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Abstract

Ewoud WEMPE
Did Leo I collide with the Magellanic Clouds?

Because of its high velocity at its large distance, Leo I could be unbound. Although
it is rare to have unbound satellites at Leo I's distance, a possible explanation for this
would be that it had an encounter with the Magellanic Clouds. In this thesis, this
possibility is explored.

For a combination of possible Galactic potentials and Magellanic Clouds profiles,
the probability that the Magellanic Clouds had an encounter with Leo I was evalu-
ated. Few such orbits were found: in the model where an encounter was most likely
(this model combines heavy Magellanic Clouds with a light Milky Way), only 4.36%
of the realizations satisfied the strong encounter criterion. When only considering
realizations where the LMC and Leo I are not currently at their minimum distance,
the probability becomes 9.98%.
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Chapter 1

Introduction

One of the big open questions in astrophysics is how much dark matter there is in
galaxies, and in particular the Milky Way. Finding the mass of the Milky Way is
not easy, especially at large distances, but one constraint often used comes from the
dwarf galaxy Leo I, the most distant satellite of the Milky Way.

1.1 The Leo I dwarf galaxy

The kinematics of the Leo I dwarf galaxy are very interesting. It is the most energetic
of the large satellite galaxies that orbit the Milky Way, with a line of sight velocity
of vppos = (282.5£0.1) km/s and a distance of d = (254 £ 15) kpc (McConnachie,
2012). Given the various estimates of the Milky Way mass, this high velocity implies
that Leo I could be unbound'. But Boylan-Kolchin et al. (2013) showed that it is
vanishingly rare to have unbound satellites at distances of Leo I in ACDM simu-
lations. That is why Leo I being bound can be used as a constraint on the mass
of the Galaxy. In particular, for the Gaia proper motions this gives a lower limit
of Myw (rLeor) = 9.1 x 1011752 M, under the assumption of a NFW profile with
rs = 18.6 kpc (Gaia Collaboration et al., 2018). Sales et al. (2007) showed that in their
N-body simulations, the cases where there was a satellite with such a high energy, it
was the result of a three-body encounter with a heavier satellite. They argued that
maybe Leo I also had such an encounter. That gives a problem: if the large energy of
Leo I is due to a three-body encounter, it might not be bound, and the constraint on
the mass of the Milky Way is no longer applicable. So that raises the question: could
Leo I have had an encounter with another satellite galaxy in the past?

1.2 The Magellanic Clouds

Because of their high mass, an attractive scenario is an encounter with the Magellanic
Clouds. A main motivation for looking at the Magellanic Clouds was that they had
similar pericenter times in the traditional orbital models (Murai and Fujimoto, 1980;
Gardiner and Noguchi, 1996; Gardiner, Sawa, and Fujimoto, 1994).

1.2.1 Orbital history

The details of the orbits of the Magellanic Clouds have been under debate in the
last decades. Traditionally, it was thought that the Clouds had several pericenters
around the Galaxy, the most recent occurring ~1.5Gyr ago (Murai and Fujimoto,
1980). But more recent accurate proper motion measurements that were made by

1A satellite is bound if the velocity is smaller than the nominal escape velocity (Sales et al., 2007), or
equivalently, if the sum of its kinetic and potential energy is negative (T + ® < 0).
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the Hubble Space Telescope, revealed that the LMC had a much larger tangential
velocity than previously thought (Kallivayalil et al., 2006). Because of this, it has
become a possibility that the Clouds are currently on first infall, and are currently at
pericenter (Besla et al., 2007). That is attractive, because it explains why the Magel-
lanic Clouds are outliers in appearance (they look irregular compared to the other
satellite galaxies and are star forming) and kinematics (they move faster). But this
scenario does cause difficulties when trying to model the formation of the Magel-
lanic Stream. It can no longer be explained by the traditional tidal and ram pressure
stripping models, which is why others also propose scenarios in which the Clouds
are now at second pericenter (Bekki, 2011; Zhang et al., 2012).

