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Abstract: Diffusion tensor imaging (DTI) makes it possible to generate a structural brain net-
work from anatomical brain data. This study analyses such networks using network theoretic
measures. The study has two goals. First, it focuses on brain areas that have been linked to
modules of the cognitive architecture Adaptive Control of Thought – Rational (ACT–R), which
has been used to model a wide variety of cognitive processes. Second, on brain areas linked
to spontaneous thought (ST) networks, like the default network (DMN) and the frontoparietal
control network (FPCN), which are used to explain phenomena like mind-wandering. These two
groups of areas were compared to the remainder of the brain areas to see if their measure val-
ues differ. Significant differences were found between areas linked to ACT–R modules and the
remainder of brain areas for five measures, suggesting (among others) that these areas play an
integrative role in the brain. No significant results were found when comparing areas linked to
ST networks and the remainder of brain areas.

1 Introduction

1.1 ACT–R: a cognitive architecture

Psychological theories have become increasingly
specialized, yielding separate self-contained expla-
nations for a plethora of phenomena, all backed up
by psychological experiments (Anderson, Bothell,
Byrne, Douglass, Lebiere, and Qin, 2004). This is
problematic when trying to integrate these theo-
ries in a unified system, which is necessary to ex-
plain more complicated tasks touching on aspects
of all these theories (Newell, 1973). A solution to
this problem can be found in cognitive architec-
tures. Anderson (2007, p. 7) defines a cognitive ar-
chitecture as “a specification of the structure of the
brain at a level of abstraction that explains how it
achieves the function of the mind”.

We will focus on the cognitive architecture ACT–
R (Adaptive Control of Thought – Rational), which
tries to explain the function of the mind using spe-
cialized modules, each of which covers a particu-
lar area like declarative memory, vision, or speech.
These modules are linked together using produc-

tion rules, resulting in a computational model of (a
part of) the mind (Anderson et al., 2004). ACT–
R has been used for modeling a wide variety of
tasks, from performing arithmetic calculations (An-
derson, 2005; Rosenberg-Lee, Lovett, and Ander-
son, 2009) to driving cars (Salvucci, 2006). ACT–R
was chosen because it is probably the most popu-
lar cognitive architecture with a focus on cognitive
modeling.

ACT–R models can be tested by comparing pre-
dicted response times and accuracies to those ob-
served in humans (Anderson et al., 2004; Salvucci,
2006). More recently, ACT–R modules have been
linked to specific brain regions (Anderson, Fin-
cham, Qin, and Stocco, 2008). Because of this, it is
possible to compare activity in ACT–R’s modules
with activity in these brain regions. When brain re-
gions are active, their metabolic demands increase
(Anderson, 2007, p. 88). As a result, the oxygen
flow in the blood towards these regions increases.
Functional magnetic resonance imaging (fMRI) al-
lows us to track this using the blood oxygen level
dependent (BOLD) signal. As such, the BOLD sig-
nal is often used as a (delayed, as the flow is not
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instantaneous) proxy of brain activity in an area∗

(Rosenberg-Lee et al., 2009). Several mappings be-
tween ACT–R modules and brain regions exist.
(Anderson et al., 2008; Borst, Nijboer, Taatgen, van
Rijn, and Anderson, 2015; Anderson, 2007, p. 26-
27) Here we use the ‘original mapping’ as given by
Borst et al. (2015), which was chosen because of its
nice balance between popularity and recency.

Originally, the existence of a connectionist imple-
mentation of ACT–R was seen as sufficient proof of
the neural plausibility of the architecture (Lebiere
and Anderson, 1993). But with the increased focus
on mapping functionality to specific brain regions
of interest (ROIs), the question how the ROIs im-
plement their respective modules’ functionality has
risen. Especially for modules part of the basic infor-
mation processing circuit (Anderson et al., 2008),
which function independent from specific inputs or
outputs (Anderson, Qin, Jung, and Carter, 2007),
explaining how they are connected to other brain
regions is a crucial part of understanding their func-
tionality.

1.2 Network theory

An alternative way of looking at brain activity is
network theory. Instead of approaching brain func-
tion from a functional level, like ACT–R, this ap-
proach is focused on analysing the physical fiber
connections that make up the brain. In other words,
it analyses the brain at a structural level.

Network theory requires the brain to be repre-
sented as a graph. Fortunately, this is possible using
diffusion tensor imaging (DTI), a form of MRI that
for each recorded voxel gives the direction and mag-
nitude of diffusion of water molecules. Diffusion is
normally random (‘isotropic’), but when white mat-
ter tracts are nearby (in the form of axon fiber bun-
dles) diffusion will be blocked in some directions.
This is called anisotropic diffusion. Using the diffu-
sion information, it is possible to (probabilistically)
reconstruct the brain’s tracts, the process of which
is called tractography (Huisman, 2010). From there
on, it is a small step to a graph: after parcellating
the brain data into areas†, reconstructed fibers con-
necting these areas are represented as (undirected)

∗This practise is not undisputed, see e.g. Ekstrom (2010).
†See Craddock, James, Holtzheimer, Hu, and Mayberg

for an automated approach, which was applied to generate
the data set used in this study.

edges while the areas themselves are represented
as vertices. Edge weights can either represent the
density of the fibers, or their length (Hagmann,
Cammoun, Gigandet, Meuli, Honey, Wedeen, and
Sporns, 2008). In the case of the data set used in
this study, the weights represent fiber density. Net-
work theory allows us to characterize the topologi-
cal properties, i.e. the peculiarities of the “patterns
of connectivity” (Avena-Koenigsberger, Misic, and
Sporns, 2017), of a brain network by calculating
so-called network measures on its graph.

