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Abstract: This study investigates the benefit of fine-tuning encoders used in segmentation
networks prior to training on semantic segmentation data. The domain of the study is face
segmentation through pixel-wise labelling using three models: VGG16, VGG19, and ResNet-
50 as encoders. A cross- comparison study is performed where encoders trained previously on
Imagenet are compared with encoders trained on Imagenet followed by fine-tuning on a gender
recognition task. The dataset used for gender recognition is the CelebA dataset. The datasets
LFW and HELEN are used for face segmentation. It is demonstrated that segmentation networks
built on VGG16 and VGG19 obtain an average IoU increase of 3.9% and 11.0% respectively when
encoders are tuned on gender recognition prior to being used for face segmentation.

1 Introduction

Detection of faces in 2D images is a widely ex-
plored challenge in computer vision. It is a task
with a large range of applications from surveil-
lance, person recognition, and human-machine
interaction. Since their inception, convolutional
neural networks have demonstrated exceptional
performance on a large range of computer vision
tasks, outperforming previous hand-crafted feature
models (Schmidhuber, 2014). Face detection is
a problem particularly well suited for machine
learning using convolutional neural nets. In recent
years it has been demonstrated that the so-called
fully convolutional neural networks can be trained
to solve the problem of semantic segmentation
(Long, Shelhamer, and Darrell, 2014). This task
involves the pixel-wise prediction of classes in
images and is an attractive choice for detecting
faces. Unlike bounding-box proposals that can
determine where a face appears using a rectangle,
semantic segmentation allows for localization of
faces with pixel-wise precision.

1.1 Contributions of this paper

This paper investigates how a fully convolutional
neural network used for face segmentation bene-

fits from fine-tuning on a related task prior to be-
ing trained for segmentation. It has been shown
that attribute-aware networks can be constructed
by training convolutional networks to perform some
face-related classification task (Yang, Luo, Loy, and
Tang, 2015). By stacking convolutional layers, ob-
ject locations can be very roughly estimated by up-
sampling the output activations (Zeiler and Fer-
gus, 2013). The present study leverages this tech-
nique in the pursuit of training semantic segmen-
tation networks. The fully convolutional models in
(Siam, Gamal, Abdel-Razek, Yogamani, and Jager-
sand, 2018) and (Long et al., 2014) use weights
pretrained on the Imagenet dataset. The Imagenet
dataset does not explicitly label “face” as a class.
The aim of this study is therefore to investigate
how a segmentation network improves from using
weights pretrained on both Imagenet and a gender
recognition task.

The models used for gender recognition fine-tuning
are VGG16, VGG19 (Simonyan and Zisserman,
2014) and ResNet-50 (He, Zhang, Ren, and Sun,
2015a). The resulting convolutional layers are then
used as encoders upon which three segmentation
networks are constructed. The study proceeds by
comparing the models’ learning curves and perfor-
mance, before and after the fine-tuning on gender
data. A comparison is conducted across two bench-



mark datasets, LFW (Huang, Ramesh, Berg, and
Learned-Miller, 2007) and HELEN (Vuong Le and
Huang, 2012), and for each dataset the performance
of a model is measured with and without hair being
labelled as part of the face. The results obtained
are used to compare the training times and vali-
dation IoU-scores across fine-tuned and non fine-
tuned models.

1.2 Localizing objects using deep,
upsampled convolutions

The paper which demonstrated the potential for
face-attribute aware networks and subsequently in-
spired the work of this thesis is “From Facial Parts
Responses to Face Detection: A Deep Learning Ap-
proach” by (Yang et al., 2015). Their study showed
that by combining the upsampled activations from
the deepest layers in multiple CNNs trained on fa-
cial parts recognition, a heatmap is created with
localized responses from each CNN. The convo-
lutional networks in their study were based on
AlexNet (Krizhevsky, Sutskever, and Hinton, 2012)
and were trained, respectively, on tasks such as de-
tecting the type of hair of a subject or the type of
mouth. In this study we combine this method with
transposed convolutions in order to perform pixel-
wise labelling of faces using a “gender-aware” en-
coder. To the best of our knowledge, no research has
been done measuring how a segmentation network
performs given domain-aware encoders. In most lit-
erature, the task of a segmentation network is to
label pixels of a large amount of classes, such as in
(Long et al., 2014). Other work in the literature at-
tempts to benchmark the computational efficiency
of fully convolutional networks (Siam et al., 2018).