1.2.2 Mass

Next to the proper motions, the LMC mass is also an important parameter when
calculating the orbits. When integrating orbits directly, a heavy Large Magellanic
Cloud works best to support a first-infall scenario. Due to the small extent of the cir-
cular velocity profile, determining the mass by fitting the rotation curve still leaves
much uncertainty. For example, in Buckley et al. (2015) the rotation curves were fit-
ted, giving possible virial masses ranging from 5.0 x 10'° M, to 1.9 x 10! M. An-
other argument for the Cloud masses follows from assuming a baryonic mass and a
baryon fraction. By requiring the baryon fraction My, / Mot to be equal to cosmolog-
ical expectations, masses ranging from 6 x 10!° M, to 25 x 10!° M, are found (Besla,
2015). This mass range was found by using the relations from Moster, Naab, and
White (2013), in which the authors relate stellar and halo masses by fitting to dark
matter simulations, at different infall redshifts. These masses therefore refer to the
virial mass at infall. Currently, the mass that is still bound is significantly smaller,
because satellites lose mass during their infall. Ideally one would use a model that
accounts for this mass loss, but for simplicity in this analysis I used a constant mass.
The time of infall is roughly the time that Leo I could have had an interaction with
the Clouds, so infall masses are relevant, but I will also explore lower masses, that
are more consistent with the current bound mass.

1.2.3 The LMC-SMC pair

Another piece of evidence supporting a heavy LMC-SMC pair in combination in a
first infall scenario is the large relative velocity of the Clouds. The Magellanic Clouds
have been interacting with each other for at least a few Gyr, but maybe longer. The
most obvious evidence for their present day interaction is the bridge of material
connecting the two Magellanic Clouds. Likely, this is the formed in tidal interactions
between the Clouds during their close passage (Gardiner and Noguchi, 1996). More
evidence is for example in the star formation history (Weisz et al., 2013). The star
formation rate started increasing for both the LMC and the SMC 4 Gyr ago, so it is
reasonable to assume they at least have been interacting since then. But to keep the
Clouds bound for such a long time with such high relative velocities, relatively high
masses are necessary (Besla, 2015).

1.3 This thesis

In this thesis, I will model the orbits of Leo I and the Magellanic Clouds, and explore
what the probability for an encounter is. In Chapter 2, I will explain the model.
First, I discuss how initial conditions were chosen (Section 2.1), the various Galactic
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and satellite potentials used (Section 2.2), and dynamical friction (Section 2.3). Next,
in Chapter 3, the results are shown, first exploring the different models (Section 3.1)
and then looking at the Monte Carlo simulations that take into account the observa-
tional uncertainties (Section 3.2). In Chapter 4 the main conclusions are summarized,
and shortcomings and validity of the analysis are discussed.
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Integrating the orbits

To solve the equations of motion, a numerical integrator is used, because the relevant
equations are generally not analytically solvable. Often, orbits are integrated using
a symplectic integrator, such as the Leapfrog integrator. If the problem has the right
symmetries, this is beneficial, because for the same computational effort, numerical
errors in the energy or angular momentum do not grow over time as much as they
would in a non-symplectic integrator (Binney and Tremaine, 2008). Another advan-
tage is that they are time-reversible, which means that integrating forward, and then
taking the result as new initial conditions and integrating backwards, gives the ex-
act initial condition of the starting point.

Instead, I used a Runga-kutta 4 integrator, because due to dynamical friction,
energy and angular momentum are not conserved anyway. I used a step size of
0.1 Myr: this resulted in reasonably small errors. In particular, when integrating in a
static Galactic potential without interactions and dynamical friction, the relative en-

ergy and L. errors (i.e. E(t:—l%g;()))—ls(tzo) and LZ(t:_lgz((;ty:%)_LZ(t:O)) were of the order

< 1072, The resulting positions and velocities were saved every ~ 10 Myr. Such
low errors and frequent output might not be necessary, but it rules out numerical er-
rors as the cause for any phenomena that are explored.

2.1 Initial conditions

The present-day sky positions and proper motions of all satellites were taken from
Gaia Collaboration et al. (2018, their Table C.2). Distances and radial velocities were
taken from McConnachie (2012). For generating a sample of initial conditions, the
observed quantities (distance d, proper motions ., ys and line-of-sight velocity
vLos) Were convolved with their uncertainties. Gaussian errors were assumed, and
for the proper motions, a covariance matrix was used to take into account the er-
ror correlation. Subsequently, to these generated u, and s, an extra systematic
uncertainty of 35pasyr~! was added in both directions. This systematic uncer-
tainty was generated separately for each satellite. So in total, (}a, }5)Monte Carlo =
(ta, 15) mean + N ((0,0), Estat) + N ((0,0), (0.035mas yr—1)2).

