;: university of faculty of science / 7 . .
fﬁﬂ}: / gr onin gen / and engineering / gézﬁlm / 1nstitute

Computer-Assisted Virtual
Acetabular Fracture
Reconstruction

Master’s Thesis

August 2018

Student: L.E.N. Baakman ($1869140)

PRIMARY SUPERVISOR: RNDR. J. KOSINKA, PH.D.
SECONDARY SUPERVISOR: DR. IR. P.M.A. VAN OOIJEN

TERTIARY SUPERVISOR: DR. M.J.H. WITJES

Contents

Preface
I Paper
1 Introduction
2 Related Work oo
2.1 Statistical Template
2.2 Physical Template
2.3 Geometric Methods
3 Method
3.1 Sampling Lo
3.2 Correspondenceso
3.3 Error Metrico oo
3.4 Termination o
4 Experiment Lo
4.1 Data
4.2 Quantification L
5 Results. o o
6 Discussion
7 Conclusion e
8 Future Work
II Supporting Material
1 Virtual Fracture Reduction Pipeline
1.1 Segmentation
1.2 Optimization
1.3 Virtual Reduction
1.3.1 Matching
1.3.2 Registration Lo oo
2 User Interface
2.1 System Controlo o
2.2 Viewpoint Control L.
2.3 Selection
2.4 Manipulation L Lo
2.4.1 Translation

ii

iv

CONTENTS

242 Rotation.

3 Collision Detection

3.1 Broad Phase
3.1.1 Bounding Volumes,
3.2 Narrow Phaseo
3.3 Bounding Volume Hierarchy
3.3.1 Construction
3.3.2 Traversal
3.3.3 Complexity o
3.4 Continuous Collision Detection

Simulated Data

4.1 Experiment e
4.1.1 Data e
4.1.2 Quantification

4.2 Results.
4.2.1 Dataset S
4.2.2 Dataset O
423 Dataset R

4.3 Discussion

4.4 Conclusion

4.5 Future Work

iii

Preface

Before you lies my master’s thesis, the basis of which is an application that
attempts to assist with the solving of three-dimensional puzzles made up of
the fragments of fractured bones. It has been written to fulfill the graduation
requirements of the Computing Science master at Groningen University (RUG).
I was engaged in researching and writing this thesis from October 2017 until
August 2018.

This thesis has been supervised by supervisors both at the RUG and the Uni-
versity Medical Center Groningen (UMCG). The structure of this document is
slightly unconventional since it is an hybrid of the standards used in comput-
ing science and in medicine. Part I presents the principal component of my
research, the interested reader who is short on time can suffice with that part.
The chapters in Part II expound on the material in the earlier part, and present
work done as part of my thesis project that did not make the cut for the paper.
Each of these chapters can be read independently of the others and indepen-
dently of Part I. I strongly urge anyone disheartened by the results in Part I to
read Chapter 4. This chapter seems to indicate that the proposed registration
method has some promise, in spite of its disappointing performance on clinical
data.

This project would not have been possible without my supervisors at both the
RUG and the UMCG. It was always helpful to bat ideas around with the other
(PhD) students at the 3D lab. I want to name Anne in particular for making
her data available to me and processing it especially for me and for answering
my never ending questions. This thesis would have been a lot worse without
the proofreading by Jiri, Dirk, and my parents. Especially the first two have
reviewed enormous amounts of texts. Without Julie I would be a lot less cer-
tain about the correctness of the more medical sections. Any mistakes left are
solely mine. Without Jelle, Bastiaan and especially Dirk I would not have come
through this project with my sanity fully intact. I owe the former two for pro-
viding me with caffeine when I was at my most stressed and for listening to
me complain endlessly about Unity, and the latter for that and everything else.
Now that I have (nearly) graduated I finally get to keep the promise I have
repeatedly made to him for the past six years; after I have handed this in I
won’t be as stressed.

Laura Baakman

Part 1

Paper

Computer-Assisted Virtual Acetabular Fracture
Reconstruction

L.E.N. Baakman ($1869140)

August 19, 2018

Abstract

A new method to reduce acetabular fractures has been pioneered at the
University Medical Center Groningen (UMCG). It requires manual virtual
reduction of the fracture, which is time-consuming and difficult. We use
Iterative closest point (ICP) for the computer-assisted reduction of ac-
etabular fractures, together with our newly introduced error metric which
punishes intersections between fragments. To allow the incorporation of
the intersection term of this error metric, this research also proposes the
use of iterative gradient descent (IGD) to find the transformation at each
iteration of the ICP algorithm. The performance of the proposed method
is compared with that of existing variants of the ICP algorithm on the
clinical models of eight patients treated at the UMCG. We have found
no improvement in performance due to the inclusion of an intersection
term in the error metric. However, the results of the other implemented
and tested registration methods suggest that factors other than the used
error metric may have been at fault. Therefore, we conclude that further
research into this error metric and its minimization is needed.

1 Introduction

In the past decades, incidence of pelvic fractures has increased due to raising
rates of high-speed motor vehicle accidents and falls from heights. The rate of
mortality of major pelvic fractures is 10% to 20% percent, open fractures have
mortality rates as high a 50% [1]. Out of the 224 patients treated for an ac-
etabular fracture at the Radboud University Medical Center in the Netherlands
between 2004 and 2014, 15% needed a total hip arthroplasty (THA). Patients
who have a THA often have a worse functional outcome than patients with a
preserved hip joint [2]. One of the factors that significantly impacts the need for
a total hip arthroplasty is the quality of the fracture reduction. From the data
from different hospitals, between 6% and 26% of acetabular fracture reductions
are not satisfactory [2-6].

Merema et al. [7] are pioneering a new procedure for acetabular fracture surgery
at the University Medical Center Groningen (UMCG). By using computed to-
mography (CT) data and surgical planning software that uses 3D visualization,
they create a virtual model of the fractured pelvis. Based on the virtual reduc-
tion of this fracture, patient-specific fixation devices and intra-operative drilling

CcT i i
virtual reduction

*

reduced fracture

Figure 1: Proposed pipeline for automated virtual reduction.

guides are designed. Contrary to the current standard of care, this approach
allows the use of personalized fixation devices that can be tailored to both the
shape of the pelvis and the type of fracture. The virtual reduction of the fracture
is also used to determine screw directions and sizes. Comparable approaches
have been used at the UMCG for reconstruction of the mandible [8, 9] and
fibula [10], and for secondary maxillofacial reconstruction [11].

The preparatory work for these procedures, i.e. the segmentation of the com-
puted tomography scans and the virtual reduction of the fractures, is time-
consuming. We propose to structure the preparatory work according to the
stages presented in Figure 1. Segmentation is concerned with the generation of
bone models from the CT scans. On these models, further optimization tech-
niques may be applied to obtain adequate representation for subsequent stages.
The virtual reduction stage focuses on the repositioning and aligning of bones
and fragments. Since most registration approaches only work for two fragments
at once, a pairwise approach is used. The matching stage selects two fragments
to be registered to each other. After registration, the new alignment of these
fragments can be taken into account at the matching phase [12]. Eventually a
fully reduced fracture is generated. A more detailed version of this pipeline is
presented and discussed in Chapter 1.

The research presented in this paper is focused on the pairwise registration of
fracture fragments. The problem of registering two fragments to each other is
akin to solving a three-dimensional puzzle [13], with the added difficulty that
multiple fracture surfaces may be irregular and that they may not match fully
due to comminution [14].

The problem of registering two bone fragments to each other is comparable
to the problem of shape matching that has been encountered with range im-
ages. These images result from attempts to digitally capture physical objects.
Since few objects can be described by a single range image, multiple images
have to be combined to arrive at a complete digital description. Formally, the
registration problem for range images is the computation of a rigid transfor-
mation that brings the points of one range image into alignment with another
range image [15]. Several solutions to this problem have been proposed [15-18].
Another problem that is comparable is the reconstruction of broken artifacts.
However, compared to range image matching, several new challenges are intro-
duced. Firstly, data is lost due to tiny disappearing fractured pieces or due to

deterioration of material surfaces. Furthermore, a single fragment can combine
with any number of other fragments, making the exact matching relationship
hard to define [19]. Orthopedic reconstruction is even more challenging than the
reconstruction of general artifacts. To begin with, computed tomography data
are less accurate than the laser scan data that are in most cases used for gen-
eral artifacts [20-22]. The segmentation of the CT data into three-dimensional
meshes amplifies the noise present in an unpredictable manner. Secondly, bones
break differently than archaeological artifacts. They tend to splinter, generating
pieces that have a single smoothly varying fracture surface that may correspond
to one or multiple fragments. Archaeological artifacts typically consist of hard
brittle materials that often break in such a way that fracture surfaces may be
extracted by their geometric properties [23].

Before introducing our approach to orthopedic reconstruction we review earlier
work on this subject in Section 2. The fracture reduction method we propose
is the subject of Section 3. Sections 4 to 6 introduce the data used to test the
approach, present the result of the experiment, and discuss them, respectively.
Section 7 concludes the paper and Section 8 presents some ideas for new research
based on this work.

2 Related Work

Jiménez-Delgado et al. [12] observed that most preoperative orthopedic reduc-
tion tools focus on the long bones. The shaft of these bones is cylindrical and
completely surrounded by cortical tissue. At the ends of these bones the cortical
tissue is very thin, hence cancellous tissue can appear in the outer part of the
bones. This extra information has favored the development of computer assisted
methods for the reduction of fractures of long bones. Very little research has
looked at reducing irregular bones such as the acetabulum. Since this extra in-
formation is not available from the acetabulum, we do not consider registration
methods that use it.

We structured this section based on another classification of preoperative or-
thopedic fracture reduction applications by Jiménez-Delgado et al. [12], namely
one that distinguishes based on the used registration method. Approaches that
use a statistical template, discussed in Section 2.1, register the fragments of the
broken bone to an anatomical atlas of the healthy bone. The methods discussed
in Section 2.2 use a physical template, for example the mirrored contralateral
bone or a pre-existing scan of the healthy bone. Finally, in Section 2.3 we dis-
cuss geometric approaches to fracture reduction. These methods use properties
of the 3D models representing the bone fragments to register bone fragments to
each other.

2.1 Statistical Template

Moghari and Abolmaesumi [24] register fragments of a fractured humerus to
an anatomical atlas of that bone in a local registration step, after which a
global registration step is used to register the fragments to each other, and the

template. The statistical shape model (SSM) of the humerus is generated with
principal component analysis of a small population of CT scans of whole humeri.
Kovler et al. [14] argue that this approach may be inadequate for far-from-
average cases. Furthermore, a precomputed atlas might not always be available.
A final issue with this approach is that a statistical model is not necessarily
representative for the whole population. Wu et al. [25] note that there are large
differences between the humeri of Asian and Western patients.

Albrecht and Vetter [26] propose the use of a statistical shape model only if
a contralateral or pre-fracture scan is not available. Their iterative method
alternates between aligning the main fracture fragments to the template with
iterative closest point (ICP), and adapting the SSM to the individual’s anatomy.
A disadvantage of this method is that the user has to manually input the length
of the bone, as the algorithm will fail otherwise. Furthermore, the method fails
completely when it is used for the fracture reduction of a deformed bone.

An alternative to the anatomical atlases used by Moghari and Abolmaesumi
[24] and Albrecht and Vetter [26] is offered by Oura et al. [27]. They predict
the shape of the whole bone from its partial shape using partial least squares
regression. The accuracy of the resulting prediction is similar to that of methods
based on bilateral symmetry. An advantage of this method is that it is not
sensitive to initialization, since it is deterministic. However, it is susceptible to
inter-operator errors, as manual identification of landmarks is required.

All reviewed statistical methods have difficulty handling non-standard bones.
Although Albrecht and Vetter [26] base the statistical bone on numerous scans
and adapt the model to the patient’s anatomy, they still had problems with
non-standard anatomies, suggesting that statistical models have to be based on
an extremely high number of scans, which may not be available [14].

2.2 Physical Template

Okada et al. [28] evaluate different fracture reduction methods on femoral head
fractures. One of these approaches registers fracture fragments to the contralat-
eral bone. They found that this approach shows a large rotation error compared
to the other methods, even after removing all cases where registration failed
completely, which mostly occurred with contralateral matching.

The method based on the same idea introduced by Fiirnstahl et al. [29] out-
performs the one by Okada et al. [28] in all experiments on proximal humerus
fractures. However the approach by Okada et al. [28] has a significantly lower
runtime and requires fewer user-defined parameters.

There are two main disadvantages to registering to the physical bone. First,
when using the healthy contralateral bone as a template for fracture reduction
one assumes bilateral symmetry. Although Berg et al. [30] found scaphoid poles
to be sufficiently symmetrically aligned to serve as a reference in surgery, oth-
ers have found that humeri [31-33], radii, and ulnae [33, 34] show sufficient
within-patient lateral asymmetry to caution against blindly using the contralat-
eral bone as a template for surgical reconstruction [32]. Second, in most cases

the approach using a contralateral bone requires an additional CT scan of the
uninjured bone, which increases the patient’s radiation exposure [29].

2.3 Geometric Methods

Buschbaum et al. [35] register fragments to each other by detecting fracture
lines; the lines separating the strongly curved surfaces lines from the smooth
surface of the bone. Based on computed surface curvatures they extract and
connect points in areas of high convex curvature. The resulting opposite fracture
lines are mapped together based on the surface normal vector, and the first and
second principal curvature direction. The errors of the resulting registrations
fall within the clinically acceptable range.

Winkelbach et al. [36] only use curvature supplementally. Their registration
method uses a random sample matching approach, based on the random sample
consensus (RANSAC) algorithm. This repetitive procedure generates a likely
hypothesis from the input dataset, and subsequently evaluates the quality of
the registration, which is expressed as the number of contact points between
the fragments [37]. This method maximizes surface contact and minimizes pen-
etration between bone fragments. It cannot be generalized to all bones, for
example it is not suitable for long bones, since fractures of these bones have a
large area that is not necessarily part of the fracture area [14]. Furthermore, due
to the infinite search loop used by RANSAC it is impossible to decide whether
the optimal result has been found [37].

Willis et al. [23] propose an interactive method for global registration of highly
comminuted bone fractures. Pairs of coarsely corresponding user-selected frac-
ture-surface patches are aligned to each other using ICP. This algorithm it-
eratively refines the transformation that aligns one point cloud to another by
minimizing an error metric, generally some distance measure between matched
pairs of points from the two point clouds. It is guaranteed to always monoton-
ically converge to the nearest local minimum [38]. Consequently, it is sensitive
to the initial alignment of the fragments. Zhou et al. [39] improve the method
proposed by Willis et al. [23] in several aspects. Firstly, surfaces belonging to
the same bone fragment are grouped to prevent oscillations in the pairwise reg-
istration. Furthermore, the introduce a new subsampling method that allows
idiosyncratic geometric surface variations to more heavily influence the final
registration. Contrary to methods discussed earlier, Willis et al. [23] and Zhou
et al. [39] use an interactive approach. The advantage of such an approach is
that the user is able to influence the reconstruction process and select the best
option of multiple potential reductions [40].

Manual annotation is also used by Okada et al. [28]. Instead of manually se-
lecting fracture surfaces, users are asked to find the fracture lines by steering
3D line tracking software that operates on 3D curvature images of the bone
fragments. These line fragments are used as input to the ICP algorithm that
registers the fragments to each other.

Kovler et al. [14] do not use manual identification of fracture surface pairs, in-
stead they extract them automatically by searching for connected components

of high density in the CT scan. Outliers are removed by only keeping sur-
faces whose maximal principal curvature is higher than some threshold. They
compute the coarse alignment of the fragments with a principal component
analysis (PCA)-based method. The finer final alignment is computed with ICP.
Users have the option to incorporate further clinical considerations by manually
changing the fracture reduction.

A new method to find corresponding points between fragments for ICP is intro-
duced by Chowdhury et al. [41]. They use complete bipartite graph matching
to find correspondences such that no two pairs share a common point, to avoid
distortion of the fracture shape. They try to ensure that the ICP algorithm
finds the global minimum of the registration by generating multiple initial ori-
entations for each fragment. Possible initializations are constructed from the
fragments’ bounding boxes. The best initializations are selected using local and
global shape constraints [29]. This alternative initialization of the conventional
ICP algorithm results in improved accuracy and convergence compared to the
normal implementation on the five tested clinical datasets.

It seems that ICP is the most used geometric registration method [14, 23, 41,
42], although some alternative methods have been introduced [35, 36]. Strik-
ingly, the alternative methods are all fully automatic, whereas only half of the
discussed methods using ICP do not require user input. Since the fully auto-
matic approaches using ICP compute an initial alignment before starting the
iterative method, we expect that this difference is due to the sensitivity of the
ICP algorithm to local minima.

3 Method

Tterative closest point aims to find the linear transformation matrix M that
transforms a model fragment % to best match a static fragment 2°. The algo-
rithm starts with an initial guess for the rigid-body transform between the two
models, and iteratively refines it by repeatedly generating pairs of correspond-
ing points on the meshes and minimizing an error metric until some termination
criterion is met. Many variants of the algorithm have been introduced since its
inception by Chen and Medioni [16] and Besl and McKay [43]. Rusinkiewicz
and Levoy [44] identify the following stages in the algorithm:

1. Selection of some set of points in one or both of the meshes.

2. Matching these points to samples in the other mesh, to generate corre-
spondences, pairs of points, with one point contributed from each mesh.

3. Weighting the resulting correspondences appropriately.
4. Computing the value of an error metric based on the point pairs.
5. Minimizing the error metric.

We add a final stage, namely stopping the algorithm when some termination
criterion is met.

BERE O EER L e

(a) uniform subsampling (b) NDO subsampling

Figure 2: The difference between (a) uniform and (b) normal distribution optimiza-
tion (NDO) sampling illustrated. Observe how the small feature is over-
whelmed by the surrounding flat area if uniform subsampling is used. Im-
ages adapted from Rusinkiewicz and Levoy [/4].

Due to its sensitivity to local minima in the error, the algorithm may not con-
verge if the two models are placed too far away from each other [42]. Therefore
we take the user-manipulated pose of the fragments in the virtual environment
as the initial registration.

Up until now we have only discussed the registration of two models to each other.
To handle multiple models we use pairwise matching. This entails that to match
for example three fragments, different pairs of those three fragments need to be
matched to each other, while one of the fragments is not considered.

Stages 1 and 2 are discussed in Sections 3.1 and 3.2, respectively. We do not
weigh points, since Rusinkiewicz and Levoy [44] found in their comparison of
different variants of the ICP algorithm that this hardly influences the conver-
gence rate. The different error metrics and their minimization is the subject of
Section 3.3. Finally the termination of the introduced ICP variant is discussed
in Section 3.4. The variant of the ICP algorithm presented in this section has
been implemented with Unity [45].

3.1 Sampling

We have used two different sampling methods, namely all-points sampling and
normal distribution optimization (NDO) subsampling. The first method simply
uses all available points. This approach is only used if the models are relatively
small, i.e. if they have fewer than 1000 vertices.

NDO subsampling is used for all larger meshes. This method chooses points
such that the distribution of normals among the selected points is a large as
possible; if one were to bin the normals in angular space after subsampling each
bin would have approximately the same number of elements. Consequently,
small features, which can be vital for the determination of the correct regis-
tration, do not disappear [44]. For example, in case of a mesh representing a
small ridge in an otherwise flat surface, uniform subsampling results in a sample
containing mostly normals from the flat surface. NDO subsampling with three
bins produces a set of samples which consists in equal number of vertices coming
from the flat surface, the left side and the right side of the ridge. The effect of
features that disappear using uniform subsampling, and that stay visible with
NDO subsampling is illustrated in Figure 2.

We have implemented NDO subsampling by binning all vertices according to the
direction of their normals and then sampling as uniformly as possible across the
bins. To bin the vertex normals into n bins, each bin is associated with a face

(a) original normal shooting (b) adapted normal shooting

Figure 3: (a) The problem of the original normal shooting algorithm and (b) the used
adapted version. The dashed lines indicate the cast rays that are used to
find the intersection. The static fragment boundary is shown in orange,
the model fragment boundary in green.

normal of a uniform polyhedron. The exact polyhedron that is used depends
on the choice of n. A vertex normal n is added to the bin associated with the
face normal r; € {ry,...,r,} such that

argmaxim - r;.
i€[1,n]

3.2 Correspondences

To find correspondences, we use an adaptation of the normal shooting method
proposed by Chen and Medioni [16]. The original method finds the intersection
with the model fragment of the ray originating at a vertex on the static model
in the direction of the vertex normal. A disadvantage of this approach is that
it cannot find correspondences in areas where the two models intersect. To
solve this, we first cast a ray in the direction of the normal. If that does not
result in an intersection we shoot in the flipped direction. This problem, and
the proposed solution, are illustrated in Figure 3.

The adapted correspondence finding method has been implemented with the
Unity [45] methods to detect collisions between mesh colliders and rays. Due
to the application programming interface (API) of that functionality we are
required to set a maximum within correspondence distance. We have set this
distance in two ways, namely to a fixed distance, and to a distance that is a
percentage of the bounding box of all fragments of the fracture. The advan-
tage of the latter approach is that it is independent of the scale of the meshes
that represent the fracture fragments. The second step of the correspondence
finding is the filtering of correspondences. Due to Unity’s API, a filter on the
within-correspondence distance is implicitly implemented. This filter rejects
any correspondence for which the distance between the point sampled from the
static fragment and the point sampled from the model fragment is greater than
some threshold. We have not added any other filters.

10

3.3 Error Metric

ICP aims to find the registration between two models by iteratively minimizing
some error metric. This metric generally depends on some aggregation of the
errors associated with the different correspondence pairs.

We consider three different error metrics. For one metric, the point-to-point
error, two minimization methods have been implemented. In Section 3.3.1 we
discuss the point-to-point error and its two minimization methods. The point-
to-plane error is presented in Section 3.3.2, and finally the newly proposed
intersection error is the subject of Section 3.3.3.

