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Abstract

This work introduces background knowledge regarding Cloud Computing and presents the
concern for the lack of non-proprietary tools to monitor cost and waste in a generalized
manner on cloud deployments in the Virtual Machine as a Service (VMaaS) delivery model.
It then explores related works on Cloud Monitoring and describes already existing similar
tools. Requirements based on the problem at hand as well as the literature are elicited and a
service based on probes and an aggregator is designed. Finally, a tool for monitoring cost and
waste in the VMaaS service delivery model is presented to the reader and evaluated against
the requirements. Lessons on Cloud Monitoring tools and future work are presented to the
reader as a result of the evaluation.
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Chapter 1

Introduction

1.1 Problem Definition

1.1.1 Background Information

Cloud computing is an area of technology that is seeing considerable gains in usage among
businesses and individuals seeking to avoid the high startup costs of local computing [4].
The NIST definition of Cloud Computing describes the concept of Cloud Computing best by
defining it as, "a model for enabling ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g. networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal management effort
or service provider interaction." The definition goes on to indicate that this cloud model is
composed of five essential characteristics, three service models, and four deployment models.
Of particular importance are the three service models known as Software as a Service (SaaS),
Platform as a Service (Paas), and Infrastructure as a Service (IaaS). [16] In practice, IaaS
is often provided via a subtype of IaaS, Virtual Machine as a Service (VMaaS). This is
providing the use of what are known as Virtual Machines (VMs), defined as, "a software
computer that, like a physical computer, runs an operating system and applications." Virtual
Machines have configurations and run on physical machines whose resources are managed
by a host [24]. Their usage on public clouds is provided for a fee with a variety of pay
structures. Computing Clouds can be private, as in owned and managed by a private company
and have resources only available to that company and those they allow to use it, public
where a company allows use of the cloud to the public, usually for a fee, or hybrid, being a
deployment to a mix of public and private clouds.
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1.1.2 Problem

As cloud adoption rises so does the total cost to users. This means optimizations in terms
of cost and the waste-reduction that that implies become more significant in their effects.
According to RightScale’s State of the Cloud Report for 2018, "Optimizing cloud costs is
the top initiative again for the second year in a row for all cloud users (58 percent), which
is an increase over 2017 (53 percent)"[19]. This establishes a need for a tool that aids in
monitoring cloud systems and identifying waste. Waste in the context of this project refers
to the unnecessary provisioning of Virtual Machines, and can be identified by below an
acceptable threshold utilization of a VM for a sufficiently long time interval. In addition,
in clouds, public or private, monitoring is essential to maintain the health of the deployed
application, benefiting both providers and consumers [3] [8] [6] [17] [10]. This further
supports the need for a monitoring tool because minimizing waste is beneficial as well.

If cost and thus waste should be minimized then a metric for waste and a value for cost
needs to be defined. Once those parameters are defined, the question becomes, "How to
instrument the monitoring and visualization of cost and waste of applications deployed in the
Virtual Machine as a Service delivery model?" Specifically, the waste and cost of applications
deployed on cloud computing services need to be monitored so their waste can be measured
and visualized. By these means further action can be taken to lower waste and produce cost
saving.

1.2 Scope and High Level Solution

Despite this established need for a monitoring tool that focuses on cost and waste, no known
tool addresses this issue. There exists a multitude of papers and literature exploring and
surveying cloud monitoring in different aspects [8] [1] [15] [10] [6][17] [13] [27] [2]. As far
as the extent of this research can deduce, none of these explore generalized, non-proprietary,
waste-focused cloud monitoring. Therefore, a problem can be found in this absence.

In order to solve this problem with the generalized solution that it requires, a definition of
minimum functionality is required. A solution to this problem should be designed work on
any public cloud (or at a minimum any popular public cloud). This means not only should the
solution be deployable on any public cloud, but also that deployment is possible on multiple
different public clouds simultaneously. The solution collects data through what will be called
a probe and this probe should both have low overhead and be non-invasive to the the cloud
deployment being monitored. This means that resource usage of any probing solution should
be low in volume. Any monitoring solution, in this context meaning a method for monitoring
Virtual Machines, would itself increase utilization of the monitored instance and as such
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would affect the measurement of waste as well as potentially affecting the application being
monitored. High resource usage and invasiveness to the deployment being monitored would
defeat the purpose of the solution, considering the focus of the problem. Any monitoring
solution in a cloud deployment should be configurable. It should ideally allow the user to
configure things like resource-usage, categorization of data, etc. such that a unique solution is
possible for any user. The part of the solution called the aggregator should process data in a
way that all monitored instances should be distinguishable from eachother such that multiple
deployments are possible and the monitoring solution can distinguish not only that one
instance is different from another, but that an instance which is being monitored on a certain
cloud deployment should have its data stored separately from any other cloud deployment’s
monitoring data. This would be essential to properly monitoring and visualizing the cost and
waste of deployments.

For the purpose of the project, the probe should be compatible with any virtual machine
setup with a network connection. Of course, it isn’t necessarily possible to test all possibilities
so evaluation of probe success will focus on the main cloud providers: Amazon Web Services,
Google Cloud, and Microsoft Azure. Although, theoretically compatibility should be possible
with any cloud provider that hosts Virtual Machines with common Linux Distributions. The
reason for a desire for compatibility with many cloud providers is the current diversification
of clouds used by most users on the web right now. According to RightScale, "Companies
using almost 5 public and private clouds on average"[19]. This means that any tools that’s
monitoring public cloud hosted instances has to treat the use of a hybrid cloud for deployed
applications as a real possibility. As well, the emergence of Cross Platform APIs and the
need to use the features of exposed by multiple different cloud providers shines a light on the
demand for multi-cloud monitoring [21] [9]

1.3 Contributions

. This project presents a solution to the problem of monitoring Virtual Machine instances in
a way that their cost and waste, in addition to standard metrics of monitoring data, can be
recorded and visualized for users. The contribution of this project to the body of scientific
knowledge stems from the current lack of tools which meet the requirements of being: non-
proprietary, monitor Virtual Machines without regard for their host, and provide a focus on
cost and waste. In this way, not only will it be explored whether or not this can be achieved
in a manner that is in-line with what can be expected of a monitoring solution, but also
contributes as an example should others wish to create monitoring solutions with other foci.
To this end, materials related to this project can be found in the form of:
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• A code repository with supporting documentation located at https://github.com/a-d-spina-student/
waste-cloud-computing. This repository contains all code related to this project.

• An example of the project hosted at https://www.universalcloudmonitoring.com/.

• A thesis paper explaining and evaluating the project created.

1.4 Outline

This paper is final deliverable thesis manuscript consisting of:

• A summary of the state of the art on cloud resource monitoring with a focus on waste
and cost, including scientific papers as well as descriptions of current monitoring
solutions.

• An elicitation of requirements, system specifications, and evaluation of alternative
design options.

• A prototype implementation of the designed system and the accompanying testing that
it requires.

• Experimental evaluation and prototype updates and changes.

• A summary of the main findings of this work and identification of open issues as future
work.

https://github.com/a-d-spina-student/waste-cloud-computing
https://github.com/a-d-spina-student/waste-cloud-computing
https://www.universalcloudmonitoring.com/


Chapter 2

Background-Related Work

2.1 Literature

This literature review will cover four papers:

• Cloud Monitoring : A Survey [1]

• Costradamus: A Cost-Tracing System for Cloud-based Software Services [13]

• Modeling and Managing Deployment Costs of Microservice-Based Cloud Applications
[14]

• About Monitoring in a Service World [18]

These were chosen as relevant literature for their focus on either monitoring of cloud deployed
systems or a focus on the tracking of cost. The intention is to summarize their most relevant
points of discussion with reference to cloud monitoring. In this way, a baseline for cloud
monitoring and cost-tracing systems can be established.

