faculty of science
and engineering

university of
groningen

INVESTIGATING STATE REPRESENTATIONS IN
DEEP REINFORCEMENT LEARNING FOR PELLET
EATING IN AGAR.IO

Bachelor’s Project Thesis

Nil Stolt Ansd, s2705338, nilstoltanso@gmail.com,
Supervisor: Dr M. Wiering

Abstract: The online game Agar.io has become massively popular on the internet due to its
intuitive game design and its ability to instantly match players with others around the world.
The game has a continuous input and action space and allows to have diverse agents with
complex strategies compete against each other. This paper first investigates how different state
representations influence the learning process of a Q-learning algorithm. The representations
examined range from raw pixel values to extracted handcrafted feature vision grids. Secondly,
we investigate how different value function network architectures compare in performance. The
architectures examined are two convolutional Deep Q-networks (DQN) of varying depth and one
smaller multilayer perceptron (MLP). The results show that the Q-learning algorithm, together
with prioritized experience replay, is able to play quite well. Handcrafted feature vision grids
seem to require minimal resolution and network complexity, and outperform raw pixel input for

all conditions and tasks tested.

1 Introduction

Reinforcement learning (RL) is a machine learning
paradigm which uses a reward function that assigns
a value to a specific state an agent is in as a su-
pervision signal [I]. The agent attempts to learn
what actions to take in an environment to maxi-
mize this reward signal. These agents are usually
trained in simulations or games. This is for multiple
reasons: the level of noise can be directly controlled,
the researcher has access to all relevant information,
and the simulation can be sped up and parallelized.
Once agents achieve optimal performances in com-
plex and noisy simulated environments, they can
also be employed for real-world tasks.

The environment for this research is based on
the game of |Agar. iol which is itself inspired by the
behaviour of biological cells. The player controls cir-
cular cells in a 2D plane (as if laid out on a Petri
dish) which follow the player’s mouse cursor. The
player can signal their cells to split or eject little
vesicles of mass. Cells of a player can eat small food
pellets scattered in the environment or other smaller
enemy player-controlled cells to grow in size. The

environment of Agar.io is therefore very interesting
for RL research, as it is mainly formed by the be-
havior of other (larger) players on the same plane,
it is stochastic and constantly changing. Also the
output space is continuous, as the cells of the player
move towards the exact position of the mouse cur-
sor. On top of that, the complexity of the game can
be scaled by introducing or removing additional fea-
tures. This paper therefore studies how to use RL
to build an intelligent agent for this game, especially
focusing on how to represent the game state for the
agent.

1.1 Previous Research

Ever since it was shown that a multilayer perceptron
(MLP) could be trained through back-propagation
to store internal representations of the provided in-
put [2], the use of artificial neural networks (ANN)
has demonstrated great promise at learning repre-
sentations of complex environments. Given a large
enough hidden layer, an ANN has been shown to
be able to approximate any continuous function
on the input space to any degree of accuracy [3].


Agar.io

Tesauro was among the first to show that optimal
decision making could be learned in the large state
space of the game Backgammon through the use
of an MLP as a decision maker [4]. Over the years,
this principle has been extended through the use
of convolutional neural networks (CNNs). This has
been shown to achieve human level performance
by learning from solely pixel values in a variety of
Atari games [5], and even first-person perspective
3D games like Doom [6]. Despite much of the success
of deep learning coming with great computational
requirements, the combination of deep learning and
reinforcement learning has been finding increasing
successes [5] [7] [6].

One approach to overcoming the issue of large
state spaces is the preprocessing of the state rep-
resentation in order to extract features that will
boost performance and reduce the amount of po-
tentially irrelevant information required for the net-
work to process. The use of vision grids is one such
approach that has been employed in games such as
Starcraft [8] and Tron [9] by extracting hand-crafted
features into grids. These methods can greatly sim-
plify the state space and allow for a decreased net-
work complexity. Despite this benefit, feature ex-
traction might introduce biases and has no guar-
antee to achieve the same performance as a net-
work being fed the raw game representation (given
enough training time).

A widely successful algorithm for reinforcement
learning that acts on state representations is Q-
Learning [T0]. This algorithm can be combined with
a function approximator to estimate the Quality, or
long-term reward prospect, of a state-action pair.
This estimation is improved by observing the actual
reward received after taking a specific action in a
specific state. By combining the value of the reward
received and the value of the discounted estimation
of the best state-action pair in the new state, the
algorithm slowly propagates expected reward values
backwards through the state-action space. Which
action to take in a given state is chosen by tak-
ing the action with the highest predicted Q-value.
Such approaches are used in the research mentioned
above on Atari games [7], Doom [6], and Tron [J].
In Atari games, in Doom, and in Tron the possible
actions in each state are equivalent to the buttons
that the player can press. In Agar.io, the relative
position of the mouse cursor on the screen is used
to direct the player. This has a range of continuous

values, similarly to real-life robotic actuators.

1.2 Contributions of this Paper

This paper explores how the complexity of the state
space affects the convergence and final performance
of the algorithm. This is explored through a core
task of the game: pellet collection. In this task, the
agent has to navigate in the environment and eat
as many food pellets as possible.

More importantly, this research focuses on how
different state representations, varying resolutions
of such state representations, and varying the struc-
ture for the function approximators affect the perfor-
mance of the Q-learning algorithm. First, different
kinds of low-level information used in the state rep-
resentation are compared, each one providing a dif-
ferent kind of information. This includes grayscale
pixel values, RGB pixel values, and a semantic vi-
sion grid for pellets in the screen. The effect of the
resolution of these state representations is also ex-
plored. Finally the ability of Q-learning to achieve a
good playing performance is examined when using
two different CNN structures (which differ in the
number of layers) and compared to the use of an
MLP.