3.3.1 Point-to-Point Error

The point-to-point error of the correspondence C = (x,y) with x € £ and
y € % and the transformation matrix M is defined as

epo (C) = | Mx —y |”. (1)

Several closed-form solutions that minimize the sum of the point-to-point er-
ror have been proposed [46-49]. A comparison of these methods by Eggert
et al. [50] showed that the differences among them with respect to numeri-
cal accuracy and stability are small. We have chosen to use the method in-
troduced by Horn [47] using unit quaternions. Given the set of correspon-
dences ¢ = {C; = (x;,y;) |1 =0,1,.... NAx; € Z ANy; € # }, this method
finds the translation vector t and the rotation matrix R such that

N
EH:ZH%‘—R(Xi—Xc)—t\Z (2)
im1

is minimized, where x. is the centroid of 2". Horn [47] showed that t is the
difference between the centroids of 2 and #'. The rotation is found by con-
structing the cross-covariance matrix between zero-centered pairs of points. The
final rotation is defined as the eigenvector corresponding to the eigenvalue of a
matrix that is built from the cross-covariance matrix [15]. We refer to the min-
imization of the point-to-point-error with the method proposed by Horn [47] as
point-to-point closed form (CFp,).

As an alternative to the closed-form solution, we have investigated an iterative
approach to minimizing Equation (2). We have chosen to use iterative gradient
descent (IGD) [51]; better results may be achieved with more sophisticated
iterative methods. Wheeler and Tkeuchi [52] introduce the prerequisites for
using gradient methods to minimize Equation (2). They define the following
least squares function:

N
Fiv = 15 30 (R(@)%i+t—y)’ 3)

where R (q) represents the 3 x 3 orthonormal rotation matrix defined by the unit
quaternion q. The factor 4N is introduced for aesthetic reasons. The partial

11

derivatives of this function w.r.t. the quaternion q and the translation vector t
are

OBw 1 &

TX:NZR(q)XiX(t_Yi)v (4)
=1

OF 1 &

TtW:WZR(Q)XHrt*Yr (5)
i=1

Using these equations the update rule for the translation vector used in IGD

becomes
, ANOEw

“C o ©

where A denotes the learning rate, and (is a scaling factor.

The scaling factor corrects for the dissimilar scaling behavior of rotation and
translation in rigid body motion. Setting the scaling parameter to one would
result in an error landscape with a canyon, which makes gradient-based search
methods inefficient [52]. Figure 4 shows how a lack of normalization causes
such a canyon which results in the IGD algorithm requiring more steps to reach
convergence. To compute (, the ranges of the points in 2~ are computed in
each dimension. (is set to the size of the largest range.

The learning rate indicates the size of the steps taken in the direction of the
gradient, i.e. the length of the arrows in Figure 4. Setting this parameter to
a large value can result in fast convergence. However, it might also cause the
algorithm to continuously overshoot the correct value, resulting in an oscillation
around the correct solution. Choosing a too small learning rate generally avoids
these oscillations, but it can make convergence slow. We have set A to the
empirically determined value 0.001.

(a) normalized (b) unnormalized

Figure 4: Illustration of the difference between performing iterative gradient descent,
(a) with and (b) without the scaling factor . Shown is a 2D error land-
scape, the contours of which are indicated by the blue circles. The steps of
the ’path’ the IGD algorithm takes are shown by orange arrows. This path
leads to a light blue dot, which represents the local minimum nearest to the
initialization position, indicated by an orange dot.

12

(a) point-to-point (b) point-to-plane

Figure 5: Illustration of (a) the point-to-point and (b) the point-to-plane error. The
dashed lines connect correspondences between points sampled from the
model fragment 2 and the static fragment % . The point-to-plane im-
age also shows the vertexr normals of the static points. Images adapted
from Low [53].

The update rule for the rotation, expressed as a quaternion, is

q =- 2 8EJ (7)
¢ Oq
The scalar value of the resulting quaternion q’ should be one, since the gradients
are implicitly evaluated at the identity quaternion. To handle floating point
errors we set the scalar value of the quaternion to 1 after every iteration.

IGD terminates if the current error, defined in Equation (3), is lower than the
convergence error, or if a fixed number of iterations has been reached. We have
set this last number to a relatively low value, namely 200, since any possible
errors will be improved upon in further iterations of the ICP algorithm. The
resulting error metric and minimization combination is referred to as point-to-
point iterative gradient descent (IGD,,).

3.3.2 Point-to-Plane Error

The ICP version introduced by Chen and Medioni [16] uses the point-to-plane
error. This metric computes the squared distance from each point on the model
shape to the plane that is perpendicular to the static point’s normal, which
contains the static point. For the correspondence C the point-to-plane is

ept (€)= (Rx +t—y) n)”, (®)

where n is the normal of the point y sampled from #. Figure 5 compares this
error metric to the point-to-point error. If no vertex normals are included with
the fragments we compute them according to Newell’s method [54].

No closed-form solutions are available for this error metric [44]. The least-
squares equations derived from Equation (8),

N
E;, = Z ep1(Ci) (9)

13

(a) non-intersecting fragments (b) intersecting fragments

Figure 6: The sum of square distances between the shown correspondences in (a) the
case where the fragments do not intersect and (b) the case where they do is
the same. As a result both the point-to-point and the point-to-plane error
assign the same error to these different cases.

may be solved using a generic non-linear method, for example Levenberg-Mar-
quardt [44]. However these methods are computationally expensive. If the
rotation that minimizes Ej, is small, Equation (9) can be solved by lineariz-
ing the rotation matrix. A 3D rigid-body transformation matrix is defined as

w = s RO R, () R 0. (10)

where R, (7), Ry (f), R, (o) denote the rotation of «, §, v radians around
respectively the x, y and z-axes. When we assume that the rotation 6 is small
we can use the approximation sin (6) ~ 0 and cos (6) =~ 1. This allows M to be
approximated as the linear matrix

1 - B T

~ 1 —a t
M = jﬁ o 14 (11)

0 0 0 1

Using M , linear least squares can be used to find the translation vector t and
the rotation around the z, y, and z-axes, «, 8 and -, respectively. The final
transformation matrix should be computed by plugging these values into Equa-
tion (10), since using Equation (11) may result in an invalid transformation
matrix [53]. This linear approximation is equivalent to treating the transforma-
tion of the points sampled from 2" as a displacement by a vector [r x x + t],
where r = [, 7y, 7,] is a vector of rotations around the z, y, and z-axes [55].
We refer to the minimization of the point-to-plane error with this minimization
metric as point-to-plane closed form (CFpy).

3.3.3 Intersection

As illustrated in Figure 6, both the point-to-point and the point-to-plane error
metrics are insensitive to intersections between fragments. In the context of
fracture registration, the reduction shown in Figure 6(a) without intersections

14

is superior to the one with intersections in Figure 6(b). However, this is not
reflected in the point-to-point or point-to-plane error. Therefore, we introduce
the intersection error

et (C) = wp (Mx —y)? +wré| Mx —y |, (12)

where wp and w; denote the weights of the distance and intersection term,
respectively. We have set both terms to 0.5, giving them equal weight. The
factor £ in the intersection term is 0 if x does not fall within the static model,
and 1 otherwise.

To obtain the factor £ we need to determine if x lies within the static fragment,
%. Since the fragments may be concave, we cannot use the sign of the dot
product to determine containment, and have to use more complex methods.
Consequently we cannot use a closed-form solution to determine the translation,
we use an iterative method instead. If the axis-aligned bounding boxes (AABBs)
of the two fragments do not overlap, we set all {£|¢=0,1,..., N } to zero. An
overview of more sophisticated methods of object collision is given in Chapter 3.
If there is some overlap between the AABBs of the fragments, we use a two-
stage approach to determine the value of &; for every correspondence. In the
first, computationally cheap, stage we check if x falls within the AABB of #'.
Only if this is the case do we count the intersections with % on the line from x
to a random point outside of #”’s bounding box. If the number of intersections
is odd, x is contained within the static fragment, and € is set to 1. If the number
of intersections is even, or if x does not lie within the bounding box, £ is set to
Zero.

To minimize the error in Equation (12) iteratively we introduce the least squares
function

Er = Z (wp +wr&) (R(a)x; +t —yi) (13)

which, following the method discussed by Wheeler and Tkeuchi [52], has the
following partial derivatives w.r.t. q and t

3

N

857]2[:% (wp +wr&i) (R(q)x; x (t —y4)), (14)
=1

0B, 1

T =3 2 (@n Fwrk) (Rl@)xi 4t —y.). (15)

1

Given these partial derivatives we use the iterative approach discussed in Sec-
tion 3.3.1 to find the transformation at each iterative closest point iteration. We
name this new error metric and its minimization intersection iterative gradient
descent (IGD;).

15

3.4 Termination

We terminate the ICP algorithm if at least one of three conditions is true:
(i) We have executed the maximum acceptable number of iterations.
(ii) The error of the current iteration is lower than some threshold.

(iii) The error has stabilized according to some criterion.

Finally, the algorithm also terminates if fewer then six correspondences are
found. The rationale behind this is that at least six observations are needed to
determine six unknowns.

Condition (i) is true if the number of ICP iterations is greater than 500. This
threshold ensures a reasonable computation time for each pairwise registra-
tion.

The termination condition (ii) halts the algorithm if the current registration
error is lower than some threshold. Although the closed-form methods minimize
the sum of errors, the convergence error is always computed as the mean of the
correspondence errors. This avoids undue influence of the number of found
correspondences on the convergence. The value of the error threshold is set to
1 times the initial registration error. The first advantage of this approach is
that it ensures that the error threshold always makes sense in the context of
the data. Secondly, contrary to a fixed value, it allows the user to rerun the
algorithm if the previous run terminated because of Condition (ii) without a
satisfactory result. In a clinical, rather than experimental, context, one might
set a maximum value for this threshold, to ensure that it is never larger than
the clinically acceptable reduction distance.

Finally, Condition (iii) terminates the algorithm if the error has stabilized, i.e.
if continuing the computations is not likely to improve the final registration.
To determine stabilization we store the past 50 iteration errors in a set .. We
consider the registration to be stable if

1
— 1078 1
yayu<5xo , (16)

where ., and ., denote the mean and biased standard deviation of .7, re-
spectively. The standard deviation is scaled with the mean to ensure scale
invariance.

4 Experiment

Other than the actual registration, one of the challenges of research in this field
is the quantification of results, since a ground truth is generally not available
for clinical data. Some are satisfied with a visual inspection of the results [23,
39]. Others go through the trouble of physically breaking fake bones and scan-
ning the resulting fractures [13, 35]. An often used approach is to make a CT
scan of healthy bones, break them virtually and manually transform one of the
fragments [13, 14, 56]. Finally Okada et al. [28] use clinical fracture data and

16

(a) preoperative model (b) reduced model

Figure 7: Visualization of an acetabular fracture (a) before and (b) after virtual re-
duction. Images adapted from Meesters [57].

compare the results of their automatic classification with the manual reduction
of the same fracture by a medical professional.

We use a mix of these approaches. The generation of the dataset is discussed
in Section 4.1. Section 4.2 introduces the method used to evaluate the quality
of a reduction. We have performed a comparable experiment with simulated
data, which has significantly different outcomes. This experiment is discussed
in Chapter 4.

4.1 Data

We use the clinical data of eight patients treated for an acetabular fracture at
the UMCG. For each patient, the 3D models of the fracture fragments generated
from the preoperative CT scan and the manual virtual reduction by Meesters
et al. [58] are available. We use the virtual reduction by Meesters et al. [58] as
our ground truth. Figure 7 a 3D model of an acetabular fracture and its virtual
reduction.

Preoperative CT scans are made with 512 x 512 slices, with a thickness in the
range 0.6 mm to 2mm. Table 1 presents the used slice thickness per patient.
Based on these CT scans, three-dimensional models are generated with Mimics

(a) original mesh (b) downsampled mesh

Figure 8: (a) The original mesh of an acetabular fracture fragment, with 90332 faces,
and (b) the same mesh downsampled to 7500 faces.

17

fragment

p f1 fa f3 f4 fs fe f7 fs fo fio fnn

Fa 1.00 45.40_

Fp 1.00 13.93 42.28 45.85 46.88
Fc 0.60 29.80
Fp 125 34.28 44.92 46.80
Fr 200 0.00 39.24 44.08 45.45
Fa 2.00 33.60 46.70
Fu 1.00 32.87 40.32
Fr 1.00 0.00 10.50 34.27 41.01 41.35 44.10

Table 1: The slice thickness, p, in mm and the percentual reduction in vertex count
due to subsampling for the different fragments in Fa, FB, Fc, Fp, FE&,
Fa, Fu, Fr. The shading of the cells indicates the first (), second (©),
third (@), and fourth (@) quantile.

Medical [59]. First, bone tissue is segmented using a threshold based technique.
Loose voxels with the same Hounsfield unit (HU) as bone are removed with
region growing. Fracture fragments are split manually with the aid of the split
tool provided by Mimics Medical [57]. For the purposes of this experiment the
meshes were processed further, using the wrap tool implemented in Materialise
3-matic [60] with the gap closing distance set to 1.0 and the smallest detail to
0.5, otherwise the default parameters were used.

Since these meshes have too many vertices to be processed by Unity, they have
to be downsampled before they can be imported in the our application. Using
the Quadric Edge Collapse Decimation implemented in MeshLab [61] we down-
sample each object until it has 7500 faces. Next, MeshLab is used to remove all
connected components composed of fewer than 5000 triangles. Figure 8 shows
a fracture fragment before and after downsampling. Table 1 presents the per-
centual downsampling rate per fragment per dataset. This table also includes
the slice thickness of the CT scans the fragments are based on.

We add noise to the transformations of the fragments of the manually reduced
fractures to simulate a user placing them in an approximately correct posi-
tion, before letting the application find the optimal registration. Fragments are
rotated around the z, y, and z-axis with an angle in the range [—5°,5°] sam-
pled from a uniform distribution. For the translation we compute the oriented
bounding box (OBB) of the fragment. Let w be the size of the OBB in some
dimension, the translation in that dimension is then sampled from a uniform
distribution with the range [—0.001w, +0.001w].

The order in which fragment pairs are registered is determined based on their
vertex count. We first register the fragment with the fewest vertices to the
one with the most, then to fragment with the second most, and so on, until it
has been registered to all other fragments. Next, the next smallest fragment is
registered to all other fragments that have a higher vertex count in the same

18

way. This is repeated until the largest fragment has been registered to the
second largest fragment. The process is then executed once more to reach the
final registration. It should be noted that better results may be achieved with
one of the more sophisticated approaches to multi-fragment registration. For
example the one used by Fiirnstahl et al. [29].

We used an adaptive error threshold with ¢ € {0.2,0.6} as one of the termina-
tion conditions.

4.2 Quantification

We take the same approach as Kovler et al. [14] and Chowdhury et al. [41] and
use the Hausdorff distance to compare the quality of registrations. Between two
meshes &/ and %, the Hausdorff distance is [62]

Dy (o, %) = max (Dy, (o7, B), Dy (%, 7)), (17)
where
Dy, (o, B) = max <lr)ré1§|a - b|) . (18)

The directed Hausdorff distance, defined in Equation (18), is computed with
the implementation provided by MeshLab [63].

5 Results

The experiment described in Section 4 results in a dataset with two factors,
namely the four used registration methods and 1, the scaling factor used to
compute the adaptive error threshold. The first factor has four levels, one for
each of the used registration methods point-to-point closed form (CF,,), point-
to-plane closed form (CFy,), point-to-point iterative gradient descent (IGD,,),
and intersection iterative gradient descent (IGD;). The second factor is binary,
its two levels are 0.2 and 0.6.

Let F = {f1,...,f,} be aregistration of a fracture with n fragments. To compare
two different registrations, F, and F,, of the same fracture we use

1 n
D (Fuy Fy) = -~ ZDH (flasiys fyi)) » (19)
=1

where f(, ;) denotes the ith fragment of registration F,. Equation (17) defines
Dy (fa, fp) as the undirected Hausdorff distance between the two fragments f,
and f,. For the registration methods defined in Section 3, Dj; is computed as
the mean undirected Hausdorff distance between the initial alignment of the
fragments and the alignment determined by the registration algorithm. The
initial alignment is the registration of the fragments after the application of
noise to the manual reduction by the expert, as discussed in Section 4.1.

A t-test on the factor ¢ shows that the levels 0.2 (1 = 0.112, o = 0.0839) and
0.6 (1 =0.104, 0 = 0.0874) do not differ significantly (¢7s.c = 0.358, p = 0.721).

19

registration method

initial CFpo CFp IGD,, IGD;

Fa 3.000e° 8.966¢ 2 6.375¢ 3 9.759¢ 2 4.967¢2
Fr 7.500e 7 1.483¢~1 1.343e~1 2.289¢ ! 1.544e~ 1
Fe 5.250e 6 2.917¢~7 2.430e~2 7.916e 2 2.712e 1
Fp 8.333¢ 7 1.594e~2 5.268¢ 2 2.026e~ ! 2.465¢~ 1
Fr 2.000e6 6.667e~7 7.948¢ 2 1.445e~1 1.458¢e~!
Fa 5.833e 76 5.088¢2 3.692e3 1.870e~! 1.171e !
Fu 6.333¢ 6 6.998¢ 2 3.658e 2 1.283e~1 1.292e~1
Fr 1.273e6 4.705¢~2 3.542¢ 2 22731 2.731e~!

Table 2: The mean undirected Hausdorff distance, Das, between the ground truth
and the initial registration and between the ground truth and the automatic
reduction arrived at by the four different registration methods.

Since the factor v does not influence the registration significantly we do not
consider it henceforth.

Table 2 presents Dj;, the undirected mean Hausdorff distance between the
ground truth and the initial registration and the reductions computed by the
four registration methods. What stands out most in this table is that all reg-
istration methods worsen the initial registration. The closed-form registration
methods seem to perform better than the IGD methods on some of the datasets.
Most notably, CF,, generates a registration for Fc and Fg that is better than
the initial registration w.r.t. to Dj,.

We perform paired t-tests to see if the differences between the computed regis-
trations and the initial registration are significant at the 0.001 significance level.
The results of these tests are presented in Table 3. Firstly, this table confirms
our finding from Table 2, that the registration methods deteriorate the initial
registration (1 = 3.02 x 1075, o = 2.09 x 107%) w.r.t. Dys. Furthermore, the
closed-form methods, CF,, (4 = 0.0414, o0 = 0.0407), and CF,, (1 = 0.0469,
o = 0.0474), significantly worsen the initial registration but far less so than the
iterative gradient descent methods, IGD,,, (¢ = 0.160, o = 0.0514), and IGD;
(u=0.176, 0 = 0.0721).

We consider the influence of the percentual downsampling by comparing the
values of Dgy (f(I’i),f(F’i)) for all matched fragments between the initial, F7,
and computed registration, Fr. Since we have already established that the reg-
istration method influences D)y, we use four one-way ANOVAs on the factor
percentual downsampling, with the four levels indicated in Table 1. We find no
significant influence of this factor for CF,, (F3.080 = 2.15, p = 0.172), CF,
(F3.0,12.0 = 178, p = 0205), IGDPO (Fg.o,go.o = 1707 p = 0189)7 or IGDI
(F5.0,31.0 = 2.87, p = 0.052). Therefore we conclude that the different registra-
tion methods respond in similar ways to the effects of downsampling.

20

registration method

CFpo CFp IGD,, IGD;
initial p<0.050 (—2.797) p<0.050 (—2.877)
CFpo p=0.809 (0.246)
CFp

Table 3: The t-statistic and the p-value of the paired t-tests between the initial align-
ment and the results of the different registration methods. The degrees of
freedom of each test is 34. Cells where the results of the test is significant
at the 0.001 level are shaded.

We do not have sufficient data to make any observations about the influence
of the number of fragments or the slice thickness on the quality of generated
registrations.

6 Discussion

In Section 5 we found no significant influence of the factor v that controls the
adaptive error threshold on the registration error. This could be explained by
the low number of executions of the registration algorithm that terminated due
to termination condition (ii), i.e. the error being lower than the threshold. If
we observe the reasons that the different executions of the pairwise registration
algorithm terminated, we find that for ¢ = 0.6 the registration methods CF,,
and CFp,| never terminate because the current error is lower than the threshold.
Pairwise registration with IGD,,, terminates due to the error threshold for 7.9 %,
2.6 %, and 2.5 % of fragment pairs from dataset Fg, Fg, and Fr, respectively.
For the other datasets registration with the method IGDy, never stopped due
to termination condition (ii). The registration method IGD; terminates only on
dataset Fa because the error is lower than the threshold, and only in 12.5%
percent of the cases. Decreasing ¥ to 0.2 results in even fewer executions of
the pairwise registration algorithms terminating due to termination condition
(ii), since the threshold is lower than for ¢» = 0.6. One would expect the per-
formance of IGD,,, and IGD; to be reasonable, if they terminate because the
error is below the threshold. However, the directed Hausdorff distances between
fragment pairs that terminated due to termination condition (ii) are comparable
to those of the other pairs. We ascribe the lack of difference to the error being
computed with the correspondences of the current iteration. Using the undi-
rected Hausdorff distance between the two fragments as the error to determine
termination might be a better approach, since that metric does not depend on
correspondences that differ between iterations.

Table 2 shows that in general all registration methods increase the mean undi-
rected Hausdorff distance for all datasets. One possible cause for this is lack
of precision, which is lost in several places. Firstly, Hu et al. [64] observed
that for their registration algorithm to succeed slices should not be thicker than

21

1.25mm. Dataset Fr and Fg were extracted from CT scans with p = 2mm.
Secondly, due to the constraints imposed by Unity we had to downsample our
meshes quite aggressively. The lost information could negatively impact the
performance of the registration algorithm. And finally, Unity forces the use of
single precision floats to represent floating point numbers, which may have led
to missing data. This problem can be solved by scaling the data with some
factor > 1 before applying the registration algorithm.

In Table 2 we also find that the performance of registration method CFp, is
not consistent between datasets. This method reduces the mean undirected
Hausdorff distance w.r.t. the initial error for datasets Fo and Fpg, contrary to
its performance on the other datasets. One possible explanation for the differ-
ence is that Fo and Fg have fewer precision issues, for example because their
fragments have fewer vertices than those of the other datasets before down-
sampling. However their percentual vertex reduction is comparable to that of
the other datasets. Furthermore, if that was the reason for the difference we
would expect dataset Fp to have a better performance. Another factor that
influences the loss of precision is the slice thickness of the CT scans the meshes
were generated from. Although F¢ has the best performance and the lowest
slice thickness, the fact that Fg performs comparably, but was generated from
slices with p = 2mm suggests that the thickness of the slices is unlikely to be
the cause of performance difference. It should be noted that we do not have suf-
ficient data to draw definitive conclusions on the influence of the downsampling
rate or the slice thickness. Finally, dataset o and Fg behaved comparably to
the other datasets with regard to which condition triggered the termination of
a pairwise registration.