The systematic errors are local variations, that arise because of the non-uniform
sky scanning pattern. This effect is actually visible in the proper motion maps for
the Magellanic Clouds, where one can see a banding pattern (Gaia Collaboration
et al., 2018). Because the Magellanic Clouds are quite extended, the proper motion
measurements might be slightly more robust, but I stayed conservative and kept it
at the 0.035 mas yr—! the authors recommend.

« and 6 were not convolved with any errors, because of the negligible uncertainty
compared to the rest, even when considering the difference between the possible
dynamical centers for the LMC.
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Next, a transformation was made to a Galactocentric reference frame, for which
the astropy module (Astropy developers, 2018) was used. For this, a Solar Galac-
tocentric distance of 8.3 kpc (Gillessen et al., 2009) was assumed, with a v.(Rp) =
235kms~!, and a peculiar velocity of (U, V, W)g1ar = (11.1,12.24,7.25) kms~! (Schon-
rich, Binney, and Dehnen, 2010). For simplicity, uncertainties in these parameters
were not convolved.

2.2 Galactic and satellite potentials

To model the Milky Way potential as accurately as possible, a combination of sev-
eral potentials was used, to model the disk, bulge and halo separately. For the
purposes of this analysis however, the most important component is the halo. To
describe the dark matter halo, a Navarro-Frenk-White (NFW) profile was used (Bin-
ney and Tremaine, 2008; Navarro, Frenk, and White, 1996). Another simple model
is a logarithmic halo (Binney and Tremaine, 2008; Helmi et al., 2017), but there is a
wide variety of possible halo profiles (Gaia Collaboration et al., 2018).

The NFW potential is particularly useful, because it provides a good fit for ACDM
dark matter halos from ACDM simulations. It has two free parameters, the virial
mass, and the concentration. The virial mass is sometimes defined such that the total
density inside the virial radius is pyir = AvirQmpc, Where Ay;; is the virial overdensity
(which depends on the redshift and the cosmology used), (), is the matter density
parameter and p, is the critical density. Instead, I use the definition, where M is
defined such that p200 = 200p.. For p., I used the value calculated by astropy, using
parameters from Planck Collaboration et al. (2016). For simulated halos, the concen-
tration parameter cyop was found to be very correlated to Mgy (Dutton and Maccio,
2014). The mass of an NFW halo diverges, so sometimes a cutoff is implemented,
but I did not do that for any of the models used here.

Hernquist Bulge d(r) = — Gi\fg‘blge
Miyamoto-Nagai disk ®(R,z) = — G Maisk

\/R2+ ag+y/z2+b3)?

GM
NEW halo ®(r) = — S 1n(1+4 1)
Logarithmic halo O(r) =07 ln(l + ;2>
h
GM

Plummer potential O(r) = -1
N

TABLE 2.1: Some of the potentials that were used.

For the orbital integrations, I considered 3 Galactic potential models, their circu-
lar velocity profiles are plotted in Figure 2.1:

¢ Model 1 is from Price-Whelan (2017), using a disc model from Bovy (2015). It
has a spherical Hernquist Bulge (M, = 5 x 10° Mg, ¢, = 1kpc), a spherical
nucleus (Hernquist, M, = 1.71 x 10° Mo, ¢, = 0.07 kpc), a Miyamoto-Nagai
disk (My; = 6.8 x101°Mg, a; = 3kpc, by = 0.28kpc), and an NFW halo
(M200 =93 x 1011 M@, Co00 = 132)

* Model 2 has a Hernquist Bulge (M}, = 3.4 x 10" My, ¢, = 0.7 kpc), Miyamoto-
Nagai disk (M; = 1 x 101 M, a5 = 6.5kpc, by = 0.26 kpc) and an NFW halo
(Mg = 1.5 x 102 M, 200 = 8.0). This bulge and disk model was taken from
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Re Fiorentin et al. (2005), and I replaced the log-halo with an NFW halo. The
NFW concentration was calculated using the mass-concentration correlation
from Dutton and Maccid (2014): log,,(c) = 0.905 — 0.101 log,,(Mapo/ [10'2h~ M.

