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Abstract—The adoption and use of mobile agents relies on the ability to determine their positions. While mobile agents in outdoor
environments can make use of GPS systems or topographic imaging, indoor mobile agents may not be able to reliably do so. This
research sets out to investigate the potential of mobile agents to determine their indoor position without the use of any extra marking
or assisting technologies.

| attempt to determine locality using dimensionality reduction and mapping algorithms to map information inherent in the working
environment to the location of the mobile agent. While many linear and non-linear mapping algorithms are available, my research,
outlining one of two approaches taken, focuses on using the Self-Organised Neighbour Embedding (SONE) algorithm and the Self-
Organised Map (SOM) algorithm. These had been proven in prior research to successfully map higher dimensional data to determine
locality in lower dimensional space.

The approach would focus on using wireless local area network signal strengths which the mobile agent would be able to measure
with pre-existing inbuilt capabilities. This wireless signal information was gathered over a period of 2 weeks at an industrial warehouse
representing real world usage scenarios.

The results of the research suggest that while the wireless signal data does indeed contain information which could be of use in
indoor localisation, the 2 unsupervised learning algorithms used were not sufficient to overcome the inherent noise in the data. This
would indicate that semi-supervised or probabilistic embedding methods could yet manage to successfully map the wireless signal

information onto the lower dimensional geographic space.

Index Terms—Localisation, Neighbourhood embedding, SONE, SOM, Mobile Agent.

1 INTRODUCTION

Mobile agents, such as flying drones, need to be able to determine
their location. The majority of mobile agents do this in 2 primary
ways: using GNSS signals, or relying on user input.

The Global Navigation Satellite System (GNSS), which includes
systems such as the Global Positioning System (GPS), relies on line-
of-sight communication between the mobile agent and satellites lo-
cated in varying orbits around the earth to calculate and determine the
position of the mobile agent.

Relying on user input in essence requires a human element of input.
The mobile agent would rely on the human user being aware of the
relative position of the mobile agent to him-/herself and use this as
input into any system that may require it.

Both of these two approaches come with limitations.

Firstly, the use of GNSS relies on minimal interference between the
satellites and the mobile agent and while this may be achievable with
mobile agents in an outdoor environment, this is not the case with
indoor applications.

Secondly, relying on user input requires a human to be present and
attentive at all times throughout the operation of the mobile agent.
While this may be acceptable in certain circumstances, it does limit
the capacity to automate the tasks of the mobile agent.

In this report, an alternative method of localisation is outlined, ex-
plained, tested, and reported on. This method of localisation is in-
tended for indoor environments which aim to use mobile agents in
some autonomous or semi-autonomous manner whereby the mobile
agent is capable of determining its location and thereby allowing other
events to occur based on this information.

Such an approach uses the wireless signals emitted by wireless net-
work access points present in indoor environments. More specifically,
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the signal strength of the signals emitted from each wireless access
point is considered in order to determine the location of the mobile
agent.

Such an approach would be ideal as it would not necessitate the in-
stallation of any proprietary equipment and would take advantage of
infrastructure and installations assumed to be already present in most
indoor environments, i.e. wireless networks. Were this to be realised,
it would be reasonable to assume that it would be a cost-efficient man-
ner of enabling indoor localisation of mobile agents when compared
to alternatives.

The mobile agent would merely have to move around the environ-
ment, likely initially under supervision, in order to gather the neces-
sary wireless signal information. After this, it would train itself based
on the gathered data and learn through the algorithms a manner to de-
termine its location in the geographic environment.

This would be done through the creation of a radio-map i.e. a map-
ping of radio waves onto an actual geographic location.

Real world data is used in this research and indoor localisation is
unproven for the warehouse environment in which this research is
based. For these reasons, two algorithms are used so that the results
of each can be compared with one another. Should both algorithms
provide suitable results it can be determined that the data gathered is
suitable for the task at hand while should one algorithm be suitable
while the other is not, it can be determined that a particular algorithm
is better suited at the task at hand over the other. Should both algo-
rithms not provide suitable results, it may be necessary to consider
that the data gathered is not suitable to carry out the task of indoor
localisation in its current form.