A striking observation from Table 3, is the significant difference in performance
between the closed-form and the IGD registration algorithms. One possible ex-
planation for this difference is that ICP needs more iterations to converge if the
transformation matrix is approximated with IGD instead of computed exactly
with a closed-form solution. The only difference between the registration meth-
ods CF,, and IGDy, is the method they use to determine the transformation.
Therefore, the significant difference in undirected Hausdorff distance between
fractures registered with these methods indicates that the use of IGD instead of
a closed-form solution worsens performance. Another factor that supports this
explanation is the fact that the pairwise registration methods IGD, and IGD;
terminate for 34.1% and 77.4% of the fragment pairs because the maximum
number of iterations has been reached. Whereas, CF,, and CF only termi-
nate due to this reason for 4.0 % and 9.4 % of the fragment pairs. To improve
the performance of the IGD methods increasing the number of iterations for
either IGD or ICP is likely to work. The correct number of iterations for the
latter can be found by comparing the undirected Hausdorff distances per iter-
ation between CF, and IGD,,. To find the correct threshold value for IGD,
one could compare the transformation matrices computed at each iteration by
CFpo and IGDp,. These comparisons should result in reasonable thresholds for
both IGD and ICP, that can be applied to IGD; as well.

922
7 Conclusion

We have introduced two ideas that to the best of our knowledge are new.
Namely, the use of the an adaptive error threshold to determine the termi-
nation of the ICP algorithm and a new error metric that not only considers the
distance between correspondences but that also takes intersections between the
two fragments into account.

Unfortunately we cannot draw any definitive conclusion about the usefulness
of the adaptive error term, since computational limits meant we had to set the
maximum number of allowed iterations for the ICP algorithm quite low, since
a higher threshold resulted in unreasonably long run times. Consequently, the
pairwise registration algorithm generally terminated due to this threshold before
the adaptive error termination condition could have an effect.

The second newly introduced idea is the use of an error metric for ICP that
takes intersections between fragments into account. Based on our results we
can only conclude that the use of IGD to find the transformation matrix for a
single iteration of the ICP algorithm worsens the quality of the final registration.
However, this might be due to the maximum number of iterations set for IGD.
We have also identified several possible causes other than the method used to
find the transformation matrix for the difference in performance in Section 6.
The most important of which is that Unity, although very suitable for the imple-
mentation of the user interface (UI), is not the best framework to use for high
performance computing. Therefore, we conclude that our experiment should
be repeated with a new implementation that addresses the identified precision
issues and that allows exploration of the correct parameters for the termination
of IGD and ICP.

8 Future Work

This section introduces some ideas for future research, based on the presented
work. The fracture fragments extracted from CT scans according to the proce-
dure outlined in Section 4.1 are large triangle meshes that have up to 510700
vertices. One way to handle these large meshes during the registration would
be to start the registration with aggressively downsampled fragments, and to
use meshes of an increasingly higher resolution as the quality of the registra-
tion increases. This would speed up the initial coarse registration which is,
in our opinion, unlikely to suffer from the use of low resolution fracture frag-
ments.

Moreover, we propose to take the fracture area into account during the down-
sampling of the fragments. Since the fracture surfaces of the fragments are the
parts that should be registered to each other, as much information as possible
should be left intact in those areas. As the non-fracture surface of the frag-
ment is of far less interest to the registration algorithm one could compensate
for the higher number of vertices sampled from the fracture area by sampling
fewer points from the non-fracture surface. The obtained fracture surface can
be included in the ICP algorithm in several ways. One way to do this would be

23

to only sample points to be used in the correspondence finding stage from the
identified fracture area. Alternatively, or additionally, one could include a term
in the error function that punishes correspondences with points that are not
part of a fracture surface. Several approaches to obtaining the fracture surface
have been proposed, ranging from interactive [28, 41] to automatic, based on for
example the maximum principal curvature and the Hounsfield intensities [14,
23, 29, 56].

Next to using the fracture surface, incorporating the Hounsfield intensities might
be useful. A term that punishes differences in Hounsfield intensities could be
added to the error metric. Alternatively, similarity of Hounsfield intensities
between the points of a correspondence can be used to weigh the correspondence.
It should be noted that for bones with a thin cortical layer the inclusion of these
values might not improve performance.

We have identified the dependence of termination condition (ii) on the quality
of the algorithm used to find correspondences as a possible weak point of our
variation of the ICP algorithm. This dependence can be avoided by terminating
the registration based on the current value of an error metric that only uses the
current registration of the two fragments. One example of such an error metric
is the undirected Hausdorff distance. A disadvantage of this approach is that it
is computationally expensive.

Finally, our dataset contained two factors for which we did not have sufficient
data to determine their influence, namely the slice thickness of the CT scans
and the downsampling rate. We recommend that future experiments investigate
their influence on the quality of the computed registration.

References

[1] E. Llopis, V. Higuera, P. Aparisi, J. Mellado, and F. Aparisi. “Acute Os-
seous Injury to the Pelvis and Acetabulum.” In: Musculoskeletal Imaging.
2015. Chap. 20, pp. 254-274. DOL: 10.1016/B978-1-4557-0813-0.0002
0-1.

[2] B. Frietman, J. Biert, and M. Edwards. “Patient-reported outcome mea-
sures after surgery for an acetabular fracture.” In: Bone Joint J 100.5
(2018), pp. 640-645. pDOL: 10.1302/0301-620X.100B5.BJJ-2017-0871.R
3.

[3] P. Giannoudis, M. Grotz, C. Papakostidis, and H. Dinopoulos. “Operative
treatment of displaced fractures of the acetabulum: a meta-analysis.” In:
The Journal of bone and joint surgery. British volume 87.1 (2005), pp. 2—
9. por: 10.1302/0301-620X.87B1.15605.

[4] M. Tannast, S. Najibi, and J. M. Matta. “Two to twenty-year survivorship
of the hip in 810 patients with operatively treated acetabular fractures.”
In: JBJS 94.17 (2012), pp. 1559-1567. DOI: 10.2106/JBJS.K.00444.

[5] T. Borg and N. P. Hailer. “Outcome 5 years after surgical treatment of
acetabular fractures: a prospective clinical and radiographic follow-up of
101 patients.” In: Archives of orthopaedic and trauma surgery 135.2 (2015),
pp- 227-233.

https://doi.org/10.1016/B978-1-4557-0813-0.00020-1
https://doi.org/10.1016/B978-1-4557-0813-0.00020-1
https://doi.org/10.1302/0301-620X.100B5.BJJ-2017-0871.R3
https://doi.org/10.1302/0301-620X.100B5.BJJ-2017-0871.R3
https://doi.org/10.1302/0301-620X.87B1.15605
https://doi.org/10.2106/JBJS.K.00444

(6]

[13]

24

J. Clarke-Jenssen, O. Rgise, S. (. Storeggen, and J. E. Madsen. “Long-
term survival and risk factors for failure of the native hip joint after opera-
tively treated displaced acetabular fractures.” In: The bone & joint journal
99.6 (2017), pp. 834-840. DOI: 10.1302/0301-620X.99B6.BJJ-2016-101
3.R1.

B. J. Merema, J. Kraeima, K. Ten Duis, K. Wendt, R. Warta, E. Vos,
R. Schepers, M. Witjes, and F. IJpma. “The design, production and clin-
ical application of 3D patient-specific implants with drilling guides for
acetabular surgery.” In: Injury 48.11 (2017), pp. 2540-2547.

T. Woo, J. Kraeima, Y. O. Kim, Y. S. Kim, T. S. Roh, D. H. Lew, and
I. S. Yun. “Mandible reconstruction with 3D virtual planning.” In: J Int
Soc Simul Surg 2.2 (2015), pp. 90-93.

R. H. Schepers, G. M. Raghoebar, A. Vissink, L. U. Lahoda, W. J. Van
der Meer, J. L. Roodenburg, H. Reintsema, and M. J. Witjes. “Fully 3-
dimensional digitally planned reconstruction of a mandible with a free vas-
cularized fibula and immediate placement of an implant-supported pros-
thetic construction.” In: Head & neck 35.4 (2013), E109-E114. por: 10.1
002/hed.21922.

R. H. Schepers, G. M. Raghoebar, A. Vissink, M. W. Stenekes, J. Kraeima,
J. L. Roodenburg, H. Reintsema, and M. J. Witjes. “Accuracy of fibula re-
construction using patient-specific CAD/CAM reconstruction plates and
dental implants: a new modality for functional reconstruction of mandibu-

lar defects.” In: Journal of Cranio-Mazillofacial Surgery 43.5 (2015), pp. 649—

657. DOI: 10.1016/3j. jcms.2015.03.015.

R. H. Schepers, J. Kraeima, A. Vissink, L. U. Lahoda, J. L. Rooden-
burg, H. Reintsema, G. M. Raghoebar, and M. J. Witjes. “Accuracy
of secondary maxillofacial reconstruction with prefabricated fibula grafts
using 3D planning and guided reconstruction.” In: Journal of Cranio-
Mazillofacial Surgery 44.4 (2016), pp. 392-399. DOL: 10.1016/j.jcms.2
015.12.008.

J. J. Jiménez-Delgado, F. Paulano-Godino, R. PulidoRam-Ramirez, and
J. R. Jiménez-Pérez. “Computer assisted preoperative planning of bone
fracture reduction: Simulation techniques and new trends.” In: Medical
Image Analysis 30 (2016), pp. 30-45. 1SSN: 1361-8415. DOI: 10.1016/j.m
edia.2015.12.005.

T. P. Thomas, D. D. Anderson, A. R. Willis, P. Liu, M. C. Frank, J. L.
Marsh, and T. D. Brown. “A Computational/Experimental Platform for
Investigating Three-Dimensional Puzzle Solving of Comminuted Articular
Fractures.” In: Computer Methods in Biomechanics and Biomedical Engi-
neering 14.3 (2011), pp. 263-270. DOI: 10.1080/10255841003762042.

I. Kovler, L. Joskowicz, Y. A. Weil, A. Khoury, A. Kronman, R. Mosheiff,
M. Liebergall, and J. Salavarrieta. “Haptic Computer-Assisted Patient-
Specific Preoperative Planning for Orthopedic Fractures Surgery.” In: In-
ternational Journal of Computer Assisted Radiology and Surgery 10.10
(Oct. 2015), pp. 1535-1546. 1SSN: 1861-6429. DOT: 10.1007/511548-015-
1162-9.

https://doi.org/10.1302/0301-620X.99B6.BJJ-2016-1013.R1
https://doi.org/10.1302/0301-620X.99B6.BJJ-2016-1013.R1
https://doi.org/10.1002/hed.21922
https://doi.org/10.1002/hed.21922
https://doi.org/10.1016/j.jcms.2015.03.015
https://doi.org/10.1016/j.jcms.2015.12.008
https://doi.org/10.1016/j.jcms.2015.12.008
https://doi.org/10.1016/j.media.2015.12.005
https://doi.org/10.1016/j.media.2015.12.005
https://doi.org/10.1080/10255841003762042
https://doi.org/10.1007/s11548-015-1162-9
https://doi.org/10.1007/s11548-015-1162-9

[15]

[16]

[18]

[25]

25

G. Turk and M. Levoy. “Zippered polygon meshes from range images.”
In: Proceedings of the 21st annual conference on Computer graphics and
interactive techniques. ACM. 1994, pp. 311-318. DOI: 10.1145/192161.1
92241.

Y. Chen and G. Medioni. “Object modeling by registration of multiple
range images.” In: Proceedings. 1991 IEEE International Conference on
Robotics and Automation. Vol. 3. Apr. 1991, pp. 2724-2729. po1: 10.110
9/ROBOT. 1991.132043.

L. Tkemoto, N. Gelfand, and M. Levoy. “A hierarchical method for align-
ing warped meshes.” In: Fourth International Conference on 3-D Digital
Imaging and Modeling, 2003. 3DIM 2003. Proceedings. Oct. 2003, pp. 434—
441. po1: 10.1109/IM.2003.1240279.

K. Pulli. “Multiview registration for large data sets.” In: Second Interna-
tional Conference on 3-D Digital Imaging and Modeling (Cat. No. PR00062).
Ottawa, Canada, Oct. 1999, pp. 160-168. 1SBN: 0-7695-0062-5. DOI: 10.1
109/IM.1999.805346.

T.-g. Son, J. Lee, J. Lim, and K. Lee. “Reassembly of Fractured Objects
using Surface Signature.” In: The Visual Computer (2017), pp. 1-11. DOIL:
10.1007/s00371-017-1419-0.

F. Cohen, Z. Liu, and T. Ezgi. “Virtual reconstruction of archeological
vessels using expert priors and intrinsic differential geometry information.”
In: Computers & Graphics 37.1-2 (2013), pp. 41-53. DOI: 10.1016/j.ca
g.2012.11.001.

Q.-X. Huang, S. Flory, N. Gelfand, M. Hofer, and H. Pottmann. “Reassem-
bling fractured objects by geometric matching.” In: ACM Transactions on
Graphics (TOG) 25.3 (2006), pp. 569-578. DOI: 10.1145/1179352. 1141
925.

N. Mellado, P. Reuter, and C. Schlick. “Semi-automatic geometry-driven
reassembly of fractured archeological objects.” In: VAST 2010: The 11th
international symposium on virtual reality, archaeology and cultural her-
itage. 2010, p. 00.

A. Willis, D. Anderson, T. Thomas, T. Brown, and J. L. Marsh. “3D
Reconstruction of Highly Fragmented Bone Fractures.” In: vol. 6512. Mar.
2007. por: 10.1117/12.708683.

M. H. Moghari and P. Abolmaesumi. “Global registration of multiple
bone fragments using statistical atlas models: Feasibility experiments.”
In: 2008 30th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society. Aug. 2008, pp. 5374-5377. DOI: 10.110
9/IEMBS.2008.4650429.

K. Wu, K. Wong, S. Ng, S. Quek, B. Zhou, D. Murphy, Z. Daruwalla, and
H. Ren. “Statistical atlas-based morphological variation analysis of the
asian humerus: Towards consistent allometric implant positioning.” In:
International Journal of Computer Assisted Radiology and Surgery 10.3
(Mar. 2015), pp. 317-327. 1SSN: 1861-6429. poI: 10.1007/s11548-014~-1
084-y.

https://doi.org/10.1145/192161.192241
https://doi.org/10.1145/192161.192241
https://doi.org/10.1109/ROBOT.1991.132043
https://doi.org/10.1109/ROBOT.1991.132043
https://doi.org/10.1109/IM.2003.1240279
https://doi.org/10.1109/IM.1999.805346
https://doi.org/10.1109/IM.1999.805346
https://doi.org/10.1007/s00371-017-1419-0
https://doi.org/10.1016/j.cag.2012.11.001
https://doi.org/10.1016/j.cag.2012.11.001
https://doi.org/10.1145/1179352.1141925
https://doi.org/10.1145/1179352.1141925
https://doi.org/10.1117/12.708683
https://doi.org/10.1109/IEMBS.2008.4650429
https://doi.org/10.1109/IEMBS.2008.4650429
https://doi.org/10.1007/s11548-014-1084-y
https://doi.org/10.1007/s11548-014-1084-y

[26]

[27]

[29]

[30]

[31]

32]

[34]

26

T. Albrecht and T. Vetter. “Automatic Fracture Reduction.” In: Mesh
Processing in Medical Image Analysis 2012: MICCAI 2012 International
Workshop, MeshMed 2012, Nice, France, October 1, 2012. Proceedings.
Ed. by J. A. Levine, R. R. Paulsen, and Y. Zhang. Nice, France: Springer
Berlin Heidelberg, Oct. 2012, pp. 22-29. 1SBN: 978-3-642-33463-4. DOTI:
10.1007/978-3-642-33463-4_3.

K. Oura, Y. Otake, A. Shigi, F. Yokota, T. Murase, and Y. Sato. “Pre-
diction of forearm bone shape based on partial least squares regression
from partial shape.” In: The International Journal of Medical Robotics
and Computer Assisted Surgery 13.3 (2017), e1807. DOI: 10.1002/rcs. 1
807.

T. Okada, Y. Iwasaki, T. Koyama, N. Sugano, Y.-W. Chen, K. Yonenobu,
and Y. Sato. “Computer-Assisted Preoperative Planning for Reduction of
Proximal Femoral Fracture Using 3-D-CT Data.” In: IEEE Transactions
on Biomedical Engineering 56.3 (Mar. 2009), pp. 749-759. 1SSN: 0018-9294.
DOI: 10.1109/TBME. 2008.2005970.

P. Firnstahl, G. Székely, C. Gerber, J. Hodler, J. G. Snedeker, and M.
Harders. “Computer assisted reconstruction of complex proximal humerus
fractures for preoperative planning.” In: Medical Image Analysis 16.3 (2012).
Computer Assisted Interventions, pp. 704-720. 1SSN: 1361-8415. DOIL: 10
.1016/j.media.2010.07.012.

P. W. ten Berg, J. G. Dobbe, S. D. Strackee, and G. J. Streekstra. “Three-
Dimensional Assessment of Bilateral Symmetry of the Scaphoid: An Ana-
tomic Study.” In: BioMed research international 2015.2015 (2015). DOI:
10.1155/2015/547250.

J. A. DeLude, R. T. Bicknell, G. A. MacKenzie, L. M. Ferreira, C. E.
Dunning, G. J. King, J. A. Johnson, and D. S. Drosdowech. “An anthro-
pometric study of the bilateral anatomy of the humerus.” In: Journal of
Shoulder and Elbow Surgery 16.4 (2007), pp. 477-483. 1ssN: 1058-2746.
DOI: https://doi.org/10.1016/j.jse.2006.09.016.

L. Vlachopoulos, G. Székely, C. Gerber, and P. Fiirnstahl. “A scale-space
curvature matching algorithm for the reconstruction of complex proximal
humeral fractures.” In: Medical Image Analysis 43 (2018), pp. 142-156.
ISSN: 1361-8415. DOI: 10.1016/j .media.2017.10.006.

B. M. Auerbach and C. B. Ruff. “Limb bone bilateral asymmetry: vari-
ability and commonality among modern humans.” In: Journal of Human
FEvolution 50.2 (2006), pp. 203-218. 1sSN: 0047-2484. poI: 10.1016/j. jh
evol.2005.09.004.

J. Vroemen, J. Dobbe, R. Jonges, S. Strackee, and G. Streekstra. “Three-
Dimensional Assessment of Bilateral Symmetry of the Radius and Ulna
for Planning Corrective Surgeries.” In: The Journal of Hand Surgery 37.5
(2012), pp. 982-988. 1sSN: 0363-5023. poI: 10.1016/j.jhsa.2011.12.03
5.

https://doi.org/10.1007/978-3-642-33463-4_3
https://doi.org/10.1002/rcs.1807
https://doi.org/10.1002/rcs.1807
https://doi.org/10.1109/TBME.2008.2005970
https://doi.org/10.1016/j.media.2010.07.012
https://doi.org/10.1016/j.media.2010.07.012
https://doi.org/10.1155/2015/547250
https://doi.org/https://doi.org/10.1016/j.jse.2006.09.016
https://doi.org/10.1016/j.media.2017.10.006
https://doi.org/10.1016/j.jhevol.2005.09.004
https://doi.org/10.1016/j.jhevol.2005.09.004
https://doi.org/10.1016/j.jhsa.2011.12.035
https://doi.org/10.1016/j.jhsa.2011.12.035

[35]

[47]

27

J. Buschbaum, R. Fremd, T. Pohlemann, and A. Kristen. “Computer-
assisted fracture reduction: a new approach for repositioning femoral frac-
tures and planning reduction paths.” In: International journal of computer
assisted radiology and surgery 10.2 (2015), pp. 149-159. DOI: 10.1007/s
11548-014-1011-2.

S. Winkelbach, M. Rilk, C. Schonfelder, and F. M. Wahl. “Fast Random
Sample Matching of 3D Fragments.” In: Joint Pattern Recognition Sym-
posium. Springer. 2004, pp. 129-136. DOI: 10.1007/978-3-540-28649-3
_16.

Q. Li, M. Zhou, and G. Geng. “Fracture Surfaces Matching for Reassem-
bling Broken Solids.” In: JOURNAL OF INFORMATION &COMPUTA-
TIONAL SCIENCE 9.16 (2012), pp. 4847-4855.

H. Pottmann, S. Leopoldseder, and M. Hofer. “Registration without ICP.”
In: Computer Vision and Image Understanding 95.1 (2004), pp. 54-71.
DOI: 10.1016/j.cviu.2004.04.002.

B. Zhou, A. Willis, Y. Sui, D. Anderson, T. Thomas, and T. Brown.
“Improving inter-fragmentary alignment for virtual 3D reconstruction of
highly fragmented bone fractures.” In: Medical Imaging 2009: Image Pro-
cessing. Vol. 7259. International Society for Optics and Photonics. 2009,
pp- 7259-1-7259-9. poI1: 10.1117/12.810967.

T. P. Thomas. “Virtual pre-operative reconstruction planning for com-
minuted articular fractures.” PhD thesis. University of Iowa, 2010.

A. S. Chowdhury, S. M. Bhandarkar, R. W. Robinson, and C. Y. Jack.
“Virtual Craniofacial Reconstruction Using Computer Vision, Graph The-
ory and Geometric Constraints.” In: Pattern Recognition Letters 30.10
(2009), pp. 931-938. pOI: 10.1016/j.patrec.2009.03.010.

B. Zhou, A. Willis, Y. Sui, D. Anderson, T. Brown, and T. Thomas.
“Virtual 3D bone fracture reconstruction via inter-fragmentary surface
alignment.” In: 2009 IEEE 12th International Conference on Computer
Vision Workshops, ICCV Workshops. Sept. 2009, pp. 1809-1816. DOI: 10
.1109/ICCVW.2009.5457502.

P. J. Besl and N. D. McKay. “A Method for Registration of 3-D Shapes.”
In: IEEE Trans. Pattern Anal. Mach. Intell. 14.2 (Feb. 1992), pp. 239-
256. 1SSN: 0162-8828. DOI: 10.1109/34.121791.

S. Rusinkiewicz and M. Levoy. “Efficient variants of the ICP algorithm.”
In: Proceedings Third International Conference on 3-D Digital Imaging
and Modeling. 2001, pp. 145-152. DOI: 10.1109/IM.2001.924423.

Unity Technologies. Unity. Version 2017.1.1.f1 personal. July 5, 2018. URL:
https://unity3d.com/.

