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Abstract

Neutron stars are one of the final stages after a supernova explosion before the star collapses to a
black hole. They are extremely massive and have a relatively small radius. One might wonder how the
transition from a neutron star to a black hole happens and whether there might be an additional stage
before collapse. In this thesis the possibility of finding such a metastable star, often hypothesised as a
strange star, composed of up, down, and strange quarks, is examined on the basis of the TOV-equations
and by making a model for a neutron star using the polytropic equation of state. From this model, a
radius-pressure relation will be derived, such that the number of baryons can be determined within a
radius r+∆r where ∆r is the resolution of the simulation. Using this information, the binding energy per
added baryon to the neutron star is computed. From this, we conclude that it is energetically favourable
to convert the star into a strange star if a process allows this. Models of stars with Λ0 concentrations
up to 40% are also modelled, to see if they are degenerate with regular neutron stars. Observational
properties of these stars are discussed.
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1 Introduction

Neutron stars are astrophysical objects that spark most astronomer’s imagination. They
are celestial objects that have radii on the order of 10km, but comprise the mass of up
to 2 M�. Besides these extreme densities, they may also be rotating extremely fast given
their proportions and have very strong magnetic fields of up to 108T or 1012 Gauss. The
neutron star was theorised only in the 1930’s by Fritz Zwicky and Walter Baade [1] after
which the famous first observation of a pulsar was made by Jocelyn Bell: B1919+21.

The extreme densities in neutron stars make them excellent laboratories for physical
processes that have not yet been able to be modelled in earth-based laboratories. This is
also what is the basis of this thesis; hypothesising whether it would be possible to make a
stable star from other baryons than just protons and neutrons. Protons are more stable
than neutrons (the half-life of a neutron is approximately 900 seconds, while the half-life
of a proton is longer than the estimated age of the universe, 14 Gyr.) but they are stable
in bound form in a neutron star. A thought experiment is performed to see if nucleons
containing strange quarks might also be a stable solution. Before this, an introduction to
the most probable structure of neutron stars will be given.

To do this, we will use two of the equations of stellar structure: the equation of mass
continuity and the equation for hydrostatic equilibrium (including their general relativistic
corrections). They will be solved using the Runge-Kutta 4th order method, as they are
(coupled) ordinary differential equations. Since these two equations themselves do not
completely determine the behaviour of the neutron star, a polytropic equation of state is
assumed. The parameters for the polytrope can be varied while finding the solutions.
With these solutions, we will then try to see if we can find configurations where the binding
energy of exotic nuclei makes it energetically favourable to have a phase transition into
this regime.

Firstly, we will give an introduction on some of the fundamental topics that are under-
stood as prior knowledge during the rest of this thesis. Then, we will look into methods of
storing energy inside a star to see what the effects of a transition to heavier components
of the star would mean. Next, to connect this knowledge to the subject of neutron stars,
we will give a brief overview of the physics involved in neutron stars. Using this chapter,
we can make an estimation of the appropriateness of certain assumptions because we are
familiar with the environment in which we are doing physics. Because we are partly also
modelling the interactions of particles inside the neutron star, three different ways to do
this through a model are discussed after which the most appropriate model is used for
further analysis. To start building our simulation of the neutron star, we derive introduce
the four equations of stellar structure and derive the two that are relevant for this thesis.
As the two required equations are coupled, the way to solve them numerically is discussed.
To give an answer to the main question, we compute the binding energies per baryon to see
if it would be energetically beneficial to convert part of the baryons to hyperons. Finally
observational methods that allow for detection of strange stars are discussed such that our
findings can be confirmed.

1 INTRODUCTION 3
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2 Introduction to Fundamental Topics

In this thesis, a lot of particle physics terminology will be used. In this chapter, some
important terms are briefly reviewed. A basic understanding of the standard model is
assumed; the collection of the quarks in three doublets, the three pairs of leptons and
the W and Z bosons as carriers for the weak force, the photon as the carrier for the
electromagnetic force and the gluons for the strong force. For the comfort of the reader,
some other fundamental parts of physics are briefly recapped before we dive into the
physics of strange stars.

2.1 Standard Model

The framework for particle physics is called the ‘Standard Model’. The standard model
contains a description of the fundamental particles split up in the quarks and leptons
[2]. The distinction between these particles is made by the forces that they interact with.
Quarks have a colour charge, which causes them to participate in different interactions
than the leptons, who do not have colour charge. The quarks are split up in three differ-
ent generations, each containing two particles: the up- and down quark, the strange- and
charm quark and finally the top- and bottom quark. In the leptons, such a distinction is
made as well. Three generations exist, all containing a lepton and an accompanying neu-
trino. There is the electron with its electron neutrino, the muon and the muon neutrino
and the tauon with the tauon neutrino.

Figure 1: A visual represen-
tation of all particles con-
tained in the Standard Model.
Taken from: [3].

The fundamental forces that all these particles inter-
act through are mediated by the so-called vector bosons.
Bosons and fermions are differentiated based on their spin;
this is integer for bosons and half-integer for fermions.
This spin reflects in differences in the behaviour of these
particles, as will be shown later. Three of the four funda-
mental forces of nature - the strong force, the weak force
and the electromagnetic force - are currently described by
the standard model. Gravity still has not been unified
with this theory and a unification of these theories is thor-
oughly sought after. The particles mediating these forces
are respectively the gluons, the W± and Z bosons and the
photons. Finally, the standard model contains the Higgs
boson, which describes why the elementary particles (ex-
cept for the photon and gluon) have masses. A visual representation of the Standard
Model is given in Figure 1.

2.2 Fundamental Forces

Three of the fundamental forces are very relevant throughout this paper; gravity, the
strong-, and weak nuclear force. Gravity is mainly involved in solving the equations of
stellar structure and computing the binding energy of the particles involved in the neutron
stars.

The weak interaction is at the base of the conversion process of neutron stars to exotic
stars, as this is the only force that can change the quark flavour. The quark flavour is
conserved for the strong interaction. It is also what makes neutron stars cool down to
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their extremely low temperatures, as it is the force that mediates the Urca process [4].

n→ p+ e− + ν̄e
p+ e− → n+ νe

(1)

Neutron stars are, however dense they may be, still transparent to these neutrinos pro-
duced by the Urca process. They carry away the energy that is left after the collapse of
the supernova remnant, until most of the energy in the star is caused by the Fermi level
of the constituent particles.

The strong interaction is relevant in this thesis because it is what keeps quarks confined
within their nucleus. Hypotheses have been posed about deconfined quarks in the extreme
pressures in the centre of a neutron star in the form of a quark gluon plasma (QGP) but
we will not go into this phase in this thesis. The strong force and the way that it contains
the elementary particles in a nucleon will however be discussed, as there are accessible
models available that give an intuitive understanding of the confinement principle, such
as the MIT bag model.

2.3 Quantum numbers

While further developing the standard model, it appeared that there were some conserved
quantities throughout observed particle collisions. Initially, it was observed that during
strong interactions, the neutron and proton experienced the same interaction with the
strong force, despite having different charges. Other quantities of these particles are how-
ever quite similar. This pointed towards some physical symmetry causing the particles to
interact equivalently; they were appointed the same new quantum number, called ‘Isospin’:
I3 = 1/2. The proton and neutron have different projections of isospin, being +1/2 and
−1/2 respectively, being members of the same ‘Isospin doublet’.

Isospin was one of the first ‘Quantum numbers’. These numbers allows classification
of particles on its fundamental properties. After Isospin, several other quantum numbers
were proposed. After the 1960’s, the quark model was proposed. The quark model seemed
to have a nice coincidence with Isospin: the sum

I3 = +1/2 ∗ nup − 1/2 ∗ ndown (2)

seemed to hold for every nucleon. Isospin was hence found to be a factor in the strong
interaction between different flavours of quarks. During later particle physics experiments,
it appeared to be the case that several particles, the Λ and Σ particles, were often created
during experiments, but did not decay very quickly. This struck an idea for a new quark;
the strange quark. As this quark is heavier than the up- and down quarks, it explained the
heavier baryons. It also solved the unexpected longevity of the lifetime of these particles;
the weak force interacts over much larger time scales than the strong force (10−8− 10−12s
for the weak- and < 10−22s for the strong force) [2]. During the decay of these strange
particles, the number of strange quarks appeared to no longer be conserved. The new
quantum number, ‘Strangeness’ hence appeared to be violated during the weak-, but con-
served during the strong interactions.

After Isospin and Strangeness, several other quantum numbers have been proposed.
These include Charm, Topness, Bottomness, Hyperspin and many more. In this thesis
however, these are not mentioned and therefore we will not discuss them here.

2 INTRODUCTION TO FUNDAMENTAL TOPICS 5
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What quantifies a good quantum number mathematically is reasonably easy. Since
what we want is a proper way to describe a quantum mechanical system, a good quantum
number should be an eigenvalue of a specified eigenstate, that is constant over time.
Mathematically, for the Hamiltonian H and operator O, q is a good quantum number for
the state |q〉 if:

O (q exp (−iqt/h̄) |q〉) = q (q exp (−iqt/h̄) |q〉) (3)

2.4 Stability of a classical neutron star

It is reasonably well-known that a neutron in free space has a half-life of approximately
900s. Why is it that a star can be made completely of neutrons and be stable?

Several things are relevant for a neutron star. The name of a neutron star is slightly
deceptive - there are still some protons and electrons around. These protons and electrons
have already filled up the low-energy states that are available within the volume, such that
the transition from a neutron to a proton is not very beneficially. This, and the fact that
the temperatures are reasonably low (low enough to often be approximated by just the
Fermi energies), makes that the decay from a neutron to a proton is not very likely. All
quantum states up to the Fermi level are already occupied by the protons and electrons,
with some exceptions due to the temperature not being exactly zero.

The fact that white dwarves are not collapsing is due to the degeneracy pressure of
the electrons. The electrons in a white dwarf cannot be compressed any further, as the
fermions just cannot occupy the same quantum volume with the same quantum numbers.
This is still the case in neutron stars - the degeneracy pressure is just not sufficient. This
does mean however that the electrons extend further from the centre than the neutrons
do, as the neutrons are the driving force preventing collapse in this scenario. A further
analysis on the pressure of fermions will be given in the following section.

2.5 The strange matter hypothesis

As mentioned before, the pressures in a neutron star may rise to such high levels that
two-flavour quark states may not be the most energetically favourable position. Using the
argument of the Fermi energy, it is easy to argue that a system composed of two types
of quarks (p, n) has a higher Fermi energy than a system composed of particles using
three quark flavors (additional particles s.a. Λ, Σ). A proposed hypothesis by Witten [5]
is therefore that matter composed of just up- and down quarks is only meta-stable where
matter composed of up-, down-, and strange quarks is the final ground state.

Because the Fermi momentum for a star composed of deconfined quarks is very high,
a possible alternative would be the existence of exotic nucleons in the star. By weak in-
teractions, down quarks could be converted to strange quarks. This is different from the
decomposition or deconfinement of nucleons as this is manifested by the strong interaction.
The interactions that keep the quarks confined within the nucleons are further treated in
Chapter 7.

2.6 Energy density in a Neutron Star

To see if it is possible for regular baryons to be converted to hyperons, it is important to
have an understanding of the distribution of energy throughout the neutron stars. Based
on trivial arguments, one could say that the energy density is the highest in the center
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of the star due to gravitational pressure, but this argument is not sufficient for making a
model of the star. In this section we will first find some ballpark estimates for a probable
number of baryons inside a neutron star and a binding energy per nucleon, to see if our
final results are indeed sensible.

The energy density in neutron stars is very high, due to the high densities in these
compact stars. With very basic tools, we can however make some crude approximations
about how this energy is distributed throughout the star. For example, we can say that
we can approximate the temperature in a neutron star by T = 0, as the Fermi momentum
(102MeV)of the neutrons is much larger than the thermal energy (0.1MeV), which is at
temperature of T = 1010 to 1012K. In the first few years of the existence of the neutron
star, the star will cool rapidly by diffusion of neutrinos first and photon diffusion from the
crust later, eventually reaching temperatures of 106K, or equivalently, 0.2keV. Sticking
to this assumption limits the generality of our research, as the statements provided now
cannot be applied to hot quark-gluon plasmas. How the Fermi pressure can be computed
is shown in Section 6.2.

2.7 Strange matter and its formation in the universe

Strange matter is a very broad denomination for matter containing one or more strange
quarks, i.e. baryons with a strange quark. Large clumps of strange matter have never
been observed, but proposals for locations to find strange matter have been drafted. Two
locations where this matter might be present is in so-called strangelets or, as will be in-
vestigated in this thesis, in compact neutron stars [6].

As proposed by [5], it is possible that after the big bang, some regions of the hot
universe cooled down to somewhat beneath a temperature Tc required for a first order
phase transition. These would have formed ’bubbles’ of condensed baryonic matter that
expanded and eventually dominated the universe. The hotter regions of the universe would
become more and more compressed, as losing the latent energy takes more time than the
expansion of the universe, assuming that the most of the energy loss is due to neutrinos
escaping these regions (which is a hopeful assumption). These hot regions would eventu-
ally take the form of bubbles in the universe and could still be around, containing strange
matter. The abundance of these bubbles in the Milky Way is somewhere in the range of
5 × 10−34 − 5 × 10−43cm−3 and they have velocities of the order of 2 × 107cm s−1. This
comes down to a flux of 10−26 − 10−35cm−2 s−1. The abundance of neutron stars in the
Milky Way is approximately 109

6×1066cm3 ≈ 2×10−58cm−3. With an average radius of 10km,

this gives a total collision area of π ∗ (105)2 × 109 = 3 × 1019cm2. The collision rate of
the hot quark bubbles with neutron stars is thus approximately 3× 10−7s−1, or one every
year. It is also hypothesized that stars that already contain strange matter, can produce
strangelets by colliding with other objects (say, a binary companion). They can expel
some of the strange matter upon colliding.