Network theory can be used to study both the
global connectivity of the brain, as well as the local
connectivity of our ROIs (Papo, Buldú, and Boc-
caletti, 2015). It can provide clues about the func-
tional connectivity that emerges from the underly-
ing structural network (Avena-Koenigsberger et al.,
2017). That is, it can help us illuminate “the bio-
logical basis of cognitive architectures” (Petersen
and Sporns, 2015). Marr (2010, p. 25) claimed that
to understand an information processing task com-
pletely, you need to understand it at three differ-
ent levels. The computational level describes the
theory and constraints of such a task. The algo-
rithmic level describes how the theory is imple-
mented, while the implementational level describes
the physical implementation of such a task. The
approach of analysing a structural network sug-
gests that the three levels of an information pro-
cessing task can not be considered independently
in a cognitive architecture (Petersen and Sporns,
2015). This is because at least the algorithmic level
(i.e. the model specification) depends on the limita-
tions of the implementational level (i.e. the brain).

Information of the structure of the brain makes it
possible to predict electroencephalography (EEG)
oscillations in wakeful resting humans to a degree
(Finger, Bnstrup, Cheng, Mess, Hilgetag, Thoma-
lla, Gerloff, and Knig, 2016). Knowledge about the
ACT–R ROIs might assist in making such predic-
tions for an active cognitive model also, essentially
doing the reverse of a study by van Vugt (2014),
which instead looked through EEG data to find the
signal that matched ACT–R module activity best.

1.3 Spontaneous thought

While this study primarily focuses on how brain re-
gions linked to ACT–R differ in their connectivity
from other brain regions, the difference between re-
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gions linked to spontaneous thought (ST) and other
regions provides a secondary subject.

ST occurs, as the name implies, unintentionally.
An important example of this type of thought is
mind-wandering (Smallwood and Schooler, 2015),
which takes up as much as 46.9% of our time
(Killingsworth and Gilbert, 2010). While ST is
often self-generated, i.e. independent of stimuli
from the outside world (Andrews-Hanna, Small-
wood, and Spreng, 2014), this is not necessarily the
case. A counterexample would be mind-wandering
about (the dullness of) a current task. Not all
episodes of mind-wandering are necessarily spon-
taneous (Smallwood and Schooler, 2015), but as a
lot of them are, spontaneous thought is an impor-
tant process to consider.

Self-generated thought has been found to be sup-
ported primarily by the default network (Andrews-
Hanna et al., 2014; Fox, Spreng, Ellamil, Andrews-
Hanna, and Christoff, 2015), which is the brain
system that becomes active during rest (Andrews-
Hanna et al., 2014). The default network (DMN)
can be subdivided into multiple subsystems: a core
“to represent information that is personally rele-
vant”, a medial temporal subsystem “to bring as-
sociative information to mind to construct coherent
mental scenes” and finally a dorsal medial subsys-
tem to allow “information related to self and other
to be reflected upon in a meta-cognitive manner”
(Andrews-Hanna et al., 2014, for all citations in this
sentence). Not only regions from the DMN are ac-
tive during ST: a meta-analysis by Fox et al. (2015)
found regions belonging to the frontoparietal con-
trol network (FPCN), as well as regions outside ei-
ther network, that were recruited. The FPCN is
important for goal-directed cognition (Fox et al.,
2015), and is as such often contrasted with the (self-
generated thought supporting) DMN. Fox, Snyder,
Vincent, Corbetta, Van Essen, and Raichle (2005)
found the FPCN and DMN to be anti-correlated.

1.4 Research question

This descriptive study tries to answer whether in a
network based on diffusion imaging, ROIs linked to
ACT–R modules differ in their topological proper-
ties from other regions. And secondarily, whether
the same holds for ROIs linked to ST. The ACT–R
ROIs studied are those associated with the aural,
goal, imaginal, manual, procedural, retrieval, vocal

and visual ACT–R modules. The ST ROIs studied
are those associated with the DMN, the FPCN and
remaining areas (‘other’). This study aims to an-
swer the research question above by calculating net-
work measures on DTI-generated networks. These
measures try to characterize a number of different
(structural) aspects of the brain. In contrast, theory
on ACT–R and ST is mostly concerned with func-
tional activity of the brain. There are some reasons
to believe that structural- and functional connec-
tivity are correlated. Finger et al. (2016) found this
to be the case (explaining 23.4% of the variance) in
resting state networks. Also, due to evolutionary
pressure unused structural connections (taking up
energy (Avena-Koenigsberger et al., 2017)) will not
remain. However, the difference between structural-
and functional networks makes it difficult none the
less to form hypotheses.

That said, it is possible to make some educated
guesses. Regions linked to the goal-, imaginal- and
retrieval ACT–R modules have been found to ac-
tivate independently of a specific type of input or
output (Anderson et al., 2007). This would be un-
likely if they are only strongly connected to a sin-
gle input and output source, suggesting relatively
much connections, as can be checked using the de-
gree, strength and density measures. Using the same
reasoning, the perceptual regions (aural and visual)
are expected to score relatively low on these mea-
sures as they focus on processing input only. Fi-
nally, the motor regions (manual and vocal) are
expected to end up between those two extremes,
as they are not only used for output but also for
rehearsal.

Segregation expresses how independent of the re-
mainder of the brain a region is. The more segre-
gated a region is, the more it can process a spe-
cialized task without interference (Rubinov and
Sporns, 2010). It can be measured using the local
clustering coefficient and the transitivity measures.
Modules with specific inputs and/or outputs are
expected to score higher on these measures, and
those that function independently of input (requir-
ing connections everywhere) lower.