* Model 3 has the same bulge and disk model as Model 2, but a heavier NFW
halo (M = 2.0 x 102M,,, co00 = 7.8). The NFW concentration was calcu-
lated in the same way.

250

200

100

Circular velocity v, (km/s)

504 —— Model 1, Moo = 9.3- 10" M,
Model 2, Mpy = 1.5 - 1012 M,
—— Model 3, My = 2.0 - 10"°M,

10° 10! 10?
R (kpc)

FIGURE 2.1: Circular velocity profiles for the different Milky Way
models considered.

The LMC and Leo I were modelled as Plummer spheres, as was done in Sohn
et al. (2013). Because these masses are not well known, I considered LMC masses
ranging from 2.5 x 101 M, to 2 x 10! My, (see Section 1.2.2). To get reasonable di-
mensions of the LMC, the Plummer scale radii were obtained by using a cosmolog-
ical concentration-mass correlation (Correa et al., 2015). To get reasonably similar
velocity profiles, I set apjum = 275sNFw. This choice is somewhat arbitrary, but for
example for a 1 x 10! M, LMC, this results in an equal enclosed mass at 12.6 kpc.
This is roughly the tidal radius at present for the LMC: r; = 11 kpc using Equation
(10) from Zentner and Bullock (2003) (and in fact, for the heavier LMC models, the
LMC is currently at pericenter). The total mass is the same as the NFW Mjy. The
difference between the circular velocity profiles is shown in Figure 2.2.

2.3 Dynamical friction

Simply integrating the orbits in the gravitational potential of the Milky Way does
however not give realistic results, because there would be no orbital decay, which is
important for massive galaxies like the LMC. When a subject body moves through
some extended host, the particles from the host will interact with the subject body.
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140 - —— NFW, My = 101' Mg, s = 9 kpc
Plummer, M = 1011M@, a =18 kpc
120

100

80 ’\

60 - \

40 1

Circular velocity v, (km/s)

20 1

10° 10? 102
R (kpc)

FIGURE 2.2: The difference between the Plummer and NFW circu-

lar velocity profiles for a satellite resembling in mass the LMC. The

choice of apm = 2rs results roughly equal enclosed masses at the

LMC’s estimated tidal radius by Zentner and Bullock (2003, their
Equation (10)).

But in these interactions, the (light) particles from the host can accelerate and gain
kinetic energy. That energy must then come from the subject body, so that will be
slowed down: there is a friction force. For small masses, this force is often negligible,
as dynamical friction is strongest when the host and satellite masses are similar. An
expression for the acceleration due to this force was found in Chandrasekhar (1943).
A complete derivation is in Binney and Tremaine (2008), but it comes down to inte-
grating over all possible encounters that the host particles can have. The equation
reads:

dv 4710 AG*Matfhost

&v_ erf(X) — 2Xe_X2) Yorb 2.1
dt U(Z)rb ( ( ) Oorb ( )

where X = v,/ V202, where ¢ is the one-dimensional velocity dispersion. Zentner
and Bullock (2003, their Equation (6)) determined an approximation for the velocity
dispersion of an NFW profile.

There has been some discussion about the value that should be assumed for the
Coulomb logarithm, In A. It is defined as In A = ln(l;,’n“ﬁ> , where b and by, are

the maximal and minimal impact parameters where a collission can be considered
efficient. Since the approximation of a constant In A overestimates the circulariza-
tion, Hashimoto, Funato, and Makino (2003) and Zentner and Bullock (2003) instead
set bmax = () equal to the Galactocentric distance, and calculate b, by the pre-
scription of White (1976). The recipe of Hashimoto, Funato, and Makino (2003) is
followed here and briefly explained in what follows. In White (1976), the following
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Mimc amc Mieol ALeol
(10" M)  (kpe) (10° M)  (kpe)
2.5 10.3  0.65 0.986
5 13.6 1.3 1.29
10 18 2.6 1.68
15 21.3 3.9 1.97
20 24 52 2.21

