
Reinforcement Learning in the game Lines of

Action: Input Representations and Look-ahead

Bachelor’s Project Thesis

Remo Sasso, s2965917, r.sasso@student.rug.nl

Quintin van Lohuizen, s2701782, q.y.van.lohuizen@student.rug.nl

Supervisor: Dr M.A. Wiering

Abstract: This paper investigates the application of reinforcement learning to the
game Lines of Action by using a multi-layer perceptron (MLP). It investigates which
training and testing method leads the agent to perform best, while applying a tempo-
ral difference learning algorithm. Three opponents are created in order to determine
the most suitable training opponent: a random opponent, a fixed opponent and the
agent itself. Additionally, different kinds of input representations are fed into the
multi-layer perceptron, to see whether they affect the performance if used during
training. Lastly, a testing method is introduced where the agent uses a look-ahead
strategy. This allows the agent to perform a deep search, which may affect its perfor-
mance. For this research the temporal difference learning method TD(0) was used in
combination with an MLP. By using the training opponents as testing opponents,
the resulting performances showed that the agent learns best against itself. The
look-ahead play was tested in an identical manner, which produced a significant
improvement in performance against opponents that are not completely random.
Finally, we found that by training the agent with different game state representa-
tions, performance significantly increases when trained against a fixed opponent or
the random opponent.

1 Introduction

The field of reinforcement learning (RL) is con-
cerned with digital agents living in a sequential
time frame (Sutton and Barto, 1998). These agents
are put into an environment of which they may have
no prior knowledge whatsoever. By taking the ac-
tions made available to them, they explore this en-
vironment and learn how to function in it. Taking
such an action leads to a reward or punishment,
which teaches the agent how beneficial it was to
take that action. The goal of these agents is to max-
imize the rewards they obtain in the future, which
in turn, optimizes their behavior for the specified
problem. In that situation a very popular testing
environment in RL is games. As games either al-
ready are, or can easily be broken down into a se-
quential time frame, they serve as a perfectly suit-
able RL testing environment.

Due to their discrete and simple origin, board
games were a beloved application in the early years
of RL. Samuel (1959) was one of the first ones to
succeed in creating a program capable of learn-
ing to play a board game, checkers in his case.
This publication was important, as it introduced
methods later coined as temporal difference learn-
ing methods (TD-learning) by Sutton (1988). These
methods turned out to be very beneficial for agents
learning to play a board game, as it was the
core component of the remarkable world-champion
Backgammon program by Tesauro (1995). Tesauro
showed that by combining a multi-layer perceptron
with an RL method, above human level perfor-
mance can be achieved, allowing agents to compete
with experts in the game. This also applies to other
board games, such as chess Silver, Hubert, Schrit-
twieser, Antonoglou, Lai, Guez, Lanctot, Sifre, Ku-
maran, Graepel, Lillicrap, Simonyan, and Hassabis

1

(2017b), the game of Othello Buro (2003), checkers
Schaeffer, Hlynka, and Jussila (2001) and Go Sil-
ver, Huang, Maddison, Guez, Sifre, van den Driess-
che, Schrittwieser, Antonoglou, Panneershelvam,
Lnactot, Dieleman, Grewe, Nham, Kalchbrenner,
Sutskever, Lillicrap, Leach, Kavukcuoglu, Graepel,
and Hassabis (2017a). Despite many successful at-
tempts on the mentioned games, there are still
games out there which have received very few, or
no attempts at all. Winands, Kocsis, Uiterwijk, and
van den Herik. (2002) were the only ones who suc-
cessfully applied TD-learning on a less well-known
game called Lines of Action (LOA). They showed
that using TD-learning for tuning the weights of
their approximator improved their agent’s perfor-
mance significantly.
In this research we will teach an agent to be able
to play LOA with model-free RL, by making use
of TD-learning. That is, the agent will have no
prior knowledge and will learn over time how to
play. In order for an agent to learn to play a game
with RL, it is required to play a massive number of
games against a training opponent. We will com-
pare the agent’s performances of training against
several opponents. Additionally, we will investigate
whether enabling the agent to look several steps
ahead affects its performance. The look-ahead func-
tion took inspiration from the TD-Leaf algorithm
introduced by Baxter, Tridgell, and Weaver (1998).
Finally, we will experiment with what we like to call
meta-features (i.e. additional information about the
state of the game), in order to examine whether and
which meta-features affect the performance.
In order for the agent to learn to play LOA, an
opponent must be found that teaches the agent to
perform best. There are several possibilities for this,
which we can categorize into: random opponents,
fixed opponents and self-play. A random opponent
merely picks random moves, which is a quick way
for the learning agent to learn how to win. Fixed op-
ponents are more challenging opponents which use
a heuristic relevant to the game. Hence, the agent
will lose more often than with a random opponent
and thus also learns more frequently from losing.
Lastly, the agent can learn from playing against it-
self, which gives the agent an opponent which is
always equally as good as the agent itself. For at-
tempting to improve the agent’s performance even
further, we can supply the agent with the earlier
mentioned meta-features and look-ahead function.

These approaches and the differences among them,
will be the focus of this paper. This will help us
answer the following research questions:

• How do the performances of the learning agent
trained against different opponents compare to
each other?

• How do the performances of the learning agent
compare, when playing with and without a
look-ahead function?

• How do the performances of the learning agent
compare, when training with and without ad-
ditional meta features of the game?

