
Implementing Synchronous Reactive

Programming in RxJava

- Bachelor thesis -

Student: Alexandru Babeanu s3004872
First supervisor: Msc. Mauricio Cano
Second supervisor: Dr. Jorge A. Pérez

July 26, 2018

Abstract

Programming languages with reactive features have become common
practice for the design and implementation of reactive and interactive sys-
tems. This paper explores the relationship between the main principles
and design decisions behind tow commonly used paradigms that offer re-
active features: the Synchronous Reactive Programming (SRP) paradigm
and reactive programming. It describes the implementation of an SRP
language using constructs for reactive programming offered by the Rx-
Java library. The primary focus of this thesis is to demonstrate that
reactive programming is at least as expressive as synchronous reactive
programming.

1

Contents

List of Figures 3

List of Tables 3

1 Introduction 4

2 Preliminaries 5
2.1 Synchronous Reactive Programming 5
2.2 A Basic Model for a Synchronous Reactive Language 6
2.3 RxJava . 9

3 Implementing the Interpreter 12
3.1 Design Decisions . 12

3.1.1 Additional Data Types . 12
3.1.2 Syntactic Sugar . 14
3.1.3 The Grammar . 19

3.2 Implementation . 20
3.2.1 Abstract Syntax Tree . 20
3.2.2 Scheduler . 23
3.2.3 Signals . 25
3.2.4 Data Types . 28
3.2.5 Language Constructs . 30

4 Evaluation 33
4.1 Implementation of the Basic Model 33
4.2 Parallelism . 37
4.3 Determinism . 38
4.4 Limitations . 46

5 Comparison with Existing SRP Languages 47
5.1 Esterel . 47
5.2 ReactiveML . 47
5.3 SugarCubes . 48

6 Conclusions 48

7 References 48

2

List of Figures

1 Derived SRP Constructs . 9
2 Reactive programming and the Observer pattern 10
3 PublishSubject . 11
4 BehaviorSubject . 11
5 SRL standard library: ”stdlib.srl” 18
6 parallel sum.srl - part 1 . 39
7 parallel sum.srl - part 2 . 40
8 Output of parallel sum.srl . 41
9 Parallel efficiency example . 42
10 vending machine.srl - part 1 . 43
11 vending machine.srl - part 2 . 44
12 Output of vending machine.srl 45

List of Tables

1 SRL operators - part 1 . 15
2 SRL operators - part 2 . 16
3 SRL constructs . 17

3

1 Introduction

In recent years, programming languages with reactive features, such as event
streams, data-flows, and propagation of change, have become common in the
design of interactive and reactive systems, like web applications or graphical
user interfaces, for example.

Reactive programming [5] has become a popular choice in the implementa-
tion of interactive systems, and even languages that are not intrinsically reactive
are being extended with constructs [13] that adhere to the reactive program-
ming paradigm. The key feature of this paradigm is the immediate reaction
to events; program components will react independently from one another, as
soon as events become available. While this paradigm offers benefits like higher
computational speed or program modularity, it intrinsically forbids determinis-
tic semantics for concurrent behaviour [8]. This makes formal reasoning, such
as the program analysis and verification, more difficult.

The Synchronous Reactive Paradigm (SRP) [1] also offers reactive features,
and has been used for designing reactive systems with real-time constraints.
The key feature that differentiates SRP from reactive programming is the coor-
dination between the reactive components within a program. The threads of a
program will not react to events independently from each other, they will instead
use signals to synchronize their executions and ensure a deterministic order of
operations. In programs that adhere to this paradigm, change is propagated
only when all the threads have reached a so-called suspended state, from which
execution cannot continue. This property allows for the design of synchronous
reactive languages with deterministic semantics, which in turn facilitates formal
analysis and verification of programs.

This paper describes the implementation of an interpreter for a synchronous
reactive language (SRL), built through the use of reactive constructs. The source
code for this interpreter is available at https://github.com/babeanu-dorian/
InterpreterSRL. The model in [3] serves as the starting point for the imple-
mented language. It is a relaxation of the Esterel model, [9], a robust syn-
chronous programming language designed for the development of complex reac-
tive systems.

The main objective of this thesis is to show that reactive programming is
sufficiently expressive to implement synchronous reactive programming. By
using the construction of this interpreter as a basis, this project seeks to study
the underlying design decisions behind reactive programming and synchronous
reactive programming, as well as the relationship between the two.

The ”Preliminaries” section of the paper covers the theory behind the Syn-
chronous Reactive Paradigm and reactive programming, introduces a model for
an SRP language used as the basis for the implemented language, and describes
the RxJava constructs that will be used in the implementation. Section 3 covers
the design and implementation of the interpreter. It lists and explains the design
decisions made regarding the implemented language and the implementation of
the interpreter. It also offers a detailed explanation of the source code. The
”Evaluation” section contains an analysis of the implemented language with

4

https://github.com/babeanu-dorian/InterpreterSRL
https://github.com/babeanu-dorian/InterpreterSRL

regards to its relation to the original model, its limitations and properties like
determinism and concurrency. Section 5 offers a comparison between SRL and
already established synchronous reactive languages.

2 Preliminaries

2.1 Synchronous Reactive Programming

The principle of Synchronous Reactive Programming [1] is to make the same
abstraction for programming languages as the synchronous abstraction in dig-
ital circuits, where the timing characteristics of the electronic transistors are
neglected (each gate is assumed to compute its result instantaneously, each wire
is assumed to transmit its signal instantaneously). A synchronous circuit is
clocked and at each tick of its clock, it computes instantaneously its output val-
ues and the new values of its memory cells from its input values and the current
values of its memory cells.

This abstraction, known as the Synchronous Hypothesis [2], makes reason-
ing about program behaviour a lot easier. The main properties offered by the
Synchronous Hypothesis are the fragmentation of program execution into logical
ticks, and the use of signals for propagating information. A synchronous pro-
gram reacts to its environment in a sequence of ticks, and computations within
a tick are assumed to be instantaneous. Logical ticks, also named instants, are
implemented as follows:

1. All threads execute until they all reach a suspended state.

2. The signals are evaluated once all threads are blocked.

3. Then execution proceeds to the next instant.

The term ”instantaneous” does not refer to real time here, but to the actual
execution of program instructions. In practice, this is modelled by the following
two constraints:

1. A program will not accept new input until it finished reacting to the
current input.

2. The real-time order of parallel instructions does not change the output of
the program.

These properties make it possible to design synchronous reactive languages
with deterministic semantics, which in turn simplifies the process of reasoning
about program behaviour.

Another important characteristic of Synchronous Reactive Programming is
the use of signals to achieve this synchronization of parallel instructions. They
are similar to the current in a circuit wire: either present or absent. In practice,
a synchronous reactive language has a set of threads running in parallel, or
executed in an arbitrary order, since the actual order has to be irrelevant to the

5

output of the program. These threads use signals to coordinate their actions: a
thread can wait for a signal to be made present or absent by a different thread
before continuing execution.

2.2 A Basic Model for a Synchronous Reactive Language

The model in [3], is used as the base for the language described in this paper.
It is largely inspired by the SL synchronous language introduced by Boussinot
and De Simone in 1996, [4], which is itself a relaxation of the Esterel model,
[9]. In this model, the reaction to the absence of a signal is postponed until the
following instant in order to avoid the problem of causality cycles present in the
Esterel model.

Causality cycles can occur if the model allows an instruction that tests the
value of a signal to also alter the value of that signal. For example, in the
program ”when A is absent, emit A”, if the signal A is considered present
then it is absent, because it was not emitted, and if it is considered absent then
it is emitted and made present. This program is erroneous, because there is has
no solution (no signal environment that is consistent with its instructions).

To formally describe the operational semantics a few assumptions and nota-
tions are required. A countable set of signals s, s′,... is assumed to exist. The
notation Int represents a finite set of signal names representing an observable
interface. The notation [s/x]T refers to the thread resulted from replacing all
instances of x in T with s. The predicate (T, E) ⇓P (T ′, E′) is used to de-
note that the thread T in environment E executes an atomic, possibly empty,
sequence of instructions, resulting in the thread T ′ in environment E′, and the
spawning of the multi-set of threads P .

Definition 1. A thread is defined as an expression written according to the
following grammar:

T ::= () | (emit s) | (local s T) | (thread T)
| (when s T) | (watch s T) | A(s) | (T ; T)

Definition 2. A signal environment E is a partial function from signal names to
the boolean values true and false, whose domain of definition dom(E) contains
Int.

The constructs that compose this model are as follows:

1. () is the terminated thread.

2. The construct A(s) is used to execute threads that require parameters,
defined as T = A(x).

3. The (emit s) construct is used to set the mapping of a signal in the
environment to true.

4. The (local s T) construct is used to declare a new signal, which is mapped
to false by default, bind it to the name s in T , then execute T .

6

5. The (thread T) construct is used to execute a block of instructions T in
parallel with the current thread.

6. The (T1; T2) construct represents the sequential composition of instruc-
tions.

7. The construct (when s T) will suspend the current thread until the signal
s is mapped to true and execute T afterwards.

8. The construct (watch s T) will start the execution of T , but abort it at
the end of the first instant in which the signal s is mapped to true.

The operational semantics are formalized as follows:

((), E) ⇓∅ ((), E)
(1)

A(x) = T, ([s/x]T, E) ⇓P (T ′, E′)

(A(s), E) ⇓P (T ′, E′)
(2)

((emit s), E) ⇓∅ ((), E[s := true])
(3)

s′ /∈ dom(E), ([s′/s]T, E ∪ {s′ → false}) ⇓P (T ′, E′)

((local s T), E) ⇓P (T ′, E′)
(4)

((thread T), E) ⇓{|T |} ((), E)
(5)

(T1, E) ⇓P1 ((), E1), (T2, E1) ⇓P2 (T ′, E′)

((T1; T2), E) ⇓P1∪P2 (T ′, E′)
(6)

(T1, E) ⇓P (T ′, E′), T ′ 6= ()

((T1; T2), E) ⇓P ((T ′; T2), E′)
(7)

E(s) = false

((when s T), E) ⇓∅ ((when s T), E)
(8)

E(s) = true, (T, E) ⇓P ((), E′)

((when s T), E) ⇓P ((), E′)
(9)

E(s) = true, (T, E) ⇓P (T ′, E′), T ′ 6= ()

((when s T), E) ⇓P ((when s T ′), E′)
(10)

(T, E) ⇓P ((), E′)

((watch s T), E) ⇓P ((), E′)
(11)

(T, E) ⇓P (T ′, E′), T ′ 6= ()

((watch s T), E) ⇓P ((watch s T ′), E′)
(12)

7

A program P is a finite non-empty multi-set of threads. The notations
sig(T) and sig(P) are used to denote the set of signals that are free in a thread
T , and respectively, the set of signals that are free in a program P . Through the
course of an instant, all threads are scheduled non-deterministically to progress
according to the semantics described above. In order for an instant to end,
all threads must reach a state from which progress can no longer be made. A
thread T in an environment E is suspended (denoted as (T, E)‡) when it is
either terminated (T = ()) or its execution was suspended by a when statement
(T = (when s A), E(s) = false). This is represented via the following rule:

(T, E) ⇓∅ (T, E)

(T, E)‡
(13)

During the transition from one instant to the next, all active (watch s A)
instructions are replaced by the terminated thread if E(s) = true, then all
signals in the environment are mapped to false.