K. Arun, T. Huang, and S. Blostein. “Least-Squares Fitting of Two 3-
D Point Sets.” In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 9.5 (Sept. 1987), pp. 698—700. 1SsN: 0162-8828. DOI: 10.1109
/TPAMI. 1987 .4767965.

B. K. Horn. “Closed-form solution of absolute orientation using unit quater-
nions.” In: JOSA A 4.4 (1987), pp. 629-642. pOI: 10.1364/J0SAA.4.000
629.

https://doi.org/10.1007/s11548-014-1011-2
https://doi.org/10.1007/s11548-014-1011-2
https://doi.org/10.1007/978-3-540-28649-3_16
https://doi.org/10.1007/978-3-540-28649-3_16
https://doi.org/10.1016/j.cviu.2004.04.002
https://doi.org/10.1117/12.810967
https://doi.org/10.1016/j.patrec.2009.03.010
https://doi.org/10.1109/ICCVW.2009.5457502
https://doi.org/10.1109/ICCVW.2009.5457502
https://doi.org/10.1109/34.121791
https://doi.org/10.1109/IM.2001.924423
https://unity3d.com/
https://doi.org/10.1109/TPAMI.1987.4767965
https://doi.org/10.1109/TPAMI.1987.4767965
https://doi.org/10.1364/JOSAA.4.000629
https://doi.org/10.1364/JOSAA.4.000629

[62]

28

B. K. Horn, H. M. Hilden, and S. Negahdaripour. “Closed-form solution of
absolute orientation using orthonormal matrices.” In: JOSA A 5.7 (1988),
pp. 1127-1135. DOI: 10.1364/J0SAA.5.001127.

M. W. Walker, L. Shao, and R. A. Volz. “Estimating 3-D location param-
eters using dual number quaternions.” In: CVGIP: image understanding
54.3 (1991), pp. 358-367. DOL: 10.1016/1049-9660 (91)90036-0.

D. W. Eggert, A. Lorusso, and R. B. Fisher. “Estimating 3-D rigid body
transformations: a comparison of four major algorithms.” In: Machine
vision and applications 9.5-6 (1997), pp. 272-290. DOI: 10.1007/s001380
050048.

A. Cauchy. Méthode générale pour la résolution des systemes déquations
stmultanées. 1847, pp. 536-538.

M. D. Wheeler and K. Ikeuchi. “Iterative Estimation of Rotation and
Translation using the Quaternion.” Dec. 1995.

K.-L. Low. Linear Least-Squares Optimization for Point-to-Plane ICP
Surface Registration. Tech. rep. University of North Carolina at Chapel
Hill, Feb. 2004.

F. Tampieri. “Newell’s Method for Computing the Plane Equation of a
Polygon.” In: Graphics Gems III (IBM Version). 1992. DOI: 10.1016/B9
78-0-08-050755-2.50052-X.

N. Gelfand, S. Rusinkiewicz, L. Ikemoto, and M. Levoy. “Geometrically
stable sampling for the ICP algorithm.” In: null. IEEE. 2003, p. 260. DOI:
10.1109/1IM.2003.1240258

A. Kronman and L. Joskowicz. “Automatic Bone Fracture Reduction by
Fracture Contact Surface Identification and Registration.” In: Biomedi-
cal Imaging (ISBI), 2013 IEEE 10th International Symposium on. IEEE.
2013, pp. 246-249. DOL: 10.1109/ISBI.2013.6556458.

A. Meesters. “Three-Dimensional Computed Tomography Measurements
of Acetabular Fractures.” MA thesis. University of Twente, 2018.

A. Meesters, J. Kraeima, H. Banierink, C. Slump, K. Ten Duis, W. M.J.H.,
and I. F.F.A. “Three-Dimensional Computed Tomography Measurements
of Acetabular Fractures.” 2018.

Materialise NV. Mimics Medical. Version 19.0. URL: https://wuw.mater
ialise.com/en/medical/software/mimics.

Materialise NV. Materialise 3-matic. Version 11.0. URL: https://www.ma
terialise.com/en/software/3-matic.

P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G.
Ranzuglia. “MeshLab: an Open-Source Mesh Processing Tool.” In: Furo-
graphics Italian Chapter Conference. Ed. by V. Scarano, R. D. Chiara,
and U. Erra. The Eurographics Association, 2008. 1SBN: 978-3-905673-68-
5. DOI: 10.2312/LocalChapterEvents/ItalChap/ItalianChapConf200
8/129-136.

D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge. “Comparing
images using the Hausdorff distance.” In: IEEE Transactions on pattern
analysis and machine intelligence 15.9 (1993), pp. 850-863. poI: 10.110
9/34.232073.

https://doi.org/10.1364/JOSAA.5.001127
https://doi.org/10.1016/1049-9660(91)90036-O
https://doi.org/10.1007/s001380050048
https://doi.org/10.1007/s001380050048
https://doi.org/10.1016/B978-0-08-050755-2.50052-X
https://doi.org/10.1016/B978-0-08-050755-2.50052-X
https://doi.org/10.1109/IM.2003.1240258
https://doi.org/10.1109/ISBI.2013.6556458
https://www.materialise.com/en/medical/software/mimics
https://www.materialise.com/en/medical/software/mimics
https://www.materialise.com/en/software/3-matic
https://www.materialise.com/en/software/3-matic
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.1109/34.232073
https://doi.org/10.1109/34.232073

[63]

[64]

29

P. Cignoni, C. Rocchini, and R. Scopigno. “Metro: measuring error on
simplified surfaces.” In: Computer Graphics Forum. Vol. 17. 2. Blackwell
Publishers. 1998, pp. 167-174.

Y. Hu, H. Li, G. Qiao, H. Liu, A. Ji, and F. Ye. “Computer-assisted virtual
surgical procedure for acetabular fractures based on real CT data.” In:
Injury 42.10 (2011), pp. 1121-1124. por: 10.1016/j.injury.2011.01.0
14.

https://doi.org/10.1016/j.injury.2011.01.014
https://doi.org/10.1016/j.injury.2011.01.014

Part 11

Supporting Material

Chapter 1

Virtual Fracture Reduction
Pipeline

The treatment of fractures is a complex task. For simple fractures, e.g. the spiral
fracture shown in Figure 1.1(a), an X-ray image is usually sufficient to properly
plan the surgery, if surgery is needed. Comminuted fractures, illustrated in
Figure 1.1(b), usually result in small fragments and possibly deformed bones.
These kinds of fractures require scan techniques to obtain 3D models that allow
the surgeon to review both the osseous and soft tissue structures [1].

Jiménez-Delgado et al. [1] identify three main steps during the planning of ortho-
pedic reconstruction. (i) First, one has to obtain an anatomic reconstruction of
the bones and fracture fragments from the 3D scans; see for example the models
shown in Figure 1.2. (ii) The next step is concerned with the fixation and stabi-
lization of the fragments to facilitate early recovery of mobility. (iii) During the
last step of surgery preparation, the virtual fracture reduction is analyzed un-
der common bio-mechanical conditions. Next to preoperative planning, reduced
fractures have also been used in the construction of surgical guides [2—4], the de-
sign of patient-specific fixation devices [3, 5], maxillofacial reconstruction [6-8],
and the evaluation of a surgeon’s performance on a simulated patient-specific
surgery [9].

Currently all three steps are performed manually with the aid of 3D medical
image processing software. First, the bone tissue is segmented by thresholding
on some value of the density measured in the computed tomography (CT) scan.
After this, loose voxels are removed [10]. Fragments are obtained by manually

(a) spiral fracture (b) comminuted fracture

Figure 1.1: (a) A fracture with a single fracture line, and (b) a comminuted fracture.
Images adapted from Jiménez-Delgado et al. [1].

31

CHAPTER 1. VIRTUAL FRACTURE REDUCTION PIPELINE 32

Figure 1.2: Different views of a 3D reconstruction of a left acetabular fracture before
virtual reduction. Image adapted from Merema et al. [3].

splitting the models, with the aid of tools provided by medical image processing
software. The individual fragments are reviewed by a professional who manually
adjusts them where necessary and labels them [3]. During step (ii), the fracture
is reduced by a professional who manually rotates and translates the fragments.
The complexity of acetabular fractures makes their manual reduction particu-
larly difficult [1]. Therefore, the mirrored contralateral bone is often used as a
template [3, 10, 11]. We do not consider step (iii), the analysis of the fracture
reduction, in this discussion.

Step (ii) is the most time-consuming and challenging aspect of the preoperative
planning process [12]. Therefore, we propose to automate steps (i) and (ii);
i.e. the processing of CT scans to a reduced fracture, with the pipeline shown
in Figure 1.3. The first two stages in Figure 1.3 are concerned with obtaining
the 3D models to represent the bone fragments from the medical images, i.e.
step (i). These stages are discussed in Sections 1.1 and 1.2, respectively. The
virtual reduction stage corresponds to step (ii). This stage is concerned with
the translation and rotation of the bone fragment into an anatomically correct
configuration and is discussed in Section 1.3.

1.1 Segmentation

Methods to segment CT scans can be classified as being based on either in-
tensities, statistical shape models (SSMs), or atlases. The first method has
difficulty handling the joint region, since the cortical bone in that area is thin.
This causes gray level inhomogeneities and diffused boundaries [1, 13]. This
issue is illustrated for the tibia in Figure 1.4. Generally, global thresholding on
intensity values is done with the marching cubes algorithm [14]. However, it
is difficult to find a good global threshold to use due to variation in intensity
levels between CT scan slices [1]. This issue is often addressed by using an
interactive approach, which is time-consuming. For example, Tomazevic et al.
[15] let the user apply merging, hole-filling, and separation, tools to generate
individually segmented fragments from the result of global thresholding. A less
time-consuming approach proposed by Paulano et al. [16] uses 2D region grow-
ing. This algorithm is initiated by the user who places seed points inside regions

CHAPTER 1. VIRTUAL FRACTURE REDUCTION PIPELINE 33

CT

1.3 virtual reduction

1.1 segmentation 1.2 optimization 1.3.2 registration
1.3.1 matching

intensity

i . 3
y (TTTITT e |
thresholding S } ; fracture area
‘ - T extraction
\
1 ' ’
' o
/ |

fragment pairing

reduced fracture

step (ii)

Figure 1.3: A diagram representing the fracture reduction pipeline. Optional opera-
tions are indicated by shapes with a dashed border. The numbers of the
sections corresponding to the different stages are included in the figure.
The left and right colored blocks indicate stages that are part of step (i)
and (i) of the preoperative planning process, respectively.

of target bone fragments. After this, a 2D region algorithm is executed for each
seed point, and all seeds are propagated through the image stack [1].

Statistical shape model (SSM) based methods fit an SSM to an image to segment
it. For these methods to work, the training population used to build the SSM
should be representative of the patient whose bone is segmented. Contrary to
approaches that use an SSM, atlas based methods employ prior knowledge about
shape and intensity distributions [1]. For example, Pettersson et al. [9] use a non-
rigid registration algorithm to automatically segment CT scans by iteratively
deforming a template to match the patient’s image stack. The atlas is generated
from scans of a non-fractured bone, where each voxel is labeled as belonging to
either the background, the bone surface or the bone interior.

1.2 Optimization

Optimization processes the meshes of bone fragments to obtain desirable proper-
ties for the subsequent simulation stage. Which properties are desirable depends
on the intended application of the meshes. Based on the work by Jiménez-
Delgado et al. [1], we distinguish three groups of non-mutually exclusive opti-
mization techniques. In general, optimization techniques enhance the features
of the model to enable the user to interact with it, and to improve its man-
ageability and visualization. Enhancement before user interaction is needed,
since models extracted from medical images are generally complex and have
a very large number of faces. Simplification aims to reduce the complexity of

CHAPTER 1. VIRTUAL FRACTURE REDUCTION PIPELINE 34

3
proximal tibia midshaft
fibula midshaft
distal tibia midshaft
(a) prozimal midshaft (b) distal midshaft () tibia and fibula

Figure 1.4: The influence of the thickness of the cortical bone tissue on the CT scan,
illustrated with transverse CT scans of the (a) prozimal and (b) distal
midshaft of (c) the tibia and fibula. The (a) proxzimal midshaft has a high
intensity circular region whereas (b) the more distal scan shows far less
contrast. Figures 1.4(a) and 1.4(b) were taken from Willis et al. [17],
Figure 1.4(c) was adapted from Mariana Ruiz Villarreal [18].

the models, to avoid overwhelming the computer used to examine the files with
high memory requirements. Oversimplification of models should be avoided to
ensure the fragment’s original features are retained. Especially the fracture area
and the regions around the joints are sensitive to oversimplification.

Remeshing is intended to improve the quality of the 3D mesh representing the
fragment. This optimization technique is mostly used to enhance the visual-
ization of the fragment. Meshes computed from medical volume images often
show irregularities in the size and shape of geometrical primitives. These irreg-
ularities are often caused by the gaps between consecutive slices. By enhancing
model properties such as sampling density or the regularity, size, or orientation
of the primitives, the quality of the model and its visualization can be improved.
It is difficult to apply remeshing near joints and the fracture area due to the
heterogeneity of the cancellous tissue in those regions.

Smoothing techniques aim to improve the visualization of the models by extrap-
olating absent information from between the slices and by removing noise form
the areas surrounding the bone. These techniques are particularly useful when
the distance between slices is large, or when low resolution images are used. A
disadvantage of smoothing is that it can remove small features from the fracture
fragments together with the noise [1].

1.3 Virtual Reduction

Jiménez-Delgado et al. [1] define virtual reduction as the process by which frag-
ments are relocated, with the aim of placing them back into their anatomical
alignment. The exact problem that this procedure solves depends on the kind
of fracture. For a simple fracture, such as the one in Figure 1.1(a), reduction
is as simple as aligning the two bone fragments. For comminuted fractures the
process is more akin to solving a complex three-dimensional puzzle. If multiple
fragments are involved, one first has to match fracture areas together before
they can be registered. Since the registration of each pair of fragments may

CHAPTER 1. VIRTUAL FRACTURE REDUCTION PIPELINE 35

influence the registration of other fragment pairs, the matching and registration
processes feed back into each other.

1.3.1 Matching

The reduction of the fracture can be improved by only registering fracture areas
to each other. Therefore, the first step of the matching procedure is to find these
areas. Bone fragments are registered based on pairs of fracture areas.

Okada et al. [19] extract fracture lines interactively by letting users steer a 3D
line tracking algorithm that operates on the 3D curvature images of the bone
fragments. A fully automatic approach is proposed by Willis et al. [17] who
use the intensity values of the CT scan to distinguish cortical and cancellous
bone. This method is sensitive to thin cortical areas, similar to segmentation
methods based on the thresholding of intensities. A combination of these two
approaches is presented by Kovler et al. [12] who use both the intensity values
and the the curvature of the fragment’s surface to identify fracture areas. An
alternative automatic approach is introduced by Fiirnstahl et al. [20] who find
fracture surfaces by comparing vertex normal directions. However, this method
only works for reductions where the fracture surfaces are narrow. Therefore,
this method is unlikely to work for acetabular fractures.

After the identification of the fracture areas, they are be paired, and the order
in which they will be registered is determined. Kovler et al. [12] and Willis
et al. [17] use an interactive approach and let the user identify fracture area
pairs. Mangs [21] propose a relatively simple hierarchical matching based on
a static fragment and the number of matching points each non-static fragment
has to this fragment. Chowdhury et al. [22] use a Maximum Weight Graph
Matching algorithm to identify matching fracture surfaces. In this graph frac-
ture areas are represented by vertices. The weight of an edge between two
vertices expresses their matching score. A fracture area pair has a high score if
they are spatially proximal and if they exhibit complementary fracture surface
characteristics.

1.3.2 Registration!

The literature identifies three different approaches to the registration problem,
namely methods that register based on a statistical template, a physical tem-
plate or, the geometry of the fragments.

Statistical approaches register the fragments of the broken bone to an anatom-
ical atlas of a healthy bone. Moghari and Abolmaesumi [23] register fragments
of a fractured humerus to an anatomical atlas of that bone in a local registra-
tion step, after which a global registration step is used to register the fragments
to each other, and the template. Albrecht and Vetter [24] propose to use an
SSM only if a contralateral or pre-fracture scan is not available. Their iter-
ative method alternates between aligning the main fracture fragments to the

1 This section is a summary of the discussion of different registration methods and how their
performance compares in Section 2 in Part I.

CHAPTER 1. VIRTUAL FRACTURE REDUCTION PIPELINE 36

template with iterative closest point (ICP), and adapting the statistical shape
model to the individual’s anatomy. An alternative to the anatomical atlases
used by Moghari and Abolmaesumi [23] and Albrecht and Vetter [24] is offered
by Oura et al. [25]. They predict the shape of the whole bone from its partial
shape using partial least squares regression. The accuracy of the resulting pre-
diction is similar to that of the methods based on bilateral symmetry. In general
statistical methods have difficulty handling non-standard bones. Furthermore,
most statistical approaches require an atlas that is representative of the patient,
which may not be available.

Physical methods use a physical template to register a fracture, for example the
mirrored contralateral bone or a pre-existing scan of the healthy bone. The first
approach is compared to other registration methods by Okada et al. [19]. They
find that this method performs worst w.r.t. the rotation error. Fiirnstahl et al.
[20] also used the contralateral bone, and achieved better results than Okada
et al. [19], at the expense of a significantly higher runtime and more user interac-
tion. Both of these methods assume bilateral symmetry, which is not necessarily
the case. Vlachopoulos et al. [26] caution against blindly using the contralateral
bone as a template for surgical reconstruction. Another disadvantage of regis-
tering to the contralateral bone is that it requires an additional CT scan of the
uninjured bone, which increases the patient’s radiation exposure [20].

Methods that register bone fragments based on the geometric properties of the
3D models representing them are called geometric methods. Most of these
approaches use some variant of the ICP algorithm? [12, 17, 19, 20, 22, 27, 28].
This algorithm iteratively refines the transformation that aligns one point cloud
to another by minimizing an error metric, generally some distance measure
between matched pairs of points from the two point clouds. It is guaranteed to
always monotonically converge to the nearest local minimum [29]. Consequently
it is sensitive to the initial alignment of the fragments. A geometry based
method that does not use ICP is introduced by Buschbaum et al. [30]. They
register fragments to each other based on fracture lines; the lines separating the
bone’s strongly curved surface areas from its smooth surfaces.

References

[1] J. J. Jiménez-Delgado, F. Paulano-Godino, R. PulidoRam-Ramirez, and
J. R. Jiménez-Pérez. “Computer assisted preoperative planning of bone
fracture reduction: Simulation techniques and new trends.” In: Medical
Image Analysis 30 (2016), pp. 30-45. 1sSN: 1361-8415. DOI: 10.1016/j.m
edia.2015.12.005.

[2] Z. Yaniv. “Registration for orthopaedic interventions.” In: Computational
Radiology for Orthopaedic Interventions. Springer, 2016, pp. 41-70.

[3] B. J. Merema, J. Kraeima, K. Ten Duis, K. Wendt, R. Warta, E. Vos,
R. Schepers, M. Witjes, and F. IJpma. “The design, production and clin-
ical application of 3D patient-specific implants with drilling guides for
acetabular surgery.” In: Injury 48.11 (2017), pp. 2540-2547.

2 An extensive discussion of the different aspects of this algorithm can be found in Section 3
in Part I.

https://doi.org/10.1016/j.media.2015.12.005
https://doi.org/10.1016/j.media.2015.12.005

CHAPTER 1. VIRTUAL FRACTURE REDUCTION PIPELINE 37

[4] R.H. Schepers, G. M. Raghoebar, A. Vissink, M. W. Stenekes, J. Kraeima,
J. L. Roodenburg, H. Reintsema, and M. J. Witjes. “Accuracy of fibula re-
construction using patient-specific CAD/CAM reconstruction plates and
dental implants: a new modality for functional reconstruction of mandibu-
lar defects.” In: Journal of Cranio-Mazillofacial Surgery 43.5 (2015), pp. 649—
657. DOI: 10.1016/5 . jcms . 2015.03.015.

[5] I. Otomaru, M. Nakamoto, Y. Kagiyama, M. Takao, N. Sugano, N. Tomi-
yama, Y. Tada, and Y. Sato. “Automated preoperative planning of femoral
stem in total hip arthroplasty from 3D CT data: Atlas-based approach and
comparative study.” In: Medical image analysis 16.2 (2012), pp. 415-426.
DOI: 10.1016/j.media.2011.10.005.

[6] T. Woo, J. Kraeima, Y. O. Kim, Y. S. Kim, T. S. Roh, D. H. Lew, and
I. S. Yun. “Mandible reconstruction with 3D virtual planning.” In: J Int
Soc Simul Surg 2.2 (2015), pp. 90-93.

[7] R. H. Schepers, G. M. Raghoebar, A. Vissink, L. U. Lahoda, W. J. Van
der Meer, J. L. Roodenburg, H. Reintsema, and M. J. Witjes. “Fully 3-
dimensional digitally planned reconstruction of a mandible with a free vas-
cularized fibula and immediate placement of an implant-supported pros-
thetic construction.” In: Head & neck 35.4 (2013), E109-E114. por: 10.1
002/hed.21922.

[8] R. H. Schepers, J. Kraeima, A. Vissink, L. U. Lahoda, J. L. Rooden-
burg, H. Reintsema, G. M. Raghoebar, and M. J. Witjes. “Accuracy
of secondary maxillofacial reconstruction with prefabricated fibula grafts
using 3D planning and guided reconstruction.” In: Journal of Cranio-
Maxzillofacial Surgery 44.4 (2016), pp. 392-399. DOI: 10.1016/j.jcms.2
015.12.008.

[9] J. Pettersson, K. L. Palmerius, H. Knutsson, O. Wahlstrom, B. Tillander,
and M. Borga. “Simulation of patient specific cervical hip fracture surgery
with a volume haptic interface.” In: IFEE Transactions on Biomedical
Engineering 55.4 (2008), pp. 1255-1265. DOI: 10.1109/TBME. 2007 . 9080
99.

[10] A. Meesters. “Three-Dimensional Computed Tomography Measurements
of Acetabular Fractures.” MA thesis. University of Twente, 2018.

[11] P. Firnstahl. “Computer-assisted planning for orthopedic surgery.” PhD
thesis. ETH Zurich, 2010. DOI: 10.3929/ethz-a-006198365.

