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Abstract

We investigate the theory of exceptional points (EPs); degeneracies of non-hermitian
systems famous for the swaps of eigenstates that arise when encircling the EP accord-
ing to the adiabatic approximation. We review various characterizations of EPs that
are used in the literature. We observe that they are not equivalent and consequently
a unanimous definition is lacking. The theory of P7T symmetric systems is studied
as an aid in the study of EPs. In particular, we deal explicitly with a three-channel
waveguide system originating from P7T theory and supporting various EPs. We show
how one can properly compose the eigenvalue permutations arising from EPs and how
this generates a non-abelian group which we call the A-group. We finish with the
needed geometry as induced by the adiabatic approximation. The adiabatic change
as measured in experiment can be modelled naturally on a principal C* 1 S,-bundle
consisting of the eigenframes of the operator family. To the best of our knowledge this
bundle is not found in the literature to date. The adiabatic approximation induces a
canonical connection on this bundle. The special shape of the holonomy group induces
three groups, one of which is the A-group, that fit together in a short exact sequence
(SES). This SES can be used to describe and distinguish degeneracy structures. In
particular, the A-group allows one to phrase a new definition of exceptional point
that specializes existing definitions. Explicitly, one can define an EP by demanding
that swaps of eigenvalues occur arbitrarily close to the EP. This definition is widely
applicable, yet guarantees that the eigenvalue and eigenstates sheets are connected in
a non-trivial way.
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1 INTRODUCTION

1 Introduction

In this thesis we explore the theory of exceptional points (EPs). These degeneracies
appearing in finite-dimensional hamiltonian systems are famous as many interesting effects
occur at and around these points.

We start with an exposition of EP characteristics in section 2. Various properties of
EPs are listed in the literature, most of them focusing on a property of the eigenstates
of the system. Amongst these are swaps of eigenstates & eigenvalues upon adiabatically
encircling the EP, complex analytic branch structure, coalescence and self-orthogonality.
We investigate if these properties can be used to define an EP according to physical
intuition.

As the existence of EPs requires the system to be non-hermitian, we also look at non-
hermitian theory. A particularly interesting subfield is that of P77, parity-time, symmetric
systems, which we treat in section 3. The connection with EP theory primarily lies in the
fact that PT symmetry can break spontaneously when one adjusts the system parameters.
The point of breaking, also known as the P7 symmetry phase transition, is indeed an EP
in generic cases. We will look into this EP-P7T phase transition correspondence, as well
as the equivalence of exact P7T symmetric theory with hermitian theory.

With the knowledge of these two sections, we move on to real experiments and appli-
cations of the theory in section 4. We start with some examples of EP experiments in
which different techniques are used, both experimental and theoretical. We likewise go
over some PT symmetric systems to illustate their applications.

One of the treated experimental set-ups uses a PT symmetric waveguide system with
two coupled channels. The P7T symmetry imposes that the channels have opposite gain
and loss of intensity along the propagation direction. In section 5 we consider a system
with an additional (neutral) channel in the middle. This not only supports EPs with 2 or
3 connected eigenstates, but also provides a setting in which the effects of multiple EPs
can be mixed. In particular, we see that the group of adiabatic eigenstates changes is
non-abelian. This work was recently published in Physical Review A.

The theory needed to explore more complex systems like the three-channel waveguide
is treated in section 6. At the basis is the adiabatic approximation from quantum me-
chanics, which defines a parallel transport equation on a principal fiber bundle (PFB).
After comparing with PFBs from the literature, we find that a PFB naturally suited for
EP theory is missing and we introduce one to this end. The section continues by study-
ing various properties of the obtained holonomy theory and how this can be applied to
EP theory. This includes a new definition of EP that does not have the disadvantage of
allowing trivial cases, yet is applicable to any smooth family of operators.



2 Definitions of exceptional points

Degeneracies appear in the context of (finite-dimensional) operator families that depend
on some parameters; any point in parameter space for which the corresponding operator
has a double eigenvalue is called a degeneracy. A physical context is given by systems
modelled by matrix equations, as appearing in e.g. quantum physics and optics.

Degeneracies are extensively studied in physics, even near- or avoided degeneracies
have their own terminology, as words as anti-crossing, level repulsion and quasi-degenerate
illustrate. Some degeneracies have special names; a well-known example is the diabolic
point (DP, also known as hermitian degeneracy) where the eigenvalues coincide, yet the
eigenvectors remain linearly independent. Another property of DPs is the state acquiring
a phase of m upon adiabatic encircling, regardless of the precise path. The topological
properties of these points have attracted considerable interest in the fields of quantum
mechanics and optics. A variety of confirmations and applications of these points exists
in the literature.

This sets the stage for exceptional points (EPs), which tend to go a step further in the
"degree of degeneracy’. In addition, at an EP the eigenvectors are also required to coincide,
also phrased as coalescence of the eigenvectors. In many physical systems, this is induced
as the degeneracy is a branch point singularity. The branch structure also implies that
encircling the EP swaps the eigenstates of the system. A well established exact definition is
lacking in literature, but these are frequently occurring features; complex branch structure,
coalescence of the eigenvectors and exchange of eigenvectors upon adiabatic encirclement.
We will see that any of these definitions requires the system to be non-hermitian, hence
EPs are also called non-hermitian degeneracies. Nevertheless, similar to the DP case,
this name is easily seen to be too general for a definition and we do not use it. In the
next subsection we review various characteristics of EPs and investigate if they provide a
definition that respects physical settings yet discards the uninteresting.

2.1 First appearance

Let us start with the earliest definition of an exceptional point, as found in a book by
Kato on perturbation theory of linear operators [1]. We will see some confusion already
at this point appearing as nowadays this definition is not used, despite the fact that many
recent papers still cite this book when referring to the concept 'EP’.

The setting in which Kato places EPs is that of finite-dimensional operators T'(x)
depending analytically on a complex parameter x. It is argued that the eigenvalues of
T(x) then depend on z in an analytic way up to algebraic singularities. Consequently
the matrix T'(x) is non-degenerate for generic x, up to some degeneracies which appear as
isolated points in the complex x plane. Because of this property, such points were called
exceptional points.

Definition 2.1 (Exceptional Point; Def. 1 (Kato)). Let V' be a complex vector space
of finite dimension n. Given a linear operator T'(xz) on V dimensional space depending
analytically on x € C, the exceptional points are the points z € C at which the number
of different eigenvalues is less than n.

According to Kato, then any degeneracy of such a system is an EP. He provides several
elementary examples, some we show here for future reference.

Example 2.1. Let
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so that the eigenvalues are +=+/1 + z2. The eigenvectors are given by

<1i\/;+7:62>.

We see that A\ 2 = £ are the two exceptional points.

In the example above we see a non-trivial dependence of both eigenvalues and eigen-
vectors on the parameter x; the dependence follows a branch structure on which more in
the next section. However, this definition also includes more trivial cases like the one in

the example below.
0 =
T(z) = <$ O>

so that the eigenvalues are +x and hence Ag = 0 is the only exceptional point according
to definition 2.1. We note that the eigenvectors are given by

()

The book continues with group theoretical aspects of EPs. Although this has not
attracted nearly as much attention as the degeneracy aspect, nevertheless we want to
treat it as a generalization of this theory is treated in section 6.

The idea is to track the permutations of the eigenvalues at some point g close to the
EP. Fix a simply connected subdomain D containing xg but not containing any EP. On
D, the eigenvalues Ai(z),..., A\g(x) of T'(x) are holomorphic functions without intersect-
ing graphs. Now, let us move the domain D continuously around the EP. By analytic
continuation all \;(z) can be continued following this movement. When D returns to its
initial position after a full turn and in particular if we trace the A;(x) back to g, the A\;(x)
will be permuted as the set they constitute is fixed. Hence one obtains a permutation o of
the set {\1(xg), ..., \k(xo)} from encircling the EP once, where o is allowed to be trivial.
One observes that slight deformations of the loop still give o, imposing that we keep the
point zg fixed. The group generated by this permutation was defined to be the A-group
of the EP.

Example 2.2. Let

Definition 2.2 (A-group). Given an EP, xg, D and \;(x) as above. The A\-group (at x¢) is
the group of permutations of the A;(x) corresponding to analytic continuation around the
EP. Decomposing a generator of this group in disjoint cycles, each cycle permutes certain
Ai(z); each such a set is also called a cycle. The number of elements of such a cycle is
called its period.

Example 2.3. In example 2.1 the eigenvalues can be permuted, so the A-group is Z/27Z.
In other words, there is 1 cycle of period 2 consisting of both eigenvalues.

On the other hand, in example 2.2 the eigenvalues can not be permuted and the A-
group is trivial. Hence both eigenvalues constitute their own cycle, both with period
1.

As the above example illustrates, Kato’s definition may include systems where the
encircling behavior is trivial as measured by the A-group. More precisely, each eigenvalue
makes up its own cycle with period 1. Such cases are mathematically trivial and phys-
ically uninteresting. Hence people did not want the term ’exceptional point’ to include
these, although this is usually not mentioned in papers. Different definitions of EPs have
appeared instead, and we review the most prominent below.



2.2 Branches

2.2 Branches

One of the two most popular EP definitions in literature is to define an EP to be branch
point singularity of the eigenvalues. The other popular definition uses the coalescence of
eigenvectors and we want to discuss this in the next section. We will see that the branch
point definition will imply the other used EP characteristics and ensures non-triviality. The
main disadvantage is the assumption of analytic dependence; the parameter is complex,
where in practice many parameters are real.

Let us motivate the branch point picture with a simple example, passing over the
introduction provided in [2]. The system we consider is

- Fy +1iy k
H(k) o ( k Es + lTQ)

where k is a complex parameter modelling the coupling between two levels with complex
energy E; +1I'; for j = 1,2. Systems of the above form reappear in section 3 on PT
symmetry. The eigenvalues of the system are given by

E,+E I +T E,-E | AN
)\i:<1;— 2+i1; 2>j:\/k:2—|-<12 2_|_le2 2)

:Aoi\/k—kovk‘FkO

where we introduced

Fi+FE T r
/\0:< 1+ Q_H. 1+ 2)

2 2
_(Ei—FEy TI'1-T2\ (AE AT
ko’l( 9 +1 B >Z<2+22 .
The degeneracies of the system are given by k = kg and k = —kg, and according to Kato

both are EPs. However, in case kg = 0 the two points coincide and the square roots merge
into a linear term. Hence the eigenvalues only follow a square root branch structure if
ko # 0, and this case is illustrated in fig. 2.1. As seen in this figure it is the connected
branch structure that allows one to go from one energy to the other simply by walking
around.

The branch structure is also present in the eigenvectors, and this has serious conse-
quences. The eigenvectors can be written as

1 i -
r2) = <2AE + AT i_\k/k; kovk + k0> (2.1)

where indeed the same square root term as in the eigenvalues appears. That is, the
eigenvectors follows a branch structure similar to that of the eigenvalues. In particular,
the eigenvectors coalesce at the branch points given by the degeneracies k = kg and
k= —kg.

At this point we note that hermitian systems can not support connected sheets with-
out becoming trivial. As they have real eigenvalues the right part of fig. 2.1 showing the
imaginary part becomes a flat surface at height 0. By analyticity the real part must be
constant, so the picture would consist of some disconnected surfaces situated above each
other!'. Hence hermitian system only support trivial sheet structure. The eigenvectors pro-
vide a second argument; the coalescence of the eigenvectors at the degeneracy contradicts
the existence of a complete set of eigenstates for the system.

'In section 6 we show that smooth dependence instead of analyticity is already sufficient for this
argument.



2 DEFINITIONS OF EXCEPTIONAL POINTS

77

) S
1S

VIS A,
7
| 47
71
\Z 7
%,
G
K

Figure 2.1: Adapted from [3]; example of real (left) and imaginary (right) part of eigen-
values. We see that a single turn around an EP causes both real and imaginary parts to
move to the other sheet, meaning that the eigenvalues are swapped. A second turn moves
points back to the initial sheet.

Consequently, one must use techniques that are suited for a non-hermitian setting.
Using an inner product from the state space poses a problem as the bra of an eigenstate
not need be a left-eigenstate. Hence one uses bi-orthogonal normalization which directly
uses left-eigenstates (y;|, see also appendix C. Normalizing the eigenstates introduces a
fourth root. As usual we walk around one EP at a time, and if we pick the EP at k = kg

the relevant factor is )

|/l/]7/> ~ \4/]{;_—](:0'
It is easily seen that the normalized eigenstate blows up at the EP. This is a consequence
of the fact that the eigenstates coalesce at the EP; bi-orthogonality can not be extended
continuously to the EP as the equations become contradictory at the EP.

A crucial observation is that the normalization factor effects the phases of the eigen-
states. Let us give a heuristic argument. As a fourth root is involved each counterclockwise
turn around the EP shifts the phase by a factor of 1/i = —i. Let us pick eigenstate [11) to
have phase zero, i.e. with no extra phase. The second eigenstate has then relative phase
i due to the minus in eq. (2.1). As visualized in fig. 2.2 the —¢ phase shift moves |¢)2) to
|t)1). The state |¢1) in turn gets opposite of |12), so becomes —|¢2). That is, encircling
the EP multiple times gives the pattern

[P1) = —|p2) = —|h1) = [th2) — [3h1). (2.2)

This operation is linear, so in the basis (|11), [1)2)) it is given by the matrix

(_01 é) . (2.3)

To finish the example, another implication of the branch structure that is referred in
the literature is the blowing up of the derivative near an EP. Indeed, as the eigenvalues
are proportional to /k — kg, or an even higher root, one has

dE 1

ak > VE ke

It was thought that this could be used for high-precision sensors [4]. However, recently
it has been shown that such sensors will effectively have a modest signal-to-noise ratio
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|12)

1)

Figure 2.2: Schematic illustration of the phases of the eigenstates. The loop around the
EP causes the states to move a quarter turn in clockwise direction. Hence |1)2) moves to

[41) and [1p1) moves to —|th).

[5]. Indeed, the steep slope of the complex energy splitting need not imply a better signal
field, and in fact DPs turn out to have higher precision.

Until now we have only seen 2-dimensional operators where the EPs involved two
connected eigenvalues. In higher dimensional systems one can have general EPNs in
which N levels are connected. Observe that if the operator has dimension n necessarily
N < n. For a long time most EPs studied were EP2s, but recently these higher order
EPs have become of interest, notably EP3s. The theoretical classification of EPs in 3-
dimensional systems had already been done in [6]; one either has a genuine EP3 with a
cyclic permutation of eigenstates or an EP2 with a disconnect third state. Explicitly, in
the EP3 case write |¢1), |¢2) and |¢3) for the three connected eigenstates. Encircling the
EP gives the behavior

|p1) = |p2) = |d3) — |h1)

or in matrix notation

o = O
_ o O
O O =

In the other case of the EP2, let [¢;) and |¢)2) be the two connected states and |¢) the
remaining unconnected state. Encircling the EP now induces the pattern

[P1) = [b2) — |41)
[vo) = —[ho) = |vo)

with associated matrix
01 0
1 0 0
00 —1
In other words, we obtain the usual rule for |11) and |12) but the only phase now appears in

front of |1p). This shows that the eigenvector sheets of this EP2 are significantly different
from the standard planar EP2.

Figure 2.3 illustrates the eigenvalue sheets corresponding to two classes. The permu-
tations can already be deduced from this picture, one needs to calculate the eigenstates
in order to see the phase changes. We remark that the used technique in [6] is that of
Puiseux series; instead of usual expansion in z¥ one expands in z¥/Y where N is the order
of the EP. This in combination with perturbation theory around the EP allows one to find
the phases and swaps of the eigenstates.
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Figure 2.3: Eigenvalue sheets of the normal forms of EPs occuring in 3D systems [6]. Shown
above is the EP3 case where all three eigenvalues are involved in a third-root singularity.
Depicted below is the case with only two connected eigenvalues; like a standard EP2 but
with an extra (constant) eigenvalue.

Given the most interesting consequences and the frequent occurrences in physical sys-
tem of branch structure it is not surprising that it is commonly used as the mathematical
backbone behind an EP. Hence we include a rigorous definition based on this idea. This
indeed excludes the uninteresting case of example 2.2, but keeps example 2.1.

Definition 2.3 (Exceptional point; Def. 2). Given a linear finite-dimensional operator
family T'(z) depending analytically on € U where U is an open subset of C. The
exceptional points are the points x; € U at which some of the eigenvalues coalesce in a
branch point singularity. If the branch structure is like that of the Nth root, the EP is
called an EPN.

Nevertheless, this definition has a problem due to the requirement of analytic depen-
dence. In experiments, system parameters are usually real and complexified parameters
may not be feasible in experiment. Even if two parameters constitute real and imaginary
part of a complex parameter, one may need to use complex conjugates (and we will),
breaking the analytic dependence requirement. We conclude that the above definition is
too restrictive by requiring the analytic dependence.

2.3 Coalescence & self-orthogonality

In the previous section we saw that if one defines an EP as a branch point of the eigenvalue,
then many interesting consequences are immediate but one restricts oneself too severely.
Hence we continue with the less severe requirement of the coalescence of eigenvectors, one
of the consequences of the branch point definition. We also treat the closely related concept
of self-orthogonality as it will for 2-dimensional systems be equivalent to coalescence.

Coalescence

The coalescence of eigenvectors at a degeneracy is often used as the EP definition in
mathematically oriented EP papers (e.g. [7]). In other words, at an EP the operator

10



2.3 Coalescence & self-orthogonality

should obtain a non-trivial Jordan block; this is an equivalent phrasing one frequently
encounters. It has the advantage that one only needs continuous dependence on system
parameters. One can phrase this as shown below. We note that this coalescence is not part
of Kato’s definition 2.1, but as said is a consequence of the branch point definition 2.3.

Definition 2.4 (Exceptional point; Def. 3). Given a finite-dimensional operator family
T'(z) which depends continuously on x € U where U is open in R* x €. A point y € U is
an EP <= some eigenvectors coalesce at y, which is equivalent to a non-trivial Jordan
block at y.

The coalescence is understood to be non-trivial; arbitrarily close to the point y one
can find a point where the relevant eigenvectors are linearly independent.

We note right away that the fact that y must be a degeneracy is implicit an coinciding
eigenvectors imply coinciding eigenvalues. Also, the requirement of non-trivial coalescence
is needed to discard system as in the example below.

T(z) = (8 fg)

which has double (constant) eigenvalue 0 and a single (constant) eigenvector.

Example 2.4. Consider

However, this definition 2.4 does not ensure us that the geometry of the eigenvector
sheets is non-trivial, in the sense that these are connected and encircling may produce
non-trivial results.