As previously mentioned, strange matter is also hypothesised to form in compact stars.
As the strange baryons is heavier than the proton and the neutron, it is able to store more
energy as binding energy and therefore being more stable. The energy that is stored while
transitioning from regular nucleons to strange baryons not only stores energy in the form
of binding energy, it also allows for compactification of the star as strange baryons possess
different quantum numbers than protons and neutrons and therefore experience no Pauli
pressure due to these particles.

Finally, a theory by Boden is that regular matter might only be a meta-stable state,

2 INTRODUCTION TO FUNDAMENTAL TOPICS 7
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(a) Low-temperature bubbles
are isolated

(b) The low-temperature
bubbles expand and meet

(c) The high-temperature
medium is now isolated

Figure 2: Expansion of low-temperature bubbles in the early universe. Taken from: [5]

that can still decay to strange matter. This argument is also based on the principle of
Pauli pressure, as with an additional quantum number, you can place more quarks in
lower-energy states than with only two quantum numbers. The simple strange baryons
decay because the fact that they are only with small amounts in a nucleon, such that
enough low-energy states are available, where exotic baryons that contain more quarks
would not have this disadvantage.

2 INTRODUCTION TO FUNDAMENTAL TOPICS 8
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3 Storing the energy

3.1 Gravitational potential energy

There is a very simple way to store energy in the form of binding energy. When we
have two separate masses in a volume, they interact through the gravitational force. As
is trivial, they will accelerate towards their common centre of mass. If two objects are
gravitationally bound and placed close together, one needs a force to take them apart
again. The work that is performed by separating these masses from distance zero to
infinity is the path integral of the force: this is the gravitational binding energy. It is the
same as the gravitational potential

U = −GMm

r
(4)

Due to the mass-energy equivalence principle we can convert this binding energy to an
added mass through the famous (non-relativistic) equation of E = mc2. When you try to
take the two masses apart, you have to add energy - and hence mass. The effective mass
of the masses is therefore related through

m∗ = m0 +
Ebind
c2

(5)

Bound masses (it can be macroscopic masses as well as nuclei) are therefore lighter when
they are bound together than the sum of their constituents. Macroscopic masses are bound
by different interactions than nuclei however, as gravity does not act significantly on this
scale.

3.2 Liquid Drop Model

Binding energy is stored in the nuclei due to the strong nuclear force. The nucleus can
be modelled similar to a liquid droplet. The liquid drop model, giving rise to the semi-
empirical mass formula, is as follows. [7]

M(Z,A) = Z(mp +me) + (Z −A)mn − a1A+ a2A
2/3 + a3

Z(Z − 1)

A1/3

+ a4
(Z −A/2)1/2

A
+ a5A

−1/2

(6)

All terms are based on some proportionality to the atomic or charge number of the nuclear.
The first two terms are just the sum of the mass of the constituents.
The third term, confusingly often labelled a1 is the volume correction term, which has a
negative contribution because of the range of the strong force. The diameter of a proton
is approximately one femtometer, so for heavier nuclei the diameter of the nucleus can
be several femtometers. As the range of the strong force is only approximately on the
order of one femtometer, not all nuclei are bound by the strong interaction with all other
particles.
The fourth term (a2) is the surface area term; this scales with the radius of the nucleus to
the two-third, which is proportional to surface area. (R3 ∝ M ∝ A ⇒ A2/3 ∝ R2 ∝ S, S
the surface of a spheroid). Just as for a liquid drop, the surface tension keeps the droplet
together. The entities on the inside are omnidirectionally attracted to their neighbours
and there is no net intermolecular force. For the entities on the surface, the bonds that
bind the droplet together are much stronger than those towards the outside interface. The
entities are hence more packed together in this area and hence there is a higher energy
density. This is why this has a positive contribution to the binding energy.

3 STORING THE ENERGY 9
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The fifth therm (a3) is due to the Coulomb interaction between the protons - one expects
the proportionality Z(Z−1) in this term. As the forces between the protons are repulsive,
this decreases the net mass.
The sixth term (a4) is called the antisymmetry term or the Pauli term. From the chart of
stable nuclei, we see that the ratio of neutrons to protons in stable nuclei tends to right,
i.e. there are more neutrons then protons.
The final term, labelled a5, is the pairing term. The pairing term exists because of Hund’s

Figure 3: Isotope chart. The ratio of protons to neutrons starts to decrease for larger
amount of protons. Taken from: paketsusudomba.co

rules for nuclei. From principles of statistical physics it follows that the configuration with
the highest degeneracy is energetically favourable. When the nucleus can be configured
with an even number of protons and neutrons, these can be configured in a net spin-0
configuration, which is energetically most favourable. When the protons or neutrons are
present an odd number of times, this term adds a certain amount to the mass of the
nucleus:

a5 =


a5(> 0), if Z odd

0, if Z even, A-Z odd

−a5(< 0), if Z even, A-Z even

(7)

We will use the liquid drop model for a justification of the structure of the outer neutron
crust. Here, we will first apply it to a whole neutron star to get an order of magnitude
estimate for the amount of binding energy involved in a neutron star. An average neutron
star has a mass of two solar masses, i.e. 2 · 2 × 1030kg. Divided by a nuclear mass, this
gives us a baryon number on the order of B = 1056.

The first thing we notice is that the term containing a3 in Equation 6 goes to zero as
the number of neutrons is much larger than the number of neutrons in a neutron star.
The second thing we see is that the term containing the coefficient a5 is also negligible,
as (1056)−1/2 = 10−28. Finally, we notice that the binding energy is the mass of the
constituents substracted by the mass according to this model, such that we substract
the terms for the proton, electron, and neutron masses. Using the fitted parameters
a1 = 15.76MeV, a2 = 17.81MeV, a3 = 23.702MeV [8], we find a binding energy on the
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order of

Eb = −15.76MeV × 1056 + 17.81MeV ×
(
1056

)2/3
+ 23.702MeV ×

(
−1056

)2
1056

= −9.834× 1056MeV = −9.834MeV ×B
(8)

where the binding energy is negative because it needs to be added to the system to take
it apart.

3.3 What happens to this enormous energy?

The approximate 1057MeV that came out of the order of magnitude estimate of the pre-
vious chapter can be increased even further. This approach will use only the gravitational
binding energy approach, as the liquid drop model starts to fail here.
In Equation 4, we see that the binding energy increases further when we replace a neutron
with mass mn = 939.565MeV c−2 for a particle with a larger mass. Take for example the
Λ0 baryon, with a mass of mΛ0 = 1115.683MeV c−2. By converting available energy in
the system equivalent to the mass difference of the two baryons to mass, we increase the
binding energy (i.e. we make the binding energy more negative). To give a comparison
with the gravitational binding energy of a nucleon; we will find from our models that the
gravitational binding energy per nucleon can be up to 80MeV for certain models.

The stability of a system is often characterised by the depth of its potential well. One
might hence naively say that a neutron star including Λ0 particles is hence more stable
then a pure neutron star. There is however one problem; the Λ0 boson is composed of an
up, down and strange quark. Converting a neutron, composed of an up, down, and down
quark to a Λ0 boson is not often done naturally. So how does this happen? This question
will be touched on in a later chapter. From here on we are assuming that this process is
just happening, and not interfering with the rest of the physical system.

When adding new baryons to the system, we open up another possibility besides
increasing the binding energy. As is theoretically modelled, the neutron star is held up by
neutron degeneracy pressure. This degeneracy pressure is an effect of the Pauli exclusion
principle which states that no two fermions with the same quantum number can occupy
the same quantum volume. But since Λ0 particles have different quantum numbers than
neutrons, they are not affected by their Fermi sea! The star can hence be compressed into
a smaller volume. There is a final limit however; once the star collapses within a radius
called the Schwarzschild radius, the star collapses into a black hole.

RS =
2GM

c2
(9)

which is approximately 3km per solar mass.
It is well-established that the major properties of the star are almost completely deter-
mined by its mass and radius. Under this thought experiment, exactly these two param-
eters change by a significant amount. In the rest of this thesis, we will continue to look
into the consequences this has for a neutron star. Firstly however, we will give a small
introduction to the basics of a neutron star.

3 STORING THE ENERGY 11
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4 Introduction to Neutron Stars

Neutron stars are relatively unknown objects, although we know of the existence of several
hundreds of neutron stars (about 2000 in 2010). The intrinsic physics of the neutron stars
is a difficult topic as the formation of these stars is understood in the big picture, but the
specifics are often based on assumptions of the involved stellar composition.

Neutron stars were first discovered by Jocelyn Bell, at the time still a student at
Cambridge, while going through observational data that was obtained to find sources with
rapidly varying fluxes in the radio regime (wavelengths of 1cm to 30m). She found a
rapidly fluctuating flux at a very regular rate. What she had found was in fact a pulsar;
a rapidly rotating neutron star [9].

4.1 Origin

Figure 4: Binding energy per
nucleon in MeV, Taken from:
physics.ohio-state.edu

When a star with a mass of more than approxi-
mately 8 M� has burnt all its ‘advantageous’ fuel, it
can no longer produce energy in the core by fusion.
Up to this point, the binding energy of higher ele-
ments was larger than that of current elements, al-
lowing the star to produce energy to prevent its col-
lapse. The binding energy per nucleon in a specific
nucleus has its peak around Fe-56, as can be seen
in Figure 4. The radiation pressure generated in the
core of the star due to these fusion processes is no
longer enough to balance the gravitational pressure and
the star starts to collapse. During the collapse, the
other shells of the stars continue to fuse their materials
[10].

Firstly, the electron degeneracy pressure starts to rise. This effect is due to filling the
phase space by blocking of the Pauli exclusion principle for electrons. For proto-neutron
stars, this pressure is however not high enough to prevent further collapse from stellar
remnants with masses of over 1.44 M�(The Chandresekhar Mass [11]). Due to the high
temperatures and thus high energies that are available in the star in the form of the
chemical potential of the electrons, the iron nuclei are starting to decompose and electron
capture starts to manifest itself. The reaction e− + p→ νe + n releases a lot of energetic
neutrino’s - with this mechanism, the star is able to rapidly cool from temperatures of
1011K to temperature around 106K. This process of cooling through neutrino emission is
also known under the name ‘Urca process’ [4].
All the newly formed neutrons also partake in the fermionic distribution of states in the
stellar core and this starts to realise a significant pressure that finally halts the collapse of
the star. There is now a very rigid sphere with central densities of up to several 1017kg m−3

or 1014g cm−3.

This brief overview, that only stops at neutrons in the core, is only a simple model
of neutron stars; there are several hypotheses about further decomposition processes in
neutron stars. This will be treated in the section on the structure of neutron stars, Section
5.

4 INTRODUCTION TO NEUTRON STARS 12
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4.2 Pulsars

Pulsars were the first forms of neutron stars to be discovered. When a star collapses,
its radius obviously decreases. The mass lost due to e.g. neutrino cooling is not very
significant, such that due to conservation of angular momentum, the star has to speed up
its rotation. The magnetic field of the star is also contained in a smaller volume, making
for a stronger field. From Maxwell’s third equation, ∇ × E = −∂B

∂t , we know that an
electric field is generated in this situation. This electric field is what Jocelyn Bell in fact
observed when she observed the first neutron star.

4 INTRODUCTION TO NEUTRON STARS 13
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5 The structure of Neutron Stars

The process in neutron stars is not as simple such that it stops at forming a solid sphere
of neutrons. From the surface of the star, which conceptually is quite easy, we will go
deeper down the core of the star.

5.1 The Crust of a Neutron Star

The crust of the neutron star is most likely made up of left over ions and iron atoms,
together with some separate protons and neutrons. In this region, the pressure is not high
enough to continue the electron capture process. Simply by subtracting the masses of a
proton and an electron from a neutron, one sees that at least an additional 780keV is
required, which corresponds to a temperature of almost 1010K.

mn −mp −me = 780keV/c2 ⇒ T = 780keV/c2/kb = 9.1× 109K (10)

It is possible to have the outer crust of the neutron star made up of Fe-56 nuclei, as the
binding energy of this nucleus is 8.8MeV per nuclei - corresponding to temperatures of
1011K.

The outer crust of the neutron star is approximately 500m wide. [12] Beyond this
layer, we have densities of ρdrip = 1014kg m−3, which is the densities at which neutrons
start to drip from nuclei. The range of the strong force is no longer sufficient to keep all
the nuclei bound together. This process is what makes the ratio of neutrons over protons
in a neutron star so high; we are on the right side of the band of stability of Figure 3.
The electron capture makes the amount of neutrons in a nucleus so high that we end up
on the right side of the band in stability in Figure 3. The number density of neutrons
increases until we reach the end of the inner crust at n0 = 0.16fm−1; we have reached the
inner structure of the star at a depth of approximately 1km.

Figure 5: Schematic overview of the regions in a neutron star. Taken from: inspirehep.net

5.2 Going deeper in a neutron star

The structure from the crystalline structure that occurs at densities around the nuclear
density makes room for a new phase of matter; the quark gluon plasma. Just as a normal
plasma, where the components of a normal atom are split up in its nucleus and free roam-
ing electrons [13], the constituents of the nuclei are now split up as well. The quarks that

5 THE STRUCTURE OF NEUTRON STARS 14

http://inspirehep.net/record/1340051/plots


Leander van Beek On the possible existence of Quark Stars

make up the nucleons roam around ‘outside’ the volume of the nucleon - although now a
clear distinction of a ‘nucleon’ can no longer be made. At this point, the ‘whiteness’ of
individual particles is also no longer guaranteed as quarks themselves carry colour charge.
The interactions in this phase of matter are mainly due to the strong interactions between
the quarks, mediated by the gluons.