2.1.1 Cloud Monitoring : A Survey

Cloud computing is used for internet-based services at an increasing rate. This increase
is driven by the affordability and ease-of-use of Cloud Computing services. Because of
this increase, the complexity of software deployed on the cloud is also increasing to match.
Monitoring of these systems is essential to maintain them and therefore a monitoring solution
becomes necessary. Monitoring cloud-based systems is a less-developed field in comparison
to monitoring traditional systems because of the remote nature of the systems themselves.
The article seeks to discuss why Cloud Monitoring might be needed and then also define the
metrics which might be monitored. These metrics might include:
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• Computation Based metrics such as:

– Number of requests per second

– Central Processing Unit (CPU) Speed

– CPU time per execution

– CPU occupation of a Virtual Machine (this is useful when monitoring many
Virtual Machines)

– memory page exchanges per execution

– disk/memory throughput

– throughput / delay of message passing between processes

– duration of specific predefined tasks

– response time, VM startup time or other VM related timings.

• It may also include Network-based metrics such as:

– round-trip time

– jitter

– throughput

– packet loss

– available bandwidth

– capacity

– traffic volume

The article discusses that Cloud is more complex to monitor than traditional server farms
(Grid Computing), mostly because of the level abstraction that is necessary when providing
Cloud Computing services to a customer. It eventually goes on to discuss some current
(as of early 2013) services that seek to achieve a result similar to what is described in
the article. Considering the pace of technology the 5 year difference (2013-2018) makes
this comparison obsolete. The article elicits a few important requirements for a cloud-
based monitoring system. It must be: scalable, elastic, adaptable, timely, autonomous,
comprehensive, extensible, non-intrusive, resilient, reliable, available, and accurate. A
scalable monitoring system is able to handle a large and increasing number of probes without
issue. This is important because the potential number of deployment instances can be
very large and consume a lot of resources. A monitoring system is elastic if it can handle
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monitoring very dynamic resources such as instances being created and destroyed. A probe is
adaptable if it avoids hogging resources of the system it is monitoring when those resources
may be needed by the monitored system to perform its task. A probe is timely if data
arrives to the consumer in a time that is reasonable for intended purposes. A monitoring
system is autonomous if it self-manages and distributes resources without challenge to
users. Comprehensiveness implies that the probe supports many different resources and
systems to be monitored. An extensible monitoring system allows the system to be extended
to new functions. The system should not be intrusive, where intrusiveness would require
modification to the system or resource being monitored. A monitoring system is resilient if
the user can trust it to to continue even after component failures. A reliable system performs
required functions under normal conditions for a period of time and an available system
handles user requests when they are made. Finally, an accurate system provides monitoring
data that is as close as possible to the real value. These requirements, although relatively
abstract, provide a basis for requirements of a monitoring solution in a general sense and as
thus are adopted as general requirements for a monitoring solution to be designed by this
project.

2.1.2 Costradamus: A Cost-Tracing System for Cloud-based Software
Services

The article about the monitoring solution: Costradamus [13] focuses on the cost of serverless
computing. It begins by discussing the growth of serverless computing as an architecture to
reduce costs for development and operations and the pay-per-use cost that has accompanied
cloud computing services. Usage and pricing models for popular public cloud providers,
although accurate, lacks specificity when it comes to usage statistics and thus cost and
waste of resources. Costradamus is specifically interested in solving this by providing per-
request cost-tracing for applications based in cloud services such that users can optimize their
deployments using this improved cost-awareness. This is the motivation for this is ultimately
lowering waste and improving profit margins.

Based on their motivations, the writers define Software Service Cost Model Metrics
which they use and are also useful to consider for anyone considering similar work. These
include the Marginal Request Cost which is calculating the cost of any invocation of a
request. It can also be broken down into cost per capacity type. The Marginal Request Cost
is calculated by the units of computation used multiplied by the cost of one of those units.
This is adaptable to other monitoring models. Finally, they define three types of waste to
consider:
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1. Metering Amount Waste : describes the difference between metered and measured
consumed amount. For example, 68MB of memory is metered but never used.

2. Provisioning Duration Waste (PDW): Time that could be used for computing invoca-
tions of requests that isn’t used.

3. Provisioning Amount Waste : Similar to PDW, the difference between how much
computing power was provided versus how much was actually metered as used.

All these are important metrics when designing a monitoring system focused on cost and
waste. These definitions provide a more specific definition of waste than that provided
in Section 1.1.1 by breaking down unnecessary provisioning of Virtual Machines into the
different ways provisioning can be necessary and thus waste created.

The creators of Costradomus also state non-intrusiveness as a design goal, something that
can be desired in all types of monitoring systems. They go on to explain how they designed
their experiments and evaluations although those are not necessarily relevant to this project.

2.1.3 Modeling and Managing Deployment Costs of Microservice-Based
Cloud Applications

The important discussion of this study is how the model calculates cost. In [14] the authors
used a Graph-Based Cost model in their implementation. This involves many parts and
describes different costs that can be modeled. The total deployment cost is the sum of
operating each individual service in the application. The model sees service quality as
constant, so the service scales for higher loads and costs more as a result, resulting in a linear
function to define cost per request. The metrics for this include four cost factors : compute
costs (payment for CPU time), per request payments, costs of input/output operations, costs
of additional operations (eg. elastic IP addresses). While in theory costs should be linear per
request, spinning up new Virtual Machines leads to jumps where the cost per request is higher
and then levels out. The overall shape is linear, but those jumps lead to inefficiency. The
graph model itself models service call graph with a weighted directed acyclic graph, where
the graph represents the paths a request can take between microservices and the weights
represents the likelihood of a request needing to use that path. The service cost model has
functions that represent the total operations cost in a given time period. This sums the total
cost of services and depend on the type of service. Lambda-Backed Microservices, a model
represented by "a Microservice built on top of so-called ’serverless’ cloud services"[14,
Page 2] are independent of eachother and their cost is simply a sum. Instance-Backed
Microservices, any microservice defined by the need "to carry out the actual computation,
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and to implement autoscaling and elasticity, the service uses a pool of backing instances of
varying size."[14, Page 2] Instance-Backed Microservices need a per-request load factor for
each endpoint. The total cost is a sum of all other costs and using these the total deployment
cost can be calculated. Using "inward-facing workload" the system can calculate how many
requests are being made to the system from outside. This can then calculate from these
outside requests the likely amount of load inside the system resulting from these calls. This
load can be calculated from previous data or presented for different assumed load levels.

Although the scope of the project (CostHat) developed for this article is much more fine
grain in its attempt to monitor cost by attempting to monitor the costs of specific request to
an API, it does represent an attempt at calculating costs of services deployed in instances,
albeit with a different focus. This is a useful reference point when considering the cost of
running and monitoring Virtual Machine instances.

2.1.4 About Monitoring in a Service World

Monitoring is needed at many different levels of abstraction. These can range from high-level
monitoring which provides information about the status of the virtual platform to low-level
monitoring done by the provider to collect specific hardware, operating system, middleware,
or network infrastructure information. This monitoring data, once collected can be used for a
variety of uses. These include:

• Adaptation Actions: Adapting and reconfiguring the system or resource usage to
provide the service or provide the service more efficiently.

• Flexibility Support: Allowing the service to support different variable of load, service,
and service type.

• Awareness Support: Ensuring the system data is visualized to an extent that allows the
human users to interact with it naturally.