[12] I. Kovler, L. Joskowicz, Y. A. Weil, A. Khoury, A. Kronman, R. Mosheiff,
M. Liebergall, and J. Salavarrieta. “Haptic Computer-Assisted Patient-
Specific Preoperative Planning for Orthopedic Fractures Surgery.” In: In-
ternational Journal of Computer Assisted Radiology and Surgery 10.10
(Oct. 2015), pp. 1535-1546. 1SSN: 1861-6429. DOI: 10.1007/s11548-015-
1162-9.

[13] C. Chu, C. Chen, L. Liu, and G. Zheng. “Facts: fully automatic ct segmen-
tation of a hip joint.” In: Annals of biomedical engineering 43.5 (2015),
pp. 1247-1259. DOL: 10.1007/s10439-014-1176-4.

[14] W. E. Lorensen and H. E. Cline. “Marching cubes: A high resolution
3D surface construction algorithm.” In: ACM siggraph computer graphics.
Vol. 21. 4. ACM. 1987, pp. 163-169. DOI: 10.1145/37402.37422.

https://doi.org/10.1016/j.jcms.2015.03.015
https://doi.org/10.1016/j.media.2011.10.005
https://doi.org/10.1002/hed.21922
https://doi.org/10.1002/hed.21922
https://doi.org/10.1016/j.jcms.2015.12.008
https://doi.org/10.1016/j.jcms.2015.12.008
https://doi.org/10.1109/TBME.2007.908099
https://doi.org/10.1109/TBME.2007.908099
https://doi.org/10.3929/ethz-a-006198365
https://doi.org/10.1007/s11548-015-1162-9
https://doi.org/10.1007/s11548-015-1162-9
https://doi.org/10.1007/s10439-014-1176-4
https://doi.org/10.1145/37402.37422

CHAPTER 1. VIRTUAL FRACTURE REDUCTION PIPELINE 38

[15]

[20]

[23]

[25]

M. Tomazevic, D. Kreuh, A. Kristan, V. Puketa, and M. Cimerman. “Pre-
operative planning program tool in treatment of articular fractures: pro-
cess of segmentation procedure.” In: XII Mediterranean Conference on
Medical and Biological Engineering and Computing 2010. Springer. 2010,
pp- 430-433. DOI: 10.1007/978-3-642-13039-7_108.

F. Paulano, J. J. Jiménez, and R. Pulido. “3D segmentation and labeling of
fractured bone from CT images.” In: The Visual Computer 30.6-8 (2014),
pp- 939-948. po1: 10.1007/s00371-014-0963-0.

A. Willis, D. Anderson, T. Thomas, T. Brown, and J. L. Marsh. “3D
Reconstruction of Highly Fragmented Bone Fractures.” In: vol. 6512. Mar.
2007. por: 10.1117/12.708683.

Mariana Ruiz Villarreal. Human leg bones labeled. Online; accessed August
14, 2018. 2018.

T. Okada, Y. Iwasaki, T. Koyama, N. Sugano, Y.-W. Chen, K. Yonenobu,
and Y. Sato. “Computer-Assisted Preoperative Planning for Reduction of
Proximal Femoral Fracture Using 3-D-CT Data.” In: IEEE Transactions
on Biomedical Engineering 56.3 (Mar. 2009), pp. 749-759. 1SSN: 0018-9294.
DOI: 10.1109/TBME. 2008.2005970.

P. Furnstahl, G. Székely, C. Gerber, J. Hodler, J. G. Snedeker, and M.
Harders. “Computer assisted reconstruction of complex proximal humerus
fractures for preoperative planning.” In: Medical Image Analysis 16.3 (2012).
Computer Assisted Interventions, pp. 704-720. 1SSN: 1361-8415. pOI: 10
.1016/j.media.2010.07.012.

L. Mangs. “Computer-assisted fracture reduction in an orthopaedic pre-
operative planning workflow.” MA thesis. Linkoping University, 2017.

A. S. Chowdhury, S. M. Bhandarkar, R. W. Robinson, and C. Y. Jack.
“Virtual Craniofacial Reconstruction Using Computer Vision, Graph The-
ory and Geometric Constraints.” In: Pattern Recognition Letters 30.10
(2009), pp. 931-938. poI: 10.1016/j.patrec.2009.03.010.

M. H. Moghari and P. Abolmaesumi. “Global registration of multiple
bone fragments using statistical atlas models: Feasibility experiments.”
In: 2008 30th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society. Aug. 2008, pp. 5374-5377. DOI: 10.110
9/IEMBS.2008.4650429.

T. Albrecht and T. Vetter. “Automatic Fracture Reduction.” In: Mesh
Processing in Medical Image Analysis 2012: MICCAI 2012 International
Workshop, MeshMed 2012, Nice, France, October 1, 2012. Proceedings.
Ed. by J. A. Levine, R. R. Paulsen, and Y. Zhang. Nice, France: Springer
Berlin Heidelberg, Oct. 2012, pp. 22-29. 1SBN: 978-3-642-33463-4. DOI:
10.1007/978-3-642-33463-4_3.

K. Oura, Y. Otake, A. Shigi, F. Yokota, T. Murase, and Y. Sato. “Pre-
diction of forearm bone shape based on partial least squares regression
from partial shape.” In: The International Journal of Medical Robotics
and Computer Assisted Surgery 13.3 (2017), e1807. DOI: 10.1002/rcs. 1
807.

https://doi.org/10.1007/978-3-642-13039-7_108
https://doi.org/10.1007/s00371-014-0963-0
https://doi.org/10.1117/12.708683
https://doi.org/10.1109/TBME.2008.2005970
https://doi.org/10.1016/j.media.2010.07.012
https://doi.org/10.1016/j.media.2010.07.012
https://doi.org/10.1016/j.patrec.2009.03.010
https://doi.org/10.1109/IEMBS.2008.4650429
https://doi.org/10.1109/IEMBS.2008.4650429
https://doi.org/10.1007/978-3-642-33463-4_3
https://doi.org/10.1002/rcs.1807
https://doi.org/10.1002/rcs.1807

CHAPTER 1. VIRTUAL FRACTURE REDUCTION PIPELINE 39

[26]

[27]

[28]

[29]

L. Vlachopoulos, G. Székely, C. Gerber, and P. Fiirnstahl. “A scale-space
curvature matching algorithm for the reconstruction of complex proximal
humeral fractures.” In: Medical Image Analysis 43 (2018), pp. 142-156.
ISSN: 1361-8415. DOI: 10.1016/j .media.2017.10.006

B. Zhou, A. Willis, Y. Sui, D. Anderson, T. Thomas, and T. Brown.
“Improving inter-fragmentary alignment for virtual 3D reconstruction of
highly fragmented bone fractures.” In: Medical Imaging 2009: Image Pro-
cessing. Vol. 7259. International Society for Optics and Photonics. 2009,
pp. 7259-1-7259-9. DOI: 10.1117/12.810967.

T. P. Thomas. “Virtual pre-operative reconstruction planning for com-
minuted articular fractures.” PhD thesis. University of lowa, 2010.

H. Pottmann, S. Leopoldseder, and M. Hofer. “Registration without ICP.”
In: Computer Vision and Image Understanding 95.1 (2004), pp. 54-71.
DOI: 10.1016/j.cviu.2004.04.002.

J. Buschbaum, R. Fremd, T. Pohlemann, and A. Kristen. “Computer-
assisted fracture reduction: a new approach for repositioning femoral frac-
tures and planning reduction paths.” In: International journal of computer
assisted radiology and surgery 10.2 (2015), pp. 149-159. DOI: 10.1007/s
11548-014-1011-2.

https://doi.org/10.1016/j.media.2017.10.006
https://doi.org/10.1117/12.810967
https://doi.org/10.1016/j.cviu.2004.04.002
https://doi.org/10.1007/s11548-014-1011-2
https://doi.org/10.1007/s11548-014-1011-2

Chapter 2

User Interface

Interactions between a user and a three-dimensional environment can be dis-
tinguished into four universal tasks: system control, viewpoint control, object
selection, and object manipulation [1]. System control is concerned with the
interface that supports interaction between the user and the system that is not
part of the virtual environment, this aspect of user interfaces (Uls) is considered
in Section 2.1. The task viewpoint control, which focuses on getting around in
a virtual environment while keeping track of one’s whereabouts and task objec-
tives, is the subject of Section 2.2. Section 2.3 is concerned with the first step
of object manipulation: object selection. Different approaches to manipulating
the selected object are discussed in Section 2.4.

2.1 System Control

Good application control techniques should be easy to learn for novices and
efficient for experts. Furthermore they should allow novice users to gradually
learn new ways of interacting with the system [2]. Interfaces using windows,
icons, menus, and a pointer (WIMP) satisfy all these requirements [1]. An
example of such an interface is shown in Figure 2.1(a).

The computer and video game industry has adapted WIMP interfaces into head-
up display (HUD) interfaces for use with 3D interactive graphics. This approach
places application control components in a screen space on a 2D plane, the HUD,
that is displayed next to or over the 3D scene. Figure 2.1(b) shows the HUD
used by the popular computer game Minecraft.

This approach uses two different user interface (UI) metaphors, namely 3D
manipulation for navigation and manipulation of 3D objects, and a conventional
2D graphical user interface (GUI) for the rest of the system’s functionality [1].
A disadvantage of this approach is that it requires the user to switch between
two very different interface metaphors. If the shift between the two is too great
the user’s engagement may be broken [3].

40

CHAPTER 2. USER INTERFACE 41

Search Character Paragraph Document
Undo Paste 2 (NN

The quicH ¢ K er\he!azga
topy i
Paste SU
Ctear B
Show cllnhoam
Show Glossary
Show Ruler ®R O untitled]

1 show 9 wy - brown fox jumpgo
Preferences...

(a) WIMP interface (b) HUD interface

Figure 2.1: (a) One of the first successful WIMP interfaces, and (b) a HUD in-
terface. Figure 2.1(a) was adapted from Hicks [4], Figure 2.1(b) from
HalfOfAKebab [5].

We only consider user interface techniques that use a two-dimensional mouse
and keyboard in combination with a ‘normal’ display, since that configuration
is pervasive in hospitals. Below we shortly contrast these devices with some of
the alternatives.

One of the disadvantages of using a ‘normal’ display is that it does not offer
the near unlimited field of view of fully immersive environments, such as the
ones used by for example Harders et al. [6], Forsslund et al. [7], and Firnstahl
[8]. Since our application is only concerned with the inspection and manipu-
lation of a small number of three-dimensional objects, this should not impact
performance. Furthermore, stereoscopic three-dimensional displays can cause
problems such as eyestrain, headache, fatigue, disorientation and nausea in a
large number of users [1]. Finally, the use of a HUD interface instead of an
immersive environment allows the use of a two-dimensional mouse.

Besides its ubiquitousness and location persistence [9], a two-dimensional mouse
has several additional advantages compared to input devices with higher de-
grees of freedom (DOF). Firstly, it allows easy integration of two and three-
dimensional environments, which is useful if a WIMP interface is used, as these
are generally two-dimensional [10]. Secondly, most 2D mice are comfortable to
use and do not limit the user to any particular grip. Furthermore the natural
mapping from the device to the cursor reduces the cognitive load of the user [11].
One of the challenges of using a mouse in three-dimensional environments is the
mapping of two-dimensional input to transformations with up to six DOF, three
for rotation, and three for translation.

Mapping two-dimensional input to the manipulation of three-dimensional ob-
jects is generally done with a widget: a “visible graphic representations of an
operation on, or a state of, an object, that is displayed together with that
object" [12]. Hinckley et al. [13] analyzed the usability of three-dimensional ro-
tation techniques in an orientation matching task, comparing input devices with
three DOF to mouse-controlled widgets. They found that the multidimensional
input devices were faster than the virtual techniques, but not more accurate.
Additionally, Bérard et al. [14] compared the accuracy of a mouse with that of
several 3-DOF devices in a translation task and found the mouse to be more ac-
curate. They also observed that the free-space devices induced stress. Teather
and Stuerzlinger [15] attribute the difference in accuracy observed by Hinckley

CHAPTER 2. USER INTERFACE 42

et al. [13] and Bérard et al. [14] to the fact that a human hand held in free
space suffers from jitter. Contrary to these results, McMahan et al. [16] found
that for tasks requiring both translation and rotation in an immersive virtual
environment a mouse was less efficient than devices with six DOF.

2.2 Viewpoint Control

The metaphor chosen for the control of the viewpoint strongly influences the way
users interact with the application [17, 18]. Ware and Osborne [17] compared
three viewpoint control technique metaphors: ‘flying vehicle’, ‘eyeball in hand’,
and ‘world in hand’ in exploration and navigation tasks in three extremely differ-
ent toy environments. The first of the metaphors gives the user the impression
of flying through the environment. If the ‘eyeball in hand’ metaphor is used, the
user fully controls the position of the camera, whereas with the ‘world in hand’
the viewpoint is fixed and the user manipulates the scene. Ware and Osborne
[17] found that the ‘world in hand’ metaphor works best for the manipulation
of scenes with discrete objects that are small enough to be grasped in real life.
Intensive semi-structured interviewing of the subjects also revealed that simul-
taneous translation and rotation were perceived to be difficult in this metaphor.
These results are supported by Partala [18], who compared the ‘world in hand’
and ‘eyeball in hand’ metaphors in a rotation matching task. Their subjects
almost unanimously chose ‘world in hand’ as the best metaphor for the rotation
of a single three-dimensional object. Furthermore Partala [18] also found that
the ‘world in hand’ metaphor resulted in significantly faster task completion
than the ‘eyeball in hand metaphor’.

2.3 Selection

In desktop virtual environments, an object is commonly selected by positioning
the cursor over it and clicking [1]. To obtain the object underneath the cursor
ray-casting or off-screen rendering is generally used. This method selects the
first object, from the perspective of the user, intersected by the mouse ray, i.e.
the ray from the eye point through the cursor. As an extension to this method
Van Emmerik [19] proposes to allow the selection of all objects in the scene
intersected by the mouse ray by letting the user click multiple times. However
this proposal violates the design principle for manipulation interfaces that “only
visible objects can be manipulated" [15]. Within the field of medical imaging
Gallo et al. [9] use a depth-enhanced cursor that ensures that the pointer always
binds to the visible surface of the 3D object under investigation, independent
of the occlusion of that surface by other objects along the mouse ray.

Zhai et al. [20] propose the ‘Silk Cursor’, which replaces the cursor with an
axis aligned box covered with silk. Consequently objects behind it are occluded
twice as much as those within, and objects in front of it are not occluded at all.
This volume cursor outperformed a three-dimensional point cursor in target
selection [20]. Problems with this technique include selecting objects beyond
the users’ reach, choosing an appropriate cursor size, and selecting objects in

CHAPTER 2. USER INTERFACE 43

a target dense environment [21, 22]. Finally, independent of the used cursor,
selection performance is increased when visual feedback is provided during the
selection process [23].

2.4 Manipulation

When transforming objects one can either translate, rotate or scale them. The
first two operations are discussed in Sections 2.4.1 and 2.4.2, respectively. Scal-
ing of individual fragments is not considered, as this operation is not available
during surgery and should therefore not be possible during a virtual fracture
reduction.

2.4.1 Translation

Most three-dimensional editing applications use widgets to manipulate objects [1,
24, 25]. Generally these widgets have handles, each of which lets the user control
a single axis of movement. The most important advantage of this technique is
that it always acts as the user expects it to [24]. However it also requires users to
decompose three-dimensional movements into multiple one-dimensional trans-
lations. Furthermore it requires users to keep track of the current interaction
state, which results in mode errors [24, 26]. Both Unity [27] and Blender [28] use
this approach, as shown in Figure 2.2. Both applications use color to indicate
the axis associated with a handle. Furthermore, Unity has extended the con-
ventional translation widget to also allow movement along a plane, as indicated
by the colored rectangles in Figure 2.2(a).

As an alternative to the conventional cursor, Houde [29] experimented with
narrative cursors and bounding boxes with handles to let users move furniture
around. However, this approach requires the objects to be moved to have an
environment that is constraining by definition. The triad cursor introduced by
Nielson and Olsen [30] replaces the conventional arrow with the axes of the local
coordinate system, but still limits translations to a single dimension.

(a) Unity (b) Blender

Figure 2.2: The translation widgets used by (a) Unity [27] and (b) Blender [28].

CHAPTER 2. USER INTERFACE 44

Chen et al. [31] note that users prefer translations to be constrained to a two-
dimensional plane. One approach that constrains translations to a plane moves
objects along the viewing plane. Although this technique is easy to implement
the resulting movement is not intuitive and frequently misleading [24]. Alter-
natively, the movement plane can be selected to be the plane defined by the
surface hit by the mouse ray when the user selected the object for selection.
However, users perceive this approach as unpredictable, since they expect the
translation to be independent of the cursor’s position during selection [24]. A
third approach is used by Unity, which allows the user to move the object within
a single plane defined by two of the global or local axes [32], next to translations
along a single axis.

Alternatively the movement plane can be determined using the idea that most
objects attach to other objects. Oh and Stuerzlinger [24] present a sliding algo-
rithm where the selected objects follow the cursor by sliding over the foremost
surface behind it. If no such object is found it slides along the viewing plane. A
comparison with traditional widgets shows that this approach enhances the sub-
ject’s understanding of the object’s three-dimensional position and increases the
speed with which users complete a construction task. Sun et al. [33] generalized
sliding by supporting object interpenetration and floating, in their shift-sliding
algorithm. With this approach users may define a movement plane, to break the
assumption of contact between objects. A comparison between this technique
and conventional widgets revealed the former to be significantly faster.

2.4.2 Rotation

Three-dimensional modeling suites generally use one of three types of rotation
widgets illustrated in Figure 2.3: discrete sliders, two-axis valuators, or vir-
tual trackballs [34]. Chen et al. [31] observed that users prefer rotations to be
constrained to a single dimension. Discrete sliders offer that constraint by pro-
viding separate elements for rotation along each of the axes of the object’s local
coordinate system. The sliders are presented either as separate elements [31],
or projected on the object [34]. Two-axis valuators have two distinct behaviors.
Moving the mouse inside the circle shown in Figure 2.3(b) rotates the object
around the local x and y-axes. The object can be rotated around the z-axis by
tracing an arc outside of the circle [34]. Virtual trackballs use the projection of
the cursor’s position onto an object-centered sphere to determine the intended
rotation. Consequently, the rotation of the object mimics the result of nudging
the sphere. The same technique as the one used by the two-axis valuator is used
to control rotations around the z-axis [34].

In a comparison of these three types of rotation widgets in an orientation match-
ing task Chen et al. [31] found that discrete sliders were superior in terms of
accuracy and speed when rotating around a single axis. However, Rybicki et
al. [34] observed that the discrete sliders were significantly less accurate and
slower than the other two approaches for rotations around one or two axes.
Unfortunately, Rybicki et al. [34] did not separate their results based on the
number of axes around which the object was rotated. Both studies found dis-
crete sliders to be the slowest option for rotations around three axes. Chen
and Medioni [35] also observed that discrete sliders were more accurate than

CHAPTER 2. USER INTERFACE 45

(a) discrete sliders (b) two-azis valuator (¢) virtual trackball

Figure 2.3: Appearance of the rotation controllers generally used in three-dimensional
modeling software: (a) discrete sliders, (b) two-axis valuator, and (c)
trackball. Images adapted from Rybicki et al. [34].

the other two approaches for complex rotations. In comparing these results it
should be noted that their implementation of both the sliders and the virtual
trackballs differ.

Chen et al. [31] found the virtual trackball to be superior to the two-axis valuator
except for the speed of rotations around a single axis. In contrast, Bade et al.
[36] observed the two-axis valuator to be significantly better than the virtual
trackball in terms of speed in a search and shoot task. Zhao et al. [37] notes
that in comparing these results we should keep in mind that the results of Bade
et al. [36] are likely influenced by the fact that the two-axis valuator used a
modifier key for rotation around the view vector, whereas the virtual trackball
was solely mouse operated. Furthermore, it seems as though the experiments
by Bade et al. [36] involved only two degrees of freedom as the final orientation
was not taken into account [37]. Zhao et al. [37] did not observe differences
between the two-axis valuator and the virtual trackball in terms of completion
time and accuracy in an orientation matching task. However it should be noted
that Zhao et al. [37] added the mouse wheel as a controller for rotation around
the view vector.

Virtual trackballs are the most used three-dimensional rotation widget in com-
mercial medical imaging software [9]. Different mappings from the cursor move-
ment to rotation have been introduced by Chen et al. [31], Shoemake [38], and
Bell [39]. The first mapping suffers from hysteresis [13, 38], i.e. closed loops
of mouse motion do not necessarily result in closed rotation loops. Although
Shoemake’s mapping is a special case of the one by Chen et al., it does not
suffer from hysteresis [40]. Hinckley et al. [13] found that in spite of their equal
performance, users prefer Shoemake’s mapping over the one defined by Chen
et al. The same preference was observed by Shoemake [38] in an informal sur-
vey. Hinckley et al. [13] also found that the mapping defined by Bell results in
a smoother rotation than Shoemake’s. In spite of this neither Zhao et al. [37]
nor Bade et al. [36] found a significant difference in performance between these
two mappings. However Zhao et al. [37] rated the usability of Bell’s mapping
higher than Shoemake’s, whereas Bade et al. [36] came to an inverse usability-
based ordering. Zhao et al. [37] found Bell’s mapping to be less predictable than
Shoemake’s. It should be noted that of all mentioned studies only Henriksen

CHAPTER 2. USER INTERFACE 46

et al. [40] mention the size of the trackball. Since Shoemake’s mapping is dis-
continuous when the cursor is moved outside of the trackball, the sphere’s size
is an important factor in the trackball’s usability [40].

Gallo et al. [9] propose a virtual trackball that uses the geometry of the object
itself as the rotation handle. In a comparison of this technique with a two-
axis valuator the former was significantly faster. In spite of this, users perceived
both techniques to be equally efficient, but considered the virtual trackball to be
more accurate and easier to learn [9]. A possible disadvantage of this technique
is that users are likely to click an arbitrary point on the object when selecting it
for rotation, not realizing that the cursor position influences rotation.

References

[1] J. Jankowski and M. Hachet. “Advances in Interaction with 3D Environ-
ments.” In: Computer Graphics Forum 34.1 (2015), pp. 152-190. I1SSN:
1467-8659. DOI: 10.1111/cgf.12466.