Previous research has shown that with TD-
learning, in the game of Othello by van der Ree and
Wiering (2013), self-play results in the best per-
forming agent. We are interested in whether this
also applies to LOA. Winands et al. (2002) de-
cided to include meta-features in their valuation
function, thus contributing to estimations. In this
paper, similar features, are used as additional in-
formation for the neural network. The input layer
has extra neurons for this information, as well as
the output layer. Therefore this extra information
also contributes to the valuation of the game state.
The output layer will predict the value of the extra
input information. As we will include the features
in back-propagation, it will be interesting to ob-
serve how and whether performance is affected by
this approach. TD-Leaf applied during training, has
shown to be improving performance significantly by
Baxter et al. (1998), therefore it will also be com-
pelling to see whether the tree-search method for
finding the best move improves performance when
exclusively used in testing.
The remainder of this paper is organized as follows.
In section 2 we explain LOA. In section 3, the the-
ory behind the used methods is described. Section
4 describes the experiments that were performed
and section 5 shows the results. A discussion will
be presented in section 6, after which the conclu-
sions will be stated in section 7.

2 Lines of Action

Lines of Action is a zero-sum board game, played
on an eight by eight board. The information for

2

(a) (b)

(c)

Figure 2.1: A screen shot of: (a) Beginning state of
the game, each agent has twelve stones at its disposal.
(b) Middle stage of the game with the possible moves
of a single marked stone. (c) Terminal state of the game
where black got an 8-connectivity cluster and wins.

both players is complete, as there is no hidden ele-
ment in the game. It is played by two players alter-
nating turns in which one stone is moved. Figure
(2.1a) shows the beginning state of the game. A
stone may only move in a straight line. The num-
ber of steps a stone may traverse, is equal to the
total number of stones in that direction (no more
and no less). Figure (2.1b) shows all possible moves
for the stone that is marked. This includes jumping
over a friendly stone, whereas you are not allowed
to jump over enemy stones. An enemy stone is cap-
tured when a friendly stone lands on top of it. The
game is won by the first agent to connect all of its
stones or the agent who has one stone left. This is
validated with 8-connectivity, therefore the allowed
connections are: horizontal, vertical and diagonal.
Simultaneous connection of clusters is considered a
draw. Figure (2.1c) illustrates a cluster (terminal
state) formed by the black player. If both agents
alternate with a single stone between two locations
three times, the game is also considered a draw,
since no progress is made. The branching factor is
the amount of possible moves per board position,
Winands (2000), found it to be 36 in the beginning
of the game and 30 on average.

3 Methods

In this section the methods used in this research are
described with the corresponding theory. We will
first introduce reinforcement learning and the se-
quential decision making process that comes along
with it. What follows is a description and discussion
of temporal difference learning and the approxima-
tor used in this research. Next, the application of
these methods to LOA is presented, and lastly we
discuss in more detail the input representations and
the look-ahead strategy.

3.1 Reinforcement Learning

Reinforcement learning generally applies to sequen-
tial decision making problems. In such problems
there is an agent situated in some environment and
this agent has to take a decision every time step.
These decisions are considered as actions, which
lead to new states and a reward or punishment.
In a trial-and-error fashion, the agent attempts to
solve the given problem, while being guided by the
rewards and punishments. As such, over time the
agent will learn what the optimal policy is (i.e. most
desired sequence of actions) in order to solve the
problem, or rather, in order to maximize the total
reward it obtains in future time steps.
Such sequential decision making problems are usu-
ally converted into a mathematical construct called
a Markov decision process. These are constructed
as follows. Take S to be a finite set of states s ∈ S;
Take A to be a finite set of actions a ∈ A; Now
take Pa(s, s′) = Pat(st, st+1) to be the probabil-
ity of taking action a in state s at time t to result
in state s′ at time t + 1; Next we take Ra(s, s′)
to be the reward corresponding to the transition
from state s into state s′ after taking action a: Fi-
nally, we take γ ∈ [0, 1] to be the discount factor,
which specifies the degree of how future rewards
are considered less important than direct rewards.
What remains is the policy π, which tells the agent
what action a to take in a certain state s at time t:
at = π(st) .
Now the goal of the agent is to learn the optimal
policy: the policy with the maximum cumulative re-
ward. Therefore, for each policy π starting in state
st=0 the expected cumulative reward V π(s) has to
be determined. This is defined as follows:

3

V π(s) = E

[∞∑
t=0

γtRat(st, st+1)

]
(3.1)

In this equation, an action a in state s at time
t is determined by π(s). E[...] is defined as the ex-
pectancy operator. The optimal policy for the start-
ing state is the one where the expected cumulative
reward is the greatest.

3.2 Temporal Difference Learning

Temporal Difference Learning is a class of RL meth-
ods which train an agent to predict a quantity that
depends on future values. The agent thus learns
to predict the valuation of a given state, based on
the valuation of following states. The difference be-
tween the valuation of a given state and its follow-
ing state(s) is called the temporal difference error
(TD-error). The valuation of a state at a given time
step is updated with respect to the state of the
next time step, in order to decrease the TD-error
between them. In this manner, the agent learns to
predict the total amount of reward expected over
the future.
The simplest method of TD-learning is called
TD(0) (Sutton, 1988). In this method, the valu-
ation of a given state st is updated with respect
to only the valuation of state st+1 and the re-
ward rt+1, hence only the first following state. In
other TD-learning methods, future states (st+n,
where n > 1) are also taken into account such
as in TD(λ) (Sutton, 1988) or TD-Leaf (Baxter
et al., 1998). Also, in contrast to other TD-Learning
methods such as Q-learning (Watkins and Dayan,
1992) where the valuation of a state-action pair is
predicted, in TD(0) we only predict the valuation
of the state. These are the main reasons TD(0) is
considered the simplest method of TD-learning.
Before we discuss the valuation function of TD(0)
any further, it is important to note that when an
agent is playing a two-player game, the state st+1