For this research the Self-Organised Neighbour Embedding
(SONE) algorithm as well as the Self-Organising Map (SOM) are used
to attempt to find a lower dimensional representation of the wireless
data in order to be able to determine the lower dimensional location
based on the higher dimensional wireless signal.

Other linear algorithms

It should be noted that what actions are taken based on the location
of the information is outside the scope of this research, it is only nec-
essary to determine the possible locations of the mobile agent based
on the received wireless signal strengths.

The remainder of this paper is organised as follows: in section 2,



the data acquisition process is described followed by data cleaning
and preprocessing in section 3. Section 4 and 5 introduce the two al-
gorithms to be used for this research. The descriptive statistics of the
data gathered are thereafter presented in section 6 as well as some ini-
tial investigation into the data. Section 7 then explains the experimen-
tal set up while sections 8 presents the results of the two algorithms.
This paper is concluded in section 9 as well as suggestions provided
for future work.

2 DATA ACQUISITION

Our validation environment was an area of 900 square meters in the
warehouse building such that four aisles (named, ZA-ZB-ZC-ZD)
were covered. In the span of two weeks of collection, two aisles
(ZB,ZC) were getting loaded and unloaded as a part of daily opera-
tion, one aisle (ZA) was always empty and one was always filled (ZD).

Data was acquired at two levels : through equipment and manually.
A. Data acquired through the equipment : Parrot Bebop 2 drone
quad-copter device was used to capture signal and in-flight informa-
tion, and images and videos as well. The navigation controls were
possible through a specialized software run on standard laptop as well
as through a dedicated smartphone app. The former was used for our
project wherein the drone and computer communicated over standard
WiFi connection. While the long range of Bebop 2 and built-in
calibration features provided much reliability, several inconveniences
were experienced with respect to the drop in connectivity, sometimes
leaving the drone stranded in mid-air or continuing to move in a fixed
direction.

The section under study contained Access Points (AP) that transmit
the signals from ceiling over entire area underneath. Specialized
software, developed by the drone owners, was used to capture signal
measurements as Received Signals Strength Indication (RSSI) values.
A total 505 positions were used by performing at most three height
measurements at intermittent distances along the four aisles. At every
position, approximately 20 readings were taken for fingerprinting
based positioning which marks potential improvement in accuracy
scores.[8]. Every reading was stored in json format with a number of
fields.

B. Data acquired manually : Laser measurements were taken
manually at each of the 505 positions to maintain labels for potential
use later during algorithm development/evaluation. Length measure-
ments were taken with reference to a wall adjoining the first aisle, ZA.
Breadth measurements were taken along the aisle taking one end as
reference. For height measurements, readings were made against the
floor. Below is the range of physical dimensions in which the project
was carried out :

Length : Om-12.25m [Wall till aisle ZD]

Width : Om-56.5m [Aisle beginning till aisle end]

Height : Om,1m and 1.5m

The central walking space between every two aisles is approx 1.5m.
The distance between central points of any two aisle is approximately
3m.

Data acquisition is the first step for developing indoor navigation
methods and suffers from shortcomings that may propagate later into
the development phase. It was not straight-forward to determine if
the accuracy of drone and the complex enclosed environment were
complementing forces or otherwise. Data quality assessment was not
entirely plausible and movement of drone was the only way to judge
the quality of data being collected. Therefore, the challenge during
data collection was to control the drone accurately and efficiently
to maintain the desired distance and orientation with respect to the
selected positions. A small portion of overall data still contained
noisy indoor data especially at locations where disturbances during
drone in-flight were noted because of external matters as below :

a.) The warehouse ceiling lightning system was motion controlled.

