faculty of science
and engineering

university of
groningen

EXPERIMENTAL FAULT TOLERANCE ASSESSMENT OF
REPLICATED STATE MACHINES

Bachelor’s Project Thesis

Wenxuan Huang, s2961296, w.huang.1@student.rug.nl,
Supervisors: Prof Dr D. Grossi

Abstract: From primitive trading to modern transaction based on digital currency, the method-
ology to implement ’trust’ and credit reinforcement has evolved to adapt the form of transaction
to counter exploitation. The implementation of 'trust’ is increasingly essential since exploitation
advanced. This paper aims to formulate an assessment procedure to test the level of 'trust’ in fi-
nancial platforms based on Federated Byzantine Agreement systems. The experiment is designed
to trial the assessment’s feasibility with two major replicated state machines under the Federal
Byzantine Agreement systems. Additionally, *trust’ could be materialized by a measurable prop-
erty networks possess while the experiment is centered around ’trust’ evaluation (Byzantine fault
tolerance). The result of a simulated transaction test provide indications on the effectiveness of
some feature one network exclusively possess or the impact created by alteration of configura-
tions of the network. Stellar, based on the result, has strong tolerance compared to Ripple with

several feature advancement over Ripple.

1 Introduction

1.1 Evolution of transaction

Transaction is the constitutional mechanism in
agreement-based economics. The mechanism func-
tions between a buyer and a seller by exchanging
a form of asset for payments. Replicated state
machine is a form of transaction vehicle that
leverages the Internet and blockchain technology.

Definition 1.1. The state machine approach is
a general method for implementing a fault-tolerant
service by replicating servers and coordinating
client interactions with server replicas (Fred,|1990).

To further understand the idea of replicated
state machine, this section explore the history of
transaction from primitive phase to the application
of digital asset.

Primitive transaction model quantifies the promise
of future reimbursement based on intangible agree-
ments between traders (Tymoigne and Henry,
2018). Moral principles dictate reinforcement
of the agreement. With the implementation of
authoritative intermediaries (e.g. bank and other

financial institutes) and a credit system that
promotes transactions between standardized cur-
rencies, it fosters demands of asset accumulation
as intermediaries stabilize the value of credit as
an asset (Stefan and Walter, 2002)). The evolution
of transaction from barter-based to credit-based
agreement sees a shift from trust between traders
to trust between the trader and authoritative
institution.

Yet the transition further escalated trust-related
issues. Firstly, trust placed on intermediaries needs
to be reinforced since controlling the currency price
could create a potential conflict of interest. More
importantly, since assets are digitized into credit
numbers, unauthorized modification, deletion and
addition of credits could lead to credibility crisis.
In 1991, cryptography-backed structure ’block’
is theorized as a securely hashed collection of
information (Haber and Stornetta, [1991). The
information includes a unique identifier of the last
"block’, therefore forming a sequence of chronolog-
ically ordered state chain.

Definition 1.2. Blockchain is a sequence of
connected blocks, which holds a complete list of



transaction records like public ledger (Zheng, Xie,
Dai, Chen, and Wang, 2017)).

Since the wvalidity of the block is verified by
previous blocks while it guarantees safety of the
next block, the information of previous blocks
is generally resistant to modification and spoof
(Nakamoto, 2008). Data stored in one block cannot
be modified without changing subsequent chained
blocks. The core principle of unmodifiable data
sees a promising potential of improving credence
between traders and central authorities.

1.2 Federated Byzantine Agreement

Blockchain information is decentralized through
distributed networking in the form of replicate
state machines. The register of blocks and their
validation chain are available as copies stored
separately by network participators. Different from
protocols developed by current financial institutes,
the decentralized network lacks authoritative
participator as the decision maker, thus the power
of authorization is distributed to selected or all
participators, depends on the level of decentraliza-
tion the network applies. By design, exploitation
that targets single participator are often nullified
or alleviated. Specifically, exploitation could be
nullified since contaminating one or few copies of
blockchain data cannot contaminate the final deci-
sion of that transaction outcome. It needs a form
of majority consensus within the participators in
order to externalize the final transaction outcome,
instead of decisions from a single participators.
Federated Byzantine Agreement Systems (FBAs)
is a model for the decentralized network. The
transaction outcome is determined by consensus
agreement between nodes in quorum and quorum
slices. Since decentralized models lack central
participator, every participator of the network
in FBAs is a node of the network. Each node in
the FBAs network agrees on one value for one
transaction instance and exchange the value with
other nodes. For each node to publish a value,
it selects a set of nodes within the network as
‘trusted peers’ and if values published by 'peers’ is
consistent with the node’s own proposal without
any malfunctioned node, the value will be subse-
quently published. This set of nodes are referred
to ’quorum slices’.

Definition 1.3. Federated Byzantine Agree-
ment system is a protocol consisting of a loose
confederation of a set of nodes and one or more
quorum slices for each node(Mazieres, [2015)).

While quorum slices determines the agree-
ment of one particular node, the ’Quorum’ is
the set of nodes to reach an agreement on one
transaction outcome for the network. Contrasting
to other protocols based on Byzantine theory,
Federated Byzantine Agreement Systems enable
each node to select ’trusted peers’ to form its
‘quorum slices’. The network model of FBAs is
implemented in both Stellar and Ripple, which are
two major decentralized services used in personal
and corporate finance.

1.2.1 Implementation of FBAs

Ripple network is a payment infrastructure within
a decentralized network of established financial
institutions. It is a production-level FBAs net-
work. Stellar, on the other hand, is a PAAS
(Platform-as-a-service) payment service which can
be adapted to both corporate infrastructure and
personal transaction. The security features of both
Stellar Consensus Protocol and Ripple’s Ledger
Consensus Protocol are based on FBAs. They are
both replicated state machines which distribute
payment information on each node in the network
by externalizing transactions to respective ledgers
(Baliga) [2017)). While Stellar adapts for live and
personal transaction cases, Ripple serves as back-
bone of established financial institutions. Albeit
the difference in scales, both apply deterministic
rules on the validity of transactions and ledger
state updates.

Additionally, evidence suggest that Stellar Con-
sensus Protocol is designed to be more secure and
tolerant to failure in actual implementation of the
consensus model (Mazieres, 2015)). Ripple Consen-
sus is based on probabilistic voting (see Figure 2 in
appendixC) where nodes reach agreements for the
transaction outcome if the pre-configured percent-
age of nodes agree with the outcome (Schwartz,
Youngs, and Brittol 2014) while Stellar has more
customizable configurations available for each node
in the network. The latter offers an adjustable
percentage to cope with different purposes in terms



of failure tolerance (see appendixB). Compared
to probabilistic voting, Stellar provides dynamic
combinations of configuration to adapt for differnt
applications of the consensus.

Stellar and Ripple also differ from the approach of
decentralization.

Definition 1.4. Decentralized system, in
system hierarchy, refers to the mechanism where
lower level units operate locally and separately to
perpetrate global tasks (Bekey, [2005).

Ripple consensus protocol operates in a per-
missioned ledger where the ledger validates
transactions mainly based on Ripple’s own list of
nodes (Moreno-Sanchez, Modi, Songhela, Kate,
and Fahmy, [2017). Ripple, as a primary party of
the consensus network, acts as an authoritative
node to evolve its ledger. Stellar, however, operates
on a free ledger where any participator within
the network who voluntarily labeled themselves
as ’validator’ can contribute to the consensus
(Baligal [2017). Since Stellar enables each node to
be potential validator, there is no authoritative
parties that centralize the network control. In this
perspective, Stellar consensus is more decentralized
than Ripple consensus.

1.3 Byzantine Fault Tolerance

In both Consensus protocol, Byzantine failure
compromise both nodes and the consensus net-
work. From the perspective of a decentralized
consensus, a network failure refers to the failure of
one or more nodes.

