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Abstract: Recognition of the world around us becomes more and more important in both en-
tertainment and practical fields, the interest for research into recognition algorithms also has
increased. Few studies have investigated the classification of behaviours of a given animal using
machine learning algorithms. This thesis attempts to describe and compare the performance of
two different feature detectors: Histogram of Oriented Gradients (HOG) and Image Pixel Inten-
sity (IMG), and two different machine learning algorithms: a Support Vector Machine (SVM)
and a Multi-Layer Perceptron (MLP) for recognizing the motion behaviours of goats. The re-
sults show that the algorithm IMG + MLP yields better performances than using a combination
of HOG + SVM on a smaller train set. This indicates that raw intensity information matters
more than using a HOG representation. However, on smaller test samples, all of the algorithms
performed exceptionally well attaining a near perfect and similar performance level. The use of

HOG + MLP yield better performance than IMG 4+ MLP on a more diverse test set.

1 Introduction

Over the past years the fields of computer vision
and automated recognition have gained increased
popularity. Technologies like face detection have
been around since 1994 (Yang; Huang, 1994) and
are becoming more and more integrated into our
daily lives. Image recognition is the process of un-
derstanding of what we see and what is happen-
ing around us (Shapiro, 1992). However as recogni-
tion, detection and classification of objects and an-
imals are becoming well known areas for the world
of computer vision, the recognition of what state
these objects are in is still largely unexplored.

Questions such as ‘what is this object?’” and es-
pecially ‘where is the object?’ are not tough rid-
dles to answer as many existing algorithms already
solve these problems in very short computational
times (Lowe, 1999) with great accuracies (Ren; Li,
2016). However the question ‘What is this object
doing?’ is a question that has not been answered a
lot. Studies have been done on behaviour recogni-
tion in insects (Noldus; Spink; Tegelenbosch, 2002)
or the recognition of crowd behaviour (Cupillard;
Bremond; Thonnat, 2003), yet both have focused

on interaction or group size and not on individual
behaviour.

The goal of this research is to study the progress of
current technology in behavioural classification of
animals using supervised learning techniques. The
research question is stated as ‘What combination of
classical descriptor and classification model works
best in recognizing animal behaviour?’

A dataset was needed in which one kind of an-
imal performed multiple behaviours to use in a
multi-classification problem. Most research in the
field of computer vision carried out on animal
datasets involves the development of recognition or
detection systems. This thesis focuses on the use
of feature descriptors each combined individually
with different supervised learning algorithms. To
achieve the stated aim a dataset was collected. The
used dataset contains individual instances of 10 be-
haviours of goats.

This project compares two different classical fea-
ture descriptors in combination with two different
supervised machine learning algorithms. The first
feature detector used in the research is the His-
togram of Oriented Gradients (HOG) which has
become an increasingly popular feature descriptor



for detection problems that is described in Dalal
and Triggs’ paper (2005). HOG describes the dis-
tribution of normalized horizontal and vertical gra-
dients in an image, which makes it useful for de-
tecting edges and also contrast on objects. The
HOG algorithm then transforms this information
into a histogram based on the respective orienta-
tions. This research investigates whether the used
feature descriptor combined with supervised learn-
ing algorithms can be considered as a good recogni-
tion system to deal with the above stated problem.
The second feature descriptor that will be used is
the Raw Pixel Intensity (IMG) feature which is de-
scribed as a global feature descriptor as it converts
the image into a histogram without altering of any
pixel information.

The histograms that are produced are fed as a fea-
ture abstraction to either a Support Vector Ma-
chine (SVM), often used for two-group classifica-
tion problems (Cortes; Vapnik, 1995), or a Multi-
Layer Perceptron (MLP), which has long been used
as a classifier (Rumelhart; Hinton; Williams, 1986).
This thesis explains the acquisition of an own
dataset. That is done through collecting videos on-
line, extraction of sequential video frames, cropping
out the region of interest (RoI) containing the pres-
ence of goat(s). This is done to minimize irrelevant
information and finally separating the images into
their respective classes. The workings of the clas-
sical feature descriptors and a small overview of
the workings of the SVM and MLP are described
herein. Finally a comparison and discussion of the
results obtained are given.