With switching off of the lights due to lack of movement by peo-
ple in the various had direct impact on drone’s flight and on data
acquisition leading to possible data inconsistencies for a few locations.

b.) Due to the size of the warehouse as well as its internal layout,
small wind currents and drafts formed quite frequently within it. This
had an adverse impact on the flight of the drone as well as its stability.

c.) Aisle ZA was filled with boxes covered with black tape and
it was noted that the drone would repel away from such containers,
slightly deviating from the actual navigation path.

d.) This was also the case with black paint or dark markings on the
floor of the aisles. This caused the drone to fluctuate along the vertical
axis whenever it encountered such markings on the floor.

e.) From the total number of days spent in collecting data with the
drone, there were some days when aisle ZD and ZC were loaded with
boxes containing marshmallows. In this case, it was noted that weaker
signal strengths were captured by the drone, as evident from table 2
Signal strength ranges (in dBM) for the overall strongest emitters are
compared for regularly filled aisle ZB and marshmallow filled aisle
7D (case of signal attenuation)

BSSID Aisle ZB  Aisle ZD (with marshmallow)

54:3D:37:2A:8E:F8 36-39 45-49
54:3D:37:0E:D3:E8 37-40 36-39
24:C9:A1:00:65:68 42-46 44-48
54:3D:37:6A:8E:F8 31-40 44-50

All the problems related to drone’s movement were addressed to
some extent by enabling the drone’s calibration feature during its
flight and by manual inspection of drone positioning.

Data in certain locations were missing completely as they were not
recorded while at the warehouse.

The locations ZA001 up to and including ZA007 were sealed off
due to water collecting on the floor. This was considered a potential
environmental hazard to human operators walking on it and any
electronic equipment that would need to be placed on it. Readings
from ZA009 onwards were collected as normal.

ZD.L065.HO was not recorded due to unfortunate circumstances.
The battery of the drone was depleted during recording the measure-
ments and was replaced just after. No information was written to a file
at that position, a fact unfortunately only noticed once the data was
being cleaned.

3 PREPROCESSING

After gathering the data, it was deemed necessary to pre-process
the data before it could be used in subsequent steps. The data
gathered contained missing values, fields which weren’t required
for the algorithms, and features which was felt would not greatly
contribute to the performance of the algorithm which could be
discarded to improve the algorithm’s runtime. The pre-processing
involved data cleaning, treating data missingness and finally prepar-
ing data in a format that could be easily given as input to the algorithm.

3.1 Feature extraction

As stated earlier, json files with in-flight information were created for
every position that the drone was stalled at and at least 20 json files
were produced at every position. The original set of field values col-
lected by the equipment were:

e Time : Every json file is uniquely marked by the time field infor-
mation.



e Yaw : Right and left rotation

e Pitch : Forward and backward lean
e Roll

e Speedx, speedy, speedz

e Altitude : Altitude information is necessary but laser measure-
ments are used instead.

e Signal network : Signal names

e BSSID : Unique set of signal ids which were used all through the
project for analysis and algorithm development.

e Signal Strength : Integer values reported in the range of (-100,0)
in unit of decibels relative to 1 milliwatt (dBm) for every BSSID
at identified by the drone at every location for various time-
stamps.

e Channel : Number of controls (yaw,pitch,throttle,roll) for move-
ment

For the current project, BSSID and signal strength were of main
use and therefore, after data collection the json files were altered to
store only the two fields. Time-stamps were also of relevance, as shall
be discussed in next section of missingness, and were retained for
pre-processing steps.

3.2 Data representation

Using python scripts, a data frame was created with fingerprints
(represented by multiple json files at every physical location) as
rows and BSSIDs as columns. Table 1 shows a sample set from
the data-frame. Signal strength values were populated into the data
structure wherever the values were available from drone captured data
and the remaining were kept blank at this stage. For cases where more
than one measurements were recorded for the same BSSID and at the
same time-stamp, the average values were assigned in the data frame.