Definition 1.5. Byzantine failures are ’arbi-
trary deviations’ of a mechanism from its assumed
functions based on the running algorithm and the
received inputs (Agbaria and Friedman) [2003]).

The node is labeled as failed if the node is
crashed or unresponsive. It entails that the node
will either not publish any transaction outcome in
the current cycle of the consensus process or to
publish arbitrary, compromised outcome that does
not accurately reflect the nature of the transaction
(Driscoll, Hall, Sivencrona, and Zumsteg), 2003)).

Node failure attributes to network failure if the
number of failed nodes increment to a point where

consensus cannot continue to provide services
(which is to publish accurate transaction outcome
in a transaction process). In this case, the failed
part of the consensus network may be perceived as
functional for other active nodes (Stelling, DeMat-
teis, Foster, Kesselman, Lee, and von Laszewski,
1999), which disrupts the formulation of consistent
consensus agreement across the network. To design
and operate consensus networks function as a
infrastructure of financial institutions, node failure
and subsequent network Byzantine failure can lead
to data loss and value inconsistency.

In order to assess the robustness against Byzantine
failure, a standardized assessment that tests
failure resistance among FBAs-based protocols
contributes to the overall quality evaluation for
potential adopters of the decentralized network
(Castro and Liskov, |2002). The main component
of the assessment is to test the Byzantine fault
tolerance for each consensus algorithm. Fault
tolerance (see definition 1.3.) is an inherit property
of replicated state machine as a representation of
the concept of ’'Trust’ in the blockchain-backed
network. It is an indication of the dependability
in terms of failure resistance against node failures

(Laprie, [1985]).

Definition 1.6. Byzantine fault tolerance
is a measure of subsistence that is possessed
by distributed computer networks against node
failures and incomplete information about node
failures (Lamport, Shostak, and Pease] [1982).

In events where part of the network failed
and the remaining network functions for its orig-
inal service, fault tolerance enables the network
to reach accurate consensus nevertheless (Castro
and Liskov, 2002). The level of Byzantine fault
tolerance reflects the robustness of consensus
protocol since node failure is the main threat
to correct consensus and value externalization
(Srivatsa and Liul [2004]).

The thesis sought to evaluate Byzantine Fault
Tolerance of Ripple Consensus Network and Stellar
Consensus Network by assembling an assessment
work-flow applicable to networks based on Feder-
ated Byzantine Agreement systems. Tolerance is
to be evaluated by imitating actual transaction
processes in this experiment.



1.4 Paper overview

From primitive trading to blockchain transaction,
trust and consensus evolves into different forms
while the assessments of trust and consensus adapt
continuously.

This research project aims to evaluate the reinforce-
ment of trust in the Federated Byzantine Agree-
ment network through Byzantine fault tolerance as-
sessment in blockchain-backed replicated state ma-
chines like Stellar and Ripple. In the Method sec-
tion, exploratory researches including the data flow
of the protocol. Additionally, the Method section
discuss in specific the methodology to materialize
the concept of tolerance into measurable elements
in the assessment process, in order to provide a fea-
sible solution to the aim of the research (research
question). The Experiment section details the prac-
tical information in the assessment procedure, in-
cluding modifications on parameters, system-wide
test procedures and additional efficiency improve-
ment on the flow of the experiment. The result of
the experiment and pragmatic discussion on limi-
tation, implication and potential improvement fol-
lows after the Experiment section, which conclude
the paper.

2 Method

2.1 Related theories

This section will materialize previously-mentioned
concepts and theories in mathematical expression
that are applied by the production-level software.

Definition 2.1. Federated Byzantine Agree-
ment system (FBAs) is a set of < V,Q >
consisting a collection of node and a quorum func-
tion Q where 'Q : 22" \{}" subject to all quorum
slices of each node, where the node belongs to all
its quorum slices (Mazieres, [2015).

Yv e V,Vqg e Q,v Eq
Definition 2.2. Quorum is a set of nodes U in
< V,Q > iff U # 0 and there is quorum slice for

each member in U (Mazieres, 2015).

U +#0,YveUqée Q such that g € U

Definition 2.3. Quorum intersection refers to
the state where every two quorums of a FBAs net-
work share a node (Mazieres, |2015)).

For all quorums U; and Us, Uy NUy # )

Definition 2.4. Correctness (Ripple) (under
80% threshold percentage) is reflected by the im-
possibility for a fraudulent transaction to be con-
firmed in the consensus, unless the number of faulty
nodes exceeds that correctness. (Schwartz et al.,
2014)).

f<n-1)/5

where:
f = Number of byzantine failures
n = Number of nodes in Unique Node List

2.2 Platform selection

The production-level software of both consensus
protocol is subject to the assessment for this thesis.
Production-level software refers to software that is
designed for actual production and applications. To
put in context, the assessment conducts on Stellar
and Ripple software (Stellar-core and Rippled as
software names respectively) that is already imple-
mented by organizations and corporations (Sankar,
Sindhu, and Sethumadhavan, [2017)), instead of sim-
ulations and models build for research purpose. The
choice of platform is based on:

1. Relevance: Byzantine Fault Tolerance on
production-level software is one of the factors
when corporations and solution providers se-
lect the optimal consensus protocol.

2. Applicability: Production-level software is
potentially bounded to the limitation of
current Blockchain and software technology
(Udokwu, Kormiltsyn, Thangalimodzi, and
Norta, 2018). Therefore, it is less ideal com-
pared to theoretical models and simulations
in terms of following guidelines and princi-
ples stated in their respective white papers.
Thus, An assessment on production-level soft-
ware provides insight for future improvement.
Stellar-core and Rippled are selected since it
is the official release of the organizations and
most institutions use them as a template for



their blockchain services. These two software
are open-sourced software that provide viable
methods for developers to access internal mes-
sages for testing and debugging.

2.3 Data flow

The data flow (see Figure 1 in appendixC) of each
transaction contains a state, an input, and an out-
put. The ledger is a state recorder while transaction
and history record is generated as one transaction
outcome. The transaction will be kept in the his-
tory of the ledger note. By tracing the input, out-
put and the intermediate messages from both Rip-
ple and Stellar, it connects fault tolerance as a con-
cept and its implementation in the production-level
software. Ledger messages and outcome generated
can be used to identify potential Byzantine fail-
ures ((Cachin, 2016). Since Stellar-core and Rippled
wrapped state, input and output files into External
Data Representation, it is not accessible in plain
text. Instead, an SQLite database is implemented
to export messages and outcome in the production
level software and transaction data stored for each
node will be shown in the database viewing tools.
In this case, ledger state, input, and output data
of the transaction will be accessible in plain text
to provide insight into the possible approach for
tolerance assessment.

2.4 Materialization of tolerance

In a decentralized network, each node is either
well-behaved or ill-behaved. A well-behaved node
chooses reasonable ’trusted peers’ to form quo-
rum slices and actively processes requests from
the protocol (Mazieres|, 2015). Ill-behaved nodes
suffer from node crash and therefore not able to
fulfill the responsibilities of the protocol. Byzan-
tine fault tolerance reflects a measurable resistance
against the effect of ill-behaved nodes for consen-
sus network based on FBAs. Even for well-behaved
nodes, Byzantine failure can still take place when
nodes cannot output value (blocked nodes), or out-
put inconsistent values (divergent nodes) (Fischer,
Lynch, and Paterson, 1985). Since node failure of
either ill-behaved and well-behaved node is a major
contributor of Byzantine failure, fault tolerance of
the network can be seen as an indication of the ro-
bustness where the network may have against node

crashes. By exploring the data flow(see Figure 1
in appendixC) from the database example created,
several outputs of the software provided a signif-
icant indication of Byzantine failure. The specific
instances of indication will be mentioned in later
sections. In summary, the indication of fault tol-
erance in the implementation of both Ripple and
Stellar protocol can generally be divided into two
components - Safety and Liveness. Therefore, the
fault tolerance could be operationalized by evalu-
ating the Safety and Liveness performance of both
protocols.