denotes the state after the opponent also executed
an action. What follows is that the predictions
made are non-deterministic, as the transition to the
resulting state might have a positive or negative
reward depending on the opponent’s action. This,
however, poses no further problem for the TD(0) al-
gorithm as such state transitions will eventually ac-
quire lower valuations in comparison to state tran-

sitions which have yielded positive rewards more
consistently.
The TD(0) algorithm is defined as follows:

V (st) = V (st) +α(rt+1 + γV (st+1)−V (st)) (3.2)

Where V (st) is the valuation of state s at time t;
γ the discount factor described in section (3.1); α
is denoted as the learning rate, where α ∈ [0, 1];
And finally, rt+1 is the reward resulting from the
state transition, which therefore is the reward ac-
quired in time t+ 1. However, when an agent uses
this algorithm for learning, it also has to determine
which action to take in a given state. One would
assume that a good policy would be for the agent
to take the action that results in the state with the
highest state valuation. However, with such a pol-
icy the agent will follow one specific strategy which
only takes actions according to the states with the
optimal estimated valuation. This means that the
agent will not be able to learn any other strate-
gies and will therefore not be able to find a better
one. This is a well known problem in RL called the
Exploration vs. Exploitation dilemma: finding the
right balance between exploring new and exploit-
ing already known strategies. One solution for this
problem is a policy called the ε-greedy policy. This
policy makes the agent act greedy, in taking actions
that have the highest valuation estimates. However,
with a probability of ε, the agent takes a completely
arbitrary action, in order for it to explore different
strategies. Here ε is set to a value in the range [0, 1]
and may change over time.

3.3 Function Approximator

Some problems allow the values of each state tran-
sition to be stored in a look-up table. However, this
is simply not possible with larger space complexity
problems, since storing such a huge quantity of data
is not feasible. Lines of Action has a space com-
plexity of 1023 (Winands, Uiterwijk, and van den
Herik, 2001), therefore storing all states and their
valuations is not possible in any case. Additionally
the agent might encounter input patterns on which
it has not trained, hence it would have no knowl-
edge of which action is best to take in these states.
Therefore a generalization over the input patterns
is desirable. This can be achieved with an approx-
imation of the valuation of the input patterns. An

4

approximation ensures that the agent can deal with
states that it has not seen before. A multi-layer per-
ceptron (MLP) can estimate the valuation of an in-
put pattern instead of using a look-up table. This
enables the agent to generate sensible generaliza-
tions over the input patterns, when it is trained
sufficiently. The neural network learns to map the
state descriptions to the valuation of those descrip-
tions. These descriptions can be the plain game
state (8 × 8 board) or include extra descriptors,
such as the amount of moves a player is allowed to
make. A target value (TD-target) is computed ac-
cording to the TD-learning algorithm described in
3.2. The learning rate ’α’ in Equation 3.2 is set to
1.0, as the neural network already includes a learn-
ing rate. Therefore we can simplify Equation 3.2 to
Equation 3.3.

V NEW (st) = rt+1 + γV (st+1) (3.3)

Batch training is used to decrease the time needed
for training. A large number of games is played,
storing the game state before and after each move.
The neural network valuates the first state of the
state-pair and determines the valuation of the next
state. The valuation of the next state and its re-
ward form the TD-target V NEW (st) of state s at
time t. The TD-error between the TD-target and
the valuation of the first state is determined and
back-propagated through the neural network. This
changes the valuation of the first state in the state-
pair accordingly. Figure 3.1 illustrates the structure
of the network used in this research.

3.4 Application to Lines of Action

As mentioned earlier, an important fact to consider
in LOA is that it is a two-player game: only after
the opponent has made a move, the agent can find
itself in a new state. In a given state, we want to
determine what action to take, based on the valua-
tions of the states all actions lead to. Therefore we
need to introduce afterstates: the state of the game
after the player has made a move, but before the
opponent makes a move. As such the best move in
a state is the afterstate with the highest valuation.
Rewards are only provided in a terminal state (win
or a loss) and, as these states have no next state,
valuations of terminal states equal the reward’s
value. In all other cases the reward is zero, which
is why we can simplify Equation 3.3 even further:

Figure 3.1: The input layer is the size of the represen-
tation of the game state. The state is represented as an
array of length 64, in which a friendly stone has a value
1, an enemy stone -1 and a blank square 0. The hidden
layer contains 50 neurons and the output layer has one
neuron, which outputs the valuation of the game state.

V NEW (st) =

{
rt+1, if st+1 is terminal

γV (st+1), otherwise

(3.4)
Here the reward rt+1 is determined by:

rt =


1, if win

0, if draw

−1, if loss

(3.5)

Every turn excluding the first, the agent per-
forms:

1. Observe the current state of the game st

2. Determine for each afterstate s′t obtained from
st, the valuation V (s′t)

3. Perform action a according to a policy π

4. Compute the target value of the previous af-
terstate V NEW (st−1), using formula (3.4)

5. Determine current valuation of the previous af-
terstate V (st−1)

6. Determine the error
error ← V NEW (st−1) - V (st−1)

7. Use the error to adjust the neural network via
back-propagation

5

8. st−1 ← st

9. Execute the action resulting in the desired af-
terstate st

3.5 Learning from Opponents and
Self-Play

In order to find the most suitable opponent for
the agent, we compare three opponents it can train
against when playing training games. The following
three opponents are used in this research: a random
opponent, a fixed opponent using a heuristic, and
the agent itself.