Some ACT–R modules form a basic information
processing circuit (Anderson et al., 2008), which
might be detectable using the node betweenness-
, eigenvector - and PageRank centrality measures.
As ACT–R allows memory chunks in the buffers
of all modules to activate a to-be-retrieved mem-
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ory (Anderson, 2007, p. 108), it is expected that all
ACT–R linked regions will in general score higher
on integration measures, i.e. degree, strength, cen-
trality and global efficiency (Rubinov and Sporns,
2010), than their neighbours not linked to ACT–R
modules.

Previous studies looking specifically at centrality
measures found those to be high for the cingulate
cortex (Hagmann et al., 2008), which is often asso-
ciated with ACT–R’s goal module (Anderson, 2007,
p. 76). As such, the goal module is expected to have
a high centrality. As the imaginal module serves in
a similar (working memory) capacity, it is expected
to have high centrality compared to other regions
as well.

Robustness, as measurable using the local effi-
ciency (Latora and Marchiori, 2001) and assorta-
tivity measures, tells us how resilient the network
is to removal of its parts. Based on the fact that
ACT–R theory places so much emphasis on cogni-
tion arising from (the interplay between) modules,
it would make sense for these modules to be rel-
atively robust. As such, the (weak) expectation is
that regions linked to ACT–R’s modules will be
more robust than others.

When it comes to ST, it is harder to make pre-
dictions. The main hypothesis there is that differ-
ent networks (e.g. the DMN and the FPCN) differ
in their measures. It is also expected that the re-
gion labeled ‘Right Paracingulate’ in the NKI Rock-
land data set is more central than average, because
Fox et al. (2015) attribute it a “hub-like role” as
it activates “across a wide range of tasks, includ-
ing mnemonic and social tasks, and those involving
self-related processing”.

2 Method

The DTI data used is the NKI-Rockland lifespan
data set‡. It was converted into graphs in the
form of connectivity matrices by Brown, Rudie,
Bandrowski, Van Horn, and Bookheimer (2012),

‡Nooner, Colcombe, Tobe, Mennes, Benedict, Moreno,
Panek, Brown, Zavitz, Li, Sikka, Gutman, Bangaru,
Schlachter, Kamiel, Anwar, Hinz, Kaplan, Rachlin, Adels-
berg, Cheung, Khanuja, Yan, Craddock, Calhoun, Court-
ney, King, Wood, Cox, Kelly, Martino, Petkova, Reiss, Duan,
Thomsen, Biswal, Coffey, Hoptman, Javitt, Pomara, Sidtis,
Koplewicz, Castellanos, Leventhal, and Milham (2012)

Regions linked to the ACT–R

aural module

goal module

imaginal module

manual module

procedural module

retrieval module

visual module

vocal module

Regions active during spontaneous thought:

part of the default network

part of the frontoparietal control network

other

Figure 2.1: Legend of colors used throughout
this paper.

who published it to the UCLA Multimodal Con-
nectivity Database. This resulted in connectivity
matrices for a total of 196 subjects: 82 female and
114 male, aged 6-89 (µ = 35, σ = 20). Each graph
consists of 188 nodes (brain areas). Edge weights
for these graphs were normalized to be at most 1.
As the position of each area is known in MNI co-
ordinates, they could be compared to positions of
the ACT–R ROIs as defined by Borst et al. (2015)
directly (see Figure 2.2). This allowed mapping the
ACT–R ROIs onto the NKI-Rockland data set. The
final mapping can be found in Table 2.1. Any NKI-
Rockland areas overlapping with the ACT–R map-
ping were added directly. Note that the area the
goal module was mapped to matches both the left
and right hemisphere ACT–R ROIs. It is about 3.5
times more likely that the connection weights of
that area (which is labeled ‘Right’) are the same
across brain hemispheres than that they are not,
so that forms no problem. This result was obtained
using a Bayesian t-test (Rouder, Speckman, Sun,
Morey, and Iverson (2009); N = 181, BF01 = 3.49).

For the left aural, procedural, left visual and left
vocal mapping, no overlapping areas were available.
For those cases, areas nearby were chosen. Note
that these areas might still overlap, but as the NKI-
Rockland areas are threated as points because the
actual size of them is not available, it is unknown
if they do. In the case of the right visual module, a
spatially close area not overlapping with the ACT–
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Figure 2.2: Each dot represents the center of a brain area in the NKI-Rockland data set. The
boxes represent the Borst et al. (2015) original mapping of ACT–R modules onto the brain. Of
interest here are the colored dots, which represent this study’s mapping of ACT–R modules onto
NKI-Rockland areas.
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Figure 2.3: Each dot represents the center of a brain area in the NKI-Rockland data set. Each
star represents a network region active during spontaneous thought as found by Fox et al. (2015).
Each (colored) dot closest to a star was chosen as a mapping for this study’s purposes.
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Table 2.1: Mapping of ACT–R modules onto NKI-Rockland brain areas. Brain area positions are
given in MNI coordinates. If the brain area’s central coordinate falls inside the ACT–R module’s
ROI, there is spatial overlap, meaning there is a direct match between ACT–R ROI and NKI-
Rockland brain area. Some areas that did not overlap were used as a mapping as well, as explained
in the text.