Example 2.5. We consider an example seen in [8] given by

0= (5 )

where x is a complex parameter. For x = 0 this system has a single eigenvector, but also
independent eigenvectors arbitrarily close to x = 0. However, the eigenvector correspond-
ing to Ay = —z (for x # 0) is

where the other eigenvector is identically (1,0)”. We warn the reader; in the first form vy
blows up, but we do have coalescence as shown by the second. Normalizing the eigenvector
will not create non-trivial branch structure around x = 0 as well. The eigenvectors and
so eigenvalues live on separate sheets, whence encircling of x = 0 will always yield trivial
outcomes.

Self-orthogonality

We move on to another property that is used to characterize EPs, the self-orthogonality of
the eigenstate at the EP (compare [9]). This of course assumes some agreement on an inner
product on the state space or at least a pairing between vectors. Indeed, no hermitian
inner product is used here which is not a big surprise given the non-hermitian nature
of EPs. Instead, there is a replacement known as the c-product [9] which is equivalent
to the bi-orthogonality of left- and righteigenvectors as treated in appendix C. For the
matrix systems that we consider this product coincides with the usual pairing of left- and
righteigenvectors, that is the standard multiplication of row vector and column vector.
The reason that we treat self-orthogonality here is the following: coalescence and self-
orthogonality are equivalent descriptions for all practical purposes. It always holds that

11
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the coalescence requirement, hence also the branch point picture, implies self-orthogonality
of the single remaining eigenstate at the EP [10]. Conversely, self-orthogonality implies
the non-existence of an eigenframe which in generic cases implies coalescence. Technically,
we want to have distinct eigenvectors arbitrarily close to a point of self-orthogonality to
assure that the coalescence is non-trivial. Formally, the statements are as follows.

Lemma 2.1. Let T'(x) be a family of operators depending continuously on z in some open
set U in R* x C!. If some eigenstates coalesce at y, then the resulting eigenstate [1)gp) is
self-orthogonal. If degeneracies have codimension at least 1, the converse holds as well.

Proof. Let |1) be the (right-)eigenvectors and (x;| the corresponding left-eigenvectors.
We may assume the normalization

O ¥5) = 65
which we can do away from degeneracies (see appendix C). This identity holds identically
in the system parameters. Pick distinct labels j, 7' of two (out of possibly many) coalescing
levels. The product away from the EP is then identically zero, and taking the limit to the
EP gives

(xep|YEP) =0

where the (x;[1;) = 1 identity implies that the normalization factor blows up. We thus
conclude self-orthogonality of |{gp).

Conversely, assume an eigenvector v is self-orthogonal. Then there is no eigenframe
that contains v; if so there would be an eigencoframe contradicting self-orthogonality.
Hence the eigenspaces do not span the entire state space, and so some eigenvectors must
have coalesced as by assumption they can be chosen distinct arbitrarily closeby.

O

It follows that we do not need to formulate and inspect a definition for EPs based on
self-orthogonality arguments. We an also conclude that self-orthogonality is not sufficient
for non-trivial sheet structure.

We finish this subsection with an explicit 2-dimensional system to explore the eigen-
vector obtained at the EP. The motivation is the frequent appearance of such systems
and the physical interest in the coalesced eigenvector which is also self-orthogonal; in the
symmetric case the modes will differ only by a phase of w/2 exactly. This reappears in
the PT experiments of section 3.

Let us write a general 2D system as

4 <Z1 82)
S1 29
which has eigenvalues (defining v = (21 — 22)/2)

/\j::¥ﬂ: 7)2+8182

with corresponding right-eigenvectors

S S
v (—vi \/7)22+751@> - (—zlixj) ‘
The corresponding left-eigenvectors are
w4 = (81 —v =+ \/W) = (51 —2z1 + )\i)
so that )
W4V = 5182 + (v FVu2+ 8182> = 5150+ (=21 + Ax)?.

This allows us to check when the system has the eigenstates (1,4i) at the EPs.

12



2.4 Higher order zeros

Lemma 2.2. A 2D system A can have one of the states (1, %) at coalescence if and only
if A is symmetric. In particular, a 7/2 phase difference at coalescence only appears for
symmetric systems.

Proof. By a density argument we may assume that both s; and sy are non-zero. At
coalescence, we must have v2 + 5159 = 0, and the eigenvectors reduce to

v = (fi) = <¢\/S—2ﬂ) - <:Fz\/ilﬁ> |

We conclude that the special eigenstates (1, +i) occur only when s; = s, i.e. when the
matrix is symmetric. The converse holds as well as the above argument can be reversed
(observe that then s; = 0 if and only if sy = 0 and in this case coalescence means that A
is proportional to identity). ]

If one starts with a symmetric system already, the special eigenstates can be found in
another nice way. As A = AT, one has

Av = v = vTA=v")\

so that the left-eigenvectors are right-eigenvectors transposed. This forces the shape of
the eigenstate in the symmetric case; if [Ygp) = (a,b)”, then by the above (xgp| = (a,b)
and

0= (xep|trp) = a* +b?

meaning that
b= tia

and scaling a away yields the desired chiral eigenstates. As shown in [11] the relative
7 /2 phase differences also appear in 3-dimensional systems, and we find similar results in
section 5.

2.4 Higher order zeros

In this subsection we look at another way to investigate EPs, namely EPs as higher order
zeros of the characteristic polynomial. This will be foremost a practical way of finding
EP candidates. Also in the literature, this concept is considered primarily for practical
applications.

To start, note that higher order zeroes are a directly connected to general degeneracies
and not to EPs exclusively. To illustrate, let us fix an operator family 7'(x) acting on
an n-dimensional vector space V that is differentiable in x, where z is taken in some
open set of R¥ x C!. The eigenvalues also depend on z and can be found by solving the
characteristic equation

pr(\, z) :=det(A —T)(z) = 0. (2.4)
If we fix z = g, the above is a degree n polynomial in A. From algebra we know that

n

pr(X z) = [ J(A = Ai(x0)) (2.5)

i=1

where the \;(zg) are the eigenvalues at xyp. A degeneracy means that two solutions are
equal, say \;(xo) appears twice, and hence the polynomial has a factor (A — \;(zg))%. A
similar story holds for zeros of degree at least 3.

13
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A convenient function that detects degeneracies is the discriminant of a polynomial.
Assuming the polynomial is monic (i.e. the term with highest degree has coefficient 1),
like the characteristic polynomial, it is defined in terms of the zeros as

Az) = [Tni(@) = X(2))% (2.6)

i<j

Indeed, x is a degeneracy if and only if A(xz) = 0. The function A(z) can also be expressed
in the coefficients of the characteristic polynomial, hence the function can be calculated
explicitly. We observe that the order of the degeneracy is not given immediately.

Alternatively, one can detect higher order zeros of the characteristic polynomial using
its derivatives, which directly puts constraints on the order of the degeneracy. This is par-
ticularly interesting in the search for EPs of some given order IN. The needed observation
is that pr(\, zo) has a factor (A — \;(w0))? if and only if \;(z) is a degeneracy and

0

il : ’ =0. 2.
o P (Ni(z0), 20) =0 (2.7)
Hence, second order degeneracies can be found be solving the system.
pr(A,z) =0
o (2.8)
apgp()\, x)=0
This generalizes in a straightforward way: degree N degeneracies should satisfy
9 \*
il \x) = 2.
(55) o) =0 (2.9

for k=0,1,..., N — 1. Let us give an example.

Example 2.6. Let the characteristic polynomial be A — aX + b. The second equation of
zero derivative implies

N—a=0 = A:%.

Hence, if we also demand that the characteristic polynomial vanishes we obtain

2 2
a a
— — —+b=0
4 2 +
which can be rewritten as
a’ —4b = 0.

We recognize in the lefthandside the discriminant of the characteristic polynomial, which
must indeed equal 0 at an degeneracy.

At this point, we remark that every EPN is a degree N degeneracy, so they can
be found using equations 2.9. Although they are called ’exceptional’ points, a generic
solution of these equations will be an EP independent of the precise definition that one
uses. Indeed, trivial cases may still appear but are unlikely to occur in practice. Again
example 2.5 can be used for illustration, for one has

padz)=A—2)A+2) =1 —2°

0
ﬁpA(Aa 1‘) =2A

showing that an EP can only occur at x = 0 with A = 0. As we saw earlier, we still want
to reject this point as EP, so one needs more than higher order zeros in order to exclude
this case.
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2.5 Swaps of eigenstates

2.5 Swaps of eigenstates

The final property we consider is the appearance of swaps of eigenstates that occur upon
encircling an EP. Although this is not commonly used to define an EP, it is one of the
clearest concepts that can be verified experimentally (see section 4) and it excludes trivial
cases.

The first issue we want to deal with is the availability of the degeneracy. Namely, in
some papers it is not required that the EP lies in the allowed parameter space. Instead it
is allowed to be in the complexified parameter space as illustrated in the below example.

Example 2.7. We consider the system with single real parameter z;
21 z— 3
243 =2

Ae =422 43 —22=4/22 15

As stated, we have z € R, which corresponds to the P7 symmetric regime as seen in
section 3. Although a non-trivial square root appears, hence also coalescence of eigenstates
and self-orthogonality, the degeneracy can not be reached as none of the points z = +i\/5
is in the parameter space.

with eigenvalues

In what follows, once a parameter space has been chosen we stick to it. Another
motivation for this is that we want to allow non-analytic systems for which a generalization
of the illustrated procedure is technically involved.

We can now consider the main point of this subsection; how to define an EP by means
of the induced swaps. As this turns out to be our favorite way of defining an EP we check
the needed geometry in section 6. However, we can still phrase a simple argument where
we leave the technical details for this later section. Indeed the idea itself is straightforward;
the connected eigenvalues sheets as seen before can be detected using swaps, and conversely
swaps indicate connected sheet structure. The EPs are then the points where connected
sheets intersect. So, arbitrarily close to an EP one can find a loop around it such that a
swap occurs. Of course, we do not want the loop to pass over a degeneracy in the process of
encircling as then the swap becomes ill-defined. The definition is then the following, which
we label as ’experimental EP’ as it is inspired by the properties measured in experiment
(cf. section 4).

Definition 2.5 (Experimental EP). Let T'(x) be an operator family with « in parameter
space P. An EP zy € P is called experimental <= for every neighborhood U C P of
xo, there exists a loop v: S' — U so that along 7 the eigenvalues are exchanged without
becoming degenerate in the process.

A few remarks are in order. First, the swaps of the eigenvalues imply that the eigen-
values are multi-valued. Looking at the equation

T(z)vi(z) = Ni(z)vi()

one concludes that the eigenvectors must be multi-valued as well; otherwise the lefthand-
side is single-valued while the righthandside is not. The arbitrarily small neighborhood U
is used to single out the point xg. If P has dimension 3, then degeneracies form lines in P
as they have codimension 2. It is a well-defined notion if a given loop « encircles this line,
but a precise point on the line is not apparent. In fact, one may choose to take away the
EPs from the parameter space P and retain the swaps as the below (artificial) example
illustrates. We see that for the swap definition it is not necessary to know the data at the
EP.
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2 DEFINITIONS OF EXCEPTIONAL POINTS

Example 2.8. Consider
c T+1
T = (5 1Y)

Cc

where ¢ is any (complex) constant and the real parameters x and y are such that z + iy €
P = S'. The eigenvalues are
Ay =t/ + 1y

which can be swapped by paths in P, e.g. by traversing the circle one. Nevertheless, the
EP supposedly at 0 does not exist in parameter space.

It is not hard to see that such problems only arise when P is not simply connected.
In this case, swaps can be attributed to some degeneracy structure; if no such structure
would be present then there are no swaps as we see in section 6. One can even show that
then coalescence occurs at the EPs.

Proposition 2.1 (Experimental implies coalescence). Let T'(z) be a operator family de-
pending continuously on x € P, assume that the parameter space P is simply connected.
If xg € P is an experimental EP, then the relevant eigenvectors coincide at xg (up to a
scalar).

Proof. Suppose coalescence does not appear. Then there is a neighborhood U of zy on
which one has n eigenvectors v;(z) depending continuously on x € U and the v;(zg) are
linearly independent. Let us consider the cones

C; = {cvi(z) |z € U,ce C*},

then U may be taken small enough such that the cones do not intersect. However, then

no curve v in U can swap the eigenstates. By contradiction then coalescence must appear.
O

2.6 Discussion

As we have treated the most commonly used characteristics of EPs, we can investigate
which one is well-suited to form the definition of an EP.

The first definition 2.1 as found in Kato’s book is no longer used. Not only does it
restrict to complex analytic systems, it also allows trivial case. The similar definition 2.3
using complex analytic branch structure rules out the non-trivial cases but again is too
restrictive due to the analyticity requirement.

On the other side are the coalescence definition 2.4 and the self-orthogonality condi-
tion. These only need continuous dependence on system parameters, which is a significant
advantage with respect to the previous ones. However, also here trivial cases concerning
the eigenvalue structure are allowed. The experimental EP of definition 2.5 works similarly
but does discard the trivial cases. However, we see that the coalescence defines special
points in its own right.

All in all we consider definition 2.5 to be the best suited definition, and we investigate
the mathematical framework behind it in section 6. This involves primarily the technical
details that one needs to check. Until we discuss the swap definition in more detail we
take the coalescence definition 2.4 for an EP in order to be in line with the literature that
is treated.
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3 PT7 symmetry

Describing a quantum system usually begins with specifying a (complex) state space V
with inner product such that the structure of a Hilbert space is obtained. We note that
there is a canonical identification of V' with its dual V*; there is a bijection between
vectors/kets |1) and functionals/bras (¢)|. Here the functional (¢| is given by taking the
inner product (¢|—) as the notation already suggests.

The dynamics is fully determined by a linear operator H: V — V called the hamilto-
nian. A priori, this need not have any special relation involving the inner product on V.
Such relation however is usually imposed (immediately) by declaring that H must yield
unitary time-evolution. The dynamics is given by

0
iho [0 (t)) = HIp(2))

and if H is time-independent, as we will assume throughout this text, it follows that

(1)) = e Ay (0)).

Usually, the time-evolution operator e~/ is denoted U (t), signifying the unitarity
in usual quantum mechanics. Unitarity is imposed as

(W)(2) = (Up(0)|U(0) = (H(0)|UT (1)U (0)) = (1(0)[4(0))

where we must require UT(¢)U(t) = I for all t, and as U(t) is invertible (U (t))™' = U(—t))
also U(t)UT(t) = I. Functional analysis tells us that H must be self-adjoint (plus details
we ignore, which is OK if the space has finite dimension), that is HT = H or with explicit
reference to the inner product

(X[HY) = (Hx|v)
for any two states y, . Indeed, if we require U(t)~" = UT(t), we find

citH/h itHT /1

=e
and so H = H', as found by differentiation at ¢ = 0. As the argument can be reversed,
we see that time-evolution is unitary if and only if H is self-adjoint.

The unitary time-evolution is a fundamental axiom in quantum mechanics for closed
systems; probability should be conserved in time. The self-adjointness of the hamilto-
nian has some further consequences which may be considered standard facts of quantum
mechanics. We list a few;

e the hamiltonian has a complete set of orthonormal eigenstates. This follows from
the fact that H is normal, or HH' = HTH, as both sides equal H?.

e the spectrum of H is real, for if £ is an eigenvalue of H with normalized eigenvector

)3
E = (Y|Ey) = (Y|Hy) = (Hp|p) = (Hp|p) = (Bplp) = E*(y[y) = E*

and E must be real. That is, an eigenstate of a quantum system has a well-defined
real energy. This in turn means that time-evolution (of eigenstates and so of any
state by the previous) is oscillatory.

e there is conservation of energy, expressible as [U(t), H| = 0, which follows from the
fact that U(t) is an exponential of H.
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3 PT SYMMETRY

The above depends crucially on the fact that H is self-adjoint, which we can also
phrase as the ’dagger-symmetry’ of H. Yet, there is considerable physical motivation to
consider cases where H is not self-adjoint, but satisfies another symmetry. Hamiltonians
describing open systems (as found in e.g. optics) may lose energy into the environment
which leads to complex energies. The imaginary part then gives the decay rate. As we
will see, such systems can be realized by time-independent hamiltonians and we keep
restricting ourselves to this case. Also EPs form strong motivation as they can’t appear at
points where the operator is self-adjoint; if multiple eigenvectors coincide, the dimension
of the eigenspace drops, meaning one can’t have a complete set of eigenstates.

The question was if other frameworks for quantum theory existed that maintained
unitary time-evolution and real eigenvalues. The answer is yes, one remarkable theory
being that of PT symmetry. Instead of H = H', one requires invariance under combined
parity and time reversal, [H, P7T| = 0 in symbols, where such H are called PT-symmetric.
We will investigate P7T theory in this chapter. Indeed, unitarity and real spectrum follow
from P7T symmetry if there is no spontaneous breaking of the symmetry.

Initially, people investigated if P77 symmetric quantum mechanics defined a new ele-
mentary quantum theory. Indeed, P7T symmetric theory allows for phenomena that are
not available in standard hermitian theory (see e.g. [12, 13]). However, in [14] it was shown
that if the PT symmetry is not spontaneously broken, then the system is quasi-hermitian,
i.e. there is a unitary equivalence between the PT system and a hermitian system. We
will consider this equivalence in more detail in section 3.5.

3.1 Basic properties of P7T theory

In this section we first consider the basics of PT symmetry. We follow the introduction
by Bender as given in [15]. At the end of the 1990s, PT symmetry was hinted at by
complex non-Hermitian Hamiltonians that did have a real spectrum, but so did not fit in
the contemporary view on quantum mechanics. In a dynamical setting, the operators P
and T are defined by their action on ,p and ¢. Explicitly:

L . (3.1)
T: &2, p— —p, i+ —i
so that their combined operation is
PT: &~ -3, p—=p, i —i. (3.2)

The action on z and p is well-known, the action of 7 on ¢ is picked to conserve the
canonical commutation relation
(@] = i. (3.3)

This means that 7 and P7T are anti- or conjugate linear. In a finite-dimensional hamil-
tonian setting the definitions of P and 7 are similar. In such systems P flips states while
T can be chosen as only complex conjugation as we assume a that the hamiltonian is
constant in time.

The most famous example of a PT symmetric operator family is

H = p* - (iz)N (3.4)

where one fixes appropriate boundary conditions. This was presented in [16], where nu-
merical calculations indicated that for N > 2 the spectrum was real, which was proven in
[17]. As p and iz are invariant under PT, indeed every operator of the family in eq. (3.4)
in PT symmetric. This includes interesting cases like H = p? — &% for N = 4. A plot
showing various eigenvalues is shown in fig. 3.1.
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3.1 Basic properties of PT theory

Energy

Figure 3.1: Illustration showing real eigenvalues of H = p? — (iz)", taken from [16]. For
N = 2 one obtains real equidistant levels. The diagram separates into two regimes, which
correspond to spontaneously broken symmetry for N < 2 and unbroken symmetry for
N > 2. The only real eigenvalue for small N blows up as N — 1.