TABLE 2.2: The different satellite models explored. In hindsight,

there is no need to vary the Leo I mass. However, it would not have

made any difference, since dynamical friction is still negligible for Leo

I, and Leo I also can not significantly perturb the Magellanic Clouds,
given the low mass.

integral is found for the Coulomb logarithm:

bmax o (1 M(r)dr 2
/0 D (/D 72(72—192)”2> dD (2.2)

This comes from integrating the forces of particles on hyperbolic paths to find Ay,
and subsequently following the (long) mathematical treatment of Chandrasekhar.
For Plummer subhalos, this integral can be calculated analytically.

InA =

MZ

sat

r x2. +1)3
In A(xgat = ) = ( Saté ) I(Xsat) (2.3)
aplum Xsat
2
Xsa 0 43 2 1 3/2
1(xsat:L) :/ txg / wdx dx, (2.4)
aplum 0 Xp x2. /x2 — xlzy
1 1
= (——— —1+In(1+«2 2.5
2 (g, 1) =

At r(t) 2 5a, this is well approximated by In A = In % Hashimoto, Funato, and

Makino (2003) calibrated the cutoff radius to N-body simulations, and they found

that InA = In % gave a better match to their simulations. Possibly, they argue,

this is because of some the straight-line orbit approximation that Chandrasekhar’s
formula assumes, while in reality the orbits are more elliptical.



Chapter 3

Results

3.1 Orbits without uncertainties

First, the orbits were integrated backwards in time without any dynamical friction,
as point-masses only experiencing the host potential. For the nominal values of the
parameters, without errors, the orbits are plotted in the top left panel of Figure 3.1.

Especially in the more massive Galactic potentials, the LMC makes multiple peri-
centric passages, reminiscent of the traditional models for the Magellanic Clouds
orbits. This is not very realistic, because as explained in Section 1.2.1, a first infall
scenario is more likely. The reason for this is that no dynamical friction has been in-
cluded.

After adding dynamical friction, as described in Section 2.3, the orbit of the LMC
changes significantly. Firstly, for the LMC model with a traditional mass of M =
5 x 1019 M, the orbits were plotted in the top right of Figure 3.1, and secondly for a
heavier LMC of M = 1.5 x 10! M, as shown in the bottom left panel of Figure 3.1
(the other parameters for this model are listed in Table 2.2). Here one can see the
effect of dynamical friction. When integrating back, it results in much more energetic
orbits in the past. Still, the LMC stays bound to the Milky Way in all models, and
similar to the orbits without dynamical friction, multiple past LMC pericenters exist.
After adding dynamical friction the orbital period is much longer. The period is not
always as large as the Hubble time, which is what one could expect in a first infall
scenario. But of course this model does not work when integrating back too far.
One reason for that is that I assumed static potentials for all bodies, while in reality
the Milky Way grows significantly over that timespan. The orbit of Leo I does not
change visibly when adding dynamical friction, which makes sense considering its
relatively small mass. After adding an interaction term so that the satellites attract
each other, the Leo I orbit changes slightly (see the bottom right panel of Figure 3.1).
The relative distances between Leo I and the LMC are shown in Figure 3.2.

3.2 Monte Carlo realizations

So far, only the orbits for the nominal values (i.e. without considering any errors)
of the parameters were calculated. To draw any conclusions, it is necessary to see
how the orbits behave when considering different initial conditions. That is why, for
10000 different sets of observables, obtained as explained in Section 2.1, the orbits
were calculated, considering inter-satellite interactions and dynamical friction. For
the Milky Way, I considered the 3 models described in Section 2.2. I considered
different LMC masses, while keeping its mass-ratio to Leo I the same (see Table 2.2).

To get an idea of how likely an encounter between Leo I and the Magellanic
Clouds was, I plotted the distributions of minimum distances between the satellites
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FIGURE 3.1: Galactocentric distances for the satellites in various mod-
els, considering various Galactic Potentials.
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same models as in Figure 3.1.
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and the Milky Way in Figure 3.3. Immediately it can be noticed that the probabilities
that Leo I and the LMC come close are not very high.