2.4.1 Safety

Definition 2.5. A set of nodes in the Federated
Byzantine Agreement System enjoys Safety if no
two nodes ever externalize different value for the
same slot (Mazieres, 2015)).

For one transaction instance, there can only
be one value externalized, thus Safety ensures the
value consistency of the decentralized network.
An indication of Safety failure could be reflected
by any one of the three types being modified
without consistency. In case of a ledger file, the
inconsistent hash value of entries accountlD
and ledger Header of the SQLite database may
lead to divergence (The database serves only as
a container of one particular transaction and
is replaced by subsequent transaction). In the
database, the consistency of entries selleriD,
of ferID, assetCode and assetType also rel-
fects the integrity of data. Moreover, the entries
createEntry and modifyEntry will give a clear
picture of whether divergence exists in the process
of externalizing transaction outcome by consensus.
By combining the information retrieved from sev-
eral data entries, evaluator can visualize potential
node failure in a transaction process, and whether
it is caused by the divergent node.

2.4.2 Liveness

Another instance of node failure is the lack of
liveness in the quorum. Liveness, in the real
implementation, can be the property of one node,
or the network as an entity.

Definition 2.6.

In principle, a node enjoys



liveness if it can externalize new values with-
out the participation of any failed (including
ill-behaved) nodes (Mazieres, [2015)).

For one transaction instance, there need to
have a sufficient amount of nodes with liveness in
order for a quorum to externalize a value outcome
(Cachin and Vukoli¢, 2017). This paper does not
concern individual liveness in this experiment,
since it is part of the liveness of the quorum, and
it is unable to be identified in the production-level
software. The experiment identifies liveness for
overall quorum through terminal messages for
each transaction round. A terminal message is a
built-in messaging system in both Stellar-core and
Rippled. Its purpose is to notify users whether one
transaction is successful by giving human-readable
phrases (Suce, Fail or Miss). The phrase "Miss’
exclusively indicates node failure of the consensus
network within one round of transaction, indicates
that the number of nodes with sufficient liveness for
externalizing value does not meet the requirement.

3 Experiment

3.1 Test configurations

Safety and liveness of the quorum determine the
Byzantine Fault Tolerance of the consensus net-
work. Since node configurations in Ripple and Stel-
lar affect safety and liveness of these networks,
this experiment aims to evaluate the fault toler-
ance of both networks in alternating configuration
sets. Node configuration is a configuration file col-
lection that determines the properties of one node.
It controls peers the node trust as quorum slices,
the threshold for the node to publish a value out-
come, and the eligibility of the node being a vali-
dation node. There are two functions of node con-
figuration:

e Node configuration affects the level of safety
and liveness the node possess. In this context,
varying a diversity of node configurations in
the same software (Ripple or Stellar) test the
fault tolerance of one consensus network in dif-
ferent node condition.

e The experiment also tests the correlation be-
tween the flexibility of node configuration and

fault tolerance. Secondly, under the same (or
at least similar) configuration, it enables accu-
rate comparison between the fault tolerance of
two consensus networks, since the confounding
variables of two consensus networks are allevi-
ated by the same configuration setup.

The configuration file (see appendixB) consists of
several parameters to be edited by users. The node
configuration file for Stellar and Ripple are similar
in general. The difference will be detailed in the
Test procedure section of this paper. Here is a list of
the configurable parameters in the file that poten-
tially modify the safety and liveness of the network:

e Target Peer Connections: Minimum num-
bers of trusted peers the node will connect dur-
ing one consensus.

e Known Peers: A list of trusted peers known
by the node that will be called if connected
nodes are fewer than Target Peer Connections
(Back-up of the quorum slice members).

e Node Validator: A binary switch for the val-
idator eligibility for this node.

e Failure Safety: Maximum numbers of fail-
ures from the trusted peers that forms a quo-
rum slice for this node. If the number of fail-
ures in one transaction is more than the num-
ber, the procedure will not run.

e Unsafe Quorum: A binary switch for allow-
ing theoretically unsafe quorum slice set to
form. This is set to false for this experiment
since the set of configurations used in the test
are all theoretically safe, while the actual per-
formance of safety needs to be determined un-
der either Stellar or Ripple.

e Validators/Unique Node List: A set of
trusted peers that forms a quorum slice of one
node.

e Threshold Percentage: The threshold per-
centage indicates the number of trusted peers
in the quorum slices that needs to agree on
a value before the node publish the value out-
come. (e.g. If the percentage is set to 50%, half
of the nodes in the quorum slice needs to agree
on the same value before the node can exter-
nalize that outcome value to the network).



3.2 Consensus procedure
3.2.1 Selection of quorum slices

The selection of quorum slices per node in Rip-
ple and Stellar production-level software is similar.
In Ripple, the quorum slices per node are selected
through Unique Node List. In the Unique Node
List for each node, a collection of other nodes is
presented through the public key of those nodes .
There are several principles for choosing the mem-
ber of the Unique Node List (Schwartz et al.,2014):

e The nodes have to be maintained by different
organizations (i.e. the certificate of each node
should be as decentralized as possible).

e The Unique Node list is recommended to be
the nomination of the nodes trusted peers and
nodes suggested by the starter Unique Node
List which will include the nodes trusted by
Ripple organization itself. Each node in the
Unique Node List will be assigned a Trust
Score by the node who owns the list, which in-
dicates the level of trust the node has on each
of these nodes.

e Nodes should be chosen to reflect different po-
litical affiliation, regime, legality and corporate
category. The same applies to Stellar.

More importantly, for each node, the quorum slices
are directly listed in the configuration file each node
has.

The selection of quorum slices for Stellar Consen-
sus protocol is also mainly manual, with recommen-
dations from Stellar organizations and other insti-
tutions. In Stellar, there is a dedicated dashboard
that recommend viable and responsive node candi-
date for quorum slices. The same principle that ap-
plies to Ripple equally applies to Stellar. In the ac-
tual protocol, there is no hierarchy between nodes.
Yet Stellar organizations introduced the concept of
Tier where some reputable nodes have a higher pri-
ority in terms of the popularity of being selected
as nodes quorum slices (Wang, Vergne, and Hsieh|
2017). The priority here is perceived by users in-
stead of imposed by consensus protocol itself.

The selection of quorum slices is manual in the
actual implementation of both Ripple and Stellar
(Baliga, 2017), and a set of principles and lists
of recommended nodes from both official organi-
zations and communities.

3.2.2 Voting procedure

The transaction is accepted by consensus protocol
as input and the verification and acceptance of the
input as part of the ledger record are processed by
the consensus network (Peters and Panayi, 2016).
The voting procedure for Stellar take place on two
levels:

e Node level voting: The externalization of a

node refers to the process of a node publishes
a transaction outcome (Mazieres, 2015)), in the
financial perspective. The externalization re-
quires the node to consult the value external-
ized by peers in its quorum slices. In Stellar,
the configuration 'Threshold percentage’ can
be set by its users and testers, and if the num-
ber of peers that agrees with the value is more
than that percentage, the node will external-
ize the value for that transaction. Therefore,
the consistency of quorum slices of each node
determines the voting procedure on the node
level.
The implementation of node voting is through
Stellar’s internal message function and config-
uration files. The network operates on Horizon
network, which provide the message exchange
capability between peers in the quorum slices.
The threshold percentage is specified in the
configuration file. The decision of externaliza-
tion is summarized as follows:

AP — Nemternalize candidate (31)

Nquorumslice

where:

AP = The percentage of peers in the quorum
slices that agree on the value proposed by the
node

Nea:ternalize candidate = numbers of peers in
the quorum slices that agree on the value
proposed by the node

Nguorumslice = numbers of peers in the quo-
rum slices

If AP is larger than the ’'Threshold per-
centage’ value configured in the configuration
file, the value can be externalized by the node.

e Network level voting: The network (quo-
rum) observes the value externalization of
each node constantly until every node cease



to externalize. The voting procedure of the
consensus network determines the value that
the network will recognize for that transac-
tion. First, each node in the network ’accepts’
the transaction outcome.

