uni\fEFSitY {]f faculty of science mathematics and applied
grﬂningen / and engineering / mathematics

Cross-comparison of
inference methods for
Gaussian Graphical Model

Bachelor’s Project Mathematics

July 2018
Student: S.T. Schotanus
First supervisor: dr. M.A. Grzegorczyk

Second assessor: Dr. W. Krijnen

Abstract

In Gaussian graphical modeling statistics and graph theory go hand in hand. With appli-
cations in many fields this widely applied technique is used to estimate the partial correlations
among variables of a given dataset. This thesis covers four of the popular approaches within
Gaussian graphical modeling, the Moore-Penrose pseudoinverse, the Lasso (inclusion of the ¢;-
term), the shrinkage and the bootstrap approach. These four methods will be cross compared
on the basis of several tests. These tests cover the accuracy of the estimation, the compu-
tational speed and the user friendliness of each method. The first test is based on randomly
generated datasets of which the true partial correlations are know. Every tested method is
then applied to two datasets extracted from the R package ’GeneNet’. In the last section of
this thesis it is concluded that, despite a high demand on the computational cost, the Lasso
approach supplies the user with the most accurate estimation. However it has to be noted that
it is suspected that the shrinkage approach did not achieve its full potential due to mistakes
made along the journey of programming.

Contents

1 Introduction
2 Graph theory
2.1 Introduction e e e
2.2 Graph theory in Gaussian graphical modeling
3 Gaussian Graphical Modeling
3.1 Preliminaries e e e e e
3.2 General technique to Gaussian graphical modeling
4 Selected methods
4.1 The Moore-Penrose pseudoinverse method (PINV)
4.2 Lasso (inclusion of the ¢1-penalty-term)
4.3 Shrinkage
4.4 Bootstrap e e e e
5 Application of Gaussian graphical modeling
5.1 Applicationin R o
5.1.1 Moore-Penrose method oL
5.1.2 Lasso (inclusion of the ¢;-penalty-term)
5.1.3 Bootstrap oL
5.1.4 Shrinkage L
5.2 Visualisation e
6 Comparison test
6.1 Accuracy
6.2 Computing time
6.3 User friendliness L
7 Application to real life data
8 Conclusion
8.1 Conclusions per method o
8.1.1 Conclusions on Lasso.
8.1.2 Conclusions on Bootstrap L
8.1.3 Conclusions on Shrinkage L.
8.1.4 Conclusions on Moore-Penrose
8.2 Overall conclusion L
References

A Code generating graphs and comparison table

15
15
16
16

17

18
18
18
18
18
18
18

20

21

1 Introduction

When interested in the partial correlations of variables of a given dataset one needs to construct a
covariance matrix. However when dealing with a dataset with a small number of samples ,n, and a
large number of variables ,p, a reliable estimate of the covariance matrix has to be used. This prob-
lem is adressed by Gaussian graphical modeling. However, within Gaussian graphical modeling
there are many methods available. This large variety of alternatives may cause the researcher in
question to lose overview. These different approaches show a large difference in the accuracy of the
results is observed when these techniques are applied. This thesis is thus meant to help researchers
choose a method that fits the needs of their research. Out of the available methods within Gaussian
graphical modeling four are described and tested. This concerns the Moore-Penrose pseudoinverse
method proposed by Penrose [3], the lasso (with inclusion of the ¢;-term) applied according to the
proposed strategy of Friedman et al. [2], the shrinkage approach proposed by Schéfer [5] and the
bootstrap method which is suggested by Breiman [1].

In the first section a brief introduction to graph theory is given. The next sections will give
an introduction to the general technique of Gaussian graphical modeling, and give a description
of the theory that drives each of the four methods subject to the comparison test. Once these
preliminaries are treated each of the methods is applied in R. Each method is first applied to sev-
eral generated datasets which are multivariate normally distributed and of which the true partial
correlations are known. The results of these applications are then used in the comparison test, the
core of this thesis. In order to show the capabilities of Gaussian graphical modeling each method
is also applied to a real E.coli dataset.

In the last section the results of the cross comparison are used to draw conclusions on the ac-
curacy, the computing time and the user friendliness of each method. These conclusions are then
summarized in an overall conclusion.

In the appendix the reader is supplied with the code that is used to genarate a random dataset
with the true partial correlations. This appendix also contains the code that is used to generate
the graphs according to each method.

2 Graph theory

®

Figure 1: A visual representation of the graph G(V,E) with V = {1,2,3,4,5,} and E =
{{1,2},{1,4},{2,3},{2,4},{3,5}}

2.1 Introduction

A graph is a set of points, called nodes, connected by lines, called edges. The resulting graph is
then represented in the form G(V, E), where V is the set of nodes and F consists of subsets of 2
elements. The vertices in a graph may be constrained by a direction as well. However since the
dependency between variables is symmetric we are only interested in undirected graphs. So the
nodes are either connected or they are not, no direction is given to the edges.

Example 1. The image on top of this page visualizes the graph G(V, E) with V = {1,2,3,4,5}
and E = {{1,2},{1,4},{2,3},{2,4},{3,5}}. Note that for every set in E {a,b} = {b,a} for all
a,b € N with a # b.

2.2 Graph theory in Gaussian graphical modeling

The example shown in the previous subsection lists 5 edges between 5 different nodes. In Gaussian
graphical modeling these nodes represent variables and the edges indicate partial correlations
between these variables. For the construction of a Gaussian graphical model either the definition
of conditional indendence of the definition of partial correlation is used. The remainder of this
section focusses on the general technique based on the conditional independency between variables.