2 Method

2.1 Dataset Collection

To perform the research a dataset is needed that
contains enough classes of different motion be-
haviours of goats. To create this dataset video
footage will have to be gathered. The algorithms
will use the data of sequential video frames of these
pictures, it is thus important that there is enough
video footage. For a video that has a frame-rate of
60 frames per second, a video that contains 5 sec-
onds of clear vision of the goat is enough as that
will provide approximately 300 images. In theory 10
videos exhibiting different motion behaviours will

be enough to fill the dataset.

Once enough videos are collected to satisfy the
amount of classes that is deemed enough it is im-
portant to crop out regions of interest (Rol) of the
image content and eliminate the redundant part
of the image where no goat is present and make
sure the behaviour of the goat is fully exhibited.
For example, if one wishes to classify a flocking be-
haviour, one would need to include multiple goats
in the image and simultaneously exclude as much
background as possible.

Before this is done however the videos need to be
split into the sequential video-frames that make up
the video, such that the set of videos V consists of
the video frames that make up the videos:

N
Va(Q) =D fo(n) (2.1)

where ) denotes the number of frames for a given
video V' and fg is the amount of frames in class n.
Please note that @) varies depending on the stream-
ing duration of each video V,,. This means that
there exists a non-uniform number of frames per
video.

After the sequential video frames have been ex-
tracted and the images were cropped to remove
unimportant information the frames are put into N
different classes. The dataset consists of several be-
haviours exhibited by domesticated goats (Hansen,
2015) as well as wild goats (Miranda-de La Lama,;
Mattiello, 2010); butting, eating, fainting, flocking,
mounting, resting, running, pooping, sleeping and
standing. The used dataset contains a total of 3588
images and consists of ten different classes. Some
examples of the dataset are shown in Figure 2.1.

2.2 Dataset Partitioning

The dataset earlier discussed is partitioned into
several entities. The classification algorithms that
will be used have their own variable parameters:
the C-parameter for the Support Vector Machine
and the amount of nodes in the hidden layer of
the Multi-Layer Perceptron. Both are tuned to
obtain the best possible recognition system. This
is achieved by using two distinct dataset distri-
butions; the first distribution (80%-20%) and the
second distribtuion (50%-50%) for the (training
and testing sets) respectively. This means that the



Figure 2.1: Individual instances of goat be-
haviours from the used dataset.

first dataset distribution is partitioned into test,
validation and training sets in the ratio 20%, 10%
and 70% respectively. The train-validation splits
were repeated for 5-fold cross-validation.

Moreover another set of experiments was exam-
ined to investigate the classification accuracies on
two different sets of splits (50%-50%) in the second
dataset distribution. For more clarity the first dis-
tribution test set can be referred to as Test 1, while
the second test set is called Test 2. Tests done on
a more diverse test set containing 989 images are
referred to as Test 3. More information on Test 3
is given in Section 3.3.

2.3 Feature Descriptors

After the dataset has been collected and split into
the earlier mentioned distributions the images are
fed into two separate feature descriptors; the local
feature descriptor (HOG) and the global feature
descriptor (IMG). The feature descriptors that are
used for this study are discussed now.

2.3.1 Histogram of Oriented Gradients
(HOG)

The HOG is computed by creating n x n patch
blocks from a given image. Then the effective mag-
nitude gradients of each patch block with respect

to their orientation bins are calculated to produce
a feature vector of a particular image. The image is
then divided in 8 x 8 cells and a histogram is created
for each of these cells. Figure 2.2 shows the gradi-
ents point towards the direction of change in pixel
intensity. The size of the arrow correlates with the
intensity of the change. These gradients are then
normalized per 16 x 16 block. The magnitude of
gradients is calculated using the following;

Mg = /G, + Gy (2.2)
The orientation of the gradient as follows;
0 =tan~! (g—i) (2.3)

where Mg denotes the magnitude of the gradient,
G, and G, denote the horizontal and vertical gra-
dients and 6 denotes the orientation of the gradient.
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Figure 2.2: Example of how HOG is divided into
cells. The calculated gradients point towards the
largest change in pixel intensity.

2.3.2 Raw Pixel Intensity (IMG)

The IMG feature descriptor is a lot simpler. It sim-
ply converts the image data into a greyscale version
of the image which in turn is converted into a his-
togram. The bins are computed as the product of
the image resolution 200150 = 30.000 based on the
gray level intensities. Then the supervised learning
algorithms use the information to construct clas-
sification models. Because it doesn’t extract any
local features like HOG does, IMG is also called a
global feature descriptor. A simple illustration can
be found in Figure 2.3.