Definition 3.1. A node in the consensus
network accepts a value for one transaction
if and only if it had not accept any value that
contradict the value, and all nodes (including
this node) in a quorum accept this value
(Mazieres, [2015)).

If a value is accepted by every node in
the quorum, the network voting procedure
moves on to the 'confirm’ phase.

Definition 3.2. A consensus network con-
firms a value for one transaction if and only
if every node in the quorum claims to accept
the value for that transaction (Mazieres|, 2015)).

If a value is confirmed for that transac-
tion, it will be externalized by the network as
the verified copy of input that will be recorded
in the ledger.

The voting procedure of Ripple consensus proto-
col is similar to Stellar, since both are based on
FBAs. There are three differences between Ripple
and Stellar:

e Flexibility: Unlike Stellar, the threshold per-
centage for quorum slices cannot be altered by
testers and users. It is not available as a entry
in the configuration file.

e Vote counting: While Stellar counts the
number of agreed nodes in the quorum slices,
Ripple node observe multiple candidate the
peers have, and count the candidates sepa-
rately, in the implemented voting procedure of
the software (Schwartz et al.| 2014)). The peer
node can have multiple candidate values, and
each value will be counted. The value with the
highest AP ratio will be externalized.

e Ballot system: In the network level, stellar
consensus network has an additional ballot
network. The ballot network contributes to
Byzantine failure tolerance towards live-less

nodes (Saraiva, Almeida, and Barrosol [2015)).
If one node is blocked by its quorum slice,
Stellar consensus allows node to remove
the statement that is blocking the node to
externalize a value.

Definition 3.3. The node has a blocked
state, if and only if sufficient peers from
every quorum slices the node has agree on
different values than the value node intend to
externalize (Bracha and Toueg, |1985]).

In actual implementation, if Stellar-core
observed a blocked node with inconsistent
quorum slices output, a value candidate is
removed in a random selection in order for the
node to start externalizing values.

3.3 Test procedures

In the context where both node configuration
and consensus network are ready for the exper-
iment, Stellar and Ripple nodes start to pro-
cess transaction information within the data flow.
As mentioned before (Section 1.2), as state ma-
chines, consensus network keep their ledger up to
dates through accepting inputs as transactions. The
transaction will be applied to the ledger, thus form-
ing a new version of the ledger. As a result, a his-
tory outcome will be generated by the application
process. Within the data flow of the transaction,
there are three checkpoints. Checkpoints are inter-
nal tools Stellar-core and Rippled provided to de-
termine whether the network has adequate safety
and liveness level. Three checkpoints indicate the
different context of safety/liveness level, and ulti-
mately fault tolerance:

1. Bucket Apply checkpoint: The checkpoint
is used to determine whether a transaction in-
put can form before applies it to the ledger.
Only a ’Succ’ flag of the checkpoint indicates
that the transaction is accepted as an input.
This is the premise of any possible consensus,
and will be considered when evaluating fault
tolerance of the network.

2. Ledger Apply Checkpoint: The checkpoint
is used to determine whether the input trans-
action has quorum agreement. Only if the quo-
rum reaches agreement on the input value



for one transaction instance, the flag of this
checkpoint will be ’Succ’. This checkpoint re-
flect directly on the performance of fault tol-
erance, since either insufficient safety or live-
ness could compromise quorum agreement. If
network safety is compromised, the flag of the
checkpoint will be ’fail’ due to the lack of unan-
imous agreement under well-behaved nodes in
the quorum. Similarly, the flag will be 'missed’
if the quorum does not generate agreement
message, indicates network liveness is compro-
mised.

3. Catch-up Checkpoint: Catch-up is a built-
in function of both Stellar-core and Rippled
for keeping ledgers up-to-date. In production
level software, the histories of a transaction are
stored in the blockchain, and the latter will
be downloaded and applies to the ledger be-
fore new transaction input get validated. This
is also the premise of any possible consensus
since new transaction must be processed af-
ter all old transaction is scripted in the ledger
for consistency. If in a given time (time can
be modified in each node configuration), the
ledger of the node did not manage to catch-up
to latest state, the ledger will not apply that
transaction instance.

3.3.1 Transaction model

The experiment uses a terminal message from three
checkpoints to determine Byzantine Fault Toler-
ance of one consensus network. Several pieces of
research have been conducted for Byzantine failure
in business transaction instances with various lim-
itations in terms of controlling confounding vari-
ables (Castro, Liskov, et al., |1999; |Silva, Prata,
Rela, and Madeira, [1998; [Haeberlen, Kouznetsov,
and Druschel, [2007)). Since transaction inputs gen-
erated by working and test network varies in both
the availability and transaction amount, calcula-
tion for the probability of successful transaction
based on available transactions (in total capacity of
aproximately 18 billion lumens available for trans-
action) (stellar.org/stats) could produce an incon-
sistent conclusion. For the experiment of evaluating
Byzantine fault tolerance, a simulated transaction
package is made as input transactions. There are
two reasons why using a simulated transaction is

feasible:

e A simulated transaction model creates a sim-
ilar setup for both Stellar and Ripple, and
therefore checkpoint message from both Rip-
ple and Stellar are more comparable. A simu-
lated transaction does not indicate a simulated
model or experiment since we are still testing
tolerance on production level software.

e Furthermore, simulated transaction alleviate
confounding variables between a large number
of transactions that are used for the exper-
iment. The simulated transactions share the
same node publisher, same hash value for the
transaction outcome, and most importantly,
same public and private key for verification. It
makes sure that the transaction instance only
fails because of either safety and liveness issues
before, in and after consensus.

3.4 Test variation

The experiment sets up a transaction model with
simulated transaction instance. In order to deter-
mine the relationship between node configuration
and the probability of consensus agreement (fault
tolerance), the test is conducted in 5 different con-
figuration environment:

1. 10 nodes in network, 5 validators as quorum
set, threshold percent set at 60%

2. 10 nodes in network, 5 validators as quorum
set, threshold percent set at 70%

3. 10 nodes in network, 3 validators as quorum
set, threshold percent set at 60%

4. 5 nodes in network, 5 validators as quorum set,
threshold percent set at 60%

5. 10 nodes in network, 8 validators as quorum
set, threshold percent set at 60%

Adjustment of the value of thresholdpercent
and wvalidators could lead to significantly differ-
ent results. Decreasing the minimum number of
nodes in agreement with value outcome (lowering
thresholdpercent) is an implementation of sacrific-
ing safety over liveness (Martin and Alvisi| 2006).
In contrast, increasing the thresholdpercent could
be indicated as ’sacrificing liveness over safety’



(Martin and Alvisi, [2006). Thus it is essential to
know to what extent the above-mentioned param-
eters implicate the overall failure of one transac-
tion instance, in order to determine the optimal
liveness/safety balance in the production-level soft-
ware. Numbers of validators, on the other hand, de-
termines how many potential nodes can be selected
as quorum slices for one node in the network. The
experiment aims to explore whether a higher per-
centage of validators in the network could lead to
a higher probability of nodes reaching agreement
within the network.

3.5 Test efficiency

When one simulated transaction input is gener-
ated, it will be applied to the network and ledger.
When one transaction goes through three built-in
checkpoints in Stellar and Ripple, the network will
broadcast resulting messages. Transactions which
obtained all three positive message will be applied
to the ledger and the overall transaction is success-
ful. However, the experiment is formulated to uti-
lize over hundreds number of transaction per test
and calculate the probability of successful trans-
actions as evidence of the strength of Byzantine
Fault Tolerance. One limitation the built-in test al-
gorithm has is that it can only perform one trans-
action test with one configuration by default. Sec-
ondly, there is no overall message per test to con-
clude whether one transaction test is successful.
In response to the limitation, a wrapper function
TestWrapper (see appendixA) is implemented in
order to perform an iterative test in different con-
figurations and reports the test result back as plain
words.