1) Learning from a random opponent: A com-
pletely arbitrary opponent will allow the agent to
learn how to win relatively quick, as there is no real
competition from the opponent.

2) Learning from a fixed opponent: A fixed op-
ponent is more challenging than a random oppo-
nent as it may use a heuristic that works well for
the game. As such, the agent will learn how to deal
with an opponent that is more likely to win. There-
fore, the agent will also learn from losing, which in
turn allows for better strategic generalization pos-
sibilities.

3) Learning from Self-Play: When learning from
self-play, both agents share the same neural net-
work and both follow the algorithm described in
section 3.4. This allows for a doubled amount of
training material from a single game, as well as pro-
viding an opponent that is always equally as skilled
as the agent.

3.6 Look-ahead

Baxter, Tridgell, and Weaver published a chess
playing program in 1997 where they combined
TD-learning with minimax search, after which
they introduced the TD-Leaf algorithm (Baxter
et al., 1998). This algorithm integrated the orig-
inal TD(λ) algorithm with game-tree search. By
enabling an agent to perform searches in the game,
they gain an important ability we generally also
make use of in board games. Claims have been
made that this is one of the primary reasons for
programs to be able to compete with the best hu-
man players in the world, as has been shown in
games as Backgammon (Tesauro, 1995), chess (Sil-
ver et al., 2017b) and Go (Silver et al., 2017a). In

this algorithm they define the TD-target to be the
best move discovered by a limited ply game-tree
search, instead of the difference between the valu-
ation of two sequential states. The best move that
has been discovered in the specified depth is there-
fore one of the search-trees leaves, hence the name
TD-Leaf. The valuation of this leaf is then used to
update the valuation of the current state.
This inspired us to take this game-tree search idea
for finding the best move (or leaf) in the specified
depth, in order to enable our agent to perform deep
searches. However, due to the exponential increase
in the required computational power of this algo-
rithm, we decided to take the core concept of this
algorithm and convert it into a suitable tree search
for the agent, merely used for testing games. In this
paper we used a 3-ply search with pruning included,
working as follows:

1. Observe the current state of the game and
determine all possible moves (afterstates), of
which three afterstates are chosen with the re-
spective highest valuations.

2. For each of the three afterstates resulting from
step 1, determine the afterstate of the oppo-
nent with the lowest valuation (highest for the
opponent).

3. For each of the opponent’s afterstates deter-
mined in step 2, generate all possible after-
states and determine which move has the high-
est valuation of all the generated afterstates in
this step. If there are multiple leaves with this
valuation, pick one arbitrarily.

4. The best afterstate determined in step 3 re-
sulted from one of the afterstates determined
in step 1. Trace back to that corresponding
root-move and execute that move.

A simplified illustration of this tree search can be
found in the appendix (Figure A.1). In order to
make this search deeper, one could repeat steps 2
and 3. One thing worth emphasizing is that in this
search, it is assumed that the opponent takes the
best possible move which presumably will cause is-
sues if the opponent for example uses a random
strategy.

6

3.7 Input Representations

The performance of the agent is determined by the
information it receives, before we mentioned that
the only information it receives is an array with a
length of 64, representing the state of the game.
The performance might increase when the neural
network is provided with more information about
the game state. The extra information considered
in this paper is:

1. Immobility

2. Degree of Freedom

3. Concentration

4. Biggest Cluster

Figure 3.2 shows how, the additional neurons for
capturing the additional game information, are
added to the neural network. Information is fed as
input patterns to the input layer and predicted in
the output layer. Caruana (1997) has shown that
adding additional information to the output layer
without adding it to the input layer of the network
can increase performance. For some problems the
additional information is not available during run
time and therefore ignored. Caruana (1997) showed
that for these problems a higher performance can
be achieved by simple adding this information to
output layer. But In our case, the information is
available in run time and can be stored. Therefore
we will add the extra neurons for this information,
in the input- and output layer. Let state st be a
state in where the agent has to take an action.
And let the previous best afterstate, be the state
achieved by performing the best action according
to its policy in st. State st+1 is reached when the
opponent has made a move. Now the agent has
to choose a new action. Let the best action in
st+1 be the afterstate. The previous best afterstate
and afterstate form a pair, which will be used
in batch training. The extra input information
and valuation from the afterstate are taken to be
the target value of the previous best afterstate.
Therefore the error between the two states can
be determined and used for backpropagation. The
goal is to predict the values of the extra inputs so
that the backpropagation algorithm can change
the weights of the neural network accordingly.
All input features described in this section are

normalized between a value of 0 and 1, to make
sure the input values do not have to much impact
on the network.

Immobility: A common practise in LOA is
putting up walls for the other player. This ensures
that the other player has stones, that are com-
pletely immobile. Two extra input and output neu-
rons are added. The first in the input layer is the
amount of the immobile stones belonging to the
learning agent, while the second neuron is that of
the opponent. The output layer consists of three
neurons, the first predicts the valuation of the in-
put pattern, the second predicts the agent’s amount
of immobile stones and the third predicts the op-
ponent’s amount of immobile stones.