ACT–R module Brain areas Spatial overlap?
Position Label

aural -41.5, -13.0, 9.9 Left Insular
-58.7, -22.8, 8.8 Left Planum Temporale
52.6, -29.3, -1.6 Right Superior Temporal posterior X

goal 0.7, 6.9, 39.0 Right Cingulate anterior X
imaginal -27.8, -66.6, 48.7 Left Lateral Occipital superior X

29.8, -64.6, 49.6 Right Lateral Occipital superior X
manual -40.1, -24.4, 60.3 Left Postcentral X

38.6, -26.6, 59.1 Right Postcentral X
procedural -12.9, 7.4, 13.2 Left Caudate X

13.4, 10.9, 12.2 Right Caudate X
-17.0, 11.3, -3.4 Left Putamen X
16.8, 12.1, -4.2 Right Putamen X

-12.5, -26.2, 5.6 Left Thalamus
-6.8, -11.0, 6.9 Left Thalamus
10.4, -9.7, 9.9 Right Thalamus
14.2, -26.4, 5.8 Right Thalamus

retrieval -22.5, -7.0, -21.7 Left Hippocampus
22.4, -6.1, -21.6 Right Hippocampus

-44.4, 24.4, 29.5 Left Middle Frontal X
46.0, 28.8, 29.1 Right Middle Frontal X

visual -55.4, -55.0, -12.5 Left Inferior Temporal temporooccipital
47.9, -68.4, -8.4 Right Lateral Occipital inferior X

-39.7, -70.4, -17.2 Left Occipital Fusiform
35.5, -51.5, -18.2 Right Temporal Occipital Fusiform

vocal 48.2, -10.8, 44.5 Right Postcentral
-45.5, -14.5, 44.6 Left Precentral

Table 2.2: Mapping of network regions active during spontaneous thought onto NKI-Rockland
brain areas. Each network region is associated with one or two networks. The distance column
gives the distance between the source brain region and the target brain area in millimeters in
MNI space. Lower is better since it indicates a better mapping fit.

Network Brain areas Distance
primary secondary Position Label

DN -36.8, 23.3, -8.9 Left Frontal Orbital 8.3
DN -43.5, -76.5, 17.8 Left Lateral Occipital superior 8.8
DN 7.6, 47.9, 9.9 Right Paracingulate 9.7; 14.3
DN -23.8, -34.2, -12.7 Left Parahippocampal posterior 6.8
DN FPCN 0.7, -60.0, 42.0 Right Precuneous 10.1
DN FPCN 57.4, -44.2, 37.3 Right Supramarginal posterior 8.2
DN other -44.6, 14.8, -22.4 Left Temporal Pole 11.3

FPCN 0.5, 22.7, 35.1 Right Cingulate anterior 8.3
FPCN 45.0, 39.6, -11.3 Right Frontal Pole 4.7

other -43.6, -1.3, -8.0 Left Insular 7.1
other -9.0, -73.6, 5.1 Left Lingual 9.7
other 30.1, -47.0, 63.3 Right Superior Parietal Lobule 12.5
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R ROI was also included as it was similarly close
as the areas chosen to represent the left side ROI.

Some extra mappings were made not part of the
‘original mapping’. As the Hippocampus is often as-
sociated with declarative memory (Anderson, 2007,
p. 146–147), it was decided to include it as a map-
ping for the retrieval module. Note that this map-
ping depends on the labels as given by the data set.
As the Caudate and Putamen were both spatially
close to the procedural module mapping, and both
are part of the Basal Ganglia (where the procedural
module is often mapped to, see e.g. Anderson (2007,
p.77)), the procedural module’s ACT–R ROIs were
mapped to both. Because the Basal Ganglia is often
assumed to do its work by (indirectly) inhibiting
the Thalamus (Anderson, 2007, p.50–51), the deci-
sion to include all four areas labeled as such as well
for the procedural module was made. Having only
two unique labels (‘Left Thalamus’ and ‘Right Tha-
lamus’) for four different areas is typical for larger
brain areas in the NKI-Rockland data set.

For the ST analysis we followed a similar proce-
dure as for the ACT–R mapping. Fox et al. (2015)
found 13 ROIs in a meta-analysis of “functional
neuroimaging studies of mind-wandering and re-
lated spontaneous thought processes”. The MNI
coordinates of the center of the ROIs and their
network type (DMN, FPCN or other) are avail-
able. (See Fox, Spreng, Ellamil, Andrews-Hanna,
and Christoff (2016) for the version with the cor-
rect labels). The NKI Rockland data set nodes clos-
est to these coordinates (see Figure 2.3 for a visual
representation) were used as a mapping (see Ta-
ble 2.2). It is worth noting that the closest node
for the ROIs labeled ‘Rostromedial prefrontal cor-
tex’ and ‘Medial prefrontal cortex; anterior cingu-
late cortex’ are the same. This is not a problem,
as both are part of the DMN. Also, some regions
associated with the DMN are also associated with
other networks. In that case, the DMN was (ar-
bitrarily) chosen as their primary association. The
primary association is used to determine colors of
the graphs in the results.

2.1 Measure comparison

On the connectivity matrices, a number of local
measures were calculated: degree, strength, effi-
ciency, clustering coefficient, node betweenness cen-
trality, eigenvector centrality and PageRank cen-

trality. These measures generate an output value
for each node, expressing a network characteristic.
The mean across all subjects for each of these was
taken to make a comparison of areas linked to ACT-
R/ST ROIs with other areas possible. The actual
comparison was done using a Bayesian t-test, giving
an idea about the general trend of areas linked to
ACT–R modules/ST network regions compared to
others for each measure. A Bayesian t-test works
like a normal t-test, but returns a Bayes factor.
The Bayes factor BF10 tells how many more times
likely the alternative hypothesis (the mean of two
groups differs) is compared to the null hypothe-
sis (the mean of two groups is equal) given the
data. For Bayes factors < 1, the null hypothesis
is more likely than the alternative hypothesis given
the data (as BF01 = 1/BF10). A Bayes factor be-
tween 1 and 101/2 indicates evidence “not worth
more than a bare mention”. A factor between 101/2

and 101 indicates “substantial” evidence. Similarly,
factors up to 103/2, 102 and ∞ indicate “strong”,
“very strong” and “decisive” evidence respectively
(Jeffreys, 1998, Appendix B). These interpretations
assume no prior belief about which hypothesis is
more likely. If you have one, you can multiply it
with the Bayes factor before interpreting the result.