Definition 2.1 Two variables X; and X; are conditionally independent if:

f(Xs, X5) = fx, (Xa) fx; (X5)

where f(X;, Xj) is the joint probability density function and fx,(X;) and fx,(X;) denote the
marginal probability density function for X; and X; respectively. The following notation will be
used to denote the dependency between variables

X AL X5 X0 a5y

Where the the set Xy (; 5y is defined as Xy (57 = {X1,... 7XZ»7X]»7...,XP}~, where the entries
fitted with a hat are omitted.

In the following definition the relation between graph theory and the conditional dependencies is
made

Definition 2.2 For the set X = (Xi,...,X,) the graph G = (V,E) with V. = {1,...,p} is
determined using the following relationship

{i,i} ¢ E & Xi 1L X3 Xv\ (4,5

In the following section the general technique to Gaussian graphical modeling using the definition
of partial correlation will be treated.

3 Gaussian Graphical Modeling

As mentioned before, Gaussian graphical models are accompanied by undirected graphical mod-
els. The corresponding undirected graphical model depicts the partial correlation between two
variables. Gaussian graphical modeling is commonly used within genetics because the models are
able to deal with datasets with small number of samples, n, and large numbers of variables, p, i.e.
n < p. A sample which is always considered to be multivariate normally distributed, i.e.

(X1, X} ~ N (1, D)

When dealing with datasets conform these characteristics one may have to rely on an estimation
of the covariance matrix. In the next subsection the definition of the covariance matrix and
its empirical estimate are given, either one of these matrices or another estimate is used in the
construction of a Gaussian graphical model. Section 4 elaborates on the other techniques that
could provide an estimate of the covariance matrix. In subsection 3.2 the reader is provided with
an example.

3.1 Preliminaries

The next definitions elaborate on the covariance matrix and its empirical estimation used in the
shrinkage approach. The first definition relies on the definitions of variance and covariance, def-
inition 3.3 subsequently relies on the covariance matrix that can be constructed using this first
definition.

Definition 3.1 (Covariance matrix) The covariance matriz is constructed as follows:

Var(X1) Cov(X1,X2) ... Cov(Xy,X,)
COV(XQ, Xl) Var(Xg)
> = .
Cov(X,, X1) Var(X,)

One type of estimation for this covariance matrix, called the empirical covariance matrix, is defined
as described in the next definition

Definition 3.2 According to the following formula an empirical covariance matriz can be calcu-
lated.

. X e R
Z(ﬂfz —@)(zi —)" with = o lez
i—
Note that this matriz relies on means instead of the expected values.

Now in order to determine which elements are partially correlated we introduce the following
definition:

Definition 3.3 (Partial correlation matrix) The partial correlation matriz I1 is determined
by the elements of the concentration matriz Q = 271,

i
Wiij

where the element w;; is the entry in the it row and the j** column of the correlation matric.

II = (m;) = (1)

Either the covariance matrix or the empirical covariance matrix are used in the construction of
this partial correlation matrix. The following section elaborates on the construction of a Gaussian
graphical model using this data.

3.2 General technique to Gaussian graphical modeling

The subsets of E of the graph G(V, E) are then determined by the non-zero elements of the cor-
relation matrix II. This is done by introducing a threshold to required strength of the partial
correlation. In this study this threshold is set such that the number of estimated edges for each

method is equal. More on this in section 6.

The following example brings this into practice:

Example 1. Consider the following partial correlation matrix II

1 078 010 096 0.31
0.78 1 0.70 0.57 0.36
IM=| 010 070 1 0.18 0.92
0.96 057 0.18 1 0.56
0.31 036 092 056 1

The (i, §)*" shows the partial correlation between the variables X; and X j. So, as one can observe,
for every ¢, € 1,...,p we have that II;; = II;;. Now in order the draw 5 edges we have to introduce
a threshold of 0.57. With this threshold edges are drawn between the i*" and the j** node if and
only if II;; > 0.57. Leaving us with the graph shown in figure 2

@

®

Figure 2: Graph corresponding to the correlation matrix II

4 Selected methods

Various authors, Breiman [1], Penrose [3], Schéfer et al. [5] and Zhou et al. [7] have proposed dif-
ferent methods in order to determine an estimator. Each of these strategies differ in their approach
and hence in several characteristics as well. Schéfer even suggests to combine the bootstrap and the
Moore-Penrose approaches to get, depending on the dataset, more accurate results [4]. However,
in order to truly test each method on its own performance the methods won’t be combined in this
thesis. The next subsections treat a selection of the most widely used methods below.

4.1 The Moore-Penrose pseudoinverse method (PINV)

The PINV method is based on the standard value decomposition (SVD). For this method the
approach of Stifanelli [6] is used. This method is based on the paper by Penrose [3]|. Stifanelli
suggests to use the standard value decomposition to decompose the covariance matrix in order to
construct an inverse for this matrix.

This decomposition and it’s pseudoinverse are related in the following way:
2 =UAVT
where, since ¥ € RP*P_ the matrices U, A and V € RP*P
st=vatu”

Note that in this equation the inverse is denoted by a +sign instead of a —sign. This follows from
the way in which this generalized inverse is calculated. The second matrix of the decomposition,
AT, is determined by transposing the original matrix A and then replacing all non-zero elements
of the diagonal by it’s reciprocal.

This pseudoinverse or generalized inverse X% is then used as our estimation for €, denoted by
oM = (wzj\f). From this we to construct the correlation matrix 11" as such:

—wM

M = (o) = —2—
M, M

Wi Wi

Note that the subscript *M’ in II™ is used to show that this partial correlation matrix is determined
with the use of the Moore-Penrose method. Which in turn is then used to plot the corresponding

graph.