As can be seen in the figure, for N = 2 gives the harmonic oscillator with the equidis-
tant real energies. For N > 2 the energies are still real, but for N < 2 we see more and
more annihilating pairs. Indeed, these are real-to-complex singularities and the spectrum
contains complex numbers for N < 2. Hence the spectrum of a P7 symmetric operator
may be real, but may also not be.

It turns out that P7T symmetric systems fall into one of two separate classes. The
question is whether or not the P7T symmetry is spontaneously broken, that is whether
or not all H-eigenstates are P7T-ecigenstates. This is a non-trivial question due to the
fact that P7T is conjugate linear instead of linear. It thus makes sense to introduce the
following definition.

Definition 3.1. Given a system defined by a P7 symmetric hamiltonian H. In case the
PT symmetry is spontaneously broken we say that the system is in broken P7T phase, that
is if and only if there is an eigenvector of H that is not an eigenvector of P7. Otherwise
the PT symmetry is said to be exact and the system is in unbroken or exact phase. An
point separating unbroken and broken phase is called a P7T phase transition.

At this point we warn the reader for potential confusion; symmetries can be broken
either spontaneously (SSB) or explicitly (ESB). The latter would mean that H is changed
in such a way that it no longer satisfies P7 symmetry. In the context of PT symmetry we
always refer to spontaneous breaking unless we clearly state otherwise. The table below
summarizes the discussion.

This definition opens the way for one of the most famous results in PT theory: if the
system has unbroken P7T symmetry, then the spectrum is real. One can show that H as
in eq. (3.4) has unbroken symmetry for N > 2, hence the spectrum in fig. 3.1 illustrates
the following proposition.
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3 PT SYMMETRY

Symmetry ‘ H is PT symmetric? | Eigenvector H is eigenvector P77
Unbroken/Exact Yes Yes
Broken Yes No (at least for one)
Explicitly broken No Irrelevant

Table 1: Explanation of symmetry names

Proposition 3.1. If H is PT symmetric and P7 symmetry is unbroken, then the spec-
trum is real and the eigenstates ¢ can be chosen so that P7T ¢ = ¢.

Proof. In the described situation, we may write
Hp=E¢p, PTod=Ap
for some complex numbers E and A. If we multiply the second equation by P7T, we obtain
(PT)?¢ = PT(\o).

As P and T commute and are there own inverse by definition, the lefthandside equals ¢.
On the right, we may take A out to get A* as PT is conjugate linear. That is,

b= NPTd= N\

so that |A|?> = 1. Hence \ = e? is a phase, and we may choose the convention to rescale
¢ — e 2¢ so that PT ¢ = ¢, proving the last claim.
Multiplying the first equation by P7T results in

E*¢=PTH¢=HPT¢=H¢=FEo

using the convention we just had. Hence E = E*, meaning that the spectrum of H is
real. O

Conversely, when P77 symmetry is broken the spectrum is usually complex as in fig. 3.1
for N < 2. Rephrasing the proposition; the fact that the eigenvalue under PT can be
chosen 1 means we may pick wave-functions satisfying i (z) = ¢*(—z).

It has been shown that PT symmetry really defines a quantum theory. However, the
steps are quite different from the usual set-up. Originally, instead of first finding the inner
product and then looking for the eigenstates, one would first find the eigenstates to then
define the inner product to be used.

3.2 Original set-up

We briefly review the original set-up of PT theory as discussed in [15]. That is, we
consider a finite-dimensional complex vector space that is a priori not endowed with an
inner product. We only consider symmetric matrix hamiltonians H; in [13] it is argued
that asymmetric H lead to non-unitary behavior, which we discard for the moment. In the
integrals that follow o, special integration paths in the complex plane need to be chosen,
in accordance with the boundary conditions.

The process starts by defining the (P7 symmetric) hamiltonian and finding its eigen-
states ¢n(z). A natural guess for the inner product would be

(f.9) = / (PTf)gde = / f*(~a)g(z)da,
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3.2 Original set-up

but numerical results indicate that instead of the usual orthonormality one would find

(s Pn) = (—=1)"0mn (3.5)

implying that this inner product is indefinite. On the other hand, (f, f) is independent of
added phase and constant in time. The next step is to ’fix’ the indefiniteness.
To this end we need the modified completeness relation
[e.@]
S (1) (@) (y) = 8z — y). (3.6)
n=0

which was also found by numerical calculations. Now define

[e.e]
n=0
and the corresponding operator, also denoted C, which acts on a function f as

Cf)x) = / Cle.y)f(y) dy.

One has C? = 1 so that C has eigenvalues +1. Also, C is linear and commutes with H,
meaning every energy eigenstate has a well-defined C eigenvalue as well. In fact,

Cona) = [ Ca)on)dy =D on(@) [onWon)dy = (-1"0n(o). (39
m=0

Hence C gives the sign of the P7 norm of an eigenstate. It follows that C can be used to
fix the PT pairing. Explictily, one has the inner product

()P = / 7T ()x(x) da (3.9)
where
$OPT () = / Clar,y)(PT)(y) dy = / Cla, v (—y) dy. (3.10)

It follows that this inner product is phase independent and conserved in time (as the
time-evolution is still given by e~#7t).
The completeness relation now has the desired form

S 60(@) [CPTén(y)] = 8z — y). (3.11)
n=0

In [15], it is furthermore noted that in general P? = C? = 1, yet P # C and [P, C] # 0.
Where P was real, C may be complex. On the other hand, C commutes with P7. The
above construction can be done explicitly for finite-dimensional systems, and a 2 X 2 matrix
example is also found in [15]. We will do a similar example later involving both EPs and
PT symmetry.

We want to add a small note on the C operator. Although it has largely disappeared,
still the term c-product survives as a name for the bi-orthogonal product, see e.g. [9].
That is, one has right-eigenstates and left-eigenstates that together form a bi-orthogonal
system, see appendix C. Details on existence can be found in Mostafazadehs paper series
on this subject, see [14].

The complexity of the above theory in comparison with standard quantum mechanics
is striking. However, it turns out that one the level of the Schrédinger equation any PT
symmetric system can be described in a hermitian setting if the P7T symmetry is exact
[14], which is the case usually considered. Or, as [12] puts it, any P7T symmetric system
with real eigenvalues is unitarily equivalent to hermitian system. We will look into this in
section 3.5, first we want to do investigate explicit 2 x 2 PT symmetric hamiltonians.
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3 PT SYMMETRY

3.3 Explicit 2-dimensional P7 symmetric systems

To get more intuition concerning P7 symmetric systems we deal with the 2-dimensional
case explicitly. Therefore, let us pick the most general 2-dimensional H;

a b
H pu—
where a, b, ¢, d are a priori independent complex parameters. We may take P equal to the

exchange operator as
01
»=(1 )

and T to be complex conjugation. Hence H is PT symmetric if and only if H = PH*P
which explicitly means

a by (0 1\ [fa® 0"\ (0 1\ (d* c*

c d) \1 0)\c d*)J\1 0/ \bv* a*
so that a = d* and b = ¢*. We may thus set a = x 4 iy and b = z — iw where x,y, 2, w are
real. Hence, the most general 2 x 2 P77 symmetric H is

H:(as+iy z—iw> (3.12)

z4+iw x—1y

as also encountered in some EP examples previously. We note that theoretically we may
limit ourselves to the symmetric case w = 0, but this may not be in the chosen basis.
Nevertheless, the formula for purely real coupling is easily recovered and indeed keeps the
qualitative behavior.

If w = 0, we see that the matrix models a set-up with two levels with specific properties.
Their base energy is the same but the decay rates differ by a minus sign. Physically, one

would encounter a system like
E 44l k
k E —iT

where F is the common energy of the basis states, & the coupling between these states.
The £I" indicates that one states experience gain while the other has the same amount
of loss. The change in energy supplied externally, hence this is an example of an open
system with time-independent hamiltonian. The parameter k should be |z+iw| for general
system. The absolute value give the coupling strength, whereas the argument indicates
a phase. One may guess correctly that the system behaves differently for high or low
coupling relative to the gain/loss. This will reappear below in the two phases of the
system.
The characteristic polynomial is (put w? = 22 + w? — y?)

AN =224 (22 4y — 22 —w?) = (N —2)? -2

Let us introduce the notation ke® for the polar form of z 4 iw. As w? = k? — 3% we can
write the eigenvalues as

M=zt VEk2—y2=ctx\Vk—yvk+ty=z+tw.

For convenience, in case k # 0, let us also introduce ¢ = y/k and put cos(s) = ¢t. The
eigenvectors can then be written as

iy + w it +v1—t2 et
Ut = ~ 1o = 1o .

Z 41w e e
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3.3 Explicit 2-dimensional P7T symmetric systems

The sign of w?, and so the question of w being real or (purely) imaginary, is the key
property to classify symmetry regimes. We see that w carries a square root and so EPs
may occur for w = 0, that is when a P7T phase transition occurs. We go over the separate
regions next.
When w? > 0, i.e. |y| < k or in words the coupling is stronger than the gain/loss the
quantity w is real. Alternatively, the parameter s is real, and we may write
PTos — (z—iw) —iy+w —to

- J=—= — € "\ _ i(Es—a—m/2)
iyt w Tt P O PT v+ (_wﬂS) e vy

which shows that this is a region of unbroken P7 symmetry. Note that the factor arising
from the P7T operator is indeed a pure phase.

When w? < 0, that is |y| > k or the coupling is weaker than the gain/loss, then w is
imaginary. Hence s = 5 is imaginary, and we have

(1o

(z—iw | Wy Fw _ (€ 7\ _ Fiti(—a—n/2)
PTvy = (—z’y :Fw> = iw vy, or PTugy = (—ie¢s> =e v

where one observes that the eigendirections are permuted. This implies that w? < 0 is a
region of broken P7T symmetry.

When w? = 0, i.e. y = £k or the coupling (in absolute value) is exactly the gain/loss,
the eigenvalues both equal x. There is also one eigenvector at a point given by

bup = +ik +i\ _ [em/?
EP =\ 2 +iw e )] T\ e

where the £ corresponds to y = £k. The relative phase between the components equals

0 = :I:g -«
so that the m/2 relative phase applies iff w = 0. Note that this is a consequence of
lemma 2.2. As there is a only 1 eigenvector and P7T permutes the eigenvectors, the PT
symmetry is unbroken.

We conclude that this general two-dimensional PT symmetric H has a cone of phase
transitions, as illustrated by a segment in fig. 3.2. The phase is broken inside the cone
and unbroken outside. As expected, the value of x is irrelevant in the phase diagram as
this would only give a real shift to the eigenvalues and preserve eigenvectors. The cone
consists of EPs, hence the P7T phase transitions and EPs coincide. In case y = 0, the
hermitian case, we are in the plane through the apex of the cone, which itself marks a
system proportional to identity (equivalent to the zero matrix).

We end this subsection by looking at the bi-orthogonal system. One has (unnormalized)
left-eigenvectors

o = (iytw z—iw) (3.13)

satisfying
U4 - ve = £20yw

Hence, proper normalization would scale the vectors with a factor « w™'/2, implying
fourth root behavior (neglecting y for a moment). As w — 0 when one approaches an EP

indeed the normalization factor blows up at the EP.
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3 PT SYMMETRY

Unbroken

Broken

Figure 3.2: Phase diagram of P7 symmetry for the system in eq. (3.12), which is a cone in
full z, w, y-space. The separating circle itself corresponds to EPs. Note that the gain/loss
sets the radius in this complex coupling plane.

3.4 Finite dimensional P7 symmetric systems

A first step is to generalize the P7T operator. We only need that it is anti-linear and
involutive. For the generalization we introduce the abbreviation ALIS. We introduce the
needed definitions below.

Definition 3.2. An operator T on a complex vector space V is anti-linear iff for all
z,y € Vand a,b e C

T(ax 4+ by) = a*Tx + b*Ty.
Definition 3.3. An operator P is an involution iff P? =1, so iff P~! = P.

Definition 3.4. Given a system defined by a hamiltonian H. An operator X is called an
anti-linear involution symmetry (ALIS) of H if and only if X is an anti-linear involution
commuting with H. We omit "of H” whenever the precise system is clear or irrelevant.
On the other hand, if we say ” X symmetric H”, we mean that X is an ALIS of H.

Given an anti-linear involution one can obtain a linear involution by composition with
complex conjugation, that is composition with 7. Indeed, (PT)7T = T(PT) = P. More
precisely, the following result holds. We will denote a general linear real involution by P
and view it as a generalization of P.

Proposition 3.2 ([14]). Set P = X7 where X is anti-linear. Then

e P is linear.

e if X is an involution, P is a real involution.

Proof. Linearity follows as T takes another conjugate and P is clearly involutive. To see

P is real, the requirement (P7)% = (X77)? = X? = 1 implies P(TPT) = PP* = 1.
Acting with P on the left yields P = P*. O
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3.4 Finite dimensional P7T symmetric systems

Note that if one demands the obtained involution P to be unitary, i.e. PP = 1, then
PT = P and as P is real P” = P. The most general P in two dimensions is then

r= () )

which is a rotation times diag(1, —1), which in turn is similar to

(1 o)

This is the only non-trivial building block for an operator P. To see this, we observe that
the involution property induces a partition of the eigenvectors in sets of 1 or 2 elements.

Proposition 3.3. If X is an ALIS of H, then X permutes the eigenvectors of H, sending
eigenvalues to their complex conjugate. The operator X so partitions the set of eigenvec-
tors into cycles of length 1 or 2;

e in case of length 1, the eigenvector is part of unbroken symmetry and has real
eigenvalue under H.

e in case of length 2, the eigenvector and X times the eigenvector contribute to the
broken symmetry and have complex conjugate eigenvalues.

Proof. If v is an eigenvector H then
H(Xv)=XHv=XEyw=E}(Xv)

so w := Xv is again an eigenvector with complex conjugate eigenvalue. As X2 = 1, for
any vector v only v and Xv may be distinct, so cycle length is at most 2.

In case of length 1, w is proportional to v, so v is an eigenvector of X. Proposition 3.1,
which holds for a general ALIS, then guarantees we may scale v so that w = Xv = v.
Also E, = E} = E};, hence the eigenvalue FE, is real.

In case of length 2, w is not proportional to v, in particular we can’t scale w to wv.
Hence v is not an eigenvector of X, implying broken symmetry by definition. O

Corollary 3.1. Let X be an ALIS of H, assume H is diagonalizable. Then there exists
a basis in which H is diagonal and P = XT is block diagonal with blocks being

(1), or (;’ é)

Proof. Start with a complete set S of eigenvectors of H. If v € § is also an eigenvector
of X, it gives a trivial block. Otherwise the above provides an H-eigenvector w (linearly
dependent on S) such that P is the non-trivial block when restricted to the span of v and
w. O

Although in the broken regime we have X (vtw) = +(v+w), this new eigenvector of X
need not be an eigenvector of H. In fact, this holds iff £, = E,,, implying degeneracy. Such
a question is also relevant when we want to investigate a converse to unbroken symmetry
implying real eigenvalues. Explicitly, under what condition does a real spectrum imply
unbroken symmetry for a P7 symmetric system? We see that non-degeneracy is sufficient.

Proposition 3.4. Given an X symmetric non-degenerate H;
e if the X symmetry is broken, the complex conjugate pairs have strictly non-zero

imaginary part
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3 PT SYMMETRY

e X symmetry is unbroken <= the spectrum is real

Proof. The broken symmetry supplies eigenvectors v and w = Xv # v. Assume the eigen-
value of H is real, i.e. the conjugate pair degenerates to E, = E) = E real. However,
then H is degenerate in F, contradicting the assumption. Thus, broken symmetry implies
strictly complex spectrum in this case.

In general, unbroken symmetry implies a real spectrum, and with the previous the equiv-
alence follows. O

Non-degeneracy was explicitly assumed in the above. However, it may also be a con-
sequence as shown in the next result.

Lemma 3.1. (The spectrum of) an unbroken X symmetric system H is non-degenerate.
This may not hold when the X symmetry is broken.

Proof. Suppose E is an eigenvalue of H and v; # w9 are associated eigenvectors, by
assumption also of X and where we normalized Xv; = v;. Then avi + bvy with complex
coefficients is again an eigenvector of H. Now

X (avy + bvg) = a* Xy + b* Xvg = a*vy + b vy & avy + bug

for suitable a and b (e.g. pick different phases). So, av; + bvy can be an eigenvector of H
which is not an eigenvector of X, contradicting unbroken symmetry. Hence no vs can be
chosen, implying the first claim.

A counterexample in a broken system is to take H proportional to the identity in 2D; 1
eigenvalue but a 2 dimensional eigenspace. O

Hence unbroken ALIS symmetry allows one to use all kinds of results based on non-
degeneracy like the ones in appendix C. An notable example is that the hamiltonian is
diagonalizable.

EP-PT transition correspondence

We can now show that in any generic case an EP will be situated at the P7T phase
transition, and that conversely P7T transitions will happen at EPs. We need little theory
if we agree to consider only generic non-pathological cases, e.g. not having an EP at
the edge of parameter space. The connecting notion is that of higher order zero. We
immediately note that limiting to P7 symmetric systems is a serious limitation in EP
theory. However, as seen more clearly in section 5.2, one may still use P7T theory is a
subregion of parameter space where P7T symmetry holds.

We already saw that EPs correspond to higher order zeroes, more precisely, that EP Ns
are (at least) N*® order zeroes. In generic case a zero of order N is an EPN.

Lemma 3.2. Let T'(x) be a differentiable P7 symmetric operator. Then in generic cases;
pr(A, z) has a double zero (in \) <= =z is at a PT phase transition.

Proof. Suppose pr(A, z) has a double zero, then %pT()\,ﬂj‘) = 0 and in generic cases the
eigenvalues form a non-differentiable structure. In a PT symmetric system this means that
there is a real-to-complex singularity, hence a P7T phase transition by proposition 3.4.
Conversely, a PT phase transition is also real-to-complex singularity. In particular,
two eigenvalues degenerate so that pr(\, z) has a double zero.
O

We can now state the desired correspondence.
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3.4 Finite dimensional P7T symmetric systems

Theorem 3.1. Let T'(x) be a differentiable PT symmetric operator, then the set of EPs
and the region of PT phase transition coincide (up to pathologies).

Proof. We observe that generically; = is EP <= 1z provides higher order zero of the
characteristic polynomial <= =z marks a P7 phase transition. We note that the <
symbols hold up to issues like perfect squares, strange matrix elements and other things
that do not happen in a generic physical system. O

EPs and P7 symmetry breaking

When reviewing the experiments done with EPs, something peculiar appears. Usually,
one starts with a parameter dependent hamiltonian that is P7 symmetric for all (real)
parameters. However, in order to measure/encircle the EP, one moves to a region where
the hamiltonian is not PT symmetric (often by complexifying parameters, where the
imaginary part comes from a physically real parameter). That is, PT symmetry is broken
explicitly, not spontaneously.