Any solution to the monitoring problem should consider these use-cases when attempting
to visualize monitoring data with a focus on cost and waste. There should also be a clear
definition of not only what to monitor, but also how to monitor deployments. Certain data
may be not be important to some users and its collection would affect the efficiency of the
monitoring solution. This is part of a discussion of the efficiency and effectiveness of a
monitoring solution and how to balance these two often mutually exclusive qualities. This is
important because this balance is something that must be decided by any monitoring solution
and this project will attempt to seek a solution to this problem.
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2.2 Current Solutions

For reference, a small summary of some of the major cloud monitoring options has been
provided. This covers the basic functionality of these solutions

2.2.1 Cost Monitoring Through Provider Dashboards

These solutions are examples of provider-specific monitoring solutions for Virtual Machines.
These are ultimately the final authority in monitoring Virtual Machines because they provide
the final cost to the user and their external monitoring should be much more accurate than
any internal monitoring solution because of are the only tools

Azure Monitor

https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-overview-azure-monitor
Microsoft Cloud Monitoring offers monitoring services for its cloud solutions. Through the
Azure Portal users can view basic monitoring data from active virtual machines and services.

Amazon CloudWatch

https://aws.amazon.com/cloudwatch/ Amazon Cloudwatch monitors any Amazon Web Ser-
vices resources and applications. These provide real time metrics and allow user-defined
rules for alarms based on this data. The user can also choose which metrics they wish to see.

Google StackDriver Monitoring

https://cloud.google.com/stackdriver/ Google StackDriver Monitoring offers monitoring for
Google Cloud and Amazon Web Services deployments which is a multi-cloud feature not
common on proprietary monitoring services.

2.2.2 Cost Monitoring Through Third-Party Applications

AppNeta

https://www.appneta.com/ AppNeta offers integrated monitoring solutions for private, public,
and hybrid clouds as well as many other things. It is however unfortunately proprietary and
its use and implementation not publicly available, making it not an alternative to what’s
trying to be achieved by this project.

https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-overview-azure-monitor
https://aws.amazon.com/cloudwatch/
https://cloud.google.com/stackdriver/
https://www.appneta.com/
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2.2.3 Cost Monitoring Solutions Through Additional Instrumentation

NAGIOS

https://www.nagios.com NAGIOS is a current solutions for monitoring. It monitors appli-
cations, services, operating systems, network protocols, system metrics, and infrastructure
components all within one tool. All this information is provided to a singular centralized web
interface in order to best view the status of the things being monitored. Although NAGIOS is
an interesting and well-fleshed-out solution, it is not quite as lightweight and does not have
the focus on cost and waste that a potential solution to this problem requires.

NetData

https://github.com/firehol/netdata This is an open-source solution. It works by hosting the
monitoring service on the instance being probed. In this way probe data is collected by
physically viewing the site. While objectively successful at what it aims to do, this tool does
not provide the lightweightness desired for a monitoring solution or the focus on cost and
waste.

Grafana

https://grafana.com/ Grafana provides data visualization and aggregation for monitoring data.
This data is provided by the user via the method of their choosing. This is an interesting
dashboard example, although not in-line with the requirements for this project.

https://www.nagios.com
https://github.com/firehol/netdata
https://grafana.com/




Chapter 3

Requirements and Design

3.1 Requirements

In addition to the general attributes of a monitoring solution which can be drawn from the
literature, particularly in Section 2.1.1, specific requirements can be elicited based on what is
already understood as a high-level solution, the related works, and the scope of the project.
These requirements can be split into requirements for a probe, representing a solution for
collecting data from monitored instances, a need for which is established in Section 1.2, and
requirements for an aggregator, representing the need to process collected monitoring data
into human-readable representations, the need for which is established in the same Section
1.2. These two parts are not necessarily distinct, although they can be. Other requirements
not related to these two parts can also be elicited separately, particularly if they are more
abstract.

3.1.1 Probe Requirements

• The probe should be universally compatible within certain restrictions. The probe
should be functional on all common cloud providers and should at least be deployable
to Linux Virtual Machine types on these public clouds.

• A probe is associated with a certain deployment - a deployment being any software
that has been deployed to a cloud provider for hosting purposes. A user can have
many different applications or parts of an application deployed to cloud-based Virtual
Machines - a computer that runs an operating system, but entirely in software. It is
key that users can probe these separately and the data is properly associated on the
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aggregator - the application that takes probe data and processes it - with a specific
application deployment.

• A probe in an instance of a deployment can be differentiated from another instance of
the same deployment. This is essential because different instances of an application
deployment can have different usages. One of the key aspects of the project is to
ensure that a user can properly cost-trace their deployment. If a certain instance is
contributing to waste that is something that the user should be aware of.

• Probe data should be considered sensitive and secured accordingly. Although the
intention is that the software providing this cost-monitoring, waste-calculating service
is open source and free to use, the applications being monitored might be proprietary
and malicious users should not be able to intercept and use data being sent from
the probe to the aggregator. Since interception can not be guaranteed to be avoided,
encryption - the process of converting information or data into a code - should be used
to ensure the data can’t be used.

• The probe should be configurable, but easy to use. When a probe is embedded in an
application instance, although configuration is required in order to accomplish other
requirements, it is necessary that the probe be easy and quick to setup in order to
ensure monitoring is available to the largest common denominator of users. Part of
this requirement also includes the requirement to be non-intrusive. This is somewhat
of a subjective requirement, but should be considered nonetheless.

• The probe should strike a balance between efficiency and effectiveness. The probe
itself uses part of the Virtual Machine and is, in a sense, itself waste; should the rest of
the application be perfectly optimized already. As such, a decision should be made on
how much computational power and/or network capacity the probe should use while
still ensuring the data is effective and usable. This can also possibly be configurable.

• Critically, the probe should collect utilization statistics on the monitored system. The
statistics collected can vary in nature, but should include some of either data metrics
such as: CPU speed, CPU utilization, disk throughput, system up-time, memory
utilization, or network based metrics such as jitter, packet loss, traffic volume, etc. [1]
[7] [22] [11] [23] [3].
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3.1.2 Aggregator Requirements

Although a specific network topology - the arrangement of the elements of a communication
network. - has not yet been decided, the way a potential user interacts with the service will
involve data being served to the client in someway or another. As such requirements for such
a service can already be elicited:

• The aggregator should provide some visualization tools for cost and waste, itself. One
of the key parts of the system is its ability to visualize cost and waste for a potential
user. As such multiple visualization options with different foci should be designed.

• There should be some kind of authentication system in order to ensure integrity of data
and separation of user data. Ideally this authentication system should be easy-to-use
and non-intrusive, avoiding barrier-to-entry.

• All data should be communicated with a protocol that is reliable enough to maintain a
considerable level of data integrity.

• The aggregator should store probe data so it can be used later, but also such that it
is separated by user to avoid data being accessed by users who don’t have proper
permissions.

3.1.3 Other Requirements

• The system should be open-source and extensible.

3.2 Design

3.2.1 Network Topology

Considering the multitude of requirements for the desired system a network topology can be
considered. A network topology is "The specific physical, i.e., real, or logical, i.e., virtual,
arrangement of the elements of a network." [5]

Point-to-Point

Also known as peer-to-peer, this network topology is favoured for this maximally distributed
nature. A potential application of this network topology would likely see probes communi-
cating between each other. It could also be made such that no central server service would
be required and as such reduce development load and cost to the service. This is a sizable
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Fig. 3.1 A basic graphic of a mesh topology

Source : Wikipedia[25]

advantage for this network topology. Unfortunately, there are also considerable disadvantages
to this choice, most of which are issues with the implementation of cloud services that make
such a topology difficult, rather than issues with the topology itself in theory. The abstraction
provided by cloud services means that it becomes extremely difficult to communicate, not
just between Virtual Machines on the cloud service, but also Virtual Machines across cloud
services. This might be an obstacle that’s possible to overcome given enough effort, but
issues might arise if it were desired to eventually expand the system to work with something
like Docker containers or just issues with firewalls interfering with outward communications.
The second downside to a peer to peer network is that with all the computation and storage
happening in the probe the efficiency of the probing system itself drops considerably. A lot
of computational cost is placed on the user’s application. Considering the final objective of
such a monitoring system is to reduce cost and waste, adding a considerable amount in order
to achieve that seems counterproductive. Any topology of this type would be envisioned as
a partially connected mesh topology where each node only is connected to log2(N) other
nodes to the end that all Nodes are connected through each other.