1.3 Outline

Section 2 describes the previous work done in the
field relevant to this study. The models and experi-
ments are described in sections 3 and 4 respectively.
The results of the study are presented in section 5.
Section 6 concludes this paper and describes possi-
bilities for future work.

2 Previous Work

2.1 Convolutional neural networks

Convolutional neural networks used for feature ex-
traction have been overwhelmingly successful in the
field of computer vision since their original intro-
duction in (Lecun, Bottou, Bengio, and Haffner,
1998). Convnets constitute a large part of modern
machine learning and over the years many archi-
tectures based on convolutional layers have been
designed to solve difficult detection and classifica-
tion problems. Ciresan et al. were one of the first
to show the potential of training deep nets using
graphical processing units (GPUs) (Ciresan, Meier,
Gambardella, and Schmidhuber, 2010). In 2012,
Krizhevsky et al., (2012) revolutionized the field
by winning the 2012 ILSVRC competition using a
deep network trained on GPUs using the dropout
regularization method. These important studies set
the ground for the deeper models VGG16/19 (Si-
monyan and Zisserman, 2014) and ResNet-50 (He
et al., 2015a) used in this paper. It has been demon-
strated that deep Convnets can achieve human
performance in recognizing faces (Taigman, Yang,
Ranzato, and Wolf, 2014) and that Convnets can
achieve state of the art performance on gender
recognition under large pose-variation (v. d. Wolf-
shaar, Karaaba, and Wiering, 2015).

2.2 Fully convolutional neural net-
works

Previous methods of performing semantic seg-
mentation used so-called “patch classification”, in
which each pixel would have its class predicted
given an image of the surrounding pixels (Cire-
san, Giusti, Gambardella, and Schmidhuber, 2012).
This method, however, requires images of a fixed
size due to the fully connected layers in the classi-
fier. In 2014, (Long et al., 2014) showed that neu-
ral networks consisting solely of convolutional lay-
ers can exceed the previous state of the art perfor-
mance on the PASCAL VOC dataset with a mean
ToU score of 62.2%. Fully convolutional neural net-
works use transposed convolutions, also known as
deconvolution. By transforming the max-pooling
outputs from feature to label space using 1 x 1 con-
volutions as explained in (Szegedy, Liu, Jia, Ser-
manet, Reed, Anguelov, Erhan, Vanhoucke, and



Rabinovich, 2014), a mapping is created where a
max-pooling layer with dimensions W x H x Depth
is transformed into W x H x K, where K is the
number of classes. At this stage, transposed convo-
lution takes place which can be seen as a backwards
strided convolution using trained kernels (Long
et al., 2014). The output of such a network will be
the same size as the input image and with a depth
equal to K.

2.3 Face segmentation in images

Smith and Yang (2013) and Nirkin, Masi, Tran,
Hassner, and Medioni (2017) have explored face
segmentation. Smith and Yang (2013) proposed an
algorithm using a database of exemplar-based face
images with corresponding segmentation masks.
The algorithm determines the probability of a pixel
belonging to a facial parts label, such as mouth,
eyes or nose, by performing comparisons between
other aligned face masks in the exemplary dataset.
The largest contribution of (Smith and Yang, 2013)
was the extension of the HELEN dataset (Vuong Le
and Huang, 2012) by providing pixel-wise labels for
future work as well as showing that segmentation
masks are at least as informative as the previous
standard of using landmark notations for mouths,
eyes etc.

In (Nirkin et al., 2017), the authors demonstrated
that a fully convolutional neural network, namely
the FCN8s architecture from (Long et al., 2014),
could outperform previous handcrafted methods
given a rich enough dataset of training images.
By picking out faces from the IARPA Janus CS2
dataset they managed to provide their network
with 9818 training images, a considerable increase
from previous benchmark datasets (Huang et al.,
2007), (Vuong Le and Huang, 2012).