3.3 Cleaning and missingness imputation

A total of 88 BSSIDs were captured by the drone but 17 BSSIDs
were later found to be corrupted with alphabets appended to orig-
inal BSSIDs during data inspection. For example :- records with
BSSID : 24:C9:A1:40:65:68bcmw] were corrected to BSSID :
24:C9:A1:40:65:68.

Based on the cleaned data it was observed that through the
duration of the data acquisition phase of the project, wireless signals
from 71 unique sources were observed and recorded. Apart from
distinguishing strong signals from the weak signals, analysis was also
conducted based on percentage availability of the signals. In theory,
the percentage availability plays a significance role because signals
that are more frequent and a high percentage availability may result in
biasing and infrequent or sporadic signals may result in outlier cases.
In either cases the results could be affected because from the entire
warehouse only a smaller section was considered as the experimental
setup, hence a smaller sample space.

Records relating to all 71 of these features had missing values
within them ranging from features with less than 0.5% missingness to
features with close to 100% missingness, that is, features that were
detected only once throughout the entire data gathering period. This
was assumed to be from other mobile wireless network devices such
as laptops or PDAs which are used around the warehouse. It was
therefore decided to select only features that appeared somewhat
consistently throughout the data. Figure 1 shows the 71 features
sorted according to the completeness. The x-axis label is not that of

9% completeness in measurements

L I )
) 50 0 ) 80
#0f BSSIDs (sorted)

Fig. 1: Sorted percentage completeness values of all 71 BSSIDs to
determine threshold percentage completeness

the feature number, but rather the number of features up to that point.

An elbow point was taken at feature 41 which had a completeness
of 16.67%, indicated in Figure 1 by a red circular marker point.
The 41 most complete features were therefore carried forward for
use in training the models with the remaining 30 no longer considered.

Last value carried forward method was adopted for missing data
imputation because our application has time-series data wherein value
prediction is possible based on history values at a location. At location
’L’, when signal *X’ is received by the drone at time-instant *T”, it can
help predict the signal strength that the drone would have recorded at
time-instant °T + t’ if the signal *X’ had been successfully captured at
the same location during the new time-instant. The carry forward was
performed for a.) fingerprints at a location and b.) one location to the
next such that they were in the same aisle and not so far away within
the same aisle. Table 1 shows a few signal strength records before
imputation and table 2 shows the filled in values that were eventually
used for further steps in the project. The approach, while justified on
basis of the nature of signal strengths, was still prone to resulting in
values that look worse than they would truly have been.

00:1F9D  24:.CO-AT  24:COAT  24:COAI
ZALO09H0_T NaN NaN 776 72
ZALOO9HO2  NaN NaN 77 72
ZALOO9HO3  NaN NaN 77 7
ZAL119H0.6 85 91 73 77
ZAL119H0.7 86 NaN 72 270
ZBLOOIHO_1 NaN NaN 66 NaN
ZBLOOTH02 NaN NaN 75 -65
ZBLOO1H0_3 NaN NaN 75 65
ZDL1I9HI5.5  NaN NaN 67 73
ZDL119H15.6 -84 83 68 55
ZDL1I9HI.5.7  NaN NaN 71 72

Table 1: Before imputation

4 SONE

Self-Organised Neighbour Embedding (SONE), was originally intro-
duced in literature as Neighbourhood Embedding - Exploratory Ob-
servation Machine (NE-XOM) as outlined in [1].

This defines the cost function:

Esone = [ ¥ 8w £0 (e () Il 65(7)) pls)ds
i J



00:-IF9D 24:.C9:Al  24:COAl  24:COAT
ZALOOSHO_T 50 90 76 )
ZALO09H0_2 90 90 77 7
ZALO09H0_3 90 90 77 7
ZAL119H0.6 85 91 73 77
ZAL119H0_7 86 91 7 70
ZBLOOTHO_1 90 90 66 -90
ZBLO01HO_2 90 90 75 -65
ZBLOOIHO03 90 90 75 65
ZDLIIOHIS.S  -75 81 67 73
ZDLII9HI 5.6 -84 83 68 55
ZDLIIOHIS.7 -84 83 71 7

Table 2: After imputation (NaNs replaced with last carried forward
values)

where WP (s) for (S) is defined as:
WP (s) = x'such that ZD (h\({;D(S) W g2(1)> is minimum
J

The SONE algorithm relies on 2 neighbour coefficient parameters
referred to as ¢ (sigma) and y (gamma). o represents the neighbour-
hood coefficient in the higher dimensional space while y represents the
neighbourhood coefficient in the lower dimensional space.