To calculate PageRank centrality, a damping fac-
tor of 0.85 was used, which is the most common
choice (Brin and Page, 1998).

Some global measures were also calculated,
namely density, efficiency, transitivity and assor-
tativity. These result in a single output value
characterizing a whole brain network. This time,
the influence of ACT–R modules/ST networks
was studied by removing them from the network
by removing the rows and columns of the areas
they were mapped to in the connectivity matri-
ces. The comparison to the null hypothesis was
done using a permutation test. For each sub-
ject, it sampled 100 random mappings R of the
same size as the actual mapping A. The pseudo-
statistic used was: M(S without areas from R) −
M(S without areas from A), where the function M
calculates the measure and S is the full network
for the current subject. A double-sided p-value was
generated based on a threshold value of 0, using the
method outlined by Phipson and Smyth (2010).

During interpretation of the results, it was taken
into account that this study makes multiple com-
parisons. P-values were Holm-Bonferroni-corrected
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for the amount of global measures (four). While in-
terpreting the Bayes factors, the amount of local
measures (seven) was taken into account, although
no similar formal method of doing so is known to
the author.

Measures were calculated on the connecitivity
matrices using the Brain Connectivity Toolkit (Ru-
binov and Sporns, 2010)§. Finally, to make repro-
duction of the results easier, all source code written
for this analysis is available at https://doi.org/

10.5281/zenodo.1324032.

3 Results

3.1 Local measures

We asked whether there is a difference in local con-
nectivity measures between ACT–R linked areas
and other areas.

A significant difference in eigenvector and page
rank centrality was found. (See Table 3.1.) Both are
a measure of importance in the network: areas get a
high score if they are connected to other important
areas. The distribution of values for PageRank cen-
trality is more heavy-tailed due to a damping fac-
tor in its calculation, but for its interpretation this
does not matter. ACT–R areas have higher cen-
trality on average, which means they behave more
like hubs (Papo et al., 2015). This suggests their
function is (on average) one of integration. It is im-
portant to notice here that there is quite a bit of
variation between areas linked to different kind of
ACT–R modules. As Figure 3.1 shows, especially
areas linked to the procedural and goal modules
are very central. The Hippocampus is also highly
central, but the same does not apply for the other
areas linked to the retrieval module.

Degree and strength measure the amount and to-
tal strength of connections of a node. This too is a
way of identifying hubs (Papo et al., 2015). The re-
sults for these measures (Table 3.1) match those of
eigenvector- and PageRank centrality (See Figure
3.2). Areas linked to ACT–R modules have on aver-
age higher degree and strength, thus more connec-
tions to other areas. Depending on if these connec-
tions are to neighbours or areas further away, this

§The Python implementation was
used in this study. Specifically, commit
b4afc777b04f0a2ff9ea9cd8b1d2a382cb131ac3 downloaded
from https://github.com/aestrivex/bctpy.

could indicate integration or segregation. These
connections could make them into hubs.

Node betweenness centrality measures the frac-
tion of shortest paths going through a node (Papo
et al., 2015). Here too, we see that in general ar-
eas linked to ACT–R modules have higher central-
ity. But, some interesting differences with previous
graphs can be seen in Figure 3.3. Using this mea-
sure, areas linked to the imaginal module, together
with again those linked to the procedural module
and the Hippocampus, are central. So while the ar-
eas linked to the imaginal modules might not have
that many connections, or connections to impor-
tant nodes compared to other modules of the cen-
tral ciruit of the mind (Anderson et al., 2008), it
does lie on lots of shortest paths connecting areas.
Node centrality, too, is a way of of identifying ar-
eas with a function of integration. Note that the
evidence of there being a difference here, after cor-
recting for multiple comparisons, is at best weak.

Finally, non-ACT–R areas and ACT–R areas
were compared using the local efficiency- and the lo-
cal clustering coefficient measures. Neither got con-
clusive results, as both the evidence in favour or
against there being a significant difference respec-
tively is “barely worth mentioning” (Jeffreys, 1998,
Appendix B; see Table 3.1).

Local efficiency measures how resilient the neigh-
bourhood of a node is to a node being removed.
It tells us the effects removing a node would have
on the shortest paths throughout the brain (Papo
et al., 2015). A node with high efficiency has (on
average) short paths to the remainder of the brain
(Hagmann et al., 2008). It too, is as such linked to
integration.

The local clustering coefficient tells us how clus-
tered the neighbourhood of a area is by checking if
its neighbours are itself neighbours. A high cluster-
ing coefficient points to segregation (Rubinov and
Sporns, 2010).

We also asked whether there was a difference in
local connectivity measures between ST-linked ar-
eas and other areas. All the above measures were
computed for ST-linked areas as well, but when
comparing them to the remainder of areas the re-
sults all barely showed evidence in favour or against
a difference. While some anecdotal evidence was
found that ST-linked areas are typical (not dif-
ferent from the remainder of areas), this is not a
convincing result after taking into account compar-
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Table 3.1: Aggregated local measure values of areas linked to ACT–R modules, of areas linked to
ST network regions and of all areas. Additionally, Bayes factors of a comparison between ACT-
R-linked areas and the remainder of areas using a Bayesian t-test are given. The same applies to
ST-linked areas. Tests marked with a ‘*’ provide at least “substantial” evidence (Jeffreys, 1998,
Appendix B; but keep in mind that correction for multiple comparisons is necessary.).