3 Architectures

In this study, the encoder-decoder architecture is
adopted to provide means of quantitatively re-
searching the effects of gender-aware feature ex-
tractors. Three models are considered as the en-
coder parts of the networks and a singular decoder
is used for a direct comparison. The encoders re-
ceive an image as input and produce pooling acti-
vations which are later upsampled by the decoder
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Figure 3.1: A comparison between the dimen-
sions of the VGG16/19 decoder and the ResNet-
5050 decoder.

and used to perform pixel-wise labelling of the im-
age.

3.1 The segmentation decoder

The decoder used in this paper is based on the
FCN32 architecture devised by Long et al. (2014).
Like the FCN32 model, only the final layer of
the encoder is used to upsample the features into
segmented-image space. The layers of the decoder
can be seen in figure 3.1. The decision not to
include the skip-connections proposed by (Long
et al., 2014) was to avoid the need to tune the
corresponding layers of the encoders during gender
classification. As such the resulting decoder does
not have access to the fine-grained features of the
architectures FCN16s and FCNS8s.

Once the activations from the encoders are pro-
duced (with respective output dimensions as seen
in figure 3.1), a 1 x 1 convolution takes place. This
is a learned convolution which transforms the input
from feature space to label space. This convolution
does not use a neuron activation function and
the kernel weights are initialized using He normal
initialization (He, Zhang, Ren, and Sun, 2015b)
and L2 regularization to avoid overfitting (Cortes,
Mohri, and Rostamizadeh, 2012).

The transposed convolution, as explained by (Long
et al., 2014), uses a singular filter with kernel size
k = {64,64} and stride s = 32 (hence the name
FCN32). This layer uses a sigmoid activation to
map each pixel value to {0 : background, 1 : face}.
The weights in the transposed convolution layer
are initialized to perform bilinear interpolation.
This entails that without training the transposed
convolution layer will initially magnify the output



from the 1 x 1 convolution into an image of 7 x 7
squares with a total dimension of 224 x 224. The
motivation behind using such a weight initializa-
tion is to reduce training time by initially telling
the decoder to upsample the accumulated pool-
ing activations resulting from the 1 x 1 convolution.

3.2 The gender classifier

Using the feature extractors from the architectures
VGG16, VGG19 and ResNet-50, a gender classifier
is implemented with the intention of fine-tuning the
final convolutional layer and the residual block of
VGG16/19 and ResNet-50 respectively. The classi-
fier is built as an MLP with the following layers:
Flatten: The first layer receives as input the final
max-pooling layer of VGG16/19 and in the case of
ResNet-50, the final average pooling layer of the 5th
residual block. The dimension of the output is flat-
tened from {7, 7, 512} to {25088} for VGG16/19
and from {1, 1, 2048} to {2048} for ResNet-50.
Fully Connected 1: A fully connected layer with 10
neurons (5 for VGG16) using the ReLU activation
function (Nair and Hinton, 2010).

Fully Connected 2: A fully connected layer with 5
neurons using a sigmoid activation function.
Softmaz: Two output neurons signify the classes
Male and Female represented as 1 and 0 respec-
tively. Using softmax, the output of the network can
be interpreted as a probability distribution across
the two classes. The parameters for the gender clas-
sifier were chosen through experimental trials with
the aim of keeping the amount of parameters in the
MLP as low as possible.

The motivation for the final parameter settings
is to enforce as much adaptation on the feature
extractors as possible during training on gender
recognition. If the amount of parameters in the

Table 3.1: Number of trainable parameters in
each layer of the gender classifiers.

Architecture
Layer VGG16 \ VGG19 \ ResNet-50
Conv. 7,079,424 | 9,439,232 14,976,000
FC-1 125,445 250,890 20,490
FC-2 30 55 55
Softmax 12 12 12

MLP is too high the network will be able to achieve
high accuracy without discovering useful features in
the final convolutional layers.