Let us introduce a convenient function for further study. First, if we put

a b
A=
(« 4
then its eigenvalues are given by

a+d a—d\>
= + .
At 5 < 5 ) + be

The relevant information for us is encoded in the argument of the square root. For an
operator family T'(x), the above quantities depend on x and we can write Ay (xz) = f(z) £
Vg(z) for some complex functions f,g defined on parameter space. We define the g-
function of a 2 x 2 operator family to be the argument of the square root. Note that EPs
are given by the zeros of the g-function in non-pathological cases.

If T(z) is PT symmetric for all z, the g-function has some special property. As
T(z) is PT symmetric, by proposition 3.3 the eigenvalues appear in complex conjugates.
Hence the characteristic polynomial has real coefficients, and the g-function is real valued.
This means that the eigenvalues only differ in real or imaginary part, but not in both.
Experimentally, this means that real-to-complex singularities can occur. On the other
hand, swaps are ruled out as the g-function needs to complex for that.

We can now use the above in the generic example of

. Fy 4+ k
H_< k E2+Z'I‘2>'

This system has g-function

E, - E Iy —Th)\?
g:k2+< 12 24y 12 2>

which gives many EPs. It is PT symmetric if and only if B4y = Fo = FandI'y = —I's =T,
in which case
g=kK> -T2

We can introduce the symmetry breaking parameters

E, T,
§=1--2 =142
B ST TT,
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3 PT SYMMETRY

meaning that H is PT symmetric if and only if § = ¢ = 0, where we neglect division
by zero issues. Notice that paths in parameter space that explicitly break P7T symmetry
correspond to paths with non-zero ¢ and/or €. Also, using suitable substitutions, allowing
such paths corresponds to complexifying parameter space.

We may write g as

1
g=kK+ i (6E, +1i(2 — e)T1)?,

and we observe that g is real iff § =0 or e =2

If § =0, then g = 5% — ((2 — €)I'1/2)?, implying a real root and so implying that the
EP is accessible. In this case, the precise value of € is not important, up to € = 2 causing
a double zero.

In the case € = 2, accessibility of the EP is not there. Note that ¢ = 2 corresponds to
a self-adjoint H, meaning (2 — €) measures the breaking of this symmetry.

For all other values of 6, €, the function is complex and experimental EPs may appear.
In fact, any real zero of g then corresponds to an experimental EP.

We note that ¢ = 0 was not treated separately. Without 6 = 0 as well we can say not
that much, but if this is the case then

g=k -Ti=k -T3

meaning we once again obtain the EPs at the phase transition.

3.5 Equivalence unbroken symmetry and Hermitian case

We zoom in on the remarkable fact that unbroken P7 symmetry is, to large extend,
equivalent to standard Hermitian theory. Only the main argument is reproduced here, for
the full details we refer to Mostafazadehs papers such as [14] and preceding papers.

A key point is to define notions as pseudo-Hermicity to encorporate a larger class of
operators with favorable properties like a real spectrum and unitary evolution. As made
precise in the below definition, we extend hermicity to system where hermicity holds up
to a basis transformation.

Definition 3.5. An operator H is called n-pseudo Hermitian iff HY is equivalent to H
via a similarity (basis) transformation 7, explicitly

HY = 77_1H77

If such n exists, the operator is called pseudo Hermitian.
If in addition the operator 7 can be chosen positive definite, we say H is n-quasi-Hermitian.

The pseudo part guarantees e.g. the transfer of real spectrum, the quasi part is needed
to keep positive-definite inner products.

For physical equivalence, we want to leave the Schrodinger equation invariant, and
adopt a definition from [18].

Definition 3.6. A pseudo-canonical transformation is a linear automorphism that leaves
the Schrodinger equation form-invariant.

In [14], we first restrict the space and operators in a certain way to get a diagonaliz-
able H: H — H and exact symmetry (note: including real spectrum); for convenience we
take this plus the assumption of a discrete spectrum as our starting point and follow the
argument presented in the paper.

We start the argument with the following equivalence as stated in [18]. Part of it is an
infinite dimensional extension of results in appendix C.
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3.5 Equivalence unbroken symmetry and Hermitian case

Proposition 3.5. Given H a diagonalizable Hamiltonian, the following are equivalent;
1. the spectrum of H is real

2. there is a positive-definite inner-product on the Hilbert space with respect to which
H is Hermitian

3. there is a pseudo-canonical transformation of the Hilbert space that maps H into a
Hermitian operator.

Let < —, — > be the inner product in which a given H is Hermitian, then it is related
to the given inner product (—, —) as

< ¢a ¢ >= <¢7 77+¢>

for some (standard) Hermitian invertible linear operator 7. We note
L ¢, HYp >=< Hp,p >
reads

(0, H) = (Ho, ny9))

and so is equivalent to
nyH = H'ny

which says H is ni-pseudo Hermitian.

The unitary equivalence with the original inner product is closely related to n4. As
< —,— > is positive-definite, so is n4, and so there is a positive operator pi such that
pi = 4. Let H denote the same space, but with the new inner product. Also, p, is
invertible, and even

< P, pit o >= (b np ) = (6,9)

or equivalently
< ¢, p M >= (pro, ).

The defining relation for (p;")f is

< ¢, ptp >= (0719, 0)

and so
(T =pr = ("

implying that pll : H — H is unitary. Hence, the space with standard inner product and
the same space with new inner product are related via a unitary operator.

The unitary equivalence extends to operators on the space. Let h be any Hamiltonian
acting in H defining time-evolution, then define

h=pi‘hpy

so that pjrl maps solutions 1(¢) to solutions t(t).
Similarly, observables O : H — H are mapped to observables

O =p."Opy

where in both cases a unitary similarity transformation is used.
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3 PT SYMMETRY

Set h = H, then
h=pyHp'

is an Hermitian (in H) Hamiltonian which we can check directly;

(&, ) = (¢, p+ Hpi ') =< pi'o, Hp W >=< Hp} ¢, pi ' >

Now H and h are related by a unitary transformation between spaces with the same
underlying vector space structure. Hence, they are related by a pseudo-canonical trans-
formation, and so physically equivalent.

In summary, a diagonalizable Hamiltonian with discrete real spectrum is physically
equivalent to a Hermitian system. Lemma 3.1 guarantees that unbroken (exact) symme-
try implies not only a real but also a non-degenerate spectrum. The discrete spectrum
assumption holds for many quantum systems and implies together with the previous that
the Hamiltonian is diagonalizable. Hence, exact symmetry is equivalent to Hermitian
theory. We finish with a concluding theorem from [18].

Theorem 3.2. Let H: H — H be a diagonalizable linear operator with a discrete spec-
trum. Then the following are equivalent:

1. The eigenvalues of H are real or come in complex-conjugate pairs
2. H is pseudo-Hermitian

3. H has an antilinear symmetry

Comments on equivalence

We note that the equivalence described above relates many concepts of P7T symmetric
theory to standard Hermitian theory. We do note that not all characteristics carry over,
not even in the unbroken case where this could seem trivial.

One problem is the quantum brachistochrone problem; if you vary H but fix the differ-
ence between its largest and smallest eigenvalue, what is the smallest time in which a state
|0) becomes a given |1) under time-evolution? We see in [12] that the Hermitian theory
gives an elliptic constraint on system parameters, where P7T symmetric theory gives a
hyperbolic one. Hence, the Hermitian case has a bound on ’driving force’ and so transi-
tion time, whereas the PT symmetric has not and so transition time may be arbitrarily
small. In [19], a quantum computer was simulated, where indeed the evolution time of
PT symmetric systems could be decreased beyond the Hermitian set-up.

Another problem is the assumption that H is diagonalizable, especially if one is inter-
ested in EPs. Namely, coalescence of eigenvectors implies that the relevant Jordan block
still has a off-diagonal 1, meaning that H is not diagonalizable.

Then, we note that broken symmetry will in general not be equivalent to Hermitian
theory. Usually, broken symmetry implies complex eigenvalues, and although a similarity
transformation exists, this may not respect the inner product structure. Yet this broken
symmetry is crucial for phase transitions and EPs.

A final note is that the invertible antilinear symmetries are treated. This includes the
involutions, which on the other hand have some special properties. For instance, the fact
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3.5 Equivalence unbroken symmetry and Hermitian case

that an ALIS permutes some chosen eigenvectors of H needs more than invertibility; the
operator 2P7T for example is invertible but will introduce extra numerical factors. On one
hand, restricting to involution may be to restrictive, but on the other hand convenient to
start with.
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4 APPLICATIONS OF EP AND PT7 THEORY

4 Applications of EP and P7T theory

In this section we like to see how measurements concerning EPs and P7T symmetric systems
can be done. We start with selected EP experiments that show various practical aspects
of EPs. The second part looks into P7T symmetry in both linear and non-linear settings.

4.1 EP experiments

In this section we will discuss some EP experiments that involve key aspects of EP theory.
We start with the first experiment in which an EP was found and demonstrating both swap
and phase change. As this experiment is quasi-static, i.e. the parameters are changed in
steps, we move on to a dynamical measurement. This experiment also utilized the break-
down of the adiabatic approximation to achieve orientation dependent mode selection. We
finish with the 'merging loop method’ which is an alternative way of measuring EPs, and
treat an experiment where this was used.

First EP experiment

The first article reporting experimental evidence of EPs used a microwave cavity [20]. The
cavity was like a disk cut in two by a slit of variable width s, which controls the coupling
between the two sectors. On one side of the slit, a Teflon semicircle was attached, with
the center a variable distance § from the center of the cavity. This controls the asymmetry
between the sectors. We adopt an overview of the set-up in fig. 4.1.

519

e —

0.1m

Figure 4.1: The set-up used in [20], illustrating also the system parameters.

The cavity supports various eigenmodes, but in the theory we limit ourselves to two
selected ones. Indeed, for certain values of s and ¢ these modes coalesce. More precisely,
the corresponding (simplified) operator is

_(dfr +1iT s
H(s,é)-( 13 ! f2+z'rg> (4.1)

with ¢ f1 and f5 the frequencies and I'; and I'y the widths of the uncoupled resonances.
The ¢ function of the system, i.e. the expression that enters the square root in the
eigenvalues of eq. (4.1), is given by

5f1 — I —Ty\?
9(8,5)282+<f1 f2_|_2 1 2>
2 2
which is clearly complex. We see a general rule appearing; with only real parameters at
our disposal, the factors of 7 are 'put in’, usually with gain/decay or coupling. Otherwise,
only real-to-complex transitions and no swaps are available.
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Figure 4.2: The avoided level crossings in the experiment[20] for s = 58mm resp. s =
66mm, note that these are observed quantities and not the system parameters as they
appear in eq. (4.1). One observes that either frequencies or linewidths cross, where the

roles are exchanged when s passes sgp.

The EPs appear in the zero set of g, and letting § denote s complexified (as is done in
[20]), the EPs appear at

§Ep—:|:<F1;F2—i6fl2_f2). (4.2)

Of course, only real s values are accessible in the laboratory. The detection of the branch
structure must then be achieved by varying both s and ¢ to encircle an isolated EP in the

ds-plane.
In our formalism it is convenient to work with real equations. Hence we split g in its

real and imaginary part;

CS0fi—fol =T
Im(g) =2 5 5

Assuming no special relation on the frequencies and linewidths, equating to 0 yields

I't-T
SEP = ilTQ
(4.4)
0P = 2
1

This gives two isolated points in the ds-plane. We note that these are both EPs, in
fact they are what we called experimental EPs in section 2.5. Indeed, measurements like
this were the main motivation for us to introduce this concept.

In the experiment ¢ and s were adjusted individually so that the loop has the shape of
a rectangle, where the loop encloses the positive sgp solution. At each step the frequencies
and linewidths were measured, and following these already showed two characteristics of
an EP. One is the avoided level crossing in energy or linewidth. That is, either the real
and imaginary part must differ, or both. This is showed in fig. 4.2, where on the other
side of the EP the role of becoming degenerate is played by the other party.

The swap can thus be detected by measuring the eigenvalues only. However, to detect
the acquired phase one really needs to track the eigenstates. In the experiment the state
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Figure 4.3: The change of the fields in [20]. Drawn in the traversed path in ds space,
along with the field configurations at various times. The intensity in the cavity is shown,
including the phase using gray scale. In (a) one finds the change |¢)1) — [12), whereas (b)
reveals the change [¢2) — —|v1).

in terms of intensity and relative phases was measured at each step, as summarized in
fig. 4.3. One observes that the phase change has been confirmed. Moreover, it was
found that depending on the orientation of the measurement loop either one or the other
eigenstate acquires the minus sign.

Dynamically encircling an EP

The previous experiment was a quasi-static experiment: the measurement consists of
repeatedly fixing a point in parameter space and measuring the instantaneous eigenval-
ues/eigenstates there. Effectively, the measurement takes place with H = 0. In this way
one can accurately measure the eigenstates and/or eigenvalues without having to worry
about the adiabatic approximation.

One could also try a dynamical EP experiment: one traverses a loop in parameter space
continuously (not point by point) and directly drags the eigenstate along to measure the
final state upon return, hence one explicitly sets H # 0. However, one may ask if it is
possible to perform such an experiment in such a way that the adiabatic approximation
indeed dominates the dynamics. It was previously believed that slowly encircling an
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4.1 EP experiments

EP would not significantly violate the adiabatic approximation as we will investigate in
section 6. Nevertheless, as argued in [21] there is a catch due to the complex energies
of the non-hermitian hamiltonian. These complex energies induce an extra decay factor
via the dynamical phase which is proportional to exp([Im(E)dt). Hence there are two
competing time-scales; on one hand one should work slowly to approach the adiabatic
limit, on the other hand one must be fast in order to have a small contribution from the
dynamical phase factor. On top of this is the problem that deviations from the idealized
adiabatic situation are magnified in time. It is thus an experimental challenge to measure
adiabatic encircling around an EP.

Instead of trying to avoid the appearing decay one can also try to use it. This was
succesfully done in [22] using a waveguide setting. This allows for another trick; the
system is formally equivalent to a Schrodinger equation, but the role of time is played by
the propagation direction x. Hence the decay happens in space and not in time.

One starts with a waveguide and selects two modes to which we restrict the model.
A general mode is then obtained by superposition of the two basis modes, hence defined
by coefficients ¢;(z) and ca(x) depending on position. The evolution of these coefficients

could be written as
o) = (™ 25) (G o

where one has §(z) the detuning, g(x) the coupling between the levels and ; the gain/loss
of mode i. The variation in x could be achieved using for instance a curved wobbly layout of
the waveguide. In this way, a wave travelling through the waveguide experiences a varying
hamiltonian, and can so encircle an EP in parameter space. The non-adiabatic effects
induces a difference in amplitude between the basis modes, depending on the chirality
of the wave. Effectively, the waveguide selects one of the two basis modes depending on
whether the wave comes from the left or the right, see fig. 4.4. This is related to the
asymmetry of the wobbling of the waveguide. Although both modes undergo significant
losses, the ratio of the modal transmission rates was measured to be about 450, meaning
that one of the modes practically disappears.

Figure 4.4: Illustration of the non-adiabatic behavior of the system, taken from [22]. In a
and b the evolution of the modes for positive resp. negative encircling direction is depicted.
In ¢ the implied selection of the eigenmodes is illustrated.
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Merging loop method

We finish this section on EP experiments with an experiment to illustrate how one can
detect an EP without measuring, or even deducing, the eigenstates. Indeed, measuring
the eigenvalues alone is sufficient and this method was already explained in [23]. We will
refer to it as the merging loop method.

The idea is as follows. If there is no degeneracy present, then traversing a loop in
parameter space will cause the eigenvalues to return to themselves individually 2. Hence,
each eigenvalue traces out its own loop in complex energy space. This radically changes
if an EP is encircled. Say the path in parameter space runs from t = 0 to t = 1. If
Ai(1) = X;(0) we say that eigenvalue \; goes to eigenvalue ;. If j # i the locus of \(t)
ends not at its initial value A;(0) but instead ends at A;(0). In particular, the locus of
Ai(t) is no longer a loop. What does happen is that the loci of A;, A; and possibly more
eigenvalues together form one big loop. Indeed, given that A; goes to A;, also \; must
attain another index than j as its original place is already taken. After tracing the indices
far enough one must return to index ¢ by finite-dimensionality.

The case of an EP2 is illustrated in fig. 4.5. As often in such pictures, the energy
corresponding to the EP is marked. This is not the EP itself according to our standards,
but some refer to it as EP nevertheless. Regardless of this issue, marking the corresponding
energy provides a visual aid indicating whether or not the EP in parameter space is
encircled. The principle behind this is that the eigenvalues are locally bijective with
parameter values in the case of 2 system parameters.

ImE

0.06
0.04 o

0.02

1.55 1.65 17 175 Re E 1.55 1.65 17175 Re E

(a) No EP is encircled and both eigenvalues return  (b) An EP is encircled and the eigenvalues are both
to their original values. part of one big loop. One of the eigenvalues is now
indicated with dots to emphasize the merging.

Figure 4.5: Schematic view of possible paths of the eigenvalues, taken from [23]. The black
dot marks the energy corresponding to the EP, not the EP itself.

The argument works also the other way around; if one finds that an eigenvalue does
not return to itself, then there is non-trivial topology. Indeed, there is a non-trivial
permutation of eigenvalues, indicating that an EP is present. Of course, one needs to
check if really a single degeneracy is encircled to conclude on the order of the EP.

Now that we explained the method, let us review the experiment in [24] which used
it to show the presence of an EP2. In [24], a nanometer thin membrane in a microcavity
was excited with a laser. The radiation pressure then drives vibrations of the membrane.
System parameters where the power P of the driving laser and A the mean detuning
between the laser and the cavity. This was modelled with a 2 x 2 effective hamiltonian
system, having an exceptional point for appropriate parameter values. The energy of the
system is then given by the mechanical frequency (corresponding to Re(E)) and mechanical
linewidth (corresponding to Im(E)) of the membrane. Figure 4.6 shows their results, and

20ne can see that this happens at least locally. A proof for the global case can be found in section 6.
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we recognize the shape of fig. 4.5.
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Figure 4.6: EP topology as measured in [24]. Blocks and circles mark the two differ-
ent eigenvalues, which are given by frequency and linewidth. Varying the laser power
allowed to measure different loci, which in turn are traversed using detuning. The energy
corresponding to the EP is indicated with a cross, and the lines are the fitted model.