Measure Median ± IQR BF10

ACT–R ST All ACT–R/Else ST/Else

Eigenvector centrality 0.056 ± 0.117 0.041 ± 0.042 0.033 ± 0.054 3289 * 1 / 3.297 *

PageRank centrality 0.008 ± 0.007 0.005 ± 0.003 0.005 ± 0.004 1303 * 1 / 3.388 *

Strength 4.390 ± 5.283 2.586 ± 2.586 2.491 ± 2.732 796.4 * 1 / 3.383 *

Degree 65.72 ± 58.05 60.64 ± 14.23 51.96 ± 27.79 76.02 * 1 / 2.539

Node betweenness centrality 446.5 ± 246.7 432.6 ± 105.9 361.1 ± 224.4 5.644 * 1 / 1.637

Local clustering coefficient 0.021 ± 0.005 0.019 ± 0.004 0.020 ± 0.007 1 / 2.740 1 / 1.854

Local efficiency 0.043 ± 0.016 0.038 ± 0.012 0.039 ± 0.014 1.019 1 / 2.369
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Figure 3.1: Mean eigenvector centrality of brain areas across subjects. The page rank centrality
distribution is similar (Figure A.2), although the tail is heavier there. See Figure 2.1 for the color
legend for both ACT–R- and ST linked areas.
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Figure 3.2: Mean strength of brain areas across subjects. See Figure 2.1 for the color legend for
both ACT–R- and ST linked areas.
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Figure 3.3: Mean node betweenness centrality of brain areas across subjects. See Figure 2.1 for
the color legend for both ACT–R- and ST linked areas.
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Figure 3.4: Comparison of the distribution of
density values for all subjects, across conditions.
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Figure 3.5: Comparison of the distribution of
global efficiency values for all subjects, across
conditions.

isons were made for seven measures.

3.2 Global measures

Next, we asked whether there was a difference
in global connectivity measures between ACT–R
linked areas or ST-linked areas and other areas. For
the results of the global measures, see Table 3.2.
After Holm-Bonferroni-correcting for the fact four
different measures were calculated, significant dif-
ferences were found for the density measure only
when comparing networks with ACT–R areas re-
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Figure 3.6: Comparison of the distribution of
transitivity values for all subjects, across condi-
tions.
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Figure 3.7: Comparison of the distribution of
assortativity values for all subjects, across con-
ditions.
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Table 3.2: Aggregated global measure values for brain networks without areas linked to ACT–R
modules, without areas linked to ST networks and without random areas. Additionally the (un-
corrected) p-values for a permutation test are reported for both conditions. It compares whether
measure values are significantly different when ROIs are removed instead of random regions. See
for more information the Method section.

Measure mean ± standard error p (ACT–R) p (ST)
ACT–R absent ST absent random absent

Density 0.277 ± 2.20e-03 0.299 ± 2.05e-03 0.303 ± 2.12e-03 0.007 * 0.485

Global efficiency 0.071 ± 6.53e-04 0.085 ± 6.69e-04 0.083 ± 6.58e-04 0.018 * 0.976

Transitivity 0.018 ± 1.57e-04 0.020 ± 1.62e-04 0.020 ± 1.62e-04 0.028 * 0.565

Assortativity 0.056 ± 3.48e-03 0.018 ± 1.90e-03 0.013 ± 1.79e-03 0.172 0.563

moved with those with random areas removed. No
significant differences were found when doing the
same for ST areas, although it is worth noting that
the permutation test cannot find evidence for the
null hypothesis as the Bayesian t-tests used for the
local measures allowed. In other words, it is un-
known whether the data contains too much noise
to detect a difference, or whether there is no such
difference.

The amount of random areas removed for the
‘random absent’ table column and graphs is the
same as the amount of areas linked to ACT–R mod-
ules. While this is not ideal for comparisons with
the case where areas linked to ST networks areas
are absent, the results are close enough that it is
not worth it to add extra columns.

Density gives the amount of connections divided
by the amount of possible connections for the net-
work (Avena-Koenigsberger et al., 2017). We see
in Figure 3.4 that ACT–R areas are more densely
connected than on average. This makes sense, as we
already knew from the strength local measure that
ACT–R areas have generally more connections. In
other words, this confirms the importance of the
ACT–R areas as hubs.

The global efficiency gives the “average inverse
shortest path length” (Rubinov and Sporns, 2010).
Higher efficiency means shorter shortest paths,
which is good for integration. As such, we see in
Figure 3.5 more important pathways for the inte-
gration of the brain are removed when removing the
ACT–R areas than random ones. This would sug-
gest that the multitude of connections of the ACT–
R areas are actually in general more concerned with
integration than segregation, if not for the fact that
the difference is not significant.

Transitivity is a normalized variation on the

clustering coeffficient (Rubinov and Sporns, 2010).
Both are commonly used as measures of segrega-
tion. As we see in Figure 3.6, without random areas
there is more clustering than without ACT–R ar-
eas. That would mean the ACT–R areas contribute
to clustering more than average, if not for the fact
that the difference is not significant.

Finally, the assortativity coefficient looks at con-
nections. It tells us how much areas at the ends of a
connection are correlated with each based on their
degree (Rubinov and Sporns, 2010). For all cases,
the average assortativity stays above zero (see Fig-
ure 3.7), which indicates the networks are relatively
resilient (Rubinov and Sporns, 2010).

4 Discussion

We asked whether in a network based on diffusion
imaging, ROIs linked to ACT–R modules differ in
their topological properties from other regions. And
also, whether the same is the case for ROIs linked
to ST.