The histograms that are created by the feature de-
scriptors will then be used for the training and con-
struction of the classification model. The effective-
ness of the classification model is measured on an
unknown test set in both Test 1 and Test 2.

Figure 2.3: Example of how IMG uses the values
of the input images as a histogram. The IMG de-
scriptor uses 30.000 feature dimensions for each
image.

2.4 Classification Algorithms

The histograms that are created will be fed into two
different classification algorithms to evaluate the
performance of these algorithms. It is important
to note that all possible combinations of one fea-
ture descriptor with each of the supervised learning
techniques will be evaluated. The supervised learn-
ing algorithms used for this study are discussed as
follows;

2.4.1 Support Vector Machines (SVM)

One classification model that will be used is the
Support Vector Machine (SVM) (Cortes et al.,
1995). The algorithm works by placing these vec-
tors in a feature space as it attempts to create a
dividing margin between two different classes and
then maximizing that margin.
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Figure 2.4: Illustration of a Support Vector Ma-
chine. (Support Vector Machines for Binary
Classification, n.d.)

Figure 2.4 shows an illustration of a Support Vec-
tor Machine. The circled support vectors, which are
on the edge of their ‘class space’ are used to maxi-
mize this margin. For a linear multi-class SVM, the
output zg(x) of the k-th class can be computed as:

zi(z) = wli(z) + by (2.4)

In this research i(x) are the input vectors which are
created by either the HOG or IMG feature descrip-
tors from image x. The linear classifier for class k
is trained to output a weight factor wy with a bias
value by (Okafor; Pawara; Karaaba; Surinta; Co-
dreanu; Schomaker; Wiering, 2016).

Two different loss functions are used. The first loss
function method is called the L1-SVM. The second
loss function is the L2-SVM. The L2-SVM classifier
is defined as:

n
min 27w + 03 (max(0,1 - iz ()))?  (25)
w2 i=1
(Fan; Chang; Hsieh; Wang; Lin, 2008).
Here y; = {1,—1} where y; = 1 if x; belongs to the
k-th classifier and y; = —1 if z; does not belong to
the target class. C is the penalty parameter. When
the SVM is trained the margin is determined. The
prediction of the class label of new instances is done
by checking where the new vector is positioned in
the feature space and on what side of the margin it
is present. In other words the classifier (Tang, 2013)
then outputs predicted class labels to an image x
using:

arg m]fc:mx(zk (x)) (2.6)
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Figure 2.5: Illustration of a multi-classification
problem (1-vs-All) solved using a Support Vec-
tor Machine. Adapted from (Ng, 2018).

However the workings of the SVM provide a
problem for our classification problem. As can be
seen in Figure 2.4 the Support Vector Machine
solves a 1-vs-1 classification problem, but our
dataset contains ten different motion behaviours
and thus ten different classes. We thus need to
solve a multi-classification problem with a 1-vs-1
classifier. Fortunately the solution is a simple one.
SVMs are binary classifiers, but can be extended
for multi-classification (Lingras; Butz, 2007). The
multi-classification problem is a ten-fold 1-vs-All
classification problem where one class is labeled
as positive and all other classes are labeled as
negative as is illustrated in Figure 2.5. This is then
done ten different times, one time for each class.
The SVM uses a C-parameter to influence the
SVM optimization. High C-values cause a smaller
margin-hyperplane if that yields a higher accuracy.
Lower C-values cause a larger margin-hyperplane
to be created even if that causes a drop in accuracy.
To achieve optimal accuracies for all SVM clas-
sification models a parameter tuning is done
on the second data distribution. The parameter
that yields the highest accuracy is chosen for the
evaluation of the classification algorithm.

Output layer

Hidden layer

Input layer

Figure 2.6: An example of a Multi-Layer Per-
ceptron (MLP).

2.4.2 Multi-Layer Perceptron (MLP)

The second classification model that will be used in
this research is the Multi-Layer Perceptron (MLP)
(Rumelhart et al., 1986). An MLP works by us-
ing three different kinds of layers that consists of
nodes (as shown in Figure 2.6). All nodes between
two layers are connected. The first layer is the input
layer in which the feature vectors are fed. In this
research this means that the feature vectors pro-
duced by HOG or IMG are provided to the input
layer or the hidden layer.