Mesh

A mesh version of the network would operate very similarly to the peer to peer system and
could be even considered a variation of such, except with every peer knowing every other
peer directly. Such a network can be disqualified on the fact that it would reduce efficiency
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Fig. 3.2 A basic graphic of a star topology

Source : Wikipedia[26]

even more because of its poor scaling. The number of connections in such a topology would
be sumN = N(N−1)

2 . Its very clear that with scaling sumN becomes very large very quickly
and waste would become very large. The failsafe abilities of such a network are not worth
the cost for the application in question. Other topologies similar to mesh include Daisy
Chain and Ring. These don’t have the issue of scalability as a standard mesh, but also have
very limited failsafe ability and no advantage for the system in question and as such are not
considered. A basic mesh topology is visualized in Figure 3.1.

Star

A star network in this system would involve all probes reporting to a central server. This is in
terms of complexity among the least complex options. By reporting data to a central server,
most of the work is placed on this central server which provides the data aggregation service
and probes are therefore able to be much more efficient. It also provides a central address for
potential users to access data. The obvious downside to such a design is the centralized nature
itself. Should the central server fail in the best case scenario there’s significant downtime.
This stops not just users from using the data, but also stops probes from reporting their
data. This could cause lots of data to build-up in the probes and possibly cost to the users’
application deployments. As well, when the probes finally can report to the central server the
high usage to transmit so much data could cause another failure. As such, a topology with a
single point of failure should be avoided. A basic star topology is visualized in Figure 3.2.
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Hub and Spoke

A hub and spoke topology expands on the star topology by essentially horizontally scaling
the central server and providing redundancy. Many servers as instances of the central server
handle probe post requests. Although this design is not entirely failsafe, it is a significant
improvement over strict star design for not just its failsafe ability, but also scalability. The hub
can be scaled horizontally to add more servers as needed to meet load. Although, scalability
is not a central concern for the system in question, a topology that allows for easy scalability
is always a plus. The minimal negative attributes and considerable amount of advantages
makes hub and spoke the optimal choice for this system.

Fig. 3.3 Probe sends message to the server to notify server of it’s existence

3.2.2 Protocol Design Considerations

Considering the network topologies discussed in Section 3.2.1 the hub-and-spoke topology
becomes the optimal choice for the aggregator probe relationship because it provides the
low probe-side overhead - cost or expense - required for low waste as well as the simplicity
of expansion to future non-Virtual Machine-specific applications and acceptable level of
reliability necessary for the project-at-hand.

Data Association

The most apparent issue when it comes to associating data with the correct deployment is the
issue of multiple probes reporting data for different instances of the same deployment. This
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situation would be by design, but would require careful consideration to differentiate probes.
A solution shown in Figure 3.3 uses a dateTime (at parameter representing a specific date
and time), authKey (a parameter representing a key used for authentication) combination in
order to uniquely identify a probe. This combination can be sent in any data report. There is
of course the possibility of identification collisions if probes use the same dateTime. The
dateTime can be made accurate to a level (such as nanoseconds) that collisions become
extremely unlikely if collisions become too common.

Data Security

In order to ensure integrity of data the probe data will need to be encrypted as interception
is always a possibility in any network. A simple solution to this problem is embedding a
public key in every probe with the intention of using RSA encryption. The matching private
key to this public key will be stored by the aggregator and kept secret. Access to this private
key should be regulated through the use of a vault software to ensure it is never exposed to
malicious users. It is possible to have public/private key pairs for each application, but it is
probably unnecessary as there’s no reason for the private key to ever be exposed to any of
the users intentionally. A solution to this issue already exists in the form of HTTPS. This
protocol uses standardized protocols to distribute and encrypt packets using RSA encryption
and as such would make an ideal candidate for security.

Push vs Pull

There exists two possibilities for how to transfer the data from the probe (the data creator)
to the aggregator (the data consumer). One is the pull method: where the data consumer
requests that the data creators send their data when it the data consumer wants it. The second
is the push method: where data creators send data to the consumers when they are ready to
do so. Both of these methods have their strengths and weaknesses and even a combination
of them is possible. The pull method allows the aggregator to pull data when it needs it
and thus ensure that data is not sent when it does not have the resources available to handle
that data. The push method does not have this advantage, but it does have a significant
advantage that isn’t necessarily related to efficiency. The push method means that the data
creator needs to know the location on the network of the data consumer, but without a hybrid
approach, the reverse is not necessary. This is key when there are a potentially very large
number of probes on the network, being created, being deleted, effectively moving in some
scenarios. This makes keeping track of the probes a difficult prospect for the aggregator
should it want to know the positions of the creators. On the other hand, the aggregator will
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ideally always be located in the position it specified to the probes at the time of their creation.
This makes the push method more ideal. As well, the use of only the push method and not
some form of a hybrid push/pull method means that the probes can be extended to even more
virtualized deployments (eg. docker containers) without issue in getting the data delivered to
the consumer. As such, only a data push will be implemented for this design.

Reliability

Reliability becomes an issue when a lot of data is being transfered, and especially when
the life if the data producer is relatively fleeting. Although it could be argued that some
lost application monitoring data is acceptable because the data is non-critical any lost
data degrades the overall integrity of the remaining data. As such, data loss should be
avoided and reliability of probe data arriving at the aggregator considered a priority. For
protocol considerations to this end, research in Internet of Things draws many parallels.
The discussion for Internet of Things protocols involves balancing tradeoffs in reliability
and resource constraints. A paper on reliability in the Internet of Things [20] evaluates two
protocols and concludes that while one protocol is more reliable and more costly, whereas
the other protocol is less reliable, but also less costly, ultimately the choice of protocol comes
down to the importance of reliability vs cost. This same consideration must be taken in
this project. The increased latency of the more reliable solution does not affect this project
significantly and as such for the purposes of this design reliability trumps cost, as probes are
embedded in powerful-enough Virtual Machines, but an evaluation of the probe’s inherent
waste might indicate an alternative choice is necessary for future implementations.

3.2.3 Probe Design

Any design for the probe must first take into consideration the requirements for the probe
elicited in Section 3.1.1. In order to deal with the probe uniqueness problem two methods
are considered. Firstly, a probe will be associated with an application via a key. This key is
called authKey in Figure 3.3. This allows a probe’s data to only be associated with a specific
application deployment when the data is aggregated by the aggregator. This solution is part
of the probe’s design. It is not sufficient to differentiate probes on its own, but the remainder
is solved in the application’s protocol.

In order to guarantee an optimal balance between efficiency and effectiveness a config-
uration for dataInterval will be provided when the user creates the probe script as seen in
Figure 3.4. The idea behind this value is that it will set the interval at which the probe gathers
data from the system. POST data from the probe to the aggregator will have its time interval



3.2 Design 21

Fig. 3.4 User requests a probe script from the server

adjusted according to this dataInterval value. This way the user decides the balance between
effective and efficient that suits their needs.

In order to fulfill and extend non-intrusiveness to the user the probe will be configured to
allow it to run without user intervention and continuously. This means that a user will have
the option to place it as a startup application using the method of their choice and have that
probe start when the image it is embedded in also starts. This makes the probe easy-to-use.

3.2.4 Aggregator Design

The aggregator’s protocol is in fact the hub-and-spoke topology as per the designed protocol.
However, when serving data to users who request it the aggregator takes on more of a
server-client relationship. Therefore, it can be considered that the aggregator is also a server.
This server has requirements not just for dealing with probes, which is mostly considered
part of the protocol design, but also for what kind of information it provides to clients.