Definition 3. The abort operation associated with the watch construct is de-
fined as the function b cE :

bP cE = {bT cE | T ∈ P} b()cE = () bT ; T ′cE = bT cE ; T ′

bwhen s T cE =

{
(when s bT cE) if E(s) = true

(when s T) otherwise

bwatch s T cE =

{
() if E(s) = true

(watch s bT cE) otherwise

The execution of a program P in the environment E is formalized using the
following two transition rules:

∀T ∈ P (T, E)‡
(P, E) ⇓ (bP cE , E)

(14)

∃T ∈ P ¬((T, E)‡), (T, E) ⇓P ′
(T ′, E′), (P\{|T |} ∪ {|T ′|} ∪ P ′, E) ⇓ (P ′′, E′′)

(P, E) ⇓ (P ′′, E′′)
(15)

Finally, the input-output behaviour of a program is described by labelled

transitions P
I/O−−→ P ′, where I,O ⊆ Int are the signals declared in the interface

of the program. The transition means that a program in state P with input I
moves to state P ′ with output O:

(P, EI,P) ⇓ (P ′, E′), O = {s ∈ Int | E′(s) = true}

P
I/O−−→ P ′

(16)

8

where: EI,P =


true if s ∈ I

false if s ∈ (Int ∪ sig(P))− I

undefined otherwise

}

The following constructs, which are essential to synchronous reactive pro-
gramming, are derived from the previously mentioned basic constructs:

(await s) = (when s ())
(loop T) = A(s) where {s} = sig(T), A(s) = (T ; A(s))
(now T) = (local s ((emit s); (watch s T)))
(pause) = (local s (now (await s)))
(exit s) = ((emit s); (pause))
(trap s T) = (local s (watch s T))
(present s T T ′) = (local t ((

(thread (watch s (((pause); (thread T ′)); (emit t))));
(now (((await s); thread(T)); (emit t))));
(await t)))

Figure 1: Derived SRP Constructs

The instruction (await s) blocks the current thread until the signal s becomes
present. The instruction (loop T) executes a block of instructions repeatedly and
indefinitely. The instruction (now T) executes a block of instructions until the
end of the current instant. The instruction (pause) blocks the current thread for
the rest of the instant. The exit and trap constructs provide a simple exception
throwing mechanism, where (trap s T) represents a try−catch block and (exit s)
is represents the throw instruction. The instruction (present s T T ′) will either
run T in the current instant, if the signal s is present, or run T ′ in the following
instant, if the signal s is absent. The present construct is especially important,
because it shows that the model allows threads to react to the absence of a signal.
In order to avoid causality cycles, the reaction can only happen in the following
instant. For example, the program (present s () (emit s)) is not erroneous,
because it is consistent with a signal environment in which s is absent in one
instant and present in the next.

2.3 RxJava

Reactive programming is a programming paradigm oriented around the con-
cepts of data flow and propagation of change [5]. It is a layer of abstraction that
makes it easier to reason about dependencies between components of a program.
The core principle of this paradigm is that program components should not be
concerned with the components that depend on them, but with the components
that they depend on. Some components, called emitters, are sources of data or

9

have an internal state that can change. An emitter will propagate such events to
registered subscribers, which perform event-specific operations called reactions.
In reactive programming these reactions happen asynchronously [6]: subscribers
do not coordinate and act independently from each other.

(a) Reactive Programming (b) The Observer Pattern

Figure 2: Reactive programming and the Observer pattern

Reactive Extensions [13] is a library that offers reactive constructs by extend-
ing the Observer Pattern from object oriented programming with operators for
composing and manipulating data from functional programming. RxJava [14]
is the implementation of this library for the Java programming language. In
order to allow its users to use reactive programming concepts, the library offers
the following:

• observables - sources of data

• subscribers - objects that listen to the Observables and react to the data

• operators for modifying and composing the data (map, zip, filter etc.)

The main constructs from RxJava used to implement the interpreter are
subjects. In RxJava, a subject is a combination between an observable and
a subscriber. A subject can subscribe to another observable and propagate
the data to its own subscribers, while optionally performing some intermediary
operations on it. The library offers many types of subjects, but the two that
were used in the implementation are:

• PublishSubject (Fig. 3)- emit all observed data to subscribed Observer
objects

• BehaviorSubject (Fig. 4) - emits the most recently observed item upon
subscription, and all subsequently observed items to each subscribed Observer

10

Figure 3: PublishSubject

Figure 4: BehaviorSubject

11

3 Implementing the Interpreter

3.1 Design Decisions

To convert the theoretical model into a programming language, some con-
structs need to be added to the language in order to cover the parts of the
model that are considered implementation details (i.e, how to declare the signal
interface of a program):

• The signal domain construct is introduced to allow a programmer to
declare the signal interface of a program. The signals declared with
signal domain will be part of the signal environment for the entire run-
time of the program. They can be set through input and will determine
which emitted signals will be included in the output.

• The let keyword is introduced to allow a programmer to declare functions.
This is needed to implement the construct A(s) from the basic model,
where A is an identifier for a thread that accepts parameters. A function’s
parameters can be either signals or program statements, including other
functions.

Data types such as numbers, strings and maps (used as objects, inspired
from JavaScript) were added to the language, along with relevant operators, in
order to increase its expressiveness and make it a more robust proof of concept.

3.1.1 Additional Data Types

Two constructs were introduced to allow a programmer to declare variables
that will hold non-signal values:

• The construct shared data is used to declare global variables, with the
same scope as the signals declared with signal domain.

• The construct shared is used in a similar way as local, it binds a name in
an instruction sequence to a non-signal variable.

Since these variables are shared between the threads of a program, their
inclusion comes at a cost. For the language to allow for true parallelism while
maintaining its property of determinism, access to resources that are shared be-
tween multiple threads needs to be synchronized in a deterministic fashion. For
this purpose, the lock construct was introduced with the following behaviour:

• The instruction (lock r A) will request the ”lock” for the shared variable
r and run A in the same thread as soon as the request was granted by the
scheduler. After running A, the thread yields its ownership of the ”lock”
of the resource r. A thread with an active lock instruction that did not
receive the ”lock” for the requested resource is considered suspended.

12

• In order to read or write to a shared variable, a thread must ”own its lock”
(i.e, be recognized by the scheduler as the only thread allowed to access
said resource). Attempts to access a resource outside a lock instruction
involving that resource will result in an error.

• The scheduler will keep track of all the resource requests and wait for
all threads to block. Once that happens, the scheduler will fulfil these
requests based on the following approach:

1. If a resource was requested by only one thread, that thread receives
the ”lock” for that resource.

2. If a resource was requested by more than one thread, its ”lock” is
granted to the thread with the highest priority.

In order for the scheduler to be deterministic, this approach has to be
deterministic, which it is, provided that the priority of the threads is
chosen in a deterministic fashion. In this implementation, the following
deterministic function was chosen to determine the priority of the threads:

Definition 4. Given two distinct threads, T1 and T2, T1 has a higher
priority than T2 if one of the following statements is true:

– T1 is an ancestor of T2 (parent of parent of...)

– T1 has the same parent as T2, but T1 was sequentially spawned be-
fore T2 (the instruction (thread T1) appears before the instruction
(thread T2) in the instruction sequence of their parent thread)

– T1 has an ancestor that was sequentially spawned before T2 or an
ancestor of T2

• A thread will release all its resources before blocking, this can be caused
by lock or when instructions nested within a lock instruction. In case of
a nested lock instruction, the thread will release its resources then make
a request for both the resources it had and the ones mentioned in the
lock instruction. In the case of a nested when, the thread will request its
released resources after the when instruction allows execution to proceed.

• It is important to mention that an instant cannot end while some threads
are suspended by a lock instruction. The scheduler should fulfil their
requests and allow execution to proceed within the same instant.

The primitive data types added to the language are integers, floating-point
numbers, booleans and strings. To allow a programmer to combine these types
into data structures, the construct (struct x) was introduced, which will store
a map into the variable x. Tables 1 and 2 show the operators that were imple-
mented on these data types.

The following constructs are also introduced in order to allow decisions to
be taken based on variable values:

13

• The (loop cond T) construct will run the instruction block T if the con-
dition cond evaluates to true, and repeat until the condition evaluates to
false.

• The (if cond T if Telse) construct will run one of the two instruction
blocks depending of the value of cond (Tif if cond is true, Telse if cond
is false).

The construct (structure fields S L) will produce a list (implemented using
a structure) of strings representing the fields of the structure S and store that
list in L.

The (print msg) construct is used to write the contents of a variable to the
output stream.

3.1.2 Syntactic Sugar

To make programming in this language more comfortable, most constructs
will use a function notation and some will accept a variable number of arguments
to replace multiple consecutive uses of the same construct. The redesigned
constructs are shown in table 3.

Note : Because the scheduler is designed to grant requests from multiple
threads at once, the construct lock(r1, ...rn, T) behaves differently from the
instruction block (lock r1 (...(lock rn T)...).

To allow users to create libraries and share code between multiple files, the
import construct was introduced. This construct allows users to specify other
files to parse for function definitions. For example, the code in figure 5 represents
the standard library of the language, which includes the composite constructs
mentioned in figure 1 from section 2.2.