During training, all layers in the respective archi-
tectures are “frozen” except for the final convolu-
tional blocks of VGG16/19 and the final residual
block of ResNet-50. This entails that error infor-
mation only propagates through the MLP and the
final, unfrozen, blocks of the feature extractors. The
amount of trainable parameters in these final con-
volutional blocks can be seen in table 3.1 along with
the parameters of the MLP for gender classification.

3.3 VGGI16

The first architecture considered as an encoder for
the segmentation network is VGG16 (Simonyan
and Zisserman, 2014). This architecture was pro-
posed in 2014 and has since been used as a bench-
mark encoder network for semantic segmentation
(Long et al., 2014), (Siam et al., 2018). VGG16
was originally proposed by (Simonyan and Zisser-
man, 2014) as an extension of the work done by
(Krizhevsky et al., 2012). It proposes the notion of
using several 3 x 3 convolutions after another to
mimic the effect of a singular, larger kernel such as
the ones used in (Krizhevsky et al., 2012). In (Long
et al., 2014), this network, among others, was recon-
structed into a fully convolutional neural network
and achieved state of the art performance with a
mean IoU score of 56.0 on the PASCAL VOC 2011
dataset (Everingham, Van Gool, Williams, Winn,
and Zisserman) with 21 classes.

The process of converting VGG16 to a fully convo-
lutional network was to discard the final classifica-
tion layer (with 1000 outputs) and converting the
two hidden layers of 4096 neurons each to convo-
lutional kernels with size 7 x 7 and stride s = 0.
Intuitively this can be seen as using convolutions
where each feature map behaves as a singular hid-
den neuron fully connected to its input (which in
the case of VGG16/19 and ResNet-50 is 7 x 7 in
size from the final pooling layer). This network, to-
gether with the encoder described in section 3.1,
has approximately 134 million parameters.

In this study, the resulting FCN32s network has
been further reconstructed by discarding the final
convolutional layers and applying 1 x 1 convolution
directly to the final pooling layer of VGG16, fol-
lowed by transposed convolution. This is a design



choice intended to leverage the final convolution
layer of VGG16 rather than the one proposed by
(Long et al., 2014) as to allow a direct comparison
between the gender-tuned versus non-gender-tuned
convolutional layers. Following this reconstruction
of the FCN32 architecture, the amount of param-
eters is equal to the ones in the VGG16 feature
extractor (= 14 million) with the addition of the
1 x 1 convolution and the transposed convolution
(513 + 4096). This vast parameter reduction from
134 million to roughly 14.7 million is more suitable
for a segmentation task of frontalized faces as com-
pared to the previous parameter size used for 21
classes in unconstrained environments.

3.4 VGG19

The VGG19 architecture (Simonyan and Zisser-
man, 2014) is chosen as the second architecture for
this study due to its similarity with VGG16 and
the increased amount of learnable parameters in its
final convolutional block. The amount of parame-
ters tuned during gender recognition is 9.4 million,
as compared to the 7 million of the final convolu-
tional block of VGG16. It should be addressed that
the authors of (Long et al., 2014) did not observe
improvements of using VGG19 as an encoder com-
pared to VGG16, however since the segmentation
tasks of this study and the aforementioned work
differ we believe VGG19 is worth revisiting. The
method for reconstructing VGG19 into an encoder-
decoder network used for semantic segmentation is
identical to the one described in the previous sec-
tion.

3.5 ResNet-50

ResNet-50 (He et al., 2015a) is the 50 layers deep
version of the ResNet architecture. Along with
VGG16/19, this architecture is used in this study
as an encoder for a face segmentation network. The
ResNet-50 architecture utilizes skip connections to
feed forward the input to convolutional block; di-
rectly to convolutional block;;;. This entails that
in the case where convolutional block;’s optimal so-
lution is to approximate the identity function, the
weights of block; may be driven to 0 and block; 1
will receive the same input as block;. The ResNet-
50 architecture utilizes this technique in conjunc-
tion with bottleneck layers introduced by (Szegedy
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Figure 3.2: Bottleneck of ResNet-

layer
50/101/152 (He et al., 2015a).

et al., 2014). Figure 3.2 illustrates how ResNet-
50 performs 3 x 3 convolutions on a downsampled
set of features, drastically reducing computational
cost. The skip connection depicted illustrates how
ResNet-50 (and its deeper siblings) can grow very
large without suffering from the vanishing gradient
problem.