One of the server’s main requirements is that it visualize data for users. In order to
visualize the data the aggregator is provided by the probes in a way that represents waste and
cost over time it is probably best to graph the data. This would be done on user request as
seen in Figure 3.5.
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Fig. 3.5 User requests graph, aggregator generates graph

Multi-tenancy

Multi-tenancy "refers to a software architecture in which a single instance of software runs
on a server and serves multiple tenants"[12], whereas a tenant "is a group of users who
share a common access with specific privileges to the software instance" [12]. Multi-tenancy
will be a necessary facet in order to ensure integrity of user-data within the database. All
applications and data will be stored in this database and an overlay of the database layout
can be represented by Figure 3.6.

As any user will need to be safely authenticated, authentication for the aggregator will be
done through a third-party authentication provider to limit local security issues. The token
and associated user data will be stored in a aggregator-side database as well as the user’s
browser session in order to facilitate easy-use.

3.2.5 API Design Considerations

An API could be a useful part component to the monitoring solution. Although not strictly
critical to the monitoring itself, it could provide valuable access to users in order to access
the collected data for further processing or private storage. A well-implemented API could
be integrated into the solution for delivering visualized data in consumable chunks if such an
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Fig. 3.6 A basic design for a database.
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Fig. 3.7 The process of a post request to the API.

optimization were to be implemented. A process of a post request to an API can be seen in
Figure 3.7 and would operate, or by synonymous to, depending on the implementation of the
service itself, the methodology for processing data for visualization.

3.2.6 Architecture

All subsystems considered, the overall system would operate like Figure 3.8. In this it can be
seen that the probe is embedded in the Operating System with whatever application is being
monitored. This Operating System is contained within the Virtual Machine. The Probe has
local storage which it can use in case of connection failure. If connection exists, the probe
can communicate the data it collects to the Server which then stores or retrieves that data
from the database.
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Fig. 3.8 A preliminary and basic design for a monitoring solution as a service.





Chapter 4

Implementation and Evaluation

4.1 Implementation

A code repository for this implementation is located at https://github.com/a-d-spina-student/
waste-cloud-computing. This repository contains information on how to use the tool as well
as

4.1.1 Probe

In Section 3.1.1 it was decided to make the probe as universally compatible as possible. As
such, only simple bash commands such as cat/ grep/ sed/ curl were used in the hope that
the majority of VMs running Linux Operating Systems would be able to run the probe script.
The probe script itself simply collects the data from the system and sends it via curl to the
aggregator. It also sends useful tokens to the aggregator to help segregate data points.

An important feature of the probe is its ability to store data locally in a file if for some
reason a connection fails to establish with the service. It will continue to store these data
points and retry sending them as long as the network fails. In this way, when the network is
established again the aggregator will have up to date information about the instance being
probed. The probe gathers data as seen in Listing 4.1. The full code can be seen in the
appendix in Section 5.2.

https://github.com/a-d-spina-student/waste-cloud-computing
https://github.com/a-d-spina-student/waste-cloud-computing
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Listing 4.1 An example of a generated bash probe

#!/bin/bash

#Gather new data
memFree=$(awk ’/MemFree/ {printf( "%f\n", $2)}’

/proc/meminfo)
memTotal=$(awk ’/MemTotal/ {printf( "%f\n", $2 )}’
/proc/meminfo)
MEMORY=$(free -m | awk ’NR==2{ printf "%.2f",$3*100/$2 }’)
#Shows memory usage without buff/cache included
diskSize=$(df --output=size -B 1 "$PWD" |tail -n 1)
diskUsed=$(df --output=used -B 1 "$PWD" |tail -n 1)

DISK=$(awk "BEGIN {printf \"%.2f
\",${diskUsed }/${diskSize }*100}")

CPU_usage
CPU=$?
UUID=$(dmidecode | grep -i uuid | awk ’{print $2}’ |
tr ’[:upper:]’ ’[:lower :]’)
TIME=$(date +%s)

4.1.2 Aggregator

Technologies

The aggregator was made using simply NodeJS (v10.8.0) with Express (v4.16.3) and some
extra libraries such as PassportJS (v0.4.0) and Mongoose (v5.2.6). The aggregator commu-
nicates with a MongoDB (v3.1.1) database.

Service

An example of the project hosted at https://www.universalcloudmonitoring.com/. From the
homepage shown in Figure 4.1, through the menu, users can access the View Profile page for
profile management where they can add applications and images of those applications they
want monitored. A probe script can be generated based upon these parameters. Also, users
can view data they’ve collected by accessing the View Data page. Users can also login and
accessing protected pages requires a login.

https://nodejs.org/en/
https://expressjs.com/
http://www.passportjs.org/
http://mongoosejs.com/
https://www.mongodb.com/
https://www.universalcloudmonitoring.com/
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Fig. 4.1 The homepage of the service.
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Fig. 4.2 An example of probe data displayed to a user. One plot is zoomed for added detail.

Visualization

Visualization of data is accomplished via the Plotly (v1.0.6). Figure 4.2 shows the visualiza-
tions available. Visualizations include a visualization over time of Virtual Machine utilization
and a breakdown of cost and waste for each Virtual Machine. These are grouped by image
and then by application.

Data Aggregation

When the aggregator, which is implemented as a server, receives a data point from a probe it
simply stores it in the database of data points. All data is stored in a cloud-based database
which the service maintains a connection to. This database can be substituted for a locally-
based one or any other cloud-based database. This provides greater flexibility for users
seeking to deploy the created aggregator service.

When a user requests information on certain images they have registered, the aggregated
queries the relevant data points and runs and algorithm to determine the information needed
for the user. The algorithm runs in the following way and expressed visually in Figure 4.3:

1. Sort queried data points by time.

2. Add data points to buckets based on their associated image.

https://plot.ly/javascript/
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Fig. 4.3 A visualization of the algorithm for processing monitoring data

3. For each image bucket, sort data points into buckets based on their Universally Unique
Identifier (UUID).

4. For each UUID bucket

(a) Move through the data points that are sorted by time and keep a running average
of response time

(b) When there is a gap in response time from the probe that exceeds a set multiple
of the average response time, consider that period a dead period and calculate if
the dead period ended a billing time unit, calculating cost accordingly.

(c) Start a new billing time unit if the previous one was ended.

5. Calculate all metrics on a per instance basis and send sorted data package to the user.

In this way data points are processed in a linear way and served to the user. Another important
algorithm to discuss is the way cost is calculated. For the purpose of this system Billing Time
Units (BTUs) are set at periods of 60 minutes. This is a limitation of the system as BTUs can
vary in length, but the dataset being used for known provider costs does not specify them.
When the previous algorithm is processing per-instance data, the cost is calculated by finding
these Billing Time Units and adding to the total cost for them. A BTU starts when the first
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Fig. 4.4 How to manage a user’s profile in the service

data point is received. No cost will be calculated unless it is found that a probe has stopped
reporting. This can also be the last probe ping. The time since the most recent probe death is
divided by billing time units and the total cost is increased. If there is a period in that billing
time unit for which the probe indicated the instance was dead, but because of the size of
a unit the cost was larger than the specific uptime would suggest, this is considered waste
and is added as such. As well, if the CPU usage is below some threshold of utilization, for
example just system CPU utilization as the majority, this is considered wasted time as well
and the cost of this time will be added to the waste calculation. All this processed data is
packaged into a data package and sent to the client.