Second, the hidden layer consists of a variable
amount of nodes. It is here that the weights
of the nodes are altered as to train the MLP.
These weights are altered using a forward-backward
propagation. This research uses a scaled conju-
gate gradient backpropagation for training the loss-
function. We used a cross-entropy loss function.
The hidden layer uses a hyperbolic tangent sigmoid
activation function to compute feature activations.
Finally, the output layer represents the performed
classification. In this research the output layer con-
sists of 10 nodes, each representing one of the 10
different classes. The output layer uses a softmax
activation function.

Furthermore the algorithm was trained for a max-
imum of 3000 epochs in the case that the gradient
method does not stop the learning phase of the al-
gorithm. Similar to the SVM a parameter tuning
is done on the second data distribution, but with
the amount of nodes in the hidden layer instead of
the C-parameter. Here too the value that yields the
highest accuracy is chosen for the evaluation of the
classification model.



3 Results and Discussion

3.1 Determination of the best hy-
perparameters for the super-
vised learning algorithms

Before the evaluation of the classical descriptors
and the classification algorithms can happen the
hyperparameter for the SVM and the amount of
nodes for the MLP need to be determined.

3.1.1 Determination of the SVM’s C-

parameter

The hyperparameter for the SVM is the C-
parameter. The choice of an optimal C-parameter
was determined by carrying out a grid search in
the bounds [-5 < 2 < 5] over an interval of 1. The
C-parameter uses 2 resulting in a bound within
the range [% < C < 32]. An exception was made
for the IMG + L2-SVM method where a grid
search was done in the bounds [55; < C < 1024]
as shown in Figure 3.1. We observed that the
fractional values of the exponent as presented in
Table 3.1 yielded the best results.

In Figure 3.2 the parameter tuning results of the
Support Vector Machine in the training phase
are shown. The parameters that were used in
the evaluation phase of the SVM can be seen in
Table 3.1. Figure 3.3 shows the test results of the
parameter tuning, however only the results of the
training phase were used for the determination of
the parameters. The train accuracies in the afore-
mentioned figure show that peak performances are
attained after C exceeds 4, a similar result is seen
in the test accuracies with the exception of the
IMG + L1-SVM which attains a peak performance
of approximately 99% and the IMG + L2-SVM
which attains a peak performance of 94%.

3.1.2 Determining the amount of nodes in
the MLP’s hidden layer

On the other hand the number of nodes in the
hidden layer (Ng) of the MLP is tuned using the
bound [10 < Ny < 210]. In Figure 3.4 the results
for the MLP are shown. The parameters that were
used in the evaluation phase can be seen in Table
3.2. The MLP attained near perfect performances

up to approximately 96.7% for the IMG feature de-
scriptor. Thus MLP with a hidden layer size of 70
nodes was picked for the method (IMG + MLP)
and a layer with 110 nodes for the (HOG + MLP)
method.

Method C-parameter
HOG + L1-SVM 5.66
HOG + L2-SVM 16.00
IMG + L1-SVM 11.31
IMG + L2-SVM 90.51

Table 3.1: The best-found C-parameters for the
SVM for a given feature descriptor.
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Figure 3.1: Train and test accuracies using IMG
+ L2-SVM for classifying goat behaviours using
an SVM with a C-value in [5; < C < 1024].

Method No. of nodes
HOG + MLP 110
IMG + MLP 70

Table 3.2: The best-found number of nodes for
the MLP for a given feature descriptor.

3.2 Cross-Validation & Evaluation

The evaluation of the classification models is based
on a five-fold cross validation. Additionally we ex-
amined the performance of the classification models
on two test sets; Test 1 and Test 2. The summary
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Figure 3.2: Training accuracies using L,-SVM
combined with classical descriptors for classify-
ing goat behaviours using an SVM with a C-
value in bound [ < C < 32].
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Figure 3.3: Test accuracies using L,-SVM com-
bined with classical descriptors for classifying
goat behaviours using an SVM with a C-value
in bound [ < C < 32].

of the results are reported in Table 3.3.