4.2 Lasso (inclusion of the /;-penalty-term)

Least absolute shrinkage and selection operator (lasso) is a regression analysis method that reg-
ularizes the data points using the other data as predictors. The process of regularization uses
additionally introduced information to solve an ill-posed problem, a process which helps us in
finding an inverse of the estimated covariance matrix.

Zhou et al. [7] have included a brief summary of the standard lasso procedure in their paper.
The multivariate normally distributed dataset X1, ..., X, is assumed, without loss of generality, to
have a mean equal to zero. Each point in this dataset is then regressed versus its counterpoints
{Xili # k}:

Xi = Z BY Xk + Vi

J#i
where V; follows the same distribution as the dataset, i.e. a multivariate normal distribution
with mean zero. The constant in this sum is defined as 3] = —f% Zhou et al. then define

Bmin = min, ; | B;\ The non-zero entries |(w;;)| are required to be upper bounded by Bpin. By
assuming (w;;) = 1 and our definition of 3,,;,, an estimated covariance matrix can be constructed.
This method reduces the variance of a given dataset.

To make an even more accurate estimation, Friedman et al.[2] propose to include the lasso penalty

term. Friedmans definition of the Lasso estimate of € . This definition includes the ¢; penalty
term.

0, = max(log(det(%2)) — tr(59) — A€) (2)

Where the term ||€2||; is the £;-term, A is the penalty parameter and the matrix .S in this equation
represents the empirical covariance matrix defined as:

1 n
= i)z —)T with = .
E (s — p)(x; —)" with g = -~ ;1$

The penalty parameter X is determined by iteration. Meaning that the algorithm is run several
times trying to determine the best value for A. The next equation shows how the partial correlation
matrix corresponding to this method is determined. Note that the "L’ relates the partial correlation
matrix IT” to the Lasso method.

I = (ef) = A 3

Friedman et al. also include the algorithm for determining the estimated covariance matrix. This
is done in the following way:

Algorithm 4.1 (Lasso algorithm)

1. Take the following estimate for the covariance matriz ¥: Let W = S + A, where I denotes
the identity matrix with the appropriate dimension

2. Forall) =1,2,...,p solve:

I S -3
B = n?n(ﬁ‘|w121ﬂ = Wii?si2)* + AlBlh) (4)

The following block coordinates for the matrices S and W are used:

W= [Wll w12} . S= [5’7111 812}

T
Wy W22 S12 522

The output, B is a vector of length p — 1. This vector is used to fill in the corresponding
column of W using w2 = W11

3. Continue until convergence.

The algorithm described here is used in the software as well.

4.3 Shrinkage

Schéfer [5] describes the general shrinkage method as the weighted average between the original
dataset, X = {X3,...,X,}, and a corresponding constrained submodel of this set, say Y. A
weighted average would be calculated as follows:

Xs=XX + (1= N\)Y (5)

where) is the shrinkage estimator. Schifer suggests to construct an unbiased empirical covariance
matrix X%, where the s distinguishes this estimated covariance matrix from the other estimations.
In order to determine this shrinkage estimator, Schéfer uses the following equalities. The unbiased
empirical covariance equals
_— . n
Cov(z;,) = 0}; = Wi
and the unbiased empirical variance equals

\//z;“(xz) =0}, = Wi;

With wyij = (xg; — ;) (2 — Z;) and @;; = % ZZ=1 Wkij;, here the s in o° relates this value to £°.
With these values Schifer suggests to calculate the shrinkage estimator As as described below:

P Var(x;) — Cov(z;,y;) — Bias(z;) (2 — yi)
> (@i — yi)?
In order to avoid ’overschrinkage’ or a negative shrinkage Schéfer truncates this estimator, using

As = max(0,min(1, As)). This shrinkage estimator is then used to calculate the weighted average
of the dataset.

4.4 Bootstrap

In its essence bootstrapping is a variance reduction method. The bootstrap approach replaces a
subset of the dataset by samples from itself. If X is a dataset then the bootstrap algorithm ’creates’
another dataset from the original set, consisting solely, but not necessarily completely of elements
from this original set. This is done B times, where B is in the order of 10,100, or even 1000.
Taking the average of the B samples gives the bootstrap estimate. Other authors have concluded
that the bootstrap strategy is computationally very demanding when the dimension of the dataset
are large (say p > 1000) [5]. Instead Schéfer suggests the shrinkage method as a more efficient,
but also more accurate alternative [5].

Nonetheless, since bootstrapping is a method that is encountered quite often, the procedure of
bootstrapping will be analyzed here. In a previous paper Schéfer [4] refers to Breiman [1] for the
procedure of bagging, an acronym for bootstrap aggregating. This method is implemented in the
software as well.

Breiman defines a learning set, O, as {(X;,Y;),i = 1,...,n}, with X, representing a column
of the original dataset and the entries Y; are class labels or a numerical response. In this algo-
rithm Breiman assumes to have a certain predictor, ¢(X,0). This predictor is used to make a
bootstrapped sample for Y;, based on X;. The algorithm in question works as follows:

Algorithm 4.2 (Bootstrap algorithm)

1. We start with, what Breiman calls a learning set, in the application in R an empty matriz
with an equal number of columns is used. The number of rows in this matrix is dependent on
the number of bootstrapped samples, B, the user requires. This learning set is then defined as
follows:

O={(Y;,X;),i=1,...,n}

where the component Y; is the empty set and X; is the original dataset.