Profile Management

Users who sign in via third party authentication with Github have data saved for their
monitored applications. The profile management page of the service can be seen in Figure
4.4. They can register new applications they want to monitor as well as new images they
have saved that are part of that application that they want to monitor. In this way they can
monitor multiple parts of the same applications separately. As well, once an image is created,
a probe script can be generated for it. The user selects the type of instance that is running
and then the service finds the data for that instance and inserts it into the final script. In this
way accurate cost reporting can be achieved.

https://github.com/
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Fig. 4.5 Generating a probe for an image

As well, users can select the ping rate of their probe. Higher ping rates will mean more
accurate data and thus effective data while lower ping rates will mean more efficient but less
accurate data collection.

4.2 Evaluation

The requirements of a monitoring system that were elicited in Chapter 2 were both functional
and non-functional. This means that some requirements were of the functions that a moni-
toring system would have to perform to meet the specifications of the the project and some
requirements were qualitative of the system itself.

4.2.1 Functional Requirements

Probe

Probes are associated with different deployments by allowing users to create images in their
profile management. These images represent versions of deployments that will be monitored.
By creating an image, the user is specifying that any probe generated for that image will
report that it is of that deployment. This obviously leaves room for user error should users not
update images when new versions of the deployment are created, but the system is functional.

Probes generated for the same image and instance type identical in implementation. In
order to avoid multiple instances of the same image/deployment returning combined data
a UUID is used to distinguish one instance from another. Major cloud providers guarantee
that UUIDs of their Virtual Machines they host will be unique, but this uniqueness is not
guaranteed across multiple platforms. As such, universal and generalized monitoring is
possible, but the possibility of UUID collision exists across a hybrid cloud. The low collision
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rate on UUIDs makes this collision extremely unlikely, but it can not be guaranteed that the
VMs would be uniquely identified in this use case.

Probe data is secured using RSA encryption because the service uses HTTPS. Any curl
requests will first be encrypted with the service’s public key before sending and any data
viewed by the user will do the same. In this way data is secured. If a user wanted to host
the service for their own uses, a connection through HTTPS would be necessary in order to
guarantee privacy and security.

Probes were made configurable by allowing the ping rate/instance type to be set by the
user. They are simple to use because the service generates the probes for the user. As such,
the user simply has to follow a set of instructions to place and activate the probe within a
VM image.

Because probes are configurable in their ping rate, the balance between efficiency/ef-
fectiveness is effectively limited by user choice alone. There is some limit in terms of
network/service capacity in terms of the level of effectiveness that can be achieved, but
should the user need to shrink the load of the probe itself the ping rate can be increased to a
theoretically infinite level to lower monitoring load, although the drop off in effectiveness
would match the increase in efficiency. With such a balance available, the probe is in effect
both effective and efficient.

The probe collects data metrics from the monitored system. Currently these metrics
include: system up-time, disk utilization, memory usage, and cpu utilization. Although this
is a satisfactory beginning, this could easily be extended to allow for more metrics to be
collected, particularly network utilization.

Aggregator

Aggregator visualization was achieved through the use of plots. These plot types were chosen
with the intention of providing the most effective visualization of the collected data. A
stacked bar plot represents the total cost accrued in billing time units. This allows not only
cost in a billing time unit to be represented, but also the ability to stack the cost from different
instance types of the same image to show how different Virtual Machines had different
cost contributions. A line plot represents the utilization statistics. This is an ideal choice
because the data points consist of values over time and a line plot effectively represents the
relationship to time. Finally, a donut chart represents total cost and waste effected. This
allows an effective representation of proportions when relating the overall value of the wasted
compute power in relation to the used power.

The aggregator does provide an authentication system. It is secure because it uses Github
third-party authentication which provides a trusted authentication system and a token when
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logged-in. This is easy-to-use because it simply requires the click of a button in most cases
because Github’s cookies will see that the user is logged in with Github already. Should
the user not have this cookie, the login process is a simple username and password. It is
non-intrusive and has a low barrier-to-entry for the same reasons. This authentication system
also provides extensibility for the project if users were to be made able to link Github projects
to the monitoring system.

The protocol for data aggregation is described in Section 3.2.2. Through this protocol,
even network or service failures can be mitigated because data points are timestamped. This
means that regardless of the time of arrival of any data packet the data will maintain its
integrity. The only point of failure is if the instance which hosts the probe fails during the
network or service failure. This is a known issue and only mitigatable through improved
infrastructure which is beyond the scope of the service. As well, probe data is secure because
the HTTPS is used to secure the transfer of probe data and visualization data. HTTPS uses
widely trusted RSA encryption and key-exchange protocols that is the industry-standard for
security.

The aggregator stores probe data in a database. This database is separate from the service
itself. Because the service was implemented with a cloud-based database users are able to
host their own service with their own database or theoretically host separate service instances
connected to the same database and allow for data continuity. Users are given an id which is
a token and only access data for their user id.

4.2.2 Non-Functional Requirements

Scalable, Elastic, Extensible, and Timely

The service designed by this project has an ability to scale in some ways. The scalability
comes from the form of horizontal scaling. The service can be hosted on many machines
and the traffic can be directed to the different instances in order to reduce load on individual
machines. This means that the theoretical limit to user and probe traffic for the service is quite
high and not of concern. The issue in scalability comes from number of data points submitted
by probes. Due to multi-tenancy, users can access at most the data points associated with
images that they own. This limit is too high because the number of data points for a user
can be very large and grows rapidly with the number of probes deployed, especially high
resolution probes. Although this problem can be partially solved through the use of vertical
scaling in order to process the data quicker, optimization is needed in order to provide a
timely and consistent user experience. Obvious optimizations could include limiting the time
range and number of images a user can view or query at one time and also possibly caching
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already processed data results in order to avoid repeat work the next time the user requests a
data set. These optimizations are very apparent candidates for future work.

The service is elastic because of its ability to monitor a varying amount of unique in-
stances. This is because instances can be started, stopped, or terminated, but their Universally
Unique Identifier (UUID) will be maintained. These UUIDs can be used to identify different
Virtual Machines as distinct from one another. The probes send the UUID of the instance
they are monitoring to the service. Most major cloud providers generate UUIDs in a way that
allows not only identification of which Cloud Provider is hosting the Virtual Machine, should
that information be desired, but also the avoidance of UUID collision for the foreseeable
future of cloud computing.

A large part of development decisions in the design of the service and particularly the
probe is the need for extensibility. This is why probes only push data to the service, but the
service never attempts to locate or pull data from probes because other future cloud services
might not necessarily provide the web location of computing spaces. As well, probes send
data in Javascript Object Notation (JSON) which allows for dynamically sized data packets
and near-universal compatibility in the web development sphere. This would allow for future
compatibility with an API or other types of data such as network data to be added with little
modification to the service.

The service has the ability to be timely. Timeliness relies on the service providing the
results to users when the users need them. In this respect data is always available to users
when the service is live. This issues with scalability already established mean that timeliness
could be affected by high load. These same arguments can be applied to the need for the
service to be available. Should availability and timeliness be compromised, the service can
be made more reliable and resilient by scaling the number of hosting instances horizontally
such that many instances are available in case of one’s failure and the integrity of the service
is maintained.

Autonomous and Adaptable

The probing solution is autonomous because it does not require manual intervention to adapt
to changing scenarios. This is particularly true in the case where the connection to the
aggregator service fails. In this scenario the probe saves the data it has collected to be used
later should it be possible to reestablish a connection. It can be seen that this solution to
autonomy does not severely affect the performance of the the instance being probed, even
over along period of failure in Figure 4.6. Even after an hour of service failure, the probed
instance is only consuming less than half a percent more CPU utilization than it would under
normal operating conditions. It can be argued then, that even in a state of service failure,
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Fig. 4.6 Data showing the utilization of a Virtual Machine from left to right in the bars:
Utilization reported by Amazon Cloudwatch under normal conditions, utilization reported by
Amazon Cloudwatch during service failure, utilization reported by Amazon Cloudwatch on
reconnection to the service after an hour.

the probe is still relatively lightweight. Even at the critical moment when connection to
the service is reestablished the maximum CPU utilization of any tested instance is 3.05%.
Although this is a rather meager sum, the test was only after 1 hour of failure. Should
the service failure last longer, it can be reasonably expected that the CPU utilization on
service connection reestablishment would grow roughly linearly as the amount of data to be
transferred at that moment would also grow linearly. This can be considered a failing of the
system and an optimal implementation might experiment with regulated transfer to maintain
non-intrusiveness of the probe even in these scenarios.