1.3 Paper Outline

This paper has the following structure. In section
2, the game of Agari.io and the core behaviours re-
quired to play the game are described. Furthermore,
this paper explains why the game is interesting from
the perspective of reinforcement learning. In section
3 the fundamental principles behind Q-learning and
the techniques used to enhance its performance are
outlined. Section 4 then describes why state rep-
resentations are important for the training the al-
gorithm. This is followed by a description of the
types of state representations explored in this pa-
per. The experimental setup follows in section 5,
where the network structures and parameters used
are described. Next, section 6 shows and discusses
the results obtained. Finally, an outline of the con-
clusions is provided and ideas for future research
are described in section 7.



2 The Game

Agar.io is a multiplayer online game in which the
player controls one or more cells. The game has
a top-down perspective on the map of which the
size of the visible area of the player is based on
the mass and count of their cells. The goal of the
game is to grow as much as possible. This can be
done by having the player’s cell absorb food pellets,
viruses, or other smaller enemy player’s cells. The
game itself has no end. Players can join an ongoing
game at any point in time. Players start the game
as a single small cell in an environment with other
player’s cells of all sizes. When all the cells of a
player are eaten, that player loses and can choose
to re-enter the game.

Every cell in the game loses a small percentage
of its mass in every time step. This makes it harder
for large cells to grow quickly and it punishes in-
action or hesitation. The game has simple controls.
The cursor’s position on the screen determines the
direction all of the player’s cells move towards. The
player also has the option to ’split’, in which case
every player cell (given the cell has enough mass)
will split into two cells of the same mass, both with
half the mass of the original cells. One of these cells
will be shot in the direction of the cursor with a
given momentum. Furthermore, the player has an
option to have every cell ’eject’ a small mass blob,
which can be eaten by other cells or viruses.

For the purpose of this research, the game was
simplified to fit the computational resources avail-
able. The version of the game used has viruses dis-
abled and is run with only one player. Furthermore,
ejecting and splitting actions were disabled for the
experiments in this paper. This is because ejecting
is only useful for very advanced strategies, and split-
ting requires tracking of when the player’s cells are
able to merge back together over long time intervals.
The use of these actions would require recurrent
neural networks such as LSTMs [I1] which are out-
side of the scope of this research. Figure 2.1 shows
a screenshot of the clone of Agar.io used for this
research.

We introduce a ’Greedy’ bot to the game to com-
pare the RL agents against. This bot is prepro-
grammed to move towards the cell with the highest
cell mass to distance ratio. It ignores cells with a
mass above its biggest own cell’s absorption thresh-
old. The bot also has no splitting or ejecting be-

. Leaderboard
L] 1. Greedy2: 149

2. Player: 149
3. Greedy3: 128

° 4. Greedy4: 120|
. ® 5. Greedy1: 98
6. NNO: 9

Figure 2.1: A clone of the game Agar.io used
for this research. The player has one cell in the
center of the screen. This player is in danger
of being eaten by the Greedy bot seen on the
top left, the other cells have a similar size as
the player’s cell and therefore pose no danger.
The little colored dots are pellets that can be
consumed to grow in mass.

havior. This relatively naive heuristic, outperforms
human players at early stages of the game. On the
other hand, the heuristic can be outperformed by
abusing its lack of path planning and general world
knowledge later in the game.

3 Reinforcement Learning

This paper follows the general conventions [I] to
model the reinforcement learning (RL) problem as
a Markov decision process (MDP). In a Markov
Decision Process an agent can take an action in a
state to get to a new state. Most importantly the
transition from the state to the new state has the
Markov property: the stochastic transition proba-
bilities between the states are only dependent on
the current state and selected action.

To model the RL problem as an MDP, it must
be defined what a state constitutes of. In short, the
state consists of the properties the environment has
and how the agent perceives the available relevant
information. The transition between a state and an



action to a new state is handled by the game engine.
This research applies frame-skipping to the MDP.
In frame skipping a certain number of frames, or
states, are skipped and the action that the agent
chose is applied during all of these skipped frames.
Also the rewards during these skipped frames are
summed up until the next non-skipped state where
the sum total is used as the reward. Frame skip-
ping offers a direct computational advantage, as it
allows the agent to not have to calculate the best
action in every single frame of the game. More im-
portantly, frame skipping leads to successive states
in the MDP to be more different from each other
than without frame skipping and leads to higher
rewards, simply because more steps happened in
between states. Making successive states more dif-
ferent from each other makes it easier for a function
approximator to differentiate states. Larger rewards
also have a positive effect on the training speed.

3.1 The Reward Function

In RL there must be some function that maps a
state to a reward, also called the reward function.
The aim of the agent in RL is to maximize the total
expected reward that the agent receives in the long
run through this reward function, also called the

gain (G):

o0

GzZﬁﬂyt

r; indicates the reward the agent receives at time ¢
and v indicates the discount factor. This discount
factor is number between 0 and 1 which controls how
much future rewards are discounted and therefore
how much immediate rewards are preferred. A value
of 1 would mean that the agent takes for every action
into consideration how much reward this action will
yield over the episode, whereas a value of 0 would
make the agent completely myopic and disregard
any future rewards.

The aim in Agar.io is to grow as big as possible.
That means the agent has the aim to maximize its
combined overall mass of all its cells in the shortest
amount of time possible. This leads to the idea of
the reward being the change in mass between the
previous state and the current state:

0,
ry =
m¢ —M¢—1q,

(3.1)

ift=20

) (3.2)
otherwise

0.5,0.3 .