In this study, all layers of ResNet-50 except for the
fifth (and final) residual block are frozen during
tuning on gender recognition. The final layer of the
fifth residual block is followed by an average pool-
ing operation which is used as input to the decoder
when constructing the segmentation network. Fig-
ure 3.1 shows the output dimensions of ResNet-50
in relation to the decoder described in section 3.1.

4 Experimental Setup

The execution of this study utilized the Keras
python framework (Chollet, 2015), using Tensor-
flow as a backend (Abadi and Agarwal, 2015).

4.1 The CelebA dataset

The dataset CelebA (Liu, Luo, Wang, and Tang,
2015) is used for training and evaluating the gen-
der classifiers. From the CelebA dataset consisting
of over 200,000 images, a subset of 12,000 images
are extracted. 10,800 images are used for training
the gender classifiers and 1200 images are used for
validation. The dataset contains images of celebri-
ties with a rich set of backgrounds and facial-pose
variations. Out of the 40 labeled attributes avail-
able to each image, only the gender class is used.



Figure 4.1: Image of Dave Williams with the
mask from LFW (Huang et al., 2007).

4.2 The LFW dataset

The first dataset used for training and validation
of the face-segmentation models is a subset of the
Labelled Faces in the Wild dataset (Huang et al.,
2007) with corresponding pixel-wise label annota-
tions. This dataset contains 2927 images, out of
which 2634 images (90%) are used for training and
293 images are used for validation. This dataset
contains initially 3 classes for each label mask:
background, hair, and face. The hair-class also in-
cludes facial hair. See Figure 4.1 for an example of
an input image and its corresponding label mask.
All images of LEFW have been resized to 224 by 224
pixels.

4.3 The HELEN dataset

The second dataset used for training and valida-
tion is a subset of the HELEN dataset (Le and
Huang, 2012) of facial landmarks (Smith and Yang,
2013). This dataset is used to increase the robust-
ness of this study and to strengthen the power of
the experimental results. The full dataset of seg-
mented images consists of 2330 images from which
2097 (90%) of the images are used for training and
233 images are used for validation. Due to the na-
ture of the dataset, some pre-processing was neces-
sary to fully utilize the provided labels. The original
dataset labelled facial parts against the background
and provided 11 label masks for each input image.
These masks contained separate labels for each eye,
the nose, the hair and seven other designated facial
parts. Each label mask provides each pixel a contin-
uous label from 0.0 to 1.0 representing the degree
to which a pixel belonged to either, for example a
nose or a cheek. For this study, each pixel which

has an agreement with a facial part of at least 0.5,
as compared to being background, was set to 1.0,
indicating that the pixel should be labelled as part
of a face. Just as with the LFW dataset, all images
used have been resized to 224 by 224 pixels.

4.4 Optimizers and loss functions

When training the gender classifiers and the face-
segmentation models, binary cross entropy is used
as the loss function:

—y x log(p) — (1 —y) x log(1 —p) (4.1)
For segmentation, this loss function can be seen as
a two-dimensional grid of single, binary classifica-
tions for classes face and mon-face for each pixel.
Other loss-functions have been proposed in the lit-
erature such as the softmax- cross entropy loss in
(Long et al., 2014) for multiple classes or the work
of (Atiqur Rahman and Wang, 2016) which demon-
strates that IoU-loss can be directly optimized and
differentiable for segmentation. This study advo-
cates the use of sigmoid activation functions and
binary cross entropy loss to increase the compara-
tive validity of the research.
The optimizer used is the RMSprop optimizer pro-
posed in a Coursera course from 2012 (Tieleman
and Hinton, 2012). The purpose of this optimizer
is to keep a running average of squared gradients
used so far and to divide the current gradient up-
date with the current average as to ensure that
all weights are updated more or less equally. For
this study, the default recommended values for the
decay rate was set to A = 0.9 whereas the learn-
ing rate a was set to 0.0001 through trial exper-
iments. It was found that using stochastic gradi-
ent descent through tweaking of parameters based
on the ones used by (Long et al., 2014) did not
achieve comparable learning results across differ-
ent model types. RMSprop appears to behave more
consistently across different training sessions and
was therefore selected as the optimizing function.