In the experiment even the sheets themselves were measured, going a step beyond what
was necessary for finding an EP. As shown in fig. 4.7 the expected sheets were found in
reasonable agreement with the model.
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Figure 4.7: Eigenvalue/energy sheets measured in [24]. The two real system parameters
P and A appear as input, the output is Re(FE) on the upper line (a and c) and Im(F)
at the lower line (b and d). The left column shows the measurement, the right one the
theoretical expectation. Note that the viewing angles between upper and lower line differ.
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4.2 P7T phenomenology

We now turn to some P7T phenomena. A recent overview of non-hermitian / P7 symmetric
experiments can be found in [25], and some will be treated here as well. We first focus on
a PT symmetric waveguide experiment. This will confirm various P7 symmetry effects
and will set the stage for an extended set-up used in a later section of this thesis. After
that we treat some P7T symmetric systems of differential equations. This will e.g. place
PT symmetry in a non-linear setting, but one can extend the ideas in a straight-forward
way and so use PT symmetry to study these systems. As P7T experiments have not
yet been done with genuine quantum mechanics, we finish with a recent proposal using
circuit-QED.

PT symmetric optical channels

One of the fields in which P7 symmetry occurs is optics; many hamiltonians are P7 sym-
metric but not hermitian. The general idea we can get by treating theory and experiment
as given in [26].
To start, consider
H = p* + Vr(2) + Vi () (4.6)

with Vi and V; the real resp. imaginary parts of the potential. This H is P7 symmetric
if and only if Vg, Vi satisfy

Vr(#) = Vr(—12)

Vi#) = —Vi(—3) )

that is, Vg is an even and V; an odd function of . In optics, V is usually given by the
refractive index n(x) = ng(z) + ins(z), hence we demand similar equations for nr and
ny. The analogy with quantum mechanics is for instance shown by the equation for the
electric field of an optical beam travelling paraxially;

OE 1 0°E

"oz T ok a2
where kg is the vacuum wavenumber and k& = kgng with ng the substrate index. Indeed,
this is a Schrédinger type equation where z plays the role of time.

A PT symmetric system is obtained by coupling a waveguide channel with gain to
its PT symmetry partner; a channel with an equal amount of loss. The experimental
realization of such a setup as done in [26] is depicted in fig. 4.8. The main part is the 2
channel waveguide on which a pump laser is directed. Using an amplitude mask, one of
the channels will not be optically pumped and a wave in this channel experiences a natural
loss v1,. The pumped channel will experience an effective gain ygeg = 7o — v1.. Note that
this makes the imaginary part of the potential an odd function as desired. The real part
of the potential, given by the real refractive index, is obtained by appropriately doping the
used substrate material and follows an even function. The resulting potential is depicted in
fig. 4.9a. The coupling is achieved by placing the channels sufficiently close together. The
evanescent waves of the channels may then overlap and there arises a coupling k = 7/(2L.)
with L. the coupling length. The measurement is done by sending a signal beam into one
of the two channels. The resulting beam is directed to a CCD camera to measure both
intensity and phase.

The corresponding modelling equations are

+ ,IC()[TLR(JJ) + ZTZ[(SU)]E =0 (48)

OF
z’a—l . ﬂC;effEl By =0
gE (4.9)
22 LN 4 kB =0
0z 2
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Figure 4.8: Setup used in [26]. A light beam hits a waveguide with 2 channels, one of
which is pumped.

or in matrix form

.0 Eq %‘IYGeff -k Ey
il — . 4.1
"0z <E2> ( -k —37) \E (4.10)

with F7 and Fs the fields in the channels. Hence we are in the setting of 2 x 2 matrix
hamiltonian systems. This system is P7 symmetric iff ygeg = 71, = 7y, that is when the
gain and loss are in balance. The g-function of this system is

1 2
g=K" - E(')’Geﬂ“‘*"}’L)

which in the P7 symmetric region simplifies to

The phase transition occurs at v = 2x. At the same point an EP is present, where EPs
also exist in the non-P7 symmetric region.

The behavior of the system can be divided into three parts, corresponding to the 2
PT phases and the transition:

e unbroken phase region where we are below threshold; v < 2k. Indeed, g > 0
and PT symmetry is exact. One can define sinf = v/2k, and find supermodes
(superpositions of modes of the individual channels) given by

1,2) = (i expl(ﬂe))

with corresponding (real) eigenvalues +cosf. We observe that the relative phase
can vary, but the relative intensities are fixed.

e broken phase region where we are above threshold; v > 2x. Here g < 0 and PT
symmetry is spontaneously broken. Setting cosh § = v/2k, we have

1,2) = <Z eXp1(3F9)>

with (imaginary) eigenvalues Fisinh#. In this case the relative phase is fixed while
the relative intensity varies with the gain.

40



4.2 PT phenomenology

e phase transition region v = 2k. Here g = 0, and one is at an EP. The modes coalesce

to
)= (}).

meaning that both channels have equal intensity and have a relative phase of /2.

One can check that the eigenmode basis (|1), |2)) is not orthogonal w.r.t. the standard
hermitian inner product. This is illustrated in fig. 4.9b.

Supermodes of conventional system

Conventional coupled system

PT-symmetric coupled system

(a) Potentials in a conventional/hermi- (b) Schematic overview of supermodes in different system classes.
tian system and a P7 symmetric sys- The upper row depicts even resp. odd modes in a convention-
tem. Here z is the propagation direc- al/hermitian system. Similarly the second row depicts the modes
tion of the signal beam and x is the for a P7 symmetric system with unbroken symmetry. The modes
direction perpendicular to both z and have coalesced at the threshold as seen in the final row.

the direction of the pump laser.

Figure 4.9: Potentials and supermodes for both conventional /hermitian and P7 symmetric
systems [26].

The different forms of the eigenmodes depending on the type of hamiltonian induce
different intensity patterns in the channels, as is shown in fig. 4.10. Conventional hermitian
systems, i.e. systems with no gain or equivalently ng being identically zero, have the
well-known sin(wt) unitary time-evolution. This case has multiple symmetries; left-right
symmetric (i.e. the wave is the same when viewed from the front or from the back) and
is reciprocal (if the other channel is excited the pattern is swapped accordingly). In the
unbroken P7T symmetric case, fig. 4.10 shows that one recovers a pattern much like the
conventional case, and the equivalence between unbroken P7 symmetry and hermicity
from the previous section this is not surprising. Two major differences do appear, both
consequences of the skew eigenmode basis: the left-right symmetry is gone and now the
behavior is non-reciprocal. For the latter, observe that on the left the signal moves away
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4 APPLICATIONS OF EP AND PT7 THEORY

slowly, while on the right the signal is gone rather quickly. Finally, the case of broken PT
symmetry is very different. If the gain channel is excited the beam ’stays there’, whereas
if the loss channel is excited everything goes to the gain channel.

PT-symmetric system below threshold

S«

PT-symmetric system above threshold

S

Figure 4.10: Field solutions as presented in [26], an arrow marking which channel is
excited. The threshold refers to 2x, where the gain + is increased from left to top right to
bottom right. In conventional (hermitian) systems the pattern is reciprocal, while in PT
symmetric systems this fails irrespective of being above threshold (exact symmetry with
real eigenvalues) or below (spontaneously broken symmetry with imaginary eigenvalues).

Conventional system

Some of the phase measurements are shown in fig. 4.11. The first two pictures show
the situation without gain. In ¢ we have gain below the threshold 2x and unbroken P7T
symmetry. The phase can be any value in [0, 7] , depending on /2. In d, the gain has
increased just beyond the EP. Indeed, the relative phase of /2 is observed, and this is
constant when the gain is increased further. As can be seen from the eigenmodes, in this
regime the gain will only effect the relative intensities between the two channels.

Figure 4.11: Measurements from [26], where ¥ is the phase difference between the modes
and the gain is increased from a to d. Upper panels show intensity, lower panels show
relative phase. Conventional states (yg = 0) are shown in a (even mode) and b (odd
mode). P7T symmetric states are shown on the right. The case v < 2k (unbroken PT
symmetry) is shown in ¢ and v > 2k (broken symmetry) is shown in d.
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4.2 PT phenomenology

PT symmetric differential systems

As the above experiment already touched upon many experimental aspects of PT, let
us now look at more theoretical applications in the form of differential equations. We
list a few examples from [27]. This starts with some small examples from earlier papers,
including also non-linear P7T symmetric systems. For non-linear differential systems the
PT phase is defined to be broken if the solutions blow up or approach a limit point. In the
remaining cases with oscillatory-like motion the phase is defined to be unbroken (this is
discussed in more detail in [28]). The main subject of the paper concerns a predator-prey
system modelling immune-response.

An elementary example of a non-linear P7 symmetric system is a model of a self-
catalyzing chemical reaction given by

N
reo (4.11)
y = kxy.

Defining P to swap x <> y and 7 to replace t — —t, indeed this system is P77 symmetric.
For any k # 0 this system will not yield an equilibrium, hence the P7T phase is always the
broken one.

We now turn to the main problem treated in [27]. At the basis are the predator-prey
equations as given by

T =ar —bx
, Y (4.12)
Y= —ay + bxy

which is P7 symmetric for any chosen value of a and b. If we view z and y as complex
variables, a generic solution is oscillatory, hence the system is in unbroken P7T phase. By
adding a cz? term to the equation for & this can be turned into an inward or outward
spiral depending on the sign of c.

The next step is to couple such a system to its PT symmetric partner, where also the
coupling obeys P7T symmetry. The resulting system is

i1 = a1 — T1Y1 — CT] + gT1T2
U1 = —y1 +T1y1 + fy1y2
To = —xo + X2y + cx% — gTr1T2

U2 = Y2 — T2Y2 — fy1y2.

(4.13)

Here P changes the label 1 <> 2 and as usual T inverts time. It is reported that in
unbroken symmetry regions the dynamics is either chaotic or almost periodic, depending
on the initial conditions.

Such a system is then used to model a threat posed by two antigens (concentration y;
and y9) with corresponding antibodies (concentration x; resp. x3). The second system is
introduced as the PT symmetric partner, but it has interesting consequences; it turns out
that the combined effect of the antigens could help the recovery of the patient. After some
modifications in the system, the model’s two (real) parameters f and g were varied and
the behavior of the solutions was classified according to the disease being lethal, chronic
or curable. The resulting plot is given in fig. 4.12. We see that the unbroken regime has
only chronic behavior. The broken regime is split in the extreme cases; either the antigens
grow out of bound or decay away.
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4 APPLICATIONS OF EP AND PT7 THEORY

0.0 0.2 0.4 0.6 0.8

Figure 4.12: Indication of (un)broken P7 symmetry in [27]. The blue hyphens (top
right and bottom left) indicate unbroken regime; here the concentrations are oscillatory,
meaning that the lethal decease is now chronic. The broken regime is divided in two
parts; the red x’s (mainly top left) indicate unbounded lethal solutions while the green o’s
(mainly bottom right) indicate decaying cured solutions.

Exploiting a genuine quantum system

Until now most P7T experiments in literature did not use genuine quantum mechanics in
their set-up; often optical techniques, microwave cavities or other systems were used (e.g.
electric circuits in [29, 30]). The relevance of quantum mechanical treatment, appropriate
when the system is of hamiltonian type, hinges on the formal equivalence of the modelling
equations with a Schroédinger type equation. Fairly recently a real quantum experiment
has been proposed in [31]. Although the P7 symmetry is emphasized, the setup allows
for more general non-hermitian systems.

The used architecture is that of circuit-QED; a superconducting circuit for which
the quantum limit is appropriate. The setup is illustrated in fig. 4.13. Two qubits are
individually coupled to two resonators, which in turn are coupled in the center. The cubits
have tunable gap €;(t) while the superconductors have a tunable coupling J(t). It is this
tunability that allows one to pick certain non-hermitian (4 x 4) matrix hamiltonians, which
for certain choices will be P77 symmetric.
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4.2 PT phenomenology

Figure 4.13: Setup as proposed in [31]. Two qubits (orange) and two resonators (blue)
are coupled and are time tunable. Usually the input signal with strength (A;,) enters at
leg 1L

The measurement then consists of measuring the transmission from one of the legs 1L,
1R, 2L, 2R to another. For instance, one can send a signal with amplitude (4;,) to 1L

and measure at leg j, A. This yields an average amplitude <Aj’)‘> and so one finds the

out
A
<A(])ut>
Ty jn = A

The result of a simulated measurement with j, A =2R is shown in fig. 4.14; theoretically
the plot corresponds to the real part of the eigenvalues of the system. The PT symmetry
could be checked and exploited in this system like it was done in the previously discussed
two-channel waveguide.

transmission coefficient

In(Ti.2gr]%)

0.1 0.3 0.5 0.7
J

Figure 4.14: Simulated transmissions for varying input frequency w and coupling J (also

in frequency units), taken from [31]. Measuring transmissions allows to check P7 theory
in circuit-QED and so a quantum setting.
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5 THREE-CHANNEL WAVEGUIDE SYSTEM

5 Three-channel waveguide system

In this section we explore a three-channel P7 symmetry inspired waveguide system that
provides an explicit setting for EP theory and could potentially be experimentally realized
[32, 33]. This will motivate also later theory in section 6. However, some theory is already
needed here we deal with that first. Most results of this chapter are published in [34].

The theoretical questions we need to address concern the mixing of EP permutations
and the non-abelian properties that arise in this. Indeed, in case one encircles multiple
EPs one has to properly compose the effects of the individual EPs. This was thought to
be ambiguous [35]. One can solve this problem by considering based loops and their defor-
mations. The proofs of mathematical statements are postponed until we look deeper into
them in section 6. The theory of fundamental groups allows to generalize this technique
to arbitrary degeneracy structures like exceptional lines in a three-dimensional parameter
space.

We continue with a closer look a the three-channel waveguide. Concrete regions and
examples can be found inside the system where one could verify the mathematical claims
experimentally. We mimic this using numerical simulations and find that the result agree
with the found theory.

5.1 Theoretical analysis

We start by addressing the issue of encircling multiple EPs and the induced composing
of the individual effects. Let us first phrase this problem in a more precise and simple
fashion. Consider two EPs encircled by two oriented loops 1 and 79, respectively, as
depicted in fig. 5.1. Suppose one has measured the permutations obtained from the loops
~v1 and y2; which permutation should one obtain for a loop 3 encircling both EPs?

Figure 5.1: Two EPs (crosses) encircled individually by loops v; and 79, respectively,
and a loop 3 which encircles both EPs.

The essential insight is that one first needs to fix a common base point for the paths 1,
~v2 and -y3; the permutations should be compared for the same initial system parameters.
Let us denote by A the discriminant set of the family of operators, i.e. A is the set of
parameters for which two or more eigenvalues coincide, and by X the complement of A in
parameter space P. Fixing a basepoint x¢g € X we can consider the measurement paths
that start and end at xg, that is, the loops based at xy. Let us denote by Loop(zg) the
set of oriented loops in X that are based at zg following appendix A. As each loop in
Loop(zg) is contained in X the operators have distinct eigenvalues at any point on such a
loop. Tracing a loop v € Loop(xg) induces a fixed change of eigenstates, in particular it
induces a permutation p, of the eigenvalues. Denote by

A(xo) = {py | v € Loop(zo) } (5.1)

the group of permutations that can be achieved in such a way. This is a subgroup of the
symmetric group of the n distinct eigenvalues, and by using a labeling is isomorphic to a
subgroup of 5.
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(a) Two paths around two EPs. (b) Deformed ~172. (c¢) Deformed ~271.

Figure 5.2: Example of loops based at the bold dot that enclose two EPs marked as crosses.
The deformed v;7y2 and 271 resemble each other, but are not homotopic relative to the
base point.

A group like A(zp) was already mentioned in the book by Kato [1] where the term
exceptional point was used for the first time, and the group was called the A-group. The
A-group there consists of the permutations that arise from analytically continuing the
eigenvalues back to some initial point. The group A(zg) is a generalization by allowing
for more general adiabatic connections. The next section will investigate this, but already
the connection in [8] suffices for our needs here.

The concatenation of two loops in Loop(x) defines a 'product’ in Loop(z) that is in
general non-abelian. By the holonomy interpretation, the assignment v ~ p, preserves
this product in the sense that

Proyr = Pya © Py (5'2)

where in 9y we first track v; and then ~s.

It is at this point that the distinction between 727 and 71y2 becomes interesting.
This is because we are mapping the loops to a permutation group that in general is non-
commutative. In fact, as (based) loops the two products v27v; and 7;y2 may be different
in the sense that they are not homotopic relative to the basepoint. The loops 1 and 2
both start and end at the basepoint zg. The concatenation 2y, is a loop that starts at
xo and following ~; intermediately comes back to xg, after which =9 is traversed which
again ends at xg. A homotopic deformation of v97y; as a loop in Loop(zg) is a continuous
deformation of the concatenation ~9vy; within X that keeps the starting point of +; and
the end point of o fixed; the intermediate visit of xy becomes irrelevant. This applies
analogously to the product vy172. In fig. 5.2 we show continuous deformations of v;v2 and
Y9y1. We in particular see that one cannot deform ~27v; to 172 within X if one needs to
keep the basepoint fixed.

The continuous deformation of the based loops v € Loop(zg) and their concatenation
leads to the definition of the fundamental group (X, xg) whose elements are the equiv-
alence classes [y] of loops that are homotopic to a representative vy and where the group
operation is defined by the product given by the concatenation of loops. The situation de-
picted in fig. 5.2 is then general. By the theory of fundamental groups, once fundamental
paths are chosen, any loop can be written in terms of these. So far we used deformations to
stress the non-commutativity of the product of two based loops. We want to come back to
them later as they are also relevant for the concrete question of calculating permutations.

Let us now come back to the situation of fig. 5.1. First, we choose basepoints z1, xa
for the small loops ;1 and 9, respectively, and x3 for the big loop 3. The basepoints 1
and xo are likely to be different. In this case we choose an oriented path b from x1 to x2
as shown in fig. 5.3a which allows us relate the based loops 71 and - in the sense that a
loop 2 € Loop(x2) can be associated with a loop b™72b € Loop(x1). For convenience, we
will refer to this operation as pull-back via b, and call b a bridge from x1 to xo.

As shown in fig. 5.3b, a bridge induces a fixed labelling of eigenvalues, and permutations
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(a) Two loops with different basepoints. A bridge (b) Example of eigenvalue paths induced from a

is needed to pull-back information from one point to bridge. Open circles mark the eigenvalues at x1 and

the other. This requires that the bridge is traversed have unprimed labels, filled circles mark eigenvalues

twice and in opposite directions. at x2 and have primed labels. The bridge induces
the relabelling 1 +— 2/, 2+ 1’, 3 — 3.

Figure 5.3: Aspects of a connecting path or bridge, both in parameter and eigenvalue
space.

must be rewritten accordingly. This means, if one wants to talk about the permutation
first 1, then 2’ one has to pick basepoints, and if these do not coincide also bridge(s). For
the relabelling illustrated in fig. 5.3b, suppose, e.g., that v induces the permutation (1'2’3")
(where we use the cycle notation). Then pulling-back via b one obtains 1 + 2" +— 3’ — 3,
212+ 1and 3+ 3+ 1"+ 2, that is, b2 induces (132).