0.1,0.7 0.3,0.7 0.5,0.7 ?.7,0.7 0.9,0.7
. R C - °
0.1,0.9 0.3,0.9 0.5,'0..9 :0.7,0.9 0.9,09°
. NS

Figure 3.1: Possible action coordinates are laid
out in a grid-like fashion. At a given state, the
network will choose the square with the highest
Q-value as an action. In total, 25 possible actions
are used.

3.2 Q-Learning

Q-learning [I0] predicts the quality (Q-value) of
an action in a specific state. By iterating through
all possible actions in a state, the algorithm picks
the action with the highest Q-value as the action
that the agent should take in that state. The Q-
value indicates how much reward in the long term,
or how much gain, the agent can expect to receive
when choosing action a in state s. This prediction
is updated over time by shifting it towards the sum
of the rewards that the agent got for taking that
action and the predicted value of the best possible
action in the next state.

As Q-learning iterates over all possible actions
in a state, the action space cannot be continuous.
Therefore we discretize the action space by laying
a grid of actions over the screen (Figure . Ev-
ery center point of a square in the grid indicates
a possible mouse position that the algorithm can
choose.

To predict the Q-value for an action in a state,
an arificial neural network (ANN) is used, which is
trained through backpropagation. To construct the
ANN to predict the Q-values we took inspiration
from the network structure proposed in [5]. This



architecture feeds the state as an input to the
network and has one output node per possible
action. Additional details such as the learning
rate or the number of layers can be found in the
appendix. The tabular Q-learning update for a
transition from state s; after selecting action ay
with reward r; and the new state sy is:

Q(st,a1) = Q(st, ar)-(1-a)+a-(ri+y-max Q(sit1, a))

(3.3)

In this formula « indicates the learning rate.
This formula is adapted so that it can be used to
train an ANN by calculating the target for back-
propagation for a specific state-action tuple (s, a;):

Target(sy,ar) = e + 7 -max Q(se+1,a)  (3.4)

3.2.1 Exploration

Even though an optimistic initialization of the Q-
values leads to a natural initial exploration [I], it
is necessary to explore the action space throughout
training to avoid being stuck in local optima. For Q-
learning the e-greedy exploration [I] was chosen due
to its simplicity. The € value indicates how likely it
is that a random action is chosen, instead of choos-
ing greedily the action with the highest Q-value. For
this research the e value is annealed exponentially
from 1 to a specific value close to 0 over the course
of training. The € value should decrease over time,
as this allows the agent to progress more in the
game by taking more greedy actions. This causes
the agent to progress steadily while exploring alter-
native actions over the course of training.

3.2.2 Target Networks

To stabilize Q-learning, Mnih et al. [5] introduced
target networks. As the training of Q-learning max-
imizes over the possible actions taken in the next
state, the combination of this training with func-
tion approximators can lead to the deadly triad [I].
This deadly triad gives a high probability of the
Q-function to diverge from the true function over
the course of training. A possible remedy to this
problem is Double-Q-learning [12], which uses two
Q-value networks. For the training of one network,
the other network is used to calculate the Q-value of
the action in the next state of a transition to avoid
the positive feedback loop of the deadly triad. Mnih

et al. simplify this approach by introducing a target
network in addition to the Q-value network. The
parameters of the Q-value network are copied to the
target network every time after a certain amount
of steps. This requires no need to introduce a new
separate network, but the maximization of the Q-
values is still done by a slightly different network,
therefore mitigating the unwanted effect.

3.2.3 Prioritized Experience Replay

Q-learning is an off-policy algorithm. This means
that Q-learning can learn on transitions that are
not directly generated by the Q-value network it-
self, but also by other policies or by an older version
of the Q-value network. Lin [I3] introduced a tech-
nique named experience replay to further stabilize
and improve the performance of Q-learning. The
technique has been shown to work well for DQN
[7]. When using experience replay every transition
tuple (s¢,as, 7, Se4+1) is stored in a buffer instead
of being trained on directly. If this buffer reaches
its maximum capacity the oldest transitions in it
get replaced. To train the value network using ex-
perience replay in every training step N random
transitions from the replay buffer are sampled with
replacement. For each of the transitions in the mini-
batch the target for s; is calculated and then the
value network is trained on this mini-batch.

This form of experience replay offers a big advan-
tage over pure online Q-learning. One assumption of
using backpropagation to train an ANN is that the
samples that are used to train in the mini-batches
are independent and identically distributed. This
assumption does not hold for online Q-learning, as
each new transition is a partial result of the previous
transition. Therefore random sampling from a large
buffer of transitions partially restores the validity
of this assumption. Furthermore, with experience
replay, experiences are used more effectively, as the
agent can learn multiple times from them.

As an enhancement to experience replay, Schaul
et al. [14] developed prioritized experience replay
(PER). PER does not sample uniformly from the
replay buffer, but instead assigns the sampling prob-
ability to an experience i:

TDEY

Pi) = S . TDE}

(3.5)

Here, the « coefficient determines how much pri-



oritization is used, & = 1 would mean full prioritiza-
tion. TDE stands for the temporal difference error
of transition i, computed as:

TDE; =71+ - max Q(8t41,a) — Q(st,at) (3.6)

This implies that the badly predicted transitions
will be replayed more often in the network, which
was shown to lead to faster learning and better final
performance [14].

Because more transitions with high TDEs will be
trained on in PER, leading to proportionally larger
changes in the weights of the network, Schaul et
al. also introduce an importance sampling weight
which decreases the magnitude of the weight change
in the MLP for transition 7 anti-proportionally to its
T DE,;. This is done to reduce the bias of training on
average on more high TDE transitions. Therefore, a
weight w; is applied to the weight changes induced
by each transition ¢ of magnitude:

L1

N TDE; (3.7)

w; = (
In this formula N is the batch size and 8 controls
the amount of applied importance sampling. In prac-
tice the weights are used in the Q-learning update
by multiplying the prediction error for transition i,
used in backpropagation, by w;.
This research uses the OpenAi baselines reposi-
tory [15] for prioritized experience replay to enhance
reproducibility.