4.5 Models for gender recognition

The first stage of this study is to train gender clas-
sifiers using the dataset CelebA (Liu et al., 2015)
and the architectures VGG16/19 and ResNet-50.
The models are constructed as described in section



3.2 and trained using a batch size of 200 images.
Each gender classifier was set to terminate its train-
ing if the model did not show a decrease in the loss
on the validation data for longer than 20 epochs.
During training, the weights currently performing
best (highest accuracy) on the validation data are
saved. The results of the gender recognition train-
ing on CelebA can be seen in table 4.1. The epoch
listed in the 2nd column refers to the last epoch in
which the model improved on validation data be-
fore training was terminated. It can be seen that
with the least amount of epochs, VGG16 outper-
forms the other two models with an accuracy of
97.5%. All models perform well on the classifica-
tion task and further comments on potential im-
provements of this training are discussed in section
6.2.

4.6 Models for face segmentation

Training of the segmentation models was divided
into eight distinct experimental conditions. The
steps for each model (VGG16, VGG19 and ResNet-
50) are as follows:

1. Construct the model into a segmentation net-
work following the method in section 3.1.

2. Freeze all layers in the encoder.

3. Train the control model without using gender
tuned weights:

(a) Train on the LFW-dataset while includ-
ing hair in the face label-mask

(b) Train on the LFW-dataset without in-
cluding hair in the face label-mask

(¢) Train on the HELEN-dataset while in-
cluding hair in the face label-mask

(d) Train on the HELEN-dataset without in-
cluding hair in the face label-mask

Table 4.1: Results for gender recognition on val-
idation data

| Architecture | Epochs trained | Accuracy |
VGG16 23 97.50%
VGG19 26 96.58%
ResNet-50 32 94.42%

4. Record the segmentation output, IoU-score
and training curves for each session.

5. Train a gender-tuned model by initializing the
encoder with weights from gender training on
CelebA

6. Repeat step 2-4 using gender-tuned model.

All segmentation models were trained under the
conditions that training could take no longer than
20 hours on a single NVIDIA k40 GPU, using
a batch size of 200. Training was stopped when
the validation IoU-scores did not increase over 50
epochs. The decision to freeze all layers of the
encoder during segmentation training was made
to ensure that the influence of gender-tuned en-
coders could be directly compared to the control
models. Allowing gradient updates from error on
LFW/HELEN-data was shown to eventually have
such a large influence on the encoders that the fi-
nal difference in performance became indistinguish-
able. This occurred after a relatively large amount
of epochs making only the first few epochs compa-
rable in terms of model performance.

5 Results

In this section, the models trained without prior
gender tuning are referred to as control models and
the models trained with prior gender tuning as gen-
der models.

5.1 Intersection over union scores

This study uses the validation data to report IoU-
scores. For each epoch of training, the IoU score is
calculated on the validation set of the LFW and
HELEN datasets as a mean IoU across all pre-
dictions and corresponding labels of the validation
data.

Table 5.1: Validation IoU scores for VGG16

Model LFW HELEN
Hair | No hair | Hair | No hair

Control | 0.638 0.588 | 0.534 0.552
Hair | No hair | Hair | No hair

Gender | 0.660 0.625 | 0.542 0.578




Table 5.1 shows the maximum achieved IoU
scores under the training constraints presented in
section 4.6 for VGG16. Tables 5.1/2/3 contain the
maximum IoU scores for all models. By maximum
TIoU we mean the IoU score on validation data at
the final epoch in which the model improved on the
validation set. It is important to note that the val-
ues presented in tables 5.1/2/3 have been rounded
to the nearest 3rd decimal point for readability. For
both datasets and for both conditions of inclusion
of hair, the IoU score is higher for the gender model
as compared to the control model with an average
increase of 3.9%.