Before the crystalline structure transfers to the plasma however, several interesting
phase transitions are proposed. The QGP will be discussed here for the sake of complete-
ness on the description of neutron stars. During the later modelling of the neutron stars,
the QGP will not be taken into account. More on this can be found in the respective
chapters.

The phase transitions from the inner crust to the core happens in so-called “pasta
phases”. The name of these phases comes from the similar geometrical appearance to
several pasta shapes. [14] Why this happens is based on a simple argument between the
magnitudes of the Coulomb interaction and the surface tension of the nucleus. Let us
make an order of magnitude estimate based on the energy of these interactions taken from
the Liquid Drop Model [7]. Remember that we had the binding energy of a nucleus given
by Equation 8:

EB = aVA− asA2/3 − ac
Z2e2

A1/3
− aA

(A− 2Z)2

2A
+ δ(A,Z) (11)

We will be focussing on the second and third term on the right hand side of the equation.
The Coulomb energy is given by Ecoul = 3

5Z
2e2rn, where the radius of the nucleus rn =

A1/3R0. The surface energy is given by Esurf = asA
2/3. The binding energy per nucleon

for both terms is then proportional to Ecoul/A = 3
5
Z2e2

A4/3 ∝ A−4/3, where for a constant

ratio Z/A, we find Ecoul/A ∝ A2/3 for the Coulomb term. For the surface energy this
is Esurf/A ∝ A−1/3. Finding the minimal energy while leaving the other terms invariant
can then be done through

0 =
∂

∂A

(
Ecoul
A

+
Esurf
A

)
∝ ∂

∂A

(
A2/3 +A−1/3

)
=

2

3
A−1/3 − 1

3
A−4/3

⇒ 2Esurf = Ecoul

(12)

such that we see that the Coulomb forces dominate when the energy is larger than twice
the surface tension, Ecoul ≥ 2Esurf . The Coulomb force deforms the nucleus and is now
no longer counteracted sufficiently by the surface tension of the nucleus. Spherical nuclei
are now no longer the most beneficial packing form, and the nuclei start to bind together
in spheres (also called the gnocci phase). If the density becomes higher, the spheres begin
to form rods (spaghetti phase) and later sheets (lasagna phase). After this phase, the
clustered neutrons are the more common phase of matter and the ‘anti-pasta phases’ set
in. The unclustered neutrons form the same geometrical shapes as the clustered neutrons
did before, in opposite order. For a visualisation, see Figure 6.

The density gets even higher when we continue to the central core of the neutron
star. Here, the density is at least equal to the density ρ0 (Equation 13) of 0.122fm−3

or 2.04 × 1014kg m−3. At these densities, the ‘confinement bags’ of the nuclei start to
interact using the strong interactions. What happens exactly in this phase is treated in
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Figure 6: Visualisation of the simulations on the ‘Pasta phases’ in the inner core of a
neutron star. Taken from [15]

the following chapters.

n =
A

4
3πR

3
=

A
4
3π(A1/3R0)3

=
3

4π(1.25fm)3
= 0.122fm−3 (13)
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6 Interactions of Particles

As mentioned in the previous chapters, there are several fundamental forces of nature.
These modelling of these forces is very complex and can generate very large simulations.
Because this is only a bachelor project, we will assume simpler models for the interactions
between these particles. These models consist of a previously worked-out equation of
state, considering for example the sphere size of nuclei, the interactions between them and
their quantum mechanical behaviour. Several equations of state can be considered, but
throughout this thesis we have made approximations based on the ‘hard sphere model’,
the Fermi model for an fermion gas, the Van der Waals equation for a real gas and the
polytropic equation of state. Below, we will expand on these models.

6.1 Hard Sphere Model

The hard sphere model is, superficially, the most simple of the models. The hard sphere
models consider all the nuclei as massive spheres with a certain radius and charge (say,
1e for a proton) after which you can put these spheres together to form a nucleus or a
baryonic gas.
The difficulty in this model lies in the fact that approximating a radius for a proton or a
neutron is not trivial in any way. One could ask himself the question what the mass-radius
or charge-radius relation is for a proton. To answer these questions, research has done
that came up with the concept of the form factor. The form factor can be determined
experimentally, and is related to the radius of the nucleus that you are scattering against.
If an electron is scattered against a nucleus, it is deflected towards some solid angle dΩ
with a probability of dσ

dΩ . This probability is affected by the potential and hence interaction
with the nucleus, contained in the term Mfi and the density of final states Df . These are
all related through

dσ

dΩ
=

2π

h̄
|Mfi|2Df (14)

As was said, Mfi models the interaction through the potential of the nucleus. This is done
through

Mfi =

∫
ψ∗fV (~r)ψid

3r (15)

The potential experienced by the electron at a distance ~r from the nucleus is just the
Coulomb potential. Applying this, and making the plane wave function assumption for ψ,
one finds for M :

Mfi = − Ze
2

4πε0

∫ ∫
ei(pf−pi)·~r/h̄

ρ(r′)

|r − r′|
d3r′d3r (16)

At this moment we can make the distinction between a point-like nucleus or a finite-volume
nucleus. In the first case, the charge is considered to be entirely enclosed in a singular
point. The charge density is then a delta function, and the result that is obtained is
that of Rutherford scattering. When we assume a finite volume, the term

∫
eiq·~r/h̄ρ(r)d3r,

q = pf − pi is then known as the form factor, dubbed F (q). Now as most of the terms
in this equation are known, it is possible to determine the charge density dσ

dΩ through
scattering experiments, as this is just the distribution of the electrons after the scattering
experiment. From this, the form factor F (q) can be determined. To obtain ρ(r) is then
quite simple, as it is quickly seen that this is just the Fourier transform of the form factor.
Using such scattering experiments, the radius of the proton has been determined to be
rp = 0.8751 ± 61fm [16]. This value will hence also be assumed when we try to model a
system using the hard-sphere model.
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The first model for a strange star will be made using this simple concept, but it will
prove insufficient.

6.2 Fermi gas

The fundamentals of a Fermi gas are important in this thesis for several reasons. For one,
there is the assumption of zero temperature in a Neutron star. This is based on the Fermi
gas. Also, as the densities in a neutron star are sufficiently high and the temperatures
sufficiently low, the distribution of the energy states for the Fermions (as well neutrons
as protons as electrons as Λ0) is based on this distribution. This is a motivation to
work through the derivation of a Fermi gas; both to show that the zero temperature
approximation holds, as well as getting an intuition for the distributions involved.
To show where the Fermi pressure comes from, we will derive it from some first principles
of statistical physics. In this case, the derivation for the Fermi pressure will be done for
the electrons, but it can be done similarly for other fermions such as neutrons.
We know from statistical physics [17] that the density of states is given through

f(k)dk = g
4πk2

(2πh̄)3dk (17)

where g is the degeneracy - two for the spin, in our case. From this, as the distribution
function f = dn

dk , we can obtain

dn = 2 ∗ 4πk2dk

(2πh̄)3
=

k2

π2h̄3dk (18)

We can rewrite this for the electron density, integrating from no momentum to the fermi
momentum.

ne =

∫ kF

0

k2

π2h̄3dk =
1

3π2h̄3k
3
F (19)

It is possible to find another expression for the electron density as well. We know that in
a star that is approximatly neutral, the electron density can be written as

ne =
ρ̄

mn

Z

A
(20)

As most of the mass of the star comes from the mass of nucleons, we can say that ρ ≈ ε/c2,
where ε is the energy density. The energy density of the electrons is the sum of their rest
masses and their kinetic energy, giving as a result

εe =
1

π2h̄3

∫ kF

0

(
k2c2 +m2

ec
4
)1/2

k2dk =
1

π2h̄3

∫ kF

0
E(k)n(k)dk (21)

Integrating this, we come up with the following expression for electron energy density

εe(kF ) =
m4
ec

5

π2h̄3

1

8

(2

(
kF
mec

)3

+
kF
mec

)(
1 +

(
kF
mec

)2
)1/2

− arcsinh

(
kF
mec

)
= ε0

(2

(
kF
mec

)3

+
kF
mec

)(
1 +

(
kF
mec

)2
)1/2

− arcsinh

(
kF
mec

) (22)

Due to the low temperature of neutron stars and white dwarfs, the momentum of nucleons
is not considered in the energy contribution. Only the momentum from the electrons is
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considered. When we set the masses of protons and neutrons equal, as mn
mp
≈ 0.999, the

result is

ε = mn ∗ ne ∗
A

Z
c2 + εe(kF ) (23)

With a simple argument and a not so simple integral, we can relate the energy density
to the pressure. Assuming the distribution of momentum in the star is isotropic, all
momentum is equally divided over all solid angles. As a particle scatters, its transferred
momentum is proportional to its angle of incidence through cos θ, θ the angle of incidence,
and the fraction of the radiation pointed at each solid angle is also proportional to cos θ.
As a sphere spans 4π solid angles and a solid angle dΩ is defined as dΩ = sin θdθ, we
integrate and find a factor of 1/3.

1

4π

∫ 2π

0
dφ

∫ π

0
cos2 θ sin θdθ =

1

2

[
−1

3
cos3θ

∣∣∣π
0

]
=

1

3
(24)

Hence we know the pressure to be

P =

∫ kF

0

1

3
ε(k)dk

=
1

3
ε0

(2

(
kF
mec

)3

− 3

(
kF
mec

))(
1 +

(
kF
mec

)2
)1/2

+ 3 sinh1

((
kF
mec

)) (25)

So far we have neglected the contribution of kinetic energy of nucleons, since these are
a factor

√
109 smaller than the rest mass energy at temperatures of neutron stars (a few

thousand Kelvin).
Now the result above is analytical. It is possible to work from Equation 25 and obtain a
more useful equation that we can use in the analysis for a polytropic equation of state. It
is at this moment that we can make a distinction between the relativistic (kF � mec)and
non-relativistic system (kF � mec). Returning to one of the intermediate steps of Equa-
tion 25, temporarily substituting x = kF

mec
, and going into the non-relativistic domain

where x is hence small:

pe(kF ) =
ε0
3

∫ kF

0

x4

√
x2 + 1

dx ≈ ε0
3

x5

5

∣∣∣kF
0

=
ε0k

5
F

15(mec)5
(26)

using the identity 18, we find kF = 3

√
3π2h̄3ρZ
Amn

this to

pe(kF ) =
m4
ec

5

π2h̄3

1

15

h̄5

(mec)5
3

√
3π2ρZ

Amn

(27)

and we have found the pressure of a pure electron Fermi gas. Using this equation for the
pressure, we can show that the temperature inside the neutron stars are negligible.

6.3 Van der Waals gas

The Van der Waals gas is a model for gasses that is more likely to provide correct results
for real gasses than the equation of state for a perfect gas. The perfect-gas assumptions
are among others that the particles in the gas are point-like, do not interact (i.e. they do
not repel or attract each other at any radii) and they only partake in elastic collisions.
This is of course not the case in a neutron star, but it gives a better approximation than
the hard-sphere model, as this both crashes our simulation and gives unphysical solutions.
The perfect gas can be derived from just assumptions in statistical physics. As the prob-
ability of a particle being in an energy state Er is proportional to p(Er) ∝ − exp(−βEr),
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where β = (kT )−1. The partition function then normalises all the probabilities for all
these energy states, through

p(Er) = exp(−βEr)/Σi exp(−βEr) (28)

This would result in the probability distribution for a single-particle state. For a multi-
particle state, we cannot just raise the partition to the power of the number of particles,
as then we would be counting some states twice, weighing them wrong. We actually get

Z =
1

N !
[Σr exp(−βEr)] (29)

Now we should note that the energy of the system is the sum of all internal energy states
and the sum of all translational eigenstates. For the translational energy distribution,

we assume that Er = p2
r

2m . Now the density of states for a particle with its momentum
p ≤ pr ≤ p+ dp and its energy between E ≤ Er ≤ E + dE is given by

f(p)dp =
V 4πp2dp

h3
(30)

As Z can give the integral probability normalisation factor of all particle states, we can
see

Z =

∫ ∞
0

V 4πp2dp

h3
exp

(
−β p

2

2m

)
= V

(
2πmkbT

h2

)3/2

(31)

Now remember that we added a factor of 1
N ! to assure correct weighing of states and a

power N for the number of particles, the multi-particle translational partition function is

Z =
1

N !
V N

(
2πmkbT

h2

)3N/2

(32)

At this stage, we can already express some useful thermodynamic quantities, e.g. the
Helmholtz free energy. Making use of an identity called Stirling’s approximation: N ! =(
N
e

)N
, we have for the Helmholtz free energy:

A = −kbT ln(Z) = −NkbT ln

(
eV

N

(
2πmkbT

h2

)3/2
)

(33)

The equation so far only holds for a gas where the average occupancy of a state is low,
that is, nr � 1. As the probability for a state was exp(−βEr)

Z and n̄s = Nprob(Es), we find
the inequality

n̄s =

(
N

V

[
h2

2πmkbT

]3/2
)

exp(−βEr)� 1⇒ N

V

(
h2

2πmkbT

)3/2

(34)

From this inequality, the boundaries of this simple model for a gas become clear. For the
inequality to hold, you could have either very large volumes V or very large temperatures
T . Large temperatures here are of course on the Kelvin scale, such that this model can
be applied in the ordinary situations around us.
Finally, the equation for a perfect gas can be obtained from

P = −
(
∂A

∂V

)
T,N

= −
(
−NkbT

1

V

)
⇒ PV = NkbT (35)

This can also nicely be connected to the De Broglie wavelength. The De Broglie wavelength
is given by

λdB =
h

p
=

h√
2mEr

=
h

2m3/2kbT
⇒ h√

3mkbT

√
3

2π
(36)
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√
3

2π
λdB =

√
h2

2πmkbT
(37)

(
N

V

)1/3
√

3

2π
λdB =

(
N

V

)1/3
√

h2

2πmkbT
� 1 (38)

Now we know that (N/V )1/3 = l, basically the interparticle separation.√
h2

2πmkbT
=

√
3

sπ
λdB � l (39)

Now assuming the term in the square root on the right hand side to be approximately
one, this gives the conclusion

λdB � l (40)

The de Broglie wavelength has to be much smaller than the interparticle separation to
have the perfect gas equation to hold! This is also in agreement with the two requirements
that we mentioned before.