4 The State Representation

The information used in state representations can
have varying levels of abstraction. The choice of
a given state representation often brings positive
and negative influences on the algorithm’s learn-
ing process, which the designer has to balance op-
timally. State representations with high levels of
abstraction usually have the environment informa-
tion preprocessed before it is fed to the algorithm.
This has the advantage of allowing for a simpler
network which will take less training time to con-
verge. This is not without its downsides, as such
approach has additional processing requirements. It
also goes without saying that these state representa-
tions of hand-crafted features are inherently biased

due to being created with the programmer’s own
heuristic in mind. An example of this is Bom et
al.’s paper on learning to play Ms. PacMan [16],
where a small network learns to play the game by
using a representation that includes the distance to
the closest collectable pills as determined by an A*
search algorithm.

On the other end of the spectrum there are have
approaches where the unfiltered raw data of the en-
vironment is fed to the learning algorithm. The sim-
plicity of this approach allows for agents to learn in
complex state-action spaces for which humans might
have non-optimal existing heuristics. The downside
is that the large number of parameters the networks
are required to have, brings issues with processing
power and amount of training time before conver-
gence.

One of the aims of this paper is to research how
state representations of the same resolution, but
with varying levels of preprocessing compare to one
another. The base representation of the game is the
raw state representation of the game, which comes
in the form of RGB pixel values.

The second state representation wuses the
grayscale pixel values. A player in Agar.io aims to lo-
cate food pellets and cells in its view against a white
background. Processing the RGB channels into a
single grayscale channel will reduce the amount of
weight tuning required for the network in order to
extract non-white objects. This processing is per-
formed by a pixel-wise averaging across the RGB
channels.

The third state representation is a ’semantic rep-
resentation’ of objects in the environment. This con-
sists of a vision grid in which every individual area
unit has a value equal to the amount of food pellets
contained in that area (see Figure . For the fol-
lowing experiments, the grid values at given areas
were obtained from the game engine itself to reduce
computational costs, but one could theoretically ob-
tain these values from the RGB pixel values of the
real game using preprocessing techniques.

Another aim of this paper is to explore how much
the performance is influenced by the resolution
of these representations. The DQN approach has
shown success with state representation sizes of 84
by 84 [7], but one could hypothesize that as the
representation resolution drops, it will be harder
for the network to understand the semantics of the
game. Given this, semantic representations should



Pellet Grid

Pellet Grid: sum(pellets)

Figure 4.1: The semantic state representation
consists a vision grid laid out on the player’s
view. Values are then extracted from each area
unit based on how many food pellets are present
in it.

be expected to perform marginally better than pixel
values at lower resolutions.

The last aim of this paper is to compare how
different representations perform with different ar-
chitectures. Every subsequent layer in a neural net-
work can be thought of as providing recognition of
more abstract concepts. Providing the network with
a more semantically complex state representation
to begin with, might relieve the network from the
need to extract objects such as circles (for cells), as
well as features such as the size of the circles (for
estimating the mass of the cell). This hypothesis
will be tested by comparing the performance of the
pixel and semantic representations between a CNN
with 3 convolutional layers to that of a CNN with 2
convolutional layers. The first network has the same
structure as the one used in the 2015 DQN paper
[7]. With the only difference being that the one used
here only uses one single channel for the current rep-
resentation of the game, whereas the ones used by
Mnih et al. use convolution over the 4 last frames.
The second CNN has a similar structure to the 2013
DQN paper [? ], but with a slight difference in the
number of filters.

Furthermore, to emphasize how the semantic rep-
resentation can be used to achieve high perfor-
mances with relatively small networks, the men-
tioned methods will also be compared to that of
a small MLP without convolutional layers that uses
a state representation of resolution 11 by 11.

5 Experimental Setup

5.1 General Experimental Setup

In the experiments of this paper, the various net-
works and state representations will be evaluated
under a pellet collection task. In this task, one agent
is placed into an environment with only food pellets
present and the goal is to grow as large as possible.

In all experiments the environment is reset after
20,000 game steps. This is considered to be one
episode. Upon reset all agents are reassigned a new
cell with mass 10 at a random location and all pel-
let locations are randomized. This is done to avoid
that the learning agents learn peculiarities of pellet
locations on the map and to force the agents to also
learn to deal with low cell mass strategies. Further-
more, to avoid the network from overfitting to one
particular color in the pixel value representations,
we also have the player cell colors be randomized
every time an episode ends.

Each algorithm instance was trained with 300,000
state transitions. Given the network used a frame
skip rate of 10, one state transition experience was
generated every 11 in-game frames, giving a total of
3,300,000 game steps. These states were generated
on-line as the network learned to play and stored
into the experience replay buffer of size 20,000. Ev-
ery training step, the network was trained on 32 ex-
periences sampled (with replacement) into a single
batch. On an Intel Xeon E5 2680v3 CPU @2.5Ghz
it took between 32 to 84 hours to train each in-
dividual CNN run depending on the trial. State
reperentations of 42 by 42 in resolution were at the
lower end due to their smaller amount of network
parameters, while resolutions of 84 by 84 took the
longest to train on. On the other hand, the MLP
runs took approximately 5.5 hours. Each condition
was trained for a total of 10 independent runs and
the mean across those runs was taken.

Every 5% of the training process the performance
of one agent is tested five times. The noise factor
of the agent (e of e-greedy) is set to zero. In this
environment the agent can only collect pellets for
15,000 in-game steps. Furthermore, after training is
completed the agent is placed in the environment
10 times to measure the final performance.