The SONE algorithm, when used for localisation, can be sum-
marised as an iteration of the following few steps:

1. Calculate pairwise dissimilarities
2. compute the neighbourhood co-operations
3. for each data item

(a) draw a random position
(b) determine winner based on dissimilarity
(c) compute the neighbourhood functions

(d) update the embedding in the lower dimension based on the
rule: . . .
y =y — €Ay

with € representing the learning rate.

The pairwise dissimilarities used was the euclidean distance mea-
sure. This results in the dissimilarities between two data points d; ;
being reflexive, i.e. d; j == d;;. While other dissimilarity measures
are feasible and were considered, it was decided to remain with the
euclidean distance measure of dissimilarity.

5 SOM

The second algorithm tried was the Self-Organising Map (SOM) also
referred to as the Kohonen Network [4, 5]. While the SOM algorithm
has been demonstrated by Kohonen to cluster documents [7, 6, 3], this
has not limited its use in other use cases [5, 10, 2].

The SOM algorithm relies on the relation between a node in the
higher dimensional space node and its mapping to a point in the lower
dimensional space. In the higher dimension determining similarity of
the input to a node using a dissimilarity measure and then updating the
winning node as well as nearby nodes. The update is calculated using
the learning rule:

m;(t + 1) = m;(t) + hei(2)[x(t) — m;(t)] (1)

where h; represents the neighbourhood function determining how
much the nearby nodes i are updated when node c is the winning node

[71.

For this research the lower dimensional space would represent a
position on the warehouse floor while the higher dimensional points
would be compared to the wireless signal data.

The dissimilarity measure used by the SOM algorithm chosen was
once again the euclidean distance as in the SONE algorithm. This was
to avoid any possible bias of a dissimilarity measure to the data.

6 DESCRIPTIVE ANALYSIS

RSSI is a measure of power level that the mobile agent receives from
the access point and distance between the two objects determines
strength of the signal received in combination with the surrounding
environment conditions. Signal strength values in the range (-100,-60)
dBm are regarded as poor strength measures as that’s the situation
when signal is drowning in the surrounding noise. The optimal and
practically attainable range is (-50,-20) dBm. The analysis of signal
strength measurements depends on the choice to remove noise signals
before missingness imputation or before algorithm application. In
the current project, missingness is treated first, followed by analysis
being performed over all measurements and then the qualitative
observations made during analysis are used to filter out noisy (poor)
measurements before the main algorithm is executed.

Measures of spread in the data

The combined raw data had a mean of -65.4617 dBm, median of
-65 dBm, and a standard deviation of 12.4219 dBm. Figure 2 shows
a box-plot indicating the means and measures of spread of the 71
individual BSSIDs.

As can be observed, a majority of BBSIDs have a recorded mean
between -50 dBm and -80 dBm. The BSSIDs with a mean value of
around or below -90 dBm coincide with those with a high degree of
missingness, as shown in Figure 3. We therefore conclude these to be
the BSSIDs of boundary access points which were at a distance to the
data collection area so as to only be detected in certain circumstances
and be absent otherwise. Despite using two differing algorithms to try
and create an accurate lower dimensional representation of the wire-
less data, as neither of them succeeded it was decided to investigate the
data further to determine whether the problem lay with the data. The
investigation into the data began with an investigation into the PCA
values which were used as input for the algorithms.

PCA investigation

Figure 4 shows the 2D PCA output colour coded to represent the po-
sitions as introduced in Figure 13.