In order to satisfy the need for a monitoring solution to be adaptable the probe was
designed to be configurable. There are, of course, many other was a solution can be adaptable
and this solution may not satisfy those, for example: it might be desired that the solution
does not submit monitoring data until CPU utilization on the monitored system drops below
a certain utilization threshold, but that was not included in this solution. Instead, the solution
adapts to the changing needs of a customer and dynamic capabilities of Virtual Machines
by being configurable. Users can choose a theoretically infinite variety of resolutions of
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monitoring in order to adapt to their needs. The configurability can be seen in the appendix
as code at Section 5.2 and the service at Figure 4.5.

These fields allow the use to configure their ping rate of the probe in order to provide
different resolutions.

Fig. 4.7 Data for probe CPU usage on AWS Cloudwatch compared to CPU levels reported
by monitoring solution.

Non-intrusive and Comprehensive

The probe is designed in a way that it is lightweight. This level of low-intrusiveness can
be seen in Figure 4.7. The probed instances with and without probes register very low
difference in average CPU usage over long periods of utilization. The difference peaks at
0.18% different in utilization in Instance 0. Even this is relatively low considering the small
fraction of the total compute power available that is being used by the probing solution and
the fact that this test was conducted on a t2-micro-linux provided by Amazon Web Services
EC2 which is a relatively very low power Virtual Machine. The monitoring solution is also
non-intrusive because it avoids the need for uncommon dependencies. The probing solution
uses commands that are commonly available in common Linux operating systems to ensure
compatibility with as many Virtual Machine types as possible.
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The solution to the monitoring problem is comprehensive because of the generalization
of the way usage statistics are gathered and the way the probe is installed. The probe simply
has to be placed inside the image that will be run as a Virtual Machine. The user indicates
that the probe should be started either as a service or as part of a crontab. The probe then
handles itself by reporting data and then sleeping for the appropriate amount of time so as to
be non-intrusive. This means that the probing solution is viable for most Linux-based Virtual
Machines as cron and services are standard on these. This also means that the system will
work on any cloud provider that hosts Linux-based systems and even potentially personal
computers with Linux operating systems, although UUID collisions are not guaranteed to
be avoided in this scenario. Three systems being probed simultaneously on different cloud
providers can be seen in Figure 4.8

Accurate

Accuracy is somewhat of a point of weakness of the monitoring solution. The results returned
by the probe are accurate to the hardware that hosts the Virtual Machines. This is because
the data is gleamed directly from the top command of the Linux operating system. The
discrepancy in accuracy arises from the external reported usage provided by cloud hosts’
data and the probed data when the Virtual Machines are hosted on shared hardware. Virtual
Machines on shared hardware only have a share of the compute time on that hardware. This
means that the remaining share is used by other users. This does not present an issue to the
users of the Virtual Machines, but it does mean that the utilization statistics provided by the
probe can provide results, particularly in terms of CPU usage, that are not accurate to the
actual amount of CPU utilization used by the monitored Virtual Machine. This is because
CPU time is "stolen" by other instances and the top command can often return much lower
than the external monitoring solutions. This problem can be solved by simply hosting Virtual
Machines on dedicated hosts. Figure 4.7 uses an example of shared hardware to provide
data for the most common usage of Virtual Machines on cloud hosting platforms. Over the
monitored period the eight Virtual Machines returned consistently higher reported utilization
on AWS Cloudwatch compared to the values returned by the probe. Despite this disparity,
the difference in utilization is less than 1% for the low load system tested, as shown in Figure
4.7, meaning accuracy can be considered likely usable for most purposes.
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Fig. 4.8 A screenshot of the data from three simultaneously alive Virtual Machines of the
same image type running on three different cloud Providers. From left to right: Azure,
Google Cloud, AWS

4.3 Discussion

4.3.1 Requirements and Design Choices

Based on the service designed, the requirements are in-line with what should be expected
of a cloud monitoring solution. This is because the requirements are based on literature
that already exists on the subject. The requirements chosen are largely not limiting in
interpretation which leaves room for future monitoring solutions to take slightly varied
approaches to solving the same problem.

The requirements were rigid in some respects in the sense that they demanded, for
example: a lightweight solution. Because of this there was almost no room for any other
sensible choice in terms of probing than that that was explored by this project. Should for
example some requirements be relaxed or altered there might be interesting implications in
terms of design, for example a peer-to-peer solution not requiring a hosted service. This
would obviously be something that the designer would have to consider whether they thought
that was important enough to change.
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4.3.2 Implementation

Ultimately, based on the evaluation of the implementation of the monitoring solution in this
project, the results can be considered satisfactory when compared to the requirements. The
solution does in fact monitor Virtual Machine instances without regard for their location or
host and does so in a lightweight manner. In that way, the project is a success. The room
for improvement come in terms of usability of the service designed. The low-horizontal-
scalability of the service in its current state due to lacking optimization and the small breadth
of utilization statistics monitored by the probe mean that as a tool the probe and service
combination are not quite at the level of utility to potential users. The additions required are
trivial in conception, but would require a not insignificant time investment to improve. As
well additional features such as an API might make the service even more useful.

Because the requirements originally elicited for a monitoring service were reasonably
decided upon, the design of the service took those requirements into account, and because
the implementation of that design was functional and any shortcomings it experienced are
clearly rectifiable, the monitoring solution created in this project fulfills the needs of the
thesis.





Chapter 5

Conclusions

5.1 Summary

There exists a need for a cloud-monitoring solution that is more universal in scope, is easy-
to-use, and also focuses on the cost and waste of cloud applications. Literature on cloud
monitoring discusses different utilization statistics to be monitored in a cloud monitoring
solution as well as some ways to calculate cost in cloud monitoring. Monitoring solutions
exist already, but none meet all the requirements of being: non-proprietary, universal, and
having a focus on cost and waste. A set of requirements based on existing literature and
cloud monitoring solutions can be formulated. Those requirements can be interpreted as a
design based on pushing data from probes to a service in a hub-and-spoke topology. This
design can be implemented as a set of servers and databases hosted on public clouds and
generated probes sending data to this service. The designed service-probe combination was
effective, but left room for improvement in the form of future work.

5.2 Future Work

Although this project has successfully shown that a monitoring solution that meets the elicited
requirements can and has been created, there is future work to ensure quality of the tool. This
future work could include:

1. Expansion of the monitored utilization statistics to include for example: Network
Utilization and the inclusion of this in the cost calculation.

2. The inclusion of an API in order to deliver data to users in a manually processable
format.
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3. The optimization of the data processing.