Although the LMC pericenter distribution is fairly narrow, the distribution for
Leo I looks very broad. However, it is reasonably consistent with the values pro-
vided in Gaia Collaboration et al. (2018). When calculating the pericenter median,
16% and 84% percentile values for the pericenters, the values are very similar: I
find 123.35}-4 kpc, 107.6783 kpc and 98.4788¢ kpc for Model 1, 2 and 3. The values
and the spread are slightly higher than the results in the Gaia paper (89.573>2 kpc,
112.67284 kpc, 86.97337 kpc, for their different models). The different values reflect
that different Galactic potentials were used. The slightly higher spread might be
because for Leo I, I used the distance uncertainty indicated in McConnachie (2012),

which is 5.9%, while the authors of the Gaia paper assumed an error of 2.3%.

3.2.1 Diverging Leo I-LMC realizations

Especially in the light Milky Way models, there is a large amount of realizations
where Leo I and the LMC do not come close at any point, while in most realizations,
they come closest around 1.5 Gyr ago. This is shown in Figure 3.4, where the times
of minimum Leo I-LMC distance are plotted. One can see a significant spike at t = 0.
But in these realizations, there is certainly not any encounter going on: their physical
separation is (264 & 15) kpc. Another effect on the Leo I - LMC minimum distance
distribution is that it becomes bimodal when including these realizations. For clarity
of the plots (especially the plots showing the encounter criteria), I therefore only kept
the realizations where the time at minimum LMC-Leo I distance is tmin < —0.5Gyr.
In these plots N denotes the number of realizations where this indeed was the case.

3.2.2 Quantifying encounters

One indicator of whether an interaction has occurred is the force ratio of the Milky
Way and the LMC that Leo I experiences, Fyw / Fimc, at the time of minimum LMC
- Leo I distance. If this ratio is low, one would expect a large influence of the LMC.
In Figure 3.5, the force ratios are shown, but most are around Fyw / Fivc = 50 at the
closest approach. Only in a few cases, a force ratio which is less than 1 is obtained.
The actual numbers of realizations are listed in Table 3.1. Less than ~3 % of realiza-
tions have such a force ratio, while of the realizations with tin < —0.5Gyr this is
less than 6 %

Another indicator to see if an interaction occurred is to use the strong encounter
criterion. Sparke and Gallagher (2007) state that there is a strong encounter if, at their
closest approach the change in potential energy ®, is larger than the relative starting
kinetic energy before the encounter. Let t = fin be the time at closest approach, and
let t = ty be the starting time. Let T denote the kinetic energy and @ the potential
energy. Then, the criterion can be written as:

Strong encounter < |A®| = O(t = ty) — P(t = tmin) > T(t = to) (3.1)

This time ty, the time before the encounter, is not very well defined in practice.
It would be most convenient to have a definition that only depends on the energies
at fmin. For this, I made the approximation that in the LMC rest frame, energy is



¢ 193dey)

—— LMC-MW  —— Leol-MW  —— Leo-LMC
' N = 4763 ' N = 4621 ' N = 4461 ' N = 4384 ' N = 4370

My = 9.3 11(\)/5(1)0}\?11@1 0.011 i ) i i

0.00 ' N = 7322 ' N =7176 ' N = 6972 ' N = 6870 ' N = 6839
My =15 11(\)/{8(:}611@2 0.011 i ) i i

0.00 ’ N = 8526 ’ N = 8405 ' N = 8253 ' N = 8161 ' N = 8125
My = 2.0 - 113/{(2)%\?11@3 0.011 i ) i i

000 5 100 200 0 100 200 0 100 200 0 100 200 0 100 200

Mjmc =25-10"° Mg, M e =5.0-10"° M., Myc = 1.0-10" M, Mme = 15-10" Mg, My =2.0-10" Mg,

Minimum distance (kpc)

FIGURE 3.3: Minimum distance probability distributions, showing how close the Milky Way and the satellites approach each other.
N indicates the number of realizations where the time of closest approach between the LMC and Leo I satisfied the applied filter of
tmin < —0.5Gyr.

€l



Chapter 3. Results 14

conserved over the timescale of the encounter.