Now to have interaction also play a role in the equations, we make the partition func-
tion a bit more complicated.

Z =
1

N !

(∫
d3~rd3~p

h3
exp

(
− β~p

2m

))N
=

1

N !

∫
1

h3N
d3 ~r1 . . . d

3 ~rNd
3 ~p1 . . . d

3 ~pNe
−βK (41)

Where K is the sum of all the momenta of the states in the system squared, divided by
2m - the kinetic energy of the gas. To switch on interactions, we change the K for an
H. The H is composed as H = K + U where U represents interactions between different
particles in the gas. As the addition in the exponent can just be seen as a multiplication
of twice as many radius- and momentum terms, we know get

Zinteractions = Z ×
[

1

V N

∫
d3r ~r1 . . . d

3 ~rN exp (−βU)

]
= Z ×Q (42)

Now we have to make another approximation here to keep things manageable. The poten-
tials are all dependent on the distance between the particles, and the particles of course
experience more interactions than one at the same time. This would cause a term of
Πk(exp(−βak)) for all the interactions between all the particles. As we can impossibly
model all these interactions simultaneously, we will choose to take only the two-particle
interactions. Leaving aside the mathematical rigour - a clever trick in describing the
interactions mathematically [17]- we end up with the expression

Q =
1

V N

∫
d3r ~r1 . . . d

3 ~rN

1 +
∑
i,j,i6=j

λij

 (43)

1

V N−2

∫
d3 ~r1d

3 ~r2 [λ12]
N(N − 1)

2
=

N2

2V 2

∫
d3 ~Rd3~r [exp(−βu(r))− 1] =

N2

2V
I2 (44)

Finally, this means for Q:

Q =

(
1 +

N2

2V
I2 + . . .

)
(45)
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Where . . . represent here the higher-order interactions. Now there’s only two more steps
towards the expression for the pressure of a Van der Waals gas. First, as for the perfect
gas, we compute the Helmholtz free energy.

A = −kbT ln(Z) = −kbT ln (Z ×Q) = Ap + kbT ln

((
1 +

N

2V
I2

)2
)
≈ Ap − kbT

N2

2V
I2

(46)
Now to obtain the pressure, we take again the partial derivative with respect to the volume.

P = −
(
∂A

∂V

)
T,N

= −
(
∂

∂V

[
Ap −

kTN2

2V
I2

])
T,N

=
NkbT

V

kbTN
2

V 2
I2 (47)

Now this part is were it becomes interesting, as I2 is the interaction strength between two
particles. It is possible to fill in any arbitrary potential here, but often a potential like
Figure 7 or equation 48 is chosen.

− λ(~r) =

{
1 if 0 < ~r < 2r0
u(~r)
kbT

if ~r > 2r0

(48)

Figure 7: Van der Waals po-
tential

The integral of the potential can for this case be split up
in two parts; the part for r < 2r0 and the part r > r0.
Integrating a Taylor expansion of the potential then gives
us the familiar Van der Waals equation:

P =
NkbT

V

[
1 +

N

V

(
b− a

kbT

)]
(49)

where a and b are results of the integral; a =
2π
∫∞

2r0
d~r~r2u(~r) and b = 2π

3 8r5
0.

now the potential shows that it is assumed that the parti-
cles in this model are ’hard cored’. If the particles get too
close, the potential diverges to infinity. They can never
reach the exact same coordinates. This is in correspon-
dence with the Pauli pressure, which has a very steep po-
tential as well. As a reminder, we state here that the other
two assumptions made were that only 2-particle interactions were relevant and that this
only holds for low densities.
This last assumption makes the Van der Waals EoS also invalid for neutron stars, as the
densities are not sufficiently low. Because these equations however give a very insightful
way in how particles interact due to different potentials, it still seemed useful to state the
Van der Waals equation.

6.4 Polytropes

A polytrope is in general a thermodynamic process in the form of pV n = C. For different
values of n as a power in this equation, different types of processes can be modelled, such
as isochoric or isobaric processes. A derivation for the equation of state of a polytrope
will be given below, as for that we require the equations of stellar structure. From the
polytropic equation, it is often easy to derive the relation between the central pressure or
density and the total mass of the star involved.

Polytropes hence stem from solutions to the equations of stellar structure. They are not
based on statistical physics, such as the previous interactions, but relate to phenomeno-
logical properties of the neutron stars. This is useful, since the behaviour of individual
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particles in the neutron stars is not well understood. Also, the Van der Waals equation
can only describe a small part of the entire system, as there are quite strict criteria for its
assumptions to hold. It cannot deal for example with more than one phase of matter or
superfluid neutrons just beneath the core of the neutron star for example. The polytropes
are not affected by the still outstanding questions on the behaviour of these substances,
as it is based on the equilibrium state of the stars and makes no assumptions on the sub-
atomic interactions.

After looking at several ways to model interactions between particles, we have chosen
to model the system using the polytropes. As will also be mentioned during a later chap-
ter, a choice was made on modelling a star by adding baryon per baryon or modelling a
star by adding lots of baryons at the same time. This difference implies a different look
on the statistical physics; for the Van der Waals equation, one could very easily incor-
porate the first approach, while for the latter option (that we eventually went with), the
polytropes are much more convenient.
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7 The MIT-bag model

Because we are making assumptions on the behaviour of quarks inside the nucleus, it is
useful to get a basic understanding of how quarks behave in a nucleon. In this thesis,
it is assumed that they to not leave the boundaries of the nucleus, such that no QGP is
generated. It is general knowledge that quarks are confined in a nuclei and that they are
bound by the strong interaction, mediated by the gluons as force carriers. While quarks
themselves have colour (say red, green or blue), the net colour of a subatomic particle must
always be colourless or ’white’. Within a nucleon, the quarks obey Fermi-Dirac statistics.
[2]

A simple way of modelling the behaviour of quarks within a nucleon is through the
MIT-bag model. The MIT-bag model proposes that quarks are confined within a spherical
volume and are exerting a pressure on a ‘bag’ confining this volume. The volume is not
expanding because of the ‘bag constant’ B, that makes sure that a counteracting force is
present. The MIT models actually stems from a model by Bogoliubov, at which we will
first take a closer look.

7.1 The Model of Bogoliubov

Nikolay Bogoliubov made a proposal for modelling quark confinement in nucleons. He
tried to realise this by giving the quarks a finite mass within the radius of the nucleon
and an infinite mass outside of the nucleon [18]. Starting of from the Dirac equation for
a massive particle within a spherical volume of radius R,

[~α · ~p+ β(m− Vs)]ψ = Eψ (50)

and defining the eigenvalues for the angular momentum operators for ~j2, jz and K cleverly
using the operators ~j = ~l+ ~σ/2 and K = β(~σ ·~l+ 1) that commute with the Hamiltonian
of the system, H = ψ̇ dL

dψ̇
− L, we obtain the following wave function.

ψµκ =

(
g(r)χµκ
if(r)χµ−κ

)
(51)

Rewriting the Dirac equation to

~α · ~p = E − βm+ βVs (52)

and applying the momentum operator ~p = −ih̄∇ where we set h̄ = 1 and in spherical
coordinates ∇ = r̂ ∂∂r − i

r̂
r ×~l we find the following:

~α · ~p = −i~α · r̂ ∂
∂r

+ i~α · r̂ (β (K − 1)) (53)

Applying this operator to the wave function of Equation 51 and setting it equal to the
right hand side of Equation 52, we find the coupled differential equations

(E + Vs −m)g(r) = −
(
∂f

∂r
+
f

r

)
+ κ

f

r
(54)

and

(E − Vs +m)f(r) =
∂g

∂r
+
g

r
+ κ

g

r
(55)

Now we need to define to potential Vs to keep the quarks in the region; we set

Vs =

{
m for r < R
0 for r ≥ R (56)
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Solving these equations, we find the solution

g(r) =

{
A sin(Er)

r r < R

A sin(Er)
r e−

√
m2−E2(r−R) r ≥ R

(57)

From this equation it can easily be seen that g decreases exponentially with the radius
when the radius is larger than R. At the moment however, the quarks are still not con-
fined. To achieve this, Bogoliubov let the mass parameter m → ∞. Now the masses are
confined to the region as the wavefunction dies of at r = R. This also shows the quantum
constraints on the system, as the boundary conditions of this model are such that the
wave function must be continous at r = R. One could continue to work on the energy
of the ground state solution from these equations, but our purpose of showing where the
quark confinement comes from has been accomplished and therefore we will not pursue
that target.

A flaw of the Bogoliubov model was the fact that the radius of the spherical volume
was built in manually instead of analytically determined. The lowest energy solution is
namely the one where R→∞ This is one of the issues in the model that the MIT model
tries to encompass in its approach.

7.2 A proposed solution to the infinite radius

The simplicity from the MIT bag model follows from its Lagrangian:

L =

[
i

2
(ψ̄γµ∂µψ − (∂µψ̄)γµψ)−B

]
θν(x)− 1

2
ψ̄ψ∆s (58)

In this Lagrangian, B is an added universal constant called “The bag constant” and is an
important parameter of the model. This parameter provides the additional energy density
to keep the quarks confined in their volume. It can be shown that it is equal to a negative
pressure working against the quarks, like the vacuum exerting a pressure on the volume of
the nucleon. ∆s describes the derivative of θν(x), which is a step function at the radius of
the spherical volume. It is one inside and zero outside the bag. γµ represent the gamma
matrices, which are a representation of the Clifford Algebra. They are defined by the
anticommutation relation

γµ, γν = γµγν + γνγµ = 2ηµνI4×4 (59)

I4×4 being the four by four identity matrix. From an introductory course to RQM using
[19], we know that we can apply the Euler-Lagrange equations to find the equations of
motion:

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0 (60)

First applying the left term of Equation 60 and putting in the respective field ψ̄ instead
of φ, we find

∂L
∂ψ̄

=

[
i

2
(γµ∂µψ)

]
θν(x)− 1

2
ψ∆s (61)

The right hand side gives us

∂µ

(
∂L

∂(∂µψ)

)
= ∂µ

[
− i

2
γµψθν(x)

]
= − i

2
γµ∂µψθν(x)− i

2
γµψnµψ∆s (62)

Filling these in for Equation 60, we obtain[
i

2
(γµ∂µψ)

]
θν(x)− 1

2
ψ∆s−

(
∂µ

[
− i

2
γµψθν(x)

]
= − i

2
γµ∂µψθν(x)− i

2
γµnµψ∆s

)
(63)
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where nµ is the vector normal to the sphere’s surface. This long equation rearranges to

(iγµ∂µψ)θν(x) +
1

2
(iγµnµψ − ψ)∆s = 0 (64)

Now we can start applying the boundary conditions and see what happens. First, we set
∆s to zero and assume we are in the confined volume of the bag. The resulting equation
is

iγµ∂µψ = 0 (65)

We see that this is just the Dirac equation for a massless fermion!

(iγµ∂µ −m)ψ = 0 with m→ 0 (66)

At the point where θν goes from one to zero, the derivative is infinite: ∆s =∞. However,
we know that

1

2
(iγµnµψ − ψ)∆s = 0 (67)

Such that this must mean that

iγµnµψ − ψ = 0⇒ ψ = iγµnµψ (68)

This also gives the complex conjugate,

ψ̄ = −iγµnµψ̄ (69)

And now finally, to show that the quarks to not move outside of the volume, we show that
the probability ψ̄ψ is zero:

− iψγµnµψ̄ = ψψ̄ = ψ̄ψ = iψ̄γµnµψ (70)

Since the terms are equal but of opposite sign, this must mean that they are zero! Depend-
ing on the bag constant, the energy densities at which the quarks deconfine is changing. As
in this thesis the deconfinement and its accompanying phenomenology is not investigated,
we will not discuss the model any further.
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8 Equations of Stellar Structure

To determine the possibility of a star going to a quark star, we use the Tolman-Oppenheimer-
Volkoff equations. These equations are the result of general-relativistic corrections to the
simple Newtonian equations of stellar structure. The derivation of the general-relativistic
version will not be discussed here, as it is outside of the scope of this paper. The Newto-
nian derivations however will be given below.
There are actually four equations of stellar structure: mass conservation (Equation 71),
hydrostatic equilibrium (Equation 72), energy conservation (Equation 73) and energy
transport (Equation 74).

dm

dr
= 4πr2ρ(r) (71)

dP

dr
= −ρ(r)g(r) (72)

dL

dr
= 4πr2ε(r) (73)

dT

dr
=

1

4πr2λ
L (74)

Here, ε, λ and ρ are the energy output of the star for the shell with radius r and
thickness dr, the conductivity proportionality constant and the density determined by the
equation of state respectively [20].

