, the click
model is used to predict whether or not a user will
interact with a document based on the threshold.
The output of this is then added as the 47th feature
in the LETOR 4.0 dataset. This is then considered
the transformed data with the additional feature
which is later used in ranking again.

In application, if this method is proven effective,
this would affect real search engine integration in
the following way; as compared to Figure 2.3, we
would be adding one additional element between
the document collection and the ranking system,
namely the click model. It would, in fact, sit be-
tween the Q-D Feature computation node and the
ranking system as the click model is dependent on
the current set of query-document features that are
already being considered.

The hypothesis is therefore posed that using the
output of a bi-class classifier trained on aggregate
user browsing data of documents as a feature in
training a ranking function will have an overall
positive effect on the performance (measured in

6

NDCG@100) of the ranking model.

4 Experimental Results

4.1 Datasets

All the results in this section are obtained using two
benchmark data sets from the LETOR 4.0 collec-
tion. Specifically, MQ2007 and MQ2008. The two
data sets in question are summarized in more de-
tail in Table 4.1. MQ2007 and MQ2008 have a com-
bined total of 2476 unique queries and 84834 query-
document pairs.

Dataset Features Queries q-d pairs Labels

MQ2007 46 784 15211 0,1,2
MQ2008 46 1692 69623 0,1,2

Table 4.1: Properties of LETOR 4.0 datasets

Both these datasets are, by default split into 5
subsets for cross validation. In this case, 5 fold val-
idation is used for both datasets.

4.2 Click Models

4.2.1 Dataset Transformations

For the purposes of the following tests, the MQ2007
and MQ2007 datasets were transformed in the fol-
lowing ways; the labels were replaced with value
judgments of either 0 or 1 (0 for no click and 1 for
click). These value judgments were assigned based
on average user dwell time on a certain document
and one of the three mentioned thresholds. First all
user interaction was considered a valid or relevant
click, then anything over 10 seconds average user
dwell time, then anything over 25 seconds average
user dwell time.

4.2.2 Experimental Data

Click Threshold Mean SD

All 0.54 0.00
10s 0.74 0.01
25s 0.94 0.00

Table 4.2: Click model accuracy statistical sum-
mary MQ2007

Click Threshold Mean SD

All 0.54 0.01
10s 0.81 0.02
25s 0.93 0.00

Table 4.3: Click model accuracy statistical sum-
mary MQ2008

Figure 4.1: MLP click model results

The click models were trained using a MLP with
two hidden layers with 128 and 64 rectified linear
units in each layer respectively, while the adam op-
timizer algorithm used default parameters. These
parameters were determined to be optimal after a
coarse parameter search. The output of the MLP
is a class judgment, either something is a predicted
click or it is not. As is evident from the results,
especially from Figure 4.1. The click model is a
bi-class classifier meaning that depending on the
data’s bias to one side or another (whether there
are more elements than half in either class), the
worst performance that the classifier would achieve
by simply guessing at random would be 50%. There
is a mark on the plot to indicate this. Based on
this, clearly the click model that counts every sin-
gle user interaction as a click has no relation to the
features of the dataset. As shown by both Figure
4.1 and Tables 4.2 and 4.3, the click model shows
a marked improvement in accuracy when the re-
quirements for something being considered a click
are tightened and any user interaction shorter than
10 seconds is dismissed as irrelevant. Further step-
ping up the threshold for what is considered a click
to 25 seconds of user interaction shows even clearer

7

improvement, clearly there is a correlation between
features of a document and some aspect of why a
user would spend on average more than 25 seconds
on a document.

While the low standard deviation of the click
model with no threshold hints towards a ’lucky
guess’ scenario where there may be some corre-
lation between any click interaction at all and a
document’s features. The classifier’s performance
is so poor, however, that this fact alone makes it
useless by default. While the 25 second threshold
model shows certain promise, the 10 second thresh-
old model may still lead to confounding output
down the line given its middling performance and
score.

4.3 Ranking Models

4.3.1 Dataset Transformations

As is implied by the nomenclature, the baseline test
leaves the dataset entirely unchanged for an initial
test of ranking performance. The consequent tests,
however, were performed using a modified version
of the dataset. For each of the three proposed click
models, the dataset was transformed once. All the
labels stayed in their original orders, however the
feature vectors of each data point were expanded by
one to make room for the click model output, the
ranking is now being performed with 47 features
instead of 46.

4.3.2 Experimental Data

Dataset Mean SD

MQ2007 0.402 0.03
MQ2008 0.416 0.03

Table 4.4: Baseline NDCG@100 measures

First, we aim to establish a baseline performance
for the ranking algorithm on the desired datasets so
it can then be compared to the performance once
the additional feature is added by means of the pro-
posed click models. All ranking functions described
here were trained using an implementation of the
RankNet algorithm using two hidden layers of recti-
fied linear units numbering 512 and 128 per hidden
layer respectively. Again, these parameters were de-
termined by a coarse parameter search and adam,

the optimizer, is again using default parameters for
this.