[2] B. Shneiderman. “Direct manipulation: A step beyond programming lan-
guages.” In: Computer 8 (1983), pp. 57-69. DOI: 10.1109/MC.1983.1654
471.

[3] C.Hand. “A survey of 3D interaction techniques.” In: Computer graphics
forum. Vol. 16. 5. Wiley Online Library. 1997, pp. 269-281.

[4] J.Hicks. 40 years of icons: the evolution of the modern computer interface.
Diary of a WIMP at middle age. the verge. Mar. 2013. URL: https://ww
w.theverge.com/2013/3/21/4127110/40-years-of-icons-the-evolu
tion-of-the-modern-computer-interface (visited on 07/04/2018).

[5] HalfOfAKebab. Heads-up display. gamepedia. Nov. 2017. URL: https://m
inecraft.gamepedia.com/Heads-up_display (visited on 07/04/2018).

[6) M. Harders, A. Barlit, C. Gerber, J. Hodler, and G. Székely. “An opti-
mized surgical planning environment for complex proximal humerus frac-
tures.” In: MICCAI Workshop on Interaction in Medical Image Analysis
and Visualization. Vol. 10. Brisbane, Australia, Jan. 2007, pp. 201-206.

[7] J. Forsslund, S. Chan, K. J. Salisbury, R. G. Silva, S. Girod, and N. H.
Blevins. “Design and implementation of a maxillofacial surgery rehearsal
environment with haptic interaction for bone fragment and plate align-
ment.” In: Computer Assisted Radiology and Surgery, 2012. Vol. 184. 2012.

[8] P. Fiirnstahl. “Computer-assisted planning for orthopedic surgery.” PhD
thesis. ETH Zurich, 2010. DOI: 10.3929/ethz-a-006198365.

[9] L. Gallo, A. Minutolo, and G. D. Pietro. “A user interface for VR-ready 3D
medical imaging by off-the-shelf input devices.” In: Computers in Biology
and Medicine 40.3 (2010), pp. 350-358. 1sSN: 0010-4825. DOI: 10.1016/]
.compbiomed.2010.01.006.

[10] D. Venolia. “Facile 3D Direct Manipulation.” In: Proceedings of the IN-
TERACT 98 and CHI 93 Conference on Human Factors in Computing
Systems. CHI ’93. Amsterdam, The Netherlands: ACM, 1993, pp. 31-36.
ISBN: 0-89791-575-5. DOI: 10.1145/169059.169065.

https://doi.org/10.1111/cgf.12466
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/MC.1983.1654471
https://www.theverge.com/2013/3/21/4127110/40-years-of-icons-the-evolution-of-the-modern-computer-interface
https://www.theverge.com/2013/3/21/4127110/40-years-of-icons-the-evolution-of-the-modern-computer-interface
https://www.theverge.com/2013/3/21/4127110/40-years-of-icons-the-evolution-of-the-modern-computer-interface
https://minecraft.gamepedia.com/Heads-up_display
https://minecraft.gamepedia.com/Heads-up_display
https://doi.org/10.3929/ethz-a-006198365
https://doi.org/10.1016/j.compbiomed.2010.01.006
https://doi.org/10.1016/j.compbiomed.2010.01.006
https://doi.org/10.1145/169059.169065

CHAPTER 2. USER INTERFACE 47

[11]
[12]

[13]

[15]

[17]

A. Ansari. “Direct 3D interaction using a 2D locator device.” MA thesis.
University of South Florida, 2003.

P. S. Strauss, P. Isaacs, and J. Schrag. The Design and Implementation
of Direction Manipulation in 3D. 2002.

K. Hinckley, J. Tullio, R. Pausch, D. Proffitt, and N. Kassell. “Usability
Analysis of 3D Rotation Techniques.” In: Proceedings of the 10th Annual
ACM Symposium on User Interface Software and Technology. UIST ’97.
Banff, Alberta, Canada: ACM, 1997, pp. 1-10. 1sBN: 0-89791-881-9. DOTI:
10.1145/263407.263408.

F. Bérard, J. Ip, M. Benovoy, D. El-Shimy, J. R. Blum, and J. R. Cooper-
stock. “Did “Minority Report" get it wrong? Superiority of the mouse over
3D input devices in a 3D placement task.” In: Human-Computer Interac-
tion — INTERACT 2009: 12th IFIP TC 13 International Conference, Up-
psala, Sweden, August 24-28, 2009, Proceedings, Part II. Springer. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 400-414. 1SBN: 978-3-
642-03658-3. DOI: 10.1007/978-3-642-03658-3_45.

R. J. Teather and W. Stuerzlinger. “Guidelines for 3D Positioning Tech-
niques.” In: Proceedings of the 2007 Conference on Future Play. Future
Play '07. Toronto, Canada: ACM, 2007, pp. 61-68. 1SBN: 978-1-59593-943-
2. DOI: 10.1145/1328202.1328214.

R. P. McMahan, D. Gorton, J. Gresock, W. McConnell, and D. A. Bow-
man. “Separating the Effects of Level of Immersion and 3D Interaction
Techniques.” In: Proceedings of the ACM Symposium on Virtual Real-
ity Software and Technology. VRST ’06. Limassol, Cyprus: ACM, 2006,
pp. 108-111. 1sBN: 1-59593-321-2. DOT: 10.1145/1180495.1180518.

C. Ware and S. Osborne. “Exploration and Virtual Camera Control in Vir-
tual Three Dimensional Environments.” In: SIGGRAPH Comput. Graph.
24.2 (Feb. 1990), pp. 175-183. 1SsN: 0097-8930. DOI: 10.1145/91394.914
42.

T. Partala. “Controlling a Single 3D Object: Viewpoint Metaphors, Speed
and Subjective Satisfaction.” In: Human-Computer Interaction-INTERACT
'99. Vol. 99. 1999, pp. 486-493. DOL: 10.1007/s00371-014-0963-0.

M. J. Van Emmerik. “A Direct Manipulation Technique for Specifying 3D
Object Transformations with a 2D Input Device.” In: Computer Graphics
Forum 9.4 (1990), pp. 355-361. 1SSN: 1467-8659. DOI: 10.1111/7.1467-8
659.1990.tb00427 . x.

S. Zhai, W. Buxton, and P. Milgram. “The "Silk Cursor" Investigating
Transparency for 3D Target Acquisition.” In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’94. Boston,
Massachusetts, USA: ACM, 1994, pp. 459-464. 1SBN: 0-89791-650-6. DOTI:
10.1145/191666.191822.

A. Forsberg, K. Herndon, and R. Zeleznik. “Aperture Based Selection
for Immersive Virtual Environments.” In: Proceedings of the 9th Annual
ACM Symposium on User Interface Software and Technology. UIST 96.
Seattle, Washington, USA: ACM, 1996, pp. 95-96. 1sBN: 0-89791-798-7.
DOI: 10.1145/237091.237105.

https://doi.org/10.1145/263407.263408
https://doi.org/10.1007/978-3-642-03658-3_45
https://doi.org/10.1145/1328202.1328214
https://doi.org/10.1145/1180495.1180518
https://doi.org/10.1145/91394.91442
https://doi.org/10.1145/91394.91442
https://doi.org/10.1007/s00371-014-0963-0
https://doi.org/10.1111/j.1467-8659.1990.tb00427.x
https://doi.org/10.1111/j.1467-8659.1990.tb00427.x
https://doi.org/10.1145/191666.191822
https://doi.org/10.1145/237091.237105

CHAPTER 2. USER INTERFACE 48

[22]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

T. Grossman and R. Balakrishnan. “The Design and Evaluation of Se-
lection Techniques for 3D Volumetric Displays.” In: Proceedings of the
19th Annual ACM Symposium on User Interface Software and Technology.
UIST ’06. Montreux, Switzerland: ACM, 2006, pp. 3-12. ISBN: 1-59593-
313-1. DOI: 10.1145/1166253.1166257.

I. Poupyrev, T. Ichikawa, S. Weghorst, and M. Billinghurst. “Egocen-
tric Object Manipulation in Virtual Environments: Empirical Evaluation
of Interaction Techniques.” In: Computer Graphics Forum 17.3 (1998),
pp- 41-52. 1SSN: 1467-8659. DOI: 10.1111/1467-8659.00252.

J.-Y. Oh and W. Stuerzlinger. “Moving Objects with 2D Input Devices
in CAD Systems and Desktop Virtual Environments.” In: Proceedings of
Graphics Interface 2005. GI ’05. Victoria, British Columbia: Canadian
Human-Computer Communications Society, 2005, pp. 195-202. 1SBN: 1-
56881-265-5.

P. S. Strauss and R. Carey. “An Object-oriented 3D Graphics Toolkit.” In:
SIGGRAPH Comput. Graph. 26.2 (July 1992), pp. 341-349. 1SsN: 0097-
8930. DOI: 10.1145/142920.134089.

D. A. Bowman, E. Kruijff, J. J. LaViola, and I. Poupyrev. “An introduc-
tion to 3-D user interface design.” In: Presence: Teleoperators and Virtual
Environments 10.1 (2001), pp. 96-108. DOI: 10.1162/1054746017501823
42.

Unity Technologies. Unity. Version 2017.1.1.f1 personal. July 5, 2018. URL:
https://unity3d.com/.

B. Foundation. Blender. Version 2.7.9. July 5, 2018. URL: https://www.b
lender.org.

S. Houde. “Iterative Design of an Interface for Easy 3-D Direct Manip-
ulation.” In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. CHI "92. Monterey, California, USA: ACM, 1992,
pp- 135-142. 1SBN: 0-89791-513-5. DOT: 10.1145/142750.142772.

G. M. Nielson and D. R. Olsen Jr. “Direct Manipulation Techniques for 3D
Objects Using 2D Locator Devices.” In: Proceedings of the 1986 Workshop
on Interactive 3D Graphics. 13D ’86. Chapel Hill, North Carolina, USA:
ACM, 1987, pp. 175-182. 1SBN: 0-89791-228-4. DOI: 10.1145/319120.31
9134.

M. Chen, S. J. Mountford, and A. Sellen. “A Study in Interactive 3-D
Rotation Using 2-D Control Devices.” In: SIGGRAPH Comput. Graph.
22.4 (June 1988), pp. 121-129. 1sSN: 0097-8930. DOIL: 10.1145/378456.3
78497.

Unity Technologies. Positioning GameObjects. Move, Rotate, Scale, and
RectTransform. URL: https://docs.unity3d.com/Manual/Positioning
GameObjects.html (visited on 07/06/2018).

J. Sun, W. Stuerzlinger, and D. Shuralyov. “SHIFT-Sliding and DEPTH-
POP for 3D Positioning.” In: Proceedings of the 2016 Symposium on Spa-
tial User Interaction. SUI ’16. Tokyo, Japan: ACM, 2016, pp. 69-78. ISBN:
978-1-4503-4068-7. DOI: 10.1145/2983310.2985748.

https://doi.org/10.1145/1166253.1166257
https://doi.org/10.1111/1467-8659.00252
https://doi.org/10.1145/142920.134089
https://doi.org/10.1162/105474601750182342
https://doi.org/10.1162/105474601750182342
https://unity3d.com/
https://www.blender.org
https://www.blender.org
https://doi.org/10.1145/142750.142772
https://doi.org/10.1145/319120.319134
https://doi.org/10.1145/319120.319134
https://doi.org/10.1145/378456.378497
https://doi.org/10.1145/378456.378497
https://docs.unity3d.com/Manual/PositioningGameObjects.html
https://docs.unity3d.com/Manual/PositioningGameObjects.html
https://doi.org/10.1145/2983310.2985748

CHAPTER 2. USER INTERFACE 49

[34]

S. Rybicki, B. DeRenzi, and J. Gain. “Usability and Performance of Mouse-
based Rotation Controllers.” In: Proceedings of the 42Nd Graphics Inter-
face Conference. GI '16. Victoria, British Columbia, Canada: Canadian
Human-Computer Communications Society, 2016, pp. 93-100. ISBN: 978-
0-9947868-1-4. DOI: 10.20380/GI2016.12.

Y. Chen and G. Medioni. “Object modeling by registration of multiple
range images.” In: Proceedings. 1991 IEEE International Conference on
Robotics and Automation. Vol. 3. Apr. 1991, pp. 2724-2729. por: 10.110
9/ROBOT. 1991.132043.

R. Bade, F. Ritter, and B. Preim. “Usability Comparison of Mouse-Based
Interaction Techniques for Predictable 3d Rotation.” In: Smart Graph-
ics: 5th International Symposium, SG 2005, Frauenwdrth Cloister, Ger-
many, August 22-24, 2005. Proceedings. Ed. by A. Butz, B. Fisher, A.
Kriiger, and P. Olivier. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 138-150. 1sBN: 978-3-540-31905-4. DOI: 10.1007/11536482_12.

Y. J. Zhao, D. Shuralyov, and W. Stuerzlinger. “Comparison of multiple
3D rotation methods.” In: Virtual Environments Human-Computer In-
terfaces and Measurement Systems (VECIMS), 2011 IEEE International
Conference on. IEEE. Ottawa, ON, Canada: IEEE, 2011, pp. 1-5. ISBN:
978-1-61284-890-7. pDOI: 10.1109/VECIMS.2011.6053855.

K. Shoemake. “Arcball: A User Interface for Specifying Three-Dimensional
Orientation Using a Mouse.” In: Proc. Graphics Interface 92. Vancouver,
British Columbia, Canada: Canadian Human-Computer Communications
Society, 1992, pp. 151-156.

G. Bell. Bell’s trackball. 1993. URL: https://web.archive.org/web/200
70717090837 /http://www.dispersoid.net/code/trackball.c (visited
on 11/01/2017).

K. Henriksen, J. Sporring, and K. Hornbaek. “Virtual trackballs revis-
ited.” In: IEEE Transactions on Visualization and Computer Graphics
10.2 (Mar. 2004), pp. 206-216. 1SsN: 1077-2626. DOL: 10.1109/TVCG. 200
4.1260772.

https://doi.org/10.20380/GI2016.12
https://doi.org/10.1109/ROBOT.1991.132043
https://doi.org/10.1109/ROBOT.1991.132043
https://doi.org/10.1007/11536482_12
https://doi.org/10.1109/VECIMS.2011.6053855
https://web.archive.org/web/20070717090837/http://www.dispersoid.net/code/trackball.c
https://web.archive.org/web/20070717090837/http://www.dispersoid.net/code/trackball.c
https://doi.org/10.1109/TVCG.2004.1260772
https://doi.org/10.1109/TVCG.2004.1260772

Chapter 3

Collision Detection

Numerous orthopaedic fracture reduction applications, be it for surgery prepa-
ration [1-6] or training [7], use collision detection to aid the user, especially in
combination with haptic devices [2-7]. However, few mention how they detect
object interference. Harders et al. [6] shortly mention that they use a specialized
vector field approach. Only Scheuering et al. [1] discuss their implementation
in such a way that it is reproducible.

Collision detection can be regarded as a pipeline that receives all objects in the
scene as input and returns all colliding pairs of objects [8]. The first part of
the pipeline, the broad phase, uses a fast test to enumerate all pairs of poten-
tially colliding objects to be checked for exact intersection in the narrow phase
[9]. Section 3.1 discusses the broad phase in more detail. In Section 3.2 we
consider several approaches to the narrow phase. Section 3.4 is concerned with
the challenges introduced by performing collision detection while moving the
objects.

3.1 Broad Phase

The broad phase, also referred to as N-body culling, should efficiently remove
pairs of objects that do not collide [9]. Kockara et al. [10] consider three cate-
gories of approaches to the broad phase: exhaustive search, coordinate sorting,
and multi-level grids. The first is a brute-force approach that compares each
object’s bounding volume with the bounding volume of every other object. This
approach requires O (N 2) comparisons for a scene with IV objects. The topo-
logical approach, i.e. coordinate sorting, projects the objects’ bounding volumes
on one or more axes, e.g. the three coordinate axes. Pairs of objects whose pro-
jected bounding volumes overlap on at least one axis are labeled as colliding [9].
Multi-level grids take a spatial approach by diving the scene into a uniform grid.
Only pairs of objects that share a cell of that grid are considered in the narrow
phase [10].

It has been shown that the minimum complexity of finding & colliding objects
out of n objects is O (n log®n + k) [9]. However due to the high constant factor,

50

CHAPTER 3. COLLISION DETECTION 51

hidden by the asymptotic notation, the non-naive approaches are only profitable
in scenarios with more than a hundred objects [9]. Since the scenes under
consideration are very unlikely to contain that many objects, the naive approach
suffices for use in a fracture reduction application. The performance of the naive
approach is determined by the used bounding volumes. Section 3.1.1 discuses
the different bounding volumes.

3.1.1 Bounding Volumes

Three characteristic properties of bounding volumes are: tightness, memory
usage and the complexity of the intersection test. Generally there is a trade-off
between these properties; a tighter bounding volume requires more memory to
store and more complex intersection tests. Another consideration in the choice
of a bounding volume is its rotation invariance. Several different bounding
volumes are illustrated in Figure 3.1.

The simplest bounding volume shown in Figure 3.1 is the sphere. This bound-
ing volume works best for relatively isotropic objects and fits flat geometries
especially poorly [9]. An advantage of this bounding volume is that it can be
stored very efficiently, since only four floating point numbers are needed [9, 12].
Not only is its memory complexity low, its distance and overlap tests are com-
putationally efficient [9, 13]. Another strong point of this bounding volume is
its rotation invariance, i.e. it does not need to be refitted after the enclosed
object has been rotated. A disadvantage is that the minimal bounding sphere
is difficult to find.

Axis-aligned bounding boxes (AABBs) surround the object with boxes oriented
along its coordinate system’s axes [14], as shown in Figure 3.1(b). The tightness
of this bounding volume depends on the orientation of the enclosed object [15];
objects with a strong diagonal orientation result in AABBs with a lot of ‘dead
space’ [14]. The two main advantages of AABBs are that they are efficient to
store, and that their intersection tests are fast [9, 13]. Unfortunately, this bound-
ing volume needs to be refitted after the bounded object has been rotated [9].
According to Kockara et al. [10] this process is sufficiently cost-effective for them
to still be the preferred choice for deformable objects.

(a) sphere (b) AABB (c) OBB (d) convez hull

Figure 3.1: A two-dimensional representation of the discussed bounding volumes:
(a) spheres, (b) azis-aligned bounding boxes (AABBs), (c) oriented
bounding bozes (OBBs), and (d) convex hulls. Images adapted from
Langetepe and Zachmann [11].

CHAPTER 3. COLLISION DETECTION 52

Contrary to AABBs, oriented bounding boxes (OBBs) have no constraints
placed on their orientation. Consequently, they can generate a tighter fit [9,
13, 16] that does not depend on the orientation of the enclosed geometry [15].
This makes OBBs especially superior to AABBs in cluttered environments [17].
However, where an axis aligned bounding box is defined by six parameters,
the definition of an oriented bounding box requires the storage of fifteen val-
ues [12]. Furthermore their intersection tests are more expensive than those of
an AABB [9]. However, contrary to their axis-aligned cousin, oriented bounding
boxes are rotation covariant [10].

Among the discussed bounding volumes the convex hull has the tightest fit [9].
Contrary to the other volumes, its memory requirement depends on the under-
lying geometry [9]. Another drawback of using the convex hull is the complexity
of its intersection tests [9, 17]. However, it is rotation covariant.

Since fracture fragments are quite likely to be rotated, a rotation invariant
bounding volume seems the logical choice for a fracture reduction application.
Furthermore, since most bone fragments will be anisotropic an OBB seems to
be the best choice of bounding volume in the broad phase. As the number of
objects in the scene is likely to be quite low, the relatively high memory usage
of these bounding volumes should not matter.

3.2 Narrow Phase

The narrow phase determines for each pair found by the broad phase if the
objects in that pair collide. Kockara et al. [10] classifies approaches to this
phase as being based on: features, simplices, the image-space, volume, and
bounding volume hierarchies. The first class of algorithms works directly on
the objects’ geometric primitives. The most important disadvantage of feature-
based approaches is that they require objects to be closed [10]. Simplex-based
algorithms use the Minkowski distance between objects to detect collisions [10].
Consequently, this approach only works for convex objects [18]. Approaches
based on the image-space detect collisions using the objects’ discrete represen-
tation in the image space. Although this makes these approaches convenient
to implement on the graphical processing unit (GPU), it may also result in er-
roneous representations. Furthermore, they are much slower than hierarchical
approaches [10]. Volume-based approaches are built on the same idea as image-
space based algorithms, but use a different method to compute the layered depth
images and distance fields. These distance fields have to be recomputed after
every transformation of an object. Finally, hierarchical methods use a tree of
bounding volumes to approximate the object, or to decompose the space they
occupy. Intersections between objects are detected by traversing the tree(s) of
bounding volumes. Contrary to simplex and feature based algorithms, these
methods do not impose any constraints on the objects [10]. They are often used
in computer graphics, since they allow fine grained control over the trade-off
between speed and precision [17].

Since fracture fragments are not necessarily closed or convex, neither feature-
based nor simplex-based methods are appropriate. Furthermore, the precision

CHAPTER 3. COLLISION DETECTION 53

of image-space based methods is too low. Volume-based methods are unsuited
because they require refitting after every transformation. The generality and
fine-grained control offered by bounding volume hierarchies (BVHs) makes them
attractive for use in fracture reduction applications. We consider this approach
in more detail in Section 3.3.

3.3 Bounding Volume Hierarchy

The narrow phase of a BVH approach typically consists of two parts: first
the pairs of potentially colliding geometric primitives are found, and secondly
primitive pairs are checked for collisions [9].

The hierarchy of bounding volumes can be used to partition the space, or the
object itself. These methods are referred to as spatial and object partition-
ing, respectively. In the context of collision detection object partitioning is
the superior approach. Firstly, because splitting polygons between bounding
volumes is unavoidable while dividing the space, leading to a deeper hierar-
chy which reduces performance. Additionally, determining contact status with
spatial partitioning is difficult if objects are near each other, since the cells of
the spatial partitioning cannot cover objects’ primitives tightly [10]. Finally,
the spatial partitioning has to be recomputed or updated after any object has
been transformed. If uniform subdivision is used, refitting can be done in con-
stant time. However, this subdivision scheme is not suitable for scenes with
objects of varying sizes [9]. Object partitioning, on the other hand, results in
relatively small and tight hierarchies [10]. Furthermore, if a rotation invariant
bounding volume is used, the hierarchy does not have to be refitted. Hence-
forth we focus on object partitioning, since that is the superior approach for our
application.