4 Result

To evaluate the optimal fault tolerance for Stellar
consensus network and Ripple consensus network,
the experiment aggregated the number of successful
and failed transaction externalizations, in each con-
figuration for two networks. The result is the ratio
between successful transactions and failed transac-
tions for each configuration.

Algorithm 3.1 Test wrapper

Input: data:

- checkpoint message from BUCKET-APPLY,
APPLY-LEDGER and CATCHUP.

- simulated transaction

- Stellar/Ripple node configuration file
Output: message:

- Number of passed/failed test per configuration
import stellar or ripple configuration

integer passCount set to 0

integer failCount set to 0

num < number of transactions generated by
transactionTemplate

for all configurations € configuration set do
for all transactions € transaction set for that
configuration do

cfg <= current configuration

input <« transaction
getReporterOutput messages =
core.consoleReporter(input)

if messages.applyBucket equal pass
and messages.applyLedger equal pass
and messages.catchup equal pass
outputCase <« SUCCESS

passCount increase by 1

else

outputCase < FAIL

failCount increase by 1

end if

end for

output < passCount, failCount

end for

return output

stellar-

10



4.1 Result for Stellar consensus net-

work
| Test N(node) N(vldt) Threshold (%) ||
1 10 5 60
2 10 5 70
3 10 3 60
4 ) ) 60
5 10 8 60

Table 4.1: Setup summary for Stellar test cases

There are five cases implemented in the test envi-
ronment, differs in the number of nodes, the num-
ber of validators and the threshold percentage to
reach agreement across the quorum. All param-
eters are modifiable in the configuration files for
each node, and the result is generated by the Test-
Wrapper function. Table 4.1 is a summary of the
configuration used in the Stellar network. Five con-
figuration sets are implemented, and each serves a
different purpose for comparison.

e Test 1 and 2: To determine the extent of ef-
fect a higher threshold percent could impose
to the network’s fault tolerance.

e Test 1 and 3: To determine the effect of fewer
validators in the network.

e Test 1 and 4: To determine whether a higher
validator ratio within the network could affect
the tolerance.

e Test 1 and 5: To determine the effect of val-
idators as network majority.

The number of test cases varies with different con-
figurations and it is determined by the number of
node operation, time complexity for nomination al-
gorithm and other factors, thus it cannot be per-
sonalized by test configuration. This is reflected in
table 4.2.

Table 4.2 only reflects the number of successful and
failed transaction instances, as the TestWrapper
function only records messages with content. The
rest instances are considered 'missing’.

In order to compare the performance of fault tol-
erance for Stellar-core in different parameter set,
the percentage of successful transaction cases and
percentage of cases without node nominations (lack

H Test N(case) N(succ) N(fail) H
1 207 183 6
2 255 209 16
3 195 142 13
4 349 325 9
5 321 308 3

Table 4.2: Results for 5 configurations (Stellar)

of liveness on the network level) within that test is
shown in table 4.3.

| Test P(succ)(%) P(miss)(%) ||
1 88.4 2
2 82 6.3
3 72.8 6.6
4 93.1 2.6
5 96 0.9

Table 4.3: Results for success and miss nodes

The percentage of successful transaction is the
ratio between the number of transaction instances
that return message indicates a successful trans-
action and the overall number of transaction in-
stances. The percentage of the missing transac-
tion is the ratio between the number of transaction
instances that return no message and the overall
number of transaction instances.

e Test 1 and 2: By increasing the threshold
percentage, the network requires more valida-
tors to agree on one transaction in order to
externalize the outcome within the network.
In this case, the safety level required is higher
than the first test. Under these adjustments,
the percentage of the successful transaction in
dropped by approximately 6.4%, which is sig-
nificantly lower. Since the tolerated number
of nodes without nomination is decreased, the
percentage of missing nodes is considerably in-
creased with a higher percentage threshold.

e Test 1 and 3: Comparing to the standard
environment in teat case 1, the chance of a
successful transaction in test case 3 is approx-
imately 15.6% smaller. The percentage of the
missing transaction is increased by a signifi-
cant 4.6%.

11



e Test 1,4 and 5: In the case where all nodes
in the network are validators, there is a 4.7%
increase in the percentage of successful trans-
action ratio in test case 4 compared to test
case 1. However, due to a limited number of
nodes in the network, liveness problem could
potentially be amplified since the selection of
nodes as validators are smaller than other test
cases. This is reflected by a 0.6% increase in
the percentage of transactions without one of
the checkpoint messages. In terms of test case 5
where validator ratio increased with sufficient
nodes in the network, there is a 7.6% increase
in successful transaction ratio, and the per-
centage of missing transactions decreased by
1.1%.

4.2 Result for Ripple consensus net-

work
[ Test N(node) N(vldt) ||
1 10 5
3 10 3
4 5 Y
) 10 8

Table 4.4: Setup summary for Ripple test cases

There are four cases implemented in the test en-
vironment, differs in the number of nodes and num-
ber of validators. Threshold percent for Ripple net-
work is fixed in each implementation of Ripple net-
work. In production-level software of Ripple (Rip-
pled), the threshold percentage for each node is set
at 80%. The parameters are adjustable within mul-
tiple Rippled dependencies, including a node con-
figuration file and a unique node list dedicated for
the node’s quorum arrangement. Table 4.4 show-
cased all the parameter combination used in the
experiment for the Ripple network. The purpose of
evaluating fault tolerance in one network is consis-
tent with the experiment on the Stellar network,
and the comparison between test cases are iden-
tical (see section 4.1). Since threshold percent for
Ripple node is not modifiable, test case 2 will not
be tested in Ripple consensus network.

In Ripple consensus network, the built-in ter-
minal reporter broadcast messages in three check-
points, similar to the Stellar network. However,

[ Test N(case) N(succ) N(fail) ||
1 30 26 4
3 30 15 15
4 30 26 4
5 30 27 3

Table 4.5: Result of 4 configurations (Ripple)

| Test P(succ)(%) P(fail)(%) ||
1 86.6 13.4
3 50 50
4 86.6 13.4
5 90 10

Table 4.6: Results for success and failed nodes

when the network generates an empty message
for one transaction instance, it will be counted as
a node failure instead of further categorized into
safety or liveness issues in Stellar-core. Thus, the
experiment only compares the percentage of the
successful transaction between Stellar and Ripple
for evaluation of Byzantine fault tolerance.

e Test 1 and 3: The node in one ripple net-
work has fewer candidates eligible to form its
trusted peers in the unique node list, similar to
the case in Stellar where there is an insufficient
number of validators. Compared to Stellar net-
work, Ripple network’s percentage of success-
ful transaction plunged to 50%, from 86.6% in
the standard test environment (test case 1).
Compared to Stellar network, Ripple network
is more sensitive to a lower validator ratio.

e Test 1,4 and 5: By increasing the ratio of val-
idators in Ripple network, the node has more
candidate for its list of trusted peers. While
nodes in the network are provided with more
validators as list candidates, the increase of
successful ratio is smaller than Stellar’s respec-
tive result. In both cases where validator ra-
tio increases, the successful rate either remain
constant or increase slightly for approximately
3.4%. It indicates that the Ripple network is
less reliant on the validator ratio, compared to
the Stellar network.

12



5 Discussion

5.1 Implication

Based on the result obtained for both Stellar and
Ripple experiment, their respective percentage of
successful transaction is compared with similar con-
figuration, so as to compare its performance under
the same configuration, and the effect of different
mechanism employed on this two consensus proto-
col.