The same trend is observed in Table 5.2 for the
VGG19 encoder. All IoU validation scores have in-
creased with an average of 11.0%. The reported av-
erage improvements in IoU were calculated by com-
puting, for each model, the difference in IoU scores
between gender models and control models (as re-
ported in tables 5.1/2/3) and averaging the results
by dividing the sum of differences by 4 (for each
experimental condition).

The results of using ResNet-50 as an encoder can
be seen in Table 5.3. Clearly, there are no significant
changes in IoU across the control model and the
gender model. A more detailed analysis follows in
section 6.

5.2 Comparison of training epochs
5.2.1 VGG16

The training curves for the segmentation network
using VGG16 as encoder can be seen in Fig. 5.1 and

Table 5.2: Validation IoU scores for VGG19

Model LFW HELEN
Hair | No hair | Hair | No hair

Control | 0.605 0.538 | 0.514 0.515
Hair | No hair | Hair | No hair

Gender | 0.663 0.626 | 0.547 0.575

Table 5.3: Validation IoU scores for ResNet-50

Model LFW HELEN
Hair | No hair | Hair | No hair

Control | 0.671 0.604 | 0.581 0.587
Hair | No hair | Hair | No hair

Gender | 0.671 0.604 | 0.581 0.587
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Figure 5.1: Validation IoU over epochs for
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Fig. 5.2. It can be seen that the HELEN dataset
has proved to be more challenging for our model
to segment. For the LEFW-dataset, images contain-
ing hair have been easier to segment compared to
images without hair, the opposite observation can
be made for the HELEN dataset. Overall, on both
datasets, the VGG16 based model demonstrates a
head-start in validation accuracy for the gender
model. The slope of the IoU increase over epochs
is comparative across all conditions. However, the
gender model reaches, and surpasses, the peak of
the control model roughly 250-300 epochs earlier.



5.2.2 VGGI19
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VGG19 encoder using LFW
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Figure 5.4: Validation IoU over epochs for
VGG19 encoder using HELEN

Looking at Fig. 5.3, the amount of training
epochs required to reach peak IoU with the control
model is comparable with the results of VGG16.
The VGG19 model does not however demonstrate
the head start observed with the VGG16 models.
The validation IoU over epochs fluctuates for the
gender models until a smoother curve can be ob-
served at around 50 epochs. This indicates that the
gradient updates are becoming more stable and the
gender models, under respective conditions, begin
to slowly climb to their eventual peak IoU-scores.
Note: the abrupt stop of the No hair, no gender

tuning curve in Fig. 5.3 is due to the model no
longer improving past that point, as such, train-
ing was terminated. The corresponding IoU score
in table 5.2 has been rounded to the nearest 3rd
decimal point. Overall the VGG19 model appears
to perform at least as good as VGGI16 across all
experimental conditions and datasets.

5.3 ResNet-50

07 Encoder: ResNet - LFW - Validation loU/epoch
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Figure 5.5: Validation IoU over epochs for
ResNet-50 encoder using LEW
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Figure 5.6: Validation IoU over epochs for
ResNet-50 encoder using HELEN

As can be seen in Fig. 5.5 and in Fig. 5.6, the
models using ResNet-50 as encoder neither im-
proves or decreases in IoU-score on the validation



set. The learning curves are in fact virtually identi-
cal and have for visibility been plotted as a singular
line for control model and gender model.

5.4

Segmentation results

(b) Label mask

(c) Control: prediction (d) Gender: prediction

(e) Control: error

(f) Gender: error

Figure 5.7: Face segmentation using VGG16
trained on LFW including Hair (best viewed in
color), validation IoU of 66.0%.

To demonstrate the validity of the resulting mod-
els, predictions are plotted as seen in Fig. 5.7. In
Fig. 5.7e and Fig. 5.7f the false positives have been
highlighted in green and the false negatives in red.
It can be seen that for this particular example,
the gender tuned model has noticeably decreased
in false positives, however the ear and parts of the
hair of the subject have been incorrectly labeled as

non-face.