Figure 8: Visual aid
for the derivation
of the equation for
conservation of mass.
Taken from: [20]

The first equation, for mass conservation, is easily derived
with help of Figure 8. The mass of the infinitesimal can be given
as the sum of two components through

dm(dr, dt) = 4πr2ρ(r)dr − 4πr2ρvdt (75)

but since we are only interested in stable stars, we can leave out
the time dependent part, divide by dr, and already obtain the
desired equation:

dm(r)

dr
= 4πr2ρ(r) (76)

The derivation for the hydrostatic equilibrium is a little
tougher, but can also be obtained through the help of the vi-
sual aid in Figure 9.

In the visual aid, you see a volume element with surface area A and height dr and
therefore volume V somewhere in the star. The curvature of the volume element in
the star has not been taken into account due to the assumption that the curvature is
negligible for such a small volume. The volume experiences several forces: the gravitational
force pulling it downwards Fg = gρV = gρAdr. Also, there the pressure from below
the volume compensating this gravitational pull, Pup(r) = Fup(r)/A. The pressure from
above the volume element is slightly less, as the column of mass exerting a force on the
volume is smaller by a length of dr. This gives an additional downwards pressure of
Pdown(r+dr) = Fdown(r+dr)/A. Summing all these forces with the correct signs for their
respective directions,

Fg + Fdown(r + dr) = Fup(r)⇒ gρAdr + Pdown(r + dr)A = Pup(r)A (77)
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And by rewriting using P (r + dr) = P (r) + dP
dr dr:

gρ(r)Adr + P (r)A+
dP

dr
drA = P (r)A⇒ P (r)A = gρ(r)Adr + P (r)A+ dPA (78)

dP

dr
= −gρ(r) (79)

which is the equation that we were after.

Figure 9: Visual aid
for the derivation of
the equation for hy-
drostatic equilibrium.
Taken from: [20]

For this derivation, the only equations of stellar struc-
ture that are used are Equation 71 and 72. It is
difficult to use only one of these equations, as they
are in fact coupled differential equations. Before we
start to solve these equations however, we first need
to consider whether the Newtonian regime is appropriate
here.

From the Fermi pressure for a relativistic electron gas, we
know that the pressure is equal to

pF (kF ) =
ε0
24

[
(2x3 − 3x)(1 + x2)1/2 + 3arcsinh(x)

]
(80)

where x = kF /mec. In the relativistic regime, we know that
kF � me as for kF [21]

kF = h̄

(
3π2ρ

mn

Z

A

)1/3

(81)

The densities in the centres of neutron stars are on the order of ρc = 1014g cm−3 or
ρc = 1017kg m−3. This means that in the centre of neutron stars, kF is on the order of

magnitude 10−19
(
Z
A

)1/3
where me = 9 × 10−31kg. Since the Fermi momentum is hence

much larger than the electron mass, we need to consider relativistic effect for the densities
involved in Neutron stars.

The relativistic equations for conservation of mass and hydrostatic equilibrium have
been rewritten from the Einstein equations

Gµν =
8πG

c4
Tµν (82)

using the Schwarzschild metric for a spherically symmetric mass. As mentioned before,
the complete derivation for these relativistic equations will not be given, but can be found
in e.g. [22] and [23]. They will just be given [24] below.

dm

dr
= 4πr2ρ(1 + ε/c2) (83)

dp

dr
= −G(ρ(1 + ε/c2) + p/c2)

m+ 4πr3p/c2

r(r − 2Gm/c2)
(84)

We see that these equations are actually quite similar to the Newtonian equations -
especially the mass, which has just a corrective multiplicative term. The pressure equation
is a bit more complex, as several extra terms come in to play. We easily see that the
additional terms only contribute to the original expression, such that the force of gravity
is only strengthened by encorporating GR in the model. The two differential equations
are also still coupled. Besides the equations being coupled, adding a level of difficulty to
the integration process, we also still need an equation of state to determine the pressure-
density relation. For this, we will use the polytropic equation of state.
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8.1 Polytropes and Neutron Stars

To fully determine the mass-radius relationships of neutron stars, we need to assume
an equation of state. Although more sophisticated models are available, the polytropic
equation of state is a good approximation. The equation of state is as simple as

P = Kργ = Kρ
n+1
n (85)

where both K and γ are taken as constants for the model. For neutron stars or white
dwarfs, values for n are often assumed to be 0.5 ≤ n < 1 such that 2 ≤ γ < 3 and K is on
the order of 10−6 when doing the integration in cgs.

The polytropic equation of state has since its invention been superseded by more ac-
curate models, but it is still popular due to its simplicity. It has also been shown to be
still reasonably applicable for pressures over 1014Pa or 1015dyne cm−2 [25], such that we
are in a safe region to use it in for the neutron star case.

The derivation for the polytrope is not very difficult, as it is just a combination of
the first two stellar structure equations and some algebra. Starting by differentiating the
hydrostatic equilibrium equation and putting in the mass continuity equation in the result,
we find the following.

d

dr

(
1

ρ

dP

dr

)
=

2GM

r3
− G

r2

dm

dr
=

2

ρr

dP

dr
− 4πρG (86)

Collecting the pressure derivatives on the left hand side and dividing by r2:

1

r2

d

dr

(
1

ρ

dP

dr

)
+

2

ρr

dP

dr
= −4ρπG (87)

Now we fill in the equation of state: P = Kρ
1+ 1

n
c θn+1 to obtain

1

r2

d

dr

(
r2Kρ

1
n
c (n+ 1)

dθ

dr

)
= −4πGρcθ

n (88)

where now the not-so-obvious subsitution of α2 = (n+ 1)Kρ
1
n
−1

c /4πG is made to find

1

ξ2

d

dξ

(
ξ2dθ

dξ

)
+ θn = 0 (89)

which is the familiar Lane-Emden equation [20]. This equation is only analytically in-
tegrable for specific values of the polytropic exponent n ∈ {0, 1, 5}, all specifying very
specific models for the star, such as a star with an infinite radius or a star according to
Eddington’s assumptions [26]. Therefore, we have to integrate the solution numerically.

8.2 Integration process

The integration of the equations of stellar structure can be done in several ways. A simple
option to use is just Euler’s method, but this method is known to quickly diverge from
the actual function and to be only accurate up to O(1), which means that the error in the
integration process is proportional to the square in the step size. As we are interested in
integrating over a large region and will not spend an enormous amount of time integrating
in very little steps, this is not a suitable algorithm for our exercise.
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Figure 10: Visual aid for an overview of the Runge Kutta method. Taken from [28]

We make use of the Runge-Kutta 4th order Method. This method is described ex-
tensively in [27]. A short introduction however will be provided. A visual aid is given in
Figure 10. Due to it being fourth order, it diverges much slower than Euler’s method.

First, the slope of the function is evaluated of the point t0. With this, an estimate is
made where the function is at at t0 + h/2, h being the difference between two points in
the interval. This estimate is then evaluated again at t0 + h/2, after which this estimate
is used to make a final approximation about the end point of the function at t0 +h. In its
algorithmic form:

k1 = f(t0, y0)
k2 = f(t0 + h/2, y0 + k1h/2)
k3 = f(t0 + h/2, y0 + k2h/2)
k4 = f(t0 + h, y0 + k3h)

(90)

And the final value for the approximation of y at t + h is then given by the weighted
average:

y(t+ h) = y0 +

(
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

3
k4

)
h (91)

To solve the problem of the two ordinary differential equations being coupled, we iterate
one step from the mass equation, determine the mass at this new step in the interval and
then determine the next step for the pressure gradient. This is then used to determine the
next mass gradient. Due to this procedure, there is an ‘off by one’ error, as the pressure
of the previous radius is used to compute the mass of another, but this error is assumed
to be insignificant.

The final thing that needs to be done is to determine the boundary conditions of
the equation. This is a very simple process, if we know the central density or central
pressure of the star (these can be determined from another by Equation 85. The central
pressure is then given as P (r = 0) = P0, where the pressure at the radius of the star is
P (r = R) = 0. For the mass, we have similar boundary conditions: M(r = 0) = 0, while
at M(r = R) = M∗. We can with these boundary conditions hence generate an array
with radii symbolising the distance from r = 0km to the radius of the neutron star, who
in general do not have radii over 20km. We stop integrating when the boundary condition
is met, i.e. when the pressure is significantly small.

Integrating using the constants K = 1.98183× 10−6, γ = 2.75 and different values for
P0, we get pressure- and mass profiles as given in the figures below. From all these figures,
a final mass and a final radius can be determined. When we collect all these samples and
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Figure 11: Pressure- and Mass profiles from neutron stars with a polytropic equation
of state. The parameters for the eos are K = 1.98183 × 10−6, γ = 2.75 , P0 varying.
More figures have been generated for other central densities, these can be viewed in the
appendix.
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plot them in a file, we obtain the M-R plot in Figure 13. This figure gives an overview of
the possible configurations of stars with a certain mass - if these stars indeed follow the
given equation of state,they need to be on the curve from the M-R plot. As can readily
be observed, some configurations seem to be degenerate.

It is however important to know that we cannot blindly assume that all these results
are physical. We have to take into account three important boundaries: the Schwarzschild
radius [10], the causality boundary [29] and the Chandresekhar limit [11]. Once the stars
get below their Schwarzschild radius,

Rs =
2GM

c2
(92)

they are collapsing to a black hole. This puts constraints on the average density of the star.

Figure 12: The
green circle rep-
resents the pho-
ton sphere radius
(only stable or-
bit), while the
black circle is the
Schwarzschild ra-
dius.

An even stricter boundary is the causality boundary. At the radius
of the photon sphere - where the closest stable orbit for photons around
a spherical object lies - causality starts to break down. Once a photon
enters this region it can either remain on the radius of this photon
sphere, which has a very small probability of happening, or spiral
inwards to the black hole. The photon sphere radius is given by

Rphoton =
3GM

c2
=

3

2
Rs (93)

These two event horizons are not the same. Massless
objects can only travel at the speed of light and there-
fore have stable circular orbits around the mass. Mas-
sive objects, which can vary their speed, can have ellipti-
cal orbits that cross the photon sphere and have their or-
bit partly in the region between the photon sphere radius and
the Schwarzschild radius. Figure 12 clarifies this explana-
tion.

Also, for a neutron star to form, the supernova remnant needs to
be at least heavier than M = 1.44M�. When the star does not have a mass large enough,
the degeneracy pressure from the electrons is large enough to maintain an equilibrium in
the star, never actually making the chemical potential of the electrons large enough to
start the electron capture process significantly. The star then ends up as a white dwarf.

Keeping these limits in mind, we still see a suitable configurations for these stars to
form. Comparing these to literature [30] where several similar curves are drawn on the
M-R plane (see Figure 14), we see that our results do not deviate greatly from the AP4
model and hence are credible.

8.3 Binding energies

What is an interesting next step, is to figure out what the binding energy per nucleon is
in a star with these configurations. When the binding energy of the baryons is known,
one can determine whether or not it is viable to convert normal matter to quark matter.
To do this, we initially started off by just adding baryons to a spherical volume and
checking what the binding energy of the system is. The binding of a particle added to
a spherical mass was already given by Equation 4. A reasonable amount of particles to
estimate for a neutron star would be 1057 particles. Generating these particles linearly on
this scale would cause us to either have a very computationally intensive simulation, or
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Figure 13: M-R plot from the pressure- and mass profiles from Figure 11

Figure 14: M-R plot obtained from [30]. Our curve in the M-R plane does not deviate
greatly from the AP4 model.
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otherwise loose some of the resolution of the simulation. A solution to this problem would
be to generate the particles linearly in a logarithmic scale; this means that the particles
are added in amounts of 10∆x/57, where ∆x is the resolution of the simulation.

Setting the baryon mass to a constant and just adding the masses step by step while
considering the added binding energy made us run into a not physics-related problem
however - the dynamic range of Python variables. This model for determining the binding
energy of baryons basically comprises adding more and more baryons in the most effi-
cient way to a sphere (a packing factor of 0.74 [31]) and computing the binding energy
on basis of the resulting geometry. This might work for a thought experiment, but is
mathematically not feasible. This is because the mass does not increase quickly enough
initially to fit within the simple model of only having gravitational binding. After several
attempts to run the simulation with this hard sphere model, it was found out that the
pressure was rising instead of declining for increasing radii. This is of course not what
was expected, and the problem appeared to lay in the effective mass of the additional
baryons. Briefly looking forward to Equation 95 (a derivation will be given there), we
found that the derivative dM

dB got negative, meaning that you were removing mass from
the neutron star by adding more baryons. This is of course not a physical solution, but
the numerics indeed showed that GM

r ≤ 1 during the iterations. At around 1024 baryons
the script started throwing dynamic range overflow errors, not even close to the desired
number of baryons. Hence, we had to look for a different solution. The fact that this
problem occurs, might also be a hint that the optimal spherical volume packing is not effi-
cient enough to form these kinds of compact stars, and supernuclear densities are required.

To overcome this issue, we took a completely different approach than what was just
proposed. Using the generated pressure-radius relations in solving the TOV-equations,
we could determine the binding energies per shell of the neutron stars. This has several
advantages: not only does it solve the problem from the previous paragraph, it also re-
sembles a more complicated system as the EOS that was used to generate this data does
take the strong force into account!

Importing the results of the solution for a particular neutron star configuration, one
can determine the density of the shell using the equation of state (Equation 85) and de-
termine the baryonic mass of the system. As the equations of stellar structure have no
explicit dependence on the mass of the particles - it is purely phenomenological - we can
use the solutions for different compositions. The mass that is computed by integrating
the Equation 71 is just the gravitational mass - the binding energy is not considered, as
this has no influence on the equilibrium structure of the star.