The third test case represents an environment for a
simulated transaction where there is a fewer val-
idators in the same quorum size. Comparing to
the result of percentage of successful cases, Rip-
ple dropped approximately 36% while Stellar de-
clined around 6%. Amid all failed cases in Ripple,
missed nodes that is caused by liveness issue con-
sist a significant portion. For Stellar, since there is
a general increase of missed nodes (approximately
4%), it grows along with the increase of failed nodes
due to small validator ratio. The experiment im-
plies that small validator ratio contribute to live-
ness issue, since the choice of validator within this
network is narrowed. If in case validator nodes be-
come blocked nodes, or unable to externalize val-
ues and messages due to other factors, the prob-
ability of nodes that choose them as part of the
quorum slices is higher. However, Stellar has an ad-
ditional mechanism to unblock blocked nodes and
its blocked quorum slices. The use of the ballot
system (see section 3.2.2) ensures that even node
is blocked by a set of peer nodes of each quorum
slice, the value that caused the blocking will be neu-
tralized and other values will be nominated. This
mechanism directly improved the liveness level of
networks that is based on Stellar consensus proto-
col.

The fourth test case represents an environment
where every node exists in the network is valida-
tor. In this case, Stellar sees a slight increment in
terms of percentage of successful transaction cases
while Ripple network is not affected by the alter-
ation compared to its performance on test case 1. In
this case of a network with higher validator ratio,
both network stagnates in the growth of successful
transaction. With a decrease of number of nodes,
there are both potential safety and liveness issue
due to a smaller quorum size. specifically, with one
validator being ill-behaved to behave arbitrarily or

be blocked, with a smaller number of nodes in the
network, the percentage of nodes that is affected
by this particular ill-behaved node is higher than
a network with more nodes, since other nodes may
not list the ill-behaved node as part of the quorum
slice, and will be functional with its original service.
The fifth test case represents an environment with
more validator nodes than non-validating nodes (a
higher validator ratio). In this case, the selection
of validators as quorum slices is more decentral-
ized than other test cases, since the choice of each
node is more scattered. A higher validator number
in the network took advantage of the decentraliza-
tion feature the network has, and can effectively
avoid exploitation that target one node, or a set of
nodes. In this case, if there is one validator that has
been compromised, a relatively smaller percentage
of nodes (compared to network with lower valida-
tor ratio) will be affected since there are more val-
idator candidate for nodes to enlist. Therefore, po-
tential inconsistency caused ny safety issue of such
exploitation can be alleviated.

5.2 Limitation

The experiment sought to evaluate the effect of
node configurations to Byzantine fault tolerance for
replicated state machine by cross-comparing safety
and liveness performance in production level soft-
ware that is based on state machines. In the process
of formulating and executing the experiment, there
are several limitations that could potentially affect
the course of the results. The limitations are mainly
categorized into two factors.

5.2.1 Confounding variables

Confounding variables refers to factors based on
external influence and potentially affect the exper-
iment outcome. There are several limitations ob-
served in the course of the experiment:

e Network time-out: Since production-level
software is used in the evaluation process, net-
work timeout issue could potentially be at-
tributed to missing transactions which the net-
work does not publish messages. It turned out
that instead of just using the hash value of the
transaction as verification, a time function also
limits the time the system waits for the mes-
sages. If there is a network delay on both the

13



node and the blockchain server, transaction for
that instance could be abandoned due to time
out, even if there are either ’Succ’ or "Fail’ mes-
sage (Dwork, Lynch, and Stockmeyer, [1988).
However, since the experiment runs a consid-
erable amount of transaction test on each net-
work, temporary network delay will have a re-
strained effect on the result.

Operating environment: Both Stellar-core
and Rippled implement their network in vari-
ous operating environment. The same network
operates on native operating systems or vir-
tual environments have different performance
in terms of Byzantine fault tolerance. Addi-
tionally, Stellar and Ripple software developed
by third-party developers further diversified
the range of performance within the same con-
sensus network. In this experiment, the evalu-
ation of fault tolerance only limited to the of-
ficial implementation of Stellar and Ripple by
their respective organizations. Thus the result
may be less reliable to the same consensus net-
works on the different operating environment.

Number of nodes: The experiment is capa-
ble of carrying out tolerance assessment for
more than 10 nodes, for its scalability on
adding more nodes as long as nodes or devices
are linked by the same address. However, in
this phase of the project, only a maximum of
10 nodes is used due to efficiency. With a lim-
ited infrastructure (i.e. performance of com-
puters, bandwidth of network and number of
devices), consensus model that has more than
10 nodes leads to significant network latency.
Network latency could compromise the syn-
chronization of decentralized network by af-
fecting the liveness of each node, since a la-
tency could jeopardize the externalization of
value for a transaction (see 'Network time-
out’). On the other hand, the essential idea
for this experiment is to collect messages that
reflect Byzantine fault tolerance level of the
network. With a larger quorum, the size of the
quorum slices and the complexity of slice struc-
ture will increment, which is counter-effective
when the test procedure tries to limit it scope
to one transaction case in the first place. For a
potential extension of this project, both Stellar

and Ripple network can operate on a server-
based operating system and network, so that
the test can be implemented with higher or-
der of quorum structure and larger number of
participators. The test can also be modified
to accept either multiple simulated transac-
tions or real-case transactions to take advan-
tage to complex slice structure and larger quo-
rum sizes.

5.2.2 Ripple and Stellar implementations

Level of decentralization: As mentioned in
section 1.2.1, Stellar consensus network are im-
plemented with the higher level of decentral-
ization. In the actual implementation of the
network, the difference is reflected in the avail-
able options of validator/quorum slice choice.
The validator nodes maintained by Ripple or-
ganization has a higher reputation, thus these
nodes have a higher Trust Score that other
nodes may not have. Stellar, however, only let
node owner to determine their own node pri-
ority. The difference in the node priority could
potentially favor the performance of the Ripple
network since the safety level could be higher
if the validators in Ripple network directly or
indirectly have the ’approved’ node as valida-
tors.

Parameter modification: While Ripple con-
figurations restrict threshold percent for each
node, Stellar provides a flexible threshold in or-
der to manually adjust the safety and liveness
level. Although they are controlled variables in
the experiment, the result may not be conclu-
sive based on one threshold percentage since it
offers more possible threshold values. Secondly,
Ripple will count 'Missing’ transaction into
"Failed transaction’, therefore, it is not visible
whether the failure is caused by Safety Issue
or Liveness issue. Thus, the only percentage of
the successful transaction can be used as the
main data for comparison between Stellar-core
and Rippled. Additionally, while the test num-
ber for each configuration in Rippled can be
customized, the number of test per configura-
tions in Stellar-core can vary. It is determined
by the number of nodes and time complexity
in nomination algorithm. Therefore, different

14



test number in Stellar and Ripple experiment
could introduce a potentially biased result.

5.3 Conclusion

The recent events of network forking due to safety
issue in both Stellar and Ripple has inspired the
experiment. This experiment identifies the Byzan-
tine fault tolerance as one of the evident indica-
tors for network consistency and compared it in two
replicated state machines based on Federal Byzan-
tine Agreement system. In the later period, due to
the difficulties caused by inefficient testing process,
the experiment attempts to formulate an efficient
test protocol for production-level software based
on FBAs. The test protocol is demonstrated by
fault tolerance evaluation between Stellar consen-
sus network and Ripple consensus network. There
are three conclusions based on the experiment:

e Fault tolerance: Compared to Ripple net-
work, Stellar-core is more resilient with insuffi-
cient validators (see section 5.1). By decreasing
the number of validators, the node has fewer
candidates eligible to form quorum slice.

Due to the nature of slice selection in the
production-level network (see section 3.2), lack
of sufficient validator could run the risk of los-
ing liveness due to the lack of validator diver-
sity.