For the testing during and after training, the per-
formance for each experimental condition is calcu-
lated by taking the mean across the testing runs of



the 10 independent training runs.

5.2 Network structures

We assembled two CNN architectures to be our
value function networks. We also constructed a sim-
ple MLP to further test the semantic representa-
tion’s performance with low resolutions with a small
network.

The simple MLP architecture consists of a vari-
able input length, 3 fully connected layers, and an
output layer. The input to the network consists of
the grids of the semantic representation, which were
first flattened into a 1D vector, and then had 2 extra
values appended to it: the current mass of the player,
and the 'field of view’ (FoV) size of the player. These
two extra values are information the human player
has implicit access to in the real game through es-
timation of the total mass and FoV size by com-
parison to features such as the relative sizes of a
food pellet, or the game background. This source of
information is useful, as the optimal strategy in the
game changes depending on size. For a state’s se-
mantic representation resolution of 11 by 11 where
a pellet vision grid are used, the 1D input of the
network would be 123 in length. This input is then
fed into 3 subsequent fully connected layers of 250
rectified linear units each. This is then followed by
an output layer of 25 linear units. The output layer,
as specified in the 'Reinforcement Learning’ section,
has units symbolizing a possible mouse position on
the screen on a grid-like fashion.

The first CNN architecture has the same struc-
ture as that used for Atari games in the 2015 DQN
paper [7], with the only difference being that the
structures used here only use the current frame in
the input for the convolution. The default input
consists of 84 by 84 units in length, the number of
channels is dependent on the type of representation
used. The first convolutional layer uses a kernel size
of 8 by 8 with stride 4 for a total of 32 filters. The
second convolutional layer uses a kernel size of 4 by
4 with stride 2 for 64 filters. The third convolutional
layer uses a kernel size of 3 with stride 1 for 64 filters.
Every convolutional layer applies a rectified linear
activation function. At this point in the network,
the current layer’s output was flattened and, similar
to the case of the MLP’s input, the values for the
mass of the player and the FoV size were appended
to it. Next, this 1D vector was fed to a fully con-

nected layer of 512 rectifier units, which was then
followed by an output layer of 25 linear units.

Lastly, the second CNN architecture has a similar
structure to the first one, but has only 2 convolu-
tional layers. Again, the input by default consists of
84 by 84 units in length. The number of channels is
dependent on the type of representation used. The
first convolutional layer uses a kernel size of 8 by 8
with stride 4 and a total of 32 filters. The second
convolutional layer uses a kernel size of 4 by 4 with
stride 2 and 64 filters. Every convolutional layer
applies a rectified linear activation function. Just
like in the other CNN architecture, at this point the
layer’s output is flattened into a 1D array and gets
appended the mass and FoV player values. Next, a
fully connected layer of 256 rectifier units is used,
which is then followed by an output layer of 25 linear
units.

The best hyper-parameters for all methods were
coarsely searched for. Please refer to the appendix
for all the parameter values used in these algorithms.
All artificial neural networks were constructed using
Keras 2.1.4 [17].

6 Experimental Results

6.1 General Results

As seen in Figure[6.1] for the set of resolutions tested
for the vision grid representation on both CNN ar-
chitectures, the 42 by 42 resolutions seem to per-
form marginally better than every other one. The
84 by 84 resolution performs the second best closely
followed by the 63 by 63 resolution. Unsurprisingly,
as seen in Figure [6.2] the 42 by 42 resolution also
achieves good performances the fastest due to its
lower number of trainable parameters. The 3 convo-
lutional layer network seems to also achieve slightly
better performances than the 2 convolutional layer
CNN for resolutions of 42 by 42 and 63 by 63, but
not for 84 by 84. The MLP architecture with the 11
by 11 resolution seems to achieve a higher perfor-
mance than both CNNs using 84 by 84 resolutions,
although not as high as CNNs using 42 by 42 reso-
lutions. The MLP seems to learn at a similar rate
as 84 by 84 CNN resolutions (see Figure .

The RGB pixel value representations seem to all
have similar during-training performances as seen in
Figure[6.3] suggesting that resolution does not have



Post-Training Pellet Collection Performance
for Vision Grid Representations

700 4
600 1
500 1

a

& 400 4

=
300 4

200 1

orox<on

Vision grid (11,11) -
Vision grid (42,42) -
Vision grid (42,42) -
Vision grid (63,63) -
Vision grid (63,63) -
Vision grid (84,84) -
Vision grid (84,84) -

2 conv. layer
3 conv. layer
2 conv. layer
3 conv. layer
2 conv. layer
3 conv. layer

0.0

0.2 0.4 0.6

0.8 1.0 12

14

Testing Steps le4

Figure 6.1: Post-training performance of vision
grid representations with differing resolutions
for the two CNN architectures, as well as for
the MLP architecture with a 11 by 11 resolu-
tion. Each point represents the average of the
10 testing rounds and the shaded area denotes
its 1 S.D. range. Results are averaged for 10 sim-
ulations.

Performance During Training Without Noise
for Vision Grid Representations

600

500

Vision grid (11,11) - MLP
Vision grid (42,42) - 2 conv. layer
Vision grid (42,42) - 3 conv. layer

200

100

o> oxX<on

Vision grid (63,63) -
Vision grid (63,63) -
Vision grid (84,84) -
Vision grid (84,84) -

2 conv.
3 conv.
2 conv.
3 conv.

layer
layer
layer
layer

0 20 40 60 80
Percentage of training time

100

Figure 6.2: During-training performance of vi-
sion grid representations with differing resolu-
tions for the two CNN architectures, as well as
for the MLP architecture with a 11 by 11 resolu-
tion. Each point represents the average of the 5
testing rounds and the shaded area denotes its
1 S.D. range.

much of an effect on the learning of the networks
for the resolutions tested. This is further empha-
sized by Figure where there are no noticeable
differences between the resolutions or architectures
in post-training performance.