The number of particles in the specific shell is then assumed to be the mass of the shell
divided by the baryonic mass of the particle. The binding energy of the system with the
added shell is then considered to be the binding energy of the previous shell, minus (as
the binding energy is negative) the number of particles times the added binding energy
per particle from Equation 4. This is derived from the following steps. The mass for a
star with one baryon more than the original is given by

M(B + 1) = M(B) +mB −
GMmB

Rc2
(94)

dM

dB
= mB −

GMmB

r
= mB

(
1− GM

r

)
(95)

dM/mB

dB
= 1− GM

r
(96)
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The total mass of the star would then be given by

m(r) =

∫ r

0
4πr′2ρ(r′)dr = NmB −

∫ m

0

Gm′mB

r
dm′ = N

(
mB

(
1− Gm

r

))
(97)

From this equation, we can derive the number of baryons up to a shell:

N(r) =
m(r)

mB

(
1− Gm(r)

r

) (98)

The results from this approach entail more than just the binding energy of the system; the
binding energy per baryon can also easily be determined, as the number of baryons in the
system is dynamically determined from the density of the shells. An example result of such
a computation for one specific configuration is given in Figure 15. It has to be said that
during this process, the strong interaction between the particles in the shell is neglected.
Quantitatively, this means that the binding energy would most likely be even lower than
it is now. In making the step from the mass density to the baryon number, we did assume

Figure 15: The mass of a star enclosed within a radius r, the binding mass within a radius
r, the number of baryons within a radius r and the binding energy in MeV per added
baryon.

the mass of the baryon. To determine whether there are any smooth transitions from the
neutron star to a compact star with different baryonic constituents, we simply replace the
baryon mass by that of a heavier particle. The masses that were used for the particles are
given in Table 1.

Actually, both the lambda and sigma baryon are part of a broader set of baryons.
The difference between the two sets lies in the behaviour of the wave function under the
exchange of the third quark in the baryon; both lambda and sigma baryons exist of a
combination of up- and down quarks and one quark of a heavier doublet. The sigma
baryon is asymmetric under flavour exchange of the third quark, while the lambda baryon
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Particle Composition Symbol Mass (MeV c−2) Mass (kg,
×10−27)

Proton uud p 938.272046 1.6726
Neutron udd n 939.565379 1.6749
Lambda uds Λ0 1115.683 1.9889
Sigma uus Σ+ 1189.37 2.1202

Table 1: Brief summary of the baryons used in the analysis. Data taken from the Particle
Data Group [32].

Figure 16: The baryon octet and the baryon decuplet. Taken from: [2].

is symmetric. Even though they may sometimes be constituted of the same quarks, such
as the charmed sigma Σ+

c (udc) and Λ+
c (udc).

An explanation for this can be found in the representation theory of the wavefunction
for the baryons. A basic understanding of group theory is required to make the following
argument. If the reader is unfamiliar with irreps, one could read Groups, Representations
and Physics, Chapter 3 and 4 [33]. This situation is similar as for electrons having spin -
the irrep of the product of the two electrons gives a singlet spin state and a triplet spin
state. (

↑
↓

)
⊗
(
↑
↓

)
=

 ↑↑
↑↓ + ↓↑
↓↓

⊕ (↑↓ − ↓↑) (99)

We can do something similar for the representation of the first two quark families (while
leaving out the charmed quark):

(
u
d s

)
⊗
(
u
d s

)
=

 uu
ud+du√

2
us+su√

2

dd ds+sd√
2

ss

⊕(ud−du√
2

us−su√
2

ds−sd√
2

)
(100)

Now there’s also still the multiplication of this irrep with the third quark and with the
spin representations (as the quarks are fermions themselves as well). Working this out
completely would finally give us a combination of a quark decuplet and a quark octet,
the decuplet having a spin of 3/2 [34] and the octet having spin 1/2, see also Figure 16.
Having higher spin creates more possible states, but also means that the system is in a
higher energy, therefore containing heavier particles.

Putting in the masses from Table 1 into the simulation and plotting the binding energies
per nucleon into an overview, we find the following figure. In these figures, we see that
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Figure 17: Binding energies per added baryon for the first up to ≈ 1057 baryons.

the binding energy for heavier baryons keeps decreasing (i.e. getting more negative).
Just as for nuclei, this means that if there is a decay path from the lighter nuclei to the
heavier nuclei, it could be energetically favourable to convert the neutrons to Λ0or Σ+

particles. In Figure 19, we also see that the number of required baryons to make up for
the mass of the star is smaller for heavier baryons. The baryon number differs a factor
of 1057.1121/1057.0327 ≈ 1.1882 for the neutron and the baryon, while the mass ratio of
the two is also mΛ0/mn ≈ 1.1887 - a difference of only 0.0005. The fact that these ratios
are so comparable is probably due to the fact that we’re assuming the same solution for
the new quark model. This while the interaction between the neutrons and the lambda
baryons is completely different. They possess different quantum numbers; for the neutron,
the strangeness is zero, while for the lambda baryon it’s -1. The isospin for a neutron is
-1/2, while for a lambda baryon I3 = 0. This means that the strong interaction should be
modelled differently than for just similar neutrons. Using the polytropic solutions of the
TOV-equations, this fact is ignored and the only difference is in the mass of the particles.

A proposed solution is making a new, quantitative modification to the pressure-density
relation. From [35], concentrations of up to nΛ

N = 0.4 have been found. If these Λ0 can
now physically overlap the neutrons due to the different quantum numbers, we can argue
that we can model the system as two weakly interacting gasses. This does however mean
that the density in the star goes up; the volume shrinks, as there are now more baryons
per volume. To keep the model simple, we assume that the baryons follow the same ρ(r),
but just with a different normalisation. We can then just scale the density at every point
as ρ(r) = N

nΛ0
ρ′(r).

For the concentrations
nΛ0

N ∈ {0, 0.1, 0.2, 0.3, 0.4}, the M-R plots are recalculated.
These curves are then combined into one figure, resulting in Figure 20. In Figure 20 we
see that there are multiple points in which these configurations intersect.The fact that at
this resolution the curves are already shown to intersect suggests that there is a continuous
transition from no lambda baryons to a significant concentration.

No plot has been made for larger concentrations of strange baryons, on the arguments
that the processes that convert the neutrons to lambda baryons are limited by the chemical
potential of the constituents and the increasing energy that is required to overcome the
Fermi barrier. Also, other baryons such as the sigma baryons are starting to appear and
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Figure 18: A close up of the more interesting part of Figure 17

the simplified two-phase model starts to give up.
The current model of the star contains several flaws. Proposals for fixing these flaws

were done, but rejected. The first consideration was to model two stars separately and
‘stick’ them onto each other. If you want to model a 2 M� star for example, one knows
what the central densities are for two separate stars that make up the mass if one 2 M�
star through the previous simulations. If these are then stuck onto each other, the densities
can be determined to find the model of the star where the radius of the lambda baryons is
confined to a smaller radius. The flaw in this train of thoughts is that a compact star with
this equation of state and such a low central density might not even represent a realistic
physical system. A pressure resulting in a 0.6 M� star has never been found in actual
neutron stars, even though over 2000 stars are known.

The flaw in the chosen solution is that although we know that the lambda baryon
density is not as widespread throughout the star as the neutron density, we have chosen
to just apply a multiplicative factor in the density profile. A better solution would be to
model the lambda baryon density up to a certain radius, after which the density profile is
completely taken over by neutrons.

The third proposed solution was to model the density as a function of the radius
based on the concentrations of the different baryons. In the centre of the star, the largest
concentration of lambda baryons is expected. Here, the concentration consists hence
approximately of 40% Λ0 and 60% neutrons. The Λ0 concentration decays outwards, and
we could have chosen the Fermi function to model the concentration gradient from the
centre outwards:

F (ε) =
1

e((ε−µ)/kT ) + 1
(101)

From this, we only have to determine a reasonable point where we expect the chemical
potential µ to be equal to the energy of the baryons, ε. We could say that this is at 0.75R∗,
based on Figure 23.
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Figure 19: Mass-radius relation, binding mass within radius, baryon number and binding
energy per baryon for four different baryons.

Figure 20: M-R curves for different concentrations of Lambda particles. In the left top,
the causality condition and Schwarzschild radius are shown. As can be seen in the figure,
all configurations are still slightly below these margins.
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9 Observational properties of Quark Stars

So far we have been theorising the existence of strange stars. To confirm whether or not
these stars also exist in the universe, one could try to perform statistics using star surveys;
observations of basic characteristics of a lot of stars such as their mass, radius, and emission
spectra. But how would one differentiate a strange star from a regular neutron star of
pulsar? This question is answered using some observational methods for determining the
mass and radius of neutron stars, such that we can check where the observed stars are
in the M-R plot and whether they are in the normal neutron star region, or the region
inhabited by strange stars.

9.1 On the Angular Momentum of Quark Stars

Another way to detect the presence of a quark star is to look at the Angular Momentum.
The difference between quark stars and neutron stars lies in the difference of the moment
of inertia. First, let’s show the principle in computing the moment of inertia for a solid,
constant density sphere. Remember that the moment of inertia is

I =

∫
r2dm. =

∫
r2ρ(r, θ, φ)dV (102)

For a infinitesimally thin disk with constant density, we get the moment of inertia

I =

∫
r2dm =

∫ R

0
r2ρdv =

∫ R

0
r2ρ(2πr)dr = 2πρ

∫ R

0
r3dr =

2

4
ρπR4 =

MdiskR
2

2
(103)

Now for the moment of inertia for a solid sphere with constant density, we stack disks
onto another over the same axis, with a radius ranging from R = 0 to R = Rsphere.

Isphere =

∫
1

2
Mdisk(z)r(z)

2

=
1

2
πρ

∫ R

−R
(r(z))4

=
1

2
πρ

∫ R

−R
(R2 − z2)2

=
1

2
πρ

∫ R

−R

(
R4 − z2R2 + z4

)
dz

=
πρ

2

[
R4 −R2z2 + z4

∣∣∣∣+R
−R

]

=
πρ

2

(
16R5

15

)
= πρ

(
8R5

15

)
=

2

5
MsphereR

2

(104)

where we have used that Msphere = 4πR3

3 and that the radius of the disk is given through
y2 = R2 − z2.

We know that the angular momentum relates to the moment of inertial through the
equation L = Iω. If we have a process that converts energy into mass, such as the
transition from normal matter to exotic matter in the form of strange quarks, we therefore
have a decreasing rotational velocity ω as the angular momentum L is a preserved quantity.
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Therefore, if we know what the transition rate of mass to energy is, we are able to determine
that change in angular velocity of the star. We suppose therefore that a neutron star in
the phase of converting normal matter to quark matter is slowing down.

For a sphere with a varying density throughout the sphere as a function of radius, that
is, ρ = ρ(r), things get a little more complicated.

9.2 Volume occupation

In this section, we will give a quantitative argument about the volume change of the
neutron star as it converts to quark star. We know that by Pauli’s exclusion principle, we
cannot have two fermion occupy the same volume. If we assume that the star consists of
two types of fermions completely, we know that we can decrease the volume of the star
by adding another fermion. If we go to an equilibrium of just up and down quarks to up,
down and strange quarks, we can contain the same mass in a volume 2

3 of the original
volume. If we again look into the moment of inertial, we see that the moment of inertia
decreases by a factor of 4

9 , meaning that the rotational velocity is going up by a factor of 9
4 .

Although determining the exact radius of a neutron star is hard, they can be determined
from binary systems. Since mass-radius relations are relatively confined for neutron stars,
a decrease in volume by 2/3 can be noticed. When such a discrepancy is found between a
known curve in the M-R relations, it might be a hint towards strange stars.

9.3 Average density of pulsars

Through the rotational velocity of a pulsar, we can actually set an estimate to the average
density of the star. We know that the rotational kinetic energy can never be higher than
the gravitational potential of the star - otherwise, the star would shed off matter. We know
that the gravitational potential of the star is equal to U = GMm

R where M is the mass of
the star, m is the mass of the ’test object’ and R is the radius of the star. Furthermore,
the rotational kinetic energy is equal to 1

2m(ωr)2. Equating these and performing algebra,
we see

m(ωR)2

2
=
−GMm

R
⇒ 4π2R2

2P 2
=
−G4πR3ρ̄

3R
⇒ ρ̄ =

3π

2GP 2
(105)

where P is the period of the pulsar. From observations of pulsars we can then determine
the average density of the pulsar. For example, if we look at the crab nebula, with a
rotation period of 33ms, we find an average density of ρ̄ = 6.484 ∗ 1010g cm−3.

9.4 Quark Nova

A proposed phenomenon when a neutron star is converted to a quark star is the quark
nova. When the quarks might deconfine during the spin down of the neutron, a lot of
energy is released - as much as 1047J . The remaining quark star is of a mass on the order
from 0.3 − 1M�. The energy released in the process might be the cause for some of the
gamma ray bursts observed in the universe. At around a nuclear density of 7ρN , with a
bag energy of Bconv = 50MeV per baryon, its contents are more than 5.5 times as strongly
bound as those of the Fe-56 nucleus, and therefore very stable [36].

9.5 Gravitational redshift

From general relativity, it is known that time passes slower when you are near large masses.
For photons, this means that when they move away from a large mass, such as a compact
star, they experience time going faster over the course of their lifetime. The result of this
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is that the photons will decrease in frequency; they will become ‘redder’. The redshift due
to this effect can be given through

limr→∞z(r) =
1√

1− rs
Re

− 1 (106)

where rs is the Schwarzschild radius of the object and Re is the radius of emission of the
photon. When the masses of the neutron stars are hence determined by other means, such
as the Shapiro delay, one can now constrain the radius of the neutron stars as most of
the photons that are emitted come from the neutron star outer crust. With this radius
determination, the volume change described in the previous section can for example be
observed.