2. Now a predictor is introduced:
¢(X,0)

In the bootstrap approach that is used in this thesis this predictor is equipped with the identity
function. That means that, with the input X;, the empty entries of Y; are replaced, in a
random order, by entries of X;.

8. Step 2 is repeated until the empty entries of Y; are all replaced by entries of X; for all
i € {1,...,n}. Note that the input matriz is of dimension n X p and that the bootstrapped
sample is of dimension B X p.

This extended dataset improves the quality of the empirical covariance matrix relative to the
the original dataset.

11

5 Application of Gaussian graphical modeling

For all of the described methods R packages are available. This availability and the straightforward
application in R is why this software is used. In the next section the application of the methods
and the visualization in R graphics will be laid out.

5.1 Application in R

The CRAN repository is equipped with many packages. Within this repository, due to its popu-
larity, many packages related to Gaussian graphical modeling are available. This means that for
the proposed methods more methods may be available, for this study the following selection has
been made:

] Method H Package
Moore-Penrose method (PINV) "ppcor"
Lasso, inclusion of the /;-penalty-term "glasso"
Bootstrap "boot"
Shrinkage "GeneNet
Graphical modeling "igraph"

All of which are included within CRAN repository. The package "GeneNet" also contains an
E.coli- and a gene-dataset. These sets contain the data of 102 E.coli bacteria with 8 observations
per bacteria and 800 variables with 22 observations each respectively.

5.1.1 Moore-Penrose method

The package used for this method is supplied with several functions, however, only one of those is
used in this study, namely:

] Action H R entry
Installs packages install.packages("ppcor")
Adds package to current pc’s library library (ppcor)

Once added to your own library the pseudoinverse of a matrix X can then be found using:

"pcor (X, ’pearson ’)$estimate"

The application of this method is very straightforward. The command "pcor(X)" generates a
partial correlation matrix using the Moore-Penrose method. The "$estimate"-part then extracts
the estimated out of the output that this command supplies.

5.1.2 Lasso (inclusion of the /;-penalty-term)

The application of the lasso (inclusion of the ¢1-penalty-term) relies on the following package.

| Action | R entry
Installs packages install.packages("glasso")
Adds package to current pc’s library library (glasso)

The package "glasso" provides an excellent function to estimate the covariance matrix (w) and it’s
estimated inverse (wi).

The following code can be used to plot the inverse of a covariance matrix of an original matrix X
in a graph:

12

Sigma = cov (X)

X.lasso = glasso (Sigma,rho=0.1)
X.lasso = X.lasso$wi
X.lasso.cor = cor(X.lasso)

The first line creates a covariance matrix for the supplied data, this matrix is then used to
create a lasso estimate of it’s inverse using the "glasso" command. The last line calculates the
correlation matrix from the estimated concentration matrix.

5.1.3 Bootstrap

At the time of writing this thesis the bootstrap approach is already outdated, Schéfer suggests to
use the shrinkage approach instead. However, since it is still used, the method is included in this
cross comparison.

| Action | R entry (linux ubuntu)
Installs packages install.packages("boot")
Adds package to current pc’s library library("boot")

Unfortunately the package which is suggested and used by Schéfer isn’t available anymore. An
alternative is found in the "boot" package. When using a matrix X the following code can be
copied into the in R prompt in order to create a bootstrap sample:

identity <— function(X,d) {return(X[d])}

bootstrap <— function (X,R){

B = mat.or.vec(R ,ncol (X))

for (i in l:ncol(X)){

bi = boot(X[,i] , identity , R=R)
B[,i] = bi$t

}

return (B)

}

These lines of R-code first creates a function ’identity’ which is our predictor for the bootstrap
algorithm, the predictor as mentioned in the algorithm 4.2. Secondly a bootstrap function suitable
for matrices is defined. The function ’bootstrap’ requires an input of a matrix X and a number
of bootstrap samples 'R’. This algorithm is based on the package "boot" mentioned in the table
above.

5.1.4 Shrinkage

For the shrinkage approach the guidelines laid out by Schéfer are followed. Her approach to the
shrinkage method is applied in the following package:

] Action H R entry
Installs packages install.packages("GeneNet")
Adds package to current pc’s library library(GeneNet)

The approach is both computationally as well as statistically very efficient, it is applicable
to “small n, large p” data, and always returns a positive definite and well-conditioned covariance
matrix according to the author of the package Schéfer [5].

13

X.shrink <— ggm.estimate.pcor (X)

This approach applies the method described in section 4.3,

5.2 Visualisation

The visualization of the graphs is done using the following package:

’ Action H R entry
installing package install.packages"igraph"
Adds package to current pc’s library library(igraph)

Using this package and the following commands generates a graph for a matrix called "Partial-
Correlation"

g <— graph.adjacency(PartialCorrelation > .1,
mode="undirected", diag=FALSE)
plot (g, main="Test_Graph")

Note the > .1 entry in the first line. This entry determines the threshold (0.10 in this case) for
drawing an edge. This means that an edge is drawn if and only if the partial correlation is stronger
than 0.10. This threshold can be adjusted according to the needs of the user. In the next sections
this threshold is set as variable such that every method creates an equal number of edges.

14

6 Comparison test

The results contributing to the main goal of this thesis are going to be derived from the conclusion
of this comparison test. This test is designed especially for this purpose. In the first subsection the
methods are applied to a several randomly generated dataset of which the true edges are known.
The next section will address the computational cost of each algorithm. The conclusions from
these sections will form an overall conclusion.

Thehe second subsection each of the four methods are used to estimate a graph for the E.coli
and arth800 datasets, containing 102 variables with 8 observations each and 800 variables with 22
observations per variable respectively. These computations are timed, based on the results of this
timing a conclusion on the computing time is drawn. Both of these datasets are extracted from
the GeneNet package.