Lastly, the grayscale pixel value representation
appears to have trends similar to those of vision

Performance During Training Without Noise
for RGB Pixel Value Representations

500

200 RGB (42,42) - 2 conv. layer

RGB (42,42) - 3 conv. layer
RGB (63,63) - 2 conv. layer
RGB (63,63) - 3 conv. layer
RGB (84,84) - 2 conv. layer
RGB (84,84) - 3 conv. layer

|
[
v
X
[ ]
A

0 20 40 60 80
Percentage of training time

100

Figure 6.3: During-training performance of
RGB pixel value representations with differing
resolutions for the two CNN architectures. Each
point represents the average of the 5 testing
rounds and the shaded area denotes its 1 S.D.
range.

Post-Training Pellet Collection Performance
for RGB Pixel Value Representations

600

500

RGB (42,42)
RGB (42,42) - 3 conv. layer

[ | . layer
®
V RGB (63,63) - 2 conv. layer
X
L]

200

RGB (63,63) - 3 conv. layer
RGB (84,84) - 2 conv. layer
A RGB (84,84) - 3 conv. layer

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14

Testing Steps led

Figure 6.4: Post-training performance of RGB
pixel value representations with differing resolu-
tions for the two CNN architectures. Each point
represents the average of the 10 testing rounds
and the shaded area denotes its 1 S.D. range.

grids, but not to the same extent. The during train-
ing performance of the 42 by 42 resolutions seems
to converge at a slightly higher performance than
the other 2 resolutions (see Figure . The post-
training performance seen in Figure also seems
to indicate that 42 by 42 resolutions have a higher
performance after 300,000 training steps.

In order to observe how different kinds of state
representations compare to one another, some of the
highest performing runs were plotted together as

seen in Figures [6.7] and The 42 by 42 grayscale



representation on a 2 convolutional layer network
seems to achieve a similar final performance as both
of the 84 by 84 vision grid representations. This
grayscale run is noticeably better than the plotted
42 by 42 RGB representation on a 3 convolutional
layer network in terms of final performance.

Performance During Training Without Noise
for Grayscale Pixel Value Representations

500

200 Grayscale (42,42) - 2 conv. layer

Grayscale (42,42) - 3 conv. layer
Grayscale (63,63) - 2 conv. layer
Grayscale (63,63) - 3 conv. layer
Grayscale (84,84) - 2 conv. layer
Grayscale (84,84) - 3 conv. layer

100

|
®
v
X
®
A

0 20 40 60 80 100
Percentage of training time

Figure 6.5: During-training performance of
grayscale pixel value representations with differ-
ing resolutions for the two CNN architectures.
Each point represents the average of the 5 test-
ing rounds and the shaded area denotes its 1
S.D. range.

Post-Training Pellet Collection Performance
for Grayscale Pixel Value Representations

500

400

Mass

300

Grayscale (42,42)
Grayscale (42,42) - 3 conv. layer
Grayscale (63,63) - 2 conv. layer
Grayscale (63,63) - 3 conv. layer
Grayscale (84,84) - 2 conv. layer
Grayscale (84,84) - 3 conv. layer

200

100

>oxX«<qaon

0-+—
0.0 0.2 0.4 0.6 0.8 1.0 12 1.4
Testing Steps led

Figure 6.6: Post-training performance of
grayscale pixel value representations with differ-
ing resolutions for the two CNN architectures.
Each point represents the average of the 10
testing rounds and the shaded area denotes its
1 S.D. range.

The post-training performances for all conditions
can be seen in Table[6.Il The column 'Mean Perfor-
mance’ shows the mean testing scores across all 10

Post-Training Pellet Collection Performance

Grayscale (42,42) - 2 conv. layer
RGB (42,42) - 3 conv. layer
Vision grid (11,11) - MLP

Vision grid (42,42) - 2 conv. layer
Vision grid (42,42) - 3 conv. layer
Vision grid (84,84) - 2 conv. layer
Vision grid (84,84) - 3 conv. layer

oroxaon

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Testing Steps led

Figure 6.7: Post-training performance of vari-
ous top-performing runs of various representa-
tions and network architectures. Each point rep-
resents the average of the 10 testing rounds and
the shaded area denotes its 1 S.D. range.

Performance During Training Without Noise

500

Grayscale (42,42) - 2 conv. layer
RGB (42,42) - 3 conv. layer
Vision grid (11,11) - MLP

Vision grid (42,42) - 2 conv. layer
Vision grid (42,42) - 3 conv. layer
Vision grid (84,84) - 2 conv. layer
Vision grid (84,84) - 3 conv. layer

0 Y T T T T T
0 20 40 60 80 100

Percentage of training time

200

orox<on

Figure 6.8: During-training performance of var-
ious top-performing runs of various representa-
tions and network architectures. Each point rep-
resents the average of the 10 testing rounds and
the shaded area denotes its 1 S.D. range.

tests of all 10 simulations. The column "Mean Max
Performance’ shows the average maximum scores
across all 10 tests of all 10 simulations. The top scor-
ing condition appears to be 'Vision grid (42,42) - 3
conv. layers’ with a max score of 763. Comparing its
max score to its 2 convolutional layer counterpart
(which holds the second highest score) through the
use of a t-test yields a p-value of 0.019, suggesting
there is a significant difference between their maxi-
mum scores. All other conditions yield p-values be-
low 0.001. Furthermore, the top scoring grayscale
condition (Grayscale (42,42) - 3 conv. layer, hold-

10



Table 6.1: Post-training mean performances across 10 simulations. The 'Mean Performance’ col-

umn contains the mean mass value for the post-

training averaged performance curve (such as

the ones seen in Figure . The Mean Max Performance’ column is the max scores of the

post-training averaged performance curve.