Degree of Freedom: The Degree of Freedom is
defined as the amount of legal moves a player can
make. This information is fed into the network, sim-
ilar to Immobility.

Concentration: The concentration is defined in
four steps, described in Winands et al. (2002). It de-
scribes how the stones are spread over the board.
If all stones are centered around each other, the
concentration is high. If all stones are disconnected
from each other (highly separated), then the con-
centration is low. The concentration is calculated
for both players and added to the state representa-
tion.

Biggest Cluster: The size of the biggest cluster is
divided by 12, otherwise these values will have too
much impact on the weights of the neural network.
Each player starts with twelve stones, therefore the
maximum values of the biggest clusters in the neu-
ral network will never be bigger than one.

4 Experiments

In this section we will describe the experimental
setup, what opponents are used in the experiments
and how the experiments are constructed.

4.1 Experimental Setup

The neural network used in the agent is a feedfor-
ward neural network. It has 64 or 66 input neurons,
50 hidden neurons as the second layer and one or
three output neuron by default. As illustrated in
section 3.7 the number of input and output neurons

7

Figure 3.2: Two extra input neurons and output neu-
rons are added. The first extra input neuron contains
extra information about player 1 (learning agent). The
second extra input neuron contains extra information
about player 2 (opponent). The two extra output neu-
rons predict the next state’s values.

may increase if meta-features are involved. The hid-
den layer uses the activation function sigmoid:

f(x) =
1

1 + e−x
(4.1)

The output layer uses activation function tanh:

tanh(x) =
sinh(x)

cosh(x)
=

(ex − e−x)

(ex + e−x)
(4.2)

The function tanh is used to allow both positive
and negative evaluations.

The weights of the hidden layer and output layer
are initialized with a Xavier uniform distribution
(Glorot and Bengio, 2010). The input of the net-
work corresponds to all squares on the board, each
neuron represents a square with a value of either
1, 0 or -1 (black piece, empty space and red piece
respectively). As mentioned earlier, a win, lose and
draw yield a reward of 1, -1 and 0 respectively. The
discount-factor γ is set to 1.0. The exploration ε is
decreased linearly from 1 to 0 in the first 80% of the
game, after which it remains 0. The learning rate
for the neural network is set to 0.001. The network
is trained with batches of 500 games, where each
batch is trained on three times in a random fash-
ion. These batches consist of pairs of afterstates
with a corresponding reward, which are used for
determining and backpropagating the TD-error.

4.2 Opponents

The following opponents are used to test the agent’s
performance:

1) Random agent: It chooses a random possible
move from all of its possible moves.

2) COM: It will execute an action based on these
steps:

1. Calculate the mean x and y values of all
friendly stones com(x, y)

2. Choose stone p, which is the most distant
from com(x, y).

3. Order the moves of p according to which
move will bring it closest to com(x, y.

4. Choose a move from the sorted list ac-
cording to the exponential decay function
y(x) = −2ln(x). Where x is a random
value between 0 and 1. The value y(x) is
rounded down. This function ensures that
the first move in the list will be picked
with the highest probability.

5. Execute the chosen move for the chosen
stone.

The COM agent includes stochasticity in its
move choice, therefore it is a bench marking
opponent with variation in its play.

3) Self-Play generated opponent: As an additional
opponent, we took the resulting network from
one run of 250,000 games trained with self-play
and used this as the third opponent to test
against.

Table 4.1 shows the performances of these oppo-
nents among each other.

Table 4.1: Performances of all players against each
other. The performances are based on 100,000 test
games.

SELF - COM COM - RAND SELF - RAND
0.88 - 0.12 1.0 - 0.00 1.00 - 0.00

4.3 Construction of Experiments

As a first investigation we train the network against
each of the opponents described in section 4.2. For
each opponent, the agent will play 250,000 games

8

which serve as training material. The probability
of a player starting the game is 50%. As the start-
ing positions of the players are identical, there is
no need to change colour of stones. During these
games, every 5,000 games the agent will play 1,000
test games against each of the opponents. In these
test games there is no exploration and the agent
will therefore use a greedy strategy. Despite being
fully greedy, the agent is made partially stochastic
as it takes its best three moves and executes them
with a probability of 60%, 30% and 10% (best,
second- and third- best moves respectively). This
serves to include plenty of variation in the testing
games. Noteworthy might be that the same goes
for the self-play generated opponent described in
the previous subsection. This will be done in 10
experiments in total where the MLP is randomly
initialized each time. As such, we will be able to
observe how the performance of the agent develops
over time, which will allow us to determine which
opponent allows the agent to perform best.
Secondly, we want to investigate whether the look-
ahead function improves performance of the agent.
The same experiment as described for the search of
the best training opponent is used for this. How-
ever, during the 1,000 test games that occur ev-
ery 5,000 games, the agent is armed with the look-
ahead function. As such, we will be able to compare
the results of these two experiments and observe
whether the look-ahead affects the performance.
Lastly, in order to test whether the different in-
put representations have an effect on the perfor-
mance we, again, use the same experiment as de-
scribed above. Now, during training, the network
will be provided with the different input represen-
tations described in section 3.7 separately. That is,
per feature there will be 10 runs for each training
opponent. We can then compare the resulting per-
formances to the initial investigation as we will do
with the look-ahead investigation.