As can be observed from Figure 4, even when represented by the
2 most principal components i.e. the 2 components representing the
largest variance in the data, there is still a degree of overlap in the data.
This would, in naive attempts at clustering, result in highly inaccurate
classifications.

Furthermore this reinforces the conclusion that the measurements
between positions are similar to one another. This would pose a chal-
lenge to the embedding algorithms.

To get a glimpse into the spread within individual aisles, the points
representing only the individual aisles in the PCA output were plotted
in turn. The PCA outputs of the individual aisles are shown in Figure 5
for aisle ZA, Figure 6 for aisle ZB, Figure 7 for aisle ZC, and Figure 8
for aisle ZD.

From the figures, it can be observed that certain aisles had a greater
spread than others as is the case with aisle ZD when compared with
aisle ZA, the two extremes.

As the intensity, read darkness, of the colour gradually increases
or decreases based on the proximity of the point it represents to the
end of the aisle we can then observe from Figures 5 to 8 that positions
within the aisles can also be differentiated within certain confidences.
While not perfectly gradual in terms of colour intensities, the spread
of colour intensity in the figures suggest that sections within the aisles
can be, to some extent, distinguished from other sections within the
same aisle.
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Fig. 2: Boxplot indicating mean and spread values of signal strengths of all 71 BSSIDs. The BSSIDs with mean signal strength around or below

-90 dBm are noted and looked up in Figure 3 to determine pattern, if any.
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Fig. 4: The data points after PCA translation, colour coded based on

position.

Fig. 5: PCA mapping of the positions in aisle ZA. The separation
between the lighter and darker colours indicate a reasonable spread in

the data.

Fig. 6: PCA mapping of the positions in aisle ZB. A large separation
of data is observable.
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Fig. 7: PCA mapping of the positions in aisle ZC. While there is a
large separation within the lighter shades, the darker shades of orange
appears confined to a smaller space.

Fig. 8: PCA mapping of the positions in aisle ZD. While the data is
well separated regarding the shades of blue, the darkest blue is closest
in proximity to the lightest blue, a less than ideal situation.



It can therefore be argued that once the mobile agent can determine
in which aisle it is currently located, it would be able to distinguish
with some degree of accuracy how far along the aisle it currently is.
The challenge appears to be then, as Figure 4 shows, that the variation
between the aisles makes it a challenge to differentiate which aisle it
currently inhabits.

This could be due to the range of the dimensions in question. The
distance from one end of an aisle to the other covers a span of 56.5
meters, while the distance between the aisles located furthest apart
from each other (ZA and ZD) covers a distance of only 10.5 meters.

Nearest Neighbour Investigation

Following the PCA investigation, a simple Nearest-Neighbour inves-
tigation was performed. The intention of this was to see how often,
for each point, it’s neighbouring points belong to the same geographic
position as it. This would assist in determining whether data points
representing the same position do tend to appear within an acceptable
distance of one another.

For this investigation, the 10 data points with the smallest euclidean
distance to the data point in question were compared and a simple first-
past-the-post voting system was conducted.

Such a voting system caters for cases where there may be no clear
majority and there are more than 2 classes (in this case positions)
which could be voted for. In such cases the class with the highest
number of votes is considered the winning class.

This was repeated for all 4700 recorded data records (20 records per
position with 235 positions in question), with the results per position
combined.

It was observed that the majority of points were either correctly
classified or classified as adjoining points. Out of the 235 positions
only 2 locations were incorrectly classified as not even adjacent posi-
tions. There was no discernible reason as to why they were classified
as such.

The outcome of the nearest neighbour investigation, caused us to
believe that the data gathered can indeed be useful in the localisation
of the mobile agent, but that the accuracy obtainable is limited as the
data has more points which neighbour dissimilar points rather than
those belonging to the same class.

7 EXPERIMENTAL SET UP

In order to use the data gathered, it was necessary to normalise the
data.
The data was z-score transformed per feature, that is:

For feature i = 1, ...,41 :
For all values of feature i:

o
Al
O

The z-score transformed values were used as input into both algo-
rithms.