In the last subsection some remarks about the applicability of each method are made. Together
with the preceding two subsections, this subsection is going to lay the basis for the overall conclu-
sion.

6.1 Accuracy

For the test on accuracy of each method a randomly generated dataset is used. This set is generates
with the help of the following code:

library (huge)

X <— huge.generator (n,p, graph)
Data <— X$data

Sigma <— X$sigma

Omega <— X$omega

Theta <— X$theta

This code first adds the package 'huge’ to the library. Once that is done then the data is generated,
from this the original data 'Data’, the covariance matrix ’Sigma’, the precision matrix ’Omega’
and the adjacency matrix of the true graph structure are extracted.

Applying the four methods to this data and then comparing the estimated edges to the true
edges supplies us with enough data to compare. The following table shows the percentage of edges
estimated correctly by each method for different dimensions of data. Recall that 'p’ represents the
number of variables and 'n’ does so for the number of samples.

’ H Bootstrap \ Lasso \ Shrinkage \ Moore-Penrose
n =4, = 24% = 94%, 1w =29.7%, = 50.7%,
p=20 5 = 22.8% s =6% 5= 16% s =30%
n=10 = 22.8% w=92.4% uw=16.3% w=45.2%

p =50 s =23.6% s =10.9% s =11.2% s =30.1%
n = 50 w=31.4% w=99% w=85% = 48.4%
p =200 s =27.2% s =2% 5 = 16% s = 39.5%
n = 100 w=30.2% = 98.6% = 0.4% w="172%

p = 400 s =27.14% s =1.1% s =0.3% s = 1.06%

In this test an average of 5 tests for each dataset is used. The table above shows that the Lasso

algorithm proves to deliver the most accurate and also most consistent estimations. The estimations
of the other three methods are not as consistent and certainly not as accurate. Moore-Penrose’s
approach seems to do quite well until the dataset reaches a much larger dimension. However, the
high level of accuracy for the Lasso algorithm comes at a cost; the time it takes to compute the
Lasso estimate is significantly higher than that of its peers. The next section elaborates on this.

15

6.2 Computing time

For this comparison test the two datasets of considerable different dimension are used. The fol-
lowing function is used to determine the time it takes for the graphs to compute:

system .time (" function")

Using this function on each of our ’core functions’, the function that is used to compute the partial
correlation matrix from the data, will output the time used by these functions. Each function is
applied to the E.coli- the arth800 and a random n = 100, p = 400 dataset. The following table
shows how demanding each function is:

] H Bootstrap \ Lasso \ Shrinkage \ Moore-Penrose
E.coli 0.87s 2.12s 0.01s 0.01s
Arth800 8.52s 924.43s 0.44s 4.07s
Random 7.16s 3.78s 0.20s 0.56s

The table above shows that there is a large difference in computing time !. The table shows
that the Moore-Penrose method and the shrinkage method are computationally very fast. For this
test the bootstrap algorithm is instructed to generate a total of 1000 observation points, this seems
to get more demanding when the number of variables gets larger. Despite its poor performance
on accuracy in the previous section, the shrinkage method does prove to be really fast. The most
significant result seems to be the computational time of the Lasso method on the largest dataset,
the ’arth800’ gene-dataset, the algorithm takes over 15 minutes to complete.

6.3 User friendliness

Since every method is applied in the same software the difference in the applicability of three out
of the four methods is not significant enough to play a decisive role. There is a fourth method
however in which a some difficulties are observed, the bootstrap method. The bootstrap method
is, according to Schéfer [5], too demanding for large datasets, i.e. when the number of variables
becomes larger. Because of this a package once distributed by her is no longer available. This
means that for this cross comparison an older, less advanced, package is used. This package is not
equipped to deal with matrices, but only with vectors. The code displayed in section 5.1.3 shows
how the ’boot’-package is used to generate a bootstrap given its restrictions.

It can be concluded that the application of the bootstrap method is the least user friendly whereas
the other three methods similar in their application.

1Ran on Linux Ubuntu equipped with an Intel Pentium Dual Core

16

7 Application to real life data

Bootstrap Lasso

Moore-Penrose Shrinkage

Figure 3: 102 nodes with 80 edges estimated by 4 different methods

In this section the E.coli dataset is used to apply each method. As mentioned, this data consists
of 102 variables with 8 observations each. The reason that this dataset is chosen to be depicted
here is that the relatively small amount of variables allows us to still have a bit of overview, using
this same motivation there are only 80 edges depicted. Every node is fitted with the name of the
bacteria, the igraph package redistributes the nodes such that the partially correlated nodes are
near each other.

17

8 Conclusion

In the section 6 the accuracy, the computational time and the user friendliness of each method
are addressed. In this section the results of these comparison tests are discussed per approach and
afterwards an overall conclusion is drawn.

8.1 Conclusions per method

The following subsections address the results of each method based on the analysis in the first part
of this thesis.

8.1.1 Conclusions on Lasso

The difference on performance on accuracy of the estimation could already be a decisive factor.
On average the Lasso algorithm correctly estimates more than 90% of the edges, on some tests
this algorithm even made a 100% correct estimation. However, this algorithm is by far the most
computationally demanding. In section 6.2 it is shown that for the gene-dataset with 800 variables
the algorithm takes more than 15 minutes to complete. This means that for larger datasets this
method could be too demanding.

8.1.2 Conclusions on Bootstrap

When the number of variables, p, becomes large the time it takes to compute the bootstrap
sample becomes significantly higher. The accuracy is not as impressive as the accuracy of the
Lasso method, it can be concluded from the relatively high standard deviation shown in the table
in 6.1 that the method is not very consistent. Another remark to be made about this method is
that it is the least user friendly method.