The second column from the mentioned table shows
that all methods attain near perfect accuracies in
the five-fold cross validation. Both the IMG + L1-
SVM and IMG + L2-SVM methods outperform the
HOG + L1-SVM and HOG + L2-SVM methods in
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Figure 3.4: Test evaluation of MLP combined
with classical feature descriptors for classifying
goat behaviours by varying the amount of hid-
den layer nodes in the MLP using the bound
[10 < Ny < 210].

Test 2. However the HOG + MLP and IMG + MLP
methods outperform all other methods in both Test
1 (perfect accuracies) and Test 2 with accuracies of
95.48% and 95.68%. Based on the performances of
the MLP classifier on the two feature descriptors
as shown in Table 3.3 we only considered the MLP
for the remaining experiments.

Methods Validation | Test 1 | Test 2
HOG + L1-SVM | 99.97 +0.08 100% | 89.02%
HOG + L2-SVM | 100.00 +0.00 | 100% | 89.02%
IMG + L1-SVM | 99.66 £0.17 | 99.94% | 90.91%
IMG + L2-SVM | 99.79+0.20 | 99.86% | 95.48%

HOG + MLP 100.00 +0.00 | 100% | 95.48%
IMG + MLP 99.98 £+ 0.02 100% | 95.68%

Table 3.3: Test performance of the recognition
systems for two test distributions based on the
best-found C-parameter described in Table 3.1,
and hidden layer size.

3.3 Evaluation on a unique dataset

The results shown in Table 3.3 suggest that all al-
gorithms perform exceptionally well in recognizing
the images of motion behaviours of goats. The dis-
cussion in section 3.4.1 poses that this is a flawed



Figure 3.5: of the

Some example
unique dataset describing behaviours of goat.
Behaviours from top left to bottom right:
butting, eating, fainting, flocking, resting, run-
ning, standing, pooping and sleeping.

images

notion.

To provide another perspective on the classifica-
tion system, a new dataset was collected contain-
ing the same classes, but with unique images such
that there are no identical images between the
new dataset and the original dataset. The unique
dataset contains a total of 989 images and a sample
of the dataset can be seen in Figure 3.5. Tests done
using this dataset as test set are referred to as Test
3.

The training set distributions from the original
dataset i.e. 80% and 50% were used when training
the MLP classification models, which is finally eval-
uated on Test 3. The results obtained are reported
in Table 3.4. The performances reported in the ta-
ble were based on five repeated runs. As discussed
earlier the results in Table 3.3 show that MLP
performed equal or better than all SVM methods
on the original dataset. Thus the tests performed
on the unique dataset were done using HOG +
MLP and IMG + MLP. Table 3.4 shows that both
recognition systems perform worse on unique test
sets. (HOG + MLP) reaches accuracies of 83% and
(IMG + MLP) reaches accuracies of 82% on runs
using a 50% train set distribution.

Method Test 3 Test 3
HOG + MLP | 81.94 4 0.94 | 83.04 £ 1.28
IMG + MLP | 81.73 £+ 0.41 | 82.03 £+ 0.68

Table 3.4: Test performance of the recognition
systems for two test distributions using HOG +
MLP (No. of nodes = 110) and IMG + MLP
(No. of nodes = 70) on Test 3. The second and
third columns describe performance using 80%
and 50% train set distributions of the original
dataset respectively.

3.4 Discussion

This research has demonstrated the capabilities
of the two classical feature descriptors: HOG and
IMG, and two classification algorithms: the Sup-
port Vector Machine and the Multi-Layer Percep-
tron in recognizing motion behaviour in animals,
or goats to be more specific. The question remains:
what combination of classical descriptor and clas-
sification model works best in recognizing animal
behaviour?

3.4.1 Implications

Based on the examined dastaset the MLP meth-
ods outperform the other methods in Test 2. An-
other observation is that the IMG representation
combined with SVM variants yield performances
that surpass results obtained from HOG combined
with SVM. This goes against the original hypoth-
esis which states that ‘the algorithms augmented
with HOG would perform better as simplifying im-
ages would open up the possibility to recognize a
broader spectrum of images’. To account for the
variations in one specific motion behaviour in a
given image it was expected that the extra informa-
tion that remained in the histograms that are pro-
duced by the IMG feature descriptor would over-
fit the data and thus it would perform worse on
new examples. However the IMG methods outper-
formed the HOG methods in Test 2. Furthermore
the overall precision of all methods was almost per-
fect on a small test set in Test 1.