The construction of an object partitioning bounding volume hierarchy is dis-
cussed in Section 3.3.1. Traversal of the hierarchies is reviewed in Section 3.3.2.
Section 3.3.3 focuses on the time complexity of collision detection.

3.3.1 Construction

Bounding volumes are constructed either bottom-up, or top-down. The for-
mer starts with elementary bounding volumes of leaf nodes and merges them
recursively until the root of the bounding volume hierarchy is reached. The
more popular approach, top-down, starts with the object’s bounding volume
and divides that recursively [9].

The performance of the construction process is influenced by two factors: the
used splitting object, and the splitting or merging criterion. Building a tree
of AABBSs is cheaper in terms of both memory and computational power than
a hierarchy of OBBs [17]. The construction speed of a BVH of OBBs can be
increased by using heuristics to determine the approximate OBB instead of
computing the optimal oriented bounding box [9].

CHAPTER 3. COLLISION DETECTION 54

SO GodE

(a) BVH A (b) BVH B
Al

TN T TN PavN

D4)(D5) (E4) (E5 D6) (D7) E6) (ET F4)(F5)(G4)(G5 F6) (F7)(G6)(GT7

(c) bounding volume traversal tree

Figure 3.2: (¢) The bounding volume traversal tree of the simultaneous recursive
traversal of BVHs (a) A and (b) B. Images adapted from Weller [9].

A classical splitting criterion is the longest side method which splits in the mid-
dle of the axis along which the bounding volume is longest [10]. Another simple
method splits at the median of the longest axis of the elementary bounding
boxes [9]. Neither of these methods are very robust. The surface area heuristic
tries to avoid worst cases by optimizing the number of geometric primitives and
the surface area over all possible split plane candidates [9]. Another more robust
method aligns the splitting axis along the axis of maximum covariance. Several
methods exists to determine where the axis should be split [10].

A simple approach to merging bounding volumes is to visit all nearest neighbors
and minimize the size of the combined parent bounding volumes, that are at
the same level. Alternative strategies are less greedy and combine bounding
volumes using tilings [9].

3.3.2 Traversal

By traversing the objects” BVHs one can detect collisions between the objects.
One traversal approach is a simultaneous recursive traversal of both trees, either
depth-first, or breadth-first. This method traverses the trees until a leaf node
has been reached in both trees, and an exact collision test between the geometric
primitives, associated with the leaves, can be performed. The complete traversal
algorithm results in a bounding volume test tree, as shown in Figure 3.2. Non-
overlapping bounding volumes and their subtrees can be discarded to improve
the algorithm’s speed [9]. Recursive depth-first search is the easiest way to
traverse both trees [9]. However, depending on the depth of the tree and the
size of the stack this might lead to a stack overflow, in which case an iterative
approach should be used [12].

For hierarchies where each node has n children, each pair of overlapping bound-
ing volumes results in O (n?) further comparisons [19]. Staircase traversal [20]
only introduces O (n) further comparisons if two bounding volumes collide. On
detecting a collision between the roots of the trees A and B this algorithm com-

CHAPTER 3. COLLISION DETECTION 55

pares the nodes at height 1 of A with the root of B. Nodes that do not collide
with the root of B are pruned from A. The remaining nodes at height 1 in A
are tested against the nodes at the same height in B. Pairs that collide are the
roots of a new sub-traversal [19].

3.3.3 Complexity

The execution time, T', of collision detection with hierarchical bounding volumes
can be formulated as
T=Ny, -T,+ N, T, (3.1)

where N, and IV, are the number of overlap tests between bounding volumes
and primitives, respectively [16]. The time required for each of those tests is
represented by, T;, and T}, respectively. This formula illustrates that both the
tightness of the bounding volumes and the simplicity of the overlap test influence
the performance of the collision detection [13].

The tightness of the BVH influences both N, and N,. Gottschalk et al. [16]
considered the influence of the distance between two spheres, placed both ad-
jacently and concentrically, on N,. They found that trees of OBBs required
asymptotically fewer volume overlap tests,than those of AABBs. Furthermore,
Gottschalk et al. [16] also observed that to cover a surface made up of m tri-
angles with bounding volumes to a given tightness, AABBs and spheres require
O (m?) bounding volumes to achieve the same tightness that OBBs realize with
O (m) bounding volumes [16]. Zachmann and Langetepe [15] observed that the
tightness of OBBs decreases approximately linearly with the depth of the hier-
archy, whereas the tightness of an AABB enclosing a surface of small curvature
is almost the same as that of the parent bounding volume, making oriented
bounding boxes much more attractive in terms of tightness. One disadvantage
of using OBBs is that their trees are computationally more expensive to traverse
than a tree of AABBs [15].

Zachmann [14] measured the execution time of collision detection of two adjacent
identical objects as a function of the rotation of one object around its z-axis in
increments of 0.18°. They observed that using AABBs was significantly faster
than using OBBs, and that independent of the bounding volume the initial pose
of the objects strongly influenced T

There is always a trade-off between the tightness of the BVH and the simplicity
of the overlap tests. Chang et al. [13] attempt to get the best of both worlds by
combining spheres, for their easy overlap tests, and OBBs, for their tightness,
in a single tree. In their approach a comparison of two nodes happens in two
steps, first the spheres are tested, and if they collide, the more expensive test
with the OBBs is performed. A comparison between their dual approach and a
BVH using OBB showed that especially for rigid bodies in static poses the dual
approach is advantageous.

CHAPTER 3. COLLISION DETECTION 56

o b

(a) t=1; (b) ty <t <tit1 (C) t=1tit1

Figure 3.3: An illustration of the tunneling effect. Although no collisions are detected
at (a) time t; or (c) tiy1, the circle has collided with the rectangle (b)
between t; and tiy1.

3.4 Continuous Collision Detection

An easy approach to continuous collision detection is checking for collisions
before every frame update. However, if the objects move too fast or if the time
step between two queries is too large the tunneling effect could occur [9]. This
effect happens if no collision is detected at time step t;, or ¢;4.1, but a collision has
occurred between the two between those two steps, as illustrated in Figure 3.3.
Several techniques haven been proposed to solve this problem.

Pseudo-continuous collision detection aims to avoid the tunneling effect by
performing static collision detection with a frequency that is higher than the
frame rate. A smooth visual sensation requires a frame rate of at least 30 Hz,
consequently the static collision query needs to be executed within approxi-
mately 33.33ms. A clear advantage of the pseudo-continuous approach is that
it allows the reuse of the static collision detection algorithm. However, even
with higher sampling frequencies, contacts between thin objects may still be
missed [9].

The problems of pseudo-continuous collision detection are avoided by the con-
servative advancement approach which advances by a certain time step that
guarantees a non-penetration constraint. A different approach is to enclose the
bounding volume at the beginning and end of every step with a swept volume.
The downside of this method is that it requires an extra collision test [9)].

References

[1] M. Scheuering, C. Rezk-Salama, C. Eckstein, K. Hormann, and G. Greiner.
“Interactive Repositioning of Bone Fracture Segments.” In: Proceedings of
the Vision Modeling and Visualization Conference 2001. VMV ’01. Aka
GmbH, 2001, pp. 499-506. 1SBN: 3-89838-028-9.

[2] P. Firnstahl, G. Székely, C. Gerber, J. Hodler, J. G. Snedeker, and M.
Harders. “Computer assisted reconstruction of complex proximal humerus
fractures for preoperative planning.” In: Medical Image Analysis 16.3 (2012).
Computer Assisted Interventions, pp. 704-720. 1SSN: 1361-8415. pOI: 10
.1016/j.media.2010.07.012.

https://doi.org/10.1016/j.media.2010.07.012
https://doi.org/10.1016/j.media.2010.07.012

CHAPTER 3. COLLISION DETECTION 57

3]

P. Olsson, F. Nysjo, J.-M. Hirsch, and I. B. Carlbom. “A haptics-assisted
cranio-maxillofacial surgery planning system for restoring skeletal anatomy
in complex trauma cases.” In: International Journal of Computer Assisted
Radiology and Surgery 8.6 (Nov. 2013), pp. 887-894. 1SSN: 1861-6429. DOTI:
10.1007/s11548-013-0827-5.

J. Fornaro, M. Harders, M. Keel, B. Marincek, O. Trentz, G. Szekely, and
T. Frauenfelder. “Interactive visuo-haptic surgical planning tool for pelvic
and acetabular fractures.” In: Studies in health technology and informatics
132 (2008), pp. 123-125. 1ssN: 0926-9630.

J. Fornaro, M. Keel, M. Harders, B. Marincek, G. Székely, and T. Frauen-
felder. “An interactive surgical planning tool for acetabular fractures: ini-
tial results.” In: Journal of Orthopaedic Surgery and Research 5.1 (Aug.
2010), p. 50. 18SN: 1749-799X. DOI: 10.1186/1749-799X-5-50.

M. Harders, A. Barlit, C. Gerber, J. Hodler, and G. Székely. “An opti-
mized surgical planning environment for complex proximal humerus frac-
tures.” In: MICCAI Workshop on Interaction in Medical Image Analysis
and Visualization. Vol. 10. Brisbane, Australia, Jan. 2007, pp. 201-206.

D. Morris, C. Sewell, F. Barbagli, K. Salisbury, N. Blevins, and S. Girod.
“Visuohaptic simulation of bone surgery for training and evaluation.” In:
IEEE Computer Graphics and Applications 26.6 (Nov. 2006), pp. 48-57.
ISSN: 0272-1716. DOI: 10.1109/MCG.2006. 140.

P. Hubbard. “Interactive collision detection.” In: Proceedings of 1993 IEEFE
Research Properties in Virtual Reality Symposium. Oct. 1993, pp. 24-31.
DOI: 10.1109/VRAIS.1993.378267.

R. Weller. “A Brief Overview of Collision Detection.” In: New Geometric
Data Structures for Collision Detection and Haptics. Heidelberg: Springer
International Publishing, 2013, pp. 9-46. 1SBN: 978-3-319-01020-5. DOI: 1
0.1007/978-3-319-01020-5_2.

S. Kockara, T. Halic, K. Igbal, C. Bayrak, and R. Rowe. “Collision de-
tection: A survey.” In: 2007 IEEE International Conference on Systems,
Man and Cybernetics. Oct. 2007, pp. 4046—4051. pOI: 10.1109/ICSMC. 2
007.4414258.

E. Langetepe and G. Zachmann. Geometric Data Structures for Computer
Graphics. Natick, MA, USA: A. K. Peters, Ltd., 2006. 1sSBN: 1568812353.

S. Gottschalk. “Collision Queries using Oriented Bounding Boxes.” PhD
thesis. The University of North Carolina, 2000.

J.-W. Chang, W. Wang, and M.-S. Kim. “Efficient collision detection us-
ing a dual OBB-sphere bounding volume hierarchy.” In: Computer-Aided
Design 42.1 (2010). Advances in Geometric Modelling and Processing,
pp- 50-57. 1SSN: 0010-4485. DOIL: 10.1016/j.cad.2009.04.010.

G. Zachmann. “Virtual Reality in Assembly Simulation - Collision De-
tection, Simulation Algorithms, and Interaction Techniques.” PhD thesis.
Technische Universitdt Darmstadt, July 2000.

G. Zachmann and E. Langetepe. “Geometric Data Structures for Com-
puter Graphics.” Siggraph 2003 Tutorial 16. 2003.

https://doi.org/10.1007/s11548-013-0827-5
https://doi.org/10.1186/1749-799X-5-50
https://doi.org/10.1109/MCG.2006.140
https://doi.org/10.1109/VRAIS.1993.378267
https://doi.org/10.1007/978-3-319-01020-5_2
https://doi.org/10.1007/978-3-319-01020-5_2
https://doi.org/10.1109/ICSMC.2007.4414258
https://doi.org/10.1109/ICSMC.2007.4414258
https://doi.org/10.1016/j.cad.2009.04.010

CHAPTER 3. COLLISION DETECTION 58

[16]

[19]

[20]

S. Gottschalk, M. C. Lin, and D. Manocha. “OBBTree: A Hierarchical
Structure for Rapid Interference Detection.” In: Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’96. ACM, 1996, pp. 171-180. 1SBN: 0-89791-746-4. DOIL: 10
.1145/237170.237244.

P. Jiménez, F. Thomas, and C. Torras. “3D collision detection: a survey.”
In: Computers & Graphics 25.2 (2001), pp. 269-285. 1sSN: 0097-8493. DOTI:
10.1016/S0097-8493(00)00130-8.

S. Oh and S. Hwang. “A GJK Based Real-Time Collision Detection Al-
gorithm for Moving Objects.” In: Advances in Cognitive Neurodynam-
ics ICCN 2007: Proceedings of the International Conference on Cognitive
Neurodynamics. ICCN 2007 Proceedings. Ed. by R. Wang, E. Shen, and
F. Gu. Dordrecht: Springer Netherlands, 2008, pp. 817-820. 1SBN: 978-1-
4020-8387-7. DOI: 10.1007/978-1-4020-8387-7_142.

G. Bradshaw. “Bounding volume hierarchies for level-of-detail collision
handling.” PhD thesis. Trinity College Dublin, May 2002.

1. J. Palmer and R. L. Grimsdale. “Collision Detection for Animation using
Sphere-Trees.” In: Computer Graphics Forum 14.2 (1995), pp. 105-116.
ISSN: 1467-8659. DOI: 10.1111/1467-8659.1420105.

https://doi.org/10.1145/237170.237244
https://doi.org/10.1145/237170.237244
https://doi.org/10.1016/S0097-8493(00)00130-8
https://doi.org/10.1007/978-1-4020-8387-7_142
https://doi.org/10.1111/1467-8659.1420105

Chapter 4

Simulated Data

Other than the actual registration, one of the challenges of research in this field
is the quantification of results, since a ground truth is generally not available
for clinical data. To ensure that we know the translation and rotation the
registration algorithm is supposed to find, we use a simulated fracture and
transform one of the fragments manually. We base this not on clinical data, but
on a 3D shape that we have broken virtually. The advantage of this approach,
compared to using clinical data is that we have a correct ground truth that
allows us to distinguish rotation errors from translation errors.

We use these data to test the four methods presented in Section 3 of Part I: point-
to-plane closed form (CFp;), point-to-point closed form (CFp,), point-to-point
iterative gradient descent (IGD,,), and intersection iterative gradient descent
(IGD;). Section 4.1 discusses the generation of this dataset and the methods
used to quantify the results. The actual results are presented and discussed in
Sections 4.2 and 4.3, respectively. In Section 4.4 we draw conclusions based on
the previous sections, and Section 4.5 gives some ideas for future research.

(a) static fragment (b) model fragment (¢) rectangular prism
Figure 4.1: To generate the initial (a) static and (b) model fragment for the simulated

data, we split (c¢) a rectangular prism of length three in two parts. The
resulting fracture surface is shown in green.

59

CHAPTER 4. SIMULATED DATA 60

(a) a (b) b (c) c

Figure 4.2: The three model fragments for the base fragment pairs (a) a, (b) b, and
(¢) c, with the respective seeds 2, 3, and 42.

4.1 Experiment

Section 4.1.1 discusses the generation of the simulated data. The quantifica-
tion of the registration of the resulting fragment pairs is introduced in Sec-
tion 4.1.2.

4.1.1 Data

The process used to generate the initial fragments is illustrated in Figure 4.1.
We start with a 3 x 1 x 1 rectangular prism. Next we split this prism with a
plane that is placed such that the longest lower edges are split at one-third, and
the two parallel upper edges are split at two-thirds.

We then subdivide the fracture surfaces of both the static and the model frag-
ment into a 10x 10 uniform grid of quads, using the subdivision tool implemented
in Blender [1]. A uniformly sampled random offset is added in all three dimen-
sions to the inner vertices of the static fragment, without changing the topology.
The random offset are generated with the seed of the random generator set to
2, 3 and 42, resulting in the basis fragment pairs a, b, and c, respectively. The
inner vertices of the model fragment are moved to ensure that the two shapes
still fit perfectly. The resulting model fragments are shown in Figure 4.2. To
better simulate noisy measurements we add noise, sampled from a zero-mean
Gaussian distribution with standard deviations 0, 0.001, and 0.005, to the inner
vertices of all fracture surfaces. Consequently, the fit between two fragments in
a pair where noise has been added is not necessarily perfect. The addition of
noise, with standard deviations 0, 0.001, and 0.005, creates the fragment pairs
ap, a0.001, and ag.gos from fragment pair a, respectively.

From these nine base fragment pairs we create three different datasets: S, O,
and R. The model fragments in set S are moved along the vector between o g
and og, the origins of the oriented bounding boxes (OBBs) of the model and
the static fragments, respectively. The new position of the origin of the OBB of

CHAPTER 4. SIMULATED DATA 61

(@) S (b) O (¢) R

Figure 4.3: Ezamples of fragment pairs form dataset (a) S, (b) O, and (c¢) R. All
pairs are based on the base pair co.001- The model fragments are shown
in red, the static fragments in blue, and the fracture surface in green.
To generate the fragment pair Figure 4.3(a), s was set to 1.300. The
origin of the OBB of the model fragment in Figure 4.3(b) was offset with
0.2, —0.4, 0.2 from its original position. Figure 4.3(c) was generated by
rotating the model fragment 10° around the x-axis, 5° around the y-axis,
and —0.1000° around the z-axis.

the model fragment is

oy =s(og —ox), (4.1)
where s € {0.70,0.75,...,1.30,1.35}. The resulting dataset consists of 126
fragment pairs. Dataset O is created by translating o with some translation
vector w € {—0.2,—0.1,0, +0.17+0.2}3. The thus generated dataset has 1125
fragment pairs. Finally, dataset R is generated by rotating the model fragment
{-10,-5,-1,-0.5,-0.1,0,0.1,0.5,1,5, 10} degrees around the z, y, and z-axes,
with the center of rotation set to 0g. The resulting dataset has cardinality
11979. Figure 4.3 shows a pair of fracture fragments from each of the three
datasets.

For these datasets we used a fixed error threshold, which is set to 1 x 10™%. Since
both the static and the fragment models of all base pairs have 250 vertices after
triangulation they are not subsampled by the application.

4.1.2 Quantification

For these data, quantification is relatively straightforward, since we know the
expected translation and rotation. To quantify the difference between two trans-
lations t1, and to, we use

where tgi) denotes the ith element of t;.

We express the distance between two rotations r; and ry as the inner product
of their unit quaternions [2]

1 1

D, (r1,r5) =1—|—1; - —1s|. 4.
(1‘1 1‘2) |r1|1‘1 |r2|1‘2 (3)

The range of the resulting metric is [0, 1].

CHAPTER 4. SIMULATED DATA 62

00 set S B0 set O BH set R

40%

20% I ‘ -
0% | —— I o |
T T

T T
CFpo CF IGD,, IGD;

Figure 4.4: The percentage of fragment pairs where the registration changed the mor-
phology of the model fragment, grouped per method and dataset.

4.2 Results

The transformation applied to register the objects should be rigid, however for
some model fragments, the registration algorithm has changed their morphology
to that of a 2D shape, i.e. the values of the vertices in e.g. the z-dimension were
all changed to 0.1349 x 1078, Figure 4.4 shows the percentage of fragment
pairs, per dataset, whose model fragment’s morphology has been changed, per
registration method. We observe that all methods failed on approximately 35 %
of fragment pairs from dataset R. Only the CF; method failed on a significant
percentage of dataset S and O. We exclude the pairs where the morphology of
the model fragment was changed from the presentation and discussion of the
results. In Sections 4.2.1 to 4.2.3 we present the results of the registration of
the other fragment pairs for datasets S, O, and R, respectively.

4.2.1 Dataset S

Figure 4.5 shows a box-and-whisker plot of the translation and rotation error of
the four registration methods on dataset S. We observe that the CF,; method is
outperformed by the other registration methods. Based on the mean translation
and rotation error of this registration method relative to its median errors, the
high average error can be attributed to a limited number of very high errors.
Furthermore, Figure 4.5(a) shows that the method IGD; introduces hardly any
rotation errors. We review the influence of oy,ise, the standard deviation of
the noise added to the vertices and the scale s on both the translation and the
rotation error.

Figure 4.6 illustrates the influence of the added noise and the registration
method on the translation errors in S. We observe very little influence of the
noise on the results of registration methods CF,, 1GDy,, and IGD;. This

CHAPTER 4. SIMULATED DATA 63

¢ CF,, ® CF, # IGD,, * IGD;

®
0.2 . 0.06 - 5
0.1 . 0.04 5
) a)
0.1H 5 0.02 |- 8
0.0 - - 0.00 7%@ -
(a) translation error (b) rotation error

Figure 4.5: Boz-and-whisker plot of (a) the translation and (b) the rotation error
on dataset S per dataset. The boxes show the 25th, 50th, and 75th per-
centile. The diamonds indicate the means, and the whiskers the minimum
and mazimum errors. The mazimum translation (0.8973) and rotation
error (0.4980) for the method CFy are not shown.

is confirmed by four one-way ANOVAs to compare the effect of oppise On Dy.
The analysis was not significant at the significance level 0.05 for the methods
point-to-point closed form (F} 124 = 0.314, p = 0.576), point-to-point iterative
gradient descent (Fj 124 = 0.108, p = 0.744), and intersection iterative gradient
descent (Fy 124 = 0.0331, p = 0.856). For the method CFp we found a sig-
nificant effect of oyeise 00 Dy (F19s = 11.3, p < 0.010). Therefore, only the
translation error of the method CFy, is influenced by the added noise. In Fig-
ure 4.6 the results of the four methods seem comparable for oy,ise = 0.005, this
is confirmed by a one-way ANOVA on the influence of the registration method
on the translation error (Fj 168 = 0.237, p = 0.871). Consequently, the method
CFp1 only performs comparably to the other methods if Gaussian distributed
noise with opeise = 0.005 is added to the vertices.