9.6 Gravitational wave observations

Since the first observations of gravitational waves were made by the LIGO collaboration,
propositions have been made to look for traces of neutron stars in the gravitational waves
as well. The first famous gravitational wave observation, GW150914, was attributed to
two merging black holes. Gravitational waves can also be produced by the merging of two
neutron stars, as these masses also have a large influence on the behaviour of spacetime.

The first probable neutron star-neutron star merger was observed in event GW170817
in NGC4993 [37]. The masses of the binary object were not very likely to be of black
holes. What further manifested the confidence in a binary neutron star merger was the
observation of a gamma ray burst only 1.7s later by Fermi GBM, at the same location.
These highly energetic radiation bursts were theoretically already associated with neutron
mergers.

Figure 21: In this graphic,
gravitational waves are re-
flected by the proposed ‘mem-
brane’ or ‘firewall’ of a black
hole, that is supposed to solve
the famous information para-
dox. For a neutron star, this
will just be the neutron star it-
self deflecting the gravitational
wave.

The fact that we can say with reasonable confidence
that this event is attributed to two neutron stars is not
the main point of this paragraph. It is proposed from
derivations from general relativity that heavy spherical
bodies, such as neutron stars or black holes, possess an
event horizon known as the photon sphere. These have
already been discussed previously while putting con-
straints on the masses of the neutron stars, see Equation
93. The photon sphere is an effect of the curvature of
spacetime by the mass, influencing the null-geodesic or
often called ‘light-like’ trajectory of light on spacetime.
Gravitational waves follow these same geodesics, as they
are not massive particles moving through time, but rip-
ples of spacetime itself. The effect of massive objects on
gravitational waves is therefore the same as on light.

When Eddington performed the first observation of
gravitational lensing during an eclipse, he computed the
deflection of photons by the equation

α =
4GM

c2d
(107)

where α is the deflection angle in degrees and d the im-
pact parameter. To obtain a mirror-like effect for grav-
itational waves, i.e. α ≈ 180◦, one wants a small impact

parameter and a large mass. This is exactly the kind of environment that these compact
stars represent. Proposed is therefore a mirror-like effect that influences how we observe
the gravitational waves [38].
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Gravitational waves emitted during the neutron star merger are partly reflected by the
photon sphere of the neutron star and head back to the neutron star. Neutron stars, as
opposed to black holes, cannot absorb significant amounts of energy from these waves like
black holes can. Instead, the waves are partially reflected back to the photon sphere, after
which this process iterates. A representation of this process is given in Figure 21. The
echoes of this process can be observed and using the time interval between the signals, the
mass of the neutron star can be constrained.

9.7 Shapiro delay

Currently, Shapiro delay is one of the most accurate ways to determine the mass of a
neutron star. It is based again on general relativity, where the time that light (or elec-
tromagnetic radiation) takes to get from a source to its observer is determined by the
geodesic through spacetime. When a neutron star has a companion where the shared
orbital plane is nearly edge-on the earth, it is possible to observe this effect. When the
companion is near the line of sight to the star, the geodesic gets longer due to the influence
of the companions mass on spacetime. This effect can be observed in the peak luminosity
timings of neutron stars.

The effect was proposed by Irwin Shapiro in 1964 [39] and is based on the Schwarzschild
metric for spherically symmetric massive objects. He originally tested his hypothesis by
bouncing radio signals past the sun to Venus and catching the signal, while measuring the
delay with respect to flat space. The delay that he found, approximately 2 × 10−4s, was
confirming his computations [39].

This effect has been used on determining binary systems of neutron stars. One of
the most heavy neutron stars found so far, PSR J1614-2230, was analysed in this way.
In figure 22 the received radiation delay from the pulsar is shown. The period of the
companion around the neutron star is around 8.7 days, which is normalised on the x-axis
of the figure. The yellow beam represents the radiation pointing towards earth, the red
circle is the pulsar and the blue circle is the white dwarf.

At orbital phase 0.25, a sudden peak occurs in the pulsar signal. The top panel shows
no corrections - this is just the raw signal. The middle panel shows the best fit model
for a non-relativistic theory, where this model was found using χ2 minimisation. The
bottom panel shows optimisation including GR-effects. One can see that the signal from
the middle panel looks a lot less like the Gaussian noise that is expected when this effect
does not occur and an acceptable noise level when the shapiro effect has been taken into
account in the third panel.
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Figure 22: Visual representation of one delay cycle. Taken from: [39]

9 OBSERVATIONAL PROPERTIES OF QUARK STARS 44



Leander van Beek On the possible existence of Quark Stars

10 Conclusion

In this thesis, we have looked at the possibility of the existence of stable quark- or hybrid
stars. To do so, we have solved the Tolman-Oppenheimer-Volkoff equations for a polytropic
equation of state and varied its initial conditions such that mass-radius relations for a lot
of different neutron star configurations were obtained.

Using these relations, the density-radius relations was determined. Using the densities
of the ‘infinitesimal’ shells, we were able to determine the binding energy of the quark star
in general and the binding energy per baryon.

In Section 3.2, an estimate was made for the binding energy of a neutron star as if it
adhered to the liquid drop model or semi-empirical mass formula. A binding energy of
BE ≈ 1057MeV was found for this quick estimate. The binding energy that was deter-
mined by solving the equations gave a ‘binding mass’ of about 0.4M�, which corresponds
to BE ≈ 1059MeV. For a ballpark estimate while completely ignoring the purpose of the
liquid drop model, it seems that these results are credibly close.

Using the current model, it seems possible that strange stars exist. As there clearly
exist overlap regions where all assumptions for the underlying equations holds, it looks
like there is a degeneracy for a regular neutron star and a strange star. If the processes
involved in these transitions are indeed not limited, this could lead to high concentrations
of hyperons inside the star. Due to these conversions to hyperons, the volume of the star
is allowed to shrink by an expansion of the available number of quantum numbers.

One could now try to argue that from this argument it is clear why neutron stars
convert to black holes, but that is a bit too soon. One should try to find out what the
equilibria for the baryons are and how this affects the structure of the star. The model
used for this project was so crude that this conclusion would not be justified.

Additional notes that have to be made are that just one type of hyperon, the Λ0 baryon,
was considered in this model and that we only tested the model for one set of polytropic
parameters K and γ. It was found for example that the concentrations of baryons converge
to some percentage of the population for up to 1.2 times the nuclear mass.

The alternative model, where the presence of the baryons is varied throughout the
models both in concentration as a function of radius and ratio of hyperons to baryons,
would have been more appropriate. Using the Fermi equation, we would probably have
been able to give a better estimate of the actual masses and radii of these strange stars.

The intersections in the current M-R plot lie on a curve where hyperons can be formed
in the dense regions of the neutron star. If the trajectory of the configurations is followed
towards the end of the curve (from right to left), the concentration of Λ0 baryons will
increase. However, with just neutrons and lambda baryons, the volume of the star will
not shrink enough such that it becomes a black hole yet. This method does however
unreasonably assume that the density distributions of the strange baryons and the neutrons
are the same throughout the neutron star up to a multiplicative factor.
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11 Outlook

In the main part of this thesis, it has been assumed that there is only one type of baryon
present in the star. Whether it was neutrons, Lambda -, or Sigma Particles, this is of course
not a realistic version. One can argue however, that the actual solution is somewhere in
the middle. As can be seen in Figure 18, the binding energy per added baryon for Lambda
particles for this EoS is lower than that of neutrons. In a realistic scenario, the real binding
energy is probably in between these two extremes.

Figure 23: Hyperon concentra-
tions in Neutron stars for sim-
ilar central pressures. Taken
from: [35].

An argument can be made on the equilibrium con-
centrations of the particles based on known properties of
the baryons. The fact that the isospin of the Λ0 parti-
cle is zero for example, makes that it is probably more
prominent in the mixture than the Σ+ particle, which
has an isospin of 1. Their contributions can however not
be ignored, such that the equilibrium condition is, again,
somewhere in the middle of these extremes.

A nice next step in the process of finding whether a
hybrid star is an actual possibility is considering different
pressure-density relations, that also take into account
multiple phases at the same time. In other research, it
has been shown that the presence of multiple hyperons
at the same radii is not insignificant, see for example Figure 23 [35].

In this thesis, only the contributions of neutrons and Λ0 have been considered, where
the protons still have a significant contribution as well. If the protons would not be present,
the chemical potential would be too low for the neutron star to be stable, and it would
start to decay through the beta decay process. Also, the contributions due to e−, µ, Ξ and
possible pion and kaon condensates can be encorporated in a more sophisticated model.
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Appendices

A Solving the Tolmann-Oppenheimer-Volkoff Equations

A.1 Integrating the differential equations

The script below integrates the relativistic equation of mass conservation and hydrostatic
equilibrium iteratively using the Range-Kutta 4th order method.

1 #!/ usr /bin /env python
# Author : Leander van Beek

3 # Dependencies : Numpy, Matplot l ib , Python2 . 3
# Desc r ip t i on : So lve s the TOV−equat ions f o r a po l y t r op i c equat ion o f s t a t e .

5 # The po l y t r op i c eos can have a rb i t r a r y cons tant s s e t .
# The ode ’ s are so lved by a RK4O−i n t e g r a t o r

7

from f u t u r e import p r i n t f un c t i on , d i v i s i o n
9 import numpy as np

import matp lo t l i b
11 matp lo t l i b . use ( ’ agg ’ )

import matp lo t l i b . pyplot as p l t
13 import time

15 ###################################
# Def in ing cons tant s #

17 ###################################

19 G = 6.674 ∗ 10∗∗(−8) #dyne cmˆ2/gˆ2
c = 29979200000 #cm/ s

21

###################################
23 # Def in ing func t i on s #

###################################
25

de f RK4( x 0 , x f , de l ta x , y 0 , der iv , ∗add param ) :
27 ”””

Function RK4
29 So lve s ODE’ s numer i ca l ly accord ing to Runge−Kutta ’ s 4 th order method

31 x 0 ( f l o a t ) : S ta r t o f s o l v i n g i n t e r v a l
x f ( f l o a t ) : End o f s o l v i n g i n t e r v a l

33 de l t a x ( f l o a t ) : t imestep over x
y 0 ( f l o a t ) : I n i t i a l c ond i t i on y (x=0)

35 der iv ( func ) : Function that d e s c r i b e s the ode
”””

37

k1 = der iv ( x 0 , y 0 , ∗add param )
39 k2 = der iv ( x 0 + de l t a x /2 , y 0 + k1∗ de l t a x /2 , ∗add param )

k3 = der iv ( x 0 + de l t a x /2 , y 0 + k2∗ de l t a x /2 , ∗add param )
41 k4 = der iv ( x 0 + de l ta x , y 0 + k3∗ de l ta x , ∗add param )

43 f e s t ima t e = y 0 + de l t a x ∗( k1/6 + k2/3 + k3/3 + k4 /6)

45 re turn f e s t ima t e

47

de f rho (p , K, gamma) :
49 r h o l = (p/K) ∗∗(1/gamma)

return r h o l
51

de f e p s i l o n (p , K, gamma) :
53 r h o l = rho (p , K, gamma)

e p s i l o n l = p/( (gamma − 1) ∗ r h o l )

A SOLVING THE TOLMANN-OPPENHEIMER-VOLKOFF EQUATIONS 51



Leander van Beek On the possible existence of Quark Stars

55 re turn e p s i l o n l

57 de f dpdr (p , m, r , K, gamma) :
r h o l = rho (p , K, gamma)

59 e p s i l o n l = ep s i l o n (p , gamma, r h o l )
dpdr = −( r h o l ∗(1+ e p s i l o n l )+p) ∗ ( (m+4∗np . p i ∗ r ∗∗3∗p) /( r ∗( r−2∗m) ) )

61 re turn dpdr

63 de f dmdr(p , r , K, gamma) :
r h o l = rho (p , K, gamma)

65 e p s i l o n l = ep s i l o n (p , gamma, r h o l )
dmdr = 4∗np . p i ∗ r ∗∗2∗ r h o l ∗(1+ e p s i l o n l )

67 re turn dmdr

69 #def dpdr cgs (p , m, r , K, gamma) :
de f dpdr cgs ( r , p , m, K, gamma) :

71 r h o l = rho (p , K, gamma)
e p s i l o n l = ep s i l o n (p , gamma, r h o l )

73 dpdr = −G∗( r h o l ∗(1+ e p s i l o n l /( c ∗∗2) )+p/( c ∗∗2) ) ∗ ( (m + 4∗np . p i ∗ r ∗∗3∗p/( c
∗∗2) ) /( r ∗( r−2∗G∗m/( c ∗∗2) ) ) )

re turn dpdr
75

#def dmdr cgs (p , r , K, gamma) :
77 de f dmdr cgs ( r , m, p , K, gamma) :

79 #p , K, gamma = a t t r i b # unfor tunate ly , add i t i ona l parameters are passed
l i k e t h i s s i n c e

# the i n t e g r a t o r does not know how many opt i ona l arguments i t
g e t s

81

r h o l = rho (p , K, gamma)
83 e p s i l o n l = ep s i l o n (p , gamma, r h o l )

dmdr = 4∗np . p i ∗ r ∗∗2∗ r h o l ∗(1+ e p s i l o n l /c ∗∗2)
85 re turn dmdr

87 ###################################
# Ask and proce s s user input #

89 ###################################

91 pr in t ( ”Welcome to t h i s TOV−i n t e g r a t o r ! ” )
p r i n t ( ”This s c r i p t makes use o f the Range−Kutta 4 th order method . \n” )