6 Conclusion and Future work

6.1 Interpretation of results

This study compared the performance and train-
ing times of face segmentation networks fine-tuned
to perform gender recognition using the CelebA
dataset (Liu et al., 2015) prior to being trained to
segment faces using the LFW (Huang et al., 2007)
and HELEN (Vuong Le and Huang, 2012) datasets.
The segmentation networks were built upon the
encoders (feature extractors) of the architectures
VGG16, VGG19 (Simonyan and Zisserman, 2014)
and ResNet-50 (He et al., 2015a). IoU-scores on val-
idation data from the aforementioned datasets and
training epochs were compared across models pre-
viously trained on the Imagenet dataset and mod-
els trained on Imagenet followed by fine-tuning on
gender recognition. The results showed that tun-
ing on gender recognition on a separate dataset
gives a VGG16-based face segmentation network
a "head-start” during training. In the case of a
VGG19 based model, the gender-tuned model ini-
tially starts off worse but displays a steeper increase
in ToU over epochs and thus learns faster (and
better) than its corresponding control model. The
model using ResNet-50 as an encoder does not dis-
play faster learning times or an increase in IoU. The
performance has neither increased or decreased. We
believe that the vast amount of parameters in the fi-
nal residual block of ResNet-50 (approximately 15
million) requires much more than 10800 training
images on a gender-recognition task to fully develop
meaningful features.

In summary, the prior training on gender recog-
nition benefits models VGG16 and VGG19 by in-
creasing their validation IoU scores on LFW and
HELEN as well as reducing training epochs. On
ResNet-50 no change is observed and a more robust
experiment using more data is required to draw any
substantial conclusions on ResNet-50.

It is clear that the LFW dataset is more easily seg-
mented when hair is included in the label mask.
When hair is not included the IoU scores of all mod-
els is reduced for LFW. This trend is effectively re-
versed for the HELEN dataset. It was hypothesized
that, due to hair being a naturally dividing feature
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between males and females, the inclusion of hair in
the labels would lead to a much greater improve-
ment in segmentation for gender tuned models. The
results are however not indicative of such a trend.

6.2 Future work

The method proposed in this paper does not tune
layers in the encoder during training on segmenta-
tion data. This results in lower IoU scores, although
the model is still capable of classifying faces in an
image to a satisfying degree, see figure 5.7. The
amount of learnable parameters for the network
has also been significantly decreased for a direct
comparison. It can be easily demonstrated that a
model using a decoder with more parameters, such
as FCN32 (Long et al., 2014), will achieve a higher
ToU score on the LFW and HELEN datasets. How-
ever, this greatly diminishes the benefit of gender-
tuning and makes comparisons difficult. A natural
extension of this research is as follows:

e More challenging segmentation dataset:
LFW’s subset of segmented faces are mostly
centered in the image and face towards the
camera. This makes it easy to train models
that perform well on the dataset and the
benefit of gender-aware encoders is harder to
investigate.

e Increased difficulty of gender recognition task:
This paper only used 12000 images from the
202,000 images CelebA (Liu et al., 2015) due to
computational constraints. As of such learning
was done very quickly and the complexity of
the encoders did not reflect the complexity of
the gender recognition task (as evident from
table 4.1).

e Given the first mentioned extension, a more
sophisticated decoder is required to investi-
gate if the current state of the art performance
can be extended using gender-tuning. Using
the decoder from FCN32 proposed by (Long
et al., 2014), it is possible to achieve ToU scores
greater than 0.9 within only a few epochs, how-
ever, as previously mentioned, this will make
a comparison across differently tuned encoders
hard to perform.

e Using facial parts aware encoders: This is a
proposition to extend the work by (Yang et al.,

2015) by concatenating the convolutional out-
puts of smaller encoders trained to classify fa-
cial parts such as the type of nose a subject
has or the style of hair. By combining the out-
puts of many such networks and feeding the
activations into a deconvolution network, it is
hypothesized that a face segmentation network
should display a vaster improvement as com-
pared to the binary gender recognition tuning
presented in this study.
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