Areas linked to ACT–R modules clearly differ
from other areas based on their topological prop-
erties. When looking at the local level, they differ
in eigenvector-, and PageRank centrality. The same
is true for the degree and strength measures. The
results for node betweenness centrality, local effi-
ciency and the local clustering coefficient were in-
conclusive. Looking at the network level, differences
in density were found between networks with ran-
dom and ACT–R areas removed respectively. No
significant differences were found for the global ef-
ficiency, transitivity and assortativity measures. No
significant differences were found at all when com-
paring areas linked to ST networks to the remain-
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der of areas.
While degree and strength were on average

higher for ACT–R areas, it was (contrary to the
hypothesis) not that high for the imaginal mod-
ules and the retrieval areas that are not the Hip-
pocampus. Also, one of the areas the aural module
was mapped to (‘Left Insular’) scored unexpect-
edly high. In the former case this suggests the ‘ba-
sic information processing circuit’ (Anderson et al.,
2008) is structurally dissimilar, even if that is not
the case functionally. The latter case might simply
be because the mapping is incorrect, but that is an
open question.

No evidence was found for segregation in the
ACT–R modules as a whole by comparing the local
clustering coefficient and the transitivity measures.
That said, it was interesting to note that the area
the ACT–R goal module was mapped to turned out
to be very clustered (See Figure A.4). This seems
to clash with its ACT–R function as essentially a
scratchpad of current task state. Areas linked to
the procedural module are also more locally clus-
tered than expected. Depending on the measure
used, that means that they could paradoxically be
classed as both important to integration and segre-
gation.

Integration was higher for ACT–R areas than for
other areas. The hypothesis that areas mapped to
the procedural module have high integration was
consistently confirmed. Based on the node between-
ness centrality results, it could even be said that
this is the case for all modules part of ACT–R’s
basic information processing circuit, but those re-
sults were not confirmed using other measures of
centrality.

When looking at centrality, we see that the gen-
eral hypothesis of it being higher for areas linked
to ACT–R than for other areas is supported by the
data. The anterior cingulate cortex is quite cen-
tral (more so with eigenvector-based approaches
than for node betweenness centrality), but less cen-
tral than expected. Subcortical areas score higher
in comparison. This apparent discrepancy is eas-
ily explained: the data set of the Hagmann et al.
(2008) study does not include subcortical areas,
while the prediction was based on that study. The
areas linked to the imaginal module are not central
according to most measures, which contradicts the
hypothesis of all basic processing circuit modules
being central. Apparently, while these areas have

a high amount of shortest paths running through
them (as evidenced by a high node betweenness
centrality), they are not as well connected as other
parts of the circuit.

No predictions of robustness could be tested, as
the local efficiency and assortativity comparisons
were inconclusive. Looking at the local efficiency
graph (Figure A.3), it does look like subcortical
areas have a higher local efficiency, making them
more robust. But, this observation was not tested
statistically.

When it comes to ST, the hypothesis of the
‘Right Cingulate’ area being central seems con-
firmed, although it does not stand out as such. I
cannot distinguish a difference in measure values
between areas of different ST networks either. Val-
ues seem to be all over the place, especially for areas
linked to the DMN.

4.1 Implications

The measure values yielded no surprises when com-
pared to previous studies. Degree and strength dis-
tributions follow a power law as expected based on
Papo et al. (2015). Assortativity is positive, just as
in the study by Hagmann et al. (2008). (Although
(Papo et al., 2015) notes that biological networks
are normally disassortative.) The used network is
denser than that of Hagmann et al. (2008), but that
study used smaller areas as vertices. In short, the
study seems to confirm findings of previous work
that applied network measures to brain networks.

When looking at the consequences of these re-
sults for the ACT–R theory, a couple of things
stand out.

On the whole brain (macro) level, we see that
different modules vary widely in their measure val-
ues. No single structural characteristic is shared
by all ACT–R modules that we know of. If there
had been, that might have offered a way of ex-
plaining ACT–R’s buffer system. That system is
what allows the procedural module to integrate in-
formation, and needs to be internally connected as
well for the purpose of spreading activation between
buffers. That said, even if we could somehow look at
every single structural characteristic of areas linked
to ACT–R modules, that might not be enough to
detect such a system: what matters is if it exists
functionally. It would not necessarily need a struc-
tural basis.

13



On the local (micro) level, we see that areas
linked to a single module are likely to have similar
measure values. We know that these areas activate
together using tasks based on fMRI data, as that is
how their choice has been validated in the ACT–R
literature. But the fact that they share structural
characteristics suggests they might also do things
in a similar way as they are similarly connected. To
be fair, that is not necessarily surprising for most
cases, where the areas mirror each other in the dif-
ferent brain hemispheres. Also, it is important to
keep in mind that this analysis only looks at the
connections between areas, not at the areas them-
selves. But it is still interesting to see. Areas linked
to the aural and visual modules form an exception
here. A possible explanation might be that these
modules were hard to link to NKI-Rockland areas
reliably in the first place. The distance between the
ACT–R ROI and the NKI-Rockland area is rela-
tively large for them. It might also be the case that
their areas just vary more in their structural con-
nections. The retrieval module also forms an excep-
tion, but that is mostly because it was essentially
mapped to two independent areas: the hippocam-
pus and the inferior frontal sulcus. Within these
areas, we see again little variation.

Finally, the basic processing circuit (Anderson
et al., 2008), i.e. areas linked to the procedural,
goal, imaginal and retrieval modules, cannot be de-
tected as a whole based on the structural measures
tested. It might look like that is the case for areas
linked to the procedural and retrieval (hippocam-
pus) modules, but there is a simpler explanation:
the distinction seems to be between subcortical and
cortical areas.