Mean Std. Error | Mean Max | Std. Error
Performance Mean Performance Max

Random 18 0.1 31 0.2
Greedy Heuristic 527 0.3 693 0.6
Vision grid (11,11) MLP 481 2.8 704 5.9
Vision grid (42,42) 3 conv. layer 537 0.6 763 0.9
Vision grid (42,42) 2 conv. layer 526 1.1 750 1.1
Vision grid (63,63) 3 conv. layer 479 1.3 688 0.6
Vision grid (63,63) 2 conv. layer 461 1.4 662 1.8
Vision grid (84,84) 3 conv. layer 480 5.7 675 5.4
Vision grid (84,84) 2 conv. layer 494 1.2 696 1.1
Grayscale (42,42) 3 conv. layer 471 4.2 669 4.9
Grayscale (42,42) 2 conv. layer 449 4.5 648 6.8
Grayscale (63,63) 3 conv. layer 446 2.0 617 1.2
Grayscale (63,63) 2 conv. layer 448 3.1 625 1.1
Grayscale (84,84) 3 conv. layer 442 2.1 632 1.7
Grayscale (84,84) 2 conv. layer 439 1.5 627 2.2
RGB (42,42) 3 conv. layer 432 7.2 628 6.8
RGB (42,42) 2 conv. layer 425 7.0 609 9.9
RGB (63,63) 3 conv. layer 421 7.8 588 7.4
RGB (63,63) 2 conv. layer 436 2.3 609 2.7
RGB (84,84) 3 conv. layer 421 7.8 588 7.4
RGB (84,84) 2 conv. layer 427 0.9 598 1.6

ing a max score of 669) can be tested against the
top scoring RGB condition (RGB (42,42) - 3 conv.
layer, holding a max score of 628). Performing a
t-test yields a p-value of 0.096, suggesting the dif-
ference is not significant.

6.2 Discussion

As seen in Figure the best performances are
achieved by the CNN networks using vision grid rep-
resentations. Although the MLP network achieves
a surprising performance despite its requirement of
having a low resolution state representation, both
CNN architectures using a 42 by 42 resolution input
reach a higher performance at a faster pace.

The performance increase in relation to the MLP
is likely due to CNNs’ increased ability to process
local changes in the environment, thus not having to
evaluate potentially uncorrelated inputs far apart
in the network’s input. This also allows a CNN

to have a higher resolution input while keeping its
number of parameters low, which helps explain why
CNNs reach higher performances faster than the
MLP. The deeper CNN architecture at 42 by 42
input resolution has 118,969 trainable parameters
while the MLP architecture has 169,753.

The semantic representations yield a surpris-
ing performance in comparison to the RGB and
grayscale pixel values. Even at resolutions of 11 by
11, the MLP yield a significantly higher performance.
It should be noted that the pixel value representa-
tions have not fully converged after 300,000 training
steps (see Figure , and that it could be the case
that given enough training time, these could match
the performance of vision grids. The same can be
said about higher vision grid resolutions (particu-
larly 84 by 84), which by the end of the training
period have also not converged.

A reason that could explain why the 63 by 63
resolutions performed worse, is the input dimensions

11



are odd-numbered while the kernel stride are even.
This causes the network to ignore 3 columns on the
right of the input and 3 columns in the bottom of
the input, leading to a loss of possibly important
information.

7 Conclusion

This paper has researched the effect that different
types of state representations have on the learning
process of the Q-learning algorithm. Also, the effect
that the resolution of these representations have
was investigated. Furthermore, the performance and
learning speed of 3 different artificial neural net-
works was explored.

The best performing resolutions for the CNN net-
works was 42 by 42, which outperformed 63 by 63
and 84 by 84 resolutions for the vision grid repre-
sentations. For the pixel value representations, the
change in resolution had little effect. For the res-
olutions of 42 by 42, the state representation that
performed the best was the vision grid with a signif-
icant increase over the two pixel value representa-
tions. The grayscale pixel value representation per-
formed somewhat better than the RGB pixel value
representation.

As for the value function networks used, the CNN
with 3 convolutional layers performed similar to
the CNN with 2 convolutional layers, although for
occasional runs, the 3 convolutional layer network
showed slight increases in performance over the 2
layered one. The MLP architecture with an 11 by
11 resolution had a higher performance and faster
convergence than most other experimental condi-
tions. The MLP performance was only surpassed
by the vision grids representation with 42 by 42 res-
olution. This might be explained by the low number
of parameters these two conditions have. It could
be possible that higher resolutions such as 84 by
84 could achieve higher performances given longer
training times, since they seemed to not have fully
convereged after the given training time.

7.1 Future Work

First and foremost, an interesting goal for future
work would be to expand upon the research done
in this paper, so as to create an algorithm that can
learn to play the full game of Agar.io. Following,

are possible strategies that could be employed to
achieve such goal.

As reinforcement learning techniques are applied
on more complex games of the current age, some-
thing to consider are design choices for algorithms
to faster propagate rewards backwards in the state-
action space. One such approach could be the use of
multi-step algorithms, although these come at the
disadvantage of increased computational require-
ments. One such example would be multi-step Q-
learning, such as the one by Peng and Williams [18].

Another possibility could be the use of incremen-
tal discount factors. This would allow agents to first
develop greedy short term behaviours, and as those
establish the agent with a stable performance foun-
dation, start gradually valuing longer-term strate-
gies with distant rewards. One such example is an-
nealing of the discount factor as implemented in
OpenAT’s 'OpenAl Five’ Dota2 project [19].