Another useful syntactic shortcut is the ability to specialize functions by
binding some of their parameters. Passing x parameters in a function call when
the function takes n parameters will result in a function that takes n − x pa-
rameters. For example:

l e t foo (a , b , c) = . . . ;

l e t bar (T) = l o c a l (s , T(s)) ;

bar (foo (x , y)) ; // w i l l r e s u l t in foo being c a l l e d with
// parameters x , y , s

14

Operator Description

=
Assignment. The left operand must be a pointer (variable
or structure field).

+
Number addition and string concatenation. Type promo-
tion follows the order string > float > int. A boolean can
also be concatenated to a string.

-
Subtraction. The result will be an integer only if both
operands are integers. The only other accepted operand
type is float.

*
Multiplication. The result will be an integer only if both
operands are integers. The only other accepted operand
type is float.

/
Division. Performs integer division if both operands are
integers and floating-point division if at least one is a float.
No other data types are accepted.

% Modulo. Can only be applied to integers.

.
Index operator. The left operand must be a structure, the
right operand must be an identifier. Returns a pointer to
the data in a structure field.

[]
Index operator. Behaves the same as ”.”, but the expression
inside the brackets can return any type, which will then be
converted to a string.

Table 1: SRL operators - part 1

15

Operator Description

==
Equality. Can be applied to any types except structures.
Returns false if the operands have different types or values.
Returns a boolean.

! =
Inequality. Can be applied to any types except structures.
Returns true if the operands have different types or values.
Returns a boolean.

<
Less than. Can only be applied to integers or floats. Re-
turns a boolean.

<=
Less than or equal. Can only be applied to integers or
floats. Returns a boolean.

>
Greater than. Can only be applied to integers or floats.
Returns a boolean.

>=
Greater than or equal. Can only be applied to integers or
floats. Returns a boolean.

&&
and

Logical and. Can only be applied to booleans. Returns a
boolean.

||
or

Logical or. Can only be applied to booleans. Returns a
boolean.

!
not

Logical not. Unary operator. Can only be applied to
booleans. Returns a boolean.

Table 2: SRL operators - part 2

16

Notation Description

emit(s1, ...sn) Shortcut for (emit s1; ...; emit sn).

local(s1, ...sn, T) Shortcut for (local s1 (...(local sn T)...).

thread(T) Different notation for (thread T).

when(s1, ...sn, T) Shortcut for (when s1 (...(when sn T)...).

watch(s1, ...sn, T) Shortcut for (watch s1 (...(watch sn T)...).

lock(r1, ...rn, T) Allows the request of multiple resources at once.

shared(r1, ...rn, T) Shortcut for (shared r1 (...(shared rn T)...).

struct(r) Assigns a map to the variable r.

struct fields(str, list) Different notation for (structure fields S L).

loop(cond, block) Repeats the execution of block while cond evaluates to true.

if(cond, T if, Telse)
Executes Tif is cond evaluates to true, otherwise it exe-
cutes Telse.

print(msg)
Prints the string representation of the value in msg to the
standard output.

Table 3: SRL constructs

17

// The standard l i b r a r y o f the Synchronous React ive
// Language :

l e t await (s) = when(s , ()) ;

l e t now(T) = l o c a l (s ,
emit (s) ;
watch (s , T) ;

) ;

l e t pause () = l o c a l (s , now(await (s))) ;

l e t e x i t (s) = (
emit (s) ;
pause () ;

) ;

l e t trap (s , T) = l o c a l (s ,
watch (s , T) ;

) ;

l e t pre sent (s , Tif , Te l se) = l o c a l (t ,
thread (

watch (s ,
pause ;
thread (Te l se) ;
emit (t) ;

) ;
) ;
now(

await (s) ;
thread (Ti f) ;
emit (t) ;

) ;
await (t) ;

) ;

Figure 5: SRL standard library: ”stdlib.srl”

18

3.1.3 The Grammar

The resulting language can be described with the following grammar:

• The following tokens are ignored wherever they are matched:

WHITESPACE ::= " " | "\t" | "\n" | "\r";

COMMENT ::= "//" (~["\n", "\r"])*;

• The following tokens are accepted with priority from top to bottom:

IMPORT ::= "import";

SIGNAL DOMAIN ::= "signal_domain";

SHARED DATA ::= "shared_data";

NULL ::= "null";

TRUE ::= "true";

FALSE ::= "false";

LET ::= "let";

NOT ::= ("!" | "not");

OR ::= ("||" | "or");

AND ::= ("&&" | "and");

COMP ::= ("==" | "!=" | "<" | "<=" | ">" | ">=")

ADDOP ::= ("+" | "-");

MULOP ::= ("*" | "/" | "%");

ID ::= ["a"-"z","A"-"Z","_"]

(["a"-"z","A"-"Z","0"-"9","_"])*;

STRING ::= "\"" ("\\" ("\\" | "n" | "r" | "\"")

| ~["\\","\n","\r","\""])* "\"";

INT ::= ["0"-"9"]+;

FLOAT ::= (<INT>)?"."<INT>(("e"|"E")("+"|"-")<INT>)?;

• A program in this language is described by the following production rules:
Program ::= (ImportList)? SignalDomain SharedData

(StatementWithSemicolon | Declaration)* EOF;

ImportList ::= IMPORT ":" StringList ".";

SignalDomain ::= SIGNAL_DOMAIN ":" IdentifierList ".";

SharedData ::= SHARED_DATA ":" IdentifierList ".";

Declaration ::= LET ID "(" IdentifierList ")"

"=" StatementWithSemicolon;

StatementWithSemicolon ::= Statement ";";

Statement ::= OrExpression ("=" Statement)?;

OrExpression ::= AndExpression (OR AndExpression)*;

AndExpression ::= LogicalAtom (AND LogicalAtom)*;

LogicalAtom ::= (Comparison | NOT Comparison);

Comparison ::= Calculation (COMP Calculation)?;

Calculation ::= Term (ADDOP Term)*;

19

Term ::= Factor (MULOP Factor)*;

Factor ::= (Constant | "(" StatementSequence ")"

| ID (ParameterList | (Index)+)?);

Index ::= ("." ID | "[" Statement "]");

Constant ::= (INT | FLOAT | STRING | NULL | TRUE

| FALSE);

StatementSequence ::= Statement (";"

(StatementWithSemicolon)*)?;

ParameterList ::= "(" (StatementSequence

("," StatementSequence)*)? ")";

IdentifierList ::= (ID ("," ID)*)?;

StringList ::= (STRING ("," String)*)?;

• All functions that are implicit in the language (the redisigned constructs
from section 3.1.2) will be matched by the (Identifier ParameterList)

rule in Factor.

• In this language, a library is a collection of functions written into a differ-
ent file. It is described by the following production rule:

Library ::= (ImportList)? (Declaration)* EOF;

3.2 Implementation

To achieve actual parallelism, the Thread class from the Java standard li-
brary is used to run program instructions on different processor cores. To
synchronize these threads in the manner described by the model in [3], the
Condition class, which offers mechanisms for suspending and activating threads,
is used in combination with RxJava constructs. The two components of the
model that are depended on by a multitude of other components, such that
they can conform to the Observer Pattern, are the signal environment and the
scheduler. These two components will act as Observables and the threads will
act as Observers. The two events that require propagation are signal emission
and instant transition. The signal environment will notify threads whenever
signals are emitted, while the scheduler will keep count on the number of active
threads and, once they are all suspended, notify them about the transition into
the next instant.

3.2.1 Abstract Syntax Tree

JavaCC [15] was used to generate a parser for the grammar described in
section 3.1.3. This parser will produce an abstract syntax tree in the form of
an object of class Program, that can execute the instructions described in the
parsed code-file. An abstract syntax tree [12] is an intermediate representation
that captures the essential structure of the source code in a tree form, while
omitting unnecessary syntactic details.

In order to encode program instructions, a common interface must be made
for all program statements. The Statement interface was created to serve this

20

purpose. Every subclass of Statement must implement the execute method
that takes a SignalGuard and a translation table as parameters and returns an
Object. The SignalGuard object is responsible for managing the execution flow
in relation to the environment (signals and resources). Its characteristics are
discussed in detail in section 3.2.3. The translation table maps a String (the
name of a variable) to its corresponding Statement. This is needed because
statements can change names when passed to functions. For example, in the
following code snippet, the s variable inside foo needs to be translated to the
global signal a:

s i gna l domain : a .
l e t foo (s) = emit (s) ;
f oo (a) ;

All statements must return something, but it can be of any type, since Object
is the superclass of every other class in Java. This is particularly useful for
statements such as mathematical operations, but all Statement subclasses are
subjected to this requirement to allow for future extensions - such as function
return values for example. The classes that implement the Statement interface
are:

• StatementSequence - contains a list of Statement objects. Its execute
method will execute each statement in the list, making use of the
executeStatement method in SignalGuard (see 3.2.3). This is necessary
because the execution of a StatementSequence can be paused or aborted
after or during any Statement in the list. The method returns null, but
this can be changed to extend the language to allow the assignment of
lambda functions to variables.

• Identifier - represents the name of a variable. It offers a translate method
that will return the statement corresponding to the variable name in the
provided scope (translation table). Its execute method will construct a
FunctionCall object and call execute on it.

• Parameter - binds a Statement object to a translation table. This is
needed because function parameters have to use the scope of the caller,
for example:

// t h i s code emits s i g n a l s a and b
s igna l domain : a , b .
l e t foo (b , T) = (

emit (b) ; // emits a (passed as parameter)
T() ; // T i s eva luated to emit (b) ,

// but b r e f e r s to the g l o b a l s i gna l ,
// not the l o c a l v a r i a b l e b

) ;
foo (a , emit (b)) ;

21

• V alue - holds a value of any type (Object type) and its execute method
returns it. It is used for constants and data variables (pointers). The
empty statement () is encoded as a V alue object that holds null.

• FunctionCall - represents an identifier followed by a list of parameters. At
this stage, the parameters are of type Statement, and are not yet bound to
a scope. The execute method will translate the Identifier and call execute
on the obtained Statement if it is a Parameter or a V alue. The former is
useful for when a function or a StatementSequence is passed as parameter,
while the latter is simply necessary because of how the Identifier class
is designed. If the translation result is an Identifier, then a function is
called through the method callFunction in class Program (explained in
detail further in this section). Because parameters might be passed to a
Parameter object, which could pass them on to an Identifier, all 3 classes
that implement function calls, Identifier, Parameter and FunctionCall,
also offer an execute method that takes in a list of parameters (Statement
objects) as an additional argument. This also implements the partial
function calls described in section 3.1.2.