5 Results

Table 5.1 shows the resulting performances of train-
ing against each opponent: the random opponent
(RAND), Center of Mass opponent (COM) and
the generated self-play opponent (SELF). These
are the average performances against each oppo-
nent over ten experimental runs. Additionally, Fig-

Table 5.1: Performances of agents after training
against each opponent. Each row represents a training
opponent and each column represents a testing oppo-
nent. The performances showed are the average of ten
experiments with the standard error.

Train vs. COM RAND SELF
RAND 0.711 ±0.031 0.968 ±0.017 0.326 ±0.032
COM 0.799 ±0.025 0.974 ±0.018 0.304 ±0.018
Itself 0.843 ±0.023 0.980 ±0.019 0.450 ±0.018

Table 5.2: Performances of agents after training
against each opponent using the look-ahead ability.
Each row represents a training opponent and each col-
umn represents a testing opponent. The performances
showed are the average of ten experiments with the
standard error.

Train vs. COM RAND SELF
RAND 0.722 ± 0.031 0.964 ± 0.018 0.370 ± 0.034
COM 0.850 ± 0.023 0.973 ± 0.018 0.321 ± 0.008
Itself 0.854 ±0.023 0.980 ±0.018 0.503 ±0.014

Table 5.3: Performances of agents after training
against COM. Each column shows the performance of
testing against an opponent averaged over ten experi-
ments with the standard error for a specific input fea-
ture.

Meta features COM RAND SELF
Normal 0.823 ±0.139 0.992 ±0.016 0.503 ±0.004

Immobility 0.879 ±0.162 0.994 ±0.012 0.505 ±0.008
DoF 0.933 ±0.075 0.997 ±0.007 0.509 ±0.012

Concentration 0.126 ±0.093 0.340 ±0.172 0.502 ±0.005
Biggest Cluster 0.821 ±0.167 0.986 ±0.038 0.516 ±0.013

ure 5.1 shows the average performance development
of training against each of the opponents over time,
when tested against each opponent. This Figure
uses the same data as used in Table 5.1.
In Table 5.2 we can view the resulting performance
of training and testing against each opponent in the
same fashion, where the agent uses the look-ahead
function in the test games.
Tables 5.3, 5.4 and 5.5 show the average perfor-
mance of each input feature being tested against
various opponents. These performances are the av-
erage over 10 experimental runs. Figures A.2, A.3
and A.4 show the average performance develop-
ment over time when trained against each oppo-
nent and tested against each opponent, with their
respective input feature. After performing several t-
tests on the best performing input feature per train-
ing opponent and test opponent compared with the
normal representation, a few significant differences

9

Table 5.4: Performances of agents after training
against RAND. Each column shows the performance
of testing against an opponent averaged over ten ex-
periments with the standard error for a specific input
feature.

Meta features COM RAND SELF
Normal 0.693 ±0.199 0.984 ±0.023 0.504 ±0.004

Immobility 0.884 ±0.175 0.999 ±0.001 0.505 ±0.005
DoF 0.880 ±0.109 0.999 ±0.004 0.508 ±0.008

Concentration 0.004 ±0.013 0.115 ±0.041 0.503 ±0.011
Biggest Cluster 0.855 ±0.074 1.000 ±0.002 0.542 ±0.018

Table 5.5: Performances of agents after training
against SELF. Each column shows the performance of
testing against an opponent averaged over ten experi-
ments with the standard error for a specific input fea-
ture.

Meta features COM RAND SELF
Normal 0.827 ±0.071 0.997 ±0.012 0.505 ±0.005

Immobility 0.838 ±0.101 0.999 ±0.003 0.505 ±0.005
DoF 0.826 ±0.108 0.998 ±0.008 0.507 ±0.006

Concentration 0.819 ±0.129 0.999 ±0.003 0.505 ±0.004
Biggest Cluster 0.852 ±0.078 0.999 ±0.005 0.511 ±0.005

have been found. These values (Appendix A.3) can
also be viewed in appendix A.

6 Discussion

In this section we make and discuss observations of
the results obtained in the previous section, after
which we answer the research questions using these
observations.

6.1 Observations and Evaluations

• Opponents It turns out, as Table 5.1 in-
dicates, that the agent trained against itself
yields the best overall performance. The aver-
age win rate for self-play is higher against all
opponents. We also observe that the overall
performance of training against the Center of
Mass (COM) opponent yields a higher win rate
against the Random (RAND) and COM oppo-
nent in comparison to training against RAND.
However, training against RAND seems to
give a better overall performance against the
self-play generated (Self) opponent than when
training against COM. Despite the average be-
ing greater here, Figure 5.1 suggests that when
looking at the resulting final performances,

training against COM is significantly better
than training against RAND. When training
against RAND, the agent seems to be taking
on a strategy which works well against all op-
ponents, but over time, as convergence starts
to occur, the resulting strategy seems to dra-
matically decrease performance. This likely oc-
curs due to the fact that when training against
a random opponent, the agent tends to take
on a rather fixed strategy that only seems to
be efficient against a random opponent. After
converging to the thought to be optimal pol-
icy, if challenged with a more skillful opponent,
this seems to lack the necessary generalization.
The eventual strategies even appear to worsen
the performance against RAND itself.