93

p0 = input ( ”What i s the c en t r a l p r e s su r e o f the s t a r ( d e f au l t i s 5∗10ˆ34
dyne/cmˆ2) ? ” )

95 gamma = input ( ”What i s the po l y t r op i c exponent gamma = (n+1)/n ( d e f au l t i s
2 . 7 5 ) ? ” )

K = input ( ”What i s the p r opo r t i o n a l i t y constant ( d e f au l t i s 1.98183∗10ˆ−6) ?
\n” )

97

i f p0 == ”” :
99 p0 = np . array ( [ 5∗10∗∗ ( 34 ) ] )

e l i f p0 == ”array ” :
101 p0 = 10∗∗np . l i n s p a c e (30 , 50 , 100) #dyne/cmˆ2

e l s e :
103 p0 = np . array ( [ eva l ( p0 ) ] )

105 i f gamma == ”” :
gamma = 2.75

107 e l s e :
gamma = eva l (gamma)

109

i f K == ”” :
111 K = 1.98183∗10∗∗(−6)
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e l s e :
113 K = eva l (K)

115 #pr in t (”The cons tant s have been s e t ! \n p0 = {0:+e} \n gamma = {1} \n K =
{2:+e} \n ” . format (p0 , gamma, K) )

117 ###################################
# Setup i n t e g r a t i o n i n t e r v a l s #

119 ###################################

121 max km 1 = 13
max km 2 = 15

123 max km 3 = 21
r = np . l i n s p a c e (0 , np . log10 (max km 1∗10∗∗3∗10∗∗2) , 10∗∗4)

125 r = 10∗∗ r
r 2 = np . l i n s p a c e (max km 1∗10∗∗5 , max km 2∗10∗∗5 , 10∗∗4)

127 r 2 = np . log10 ( r 2 ) /np . log10 (20)
r 3 = np . l i n s p a c e (max km 2∗10∗∗5 , max km 3∗10∗∗5 , 10∗∗4)

129 r 3 = np . log10 ( r 3 ) /np . log10 (40)
r = np . concatenate ( [ r , 20∗∗ r 2 , 40∗∗ r 3 ] )

131 m = np . z e r o s ( l en ( r ) )
p = np . z e ro s ( l en ( r ) )

133 pr in t ( l en ( r ) )

135 f = open ( ”tovOutput/M−R. dat” , ”w+” )
f . wr i t e ( ”M R P0\n” )

137

f o r j in range ( l en ( p0 ) ) :
139

f 2 = open ( ”tovOutput/ p r e s s u r eP r o f i l e {0} . dat ” . format ( j ) , ”w+” )
141 f 2 . wr i t e ( ”# Pressure p r o f i l e f o r a neutron s t a r with K = {0} gamma = {1}\n

” . format (K, gamma) )
f2 . wr i t e ( ”Radius Density \n” )

143 ###################################
# Star t i n t e g r a t i o n procedure #

145 ###################################

147 t s t a r t = time . time ( ) # measure the time f o r the i n t e g r a t i o n proce s s

149 # The f i r s t s t ep s have to be made manually , because the re i s a s i n g u l a r i t y
f o r r=0

p [ 0 ] = p0 [ j ] # Set the i n i t i a l cond i t i on P( r=0) = p0
151 m[ 0 ] = 0 # Set the i n i t i a l c ond i t i on m( r=0) = 0

d e l t a r = r [ 1 ] − r [ 0 ]
153 m[ 1 ] = dmdr cgs ( r [ 1 ] , m[ 0 ] , p [ 0 ] , K, gamma) ∗ d e l t a r # Make the f i r s t s tep

by Euler ’ s approximation
p [ 1 ] = p [ 0 ] + dpdr cgs ( r [ 1 ] , p [ 0 ] , m[ 0 ] , K, gamma) ∗ d e l t a r

155

f a i l i = 0
157 pr in t ( ”The i n t e g r a t i o n proce s s has s t a r t ed ! ” )

f o r i in range ( l en (p) ) [ 2 : ] :
159 percentage = i / l en (p) ∗100

p r in t ( ” { 0 : . 2 f}% of the to ta l , r ad iu s now i s { 1 : . 2 f } km. ” . format (
percentage , r [ i ] / ( 10∗∗5 ) ) )

161 d e l t a r = r [ i ] − r [ i −1]
m[ i ] = RK4( r [ i −1] , r [ i ] , d e l t a r , m[ i −1] , dmdr cgs , p [ i −1] , K, gamma)

163 p [ i ] = RK4( r [ i −1] , r [ i ] , d e l t a r , p [ i −1] , dpdr cgs , m[ i −1] , K, gamma)

165 f 2 . wr i t e ( ”{0} {1}\n” . format ( r [ i ] , rho (p [ i ] , K, gamma) ) )

167 i f np . i snan (p [ i ] ) == True :
f a i l i = i

169 break ;
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171 t f i n i s h = time . time ( ) ;
d e l t a t = t f i n i s h − t s t a r t

173

f 2 . c l o s e ( )
175

pr in t ( ”For index i = ” , f a i l i , ” we have p f i n a l /p 0 = ” , (p [ f a i l i −1]/
p0 [ j ] ) , ” . I n t e g r a t i on s tops . ” )

177

pr in t ( ”Done ! Total i n t e g r a t i o n time : { 0 : . 2 f } s ” . format ( d e l t a t ) )
179

###################################
181 # Conf igure the p l o t t i n g #

###################################
183

p r e l = p/p0 [ j ]
185

f i g = p l t . f i g u r e ( )
187 f i g . s u p t i t l e ( ”M and R f o r $P 0 = { 0 : . 2E}$ dyne/cmˆ2 , $K = { 1 : . 3E}$ , $\

gamma = {2}$” . format ( p0 [ j ] , K, gamma) )

189 f i g . s ubp l o t s ad j u s t ( wspace=0.4)
frame1 = f i g . add subplot ( 1 , 2 , 1 )

191 frame1 . p l o t ( r [ : f a i l i ] / np .max( r [ : f a i l i ] ) , p r e l [ : f a i l i ] )
frame1 . s e t t i t l e ( r ” Pressure P( r ) , R={0: .2 f } km” . format ( r [ f a i l i ] / ( 10∗∗5 ) ) )

193 frame1 . s e t x l a b e l ( r ”Radius ( $r /R 0$ ) ” )
frame1 . s e t y l a b e l ( r ” Pressure $P(R) /P 0$” )

195 # frame1 . s e t x l im (0 , 18)

197 frame2 = f i g . add subplot ( 1 , 2 , 2 )
frame2 . p l o t ( r [ : f a i l i ] / np .max( r [ f a i l i ] ) , (m[ : f a i l i ] / (2∗10∗∗33) ) )

199 frame2 . s e t t i t l e ( r ”Mass M( r ) , $M(R) ={0: .2 f } M {{\ odot }}$” . format (m[ f a i l i
] / (2∗10∗∗33) ) )

frame2 . s e t x l a b e l ( r ”Radius ( $r /R 0$ ) ” )
201 frame2 . s e t y l a b e l ( r ”M ($M {\ odot}$ ) ” )

p l t . s a v e f i g ( ” tovOutput /{0} . png” . format ( j ) , bbox inches=” t i gh t ” )
203

f . wr i t e ( ”{0} {1} {2}\n” . format (m[ f a i l i ] / (2∗10∗∗33) , r [ f a i l i ] / ( 10∗∗5 ) , p0
[ j ] ) )

205

f . c l o s e ( )
207

e x i t ( )

scripts/solveTOV.py

A.2 Making an M-R plot of the results of the TOV-equations

The results of several central densities have been used to generate masses and radii for
sample stars in the last script. This script plots those results from the exported .dat file
using matplotlib.

#!/ usr /bin /env python
2 # Author : Leander van beek

4 from f u t u r e import p r i n t f un c t i on , d i v i s i o n

6 import numpy as np
import matp lo t l i b

8 matp lo t l i b . use ( ’ agg ’ )
import matp lo t l i b . pyplot as p l t

10
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de f M s (R) :
12 ”””

IMPORTANT
14 This func t i on i s des igned to re turn the Schwarzsch i ld mass in s o l a r

masses f o r a rad iu s in k i l omet e r s . I t ’ s a quick and d i r t y p l o t and i s
16 not f l e x i b l e in any way .

”””
18

M s = R/2.97
20 re turn M s

22 M, R, P0 = np . l oadtx t ( ”tovOutput/M−R. dat” , sk iprows=1, unpack=True )

24 r = np . l i n s p a c e (8 , 15 , 100)
M schwarzschi ld = M s( r )

26

f i g = p l t . f i g u r e ( )
28

frame = f i g . add subplot ( 1 , 1 , 1 )
30 frame . s e t t i t l e ( ”M−R plo t f o r Neutron s t a r s ” )

frame . s e t x l a b e l ( ”Radius (km) ” )
32 frame . s e t y l a b e l ( ”Mass ( s o l a r ) ” )

p l t . g r i d ( )
34 frame . p l o t (R, M)

#frame . p l o t ( r , M schwarzschi ld )
36 p l t . s a v e f i g ( ” tovOutput/MRPlot . png” )

scripts/plotMR.py

A.3 Determining the binding energies and baryon numbers

A configuration of a neutron star is picked from the generated dataset. From this config-
uration, the pressure-radius-density profile is retrieved, after which the baryon numbers
and binding energies are computed for all shells.

#!/ usr /bin /env python
2

from f u t u r e import p r i n t f un c t i on , d i v i s i o n
4 import numpy as np

import matp lo t l i b . pyplot as p l t
6 import time

from matp lo t l i b import rc
8

r , rho = np . l oadtx t ( ’ tovOutput/ p r e s s u r eP r o f i l e 0 . dat ’ , comments=”#” , unpack=
True , d e l im i t e r=” ” , sk iprows=2)

10 r = r [ : −1 ]/ (10∗∗2)
rho = rho [ : −1 ]∗ (10∗∗3)

12 c = 299792458 # m/s
G = 6.674 ∗ 10∗∗(−11) #N mˆ2/kgˆ2

14 M grav = np . z e ro s ( l en ( r ) )
M bind = np . z e ro s ( l en ( r ) )

16 m b = 1.672∗10∗∗(−27) # kg
N = np . z e ro s ( l en ( r ) )

18 N[ 0 ] = 1

20 f o r i in range ( l en ( r ) ) [ 1 : ] :
d e l t a r = r [ i ]− r [ i −1]

22 M grav [ i ] = M grav [ i −1] + 4∗np . p i ∗ r [ i ]∗∗2∗ d e l t a r ∗ rho [ i ]

24 N[ i ] = M grav [ i ] / (m b∗(1−G∗M grav [ i ] / r [ i ] / c ∗∗2) )

26 delta N = N[ i ] − N[ i −1]
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28 M bind [ i ] = M bind [ i −1] − delta N ∗m b∗G∗M grav [ i ] / r [ i ] / ( c ∗∗2)

30

M bar = m b ∗ N
32

f i g = p l t . f i g u r e ( )
34 frame = f i g . add subplot (2 , 2 , 1)

frame2 = f i g . add subplot (2 , 2 , 2)
36 frame3 = f i g . add subplot (2 , 2 , 3)

frame4 = f i g . add subplot (2 , 2 , 4)
38 frame . p l o t ( r /10∗∗3 , M grav /(2∗10∗∗30) , l a b e l=”Grav i t a t i ona l ” )

frame . p l o t ( r /10∗∗3 , M bar /(2∗10∗∗30) , l a b e l=”Baryonic ” )
40 frame2 . p l o t ( r /10∗∗3 , M bind /(2∗10∗∗30) , l a b e l=”Equation” )

frame2 . p l o t ( r /10∗∗3 , M grav−M bar , l a b e l=” D i f f e r e n c e p l o t 1” )
42 frame3 . p l o t ( r /10∗∗3 , np . log10 (N) )

frame4 . p l o t (np . log10 (N) , M bind∗c ∗∗2/N∗ (6 .242∗10∗∗ (12) ) , l a b e l=”BE” )
44

frame . s e t t i t l e ( ”Mass” )
46 frame . s e t y l a b e l ( ”M ($M {\ odot}$ ) ” )

frame . s e t x l a b e l ( ” r (km) ” )
48 frame . legend ( l o c=” best ” )

50 frame2 . s e t t i t l e ( ”Binding mass” )
frame2 . s e t x l a b e l ( ” r (km) ” )

52 frame2 . s e t y l a b e l ( r ”Binding energy /$c ˆ2$ ($M {\ odot}$ ) ” )
frame2 . legend ( l o c=” best ” )

54

56 frame3 . s e t t i t l e ( ”Baryon Number” )
frame3 . s e t x l a b e l ( ” r (km) ” )

58 frame3 . s e t y l a b e l ( ”$\ l o g {10}$ Baryon number” )

60 frame4 . s e t t i t l e ( ”BE per baryon” )
frame4 . s e t x l a b e l ( ”$\ l o g {10}$ Baryon number” )

62 frame4 . s e t y l a b e l ( ”Binding Energy (MeV) ” )
frame4 . s e t y l im ([−100 , 1 0 ] )

64 #frame4 . s e t y l im ([−1200 , 100 ] )
#frame4 . axh l ine ( y=−1115.683 , c o l o r=”r ” , l a b e l=r ”$\Lambda$”)

66 frame4 . legend ( l o c=” best ” )

68 p l t . show ( )

scripts/massPerBaryon.py
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