• ThreadedStatement - used to run a scope bound Statement (a Parameter)
on a different thread. Upon instantiation, a new SignalGuard is created,
since new threads do not carry on the constraints (when, watch or lock)
of their parent threads. The execute method will register a new thread
with the program’s Scheduler (see section 3.2.2), then start a new thread
that will execute the bound Statement with the new SignalGuard.

• BinaryOperation - is actually an abstract class that acts as a superclass
for the implementations of the operators described in section 3.1.1. It con-
tains two data fields of type Statement, and offers two methods for return-
ing the result of each operand by calling their respective execute meth-
ods. The classes that derive from BinaryOperation are: Assignment,
IndexOperation, Addition, Subtraction, Multiplication, Division,
Modulo, Equality, LessThan, GreaterThan, LogicalNot, LogicalOr,
LogicalAnd.

A Program will store the functions that are implicitly defined within the
language, as well as the functions defined using the let construct, in a data field
called functions, which maps a function name to its corresponding implementa-
tion. The interface FunctionDefinition was created to be implemented by all
classes that encode function implementations. These derived classes must offer
a call method that takes as parameters a SignalGuard and a list of Parameter
objects.

The UserFunctionDefinition class is used to encode functions defined with
the let construct. It has two data fields: a list of names for the function pa-
rameters and a Statement object encoding the function body. Its call method,
which implements the function call from the FunctionDefinition interface,
will create a new translation table for the local scope of the function, then

22

pass it to the execute method of the Statement representing the function body,
along with the SignalGuard argument. When creating the translation table,
the function will start from the global scope, which can be retrieved by calling
the method getGlobalScope on the SignalGuard argument, which in turn uses
the getGlobalScope method in Program. A local structure referred to by the
identifier here is added to allow local function computations. This version of
the table will then be extended by mapping every name in the list of parameter
names to its corresponding Parameter object from the list passed as argument
to call. All naming conflict are solved by overwriting, for example:

s igna l domain : a , b , c .
l e t foo (s , s , s) = emit (s) ;
f oo (a , b , c) ; // emits c

The encodings of functions that are implicitly declared within the language
are described in detail in section 3.2.5.

The Program object will store all the program statements in a
ThreadedStatement object, so that the interpreted program will run on a differ-
ent thread than the main thread of the interpreter. This separation is required
because when all program threads block, another thread needs to perform the
transition from one instant to the next. Once the Program object is con-
structed, calling execute on it will run the encoded instructions. This function
consists of a loop that samples the input signals, executes one instant (the pro-
gram is run until all threads block), then outputs all the signals from the signal
interface that were emitted during that instant. In the current implementation,
the interpreted program will use the input and output streams of the interpreter.

3.2.2 Scheduler

The Program object also contains a Scheduler object. This object is re-
sponsible for assessing when an instant has ended, perform the transition from
one instant to the next, and implement the synchronized locking mechanism
described in section 3.1.1. The Scheduler class contains the following data
members:

• threadOrder - an ordered list that holds the ID’s of the threads that make
up the interpreted program, ordered from the highest to the lowest priority
(see the priority function in section 3.1.1)

• threads - a table that maps each thread id to relevant information about
the thread, such as its number of children, its parent id, its corresponding
SignalGuard object and the list of resource requests. All this is needed
to establish the priority of the threads and handle their resource requests.

• resources - a table that maps each resource (pointer) to whether it is
available or currently owned by a thread

• activeThreads - a counter for the number of active threads in the imple-
mented program

23

• instantLock - a lock used to synchronize the methods of the Scheduler
class, which modify the number of active threads, the thread data and the
requests and ownership of resources

• endInstantCondition - a condition variable that uses the instantLock.
The scheduler thread (the main thread of the interpreter) will sleep on this
condition until the activeThreads counter reaches 0. When that occurs,
the scheduler thread is notified to wake up and perform the transition to
the next instant.

To perform its attributed tasks, the Scheduler class offers the following
methods:

• registerThread - places a new entry in the threads table and the
threadOrder list. For the former operation, the priority of the new thread
is calculated, based off of its parent, then its id is placed at the correct
position in the list.

• deregisterThread - called by a thread once it finishes execution. It simply
removes the entries in threads and threadOrder corresponding to said
thread. It also decrements its parent’s number of children, if the parent
is still present in the threads table.

• incrementActiveThreadCount - increments activeThreads. This method
should always be called by the thread that is about to spawn or awake
another, not by the thread that is spawned or awoken. This is required to
avoid the case where activeThreads reaches 0 before the awoken thread
can call incrementActiveThreadCount.

• decrementActiveThreadCount - decrements activeThreads.
If activeThreads reached 0, then the signal method of
endInstantCondition is called to signal the scheduler thread to wake up.

• requestResources - appends a list of resource requests to the calling
thread’s list of requests in the thread table

• releaseResources - takes a list of resources (pointers) as parameters and
sets their state as available in the resources table

• nextInstant - causes the calling thread to sleep until the number of active
threads in the interpreted program reaches 0. When that happens, the
distributeResources method is called to handle resource requests. If any
threads were awoken, the current thread is again put to sleep and the same
actions are executed upon wakeup. If no threads awaken, which means
that no threads are waiting on lock statements, the function will perform
the actions associated with the end of the instant, then terminate. This
function was designed to be called by the scheduler thread. The actions
associated with the end of the instant are passed as a parameter of type
Runnable and are executed by calling run on it.

24

• distributeResources - goes through the request lists of the registered
threads in the order of their priority (their order in the threadOrder list)
and grants, for each thread, either all the requests, if all the requested
resources are available, or none.

The Program class contains a data field of type PublishSubject (see section
2.3) called endInstantSignaler and offers a method called
subscribeToInstantSignaler that allows Observers to subscribe to it. Each
thread’s SignalGuard will subscribe to this Subject upon construction. The
function execute in Program will call nextInstant on the Scheduler data field
to execute an instant of the interpreted program. The actions associated with
the end of an instant (passed as a parameter of type Runnable) are:

1. Print the output.

2. Have endInstantSignaler notify its subscribers that the instant has ended
and present them with the current signal environment. This needs to be
done before resetting the environment so that threads can abort their
activated watch statements.

3. Reset the signal environment (make all signals absent).

3.2.3 Signals

The signal environment (Def. 2) is encoded by the signalTable data field
in class Program, which is an instance of class SignalTable. This class was
designed as a wrapper class that appends the functionality of an Observable
to a Map. This class consists of a table that maps signal names to boolean
values (present or absent) and a Subject that allows Observers to subscribe
and react to changes in the signal table. The type of Subject used here is
BehaviourSubject (see section 2.3). This will ensure that subscribers are pre-
sented with the state of the signal environment at least once, even when no
changes occur during subscription, which is useful for the case when a thread
subscribes to wait on a signal that is already present. The data in the signal
table can be changed via the following methods:

• put - adds a mapping from a signal name to a boolean value, overwrites
the existing mapping if the signal name is already in the table

• putAll - takes a map from signal names to boolean values as parameter
and adds all its contents to the signal table

• resetSignals - maps all signal names in the table to false (absent)

All these methods will also cause the BehaviourSubject to notify its sub-
scribers and present them with the modified signal environment. For observers
to subscribe to it, the SignalTable class offers a getObservable method, which
the threads can access via the subscribeToSignalTable method in Program.

25

Each thread of the interpreted program will have a SignalGuard object
associated with it, that will interrupt the execution flow when the thread has to
wait on some signals or resources and resume execution when the conditions are
met or when a new instant starts. These object will make use of the following
data members:

• environment - a reference to the Program object, used to interact with
the signal environment and the scheduler

• checks - a list of the when and watch instructions which guard the exe-
cution of the current statement, along with their corresponding signals

• remainingWhenChecks - the set of signals the thread is waiting on due
to when instructions. When a signal becomes present it is removed from
the set. At the start of a new instant, when all signals are made absent,
all signals from checks that are associated with a when instruction are
copied into the set. Its main use is improving performance.

• resources - the list of resource locks needed for continuing execution. The
thread may be holding these locks or waiting to receive them.

• hasResources - a boolean that takes note on whether the thread holds all
the required resource locks, or none.

• globalScope - a translation table for the global scope of the thread, used
as starting block for the scope of a function defined with the let construct.
The global scope of a thread contains the shared variables declared with
the shared data construct as well as a private variable that is unique in
each thread and does not require locking to access (the thread it corre-
sponds to always holds its lock).

• signalTableSubscriber - the Disposable object obtained when subscribing
to the signal environment, used to unsubscribe when no longer waiting on
signals.

• endInstantSubscriber - the Disposable object obtained when subscrib-
ing to the scheduler for notifications about instant transitions, used to
unsubscribe when the thread finishes execution.

• blockCondition - the condition variable used to wait on signals or resources

• lock - the lock used by blockCondition, also used to synchronize some
methods that may be called from different threads

• stopCount - the number of instruction blocks guarded by nested when
and watch instructions to abort due to an activated watch instruction

When a Statment object has to run a set of instructions, as is the case
with StatementSequence or with a loop instruction, they have to use the
executeStatement method offered by SignalGuard, because the instruction

26

block may contain instructions that affect the execution flow, such as when,
watch and lock. This method takes the Statement object to be executed and the
translation table encoding its scope as parameters. Before calling the execute
method on the received Statement object, the method will perform the following
checks and take action accordingly:

1. If the set of remaining when checks is not empty and stopCount is 0, then
the thread needs to wait for some signals to become present before exe-
cution can proceed. To do so, the private method waitOnSignalTable is
called to subscribe to the signal environment through the subscribeToSign-
alTable method in Program. This method takes a callable as parameter,
to call when the signal environment changes, for which the SignalGuard
object will pass its checkWhen method. Because the signal environment
uses a BehaviourSubject to notify its subscribers, the checkWhen method
will be called once upon subscription and then every time the signal envi-
ronment changes. This happens either when a signal was emitted or when
all signals were reset at the end of the instant. The Subject will pass a
view of the signal table to the checkWhen method so that it can remove
all the fulfilled when checks from the remainingWhenChecks set. If the
initial call removes all the checks from the set, the waitOnSignalTable
method allows execution to continue without waiting. Otherwise, the
method will block the current thread by using the wait method of the
condition variable blockCondition, until the number of remaining when
checks reaches 0 or until stopCount differs from 0. In both these cases,
the checkWhen method will use the signal method of blockCondition
to wake up the sleeping thread. Once execution is allowed to continue,
the SignalGuard will unsubscribe from the signal environment by calling
dispose on its signalTableSubscriber field.