• Look-Ahead When we compare Table 5.1
and 5.2, we observe that if the agent uses the
look-ahead ability against RAND, the perfor-
mance seems to be slightly worse than with-
out using it. As the look-ahead strategy as-
sumes the opponent takes the best move, it
logically follows that against an opponent that
is purely random this has no effect and there-
fore may cause it to perform worse. However,
when we compare the performances against
COM and Self, we observe that with any train-
ing opponent the performance improves. The
significant performance improvements are seen
against Self when training against itself, and
against COM when training against COM. As
the former opponent does in fact use the as-
sumed best moves of the look-ahead function
(60% of the time at least), it logically follows
there is a performance improvement. For test-
ing against the COM opponent, the perfor-
mance improvement can be explained by the
fact that the moves this opponent executes are
likely to be considered a best move accord-
ing to the function. This, because, the strategy
COM uses is a viable one in LOA, and could
therefore be considered as rather good play.

• Input Representation When we take a look
at tables 5.3, 5.4 and 5.5 we can see that
input features generally improve performance
when compared to the normal game represen-
tation. Some are statistically significant (ap-
pendix A.3). Figure A.2a shows that the degree
of freedom improves performance for the agent

10

(a) (b) (c)

Figure 5.1: Average performance of training against the Random opponent, COM opponent and itself (a, b
and c respectively). 250,000 games of training are used, in which the agent is tested against all opponents every
5,000 games for 1,000 test games.

that trains against COM and also tests against
it. This might be due to the fact that, the COM
strategy includes making a big cluster with few
moves, since every stone is packed together.
Therefore the learning agent can use this data
for its own strategy. Interesting to note, perfor-
mance is increased for training against RAND
and testing against RAND for the ’biggest
cluster’ input representation. This is probably
due to the strategy of RAND. It will only move
stones randomly, therefore the agent can apply
one single strategy, that is placing stones in
the middle of the board. Therefore it is useful
for the agent to know how big its own cluster
is, in order to increase this cluster. The differ-
ence is not significant, since the performance
quickly reaches near 100% against the ran-
dom opponent. Additionally when it is tested
against itself the agent performs better with
the biggest cluster feature as well. Moreover
training against itself with respective testing
versus itself also yields a slight increase in per-
formance with the biggest cluster input fea-
ture. The concentration feature either does not
increase performance or it lowers it.

6.2 Answers to Research Questions

With the observations made in the previous section,
we can now answer the research questions stated in

the introduction:

• Question How do the performances of the
learning agent trained against different oppo-
nents compare to each other?
Answer Training with self-play results in the
best learning for the agent considering the
overall performance. Training against a ran-
dom opponent appears to lead to the worst
overall performance, whereas training against
a fixed heuristic opponent results in better per-
formance, yet still worse than training with
self-play.

• Question How do the performances of the
learning agent compare, when playing with
and without a look-ahead function?
Answer When the agent uses the provided
look-ahead ability in testing games, it im-
proves the performance against the fixed and
self-play generated opponent, regardless of the
training opponent. Against the random oppo-
nent it performs slightly worse, due to the lack
of predictability of this opponent.

• Question How do the performances of the
learning agent compare, when training with
and without additional meta features of the
game?
Answer When the agent uses extra informa-
tion to represent the state of the game, overall

11

performance increases when playing against a
random opponent or a fixed opponent. Having
additional information about the state of the
game, does not yield a performance increase
when training with self-play.

7 Conclusions

In this research we have compared several train-
ing opponents for a learning agent using temporal
difference learning in the game Lines of Action: a
random opponent, a fixed opponent using the so
called Center of Mass heuristic, and the agent it-
self. Additionally, we investigated whether a look-
ahead function, allowing the agent to perform a tree
search for moves, improves performance, as well as
whether feeding the network different input rep-
resentations improves performance. We found that
self-play serves as the best training opponent for
the learning agent, and that enabling the agent
to perform tree searches improves the performance
against a non-random opponent. We also found
that providing the network with meta-features im-
proves the performance when training against a
random or fixed opponent.
Future research, as the best training opponent is
determined, might want to investigate whether the
actual TD-Leaf algorithm used for training im-
proves the resulting performance of the agent even
further. Additionally, there are far more possibili-
ties for input representations than noted in this pa-
per which will be interesting to experiment with.

References

J. Baxter, A. Tridgell, and L. Weaver. Knightcap:
A chess program that learns by combining TD(λ)
with game-tree search.

J. Baxter, A. Tridgell, and L. Weaver.
TDLeaf(lambda): Combining temporal dif-
ference learning with game-tree search. In
Proceedings of the Ninth Australian Conference
on Neural Networks, pages 168–172, 1998.

M. Buro. The evolution of strong othello programs.
Entertainment Computing, pages 81–88, 2003.

Rich Caruana. Multitask learning. Mach. Learn.,
28:41–75, July 1997.

Xavier Glorot and Yoshua Bengio. Understanding
the difficulty of training deep feedforward neural
networks. In JMLR W&CP: Proceedings of the
Thirteenth International Conference on Artificial
Intelligence and Statistics (AISTATS 2010), vol-
ume 9, pages 249–256, May 2010.

A. L. Samuel. Some studies in machine learning
using the game of checkers. IBM Journal of Re-
search and Development, 3:210–229, 1959.

J. Schaeffer, M. Hlynka, and V. Jussila. Temporal
difference learning applied to a high-performance
game-playing program. In Proceedings of the 17th
International Joint Conference on Artificial In-
telligence - Volume 1, IJCAI’01, pages 529–534,
2001.

D. Silver, A. Huang, C.J. Maddison, A. Guez,
L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lnactot,
S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T.P. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of Go without human knowl-
edge. Nature, 550:354–, 2017a.