8.1.3 Conclusions on Shrinkage

Although Schéfer suggests to use the shrinkage method instead of the bootstrap aggregating, the
accuracy of the shrinkage method was very poorly. In section 6.1 it is shown that a bootstrapped
sample will correctly estimate an average of around 30%, where the shrinkage method scored less
than 1% on every test. This suggests that mistakes were made in the application of the package
"GeneNet’ and its used function ’ggm.estimate.pcor(’Data’)’. Further research may be necessary

in order to rule out any insecurities on this method.

8.1.4 Conclusions on Moore-Penrose

Despite its easy application and fast computing times the results on accuracy weren’t that over-
whelming. That is, for the first three datasets (up to n = 50 with p = 200) this method made
an average of correctly estimated edges around 50%. However the test shows that the standard
deviation is very large, even for the smallest dataset the results varied between 8% and 88%. This
inaccurate performance could be a decisive factor.

8.2 Overall conclusion

Two of the analyzed methods perform on a low accuracy, the bootstrap- and the Moore-Penrose
approach. Although the Moore-Penrose method is easy applicable the inconsistent performance
on its accuracy is a large disadvantage. This large disadvantage is observed in the same way for
the bootstrap approach, average accuracy with a high inconsistency. This is accompanied by a less
user friendly package.

The lasso approach performs very well, even on the largest dataset that is used for this test.
It has to be noted though that the computation time of this method is significantly higher than

for its peers.

The shrinkage approach unfortunately performs poorly in this test, despite the fact that it is
a recommended approach by Juliane Schéfer [5]. This suggests that further research is needed in

18

order to rule out any mistakes made in this cross comparison.

In summary; from the results of this cross comparison it can be concluded that, without any
accurate results on the shrinkage approach, the lasso approach supplies the user with the most
accurate results. In 8 of the 20 tests this approach correctly estimates 100% of the edges. Further
endevours could be pointed towards alternative methods such as the 'G-Wishart prior-method’.
Comparing alternative methods to the lasso- and the, inconclusive shrinkage approach, could help
to provide a full-scale manual. A manual which could provide researchers with well-founded infor-
mation regarding a choice of method.

19

References

1]
2]

3]

4]

7]

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123-140, Aug 1996.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 9(3):432—441, 2008.

R. Penrose. A generalized inverse for matrices. Mathematical Proceedings of the Cambridge
Philosophical Society, 51(3):406-413, 1955.

Juliane Schifer and Korbinian Strimmer. An empirical bayes approach to inferring large-scale
gene association networks. Bioinformatics, 21(6):754-764, 2004.

Juliane Schéfer and Korbinian Strimmer. A shrinkage approach to large-scale covariance matrix
estimation and implications for functional genomics. Statistical applications in genetics and
molecular biology, 4(1), 2005.

Patrizia F Stifanelli, Teresa M Creanza, Roberto Anglani, Vania C Liuzzi, Sayan Mukherjee,
and Nicola Ancona. A comparative study of gaussian graphical model approaches for genomic
data. arXiv preprint arXiv:1107.0261, 2011.

Shuheng Zhou, Sara van de Geer, and Peter Bithlmann. Adaptive lasso for high dimensional
regression and gaussian graphical modeling. arXiv preprint arXiv:0903.2515, 2009.

20

A Code generating graphs and comparison table

The code provided in this appendix generates a multivariate normal distribution, applies each
method to this generated dataset and then outputs the time it took to compute these estimations
and the percentage of correctly estimated edges.

The following code installs the necessary packages to the library of the pc. Note that this is only
needed if these packages are not installed previously.

n

install.packages("ppcor")
install.packages("igraph")
install .packages("boot")
install .packages("glasso")
install.packages("GeneNet")
(

install .packages("huge")

The following code adds the necessary packages to the library of the pc, this action is needed every
time R is restarted again.

library (ppcor)
library (igraph)
library (boot)
library (glasso)
library (GeneNet)
library (huge)

|

This small line specifies the number of plots that fit into R Graphics. With the code supplied
below the graphs are plotted in 3 rows and 2 columns

par (mfrow=c (3 ,2))

The first of the next four lines is used to determine the type of multivariate normally distributed
dataset. The next three lines are used to determine the number of observations, the number of
variables and the number of times that the sample is bootstrapped respectively.

Note: the values given to these variables may be changed according to ones needs

graph <— "random"

n <— 10
p <— 40
R <— 1000

21

In the next lines the multivariate normally distributed dataset is generates according to the dimen-
sions specified in the lines above. The next four lines extract 4 types of data that are generates by
the package 'huge’. Namely:

1. X$data extracts the data from X, from now on called 'Data’
2. X$sigma supplies the user with the true covariance matrix
3. X$omega assigns the concentration/precision matrix to the name ’Omega’

4. X$theta extracts the adjacency matrix of true graph structure. This matrix is used in the
comparison test

X <— huge.generator (n,p, graph)

Data <— X$data

Sigma <— X$sigma
Omega <— X$omega
Theta <— X$theta

The adjacency matrix is symmetric, presenting a value ’1’ in the {7, j}** and the {j,i}*" position
when the nodes X; and X; are partially correlated. The matrix "Theta" is first reduced to an
upper diagonal matrix such that it only presents one value "1’ for every edge. Afterwards the total
amount of edges is counted, this count is used in the application of the four methods subject to
the comparison

Theta.reduced <— Theta
Theta.reduced [lower. tri(Theta.reduced)] <— 0
edges = length (which(Theta.reduced =— 1))

The first line in the following piece of code creates a string of names of the following form: Var_i.
The lines after that assign these names to the columns and rows of the used matrices.

names <— paste("Var ", 1:p)
colnames (Data) <— names

colnames (Sigma) <— names
rownames(Sigma) <— names

colnames (Omega) <— names
rownames (Omega) <— names

colnames (Theta) <— names
rownames(Theta) <— names

The next two lines plot the graph belonging to the ground truth, i.e. the graph depicting the true
partial correlations.