Using a bridge from z1 to x3, the pull-back allows us to continue as if x3 = x1, a choice
that would be convenient in experiment as well. By the previous discussion, the big loop
can be decomposed into the smaller loops, and composing permutations accordingly yields
a unique permutation for the big loop, given the labeling and bridges used. Observe that
this technique may also be used to keep track of the occurring geometric phases. The
various dependencies that occur we discuss together at the end of this subsection.

Permutations are topological

We now turn to the fact that permutations induced by loops around EPs are topological in
nature, as opposed to geometric. This means that based loops that are homotopic induce
the same permutation of eigenvalues. This does not assume anything on the nature of the
degeneracies, i.e. whether they are EPs, DPs or yet another type. Note that this fact also
allows one to pick the most convenient loop in a homotopy class, without any theoretical
requirements on the quantum system. The proof is given in the next section and uses that
A(xg) is a discrete group.

Lemma 5.1. If 7,4 € Loop(zg) are homotopic relative to zp, then the induced permuta-
tions are equal, i.e. p, = ps. In other words, the assignment v — p, factors as

Loop(zo) — m1(X,z0) — A(zo)

v =[] = py (5:3)

where each map preserves products.

Let us propose a procedure for checking the composition rule in the situation of a
planar parameter space, where we consider a loop that encircles k£ EPs, each with winding
number 1 which intuitively means that each EP is encircled exactly once. Homotopy
theory allows to extend such a procedure to higher dimensional parameter spaces where
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the degeneracies are of codimension 2 like the exceptional lines in the three-level system
that we consider in section 5.2. A measurement could proceed according to the following
steps

1. fix a loop 7 encircling all EPs once, and choose a base point zg on this loop,

2. write [y] = [vk] - - - [11] where each v; € Loop(zg) encircles a single EP with winding
number 1,

3. measure the permutations p; := p,, and p := p,,
4. check p and py - - - p1 for equality.

Non-abelian behavior occurs if there are two loops 71, y2 such that p., op,, # Dy, 0 Drs,.
As 5, is commutative for n < 3, a system in which this is possible should have n > 3
many levels. Note that EP3s are not required to see non-abelian behaviour. Instead it
is sufficient to have a system with three levels and two EP2s with permutations (12) and
(23), respectively.

Another observable property is orientation dependence, e.g. by comparing a loop en-
circling two EPs with a figure 8 shaped partner loop, or more precisely, compare the
permutation along the loop 727y; shown in fig. 5.2 with, e.g., 72 v1. As opposed to the
previous construction the present one requires EPNs with N > 3. This is due to the
fact that for an EP2 the permutation is always a transposition and hence equals its own
inverse.

Examples

Let us determine the A-group for some well-known cases. Encircling a single EPN once
yields an N-cycle, and one has A(zg) = Z/NZ. This identification does not depend on zg
if the parameter space is path-connected, which we assume for simplicity, but the precise
eigenvalues permuted do depend on xy. Consider now 2 EP2s, then there are a number of
different possibilities depending on how the eigenvalue sheets are connected and whether
the EPs are not located at the same point in parameter space, that is, if they can be
circumscribed individually.

Suppose the EP2s share no sheet. Then the system must have at least 4 distinct
eigenvalues, and we may take a 4-dimensional (sub)system. Fixing a basepoint and a
labelling, we may assume that the EPs have permutations (12) resp. (34). If the EPs are
at different locations, we can permute independently and one has A(zp) = Sy X So. In
case the EPs are on top of each other, the only non-trivial permutation is (12)(34), so
A(.Z’()) = SQ.

Suppose the EP2s share one sheet. Then the system can be taken 3-dimensional,
and the permutations as (12) and (23). These two transpositions generate S, and hence
A(xg) = S5 as this is the largest group that can be obtained with a 3 dimensional system.
We note that encircling both EP2s in the right order yields (12)(23) = (123), and as [35]
showed, doing this 3 times yields the identity. For another loop, one may have the opposite
order and measure (23)(12) = (132), again a 3-cycle. However, we stress that using the
theory treated here we can calculate the outcome after encircling just once. This is crucial
in showing non-abelian behavior as this manifests itself in the difference between (123)
and (132), which are both 3-cycles. To conclude this case, if the EP2s would lie on top of
each other the resulting structure would look like an EP3, which we treated above.

Finally, suppose the EP2s share both sheets, as happens in the standard case (e.g. [2]).
Now the system can be taken 2-dimensional with both permutations equal to (12). Hence
A(xg) = Ss, similar to taking just 1 EP, and note that the EPs cannot be on top of each
other without becoming equal.
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5 THREE-CHANNEL WAVEGUIDE SYSTEM

We see that the A-group detects the differences in sheet structure. If we include
more EPs or allow higher order EP Ns one can reason similarly, be it with more involved
permutations.

Remarks

Let us inspect how the exposition above depends on choices such as basepoints and bridges.
We remark that this is similar to the discussion that two fundamental groups m (X, x¢)
and 71 (X, 1) with different base points xg and z; are isomorphic by a conjugation-like
construction, the conjugacy provided by a bridge between zg and x1.

Concerning the basepoint, choosing one fixes a path-connected component of X. Within
this component, bridges can be used to connect different basepoints, relating Loop-spaces
by conjugation (for the eigenvalues, standard bookkeeping of the labels appears). We
disregard the case where X is not path-connected as it is in general not meaningful to
compare levels associated with parameters in different connected components of X because
of the absence of a continuous dependence of the levels on the parameters.

Given two bridges b, b between the same basepoints, the results of pull-back of a loop
may very well differ. Key is the loop b'b e Loop(zg), which may yield a non-trivial
permutation. Indeed, b and b may pass an EP on different sides, such that we approach
the final point using different sheets, where the loop will indeed reveal this EP permutation.
Again, there is uniqueness up to conjugation, as made precise in the next lemma.

Lemma 5.2. Let xyp and x; be basepoints, let b,i) be bridges from zq to 1. The two
pull-back operations are related by conjugation with the permutation of b™'b.

Proof. For ~ € Loop(z1) arbitrary, one has b~"yb homotopic to (b~0) ™" (b™"yb)(b™'b), where
all factors are in Loop(zp). The claim now follows. O

Note that conjugation in .S, leaves the cycle structure invariant, so one may think that
a permutation depends only on the loop (and by the above, only the homotopy class).
This holds true for the cycle structure, but one should still be careful when using concrete
labeling, which varies even per basepoint.

Let us also discuss coordinate dependence. When reparametrizing parameter space, we
assume that the reparametrization establishes a homeomorphism of the original parameter
space. This induces a homeomorphism of the non-degeneracy space X, and so loops
in one parametrization correspond to loops in the other. Also here a conjugation-like
correspondence appears. It does supply another reason that deformations, even of the
degeneracies themselves, do not change the physical aspects.

We emphasize that the exposition does not include any assumptions on the operators.
However, it is well-known that hermitian systems do not allow for EPs. This is usually
proven by the non-existence of a complete set of orthonormal eigenstates at an EP. Using
the techniques above, we may provide a more topological proof, where we only need to
look around the EP. More concretely, one may show non-existence of EPs by showing that
A(xp) is trivial, as done in the next proposition. The premise is satisfied for any hermitian
family and also includes exact P7T-symmetric systems [14].

Proposition 5.1. Let T'(z) be a family of n x n matrix operators. If T'(x) has real
eigenvalues for any z € X, then A(xzg) =0 for all x5 € X.

Proof. Let v € Loop(xg) be any loop in X, denote by );(t) the induced path of the i
eigenvalue. By assumption, each \;(#) moves on the real axis, and we may label eigenvalues
such that X\;(0) < A;(0) whenever i < j, where being in X allows for the strict inequalities.

Assume a non-trivial permutation is achieved, so we may consider the smallest eigen-
value (label 7) that gets permuted. Observe that a bigger eigenvalue (label j) must take
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its place; that is ;(0) < (0), yet Ai(1) > A;(1). By the Intermediate Value Theorem,
one must have \;(t*) = \;(t*) for some t* € (0,1). However, this implies a degeneracy
which contradicts belng in X. O

In conclusion, we have found that encircling two or more EPs requires based oriented
loops to answer the question of how the resulting permutation is composed from the
permutations associated with the individual EPs. We also described how to relate the
results for different base points. In the next subsection we will describe a very concrete
example using an experimental setup that could be used to test the results.

5.2 Proposed experiment

In [26], two coupled waveguide channels are used, see also the treatment in section 4. They
are subjected to laser pumping giving rise to a P77 symmetric system in which P7 phase
transitions could be observed. We now investigate a three-channel waveguide system like
in [32], see also the schematic picture in fig. 5.4. Laser pumping induces complex refractive
indices, which translates to a complex potential Vi = N + ¢P, in the kth channel, where
Ny = kony is the real refractive index part and Py = ko7, /2 the effective pumping part.

lpump laser

Vi=Ni+:1P

o Va=Ny+1iPy
incoming

light V3 =DN3+iPs

L+ R12
N

4+ 23

—_— x
Figure 5.4: Schematic view of the experimental set-up (see the text).
By placing channels next to each other (real) couplings kj2, kes are induced, which

depend on the coupling lengths between the channels. The electric field amplitudes Fj
change along the propagation direction z as (see [32] for experimental details)

d E1 ‘/1 + iPl —K12 0 E1
de Ey | = —K12 Vo +1iPy —K923 E, (54)
T\ Es 0 —koz  Va+iPs) \Fs

Let us redefine fields and measure relative to the central channel 2. Setting v, =
Vi — Vo, pp = P — P», and taking equal couphngs K12 = K23 = K, the scaled fields
Ey(z) = e V2HiP)r By (1) satisfy i L E = HE, where E = (EI,EQ,E;;) and H is the
operator
v t+ip1 —kK 0
H = —K 0 —K (5.5)
0 —K 3 +1ip3

which is similar to the idealized expression found in [33]. The electric field components
hence satisfy a Schrodinger type equation with a non-hermitian operator where the role
of time ¢t is played by the spatial direction x.

We will restrict ourselves to the subspace of operators that are of the form

z4+2 —/2 0
T(z,e)=| —vV2 0 -2 |, (5.6)
0 V2 cz—2i
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5 THREE-CHANNEL WAVEGUIDE SYSTEM

where z is a complex and ¢ a real parameter. This matches the desired family from eq. (5.5)
after we identify.

v; = Re(z)

p1=1Im(z) +2

vz = cRe(2) (5.7)
p3 = clm(z) — 2

k=2

We note that ¢ appears as the ratio of differences in refractive index;

U3 N3 — N2
cC= = —
U1 ny —n2

and can thus vary of a large range, likely not excluding ¢ = +1. Concerning z, its real part
may be limited in experiment as it needs a large difference in refractive indices. However,
already interesting behaviour can be found around the Re(z) = 0 plane. We note that
Im(z) is bounded on one side by the loss in the channel and on the other side by maximum
gain from the pump laser. The cases ¢ = £1 were investigated in [6], where it was shown
that these are normal forms for EPs appearing in 3 dimensional systems. It was found
that for ¢ = 1 the system has an EP3 at z = 0, while for ¢ = —1 the system has an EP2
at z =0.

The decomposition of the parameter space

The parameter space of the system is the space C x R with coordinates (z, c¢). The EPs of
the system are given by the parameters (z, ¢) for which the eigenvalues of T'(z, ¢) coalesce
in a branch point singularity. One can find candidates for EPs by finding higher order
zeros of the characteristic polynomial p, .(\) = det(A — T'(z,¢)). The parameter space
thus decomposes into a degeneracy space A and a non-degeneracy space X. A is then
given by the discriminant set

A ={(z,¢) € C x R|discrim(p, c(\),\) = 0},

which forms lines in the three-dimensional parameter space. EPs can only be found on
these lines, e.g. by finding higher order zeros of p, .(\) or by numerically tracking the
eigenvalues along a closed loop. For the latter technique, we remark that deformation
invariance of permutations allows one to check large pieces of A by just a single loop.

The parameterization T'(z, c) of the operator family is injective up to line the z = 0.
The operator T'(0, ¢) is indeed independent of ¢, meaning that the entire z = 0 axis defines
only 1 operator. This explains why the z = 0 line appears often in calculations. We will
frequently use the characteristic polynomial of the system given by

Pac(z) = 2% — (c+ 1)za? + [e2? — (1 — ¢)2iz]z + 2(c + 1)z (5.8)

Let us first identity the regions of P7T symmetry. One can define the parity operator
P to swap the outer channels of the waveguide, and define the time operator 7 to be
complex conjugation. Checking the commutation relation one finds that the system is PT
symmetric if and only if

Re(z) = cRe(z)
Im(z) + 2y = —(cIm(z) — 2v)
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5.2 Proposed experiment

or written differently

(I—-c)Re(z) =0
(14 ¢)Im(z) = 0.

Hence, if |¢| # 1, the only solution is z = 0. For ¢ = 1, any z real is enough, while
for ¢ = —1 one needs imaginary z. We conclude that the P7 symmetric region consists
of three lines, or where points are of the form (0,a), (a, 1), (ai,—1) for a real. Let us
investigate where the P7 symmetry is exact/broken so that we know if, and so where,
spontaneous breaking occurs.

At z = 0, the c-axis, the operator T'(0, ¢) is constant and given by

2 V2 0
V2 0 V2
0 V2 —2i

The characteristic polynomial reduces to pg.(x) = =, meaning we have x = 0 as triple
zero. The eigenspace has dimension 1, and the eigenvector can be chosen as

3

V2

—1

We see PTv = v, and by definition the PT symmetry is exact here (as we did not demand
to have a complete set of eigenstates). Observe the alternating 7/2 phase difference of the
outer levels with respect to the central level.

For ¢ =1 and z real, the operator is

242 V2 0
V20 V2
0 V2 2—2i

and the characteristic polynomial reduces to p(z) = 23 — 2222 4 22z + 4z. We note that
z = 0 reduces the case to the above, so let us look at non-zero real z. The discriminant
is —22(432 + 1622), which does not change sign if we do not pass z = 0. The roots thus
have the same structure everywhere; one real root and a non-trivial complex pair as one
can check numerically. We conclude that the line, up to the point with z = 0, lies in the
broken P7T symmetry region.

For ¢ = —1 and z imaginary (write z = ai with a € R), the operator is

(a+2)i V2 0
V20 V2
0 V2 —(a+2)i

and the characteristic polynomial reduces to pu; () = 23+ (4da+a?)x. The roots are thus

x1=0, x9=+/—ala+4), x3=—x9.

So if a & [—4, 0], the roots produce imaginary numbers, and thus the system is in broken
PT phase. For a € [—4,0] the symmetry is again exact; the eigenvectors can be put in
the form

i etic
v = | (a+2)/v2 and the conjugate ones as v+ = [ /2
—1 e¥io¢
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5 THREE-CHANNEL WAVEGUIDE SYSTEM

where
o _ /AT D) + 0+ 2)i
N 2

and « is real for a € [—4,0]. In fact, setting u = (a + 2)/2, this interval translates into
u € [—1,1] and one has

U
a=tan"! | —— ).
< V1—wu? >
As « is real for a € [—4,0], one concludes exact symmetry by checking the eigenvectors

directly.

To summarize, the system is P7T symmetric on three lines in parameter space. Both
phases occur, and the lay-out is as in fig. 5.5. Recall that the system has real eigenvalues
at the blue parts and non-trivial complex conjugate pairs on the red.

- 12
E '.-li"
T L
Taay, - 10
LT ', - C
] -
ey |]_IJllr Ila
S raa,,
- "ray,
= ey,
- "
[ —_ E 1-2
_5 N : |
~ R
0 X 14 1 -
Im(z) +

Figure 5.5: Illustrating the P7T regions; blue dashed lines mark exact symmetry, whereas
red blocks lines mark broken symmetry. The real lines extend to infinity.

Let us start the EP search with a search for EP3 candidates. To do this, one can
compare coefficients; 22 — asx? + a1 — ap has a triple zero if and only if ag = a% /27 and
a1 = a2/3. The first equation tells us

1 3.3
yielding
9 —54
z=0Vece=-1Vz'= —.
(c+1)?

The second condition yields
(c4+1)22%/3 = c2* — (1 — ¢)2iz
which we can check for each separate case given by the first equation;
e if 2 =0, any ¢ € R will do. Here the z = 0 line appears.
e if c=—1, one has 0 = —2? — 4iz = —z(z +4i), which gives z = —4i as new solution.

e the other solution gives only complex ¢ solutions which we discard.
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5.2 Proposed experiment

This yields the conclusion that the EP3s are confined to the z = 0 axis and the point
(z,¢) = (—4i,—1). Finding of the EP2s can be done numerically by obtaining A and
checking its components for swaps after encirclement, i.e. using the merging path method
as discussed in section 4. This method can also be used to check whether the found EP3
candidates are truly EP3s. Note that the phases of the eigenstates need not be considered.

The lines in A contained in the plane Re(z) = 0 are shown in fig. 5.6. Here all points
in A are EP2s, except for points on the c-axis which are EP3s. Two main features appear:
a tangent intersection of two lines at (0, —1) and a cusp at (—44,—1). Observe that both
points appear in the EP3 calculations and are P77 phase transitions.

Im{z)

Figure 5.6: EP structure in the Re(z) = 0 plane.

Figure 5.7 shows both degeneracies and P7T symmetry lines in the three-dimensional
(z,c)-space. All new degeneracy lines consist of EP2s as can be checked numerically. We
see that the cusp in the plane in fig. 5.6 is in fact part of a more complex structure in
the three-dimensional space. Here four lines move out of the plane of which two have
Re(z) > 0 and the other two have Re(z) < 0. Also two additional lines of EPs appear
top-right in the picture close to the central line that is already present in fig. 5.6.

The measurement

To measure an EP, two methods stand out; directly tracking the eigenstates and the
merging path method were only the eigenvalues are tracked. Both were treated in section 4.
Tracking eigenvalues only has clear experimental advantages; one does not need to track
eigenstates adiabatically, dynamical phases are irrelevant, and slight deformation of the
path yields the same permutation. The disadvantage is that the phase information may
go unrecorded.

In this system, one could for fixed system parameters measure the profile of the wave
in each waveguide. That is, one obtains (complex) E}, (x) for k = 1,2,3. Writing these in
one vector E(z), the profiles should follow

E(z) = e HE(z = 0) (5.9)

in analogy to quantum mechanics. An advantage with respect to genuine quantum systems
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Figure 5.7: EP and PT structure in parameter space; the solid lines are EPs, the red

blocks and blue stripes mark broken resp. exact P7 symmetry. The picture is symmetric
in Re(z) — —Re(z).

is that now gain and loss happen in space (along the z-axis) and not in time. By deducing

the eigenstates E, (z) (again k = 1,2, 3) theoretically, one can change to eigenstate basis.
In this basis one must have

Eip(z) = e ™M By (z = 0). (5.10)

In this way the eigenvalue(s) can be obtained.