On the other hand, insufficient validators could
lead to safety issues due to a potential risk of
missing quorum intersection. In this case, the
selected validators for each node in the net-
work may not intersect.Quorum intersection
in a quorum network is achieved by a larger
candidate size for quorum slice and a priority
to choose validators with higher validity. Con-
versely, potential lack of quorum intersection
caused by small candidate size could increase
the weight one validator has. If one valida-
tor attempt to exploit the network by feeding
false transaction value, smaller candidate size
will increase the probability this particular ill-
behaved validator get selected. Thus resulting
in a lower fault tolerance.

Fault tolerance, in actual implementation, is
case-specific since each case of consensus net-
work applies to different safety and liveness
requirement. Stellar enjoys a higher flexibility

to engineer tolerance by an adjustable thresh-
old that controls the degree of restraint put
on the number of consistent nodes in the quo-
rum slices. In this case, a controllable tolerance
is an advancement of Stellar over Ripple and
other FBAs-based network.

e Safety: Compared to the Ripple network,
Stellar enjoys a higher safety level with higher
validator ratio. By increasing the ratio of val-
idators within the quorum, the node has more
candidates for its quorum slice. Since the di-
versity of candidate selection is increased, ex-
ploitation by one compromised validator node
will have a smaller impact. It remains valid
in an actual implementation of Stellar-core. It
is evident that Stellar assures safety for nodes
that are both well-behaved and in quorum in-
tersections. The first advancement of Stellar
over Ripple is reflected in the transaction val-
idation process in an actual transaction in-
stance. In a Stellar run, a function called ’quo-
rum set sanity checker’ will ensure that the
number of nodes in the quorum set is larger
than the node number of the v-blocking set.
This indicates that for each consensus, the
transaction will be approved by one particular
node if all nodes in the quorum set all agree on
the same slot. In the practical cases, the quo-
rum slice is determined by the threshold of val-
idator nodes, and the v-blocking sets are cal-
culated by both threshold percentage, number
of validators and inner sets. The implementa-
tion of this ’sanity check’ could improve fault
tolerance for Stellar Consensus Protocol over
Ripple’s counterpart.

References

A. Agbaria and R. Friedman. Overcoming byzan-
tine failures using checkpointing. Coordinated
Science Laboratory Report no. UILU-ENG-03-
2228, CRHC-03-14, 2003.

A. Baliga. Understanding blockchain consensus
models. Persistent, 2017.

George A Bekey. Autonomous robots: from biolog-
ical inspiration to implementation and control.
MIT press, 2005.

15



G. Bracha and S. Toueg. Asynchronous consensus
and broadcast protocols. Journal of the ACM,
32(4):824-840, 1985.

C. Cachin. Architecture of the hyperledger
blockchain fabric. In Workshop on Distributed
Cryptocurrencies and Consensus Ledgers, vol-
ume 310, 2016.

Christian Cachin and Marko Vukoli¢. Blockchains
consensus protocols in the wild. arXiv preprint
arXiw:1707.01873, 2017.

M. Castro and B. Liskov. Practical byzantine fault
tolerance and proactive recovery. ACM Transac-
tions on Computer Systems, 20(4):398-461, 2002.

Miguel Castro, Barbara Liskov, et al. Practical
byzantine fault tolerance. In OSDI, volume 99,
pages 173-186, 1999.

K. Driscoll, B. Hall, H. Sivencrona, and P. Zum-
steg. Byzantine fault tolerance, from theory to
reality. In International Conference on Computer
Safety, Reliability, and Security, pages 235-248.
Springer, 2003.

C. Dwork, N. Lynch, and L. Stockmeyer. Consensus
in the presence of partial synchrony. Journal of
the ACM, 35(2):288-323, 1988.

Michael J. Fischer, Nancy A. Lynch, and Michael S.
Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32
(2):374-382, 1985.

S. Fred. Implementing fault-tolerant services us-
ing the state machine approach: A tutorial. Acm
Computing Surveys, 22(4):299-319, 1990.

S. Haber and W.S. Stornetta. How to time-stamp
a digital document. Journal of Cryptology, 3(2):
99111, 1991.

A. Haeberlen, P. Kouznetsov, and P. Druschel.
Peerreview: Practical accountability for dis-
tributed systems. ACM SIGOPS operating sys-
tems review, 41(6):175-188, 2007.

L. Lamport, R. Shostak, and M. Pease. The byzan-
tine generals problem. ACM Transactions on
Programming Languages and Systems, 4/3:382—
401, 1982.

J. Laprie. Dependable computing and fault tol-
erance: Concepts and terminology. In Twenty-
Fifth International Symposium on Fault-Tolerant
Computing, 1995,, page 2. IEEE, 1985.

J. Martin and L. Alvisi. Fast byzantine consen-
sus. IEEE Transactions on Dependable and Se-
cure Computing, 3(3):202-215, 2006.

David Magzieres. The stellar consensus protocol:
A federated model for internet-level consensus.
Stellar Development Foundation, 2015.

P. Moreno-Sanchez, N. Modi, R. Songhela, A. Kate,
and S. Fahmy. Mind your credit: Assessing
the health of the ripple credit network. arXiv
preprint arXiw:1706.02358, 2017.

S. Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. 2008.

G. W Peters and E. Panayi. Understanding modern
banking ledgers through blockchain technologies:
Future of transaction processing and smart con-
tracts on the internet of money. In Banking Be-
yond Banks and Money, pages 239-278. Springer,
2016.

Lakshmi S. Sankar, M Sindhu, and M Sethumadha-
van. Survey of consensus protocols on blockchain
applications. In Advanced Computing and Com-
munication Systems (ICACCS), 2017 4th Inter-
national Conference on, pages 1-5. IEEE, 2017.

A. Saraiva, B. Almeida, and S. Barroso. Secure
transactions without mining or central authority.
2015.

D. Schwartz, N. Youngs, and A. Britto. The ripple
protocol consensus algorithm. Ripple Labs Inc
White Paper, 5, 2014.

Joao G. Silva, P. Prata, M. Rela, and H. Madeira.
Practical issues in the use of abft and a new
failure model. In Fault-Tolerant Computing,
1998. Digest of Papers. Twenty-Fighth Annual
International Symposium on, pages 26—35. IEEE,
1998.

M. Srivatsa and L. Liu. Vulnerabilities and security
threats in structured overlay networks: A quan-
titative analysis. In Computer Security Applica-
tions Conference, 2004. 20th Annual, pages 252—
261. IEEE, 2004.

16



T. Stefan and K. Walter. Asset accumulation, inter-
dependence and technological change: evidence
from pharmaceutical drug discovery. Strategic
Management Journal, 23(7):619-635, 2002.

P. Stelling, C. DeMatteis, I. Foster, C. Kesselman,
C. Lee, and G. von Laszewski. A fault detection
service for wide area distributed computations.
Cluster Computing, 2(2):117-128, 1999.

E. Tymoigne and J. Henry. Primitive trade rela-
tions: A proposed solution. 2018.

C. Udokwu, A. Kormiltsyn, K. Thangalimodzi, and
A. Norta. An exploration of blockchain en-
abled smart-contracts application in the enter-
prise. Technical report, Technical Report, 2018.

S. Wang, Jean-Philippe JP Vergne, and Y. Hsieh.
The internal and external governance of
blockchain-based organizations: Evidence from
cryptocurrencies. In Bitcoin and Beyond, pages
48-68. Routledge, 2017.

Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang.
An overview of blockchain technology: Architec-
ture, consensus, and future trends. In Big Data
(BigData Congress), 2017 IEEE International
Congress on, pages 557-564. IEEE, 2017.