2. If stopCount differs from 0, no waiting will occur and the execution of the
Statement object is skipped. A stopCount greater than 0 means that the
current instruction has been aborted by a watch instruction.

3. If the boolean value hasResources is false, then the SignalGuard ob-
ject will use the the waitOnResources method to register its resource
requests with the scheduler (via the requestResources method) and the
wait on blockCondition until these requests are met. When the scheduler
grants resources to a thread, it calls the grantResources method of the
SignalGuard object corresponding to that thread. This method will set
hasResources to true and signal the sleeping thread to wake up.

The aforementioned methods waitOnSignalTable and waitOnResources
will first call the decrementActiveThreadCount method of Scheduler before
putting the thread to sleep, while the methods checkWhen and grantResources
will call incrementActiveThreadCount before notifying the thread to wake up.

27

The SignalGuard class also offers the following methods for adding ele-
ments to the collections of signal checks and needed resources before executing
a Statement:

• executeWhen

• executeWatch

• executeLock

The methods executeWhen and executeLock will also release the resource
locks held by the thread before proceeding with the condition checks and state-
ment execution. executeLock will also release the resources that are relevant
to its call after the associated instruction block is completed or aborted. This
way, a nested lock instruction will only release its share of resources.

The SignalGuard also performs the termination of instruction blocks within
activated watch instructions. Upon construction, all SignalGuard objects sub-
scribe to the scheduler via the subscribeToInstantSignaler method offered by
the Program class, in order to receive notifications about transitions from
one instant to the next. The Callable object passed to this function, to be
called when the instant changes, is the nextInstant method of the subscribing
SignalGuard object. The Scheduler object will call this method at the end
of each instant, and pass the signal environment to it, it is reset. This allows
threads to consider which watch conditions were satisfied during that instant,
and abort their corresponding instruction blocks. The nextInstant method will
search the checks list for the first activated watch instruction. According to the
abort function described in section 2.2, Def. 3, a watch instruction is activated
when the its corresponding signal is present and all the when instructions it is
nested within are activated (their corresponding signals are also present). This
is why the checks list preserves the order in which these instructions are nested
within each other. If an activated watch instruction is found, stopCounter will
be set to the number of checks that need to be removed from the list (from
last to first, like a stack) so that the activated watch instruction is removed.
While stopCount is greater than 0, the calls to executeStatement will not wait,
nor execute the associated Statement. At the end of their execution, both
executeWhen and executeWatch functions will remove their checks from the
list and decrement stopCount accordingly. This way, all the remaining instruc-
tions in the block associated with the top-most activated watch instruction,
including nested watch and when instructions, will be skipped.

3.2.4 Data Types

The non-signal variables of this language, encoded by V alue objects in the
abstract syntax tree, will behave similarly to those in Java, in the sense that
they all represent pointers to the data. In order to implement these pointers,
that also limit the access to their data to at most one thread at a time, the
LockedPointer class was designed as a wrapper around the objects used for the
data types of the language. A LockedPointer object will consist of an owner id,

28

which holds the id of the thread that currently has the resource lock, and a value,
representing the referenced data, which is of type Object, so that it can refer to
any type of data. The methods getV alue and setV alue restrict access to the
data such that they throw an error when run by a thread that isn’t the owner.
Since a variable can contain a structure (produced by the struct construct),
and all the structure fields are also LockedPointer objects, all pointers within
a structure need to have a common owner. This is done by having all pointers
share the same OwnerId value, which is basically a wrapper around an integer
variable, used to allows both sharing and modification. When the scheduler
grants the lock of a resource to a thread, it’ll call the setOwner method on the
corresponding LockPointer, and pass the id of the thread that is receiving the
lock. This method will set the value of the owner id for the object on which it
was called, which will also affect all other LockPointer objects that are within
the same structure.

The data primitives present in the language are integers, floating point num-
bers, boolean values, strings and structures. In order to implement them, it is
sufficient to use the Integer, Double, Boolean, String and HashMap classes
respectively, all present in the Java standard library.

A structure is implemented as a map from string values, representing the
names of the structure fields, to LockedPointers. When adding a field to a
structure, the new LockedPointer object needs to be constructed via the factory
method makeWithinStruct, so that it uses the same OwnerId object as the rest
of the structure. The function sameStructure offered by the LockedPointer
class can be used to check if two pointers belong within the same structure.
Structure assignment to variables or structure fields, which would cause multiple
pointers to reference the same data, is only allowed if the pointers are within
the same structure. This is needed in order to disallow code that bypasses the
deterministic locking mechanism, such as:

29

s igna l domain : .
sa red data : a , b .
l o ck (a ,

s t r u c t (a) ;
s t r u c t (a . x) ;
l o ck (b ,

b = a . x ; // e r r o r
) ;
a . x . y = 0 ; // would modify b

) ;

3.2.5 Language Constructs

The language constructs are split into two categories: the ones that are used
by the parser to interpret the code and build the abstract syntax tree and the
ones that are implemented by classes that implement the FunctionDefinition
interface.

The former category consists of the following constructs:

• import - The files mentioned with this construct will be parsed using
the library grammar rule described in section 3.1.3 and all the function
definitions will become entries in the functions table in Program.

• signal domain - The identifiers listed with this construct will become keys
in signalTable

• shared data - The identifiers listed with this construct become LockedPointer
objects stored in the table for the global scope of the program

• let - The parser will encode the functions declared with this construct as
UserFunctionDefinition objects and store them in the functions table
in Program

• The various operators described in section 3.1.1 are parsed into objects
from classes that extend the BinaryOperation class. Each operation has
its own class.

The latter category contains the following constructs, each having an asso-
ciated class that implements FunctionDefinition:

• emit - Encoded as an instance of the EmitFunctionDefinition class, its
call method expects a list of Parameter objects that contain Identifier
objects which translate to signal names. It will then pass each signal name
to the emitSignal method from class Program, setting them as present
in the signal environment.

30

• local - Encoded as an instance of the LocalFunctionDefinition class, its
call method expects a list of Parameter objects that contain Identifier
objects, except for the last one, which should contain the instruction block
to be run. It will then use the addLocalSignal method in class Program,
which will produce a new signal name and add an entry for it into the
signal table. The generated names will contain the symbol ”#”, followed
by a number, in order to avoid name clashes with user-declared signals.
New translation rules are introduced into the translation table of the last
Parameter object, in order for the identifiers of the locally declared signals
to be mapped to the newly generated names. The last Parameter is then
executed.

• thread - Encoded as an instance of the ThreadFunctionDefinition class,
its call method expects a list containing a single Parameter object. This
object is used to construct a ThreadedStatement object, whose execute
method will execute the Parameter object in a different thread.

• when - Encoded as an instance of the WhenFunctionDefinition class, its
call method expects a list of Parameter objects that contain Identifier
objects, except for the last one, which should contain the instruction block
to be run. It then uses the translate method from the Identifier class
to obtain the signal names, which will get passed to the executeWhen
method of SignalGuard together with the instruction block to be exe-
cuted.

• watch - Encoded as an instance of the WatchFunctionDefinition class,
its call method expects a list of Parameter objects that contain Identifier
objects, except for the last one, which should contain the instruction block
to be run. It then uses the translate method from the Identifier class
to obtain the signal names, which will get passed to the executeWatch
method of SignalGuard together with the instruction block to be exe-
cuted.

• shared - Encoded as an instance of the LocalFunctionDefinition class,
its call method expects a list of Parameter objects that contain Identifier
objects, except for the last one, which should contain the instruction block
to be run. It will then construct a new LockedPointer object for each
Identifier, and introduce new entries into the translation table of the
last Parameter object so that the identifiers are mapped to V alue ob-
jects containing the newly constructed LockedPointer objects. Lastly,
the method declareResources from class Scheduler is used to register the
new shared resources with the scheduler.

• lock - Encoded as an instance of the LockFunctionDefinition class, its
call method expects a list of Parameter objects that contain V alue ob-
jects, except for the last one, which should contain the instruction block
to be run. It then uses the execute method on the Parameter objects
that refer to the shared variables to obtain the LockedPointer objects

31

representing the resources to be locked. These will get passed to the
executeLock method of SignalGuard together with the instruction block
to be executed.

• struct - Encoded as an instance of the StructFunctionDefinition class,
its call method expects a list containing a single Parame-ter object,
which in turn should contain a V alue object. The execute method of
the Parameter object is run to obtain the LockedPointer object that
will store the structure. A new HashMap object, which maps strings to
LockedPointer objects, is constructed and passed to the setV alue method
of the LockedPointer received as parameter.

• struct fields - Encoded as an instance of the StructF ieldsFunctionDefi-
nition class, its call method expects a list containing exactly two Parame-
ter objects, which in turn should contain V alue objects. The execute
methods of the Parameter objects are run to obtain the two LockedPoin-
ter objects, the first one being a structure and the second one being the
pointer that will store the resulting list. The fields of the structure are
retrieved by using the keySet method on the map that encodes it. A
structure that imitates an array-list is then constructed and stored in the
second LockedPointer object. The names of the fields of the first structure
are stored as strings in this list.

• if - Encoded as an instance of the IfFunctionDefinition class, its call
method expects a list containing exactly three Parameter objects. The
first one should contain a V alue object representing the condition, the
second one should represent the instruction block to be run if the instruc-
tion is true and the third one should represent the instruction block to be
run if the condition is false. The execute method will be called on the first
Parameter object to obtain the value of the condition. This value should
be of boolean type, and, based on its truth value, one of the remaining
two parameters is executed.

• loop - Encoded as an instance of the LoopFunctionDefinition class, its
call method expects a list containing exactly two Parameter objects. The
first one should contain a V alue object representing the condition, the
second one should represent the instruction block to be run. Inside an
infinite loop, the first parameter is executed to obtain the value of the
condition, which is expected to be of boolean type. If this value is true,
the second parameter is executed and the loop starts from the beginning.
If the condition is false, the loop is aborted. The loop instruction can
also be aborted by an enclosing watch statement. To account for this, the
method isAborted of SignalGuard is called before each iteration of the
loop. If it returns true, the loop is aborted.