As the number of records collected per position varied from one
position to another, it was decided that a limited number of points
would be taken from each position to prevent positions where a greater
number of values were recorded from having an outsized influence
over others. The limit was set to a maximum value of 20 records per
position with this number reduced when quick tests were conducted to
refine parameters. This limit ensured that all positions had an equal
number of records.

7.1 SONE experimental set up

For initial_y’s, the Principal Component Analysis (PCA) was per-
formed with the 2 most principal components taken as initial y points.
The algorithm was run for 400 epochs.

Due to the steps and calculations performed in the algorithm, all
data values were multiplied by a constant value of 1000 so as to be
able to deal in integer values exclusively.

Fig. 9: Initial positions of data points (colour coded per actual posi-
tion). This was used as input into the SONE algorithm.

The parameters were annealed from a starting value for o of 10
down to 0.5 and from 20 to 1 for values of y.

For the learning rate, &, the starting value was 0.5 which was an-
nealed down to 0.05 over the 400 epochs.

7.2 SOM experimental set up

The SOM algorithm used during this research was that which was im-
plemented in the inbuilt nctools Neural Network toolkit on MAT-
Lab for a simple exploration of the data and then the SOM-Toolbox
for MATLab provided under the GNU General Public License by Esa
Alhoniemi, Johan Himberg, Jukka Parviainen and Juha Vesanto for
more in depth analysis.

As with the SONE algorithm, the z-score normalised values were
used as input into the SOM algorithm. The lower dimensional grid was
structured having dimensions of 4 x 60, with each node representing a
floor grid position.

8 RESULTS

In this section, the results from both algorithms are presented indepen-
dently at first. Finally a comparison between the two sets of results is
made.

SONE Results

For initial tests, a square grid was used as the lower dimensional struc-
ture to see whether the points would group together without any struc-
turing aspect to the lower dimensional positions.

The resulting positions are shown in Figure 10.

As can be observed, the positions are more spread out than the ini-
tial positions shown in Figure 9. Furthermore, the spread in positions
result in loose groupings of same or similar colouring indicating that
some similarities are picked up by the algorithm and appropriately
shifted together.

Despite this, there does not appear to be enough separation to dif-
ferentiate the individual positions in clusters or as would be the most
ideal; if they formed the structure of the aisles.

To see whether structuring the lower dimensional grid in a shape
resembling the floor of the warehouse, 2 grids were created with di-
mensions representative of those to the floor plan of the warehouse.
Each of the 2 grids represent a situation where the floor is aligned with
either the first principal component or the second. The algorithm was
then run using each grid in turn.

The reason for aligning the lower dimensional grid with the first
principal component is that this component represents the greatest
variation of data and therefore may be the best fit in terms of the
longest dimension of the grid.
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Fig. 10: SONE output positions of data points. A good separation of
the periphery points but large cluster in the centre still not separated.
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Fig. 11: SONE output based on grid aligned with 1st principal com-
ponent. While the central bulk has been shifted, it has not been better
separated.

Figure 11 shows the SONE output based on the grid aligned with
the first principle component.

While the output differs from that shown in Figure 10, a number of
the same clusters are found. The clusters are restricted in how far away
from each other they separate along the vertical axis, as a product of
the vertically restricted underlying structure. Unfortunately, it fails to
provide a clearer separation of the large ’central mass’ of data points
than prior solutions.

A second directed grid aligned with the second principal compo-
nent was tried. The reason for trying this is to test whether applying
an element of rotation to the data would assist in separating the final
positions achieved.

Figure 12 shows the SONE output based on the grid aligned with
the second principal component.

From initial impressions it does appear that some clusters are better
separated. The large light orange cluster of points towards the higher
x-values are better separated from the ’central mass’ of data points
than with any other underlying structure attempted so far. The red
cluster at the lower y-value area of the ’central mass’ of points also
appears to be better separated from the ’central mass’ of points than
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Fig. 12: SONE output based on grid aligned with 2nd principal com-
ponent. A better separation of the orange colour-coded positions, but
a large part of the central block is still not separated.