Figure 4.7 gives an overview of the rotation errors introduced in dataset S as
a function of the registration methods and oy.ise. It should be noted that the
rotation error of the initial alignment of all pairs in dataset S is zero. Therefore,
the rotation errors shown in Figure 4.5(b) are introduced by the registration
method. As for the translation error, only the rotation error of CF seems to
be influenced by oppise- This is confirmed by four one-way ANOVAs that show
that the influence of o,0ise On Dy is not significant for the registration methods
CFpo (F1,124 = 0.830, p = 0.364), IGD (F1,124 = 0.955, p = 0.330), and IGD;
(F1,124 = 0.959, p = 0.329). Furthermore, the registration error introduced by
these methods is nearly zero, in this aspect the method IGD; performs particu-
larly well. The highest rotation error introduced by this method is 2.226 x 10~4
for a pair from Sg.gos. For fragment pairs registered by CFp; the difference

CHAPTER 4. SIMULATED DATA 64

caused by opeise Was significant (Fy 95 = 9.92, p < 0.010). Consequently, only
the rotation error generated by CFy; is strongly influenced by the added noise.
For oynoise = 0.001 CFp; only introduced rotation errors for about half of the
fragment pairs. However, the introduced errors are relatively large, as can be
seen in Figure 4.7(b).

Figure 4.8 shows the mean translation errors of the different registration meth-
ods as a function of s. Based on this figure, both s and the used method
influence the D;. This is confirmed by a two-way ANOVA that considers the
effect of s and registration method on D, and the interaction effect between s
and the registration method. Both s (Fi3422 = 5.94, p < 0.001) and the used
registration method (F3 422 = 35.7, p < 0.001) had a statistically significant
influence on the translation distance. The interaction effect was also significant
(F39,422 = 1.51, p < 0.050). In Figure 4.8 we can see that significant influence of
the registration method can be ascribed to the deviating results by the registra-
tion method CFp;. Fourteen one-way ANOVAs with the other three registration
methods as main factor, show no significant influence of the scale on the mean
translation distance. We also observe the interaction effect in Figure 4.8, since
the method CF,, responds differently to the changes in scale than the other
three methods. For example, for s > 1 the average translation error increases
faster for CF,| as a function of s, than for the other methods. In the same figure
we also find that the average translation error increases as the absolute value
of s increases. For s = 0 the average translation error should be zero, since the
fragments are already perfectly aligned. Reviewing the actual values of D; for
s = 0, reveals that only the iterative gradient descent (IGD) methods do not
introduce translation errors, CF,, and CFy; introduce translation errors that
are 2.776 x 10™* and 4.250 x 1074, respectively.

¢ CF,, ® CF, # IGD,, * IGD;

.
0.15 - 8 0.15 - - 0.15 |- -
0.10 - 8 0.10 T+ - 0.10 |- -

Q Q Q
0.05 - | 0.05 H - 0.05 - .
0.00 |- s 0.00 |- - 0.00 |- s

(a) So.o (b) So.001 (c) So.005

Figure 4.6: Box-and-whisker plot of the translation error per registration method for
datasets (a) So.0, (b) So.001, and (c) So.005. For dataset So.o and So.001
the upper quartile and the mazimum of the translation error of the method
CFy are not shown. The absent 75th percentiles are 0.6089 and 0.2218,
and the the mazimum translation errors are 0.8973 and 0.3808, for So.o
and So.001, respectively.

CHAPTER 4. SIMULATED DATA 65

¢ CF,, ® CF, # IGD,, * IGD;

1072 1072 1072
1 | 1 | 1) 1
S 05F 4 R o05f 1 R o05f .
0 | 0 —="="=| 0f :
(a) Soo (b) So.001 (¢) So.005

Figure 4.7: Box-and-whisker plot of the rotation error per registration method for
datasets (a) So.0, (b) So.001, and (¢) So.005. The missing values for the
method CFy; can be found in Table 4.1.

Rotation errors were subjected to a two-way ANOVA with the main factors
registration method and s. All effects were statistically significant at the 0.05
significance level. In Figure 4.9 the interaction effect (Fzga420 = 1.98, p <
0.001) is illustrated by the differing response by the registration method CFy,
to changes in scale for s < 1. Based on this figure the significance of the
factors s (Fiz 420 = 1.95, p < 0.050) and registration method (Fj5 420 = 22.3,
p < 0.001) are due to the rotation error the method CFp,; introduces for s < 1.
However, 14 one-way ANOVAs, one for each value of the factor s, without the
registration method CFp,;, show that the method is a significant factor for every
value of s, except for s = 0.95 and s = 1.15. Figure 4.10 shows the rotation
errors introduced by the methods CF,, IGD,,,, and IGD;. This plot shows that
for s < 0.9, the method IGD; is the only method that introduces hardly any
rotation error. The biggest rotation error for s < 0.9 caused by this method is
9.670 x 10~° and occurs at s = 0.7.

percentile
min max mean 25th 50th 75th
So.0 0.00 1.28¢7! 5.00e 2 6.04e~3 4.05e2 7.25672
So.001 2.69¢° 4.98¢71 1.29¢7! 1.18¢74 2.69¢ ™4 3.63e71
S0.005 8.54e75 1.34e72 3.99¢73 8.32¢74 3.01e3 6.33¢73

Table 4.1: The minimum, maximum, mean, 25th, 50th, and 75th percentile of the
rotation error of the method CFy on dataset S.

CHAPTER 4. SIMULATED DATA 66

A CFpo [u] CFpl o IGDPO o IGD;

0.40 T
[u]
0.30 - o =
=] o fu]
+0.20 |- |
I
o a =
0.10 |-] 8 N 5 o N =
@ a [.]
] a []
0.00 ! ! ! - F ? E\ ! ! L
0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
S

Figure 4.8: The mean translation error, Dy, for dataset S as a function of the scale
factor s, split by registration method.

A CFPO o CFpI < IGDpO o IGD;

a T
0.15 | o i
[m] o [u]

0.10 - B
~

I o

0.05 |- |
0.007§6§6?0|‘:un‘1ugugur

Figure 4.9: The mean rotation error, D,, for dataset S as a function of the scale
factor s, split by registration method.

A CF,, ¢ IGD,, o IGD;

1073
T
sk % a
6* A
S o A
Q4 04 N R
o
2 A
OF © o o o o o © & ¢ o6 & & & e
| | | | | | | |
0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Figure 4.10: The mean rotation error, D,, for dataset S as a function of the scale
factor s, for the registration methods CFy,, IGD,,, and IGD;.

CHAPTER 4. SIMULATED DATA 67

¢ CF,, ® CF, # IGD,, * IGD;

0.20

0.15 |- . 0.04 |- -
+~ 010 [| ~
Q Q

0.02 - .
0.05 - |
oll—
0.00 - - 0.00 | — T -
(a) translation error (b) rotation error

Figure 4.11: Boz-and-whisker plot of (a) the translation and (b) the rotation error
on dataset O. The maximum translation and rotation error for the
method CF}; are not shown, the missing values are 1.677 and 0.5000,
respectively.

4.2.2 Dataset O

Figure 4.11 shows the performance of the four different registration methods on
dataset O. In these plots we observe that only the minimum translation and
rotation error of the method CFy; are on par with the other registration meth-
ods. Furthermore, we find that the variance of this method is higher than that
of the other methods. With regard to the translation error, registration with
the method IGD; seems to slightly outperform both IGD,, and CF,. Further-
more, the minimum error of each registration method is zero, suggesting that
all of them have achieved a near perfect registration for at least one fragment
pair. The IGD methods outperform the closed-form methods w.r.t. D,. The
rotation error of the method IGD; is in general a lot lower than those associated
with the other registration methods. The maximum error of the method IGD;
is nearly the same as its minimum error, indicating consistent performance over
all fragment pairs in dataset O.

To investigate the influence of the noise on the performance of the different reg-
istration methods we use Kruskal-Wallis tests within the registration methods
on the factor opeise. The added noise did not influence the translation error
of the methods CF,, (Hy = 5.73, p = 0.057), IGD,, (H2 = 3.09, p = 0.213),
or IGD; (Hy = 3.81, p=10.148). Only the translation errors of the method
CFpi (H2 = 25.1, p < 0.001) are influenced by the noise at the significance level
0.05. The difference in translation error between O (1 = 0.200, o = 0.148)
and Oggo1 (# = 0.130, 0 = 0.152) was significant if the method was regis-
tered with CFp,; (397 = 5.27, p < 0.001). The difference between Oy and
O0.005 (1 = 0.114, 0 = 0.109) was also significant for this method (¢392 = 7.08,
p < 0.001). Only the difference between Og o1 and Og o5 was not significant
(ten = —1.61, p=0.109). This suggests that its translation error decreases
with the addition of more noise, but that the standard deviation of the added

CHAPTER 4. SIMULATED DATA 68

e s s B B o s B B sy B B B Bt B B
0.3} =]
0.2 |- mghn

\5 " "o u

] A] m_mh mi A
0.1} . 2 . mugph "en A A A‘ —
e P @ = he] M
9 e

Oy v T

Wg -1-1-1-1-1-1-1-1-1-1-2-2.2.2.2.2.2.2.2.2.2.22220000001112
wy -1-1-1-1000112-1-1-1-1-2-2-2-2-20001120001121122
w,-1012012122-1012-1-20120121220121221222

Figure 4.12: The average translation error per method and offset w for dataset
Oo.005- The offset, scaled by a factor ten, is shown in three rows be-
low the x-azis, the first row denotes the offset in the x direction, the
second in the y direction and the third in the z direction.

noise does not matter much.

We use the same approach to investigate the influence of oy 0n the rotation
error. For this error metric the Kruskal-Wallis tests reveal a significant influence
of the factor opeise for all registration methods. Post-hoc tests reveal that the
difference in rotation error for the zero-noise condition and the two noise-added
conditions were significant for all methods except for the CF,, method. The
other methods all showed significant differences in performance between Oy and
00.001 on the one hand and Oy and Og g5 on the other hand. No significant
differences in performance were found between Og.gg1 and Qg g5 for any reg-
istration method. For all registration methods, except the method CFp,, the
average rotation error decreased as noise was added.

We investigate the influence of the offset vector w on the translation error
with the results of Og gg5. Figure 4.12 shows the mean translation error per
offset vector w for each registration method. Firstly, this graph shows that
the difference in performance between the CF, and the IGD methods is quite
likely due to a few patterns. Most of these cases are found on the right side
of the graph, where the offset vector has mostly relatively large positive values.
Furthermore, for all methods except CFyy, it seems as though for each fixed
value of w, the translation error increases as the y and z components increase.
This effect is especially visible for w, > 0.

Only the addition of noise, not its standard deviation, significantly influenced
the rotation error of all levels. Therefore we combine the results of Og.go1
and Qg go5 into Og.001u0.005 and consider the rotation errors of the registration
methods on that set separately from those on Oy g.

Figure 4.13 shows the rotation error per offset for dataset Ogg. In this figure
we observe that the performance of the method CFp; (¢ = 0.0926, 0 = 0.119) is
worse than that of the other methods. A t-test reveals that the rotation errors
introduced by this method are significantly worse than those caused by the
second worst method (t7345 = 9.71, p < 0.001), point-to-point closed form (u =
0.008 60, 0 = 0.009 74). Furthermore, for a subset of offset vectors, the method
CFpo performs worse than the IGD methods. It is quite likely due to these

CHAPTER 4. SIMULATED DATA 69

s CF,, m CF, ¢ IGD,, e IGD;

T *\ rrrrrrr 11111111+ 1r 11T T T T T T T T T T
0.3+ n |
£0.2] - |

| |
01l . (] B} l. m EEEHN
Y se0tatloan0sdld
00feeneneettboentorrelmesstsnsfossesds
w, -1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2 0000001112
wy -1-1-1-1000112-1-1-1-1-2-2-2-2-20001120001121122
w,-1012012122-1012-1-20120121220121221222

Figure 4.13: The average rotation error per method and offset w for dataset Og.o.
The offset, scaled by a factor ten, is shown in three rows below the x-
azxis, the first row denotes the offset in the x direction, the second in
the y direction and the third in the z direction.

offsets that the rotation errors introduced by CFy, are significantly different
from those introduced by IGD,, (ts0s = —8.60, p < 0.001) and IGD; (t3s0 =
—15.5, p < 0.001). A t-test reveals that the methods IGD,, (1 = 0.00389, ¢ =
0.00419) and IGD;(p = 0.000769, o = 0.000845) are significantly different at
the 0.05 significance level (t15405 = 14.1, p < 0.001).

Figure 4.14 shows that the method CFyp,; (1 = 0.0373, o = 0.0929) also performs
worse w.r.t. the rotation error than the other methods on dataset Og.001U0.005-
The difference in introduced rotation error between the methods CF, and
CFpo (1 = 0.00902, o = 0.0107) is significant at the 0.05 significance level
(t761 = —8.22, p < 0.001). With the introduction of noise, the method CFp, (1 =
0.00902, ¢ = 0.0107) is still outperformed by the methods IGDy,, (t508 = 15.8,
p < 0.001) and IGD; (t3g0 = 21.6, p < 0.001). Between the two IGD methods,
IGD,0 (1t = 0.00260, o = 0.00288) and IGD;(u = 0.000552, o = 0.000605) the
difference in performance w.r.t. D,. is significant (tg;3 = 19.0, p < 0.001).

Both Figure 4.13 and 4.14 show that especially the closed-form solutions are

s CF,, m CF, ¢ IGD,, ® IGD;

1 11+ 11T 1 17 11T 1T T 1 T T T T T T T 71 T T T T 1T 1T 1]

0.15 "
0.10 | . |
[« u am _"_n
0.05 | . .
n " = : 4 o 2t aaantt

A

000[ns0bueddsonnyinefitnasdoonetotossss
wg -1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2 0000001112
wy -1-1-1-1000112-1-1-1-1-2-2-2-2-20001120001121122
w,-1012012122-1012-1-20120121220121221222

Figure 4.14: The average rotation error per method and offset w for dataset
00.00100.005- The offset, scaled by a factor tem, is shown in three rows
below the x-axis, the first row denotes the offset in the x direction, the
second in the y direction and the third in the z direction.

CHAPTER 4. SIMULATED DATA 70

¢ CF,, ® CF, # IGD,, * IGD;

0.08 0.08 0.08
0.06 - . 0.06 - - 0.06 - .
~ 0.04 1 = 004} 1 » 0041 .
_ Q _
0.02 1 - 0.02 |- . 0.02 E -
0.00 - - 0.00 |- - 0.00 | — — -
(a) Roo (b) Ro.oo1 (¢) Ro.oos

Figure 4.15: Box-and-whisker plot for the translation error per registration method
for datasets (a) Ro.o, (b) Ro.001, and (¢) Ro.oos. The mazimum errors
of the method CFy; for datasets Ro.o01 and Ro.oos are not shown, they
are 0.2934 and 0.4776, respectively.

influenced by the translation vector, independent of the addition of noise. Al-
though the offset vectors for which the worst results were achieved are the same
for Og.o and Og.go1u0.005, We could not observe a direct relationship between
the elements of the offset vector and the performance of the registration meth-
ods.

4.2.3 Dataset R

Figures 4.15 and 4.16 show box-and-whisker plots of respectively the rotation
and translation error of dataset R for each registration method per value of
Onoise- A Kruskal-Wallis test on the factor noise indicates that opeise has a
significant influence on the translation (Hy = 163, p < 0.001) and the rota-
tion error (Hy = 96.7, p < 0.001). In Figure 4.15 we observe that the transla-
tion error decreases for all methods as the added noise increases. Furthermore,
for opeise > 0.0 the minimum translation error of the method IGD; is nearly
zero. Comparing the translation and rotation errors for the different registra-
tion methods within Rg.g, Ro.001, and Rg.gos with Kruskal-Wallis tests shows
that the differences between the registration methods are significant, within all
noise conditions. Furthermore, using t-tests we have found that the difference
in performance w.r.t. both the translation and the rotation error, within the
noise condition is significant at the 0.05 significance level for every registration
method pair.

We use a Kruskal-Wallis test to investigate the influence of the factor rotation,
which has 286 levels, on D; and D,.. For both the translation (Hags; = 8970,
p < 0.001) and the rotation error (Hsgs = 16900, p < 0.001) the effect of the
rotation is significant. If we look within oy and method, we find that for
all methods, for all noise levels, the differences in performance w.r.t. both the

CHAPTER 4. SIMULATED DATA 71

¢ CF,, ® CF, # IGD,, * IGD;

0.06 |- = 0.06 + . 0.06 |- =
0.04 - . 0.04 - . 0.04 - .
=~ &~ =~
_ Q _
0.02 - » 0.02 u 0.02 - .
0.00 |- = 0.00 + . 0.00 |- =
(a) Ro.o (b) Ro.o01 (C) Ro.005

Figure 4.16: Box-and-whisker plot for the rotation error per registration method for
datasets (a) Ro.o, (b) Ro.oo1, and (c) Ro.oos. The mazimum rotation
errors of CFy; are too big to be shown for Ro.o and Ro.o01. The missing
values are 0.065 31 and 0.066 74, respectively.

translation and rotation error are significant, with one exception. On dataset
Ro.005 the rotation is not a significant factor w.r.t. the translation difference if
the method CF, is used.

4.3 Discussion

Unfortunately all registration algorithms changed the morphology of a number
of model fragments for every dataset. The fact that this happened for all reg-
istration methods on all datasets suggests that it is due to a property of the
registration method that is shared between all four methods. The changed mor-
phology indicates that at least one of the applied transformation matrices was
not linear. One possible reason for this are under and overflow errors, due to
Unity being limited to single precision floating point numbers. This hypothesis
is further supported by the fact that non-linear transformation matrices did not
occur for the clinical data, which have a different scale. The fragments in the
clinical dataset are between a factor 7 and 70 bigger than those in the simu-
lated dataset. Consequently, scaling the simulated fragments could be an easy
solution to the problem.

One thing that stood out in Section 4.2.1 was that the introduced rotation errors
were worse when 2~ was moved into ¢/, i.e. when s < 1, for all methods except
the IGD; registration method. This shows that the addition of the intersection
term is valuable when the fragments intersect. This indicates that our adapted
correspondence finding method does not completely solve the problems that
occur when registering two intersecting shapes, as otherwise the performance
of the registration methods would not have been influenced by the sign of s.
The lack of significant difference in introduced rotation errors between methods
for s = 0.95 is caused by the jump in performance by IGD,,. We have no

CHAPTER 4. SIMULATED DATA 72

explanation for this, or the lack of significant difference at s = 1.15.

One striking effect we observed for dataset O when considering the translation
error as a function of the translation vector in Figure 4.12 was the increase
in D, that occurred when w, was fixed and the other components of w were
increased. One likely explanation is that the length of the offset vector matters.
However, comparing offset vectors of the same length in Figure 4.12 shows that
vectors of differing length have errors of the same order of magnitude.

For dataset S and O the rotation error for the initial alignment of the pairs
was zero. Most methods introduced some rotation error. The worst rotation
errors were introduced by the closed-form methods, of those two methods CFy,
performed the worst. The IGD methods hardly introduced any rotation errors.
The addition of the intersection term clearly helped, since the method IGD;
outperformed 1GDy, in this aspect. Furthermore, the rotation errors introduced
by this method were the least sensitive to noise. The other methods, especially
CF,i, introduced significantly smaller rotation errors on dataset S and O when
more noise was added.

One strange effect that occurred for all datasets and all registration methods is
that their performance w.r.t. the translation and rotation error did not deterio-
rate if noise was added. For some methods the addition of noise even improved
their results. We expect that this addition of noise positively influences the
correspondence finding process.

Finally, in general we have found that the method CFy; works better if some
noise is added to the data. However even if noise is added this method generally
performs worse than the other methods. This indicates that the assumption that
the transformation is near linear does not hold for these simulated data.

The other closed-form method, CFp,, was outperformed by the IGD methods
on all three datasets w.r.t. both the translation and rotation error, except for
dataset Ro.o05. On this dataset the method CFp, outperformed the methods
IGDPO (t3926 = 5.22, p < 0001) and IGDi (t2323 = —7.64, p < 0001), if we
consider the mean performance. In spite of their higher average error, the IGD
methods had lower rotation errors than the method CFp,.

Within the iterative gradient descent methods, the method IGD; outperformed
the method IGDy, on all three datasets, for all three noise levels in terms of the
rotation error. The translation errors of the two IGD methods did not differ
significantly, except for datasets Rg.9, Ro.001, and Rg.go5. On these datasets the
method IGD; performed significantly better than other IGD method. As the
standard deviation of the added noise increased, the difference in performance
between these two methods increased as well.

4.4 Conclusion

Strangely the performance of the different registration methods did not suffer
due to the addition of noise, instead some of them even improved their perfor-
mance w.r.t. the translation and rotation error.

CHAPTER 4. SIMULATED DATA 73

In general, the IGD methods performed best on the simulated data. The per-
formance of the general IGD method, IGDy,, can be further improved by the
addition of a term that punishes intersections.

4.5 Future Work

The strange effect of noise on the performance of the different registration algo-
rithms in the simulated datasets should be investigated further. One approach
would be to store the correspondences found by registration methods whose
quality can then be compared between different levels of noise. However this
requires the definition of a metric for the quality of a correspondence, which to
the best of our knowledge is not available.

Future research should look into solving the problem of the changed morphology,
and verify that numerical accuracy is indeed the cause.

We did not find any strong relations between the applied offset and rotation and
the performance of the registration methods. However, our results clearly show
that the relative rotation and offset of the fragments influence the registration
algorithm. Further research should look into finding the maximum rotation and
translation distance that the registration methods can handle.

References

[1] B. Foundation. Blender. Version 2.7.9. July 5, 2018. URL: https://www.b
lender.org.

[2] D. Q. Huynh. “Metrics for 3D rotations: Comparison and Analysis.” In:
Journal of Mathematical Imaging and Vision 35.2 (2009), pp. 155-164.
DOI: 10.1007/s10851-009-0161-2.

https://www.blender.org
https://www.blender.org
https://doi.org/10.1007/s10851-009-0161-2

CHAPTER 4. SIMULATED DATA

74

	Preface
	I Paper
	Introduction
	Related Work
	Statistical Template
	Physical Template
	Geometric Methods

	Method
	Sampling
	Correspondences
	Error Metric
	Termination

	Experiment
	Data
	Quantification

	Results
	Discussion
	Conclusion
	Future Work

	II Supporting Material
	Virtual Fracture Reduction Pipeline
	Segmentation
	Optimization
	Virtual Reduction
	Matching
	Registration

	User Interface
	System Control
	Viewpoint Control
	Selection
	Manipulation
	Translation
	Rotation

	Collision Detection
	Broad Phase
	Bounding Volumes

	Narrow Phase
	Bounding Volume Hierarchy
	Construction
	Traversal
	Complexity

	Continuous Collision Detection

	Simulated Data
	Experiment
	Data
	Quantification

	Results
	Dataset S
	Dataset O
	Dataset R

	Discussion
	Conclusion
	Future Work