Furthermore, another important necessity of rein-
forcement learning algorithms is the generation of
interesting training data. Instead of the e-greedy ap-
proach, other algorithms can provide smarter explo-
ration methods through high-level decision making.
One such approach is used in hierarchical actor critic
methods, such as the h-DQN approach of Kulkarni
et al. [20].

As processing requirements become a limiting fac-
tor in the field of deep reinforcement learning, the
development of smarter techniques is accelerating.
The use of introspection to gain inspiration of our
own learning processes is opening doors to achieving
human-level control in evermore complex systems,
where even today, the applications of reinforcement
learning remain unforeseen.

8 Acknowledgements

We would like to thank the Center for Information
Technology of the University of Groningen for their
support and for providing access to the Peregrine
high performance computing cluster.

References

[1] Richard S. Sutton and Andrew G. Barto. Re-
inforcement Learning: An Introduction. MIT
Press, 2017.

12



2]

David E. Rumelhart, Geoffrey E. Hinton, and
Ronald J. Williams. Learning representa-

tions by back-propagating errors.  Nature,
323(6088):533, 1986.

G. Cybenko. Approximation by superpositions
of a sigmoidal function. Mathematics of Con-
trol, Signals and Systems, 2(4):303-314, Dec
19809.

Gerald Tesauro. Temporal difference learn-
ing and TD-Gammon. Communications of the
ACM, 38(3), 1995.

Volodymyr Mnih, Koray Kavukcuoglu, David
Silver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing
atari with deep reinforcement learning. arXiv
preprint arXiw:1312.5602, 2013.

Guillaume Lample and Devendra Singh Chap-
lot. Playing FPS games with deep reinforce-
ment learning. In AAAI pages 2140-2146,
2017.

Volodymyr Mnih, Koray Kavukcuoglu, David
Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529, 2015.

A. Shantia, E. Begue, and M. A. Wiering. Con-
nectionist reinforcement learning for intelligent
unit micro management in Starcraft. In Neu-
ral Networks (IJCNN), The 2011 International
Joint Conference on, pages 1794-1801. IEEE,
2011.

Stefan J. L. Knegt, Madalina M. Drugan, and
Marco A. Wiering. Opponent modelling in
the game of Tron using reinforcement learning.
In Proceedings of the 10th International Con-
ference on Agents and Artificial Intelligence -
Volume 2: ICAART, pages 29-40. INSTICC,
SciTePress, 2018.

C. J. C. H. Watkins. Learning from Delayed
Rewards. PhD thesis, King’s College, Cam-
bridge, 1989.

Sepp Hochreiter and Jiirgen Schmidhuber.
Long Short-Term Memory. Neural Computa-
tion, 9(8):1735-1780, November 1997.

[12]

[14]

[15]

[16]

Hado V. Hasselt. Double Q-learning. In
J. D. Lafferty, C. K. I. Williams, J. Shawe-
Taylor, R. S. Zemel, and A. Culotta, editors,
Advances in Neural Information Processing
Systems 23, pages 2613-2621. Curran Asso-
ciates, Inc., 2010.

Long-Ji Lin. Self-improving reactive agents
based on reinforcement learning, planning and
teaching.  Machine Learning, 8(3):293-321,
May 1992.

T. Schaul, J. Quan, I. Antonoglou, and D. Sil-
ver. Prioritized Experience Replay. ArXiv e-
prints, November 2015. arxiv:1511.05952.

P. Dhariwal, C. Hesse, O. Klimov, A. Nichol,
M. Plappert, A. Radford, J. Schulman, S. Sidor,
and Y. Wu. OpenAl baselines. https://
github.com/openai/baselines) 2017.

L. Bom, R. Henken, and M. Wiering. Rein-
forcement learning to train Ms. Pac-Man us-
ing higher-order action-relative inputs. In 2013
IEEE Symposium on Adaptive Dynamic Pro-
gramming and Reinforcement Learning (AD-
PRL), pages 156-163, 2013.

Frangois Chollet et al. Keras. https://keras!
io), 2015.

Jing Peng and Ronald J Williams. Incremen-
tal multi-step Q-learning. In Machine Learn-
ing Proceedings 1994, pages 226-232. Elsevier,
1994.

OpenAl Five Blog. https://blog.openai.
com/openai-five/l Accessed: 16-07-2018.

Tejas D Kulkarni, Karthik Narasimhan, Arda-
van Saeedi, and Josh Tenenbaum. Hierarchical
deep reinforcement learning: Integrating tem-
poral abstraction and intrinsic motivation. In
Advances in neural information processing sys-
tems, pages 3675-3683, 2016.

13


https://github.com/openai/baselines
https://github.com/openai/baselines
https://keras.io
https://keras.io
https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/

A Appendix

Parameter

Value

Reset Environment After

Frame Skip Rate

Discount Factor

Total Training Steps

Optimizer

Loss Function

Weight Initializer

Activation Function Hidden Layers
Activation Function Output Layer
Prioritized Experience Replay Alpha
Prioritized Experience Replay Beta
Prioritized Experience Replay Capacity
Training Batch Length

Q-Learning Steps Between Target Network Updates

20,000 training steps
10

0.85

300,000

Adam
Mean-Squared Error
Glorot Uniform
ReLU

Linear

0.6

0.4

20,000

32

1500

14



	Introduction
	Previous Research
	Contributions of this Paper
	Paper Outline

	The Game
	Reinforcement Learning
	The Reward Function
	Q-Learning
	Exploration
	Target Networks
	Prioritized Experience Replay


	The State Representation
	Experimental Setup
	General Experimental Setup
	Network structures

	Experimental Results
	General Results
	Discussion

	Conclusion
	Future Work

	Acknowledgements
	Appendix