T(t = tmin) + Pt = tmin) = T(t = to) + O(t = to) (3.2)
Strong encounter < O (t = tg) — P(t = tmin) > T(f = tp) (3.3)
Strong encounter < ®(t = tg) — O(t = tmin) > T(t = tmin) + P(t = tmin) — O(t = to)

(3.4)

Before the encounter, ®(t = ty) = 0. In Sparke and Gallagher (2007) this assumption

was made implicitly, by immediately setting the potential difference to %
Strong encounter < —2®(f = tyin) > T(t = tmin) (3.5)
T(t = tmi
Strong encounter < —C}E(t:]:ﬁ) <2 (3.6)

The distribution of this energy ratio is shown in Figure 3.6. Table 3.1 shows
the probabilities of the criterion being satisfied. The probabilities are quite small:
only 4.36% for the most favourable scenario (the scenario with the highest proba-
bility of an encounter occurring). When only considering realizations where tmin <
—0.5Gyr, the probability becomes 9.98%. A possible orbit is shown in Figure 3.7.
For the same set of initial conditions, the difference between orbits is shown when
varying the masses or turning off interactions. The LMC orbit only changes because
for a higher Mjyc, dynamical friction becomes stronger: notice that for Mpyc =
5 x 10!° M, there is no difference between including or not including interactions.

A simple distance criterion (just selecting orbits where Leo I comes closest to the
LMC) gives similar results, but it also selects orbits where LMC and Leo I pass each
other at high speed, without much change in the orbit. An example is shown in
Figure 3.8.

LMC mass (My)

Criterion Milky Way 25x 1010 5x101° 1x10" 15x10" 2x 10"
Model 1 66 125 228 329 436
—gmn) <2 Model 2 2 4 17 34 55
Model 3 0 1 4 7 10
Model 1 3 22 85 159 230
Pt <1 Model 2 0 2 6 14 19
Model 3 0 0 3 7 12

TABLE 3.1: The number of realizations where the two encounter crite-

ria were satisfied (out of the N realizations for which fyi, < —0.5Gyr,

the values of N are listed in Figure 3.3), in the model including inter-
satellite interactions and dynamical friction.



Chapter

3. Results

15

Probability

N = 436 —— All orbits
Treor/ PrLmc < 2

i L //\

—4 -3 -2 -1 0
Time at minimum LMC-Leol distance

FIGURE 3.4: The distribution of times at minimum Leo I-LMC dis-
tance, for the most favourable model (i.e. with the largest probability
of an encounter), Mjpc = 2 x 101! Mg, and the lightest Milky Way
(Model 1, Myy = 9.3 x 1011 My,). Firstly, notice that there is a sig-
nificant fraction of the realizations where this time is at present time.
Secondly, notice that the times of minimum distance when the close
encounter criterion is satisfied (the orange distribution) is generally
much earlier than orbits that do not have an encounter, showing that
in these cases, they have been interacting for some time already.
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FIGURE 3.5: Force ratio distributions. N indicates the number of realizations where the time of closest approach between the LMC and
Leo I satisfied the applied filter of tpin < —0.5Gyr.
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FIGURE 3.6: Distribution of the indicator of the strength of an encounter. N indicates the number of realizations where the time of
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Muyw = 9.3 10" Mo, Famw /Fryic = 0.3, Treor/ ®rpc = 0.901, diin = 110 kpc

800 1. —— LMC-MW 2.0
R LMC-Leo L5
N —— Leo I-MW '
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= Mimc =5 X 10'%, no interaction = Mimc =1X 10!
— = Mppc =5x 10! ceee Mpye =2 x 101

FIGURE 3.7: An example of a case where there is a large change in
Leo I's orbit. There is a large difference when comparing the orbits
for models that do not include interaction (solid lines) and with in-
teractions included, with different masses (dashed/dotted lines). For
example, notice that Leo I is less bound for a massive LMC when
looking at their distances at early times (t = —5Gyr). In the orbit
plots, one can see a change of the Leo I orbital direction at early times.
The numbers in the title refer to a LMC with a mass of 2 x 101! M.
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MMW =15- 1012 M@, PMW/PLMC = 147, TLeoI/CI)LMC = 7, dmin =29 kpC