• print - Encoded as an instance of the PrintFunctionDefinition class, its
call method expects a list containing a single Parameter object, which in
turn should contain a V alue object. The execute method of the Parameter

32

object is run to obtain the LockedPointer object that contain the data to
be printed. In order to preserve the deterministic property of the language,
this function needs to obtain the lock of the output stream before writing
to it. The resource pointer is obtained through the getGlobalScope method
from SignalGuard. This is then passed to the executeLock method of the
guard, together with a PrintWithLock statement that will print the data
once the guard executes it.

4 Evaluation

4.1 Implementation of the Basic Model

This section covers the relation between the operational semantics of the
initial model, presented in section 2.2 and the behaviour of the interpreter.
When discussing this relation, a translation needs to be made between the
program states described by these semantics, and the states of the interpreter.
Furthermore, it has to be shown that the interpreter also follows the presented
transition rules, so if the model semantics describe a transition from program
state A into program state B, then the interpreter needs to transition from
the translation for state A into the translation for state B. The operational
semantics for the language construct are described by the rules 1-16 and the
definition of the abort function (Def. 3) from section 2.2.

((), E) ⇓∅ ((), E)
(rule 1)

Rule 1 describes the terminated thread, which is interpreted as the comple-
tion of a call to the execute method of a Statement object. Once the execute
method returns, the instruction represented by the Statement object can be
considered completed, which is denoted in the model as the terminated thread,
”()”.

(T1, E) ⇓P1 ((), E1), (T2, E1) ⇓P2 (T ′, E′)

((T1; T2), E) ⇓P1∪P2 (T ′, E′)
(rule 6)

(T1, E) ⇓P (T ′, E′), T ′ 6= ()

((T1; T2), E) ⇓P ((T ′; T2), E′)
(rule 7)

Rules 6 and 7 describe the behaviour of the sequential composition of instruc-
tions. This composition is converted by the parser into a StatementSequence
object, which contains an ordered list of Statement objects representing the
sequential instructions. The execute method of StatementSequence will call
the execute method of each Statement in the list, one by one, in their respec-
tive order. The transition in rule 6 is implemented by the fact that after an
instruction has terminated, the execution of the next one in the list will begin.
The transition in rule 7 is implemented by the fact that an instruction will not
be executed unless it is the first one in the list, or the previous instruction has
finished execution (the execute method returned).

33

The constructs used in the following rules are interpreted as FunctionCall
objects, whose execute methods will use the callFunction method in Program
to run the call method of the FunctionDefinition objects that match the
function identifiers.

A(x) = T, ([s/x]T, E) ⇓P (T ′, E′)

(A(s), E) ⇓P (T ′, E′)
(rule 2)

Rule 2 describes the execution of a thread that requires parameters, modelled
by the interpreter via the method call in class UserFunctionDefinition. The
parser will produce a UserFunctionDefinition for each function declared via
the let construct, and store them in the functions table within the Program
object. This models the premise A(x) = T , where A is the function identifier,
x is a parameter and T is the function body, stored as a Statement object.
When the statement A(s) is executed, the call method of the corresponding
UserFunctionDefinition will first produce a translation table that maps the
parameter names to their values. Afterwards, it will pass this translation table
to a call to the execute method of the Statement encoding T , effectively running
the instruction [s/x]T . This way, as described by transition rule 2, the state
reached by running the instruction A(s) will coincide with the state reached by
running the instruction T in which the identifier x was replaced by s.

((emit s), E) ⇓∅ ((), E[s := true])
(rule 3)

Rule 3 describes the behaviour of the emit construct. This construct is mod-
elled by the call method in EmitFunctionDefinition, which will map the signal
passed as argument to true in the signalTable in the Program object, then ter-
minate. As signalTable represents the signal environment, the execution of the
(emit s) instruction will lead to a state equivalent to ((), E[s := true]), where
E is the initial mapping within signalTable.

s′ /∈ dom(E), ([s′/s]T, E ∪ {s′ → false}) ⇓P (T ′, E′)

((local s T), E) ⇓P (T ′, E′)
(rule 4)

Rule 4 describes the behaviour of the local construct, which is modelled by
the interpreter via the method call in class LocalFunctionDefinition. This
method will first create a new unique name for the local signal via the method
addLocalSignal in Program. This models the premise s′ /∈ dom(E). The
method will then produce a translation table that maps the local signal identifier
to the newly created identifier and pass it to a call to the execute method of the
Statement encoding T , effectively running the instruction [s′/s]T . This way,
as described by transition rule 4, the state reached by running the instruction
(local s T) will coincide with the state reached by running the instruction T in
which the identifier s was replaced by a new, unique identifier.

((thread T), E) ⇓{|T |} ((), E)
(rule 5)

34

Rule 5 describes the behaviour of the thread construct, which is responsible
for the parallel composition of instructions. The instruction (thread T) will
spawn another thread to run the instruction T in parallel, then terminate. This
is modelled by the interpreter via the call method in class ThreadFunctionDefi-
nition, which constructs a ThreadedStatement object that encodes the instruc-
tion block T . Calling the execute method on a ThreadedStatement will start
a new Java Thread, [16], that executes the Statement object encoding T in
parallel with the other threads.

E(s) = false

((when s T), E) ⇓∅ ((when s T), E)
(rule 8)

E(s) = true, (T, E) ⇓P ((), E′)

((when s T), E) ⇓P ((), E′)
(rule 9)

E(s) = true, (T, E) ⇓P (T ′, E′), T ′ 6= ()

((when s T), E) ⇓P ((when s T ′), E′)
(rule 10)

Rules 8, 9, and 10 describe the behaviour of the when construct, which is
modelled by the interpreter via the method call in class WhenFunctionDefini-
tion. This method will add a when check to the list of signal checks in the
SignalGuard object corresponding to the current thread, then subscribe to the
SignalTable object representing the signal environment. Rule 8 shows that the
execution will halt while the signal mentioned in the when instruction is not
present. The interpreter mimics this through the use of the wait method in
class Condition [16], which will suspend the current thread until a different
thread calls signal. Since the signal table is a BehaviorSubject 2.3, both on
subscription and every time a signal is emitted, the method checkWhen in
SignalGuard is called to check the state of the signal environment. If the
required signals have become present, the execution proceeds, as indicated in
rules 9 and 10, otherwise the thread remains suspended, as indicated by rule 8.
Rule 10 shows that, although the instruction block T is executed, the transitions
that compose its execution will carry the signal check corresponding to the when
instruction until the terminated thread is reached. This is modelled in the
interpreter by using a list for the signal checks and by having the SignalGuard
object be passed to subsequent instructions, so that their execution is ”guarded”
by all the signals used in enclosing when and watch instructions. To adhere to
rule 9, when the execution of T reaches the terminated thread, so does the when
instruction, which is modelled by the removal of the corresponding check from
the list.

(T, E) ⇓P ((), E′)

((watch s T), E) ⇓P ((), E′)
(rule 11)

(T, E) ⇓P (T ′, E′), T ′ 6= ()

((watch s T), E) ⇓P ((watch s T ′), E′)
(rule 12)

35

Rules 11 and 12 describe the behaviour of the watch construct, which is
modelled by the interpreter via the method call in class WatchFunctionDefini-
tion. This method will add a watch check to the list of signal checks in the
SignalGuard object corresponding to the current thread, then execute the
Statement that encodes the instruction block T . As shown by rule 12, the
transitions that compose the execution of T will carry the signal check corre-
sponding to the watch instruction until the terminated thread is reached. This
is modelled in the interpreter by using a list for the signal checks and by hav-
ing the SignalGuard object be passed to subsequent instructions, so that their
execution is ”guarded” by all the signals used in enclosing when and watch
instructions.

(T, E) ⇓∅ (T, E)

(T, E)‡
(rule 13)

∀T ∈ P (T, E)‡
(P, E) ⇓ (bP cE , E)

(rule 14)

Rule 14 defines the program transition from one instant to the next. It
makes use of rule 13 and the abort operation (Def. 3). Rule 13 defines the
condition for a thread to be considered suspended. The only transition rules
that fit this definition are rules 1 and 8. In the interpreter, the Scheduler
object keeps the count of how many threads are active. This count is decreased
when a thread goes into waiting due to a when instruction or when a thread
finishes the execution of its instruction block. The count is increased when a
thread is spawned or when a thread is resumes execution. It can be seen that
the premise ∀T ∈ P (T, E)‡ is equivalent with the count of active threads
reaching 0, which is when the Scheduler performs the transition into the next
instant. To perform the abort operation, the Scheduler will call the nextInstant
method of each SignalGuard object in the program, which in turn will call the
checkWatch method. This method will identify the top-most activated watch
instruction, in which the signal is present and all the enclosing when instructions
are also activated. If an activated watch was found, the stopCount value of the
corresponding SignalGuard is set to the number of when and watch instructions
that need to terminate so that the activated watch will terminate. While the
value of stopCount is above 0, the interpreter will skip executing statements,
decrementing stopCount with each terminated when or watch instruction. The
value will reach 0 once the activated watch instruction was aborted along with
its corresponding instruction block.

∃T ∈ P ¬((T, E)‡), (T, E) ⇓P ′
(T ′, E′), (P\{|T |} ∪ {|T ′|} ∪ P ′, E) ⇓ (P ′′, E′′)

(P, E) ⇓ (P ′′, E′′)

(rule 15)
The instantaneous transitions, described by rule 15, are performed by simply

letting the Java threads run until the count of active threads reaches 0.

36

(P, EI,P) ⇓ (P ′, E′), O = {s ∈ Int | E′(s) = true}

P
I/O−−→ P ′

(rule 16)

where: EI,P =


true if s ∈ I

false if s ∈ (Int ∪ sig(P))− I

undefined otherwise

}

Rule 16 formalizes the input-output behaviour of a program. The input is
represented by the set of signals in the interface that are present at the beginning
of an instant, while the output represents the set of signals in the interface that
are present at the end of the instant. In the interpreted language, the signal
interface is declared using the signaldomain construct. The signals declared
using this construct are easily distinguishable from local signals because of their
naming conventions. The names of local signals start with the symbol ”#”,
while signals in the interface can only start with a letter or the symbol ” ”.
This behaviour is modelled by the interpreter via the method execute in class
Program, which contains a loop that will read the input signals, set them as
present in the signal environment, allow execution to proceed until the end of
the instant, then print all present signals that are part of the signal interface.