17



A Appendix: Test wrapper

#include "lib/catch.hpp"
struct TestWrapper : public ConsoleReporter {

Prefs getPreferences() const override {

Prefs prefs;

prefs.shouldRedirectStdOut = false;

return prefs;
} // function that allocate built-in functions in software to
retrieve Stellar/Ripple configurations

void testInitiation(TestInfo const& ti) override {
ConsoleReporter: :testInitiation(ti);
stream << "|"" << ti.name << "|" " << ti.lineInfo << std
::endl;
} // function that prepare info of a transaction instance

void sectionInitiation(SectionInfo const& _sectionInfo)
override {

ConsoleReporter: :sectionInitiation(_sectionInfo);
} // function that read built-in message from built-in
function consoleReporter

void assertionInitiation(AssertionInfo const& ai) override {
mLastAssertInfo = std::make_unique<AssertionInfo>(ai);

}

bool assertionTermination(AssertionStats const&
_assertionStats) override {

bool res = _assertionStats.assertionResult.is0k();
if ('res) {
ConsoleReporter: :assertionInitiation(*mLastAssertInfo
)3
res = ConsoleReporter: :assertionTermination(
_assertionStats);
}
mLastAssertInfo.reset();
return res;
}

void testTermination(TestCase const&) {
stream << "<done>";
printNewLine();



static std::string getReporterOutput<reporter::gtest_reporter
>::convert(reporter::gtest_reporter const& os) {
return fmt::format(
"test cases: {} | {} passed | {} failed",
reporter: :gtest_reporter(info.report_info),
reporter: :gtest_reporter (success.report_success),
reporter: :gtest_reporter(failure.report_failure));
} // functions that generate overall test message for one
configuration case

static std::string getAssertionOutput<reporter::
gtest_reporter>: :convert (reporter: :gtest_reporter const& os)
{
return fmt::format(
"assertions: {} | {} passed | {} failed",
reporter: :gtest_reporter(info.assertion_info),
reporter: :gtest_reporter (success.assertion_success),
reporter: :gtest_reporter(failure.assertion_failure));

}

static std::string getDescription() {
return "Repeat test-case for conclusive output";

3

private:
std::unique_ptr<AssertionInfo> mLastAssertInfo;

void printNewLine() {
stream << ’\n’;
mDots = 0;



B Appendix: Stellar Configuration

LOG_FILE_PATH="/var/log/stellar/stellar-core.log"

BUCKET_DIR_PATH="/var/stellar/buckets"

DATABASE="sqlite3://stellar.db"

// a copy of readable text of the history and transaction details
is stored in the database of choice (sqlite or postgres)

TARGET_PEER_CONNECTIONS=10
//how aggressive the network will connect to peers

PEER_TIMEOUT=30
//maximum time before dropping the coonection with the peer due
to liveness problems

NODE_NAMES=[

"GC5ASWKAPZUS5ASNMLNCAMLW7CVHMLJJAKHSZZHE2KWGA JHZ4EW6 TQ7PB
stellarport_ohio",

"GAXP5DW4CVCW2BJINPFGTWCEGZT JKTNWFQQBESSCWNJIJ54BOHR3WQC3W moni",

"GBFZFQRGOPQC50EAWO76NOY6LBRLUNH4I5QYPUYAKS3QSQAWVTQ2D4FTS  dzham"

"GAOO3LWBC4XF6VWRPSESJ6IBHAISVIMSBTALHOQM2EZG7Q477UWAGL7U eno",
"GCIJCSMSPIWKKPR7WEPIQG63PDF7 JGGEENRC330KVBSPUDIRL6ZZ5M700 tempo"

"GCCWAH2DKAC7YYW62H3ZBDRRESKXRLYLI4AT5Q0S06EAMUOE37 ICSKKRJ
sparrow",
"GD7FVHL2KUTUYNOJFRUUDJPDRO2MAZJ5KP6EBCU6LKXHYGZDUFBNHXQI umbrel

"GDAXAGWQNTOUIGTAJDYIL4QCM3Q6HME67SKEAINSOW6G2Z3QPPKGAVIFW cowrie

"GDRA72H7 JWXAXWJKOONQOPH3JKNSH5MQ6BO5K74C3X6F02G30G464BPU
ibm_norway",

"GCDLFPQ76D6YUSCUECLKI3AFEVXFWVRY2RZH2YQNYII35FDECWUGV24T snt.
lux",

"GBAR40Y6T6M4P344IF5IISDNWHVUJU70LQPSMG2FWVJAFF642BX5E3GB
telindus",

// non-validating nodes

"GCGB2S2KGYARPVIA37HYZXVRM2YZUEXA6S33ZU5BUDC6THSB62LZSTYH
sdf _watcherl",

"GCM6QMP3DLRPTAZW2UZPCPX2LF3SXWXKPMP3GKFZBDSF3QZGV2G5QSTK
sdf_watcher2",

"GABMKJM6I25XT4K7U6XWMULOUQIQ27BCTMLS6BYYSOWKTBUXVRISXHYQ
sdf _watcher3"

]

//a list of nodes with their symbolized names



PREFERRED_PEERS=[]

PREFERRED_PEER_KEYS=[

"$sdf_watcherl",

"$sdf_watcher2",

"$sdf_watcher3",

"$dzham" s

"$$moni",

"$$cowrie"

]

//This node will try to always stay connected to the other peers
on this list.

KNOWN_PEERS=[

"core-live-a.stellar.org:11625",

"core-live-b.stellar.org:11625",

"core-live-c.stellar.org:11625"

]

//It connect to the enlisted nodes when it is below
TARGET_PEER_CONNECTIONS

NODE_SEED="SXXXXXX....XXXX"
//each node has a unique node seed as private key to serve as a
verification of the node (for safety)

NODE_IS_VALIDATOR=true
//a switch to enable one node to be a validator

FAILURE_SAFETY=1
// Maximum number of validator failures from your QUORUM_SET that
the network tolerate.

UNSAFE_QUORUM=false
If true, it enables to specify a unsafe quorum set.

// Local history storage (use online storage instead)
// [HISTORY.locall

// get="cp /var/stellar/history/vs/{0} {1}"

// put="cp {0} /var/stellar/history/vs/{1}"

// mkdir="mkdir -p /var/stellar/history/vs/{0}"

// Stellar.org history storage

[HISTORY.sdf1]

get="curl -sf http://history.stellar.org/prd/core-live/
core_live_001/{0} -o {1}"



[HISTORY.sdf2]
get="curl -sf http://history.stellar.org/prd/core-live/
core_live_002/{0} -o {1}"

[HISTORY.sdf3]
get="curl -sf http://history.stellar.org/prd/core-live/
core_live_003/{0} -o {11}"

[QUORUM_SET]
THRESHOLD_PERCENT=66
VALIDATORS=[
"$moni" s
"$eno",
"umbrel",
"$dzham" ,
"$sparrow",
"$cowrie",
"self",
"tempo",
"ibm_norway"

]

//THRESHOLD_PERCENT: how many percentage of nodes have to agree
on one value

// MAINTENANCE_ON_STARTUP=true



C Appendix: Graphic illustration

-1 -C-11-CD

Figure 1: Data flow of the consensus network

Our set Peer A

/N /A A A
A Peer B

/N
A3 AA

VI

A3 Al
V1 v 3

VAN
/\

Disputes

Peer C

Figure 2: Probabilistic voting for Ripple consensus network



	Introduction
	Evolution of transaction
	Federated Byzantine Agreement
	Implementation of FBAs

	Byzantine Fault Tolerance
	Paper overview

	Method
	Related theories
	Platform selection
	Data flow
	Materialization of tolerance
	Safety
	Liveness


	Experiment
	Test configurations
	Consensus procedure
	Selection of quorum slices
	Voting procedure

	Test procedures
	Transaction model

	Test variation
	Test efficiency

	Result
	Result for Stellar consensus network
	Result for Ripple consensus network

	Discussion
	Implication
	Limitation
	Confounding variables
	Ripple and Stellar implementations

	Conclusion