FIGURE 3.8: An example of a case when the LMC and Leo I come
very close. In this case, Leo I would have gained energy during its
interaction with the LMC. To see that, imagine what would happen
to the orbit of Leo I, if it would start at the same distance as the case
where interaction was turned on. When integrating forward again,
at present time it would end up more bound to the Milky Way. Also,
a change in direction of Leo I's orbit occurred, as shown in the orbit
plots. The numbers in the title refer to a LMC mass of 2 x 10!! M.
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Chapter 4

Discussion

The question that was asked is whether Leo I could have gained energy by an en-
counter with the Magellanic Clouds: it does not seem very likely. As shown in Ta-
ble 3.1, the probabilities of an encounter occurring are small. The most favourable
scenario for an encounter taking place combines a low mass Milky Way (of My =
9.3 x 10! M) with high mass Magellanic Clouds (of 2 x 10" My,). In this case, the
probability of the strong encounter criterion being satisfied was 4.36%. If one only
considers the realizations in which tin < —0.5Gyr (i.e. where the LMC and Leo I
are not currently at their minimum distance), this probability becomes 9.98%. Lower
LMC masses resulted in less realizations where a strong encounter was satisfied. For
a heavier Milky Way (Map = 1.5 x 1012 M), the probability was at most 0.55%.
In the orbits where a strong encounter did occur, Leo I's orbit changed significantly,
both in direction and energy, when comparing the orbits that did and did not con-
sider interactions.

There are many points in this analysis where some not entirely realistic assump-
tions were made. Here is a summary of the shortcomings and, how it might be
possible to improve on them.

First of all, when integrating the orbits I used dynamical friction. This is of itself
already an approximation. Much more realistic scenarios could be achieved with N-
body simulations, unfortunately these are computationally much more expensive.

Dynamical friction assumes non self-gravitating host particles that interact with
the subject body. This is good for an idealized case, but when applying it on ex-
tended bodies, some aspects are not as clear. For example, the Coulomb logarithm
is assigned in many different ways in literature. Also, hyperbolic paths for the
particles were assumed, which is not true for the extended potentials used here.
However, these limitations were mitigated reasonably by the choice of a In A that
was calibrated to N-body simulations, and even applied to the Magellanic Clouds
(Hashimoto, Funato, and Makino, 2003).

Secondly, I modelled the satellites as Plummer spheres. It might be more realistic
to use NFW subhalos, maybe including a cut-off to model the effect of tidal stripping,
and avoid problems because of its infinite extent.

Another major shortcoming was that all potentials were considered static. The
LMC was kept at the same mass, even though tidal stripping would significantly
change its mass. Perhaps, it would be nice to include a mass loss model similar
to the one proposed in Zentner and Bullock (2003). However, a wide range of LMC
masses were considered, so it probably would not change the conclusions.

The LSR velocity I used (visg = 235km/s) was also not convolved with any
errors in the Monte Carlo analysis. This is not entirely justified, because the norms of
the Galactocentric satellite velocities were (317 £ 25) km /s for the LMC and for Leo I
(236 £ 51) km/s, while the uncertainty in vy gg is ~20km/s. However, convolving
vLsr uncertainties might also involve having to change the Galactic potentials. Given
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the relatively large differences in the mass distribution at large radii between the
different potentials considered, this is likely a minor effect.

Perhaps the largest problem is that the SMC was not taken into account. The
reason is that if one simply adds it, for many potentials, it will not stay not bound
to the LMC when integrating back. This is a problem with the current setup, which
uses a backwards integration scheme. To avoid this problem, it might be better to
instead follow the center of mass (CM) of the Magellanic Clouds, calculating the
Galactic force on it, and including dynamical friction. Then, after the path of the CM
is known, one could calculate the orbits of the LMC and SMC in the CM reference
frame. This could avoid the problem of not retaining a bound LMC/SMC, while
keeping realistic orbits. An example of an orbit where the LMC and SMC do stay
bound when adding them separately, and where there is a large change in Leo I's
orbit, is shown in Figure 4.1.
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FIGURE 4.1: An example of a realization with an encounter between
the Leo I and the Magellanic Clouds, and in which the SMC stays
bound to the LMC, especially for the heavy LMC masses.
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