4.2 Validity

Perhaps the most important problem for this study
is how to predict something about the functional
activity of ACT–R based on the structural con-
nectivity under study. This can at best be done
indirectly, e.g. by looking at the tasks of ACT–R
modules in terms of information integration, and
the connections it requires to do this successfully.
But this comes with a major downside: a connec-
tion almost always exists, and in theory, a single
connection could be enough to explain such phe-
nomena. The strength, effectiveness or robustness
of such a connection might not matter, although

that is exactly what structural measures study.
The strategy used to parcellate the NKI-

Rockland data set into areas is based on functional
imaging data. As the ACT–R ROIs have also been
validated using functional data (of tasks also mod-
eled in ACT–R) this is not necessarily a bad thing,
but it is worth keeping in mind that areas do not
necessarily consist of a structurally homogeneous
brain area. This also means areas are not equally
sized. It is not hard to imagine measure values
depending on the network scale: if for example a
highly segregated area were to be split up into mul-
tiple ones, that might result in strong integration
within these newly defined areas.

As outlined in the Method section, a lot of dif-
ferent brain areas were assigned to the procedu-
ral module. Each assignment makes sense individ-
ually, but a lot of these areas are outliers in their
measure values, especially the subcortical (i.e. the
Thalamus-, Caudate- and Putamen) areas. The
same could be said for the other subcortical ar-
eas (linked to the retrieval module). As such, some
of the observed effects might be smaller, or even
turn out not to exist, if the total brain area size
mapped towards each module were kept the same
somehow. A good way to test whether this is indeed
the case would be to re-run the analysis against a
data set with only cortical areas, like the one used
by Finger et al. (2016). The downside of this is that
it completely removes the procedural module from
consideration. A mapping of ACT–R modules onto
this data set is available as part of the analysis code,
but the analysis has not been ran against it yet.

To test the statistical validity of this study, all
tests were also run against shuffled mappings. By
assigning random areas to random ACT–R mod-
ules/ST networks, all effects should be (close to)
zero and all hypothesis tests should either be in
favour of the null hypothesis or otherwise at least
inconclusive. This is in fact the case.

Finally, when assigning ACT–R modules to brain
areas, there is an important underlying assumption:
namely that from such an area change in the re-
mainder of the brain can occur. In other words,
that such an area can at certain moments steer, or
control, the brain. Tu, Rocha, Corbetta, Zampieri,
Zorzi, and Suweis (2018) showed through numerical
simulations that controlling the brain from a single
region is in fact impossible. As such, treating ACT–
R modules as being completely constrained to a
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single area is not justifiable. But that also means
that the results of this study do not give the whole
picture when it comes to studying the connections
of the structural implementation of ACT–R in the
brain.

4.3 Future research

It would be interesting to look into whether the
areas linked to the procedural module are indeed
involved in both integration and segregation, and
if so, why that is the case. On the face of it, that
seems to be a contradiction. In general, focussing
more on the level of individual ACT–R modules
and ST networks (or even subnetworks in the case
of the DMN) would be interesting, as we have seen
that there is a lot of variation between the different
instances of those.

Another obvious direction of future research
would be to analyse the networks using the remain-
ing measures implemented in the Brain Connectiv-
ity Toolkit as well. Especially clustering measures,
that divide a network into subnetworks, would
be interesting. They could provide insight into
whether functional constructs like ACT–R modules
and ST networks are also reflected in the anatomi-
cal divisions of the brain.

Finally, it would be interesting to move from a
descriptive paradigm to a more predictive one, al-
though this is by far the most challenging proposal.
Given what we know about the structure of brain
areas, and functional theories (like ACT–R) about
what we think is going on in the brain, could we
make predictions about how and why activation
in one area influences activation in other areas?
Neural synchronization is often used as an explana-
tion for such cross-brain communication. Portoles,
Borst, and van Vugt (2018) studied synchroniza-
tion of oscillation across the scalp during differ-
ent cognitive stages of an associative memory task.
They found different (functional) synchronization
networks arose during different task stages, and
used those to refine their understanding of what
is going on during the different cognitive stages.
They settled on the stages being responsible for
“visual encoding, familiarity, memory retrieval, de-
cision making, and motor response” respectively,
with especially familiarity having a stage of its own
being novel. These synchronization networks could
become predictions of neural oscillations during

other tasks that involve (some of) the same cogni-
tive stages. That said, it would be advisable to val-
idate this mapping against other tasks first as Por-
toles et al. (2018) also suggest. The next step would
be to predict such cognitive task-specific synchro-
nization networks from first principles based on the
structural connections of the underlying brain ar-
eas. Computational models of oscillation like those
studied by Finger et al. (2016) provide a start there,
although they would need to be adapted to take
into account the higher activation in certain regions
during a task.

4.4 Conclusion

No significant results were found when comparing
topological properties of areas linked to ST net-
works and the remainder of brain areas. Brain areas
linked to ACT–R modules were found to show (on
average and based on their topological properties)
more structural capacity for integration than other
areas. These findings help us form a better under-
standing of the neural basis underlying ACT–R.
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A Appendix: remaining local
measure graphs

See Figures A.1–A.4.
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Figure A.1: Mean degree of brain regions across subjects. See Figure 2.1 for the color legend for
both ACT–R- and ST linked areas.
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Figure A.2: Mean PageRank centrality of brain regions across subjects. See Figure 2.1 for the
color legend for both ACT–R- and ST linked areas.
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Figure A.3: Mean efficiency of brain regions across subjects. See Figure 2.1 for the color legend
for both ACT–R- and ST linked areas.
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Figure A.4: Mean clustering coefficient of brain regions across subjects. See Figure 2.1 for the
color legend for both ACT–R- and ST linked areas.
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