4. Reorganization of the user interface such that it is more user-friendly.

5. Account for variations in Billing Time Units for public cloud providers.

6. Testing for security vulnerabilities.

7. Reworking the system to allow other deployments of the service to be securely deployed
without connection to the main service at https://universalcloudmonitoring.com.

https://universalcloudmonitoring.com
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Code

Listing 1 An example of a generated bash probe

# ! / b i n / bash

##CONFIG##
USER_ID=5 b1818145f2 f3b51b3c5b0f4
IMAGE_TOKEN=5 b461dea998e275f28 faba88
DESTINATION=" h t t p : / / www. u n i v e r s a l c l o u d m o n i t o r i n g . com"
PORT=3000
PING_RATE=5
INSTANCE_TYPE=5 b1ec f3c6bcc0a4d5d81aab7

##CODE − Do n o t modify ##
f u n c t i o n CPU_usage ( ) {

TOTAL_CPU_USAGE=0
TOTAL_CPU=$ ( g rep −c ^ p r o c e s s o r / p roc / c p u i n f o )

# s e t number o f CPUs t o check f o r
d e c l a r e −a ’ r a n g e =({ ’ " 0 . . $TOTAL_CPU" ’ } ) ’
l e t "TOTAL_CPU=$TOTAL_CPU − 1 "

# d e c l a r e a r r a y o f s i z e TOTAL_CPU t o s t o r e v a l u e s
# ( eg . 8 cpus makes a r r a y s o f s i z e 8 )

d e c l a r e −a PREV_TOTAL=( $ ( f o r i i n ${ r a n g e [@] } ;
do echo 0 ; done ) )

d e c l a r e −a PREV_IDLE=( $ ( f o r i i n ${ r a n g e [@] } ;
do echo 0 ; done ) )

f o r i i n { 1 . . 3 } ; do
SUM=0

d e c l a r e −a ’ r a n g e =({ ’ " 0 . . $TOTAL_CPU" ’ } ) ’
f o r j i n ${ r a n g e [@] } ; do

CPU=( ‘ c a t / p roc / s t a t | g r ep " ^ c p u $ j " ‘ )
# Get t h e t o t a l CPU s t a t i s t i c s .
u n s e t CPU[ 0 ]
# D i s c a r d t h e " cpu " p r e f i x .
IDLE=${CPU[ 4 ] }
# Get t h e i d l e CPU t ime .
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# C a l c u l a t e t h e t o t a l CPU t ime
TOTAL=0
f o r VALUE i n " ${CPU[@] } " ; do

l e t "TOTAL=$TOTAL+$VALUE"
done

# C a l c u l a t e t h e CPU usage s i n c e we l a s t checked .
l e t " DIFF_IDLE=$IDLE−${PREV_IDLE [ $ j ]:−0} "
l e t "DIFF_TOTAL=$TOTAL−${PREV_TOTAL[ $ j ]:−0} "
l e t "DIFF_USAGE=(1000*( $DIFF_TOTAL−$DIFF_IDLE ) /
( $DIFF_TOTAL + 5 ) ) / 1 0 "
l e t "SUM=$SUM+$DIFF_USAGE"
# Remember t h e t o t a l and i d l e CPU t i m e s
f o r t h e n e x t check .
PREV_TOTAL[ $ j ]= "$TOTAL"
PREV_IDLE [ $ j ]= " $IDLE "

done
l e t "SUM=$SUM / ( $TOTAL_CPU+1) "
l e t "TOTAL_CPU_USAGE=$TOTAL_CPU_USAGE+$SUM"
s l e e p 1

done
l e t "TOTAL_CPU_USAGE=$TOTAL_CPU_USAGE/ 3 "

echo $TOTAL_CPU_USAGE
r e t u r n $TOTAL_CPU_USAGE

}

f u n c t i o n s e n d _ d a t a ( ) {
c u r l −− f a i l −−h e a d e r " Conten t−Type : a p p l i c a t i o n / j s o n " \

−−h e a d e r ’ Expec t : ’ \
−−r e q u e s t POST \
−−d a t a " $1 " \
"$DESTINATION / p r o b e P o s t "

r e s =$ ?
r e t u r n $ r e s

}

# s e n d s j s o n d a t a v i a c u r l t o t h e p r o b e P o s t
w h i l e [ t r u e ] ; do

s l e e p 1



50 References

f i l e n a m e =" t e m p S t o r a g e . j s o n "
f a i l =0
l ineNumber =1
w h i l e r e a d −r l i n e
do

j s o n =" $ l i n e "
s e n d _ d a t a " $ j s o n "

r e s =$ ?

i f t e s t " $ r e s " != " 0 " ; t h e n
b r e a k

e l s e
# d e l e t e l i n e s o f d a t a a l r e a d y t r a n s f e r e d
sed − i " $ l ineNumber " ’ s / . * / / ’ " $ f i l e n a m e "

f i
l e t " l ineNumber ++"

done < " $ f i l e n a m e "
# C l e a r t h e d e l e t e d l i n e s a t t h e end
sed − i ’ / ^ \ s *$ / d ’ " $ f i l e n a m e "

# Ga th e r new d a t a
memFree=$ ( awk ’ / MemFree / { p r i n t f ( "%f \ n " , $2 ) } ’

/ p roc / meminfo )
memTotal=$ ( awk ’ / MemTotal / { p r i n t f ( "%f \ n " , $2 ) } ’
/ p roc / meminfo )

MEMORY=$ ( f r e e −m | awk ’NR==2{ p r i n t f " %.2 f " , $3 *100 / $2 } ’ )
#Shows memory usage w i t h o u t b u f f / cache i n c l u d e d
d i s k S i z e =$ ( d f −−o u t p u t = s i z e −B 1 "$PWD" | t a i l −n 1)
d i skUsed =$ ( d f −−o u t p u t = used −B 1 "$PWD" | t a i l −n 1)
DISK=$ ( awk "BEGIN { p r i n t f \ " %.2

\ " , ${ d i skUsed } / ${ d i s k S i z e }*100} " )
CPU_usage
CPU=$ ?
UUID=$ ( dmidecode | g r ep − i uu id | awk ’{ p r i n t $2 } ’ |
t r ’ [ : uppe r : ] ’ ’ [ : l ower : ] ’ )
TIME=$ ( d a t e +%s )

# Th i s i s where new d a t a w i l l be e x t r a c t e d and s e n t
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newData = ’{ " o a u t h i d " : " ’$USER_ID ’ " ,
" app " : " ’$APP_TOKEN’ " ,
" image " : " ’$IMAGE_TOKEN’ " ,
" uu id " : " ’$UUID ’ " ,
" cpu " : " ’$CPU’ " ,
"mem" : " ’$MEMORY’ " ,
" d i s k " : " ’$DISK ’ " ,
" t ime " : " ’$TIME ’ " ,
" i n s t a n c e _ t y p e " : " ’$INSTANCE_TYPE ’ "

} ’

s e n d _ d a t a " $newData "
r e s =$ ?
i f t e s t " $ r e s " != " 0 " ; t h e n

echo $newData >> " t e m p S t o r a g e . j s o n "
f i

:
done
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Data for comparing monitoring data from the probing solution and Amazon Cloudwatch.
This data was collected over an hour of probing and is represented in chart form in Figure
4.7.

CPU Monitoring
(w/ probe)

CPU Cloudwatch
(w/ Probe)

CPU Cloudwatch
No Probe

Instance Number

0.63% 1.06% 0.88% Instance 0
0.64% 1.02% 0.88% Instance 1
0.66% 1.04% 1.00% Instance 2
0.70% 1.03% 0.99% Instance 3
0.70% 1.00% 0.99% Instance 4
0.71% 1.18% 0.99% Instance 5
0.75% 1.07% 1.00% Instance 6
0.81% 1.03% 0.83% Instance 7

Data for comparing monitoring data from Amazon Cloudwatch when the probe is running
normally compared to when the probe cannot send its data. This data was collected over an
hour of probing and is represented in chart form in Figure 4.6.

CPU Monitoring
(w/ probe)

CPU Cloudwatch
(w/ Probe failed)

Maximum Utiliza-
tion

Instance Number

1.06% 1.30% 2.83% Instance 0
1.02% 1.24% 3.05% Instance 1
1.04% 1.31% 2.99% Instance 2
1.03% 1.29% 2.99% Instance 3
1.00% 1.31% 2.99% Instance 4
1.18% 1.29% 2.99% Instance 5
1.07% 1.26% 2.83% Instance 6
1.03% 1.31% 2.95% Instance 7
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