Fig. 13: Ground truth colour representation of points.

prior attempts.

Nevertheless, none of the attempts to apply SONE to the unstruc-
tured data proves to be successful in clustering the data in the lower
dimensional space in a manner which represents the ground truth.

SOM Results

Figure 14 shows the final winning classification for each position in the
lower dimensional space. This is relative to the ground truth values as
shown in Figure 13. The ground-truth colour scheme was chosen in
order to allow the distinct differentiation between aisles and gradual
differentiation of points within the same aisle.

It can be observed from Figure 14 that the winning class i.e. posi-
tion based on the trained map can spill over the aisles and deviates in
a number of areas quite drastically from the ground truth.

The results indicate successful grouping of similar positions in the
same area, but unfortunately these are at the wrong actual positions.

8.1 Comparison of results

With the small difference in the way the two algorithms approach the
lower dimensional mapping, the difference in their results must be
taken into perspective.



Fig. 14: Winning classification of position based on number of hits.
While a number of groupings appear, the difference with the ground
truth is noticeable.

As SOM bases its lower dimensional positions on a provided grid
structure, the alignment of positions with one another cannot be com-
pared to the alignment of the positions produced by SONE.

Furthermore while SOM updates the higher dimensional nodes
based on distance to one another, SONE updates the lower dimen-
sional mappings based on the two neighbourhood functions decreasing
the likelihood that the final positions will be perfectly aligned.

While ideally the output positions of SONE would align with the
grid introduced as input to SOM, this would represent a perfect sce-
nario unlikely to be obtained without perfect data.

It is therefore only possible to observe how positions are voted by
SOM in respect to one another and compare them with how the out-
put produced by SONE structures the positions with respect to one
another.

The SOM output shown in Figure 14 shows the groupings of similar
data with one another, incorrectly in terms of what their final positions
should be. However one can observe the same grouping of data shown
in the SONE output as shown in Figure 12 especially in terms of how
these groupings locate with respect to one another.

This would indicate that both algorithms can identify similar wire-
less signal information but the difficulty seems to lie in aligning this to
the lower dimensional space.

9 CONCLUSION

In conclusion, despite best efforts, the pursuit to create a lower dimen-
sional representation of the wireless data which accurately reflected
the ground truth was unsuccessful.

Despite having real world data and using multiple algorithms, the
results obtained while showing some initial promise, proved to be un-
successful in accomplishing the task at hand.

The research project, which this report describes, was carried out as
a full start-to-finish data science and machine learning project. From
the initial data gathering plan through all the various stages described
within to the writing of this report and an accompanying presentation,
the project was intended as an opportunity to gain real-world exper-
tise and put into practice what had previously been learnt in academic
environments. This aspect of the research was a success.

Future work

There exists several opportunities to improve upon or expand upon this
research.

A design decision made when carrying out this project was to treat
the wireless signal readings as unstructured data in the algorithm.
While helping with the simplicity of the algorithm the data can also
be interpreted and analysed in a structured manner. As mentioned
when justifying the missingness imputation, subsequent values in the
readings can be assumed to correlate with the values in the readings
taken just prior to them. This works on the basis that as the mobile
agent moves closer to- or further away from- the source of the wire-
less signal, the signal strength will improve or degrade respectively in
a non-random manner. With this in mind, a future area of research
would be to take advantage of the structure within the data in deter-
mining the location of the mobile agent.

Another area of research that could be investigated in the future
would be to take advantage of a combination of data sources produced
by the mobile agent. This, of course, depends on the mobile agent in
question, however were a flying drone similar to the one used for this
research be available, various sources of information could be used
such as the images taken from the drone’s camera. This could be used
to assist the results of the radio-map based algorithms to determine not
only the position of the mobile agent, but its proximity to objects or
barriers which could better inform its localisation.
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