Examples

Let us discuss suitable paths to check the mentioned phenomena. Although other regions
shown in fig. 5.7 would suffice as well, we are particularly interested in the region near the
tangent intersection that involves both EP2s and EP3s. The region is shown in fig. 5.8.

Let us first deal with the problem of concatenating loops. The relevant loops are shown
in fig. 5.9. We deliberately take the basepoint equal in all cases, hence the slight variation
on fig. 5.1. The upper EP is an EP2, the lower an EP3, taken in the plane ¢ = —0.9. We
note that the situation is similar for ¢ close to this value, although the distance between
the EPs varies. Hence, one can vary c if it is desirable for experiment, and the discussion
below will still hold.

In figs. 5.9a and 5.9b we show the employed fundamental paths ~; resp. 72 and find
their induced permutations. As a reference, we investigate the paths y9y; and 192 in
resp. figs. 5.9c and 5.9d. Thus, the first four pictures show the resulting permutations of
eigenvalues p1, p2, pop1 and p1po, respectively. The big loop in fig. 5.9e is base homotopic
to v2v1, as can be seen by pulling the left side of the loop through the area between the
EPs. We observe that the permutation induced by this loop indeed equals pap1, and does
not equal p;pe. This agrees with the problem discussed in fig. 5.2.
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Figure 5.8: Paths near (z,¢) = (0,—1). The two blue lines are EP lines: the line z = 0
consists of EP3s and the other line consists of EP2s. The bold black circle and dashed red
figure 8 are in the plane ¢ = —0.9 and can be used to experimentally verify non-abelian
behaviour (see the text).

Turning to the figure 8 loop in fig. 5.9f, we note that it can be deformed to v 72, so
one would expect the permutation (23)7'(132) = (23)(132) = (12). Note that this is the
same permutation as the one from 172 as v, induces a transposition, yet v1y2 and v; 7172
are not homotopic. This does not contradict our claims; depending on the system, non-
homotopic paths may induce the same permutation. One can still measure orientation
dependence by traversing the figure 8 in opposite direction. This loop is homotopic to
(71 7v2) " = 7271, so yields the permutation (132)7'(23) = (123)(23) = (12). Hence this
loop differs from ~,7; (which yields a (13)) only by orientation of the second part, and
gives a different permutation.

One can include phases in the above theory in a natural way; the path +; can be
associated with holonomy matrix p;, which extends the permutation p;. These holonomy
matrices were already provided in [6] and are given for the EP2 resp. EP3 by

-1 0 0 010
=10 01|, po=(0 0 1
0 10 100

As the permutations induced by these matrices do not commute, the matrices them-
selves do not commute. Indeed, a direct check reveals

0 01
pep1={( 0 1 0
1.0 0

-1 0
pipe=(1 0 0
0 0 1
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(e) Permutation (13). (f) Permutation (12).

Figure 5.9: Loops in the plane plane ¢ = —0.9 of the parameter space (left panels). All
loops have the same basepoint, marked by a circle. The solid part of the loop is always
traversed first, so before the dashed part of the loop. The orientations of the loops are
indicated by arrows. The EPs are marked by crosses, where the upper one is an EP2 and
the lower one is an EP3. The complex energy planes (right panels) show the resulting paths
of the three eigenvalues, each drawn with its own color and style. Labelling eigenvalues
top to bottom, we can read off the induced permutation given in the individual captions.

58



5.2 Proposed experiment

which projected to permutation yields the observed compositions

pep1 = (132)(23) = (13)
pip2 = (23)(132) = (12).

Note that the permutations (132) and (12) generate S3, hence A(xg) = S5 for any non-
degeneracy x.

The holonomy matrices allow to calculate the holonomy group at a point, in other
words the group of adiabatic changes to the eigenstates of T'(z¢) with xg € X. This group
we call Adia(xg) in the next section where we investigate its properties in greater detail.
Assuming that no extra geometric phases occur, all phases are given by the minus signs
in the products of p; and p2. One can check that all diagonal matrices with any order of
41 can be achieved. Indeed, taking squares of the products above yields

-1 0 0

(PeP1)*=1{ 0 1 0

0 0 -1

-1 0 O

(Pp2)*=| 0 -1 0

0 0 1

and in addition

1 0 O

pi(pepr)? = [0 -1 0
0 0 1
With these matrices any order of +1 and —1 on the diagonal can be achieved. Hence the
holonomy group Adia(zg) is faithfully represented by generalized permutations matrices
with entries in {£1}, see also appendix B. It follows that Adia(xg) = {£1} 1S3, where
we use the so-called wreath product as explained in the same appendix. One can show
that this is the full or achiral octahedral group, i.e. the symmetry group of the octahedron
allowing reflections. As can be deduced from the matrices, it has a presentation given by
<a,b|a3 =% = (ab)* = e>, and is isomorphic to Sy x S9. In particular, we see that any
combination of permutation and phase changes (allowing only +1) can be achieved by
traversing an appropriate based loop.

The degree of an exceptional point in systems with more than two parameters

Taking a closer look at the tangent intersection, one may ask the question what its degree
should be. As reported in [6], the tangent intersection may behave as an EP2. This means
that traversing a circle in the ¢ = —1 plane which encircles this EP (and only this EP)
yields the standard EP2 signature of swapping 2 eigenstates, as shown in fig. 5.10a, and
as expected resembles the result of fig. 5.9¢ (using the obvious relabeling). However, the
four lines arrive in a topological cross, and one may take a circle that goes through the
other two quadrants. In this case, one can take a plane given by Im(z) = ei with € > 0
small, and take a large circle. Interestingly, this yields the standard EP3 signature, as
seen in fig. 5.10b.

One can now do a similar construction with the point at (—4i, —1) and conclude that
its degree depends on the plane. In a general parameter space of dimension d > 2, any
point where at least 3 EP lines meet has a variable degree (note that the degree of an EP
is unambiguous on the lines).

Again fundamental groups provide an explanation. In case of a planar parameter space
with an isolated EP, the fundamental group is Z and one has a map Z — A(xzg). This has
kernel NZ, and N is the degree of the EP. Now, imagine 2 distinct EP structures/lines,
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Figure 5.10: The tangent intersection as EPs of different orders.

as we want an intersection point necessarily for d > 3. The fundamental group is then the
free product Z 7, i.e. generated by 2 fundamental paths v; and . Hence each ~; induces
a map Z — A(xg), with kernel N1Z resp. NoZ. In case N1 # N clearly an issue arises,
but even if N = Ny we see that degree should be associated to a fundamental path, or
equivalently some surface. At the intersection point there is simply no canonical choice.

Summary

We showed how one can compose the effects obtained from encircling multiple EPs, which
in fact works for an arbitrary degeneracy structure. The problem of finding the correct
calculation can be solved by using the theory of fundamental groups, which requires based
oriented loops. A relevant result here is that permutations associated to the loops are of
topological as opposed to geometric nature, hence deformation can be used for convenience
in both theory and experiment.

Applications of these insights were explored in a waveguide system, of which we inves-
tigated the parameter space and identified a region where all tests could be performed.
The presence of both EP2s and EP3s allows one to demonstrate the non-abelian nature
of systems with multiple EPs by experimentally tracking the eigenvalues.
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6 Adiabatic geometry

In this section we will investigate the geometry behind the adiabatic approximation in
finite-dimensional quantum state spaces. We will first trace the steps necessary to arrive
at the dynamics induced by adiabicity. The dynamics can be written as a parallel transport
equation, and we continue with investigation of the associated connection. This brings
us to a comparison of different principal fiber bundle (PFB) constructions which support
the connection depending on the physical setting. None of the found PFBs will support
swaps of eigenstates in a natural way. Given our interest in EP theory, this is a crucial
requirement for a suitable framework. We thus continue with another PFB that does allow
for the swaps in a canonical way. After formulating this PFB, we turn to the connection
and its holonomy. The adiabatic approximation will allow us to define special groups,
hence the title 'adiabatic geometry’. We show how these groups can be used to summarize
possible adiabatic evolutions and their use in the classification of degeneracies. We finish
with a new EP definition based on this theory.

6.1 Adiabatic dynamics in non-degenerate systems

In this section we trace the steps starting from the adiabatic approximation and leading

towards a parallel transport equation. We do not assume any property of the time-

dependent hamiltonian H(t), except finite-dimensionality, unless this is explicitly stated.
To start, let us phrase the adiabatic approximation in an exact way.

Definition 6.1 (Adiabatic approximation). If a quantum system H () starts in an eigen-
state of H(tp), it will be in an instantaneous eigenstate of H(¢) at each point in time.

To extract the time-evolution or dynamics induced by this approximation, we want
to apply the general method of expanding in eigenstate basis. It is at this point that we
need to make further assumptions; a priori H(¢) may be any matrix, and its set {|i;(¢))}
of eigenvectors need not form a basis of the state space for arbitrary t. If H(t) is required
to be self-adjoint, then it is normal and so has a basis of eigenvectors, also known as
eigenframe (cf. definition C.2). We saw that EPs are not compatible with this assumption,
even if we require this only around but not at the EP. Indeed, around the EP the Im(E)
sheet structure then collapses to constant 0, and the sheets can not be connected (’form
a staircase’).

Instead we require H (t) to be non-degenerate for all ¢, a natural assumption as we will
see at various points in the argument. Already here, it implies by theorem C.1 that we
have an eigenframe at each point in time. Looking directly at the adiabatic approximation,
we see that non-degenerateness allows a different phrasing: eigenstates do not miz in
time. The reason is that now no superposition of linearly independent eigenvectors is an
eigenstate. Indeed, if H(¢1) has eigenstates [¢1) and |1)2) with associated energies E; resp.
E2 with E1 7'5 EQ, then

altbr) + bliiz)

is not an H(t;) eigenstate for any a,b € C. Hence the eigenstates are well separated by
non-degenerateness.

Theorem C.1 also implies the existence of dual eigencoframes; a basis of the dual space
consisting of left-eigenvectors of H(t), which is the dual basis of the |¢) cf. lemma C.2.
These elements we will denote by (x;| and satisfy

(xalH = Ei(xl
xalvr) = ou

The use of bra-ket notation is to notationally mimic usual identities; note that no inner
product is used. The (y;| should be thought of as functionals that can act on vectors like
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6 ADIABATIC GEOMETRY

|1) by the canonical pairing between a vector space and its dual. We see that this pairing
replaces the inner product, but as the pairing is bilinear instead of sesquilinear it is not
an inner product itself.

Let us now do the computation (compare [36]) including the non-degenerateness as-
sumption. We can thus write a general state |U(¢)) as a linear combination of the eigen-
states;

£) =Y e Oey(t) (1))

k=1

with 6 () = —% fg Ei(t')dt' the dynamical phase. Substitution in the time-dependent
Schrodinger equation gives

ihZewk’ (ék!¢k> + Cka) + iék¢k!¢k>) = Z eiekck(HWk»-

k=1 k=1

The 6, and H|¢);,) terms cancel, and so one has

Z esz Ck|¢k Z esz CkW}k

At this point we want to project to single coefficient on the lefthandside, and this can
be done using the corresponding dual covector (x;|. This is instead of a bra '(1|’; the
concept of bra is not defined in our situation as we do not have an inner product. One
nevertheless obtains the exact result

== ey (x|, (6.1)

k=1

We now want to rewrite the off-diagonal part, i.e. the terms that contain c; with k £ [.
To this end, we differentiate H (t)|¢x(t)) = Ex(t)|1x(t)) with respect to t and obtain

HIyg) + H|vw) = Biltr) + Biltx)-
Projecting out with (x;| produces

OalH ) + OalH k) = Be(Oalr) + Ex(xilde)

so in case [ # k this produces by the orthonormality relations

OalH k) + Ealvs) = Er(xilvr)

and by the non-degeneracy assumption one may conclude

Cald) = <’§‘H1§’f

Hence one obtains without any approximation, but with non-degeneracy assumption;

_ i(05-00),, (OalH [
—(xwlvn) e ;6 o E (6.2)

The righthandside consists now of two terms; the diagonal resp. off-diagonal contri-
bution to the dynamics. In other words, after writing the above system in matrix-vector
notation the first term will appear exclusively at the diagonal while the second appears
exclusively off-diagonal.
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At this step, the implementation of the adiabatic approximation can be seen clearly.
As already argued, the approximation is equivalent to the non-mixing of eigenstates. In
eq. (6.2), this amounts to imposing a diagonal evolution. Hence the off-diagonal terms
need to be set to 0. One observes that the discarded terms are O(H ), so discarding these
is also known as the ’infinitely slow limit®. We conclude that the adiabatic dynamics is
given by

¢ = — (Ol tn) ek (6.3)

which agrees with the usual formula for hermitian systems. Indeed, then the dual
left-eigenvector (y;| is given by the bra of |¢/;), assuming |¢;) is normalized.

Let us now inspect the solutions of eq. (6.3). A local solution is found by exponentiation
and reads

ex(t) = cx(0) exp <— [ @ line dt') — 4(0) exp(ivu(t)) (6.4)

where one recognizes the generalized geometric phase (after the original geometric
phase as found in [38]) defined as

=i / (o) () d £ (6.5)

An important question concerning the dynamics is whether or not the geometric phase
is real, that is if the exponent yields a U(1) phase factor. In the hermitian case, so after
agreeing on some inner product, one can show that the geometric phase is real. The
argument is given together with the below lemma. We see that the conjugate symmetry
of the inner product is used, so this result is quite specific for the hermitian case.

Lemma 6.1. If H(t) is hermitian for all ¢, then the geometric phases are real and given
by

=i / (e et d 1.

Proof. In the hermitian case indeed one can take (x;| = (¢;| where the latter really uses
the inner product and we assume all states are normalized. That is, one has (Y|¢y) = 1
at all times, so differentiating with respect to t gives

(|t + (rliw) = 0.

However, by conjugate symmetry of the inner product this reads

2Re (<¢k\1/')k>) =0.

Hence the integrand is purely imaginary, and the lemma follows.
O

In a non-hermitian setting the above need not be true, as an explicit example in [36]
shows. The geometric phase may contain an imaginary contribution, which means that
the solution does not obey unitarity. This comes on top of the dynamical phase; as it is
an integral over complex energies it is in general complex. As in [36], dynamical phase
directly takes the decay rate of an eigenstate into account, and the geometric phase may
be viewed as a correction.

3Tt may seem as if the remaining terms must then be neglected as well, but this is not the case as shown
in [37].
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6 ADIABATIC GEOMETRY

The adiabatic dynamics can also yield a swap of the eigenstates, in addition to the
complex scaling from the geometric phase. The key observation is that the exponent
solution is local. One is not able to turn this into a global solution if the eigenvectors
are multi-valued and different patches are needed. For example, if the eigenvectors follow
complex root branch structure one can not preserve the labelling after walking around the
branch point. In this case one needs to stitch different local solutions together, where this
stitching may create a swap in the process.

It follows that the natural setting to consider the dynamics is given by a connection
whose parallel transport gives eq. (6.3). Writing this equation as

e+ (xelvr)er =0 (6.6)

shows that the equation is indeed of parallel transport form. The local connection matrix
is given by

(xald |¢1)
L (x2(d [12) ) 6.7)

(xnld[9n)

where the diagonal shape reflects the non-mixing of eigenstates.

This is the most general form of adiabatic parallel transport. In the next subsection
we will investigate implementations of this theory in various settings with the associated
PFBs.

6.2 Review of adiabatic connections

In this subsection we go over three different versions of connections inspired by the adia-
batic approximation. That is, the adiabatic change of eigenstates is viewed as the holon-
omy given by a certain connection on a principal fiber bundle (PFB), see also appendix A.
We will see different structure groups appearing depending on the setting in which the
theory can be applied.

Although EPs do not appear in hermitian systems, we do want to consider such systems
as well to obtain a broad picture. Some constructions only work in such a setting, and
these are relevant to our discussion. When evaluating these, the following result will play
a key role and so we state it here already (similar to a result in [34]).

Proposition 6.1. Let H(x) be an operator family, depending smoothly on =z € P where
P denotes the parameter manifold. If H(x) has real eigenvalues for every = € P, then the
eigenvalues and the eigenvectors are single-valued functions on the non-degeneracy space
X CP.

Proof. It suffices to treat the eigenvalues as we work on X. Assuming they are multi-
valued, there is a loop v in P such that the eigenvalues are swapped. Indeed, for otherwise
one has well-defined separated sheets and the eigenvalues are single-valued. Let us consider
the paths of the eigenvalues. As all eigenvalues are real and there are finitely many of
them, we can talk about the smallest permuted eigenvalue, call it A\;. Thus, there is an
eigenvalue A;(0) > X;(0) that takes the place of A;(0), that is A;(1) = A;(0) < A\i(1). By
the Intermediate Value Theorem, we must have a crossing of A\; and A;, which contradicts
working in X. Hence every swap is trivial (the result in [34]), and the claim follows. [

The Berry-Simon connection

The first variant that appeared in literature is the connection now known as the Berry-
Simon connection [39], introduced a little while after Berry’s paper [38] on the geometric
phase. It applies to hermitian systems, and is usually denoted by
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6.2 Review of adiabatic connections

Ag = i(Yx|d[p)- (6.8)

This expression is usually not used in matrix form and used to calculate the parallel

transport of one selected eigenstate. The extra factor of ¢ comes from the convention that

Ay appears in an exponential factor. Indeed, using Ay one can rewrite the local solution
in eq. (6.4) as

(T = exp < 7{) Ak> 1 (0) (6.9)

with 7' the return time and C the traversed curve in parameter space. In the usual
convention one obtains the connection matrix as before, but without the factor ¢ and with
the usual bra-ket notation. As hermitian systems have real eigenvalues, by proposition 6.1
the eigenstates are single-valued meaning that the local solution is also global. Lemma 6.1
says that the geometric phase is real, hence the holonomy restrict to a U(1) action. Indeed,
the exponent will be a pure phase, without further restrictions if no further assumptions
are made.

The corresponding bundle is a hermitian line bundle. Explicitly, the setting is as
follows. Let V be a finite-dimensional complex inner-product space (hence a finite-
dimensional Hilbert space), let T'(x) be a family of hermitian operators acting on V
where £ may be taken from some parameter space P which is a smooth manifold. In
[39], one considers a single fixed eigenvalue A\;(x), for which one assumes that the opera-
tors T'(x) all have an isolated non-degenerate spectrum. So, let us restrict P to the set of
non-degeneracies X of the operator family 7'(z). Then form the set

By ={(z,v) e X xV | T(z)v = \g(z)v} (6.10)

of based eigenstates. One has a natural manifold structure on By, and a natural projection
7k By — X given by (z,v) — x. By non-degeneracy, each fiber of 7 is in bijection with
C*. Equation (6.8) defines a connection on this PFB.