D. Silver, Thomas Hubert, J. Schrittwieser,
I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T.P. Lillicrap,
K. Simonyan, and D. Hassabis. Mastering chess
and Shogi by self-play with a general reinforce-
ment learning algorithm. CoRR, abs/1712.01815,
2017b.

R.S. Sutton. Learning to predict by the methods of
temporal differences. Machine Learning, 3:9–44,
1988.

R.S. Sutton and A. Barto. Reinforcement learning:
An introduction. MIT press, 1998.

G. Tesauro. Temporal difference learning and TD-
Gammon. Communications of the ACM, 38:58–
68, 1995.

M. van der Ree and M. Wiering. Reinforce-
ment Learning in the Game of Othello: Learn-
ing Against a Fixed Opponent and Learning
from Self-Play. In Proceedings of IEEE Inter-
national Symposium on Adaptive Dynamic Pro-
gramming and Reinforcement Learning, pages
108–115, 2013.

12

Christopher J. C. H. Watkins and Peter Dayan. Q-
learning. In Machine Learning, pages 279–292,
1992.

M.H.M. Winands. Analysis and implementation of
lines of action. Master’s thesis, 2000.

M.H.M. Winands, J.W.H.M. Uiterwijk, and H.J.
van den Herik. The quad heuristic in lines of
action. 2001.

M.H.M. Winands, L. Kocsis, J.W.H.M. Uiterwijk,
and H.J. van den Herik. Temporal difference
learning and the Neural MoveMap heuristic in
the game of Lines of Action. In Proceedings of 3rd
International Conference on Intelligent Games
and Simulation (GAME-ON 2002), pages 99–
103. SCS Europe Bvba, Ghent, Belgium, 2002.

13

A Appendix

A.1 Significant Statistics of Oppo-
nents

Training against itself vs. training against ran-
dom shows a significant difference when testing
against COM and Self in favour of self-play
(t(93) = −3.42, p < .05; t(78) = −3.40, p < .05,
respectively).

Training against COM vs. training against
random shows a significant difference when testing
against COM in favour of training against COM
(t(96) = −2.20, p < .05).

Training against itself vs. training against COM
shows a significant difference when testing against
Self (t(100) = −5.89, p < 0.05).

A.2 Significant Statistics of Look-
ahead

Training against COM shows significant
improvement when tested against COM
(t(99) = −2.00, p < 0.05) compared to with-
out look-ahead.

Training against itself shows significant improve-
ment when tested against Self (t(100) = −2.03, p <
0.05) compared to without look-ahead.

A.3 Significant Statistics of Input
Representations

Degree of freedom increased performance when
trained against COM and tested against COM,
t(75) = −4.91, p < .05.

Biggest cluster is significant for training
against COM, while testing against SELF
t(59) = −6.47, p < .05.

Immobility seems to improve performance
when training against RAND and tested vs COM
t(96) = −5.10, p < .05.

Biggest cluster improves performance when
trained on RAND and tested against RAND

t(49) = −4.92, p < .05.

Biggest cluster improves performance when
trained on RAND and tested on SELF
t(55) = −14.6, p < .05.

Biggest cluster improves performance when
trained against SELF and tested against SELF
t(98) = −5.87, p < .05.

14

Figure A.1: This figure illustrates look-ahead function used in this paper. The B-nodes represent the three
moves with the highest valuation in state A. The C-nodes are possible moves of the opponent in the resulting
states, of which only the best ones remain, the other ones are pruned. Finally, we have the leaf-nodes which
represent the possible moves in the resulting states after the opponent moves, of which the leaf with the highest
value is determined. In this case the leaf with value 11 is highest, meaning that action B1 will be executed.

(a) (b) (c)

Figure A.2: Average performance of training against a centre of mass opponent, and tested against various
opponents, while playing 250,000 games. Every 5,000 games there are 1,000 test games.

15

(a) (b) (c)

Figure A.3: Average performance of training against a random opponent, and tested against various opponents,
while playing 250,000 games. Every 5,000 games there are 1,000 test games.

(a) (b) (c)

Figure A.4: Average performance of training against itself, and tested against various opponents, while playing
250,000 games. Every 5,000 games there are 1,000 test games.

16

8 Division of Work

8.1 Implementations

Table 8.1: Contributions to implementations

Implementation of: Contributor(s)
Game rules/mechanics Quintin and Remo
Multi-Layer perceptron Quintin and Remo

Centre of Mass Opponent Quintin
TD(0) Remo

Batch-training Quintin and Remo
Self-play Remo

Look-ahead Remo
Input features Quintin

8.2 Experiments

Table 8.2: Contributions to each experiment

Experiment Contributor(s)
Opponent search Remo

Look-ahead Remo
Input features Quintin

8.3 Writing

Table 8.3: Contributions to each (sub)section

Section Contributor(s)
Abstract Remo and Quintin

Introduction Remo
Lines of Action Quintin

Reinforcement Learning Remo
Temporal Difference Learning Remo

Function Approximator Quintin
Application to Lines of Action Quintin

Learning from Opponents and Self-Play Remo
Look-ahead Remo

Input Representation Quintin
Experimental Setup Quintin

Opponents Quintin
Construction of Experiments Remo

Results Opponents and Look-ahead Remo
Results Input Features Quintin

Discussion Opponents and Look-ahead Remo
Discussion Input Features Quintin

Conclusion Remo
References Quintin

17