4.2 Parallelism

Some implementations of synchronous reactive languages, for example Re-
activeML [11] and SugarCubes [10], translate their parallel instructions into
sequential instructions, which are run on a single processor core. In this im-
plementation, true parallelism is achieved through the use of the Thread class
offered by the Java standard library. This class allows the parallel execution
of program instructions on multiple processor cores. This has the benefit of
speeding up the execution of instructions that do not depend on one another.

As an example, the program shown in figures 6 and 7 performs a bounded
sum on a range of values. A bounded sum is a summation in which each addition
is accompanied by a modulo operation in order to keep the result bounded to a
range of values. Since this operation is associative, the program makes use of a
group of worker threads that run in parallel and compute the sum over separate
regions of the initial range. The threads will store their results in the shared
array results, and the last thread to do so will also emit the signal DONE to
notify the main thread that the worker threads have finished. The main thread
will then compute the bounded sum over the elements of results to obtain the
final answer.

To show the benefit of using true parallelism, this program is run with 1, 2, 3,
and 4 worker threads on a machine with 4 processor cores, and the execution is
timed. Figure 8 shows the output and the execution time in the increasing order
of the number of worker thread. Figure 9 shows the decrease of the execution
time as the number of worker threads increases.

37

4.3 Determinism

A deterministic program is a program that, given a certain input, will always
produce the same output and the underlying machine will always pass through
the same states.

Definition 5. Given a program P : P is deterministic ⇔ ∀ I input of P :

(P
I/O1−−−→ P1 ∧ P

I/O2−−−→ P2)⇒ (P1 = P2 ∧O1 = O2 ∧ P1 is deterministic),

where P
I/O−−→ P ′ represents the transition from the program state P with input

I to the program state P ′ with output O.

A deterministic programming language is a language (set) that contains only
deterministic programs.

Definition 6. Given a programming language L:
L is deterministic ⇔ ∀ P ∈ L : P is deterministic

The main benefit of using deterministic languages in software development is
the guaranteed avoidance of harmful non-determinism, also known as undefined
behaviour, in production code. The assurance that a program is deterministic
comes with the following benefits:

1. A deterministic program allows formal reasoning about its output and
behaviour.

2. If a deterministic program passes a test, it will always pass that test.

3. Bugs are easy to reproduce and fix.

Both the original model and the presented implementation fail to fully adhere
to this requirement. While the transition function for a single thread T in a
signal environment E is clearly deterministic, the non-deterministic ordering of
parallel operations causes the implemented language to be non-deterministic.

In the case of synchronous languages, one can discuss about a weaker form of
determinism, at the level of instants. A language that has a deterministic tran-
sition function from the program state at the end of an instant to the program
state at the end of the next instant will also offer the benefits of deterministic
programming languages.

In the original model, although there can be multiple states to which a
program can transition within an instant, they all eventually transition to a
single state that marks the ending of that instant. The final state of an instant,
as well as its output, can be deterministically inferred from the final state of
the previous instant by applying the rewriting rules on the program threads in
any arbitrary order, until no further progress can be made. The reason why
this order is not relevant for either the final state or the output is because of
the following characteristics of the model:

1. Signals cannot be made absent. Once emitted, a signal will be present in
the environment until the end of the instant.

38

// A thread−pool demo .

import : ” s t d l i b . s r l ” , ” a r r a y l i s t . s r l ” .

s igna l domain : START, DONE.

shared data : numWorkers , r e s u l t s .

// r e p l a c e 1 with he number o f worker threads :
para l l e lSum (1 , 100000000 , 100000000) ;

l e t para l l e lSum (poo lS i ze , workSize , sumBound) = (
lock (numWorkers , r e s u l t s ,

numWorkers = poo lS i z e ;
a r r a y l i s t (r e s u l t s) ;

) ;

threadPool (poo lS i ze , workSize , sumBound) ;

await (DONE) ;

l o ck (r e s u l t s ,
here . i = 0 ;
here . sum = 0 ;
loop (here . i != r e s u l t s . length ,

here . sum =
(here . sum + r e s u l t s [here . i]) % sumBound ;

here . i = here . i + 1 ;
) ;

) ;

p r i n t (”Sum from 0 to ”
+ (workSize − 1)
+ ” , bounded by ”
+ sumBound + ” : ”
+ here . sum + ”\n ”) ;

) ;

Figure 6: parallel sum.srl - part 1

39

l e t threadPool (numWorkers , workSize , sumBound) = (
here . chunkSize = workSize / numWorkers ;
here . s t a r t = 0 ;
here . end = workSize % numWorkers + here . chunkSize ;
loop (here . s t a r t != workSize ,

spawnWorkerThread (here . s t a r t , here . end , sumBound) ;
here . s t a r t = here . end ;
here . end = here . end + here . chunkSize ;

) ;
emit (START) ;

) ;

l e t spawnWorkerThread (startVal , endVal , maxSumVal) =
shared (s ta r t , end , sumBound ,

l ock (s ta r t , end , sumBound ,
s t a r t = s ta r tVa l ;
end = endVal ;
sumBound = maxSumVal ;

) ;
thread (

work (s ta r t , end , sumBound) ;
) ;

) ;

l e t work (s ta r t , end , sumBound) = (
await (START) ;
l ock (s ta r t , end , sumBound ,

here . i = s t a r t ;
here . sum = 0 ;
loop (here . i != end ,

here . sum = (here . sum + here . i) % sumBound ;
here . i = here . i + 1 ;

) ;
) ;
l o ck (numWorkers , r e s u l t s ,

a r r a y l i s t p u s h (r e s u l t s , here . sum) ;
i f (r e s u l t s . l ength == numWorkers ,

emit (DONE) ; // a l l workers f i n i s h e d
,

()
) ;

) ;
) ;

Figure 7: parallel sum.srl - part 2

40

$ time echo ”” | java −j a r InterpreterSRL . j a r
p a r a l l e l s u m . s r l
Sum from 0 to 99999999 , bounded by 100000000: 50000000
Ins tant 0 ended . Output : DONE START

r e a l 1m5.117 s
user 1m3.544 s
sys 0m0.324 s

$ time echo ”” | java −j a r InterpreterSRL . j a r
p a r a l l e l s u m . s r l
Sum from 0 to 99999999 , bounded by 100000000: 50000000
Ins tant 0 ended . Output : DONE START

r e a l 0m41.352 s
user 1m20.364 s
sys 0m0.316 s

$ time echo ”” | java −j a r InterpreterSRL . j a r
p a r a l l e l s u m . s r l
Sum from 0 to 99999999 , bounded by 100000000: 50000000
Ins tant 0 ended . Output : DONE START

r e a l 0m35.997 s
user 1m43.276 s
sys 0m0.396 s

$ time echo ”” | java −j a r InterpreterSRL . j a r
p a r a l l e l s u m . s r l
Sum from 0 to 99999999 , bounded by 100000000: 50000000
Ins tant 0 ended . Output : DONE START

r e a l 0m35.770 s
user 2m14.068 s
sys 0m0.784 s

Figure 8: Output of parallel sum.srl

41

Figure 9: Parallel efficiency example

2. A thread cannot react to the absence of a signal within the instant in
which it is absent.

3. Signal emission cannot interrupt the execution of a thread within the
current instant.

The combination of these properties implies that the more signals are emit-
ted, the more progress can be made within an instant. Because of this, both
the set of signals that will be emitted, as well as the state in which the threads
will be at the end of an instant, can be deterministically evaluated, since one
advances the other until no further progress is possible:

1. The signal environment is the union between the set of input signals and
the set of signals emitted by activated emit instructions.

2. Each thread will stop in either the terminated state (), or at the first when
instruction that contains a signal that is never emitted (or inputted).

Since the output of an instant is a set of signals, the signals have no value
and they cannot be made absent, neither the order in which signals are emitted
nor the number of times an already present signal is emitted will influence the
output.

These properties also stand for the implemented language, since it follows
the behaviour described by the original model. Therefore, as long as the addi-
tional constructs added to the implemented language are deterministic at the

42

level of instants, then so is the implemented language. These additional con-
structs are the data variables and the operations defined on them. Since each
operation is deterministic in and of itself, the only cause for non-determinism
would be the order in which they occur. The order of serialized operations is in-
herently deterministic, and the order in which parallel operations occur is made
deterministic through the use of the synchronized locking mechanism described
in section 3.1.1. This means that the state of the memory values at the end of
an instant can be deterministically determined from the program state, memory
state and input at the beginning of the instant.

As an example, the program shown in figures 10 and 11 simulates a simple
soda machine. The program is composed of 6 threads that loop indefinitely.
One thread will react to the signal MENU by displaying the list of available bev-
erages and their respective prices, another thread will react to the signal COIN
by incrementing the credit variable, and 4 threads that will react to purchases,
one for each product. If the order in which concurrent purchases are handled
would be arbitrary, the program would not be deterministic. This is not the case
with the implemented language, because the order in which threads access the
shared variable credit is deterministic, therefore the order in which concurrent
purchases are handled is also deterministic. According to the priority function
defined by Def. 4 in section 3.1.1, the order in which concurrent product orders
are handled is TEA, COFFEE, COLA, WATER. This deterministic behaviour is illus-
trated in Figure 12, which shows the output of the program when all products
are ordered within the same instant, emphasizing the order in which the credit
variable is accessed and modified.