To find out why this may be we have to take a look
at the dataset and the way it was collected. As de-
scribed in section 2.1 the frames that are extracted
from the videos are sequential. These frames are
taken from sections of videos that are approxi-



mately 5 seconds long with most samples for one
class taken only from one video. This implies that
all images in one class are extremely similar, the in-
traclass differences are small, as most classes only
contain samples of one video. The result is that the
images in the testing phase are very similar, yet not
identical to the images in the training phase. The
small intraclass difference might cause an overfit-
ting of each class meaning that new images that do
fit into one of the classes, for example another im-
age of two goats butting, but in a different setting,
may not be classified correctly as the lower accura-
cies of Test 3 show us.

Another reason may be that the interclass differ-
ences are large, this is due to the fact that the
images that make up the classes are all extracted
from different videos for each class. This also ex-
plains why IMG performs better than HOG in Test
1 and 2, even though a lot of extra information is
removed from the images by cropping out the re-
gion of interest where the goat is. The colour of the
goat or the small snippets of background color may
be enough to recognize the difference between two
classes, not because of different behaviours, but be-
cause of different (background) colors. Not only are
the behaviours of the goats in two classes different
(the criteria on which it is desired that the classi-
fication models differentiate between the classes),
the whole environment of the goats are different.
This includes colour of the goat, colour of the back-
ground and objects in the background. One could
suggest that if the trained models were subjected to
a goat that performs a certain behaviour that can
been found in class A, but with a background that
can be found in class B the model would not classify
the image correctly. The results of Test 3 show us
that this is a factor as the accuracies attained are
lower than that of Test 1 and 2. However the fac-
tor is not huge as accuracies of approximately 82%
are still decent. We can conclude that the cause of
the high accuracies is partly due to a very simple
dataset.

3.4.2 Improvements

To increase the ‘difficulty’ of the dataset the intra-
class and interclass differences need to be fixed. A
crucial part of visual classification systems is being
robust to intraclass differences (Gehler; Nowozin,
2009) yet the dataset’s differences are too small.

These intraclass differences can be made larger by
using non-sequential frames of videos. This way the
same video can be used, but the similarity between
two images will be larger increasing the feature
space of the class and ensuring that new images
will be properly classified.

Another solution would be to include more videos
into one class. If the frames that make up a class
are extracted from multiple videos, but still show
goats exhibiting the same behaviour not only would
this increase the intraclass differences, it would also
decrease the interclass differences and be a more
broad depiction of a certain behaviour as the back-
ground will not hold any key information to the
behaviour, instead only the goat would.

Another way is to make sure that all classes are col-
lected from the same video. By making sure that
all behaviours are collected in the same environ-
ment the background information would no longer
be crucial to classifying the behaviour. This can
be done by capturing the footage yourself instead
of collecting the videos online as was done in this
research.

4 Conclusions

In this research we have tried to compare the per-
formances of a Multi-Layer Perceptron and a Sup-
port Vector Machine combined with either a His-
togram of Oriented Gradients or Raw Pixel Inten-
sity (IMG) feature descriptor as classification mod-
els for recognizing motion behaviours of goats in a
still image.

Based on a five-fold cross validation and the per-
formance using a 50% and an 80% train set dis-
tribution the use of MLP works best in a 50%-50%
dataset partition. In this same dataset partition the
use of SVM combined with an IMG feature descrip-
tor outperforms an SVM combined with a HOG
feature descriptor. Furthermore almost all meth-
ods’ training performance are approximately 100%.
We demonstrated that these classification models
were robust in recognizing motion behaviours in
still images and in a more practical problem the
recognition system is robust using both HOG +
MLP and IMG + MLP on a test with diverse im-
age samples.

This research has thus demonstrated the use of ma-
chine learning to predict animal behaviours and/or



motion dynamics with a scalable dataset encom-
passing a diversity of several videos per class under
varying environmental conditions.

It will be interesting to investigate the use of Con-
volutional Neural Networks (CNN) compared to
the examined methods for the recognition of ani-
mal behaviours. This is due to the success of CNN
in several classification challenges such as animal
recognition (Okafor et al., 2016).
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