22

t <— graph.adjacency (Theta =— 1,mode = "undirected" ,diag =FALSE)
plot(t, main = "Ground_Truth")

The next section of code starts with timing the function that estimates the partial correlation
matrix according to the Moore-Penrose method. After that the names of the variables are assigned
to the columns and rows. The next two lines create an upper diagonal matrix which only shows
the partial correlations in the upper diagonal part of the matrix. Then, to the name 'm.highest’
the strongest partially correlated entries are assigned in descending order. At last the graph is
plotted with exactly the same number of edges as for the true graph.

Note: this approach is used for all four methods

time. ginv <— system.time (
X.ginv <— pcor(Data)$estimate

)

colnames (X. ginv) <— names
rownames(X. ginv) <— names

X.ginv.reduced <~ X.ginv —diag(ncol(X.ginv))
X.ginv.reduced [lower. tri(X.ginv)] <— 0

m. highest <— order(abs(X.ginv.reduced), na.last=TRUE,
decreasing=TRUE)[1: edges]|

m <— graph.adjacency (abs(X.ginv) >= abs(X.ginv |[m. highest [edges]]) ,
mode ="undirected" ,diag=FALSE)

plot (m, main="Moore—Penrose")

The outline of this next part of code is the same as for the Moore-Penrose method. Though first
1 line is used to define a function which is used by the 'boot’ function. The next 8 lines create
the function ’bootstrap’ based on the function boot’. Since the function 'boot’ is not equipped to
handle matrices this function containing a for loop is introduced.

The rest of this part of code relies on the same strategy as the Moore-Penrose method.

identity <— function(X,d) {return(X|[d])}

bootstrap <— function (X,R){

B = mat.or.vec(R ,ncol (X))

for (i in 1:mncol(X)){

bi = boot (X[,i] , identity , R=R)
B[,i] = bi$t[,1]

return (B)

}

time.boot <— system.time
X.boot <— bootstrap (Data,R)

)

X.boot.pcor <— pcor (X.boot)
X.boot.pcor <— X.boot.pcor$estimate

23

colnames (X. boot . pcor) <— names
rownames (X. boot . pcor) <— names

X.boot.pcor.reduced <— X.boot.pcor —diag(ncol(X.boot.pcor))

X.boot.pcor.reduced [lower. tri(X.ginv)|] <— 0

b.highest <— order (abs(X.boot.pcor.reduced), na.last=TRUE,
decreasing=TRUE)[1: edges]

b <— graph.adjacency (abs(X.boot.pcor) >= abs(X.boot.pcor[b.highest [edges]]),

mode ="undirected" ,diag=FALSE)

plot (b, main="Bootstrap")

’ This part of code also relies on the same strategy as the Moore-Penrose application.

time. lasso <— system.time(
X.lasso <— glasso (Sigma,rho=0.1)

)

X.lasso = X.lasso$wi
X.lasso.pcor = pcor(X.lasso)
X.lasso.pcor <— X.lasso.pcor$estimate

colnames (X. lasso . pcor) <— names
rownames(X. lasso . pcor) <— names

X.lasso.pcor.reduced <— X.lasso.pcor
diag (X.lasso.pcor.reduced) <— 0

X.lasso .pcor.reduced [lower. tri(X.lasso.pcor)| <— 0

l.highest <— order(abs(X.lasso.pcor.reduced), na.last=TRUE,
decreasing=TRUE)[1: edges]

]l <— graph.adjacency(abs(X.lasso.pcor) >= abs(X.lasso.pcor[l.highest[edges]]),
mode ="undirected", diag=FALSE)

plot (1, main="Lasso")

’ Once again the same strategy is used.

time.shrink <— system.time(
X.shrink <— ggm.estimate.pcor(Data)

)

X.shrink .reduced <— X.shrink
diag (X.shrink.reduced) <— 0

24

X.shrink.reduced [lower. tri(X.shrink)| <— 0

colnames (X. shrink) <— names
rownames(X. shrink) <— names

s.highest <— order(abs(X.shrink.reduced), na.last=TRUE,
decreasing=TRUE)[1: edges|

s<— graph.adjacency (abs(X.shrink) >= abs(X.shrink[s.highest[edges]]),
mode="undirected" ,diag=FALSE)

plot (s ,main="Shrinkage")

Below the previously generates names are assigned to our reduced matrix "Theta’. The value 'kt’
then represents the number of edges.

colnames (Theta.reduced) <— names
rownames(Theta.reduced) <— names

This section of code creates an upper triangular binary matrix. This matrix contains a value 1’
in entry {4, j} with ¢ > j for every edge that is estimated by the lasso procedure.
Note: this same approach is used for each of the four methods

X.lasso.reduced = X.lasso.pcor

diag (X.lasso.reduced) <— 0

X.lasso .reduced [lower. tri(X. lasso.reduced)| <— 0

X.lasso .reduced [X.lasso.reduced < 0] <=0

X.lasso .reduced [X.lasso.reduced < X.lasso.reduced|[l.highest[edges]|]] <0
X.lasso .reduced [X.lasso.reduced > X.lasso.reduced|[l.highest[edges]|]] <-1

kl <— length (which (X.lasso.reduced > 0))
for (i in 1:kl1){
X.lasso .reduced [which(X.lasso.reduced > 0)[i]] <— 1

}

’ Below the same approach is used to create an upper triangular binary matrix.