// A demo f o r a vending machine program .
import : ” s t d l i b . s r l ” .
s igna l domain : MENU, COIN, TEA, COFFEE, COLA, WATER.
shared data : c r e d i t .
l o ck (c r ed i t ,

c r e d i t = 0 ;
p r i n t (” Vending machine demo . Commands :\n

MENU − d i s p l a y product l i s t with p r i c e s \n
COIN − increment c r e d i t \n\n ”) ;

) ;
thread (

loop (true ,
when(MENU,

pr in t (”\nMenu :\nTEA 2$\nCOFFEE 3$\nCOLA
2$\nWATER 1$\n\n ”) ;

) ;
pause () ;

Figure 10: vending machine.srl - part 1

43

) ;
) ;
thread (

loop (true ,
when(COIN,

lock (c r ed i t ,
c r e d i t = c r e d i t + 1 ;
p r i n t (”\ nCurrent c r e d i t : ” + c r e d i t

+ ”\n\n ”) ;
) ;

) ;
pause () ;

) ;
) ;
l e t o r d e r L i s t e n e r (s i gna l , name , p r i c e) = thread (

loop (true ,
when(s i gna l ,

l o ck (c r ed i t ,
i f (p r i c e <= cred i t ,

c r e d i t = c r e d i t − p r i c e ;
p r i n t (”\nYour order : ” + name

+ ”\nRemaining c r e d i t : ”
+ c r e d i t + ”\n\n ”) ;

, // e l s e :
p r i n t (”\ n I n s u f f i c i e n t c r e d i t : ”

+ c r e d i t + ”\ nPrice o f ”
+ name + ” : ” + p r i c e + ”\n\n ”) ;

) ;
) ;

) ;
pause () ;

) ;
) ;
o r d e r L i s t e n e r (TEA, ”Tea ” , 2) ;
o r d e r L i s t e n e r (COFFEE, ” Cof f ee ” , 3) ;
o r d e r L i s t e n e r (COLA, ”Cola ” , 2) ;
o r d e r L i s t e n e r (WATER, ”Water ” , 1) ;

Figure 11: vending machine.srl - part 2

44

Vending machine demo . Commands :
MENU − d i s p l a y product l i s t with p r i c e s
COIN − increment c r e d i t

In s tant 0 ended . Output :
COIN

Current c r e d i t : 1

In s tant 1 ended . Output : COIN
COIN

Current c r e d i t : 2

In s tant 2 ended . Output : COIN
COIN

Current c r e d i t : 3

In s tant 3 ended . Output : COIN
MENU WATER COLA COFFEE TEA

Menu :
TEA 2$
COFFEE 3$
COLA 2$
WATER 1$

Your order : Tea
Remaining c r e d i t : 1

I n s u f f i c i e n t c r e d i t : 1
Pr i ce o f Co f f ee : 3

I n s u f f i c i e n t c r e d i t : 1
Pr i ce o f Cola : 2

Your order : Water
Remaining c r e d i t : 0

In s tant 4 ended . Output : COFFEE TEA MENU COLA WATER

Figure 12: Output of vending machine.srl

45

4.4 Limitations

Since the interpreter described in this paper is only a proof of of concept, it
has a few limitations that can be resolved with further development.

One such limitation is the lack of static semantics checks to verify the va-
lidity of a program. The current implementation will check only at runtime if
the interpreted program conforms to the language semantics. This will cause
invalid programs run without being rejected, in cases where execution does not
reach the invalid instructions. Performing these checks dynamically also lowers
the computational performance of the interpreter, since each instruction has
to be validated before execution. The language semantics make it possible for
programs to be fully checked at compile-time or, in the case of an interpreter,
while building the abstract syntax tree. Performing these checks statically would
greatly increase performance and ensure the rejection of invalid programs.

Another limitation of the interpreter is the current intermediate representa-
tion it translates the code into. While the tree-like representation was chosen
for convenience and efficiency, it makes formal analysis of the interpreter itself
rather difficult. A more functional representation, with a list of statements and
a rewriting function, would have made the behaviour of the interpreter much
more intuitive and easy to formalise.

The current limitations on both parallelism and determinism are a result of
the current design, and will not be solved with further development. A compro-
mise has to be made between the two, either by using weaker versions of both
properties or by sacrificing one in favour of the other. Most implementations of
SRP languages available will translate parallel composition of instructions into
sequential instructions it order to preserve determinism.

The current implementation only allows the use of pure signals. This de-
sign decision was made in order to avoid the problems of non-determinism and
causality cycles introduced by having to merge multiple occurrences of the same
valued signal within the same instant. To extend the interpreted language in
order to allow valued signals, while also preserving the current property of de-
terminism at the level of instants, the interpreter should either only accept
associative and commutative functions or apply the merging operation in a de-
terministic order. Following the example of ReactiveML[11], in order to solve
the problem of causality cycles, the merging function should only be applied
after the instant has ended, when all the emitted values are known.

46

5 Comparison with Existing SRP Languages

This sections offers a general comparison between the implementation de-
scribed in this paper and other existing implementations of synchronous reactive
languages, namely Esterel [9], ReactiveML [11], and SugarCubes [10].

5.1 Esterel

Esterel is a system-design language specialized for reactive systems. Since
the implemented model is inspired by the Esterel model, the two languages be-
have similarly in terms of their approach to the synchronous reactive paradigm.
Both languages allow for the composition of parallel instruction blocks that use
signals to coordinate their execution in a deterministic fashion. They also have
the same input-output behaviour and definition of what an instant is. The
key difference between the Esterel model and the implemented language is the
ability to instantaneously react to the absence of a signal. This introduces the
problem of causality cycles, which have to be detected and disallowed by the
Esterel compiler. The implemented model solves this problem by postponing
the evaluation of a signal as absent within an instant until after the instant has
ended. Another difference between the two languages is the way they handle the
compromise between determinism and parallelism. All Esterel statements and
constructs are guaranteed to be deterministic. The compiler will check the given
programs and ensure they are deterministic in terms of their input responses.
The determinism of instantaneous state transitions will depend on whether the
compiler implementation translates parallel composition to serialized operations
or allows for ”true” parallelism (the use of multiple processor cores). Esterel
solves the problem of non-determinism caused by threads sharing data by mak-
ing all variables local to their respective threads. Instead of sharing variables,
the threads can send and receive data through the use of valued signals. This
differs from the language described in this paper, which uses only pure signals
in order to avoid the problem of non-deterministic merging functions, and al-
lows threads to share variables, but imposes a deterministic synchronization
mechanism for accessing them.

5.2 ReactiveML

ReactiveML is a functional synchronous reactive language designed for the
implementation of interactive systems. It is based on the Synchronous Language
described in [4], and therefore it also postpones the reaction to the absence of a
signal until after the end of the instant. This makes it even more similar to the
implemented language than Esterel. In terms of differences, ReactiveML allows
the use of valued signals and runs its threads sequentially.

47

5.3 SugarCubes

SugarCubes is a set of Java classes used to implement reactive, event based,
parallel systems. It follows the same approach to synchronous reactive program-
ming as the implemented language and ReactiveML, and postpones the reaction
to the absence of a signal until after the end of the instant. The constructs
offered by SugarCubes follow similar design decisions as the implementation de-
scribed in this paper - the signals are pure and threads can share variables. The
main difference between the two implementations lies with the way they solve
the problem of non-determinism as a consequence of parallelism. SugarCubes
does not use multi-threading, so parallel operations are run sequentially on a
single processor core in order to preserve determinism.

6 Conclusions

The design and implementation described in this paper offer insight into
the relation between reactive programming constructs and synchronous reactive
constructs, as well as how they relate to properties like expressiveness, determin-
ism or parallelism. In conclusion, the implemented programming language meets
all the functionality required to adhere to the Synchronous Reactive Paradigm.
Since the interpreter was built in accordance with reactive programming prac-
tices, it serves as proof that reactive programming is sufficiently powerful to
implement synchronous reactive programming. Understanding the relation be-
tween these two approaches, as well as the advantages and disadvantages offered
by each one, can help with the design of reactive and interactive systems. This
can be useful when deciding which technique is best suited for which task, or
when attempting to combine the two within the same system.

7 References

[1] Nicolas Halbwachs: ”Synchronous programming of reactive systems”.
Kluwer Academic Publishers, 1993.

[2] Robert de Simone, Jean-Pierre Talpin and Dumitru Potop-Butucaru. “The
Synchronous Hypothesis and Synchronous Languages”. Embedded Systems
Handbook (2005).

[3] Roberto M. Amadio, Gérard Boudol, Ilaria Castellani, Frédéric Boussinot.
Reactive concurrent programming revisited. Express, Sep 2006, France. Else-
vier, 162, pp.49-60, 2006, Electronic Notes in Theoretical Computer Science,
162.

[4] F. Boussinot and R. De Simone: ”The SL Synchronous Language”. IEEE
Trans. on Software Engineering, 22(4):256–266, 1996.

48

[5] E. Bainomugisha, A. L. Carreton, T. Van Cutsem, S. Mostinckx, and W. De
Meuter: ”A survey on reactive programming. ACM Computing Surveys”,
45(4):52, 2013.

[6] Jonas Bonér, Dave Farley, Roland Kuhn, and Martin Thompson: ”The Re-
active Manifesto”, 16 September 2014.

[7] Nicolas Halbwachs and Louis Mandel: ”Simulation and Verification of Asyn-
chronous Systems by means of a Synchronous Model”. Proceedings of the
Sixth International Conference on Application of Concurrency to System
Design, 2006 (ACSD’06). Publisher: IEEE

[8] Paolo Baldan, Filippo Bonchi, Fabio Gadducci, and Giacoma Valentina
Monreale: ”Concurrency cannot be observed, asynchronously”. Mathemat-
ical Structures in Computer Science, vol. 25, no. 4, pp. 978–1004, 2015.

[9] G. Berry and G. Gonthier: ”The Esterel synchronous programming lan-
guage”. Science of computer programming, 19(2):87–152, 1992.

[10] F. Boussinot and J-F. Susini: ”The SugarCubes tool box - a reactive Java
framework”. Software Practice and Experience, 28(14):1531–1550, 1998.

[11] Louis Mandel and Marc Pouzet. ReactiveML: ”A Reactive Extension to
ML”. In ACM International conference on Principles and Practice of Declar-
ative Programming(PPDP’05), Lisbon, Portugal, July 2005.

[12] JoelJones: ”Abstract Syntax Tree Implementation Idioms”. The 10th Con-
ference on Pattern Languages of Programs 2003.

[13] http://reactivex.io/

[14] https://github.com/ReactiveX/RxJava

[15] https://javacc.org/

[16] https://docs.oracle.com/javase/tutorial/essential/

concurrency/index.html

49

http://reactivex.io/
https://github.com/ReactiveX/RxJava
https://javacc.org/
https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Synchronous Reactive Programming
	A Basic Model for a Synchronous Reactive Language
	RxJava

	Implementing the Interpreter
	Design Decisions
	Additional Data Types
	Syntactic Sugar
	The Grammar

	Implementation
	Abstract Syntax Tree
	Scheduler
	Signals
	Data Types
	Language Constructs

	Evaluation
	Implementation of the Basic Model
	Parallelism
	Determinism
	Limitations

	Comparison with Existing SRP Languages
	Esterel
	ReactiveML
	SugarCubes

	Conclusions
	References