Dataset Mean SD

MQ2007 0.339 0.02
MQ2008 0.366 0.03

Table 4.5: NDCG@100 for ranking using All
click model

Dataset Mean SD

MQ2007 0.3353 0.030
MQ2008 0.4001 0.028

Table 4.6: NDCG@100 for ranking using 10s
threshold click model

Dataset Mean SD

MQ2007 0.3209 0.032
MQ2008 0.3849 0.030

Table 4.7: NDCG@100 for ranking using 25s
threshold click model

What has become clear from the data acquired is
that the click model does seem to have an impact
on ranking performance, however it is immediately
apparent that this influence is not positive. This
can be confirmed by performing a paired t-test on
the mean NDCG@100 scores obtained. The results
of these tests conclude there is a statistically signifi-
cant difference in means. These statistical tests can
be reproduced given the data in Tables 4.4 through
4.7

There are some anomalies in the first fold of cross
validation for two of the 10 second and 25 second
click models trained on MQ2008 data, however this
anomaly seems to entirely disappear by the third
fold of testing. This likely means that the small size
of the dataset allowed for some over-fitting early
on, however this appears to have evened out to-
wards the end. The overall mean of the data ob-
tained from those two tests is still smaller than the
baseline tests in a statistically significant manner.
The larger MQ2007 dataset seems to perform over-
all consistently worse with the click model output
than the considerably smaller MQ2008 dataset.

What further shows that the click model does
have some impact on the ranking is that despite

8

Figure 4.2: Comparison of all the ranking mod-
els with and without the additional features
added by the click models

the five fold validation, the results are consistently
worse. The statistically significant nature of the dif-
ference in means shows this overwhelmingly mean-
ing that while overall the click model is a confound-
ing variable it appears to succeed just often enough
in the wrong ways to skew the end results.

5 Conclusions and Further
Research

In conclusion, this paper shows that a ranking algo-
rithm and a click model differ in the scope of their
consideration. While a click model, at least the one
explored here, covers the scope of a document. It
does not achieve the granularity of query level rep-
resentation. With aggregate interaction data, how-
ever, it can still perform some useful overview like

finding the ’cream of the crop’ of relevant docu-
ments quite reliably. This comes with the draw-
back that outside this application, the performance
of the click model is mediocre at best. A ranking
function, on the other hand must consider docu-
ments in the context of queries in order to achieve
its best performance. The portion of the explo-
ration delving into the possibility of integrating the
two methods by using the output of a click model
as a feature in query-document pair ranking has
shown, with overwhelming evidence that using doc-
ument level relevance judgments in a more granu-
lar, query-document oriented ranking environment
serves as a confounding variable and, in fact, dete-
riorates the performance of the ranking algorithm.

Future explorations should be focused on one
or both of the following; using a continuous
output click model rather than a classifier and
the possibility of obtaining a dataset where the
URL/document dwell time is aggregated at a query
dependent level and not simply on a document level
of granularity.

References

Nir Ailon. An active learning algorithm for ranking
from pairwise preferences with an almost optimal
query complexity. Journal of Machine learning
Research, 13:137–164, 2012.

Lars Buitinck, Gilles Louppe, Mathieu Blondel,
Fabian Pedregosa, Andreas Mueller, Olivier
Grisel, Vlad Niculae, Peter Prettenhofer, Alexan-
dre Gramfort, Jaques Grobler, Robert Layton,
Jake VanderPlas, Arnaud Joly, Brian Holt, and
Gaël Varoquaux. API design for machine learn-
ing software: experiences from the scikit-learn
project. In ECML PKDD Workshop: Languages
for Data Mining and Machine Learning, pages
108–122, 2013.

Chris Burges, Tal Shaked, Erin Renshaw, Ari
Lazier, Matt Deeds, Nicole Hamilton, and Gred
Hullender. Learning to rank using gradient de-
scent. Proceedings of the 22nd International Con-
ference on Machine learning, 22, 2005.

Aleksandr Chuklin, Ilya Markov, and Maarten
de Rijke. Click Models for Web Search. Morgan
& Claypool, 2015. ISBN 9781627056489.

9

Osman Ali Sadek Ibrahim and Dario Landa-Silva.
ES-rank: Evolution strategy learning to rank ap-
proach. Proceedings of the Symposium on Applied
Computing, pages 944–950, 2017.

Thorsten Joachims. Optimizing search en-
gines using clickthrough data. In Proceedings
of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and
Data Mining, KDD ’02, pages 133–142,
New York, NY, USA, 2002. ACM. URL
http://doi.acm.org/10.1145/775047.775067.

Diederik P. Kingma and Jimmy Ba. Adam:
A method for stochastic optimization.
CoRR, abs/1412.6980, 2014. URL
http://arxiv.org/abs/1412.6980.

Yan Pan, Hai-Xia Luo, Yong Tang, and Chang-
Qin Huang. Learning to rank with document
ranks and scores. Knowledge-Based Systems, 24
(4):478–483, 2011.

F. Pedregosa, G. Varoquaux, A. Gramfort,
V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

Tao Qin and Tie-Yan Liu. Introducing LETOR
4.0 datasets. CoRR, abs/1306.2597, 2013. URL
http://arxiv.org/abs/1306.2597.

Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. Letor:
A benchmark collection for research on learning
to rank for information retrieval. Information
Retrieval Journal, 2010.

Stephen Robertson and Hugo Zaragoza. The
probabilistic relevance framework: Bm25
and beyond. Found. Trends Inf. Retr.,
3(4):333–389, April 2009. ISSN 1554-
0669. doi: 10.1561/1500000019. URL
http://dx.doi.org/10.1561/1500000019.

J. Schmidhuber. Deep learning in neural networks:
An overview. Neural Networks, 61:85–117, 2015.
doi: 10.1016/j.neunet.2014.09.003. Published on-
line 2014; based on TR arXiv:1404.7828 [cs.NE].

Yining Wang, Liwei Wang, Yuanzhi Li, Di He, Wei
Chen, and Tie-Yan Liu. A theoretical analysis of
normalized discounted cumulative gain (NDCG)
ranking measures. 2013.

10