X.shrink .reduced = X.shrink

diag (X.shrink.reduced) <— 0

X.shrink.reduced [lower. tri(X.lasso.reduced)| <— 0

X.shrink.reduced [X. shrink .reduced < 0] <-0

X.shrink.reduced [X. shrink.reduced <
X.shrink.reduced [s. highest [edges|]] <0

X.shrink.reduced [X. shrink .reduced >
X.shrink.reduced[s. highest[edges|]] <-1

ks <— length (which(X.shrink.reduced > 0))

for (i in 1:ks){

X.shrink.reduced [which(X.shrink.reduced > 0)[i]] < 1
}

25

’ Once again, the same approach is used

X.ginv.reduced = X.ginv
diag (X. ginv.reduced) <— 0
X.ginv.reduced [lower. tri (X. ginv.reduced)] <— 0
X.ginv.reduced [X. ginv.reduced < 0] <0
X.ginv.reduced [X. ginv.reduced <

X.ginv.reduced [m. highest [edges |]] <0
X.ginv.reduced [X. ginv.reduced >

X.ginv.reduced |m. highest [edges ||| <-1

kg <— length (which(X. ginv.reduced > 0))
for (i in 1:kg){
X.ginv.reduced [which (X. ginv.reduced > 0)[i]] <— 1

}

] Once more, an application of this approach

X.boot.reduced = X.boot.pcor

diag (X.boot.reduced) <— 0

X.boot .reduced [lower. tri(X.boot.reduced)] <= 0
X.boot.reduced [X. boot .reduced < 0] <0
X.boot.reduced [X.boot.reduced < X.boot.reduced[b.highest[edges]|]] <0
X.boot.reduced [X.boot.reduced > X.boot.reduced[b. highest [edges|]] <-1

kb <— length (which(X.boot.reduced > 0))

for (i in 1:kb){

X.boot .reduced [which (X.boot .reduced > 0)[i]] <— 1
}

The following code creates an empty matrix which will eventually display the true edges and the
correctly estimated edges for each method.

Agreement . matrix <— matrix (numeric((kt+1)*7),ncol=7)

colnames (Agreement . matrix) <— list ("Node_1", "Node_2","Ground_truth",
"Bootstrap","Lasso" ,"Shrinkage" ,"Moore. Penrose")

The following ’for loop’ enters the variables which are truly partially correlated into the 'Agree-
ment.matrix’

for (i in 1l:edges){
t <— which(Theta.reduced =— 1)
k <— arrayInd(t[i],dim(Theta.reduced))

Agreement . matrix[i,1] <— rownames(Theta.reduced)[k]
Agreement . matrix|[i,2] <— colnames(Theta.reduced)[k]|

}

26

The ’for loop’ displayed here enters a value '1’ into the ’Agreement.matrix’ for every edge that is
correctly estimated by each method.

for (i in 1:kt){

t <— which(Theta.reduced = 1)

k <— arrayInd(t[i],dim(Theta.reduced))
Agreement . matrix|i,3] <— Theta.reduced k]
Agreement . matrix[i,4] <— X.boot.reduced [k]
Agreement . matrix[i,5] <— X.lasso.reduced[k]
Agreement . matrix|[i,6] <— X.shrink.reduced[k]
Agreement . matrix|[i,7] <— X.ginv.reduced[k]

}

The next lines calculate and enter the percentage of correctly estimated edges for each method.
The resulting matrix will give a nice overview of correctly estimated edges.

Agreement . matrix[(kt+1),1] <— "Correctly"
Agreement . matrix[(kt+1),2] <— "estimated:"

Agreement . matrix [(kt+1),3] <—
(sum(as.numeric(Agreement . matrix|,3])) /kt)*100

Agreement . matrix [(kt+1),4] <—
(sum(as.numeric (Agreement . matrix [,4])) /kt)*100

Agreement . matrix [(kt +1),5] <—
(sum(as.numeric(Agreement. matrix|[,5])) /kt)*100

Agreement . matrix [(kt +1),6] <—
(sum(as.numeric(Agreement . matrix|,6])) /kt)*100

Agreement . matrix [(kt +1),7] <—
(sum(as.numeric(Agreement. matrix|[,7])) /kt)*100

This last section outputs the matrix containing the percentage of correctly estimated edges and
the time it took every method to compute this estimate.

Agreement . matrix

time. boot
time. lasso
time . shrink
time. ginv

27

	Introduction
	Graph theory
	Introduction
	Graph theory in Gaussian graphical modeling

	Gaussian Graphical Modeling
	Preliminaries
	General technique to Gaussian graphical modeling

	Selected methods
	The Moore-Penrose pseudoinverse method (PINV)
	Lasso (inclusion of the 1-penalty-term)
	Shrinkage
	Bootstrap

	Application of Gaussian graphical modeling
	Application in R
	Moore-Penrose method
	Lasso (inclusion of the 1-penalty-term)
	Bootstrap
	Shrinkage

	Visualisation

	Comparison test
	Accuracy
	Computing time
	User friendliness

	Application to real life data
	Conclusion
	Conclusions per method
	Conclusions on Lasso
	Conclusions on Bootstrap
	Conclusions on Shrinkage
	Conclusions on Moore-Penrose

	Overall conclusion

	References
	Code generating graphs and comparison table