However, the group C* is much bigger than the biggest possible holonomy group U(1).
To solve this, we remember that V' is equipped with an inner product, and so one may
shrink B; down to normalized states and obtain

By, = {(z,v) € X x V| T(z)v = A\p(z)v, ||v|| = 1} (6.11)

with natural projection 7 = mx|p, . Each fiber of 7’ is bijective to U(1). It follows that B}
is the more natural candidate as the bundle corresponding to the Berry-Simon connection.

One may ask if it makes sense to consider all eigenvalues/eigenstates in one go. More
precisely, what if we define a set B of elements (x,v) where v may be any eigenvector
of T(x)? Looking at eq. (6.9), it follows that the holonomy group will be a subgroup of
U(1)", meaning that the eigenstates do not feel each other. Hence this connection does
not prompt us to consider all eigenstates at once. On the contrary, it hints at considering
one eigenstate at a time.

Let D be a surface in parameter space such that 0D = C, the traversed curve, one
can rewrite eq. (6.9) as

Yu(T) = exp ( / dAk) () (6.12)
D
This is related to the curvature of the connection defined (for the k" eigenstate) as
F, =d Ag. (6.13)

Indeed, as U(1) is abelian no extra wedge term contributes to the curvature. We do note
that in general the two-form that gives the phase is dw, so that the curvature defined as
dw + w A w may be different.
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6 ADIABATIC GEOMETRY

The geometric phase as above turned out to pop up in various systems, also non-
adiabatic ones for which physically it is not immediate clear why this is. The Aharonov-
Bohm effect is a well-known example of a non-adiabatic setting for which the geometric
phase calculation still works. An extension of the theory suitable for such cases is treated
next.

Aharonov-Anandan connection

We want to discuss a generalization of the Berry connection known as the Aharonov-
Anandan connection [40]. It is formulated in a hermitian setting, but its generality within
this setting is striking. One can apply this formalism for any cyclic state, that is a state
which returns to the same ray after some time. To formalize this, let us denote the state
space by P (where we wish to exclude the 0 vector), and the projective state space by P
whose elements we write as projection operators. So, a state |¢(¢)) moving in P is cyclic
with period T' if and only if

[W(T)) = e[v(0)) (6.14)

with ¢ real. Physical appearances of cyclic states are abundant, and the paper lists the
three main classes. The first is the genuine cyclic state, the second is an adiabatic system
by taking the adiabatic limit, and the third is a 'pseudo-cyclic case’. An example for the
latter is a wave that is split and later recombined; although physically the system does
not return, it may mathematically be treated a such.

The derivation of a generalized phase is done as follows. Given a cyclic state as in
eq. (6.14), define

0/(t) = eVl (t)
where f is any differentiable function such that f(7") — f(0) = ¢. This enables us to write
[W/(T)) = [¢'(0)).
Furthermore, using the TDSE one finds for f the equation
= f = WlHW) =iy (6.15)

The first term on the righthandside is the dynamical part, and one defines a new phase 3
where this is taken out, viz.

T
B=6+ /0 (WIH|p) dt. (6.16)
One can deduce an alternative writing, almost identical to the geometric phase ~, as
T . T .
g [ fewimmar=i [ wiiha (617

One may check that this expression is independent of ¢ and the choices of f and the pa-
rameterization of the curve in P. It is true that (8 does not depend on the used hamiltonian
H. Hence 8 depends only on the traversed locus in P.

Let us phrase this in a bundle framework. For this we need the projection 7: P — P
from state space to projective ray space. From eq. (6.14), we already see that an evolving
state |¢(t)) in P is cyclic if and only if its projection in P is a closed loop. Explicitly,
using hermicity one can define a state [1(t)) to be cyclic with period T' if and only if

[Y(T)) ()] = [$(0))(»(0)]- (6.18)

We note that one really needs the inner product on P to define this. The bundle defined
by 7 has structure group C* by definition of projective space (we excluded the zero vector
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6.2 Review of adiabatic connections

in P). Again, because one has an inner product available it is natural to work with
Py = {1 €P| ||| = 1} and the restricted bundle 7,: Py — P, which is a U(1) bundle.
This matches the physical picture as the phase is real, resulting in U(1) actions on the
states. Fixing P to be n-dimensional as usual, note that P; = $?"~! and P~ Ccprl,
Hence 7 is isomorphic to the standard projection $?"~! — CP"~!, independent of H and
so the physical set-up that one wants to model. The norm-induced metric on P induces
metrics on P; and 73, and passing to CP"~! one may show that the Fubini-Study metric
appears in a natural way. In this observation one sees why the physical set-up matters
so little; the problem is always phrased in the bundle $?*~! — CP"~! endowed with the
natural metric and so a natural parallel transport, independent of the hamiltonian H.

Let us connect this to the previous case of adiabatic dynamics. As can be guessed from
eq. (6.17), if one chooses [1)') = |¢3), the k™ eigenstate of some hermitian hamiltonian,
then 5 reduces to the usual geometric phase «. The connection that is used is thus

Ay = i(pld[y)). (6.19)

Mathematically, the bundle my: P; — P is pulled back to parameter space P. The key
object is a map P — P, i.e. a map sending given parameter values to some ray in a smooth
way (compare [41]). We claim that the map

fo: P =P, xe (@) ()] (6.20)

is well-defined and provides the desired pull-back. That f; is well-defined hinges on propo-
sition 6.1; as H is hermitian, eigenstates are defined up to a phase (assuming fixed norm
1), so the projection to P yields an unambiguous answer. The relevant diagram is depicted
in fig. 6.1; note that a similar story/diagram exists with 7: P — 73, but as seen previously
it is more natural to consider P; and ;. This yields a U(1)-bundle over P, similar to the
Berry-Simon picture. The difference is that now one can pass through a degeneracy if one
(manually) agrees on the specific eigenstate on this point by tuning f.

’Pl = SQn—l

L

pt,p =, cpt

Figure 6.1: The AA-phase associated to m; yields the geometric phase after pull-back to
parameter space P using eigenstate map fp. The phase does not depend on the cho-
sen hamiltonian, as is reflected in the canonical identification of m; with the projection
S§?n=1 5 CP™ ! and the flexibility of choosing fj.

Let us discuss the physical applications of the theory in some more detail. In [40], it is
shown that the Aharonov-Bohm (AB) effect can also be explained using the new phase f.
This provided more insight in the question why a phase obtained in an adiabatic setting
appears also in a non-adiabatic setting. It is also shown that § is gauge-invariant, and
this is again applied to the AB effect where the gauged object is the electro-magnetic
4-potential A*.

The generality of the AA-connection also has its problems. As mentioned, the Fubini-
Study metric appears naturally in the problem, and as can be deduced from fig. 6.1, the
projection 7 and so the AA-connection follow the induced parallel transport from this
metric [40]. This means that the relevance of 5 in a physical setting is given by fj only,
where we can replace f by any smooth map from P — P. A hamiltonian H need not
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6 ADIABATIC GEOMETRY

appear, and in this way also non-degeneracy space X is irrelevant. Hence, the parameter
space P will always be viewed as a pullback of CP"~!, where the geometry is fixed by the
induced metric (see also [41]).

We conclude that the AA-connection is not an appropriate tool to study EPs. Not only
does it depend heavily on hermitian theory, already in the hermitian setting the properties
of the hamiltionian have no impact on the geometry and so the dynamics. The absence
of a special role for degeneracies is also gone, and as can be found in [41] one can even
generalize to N -fold degenerate states leading to U(N)-PFBs. We thus shift our attention
to a generalization of the Berry-Simon picture suitable for non-hermitian systems.

Generalized Berry-connection

The previous connection was in a hermitian setting and so does not allow for the swaps
that are so crucial for EP theory. Therefore, we now treat [8] in which the swaps are
explicitly built into the formalism.

Unique to the approach in [8] is that the parameter space itself is extended, even before
the state spaces are attached. The motivation is that this mediates the multi-valuedness
of the eigenvalues. The parameter space of non-degeneracies X is first enlarged to an
Sp-bundle M over X. However, it may be that the needed transition functions do not
cover all permutations of Sy, and so one finds an irreducible subgroup b of S,,. One may
thus restrict the principal S,-bundle 9T to a principal h-bundle 9t. It is this 9T that is
argued to be the correct parameter space for adiabatic evolution.

The final bundle is achieved by adding the state spaces. This is done similarly to the
Berry-Simon procedure; one attaches a line (i.e. a copy of C) to each point of 9t and makes
the proper identifications to stitch different patches together. The geometry is induced by
imposing the non-hermitian form as seen in eq. (6.7) given by

Ay = i{xxld|r)- (6.21)

Let us review the obtained framework and its construction. First, this connection is
more general than the Berry-Simon picture as in the hermitian case 9t = X by single-
valuedness (proposition 6.1). It allows one to perform parallel transport to any eigenstate
and any non-hermitian setting as long as the parameter path lies in non-degenerate space.
Another remarkable fact is the bottom-up approach used to construct the bundles, in
contrast to the top-down approach that was very convenient in the previous cases. Also,
the final result is not a PFB over X, the original and physical parameter space. If we do
not reduce the S, group to the irreducible subgroup b, the total bundle B is a C* bundle
over 9, which is in turn an .5, bundle over X. In a diagram the situation is as indicated
below.

B

\LCX

m

\LS n

X

In a way, we would like to collapse to diagram to a single arrow. Hence the structure
group should involve both the S, part from the multi-valuedness and a C* from the state
space. We will see in the next subsection that this can be done.

A final note we make on the curvature. Again the structure group is C*, as now I
is taken as the base manifold, so the curvature form is given by dw and hence gives the
geometric phase upon integration. The discussion reduces to that of the Berry-Simon
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6.3 Defining the eigenframe bundle

case, except for the significant fact that here the geometric phases may be complex and
reduction to U(1) is impossible in general.

Conclusion

Let us review how one can use the discussed bundles in the context of EPs. As already
indicated, the hermitian cases will not suffice. The simplest reason is that the structure
groups of such PFBs are either U(1) or C*, independent of state space dimension n, and
so do not allow for swaps of the eigenstates. The last PFB that we discussed does allow
for swaps, but only via a modification of the parameter space; its structure group is still
Cc*.

We thus want to have yet another PFB, one where the swaps of the eigenstates should
be present in the structure group itself. As complex scaling should also be in the group,
we can look for the simplest group that can mix complex scalings and permute n objects.
This group is C*?S,,, where we use the wreath product as treated in appendix B. We note
that this is the semi-direct product C™ % .S,,, where the first factor models the independent
phase changes of n eigenstates and the second factor models the swaps. We note that the
lay-out of this group was already described in [42], but it was not formalized in the way
we do now.

We will show in a moment that this group is the structure group of a canonical PFB,
but let us first compare it with better known groups. The relations are depicted in fig. 6.2.
As written in the caption, one can order the groups according to the setting in which they
are relevant. The first column applies to quantum systems where an inner product and
a (for this inner product) hermitian operator govern the resulting unitary dynamics. In
the second column one has no relation to an inner product, and the dynamics may be
non-unitary. The third and fourth column contain groups with S, only, meaning that
they are relevant only within the adiabatic approximation, i.e. when the eigenstates are
permuted. From top to bottom, the rows allow for more transformations of rays, hence
respecting less fixed directions at each step.

U(l) —— ¢~

.

C*1 S, «+——— S,

—

U(n) —— GL(n,C)

Figure 6.2: Summary diagram of the relevant groups, all arrows are (canonical) inclu-
sions. The upper row concerns single-state changes, the lower general basis changes and
the middle row eigendirection/eigenray preserving changes. The columns from left to right
correspond to dynamics from hermitian, general, adiabatic and "projective adiabatic’ sys-
tems.

6.3 Defining the eigenframe bundle

The previous material may be extended with a canonical PFB suited for general adiabatic
quantum theory, including EP theory as a subfield. In this section we will show that the
eigenframes of an operator family form a PFB, with structure group C*S,,.
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We want to emphasize that the formalism does not require the complex analytic the-
ory of Riemann sheets. It is sufficient that the eigenvalues vary smoothly with system
parameters. This allows us to use operators that also involve complex conjugates which
are excluded in the complex analytic case.

Let us start from scratch. Let T'(x) be a family of operators on a fixed n-dimensional
complex vector space V', where T(z) depends on system parameters x € P with P a
smooth manifold. In practice, P would be an allowed region with &k real and | complex
parameters, so an open subset of R¥ x C!. Let us formalize the non-degeneracy space X
as well.

Definition 6.2. Given a finite-dimensional operator family T'(xz) depending smoothly on
x € P. Define the associated non-degeneracy space to be
X=P\A (6.22)
where A is the discriminant set of T'(x) defined by
A ={z € P|T(x) is degenerate} (6.23)
= {x € P | discrim(det(A\] — T'(x)),\) = 0}. '

Two important properties of this set X are given below. These will be needed later
on.

Proposition 6.2. Given a non-degeneracy space X in parameter space P;
e the set X is open in P
e the set X has (real) codimension 2 in P.

Proof. As T'(x) depends smoothly on z, one has smooth dependence on x of det(AI —T'(z))
and so of d(x) = discrim(det(A\l — T(z)), \). It follows that A = d~1({0}) is closed in P,
hence the complement X is open in P. For the second item, we note that X is given by
two real equations, namely Re(d(z)) = 0 and Im(d(x)) = 0. As d(z) is a smooth function
on P, these two equations are independent. Hence the codimension is 2 as desired. ]

Denoting by Fr(V') the set of bases/frames in V', we have a set
Fr(T) = {(z, f) € X x Fr(V) | f; is eigenvector of T'(x) for i =1,...,n} (6.24)
with natural projection map to X given by
m: Fr(T) - X, (x,f)—x (6.25)

which sends a based frame to its basepoint. As X is open in P by proposition 6.2, it
inherits the structure of a smooth manifold. Hence there is a natural manifold structure
on Fr(7T) generalizing the manifold structure of Fr(V'). We like to show that given these
manifold structures 7 is of C*S,-PFB type.

Our first step to this end it to formulate a smooth C* ¢ Sy,-action on Fr(T"). We show

that the natural action suffices, as given in the following lemma.
Lemma 6.2. The function given by
C* 1S, x Fr(T) — Fr(T
(T) = Fx(T) 626
((gla -5y 9n, 0)7 (SC, f17 RE) fn)) = ($791f071(1)7 s 7g7lf0'71(n))

or written in compact form as

((g,0), (, ) = (2,90(f)) (6.27)
defines a smooth C* @ S,-action on Fr(T').
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Proof. The identity of C* S, trivially yields the identity operation on Fr(T"). The group
structure is respected, as can be seen in compact notation;

(h,7)-1(g,0) - (2, )] = (h,7) - (x,90(f)) = (x, h(g0(f))) = (z,h7(g)7(o(f)))
= (h7(g),70) - (z, f) = [(h,T) - (9,0)] - (2, f)

The action is smooth as it decomposes into scalar multiplications and swaps. ]

We then focus on the properties of .
Lemma 6.3. The map 7: Fr(T)) — X is smooth, surjective and C* ¢ Sp,-invariant.

Proof. As  is the restriction of the smooth projection X x Fr(V) — X to a submanifold
it is smooth. Surjectivity of 7 is equivalent to saying that T'(x) has an eigenframe for any
x € X, which is guaranteed by theorem C.1. Invariance is easily seen as

7[-((970-) ’ ($7f)) = 7T($,gO'(f)) =T = ﬂ(l’,f).
O

It remains to check that the bundle is locally trivial, for which we need the below
result. For the proof we use the technique of the Frobenius covariant, which is an operator
that projects on a desired eigenspace.

Lemma 6.4. Given T'(z) a smooth family of matrix operators acting on n-dimensional
space V. Then each point zg € X has a neighborhood U open in non-degeneracy space
X such that there is a smooth moving eigenframe f(z) defined on U.

Proof. Consider for i = 1,...,n the operator

12 T(x) = ()]
I (@) = Ai()

which is smooth on X and well-defined as all operators in the numerator commute. Note
that A;(z) equals identity on the eigenspace of \;(z) and is 0 on all other eigenspace (thus
the complement in V). It follows that A;(x) is a smoothly varying projection operator to
ker(T'(z) — Ni(z)). Fix g € X, let f(xo) be an eigenframe of T'(x¢). Extend this frame to
a moving frame given by f;(x) := A;(z) fi(xo). As A;(z) is a projection to the eigenspace
ker(T(x) — A\i(x)), fi(x) is an eigenvector of T'(z) with correct eigenvalue. Also, f;(x)
is smooth as A;(z) is smooth. Hence there is a neighborhood U; of z¢ such that f;(z) is
non-zero on U;. Hence the f;(z) form a smooth local frame f(z) on the open neighborhood
U= ﬂ?:l Uz of xIQ. OJ

AZ(Z‘) =

We can now state one of our main results in the below theorem.

Theorem 6.1. Let V' be an n-dimensional complex vector space, let T'(z): V' — V be an
operator family depending smoothly on parameter x € P, where P is a smooth manifold.
Let X C P be the set of non-degeneracies of T. Then T' canonically induces a PFB

C*1S, = Fr(T) —» X (6.28)
which we call the eigenframe bundle of T.

Proof. Fix a point x € X, then there is a small open ball U C X containing . Note that
on U both eigenvectors and eigenvalues are well-defined single-valued functions. Given
lemmas 6.2 and 6.3, it suffices to show that the restricted bundle 7=1(U) — U is trivi-
alizable, which is equivalent to finding a local section ¢ of 7 defined on U. That is, we
want for each point g € X a local smooth moving frame. This is exactly the result of
lemma 6.4. O
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Observe that no inner product structure on V was necessary for the argument. Less
important but still interesting is that at this point no left-eigenvectors were used as well.

One may feel as if there is a subtle contradiction going on concerning the S, theory.
On one hand, when listing eigenvectors one is free to choose an ordering. On the other
hand, as we explicitly assume non-degenerateness, exchange of eigenvectors seems wrong
as the energies are different. It is interesting that this discussion is reflected in the global
versus local aspects of the structure group C*?S,,. Locally, around the identity, the group
is (C*)™, and indeed swaps are absent. Globally, the story changes significantly and a
physical explanation for the swaps comes naturally. Imagine 2 quantum eigenstates at
parameter xg, one of high and one of low real energy. Now, adiabatically change system
parameters to get far away, call this new point x1. The energies may have moved in the
complex plane, and the high versus low energy comparison at xg has lost its meaning at
x1. If one moves back to xg along a different path then indeed the states do not need to
come back to the original configuration.

Knowing this PFB, we want to show that the parallel transport from the adiabatic
approximation is compatible with the group structure. This is done in the next subsection,
where also the corresponding holonomy theory is explored.

6.4 Adiabatic connection on the eigenframe bundle

We continue with the parallel transport eq. (6.6) and show that it induces a connection
of Fr(T'). Again we want to formulate the steps, one at a time.

The first step is to check that the matrix-valued form w actually takes its values
in the Lie algebra of the structure group. The algebra of C* S, is the algebra of its
connected component (C*)", and this is the commutative algebra C". We will identify
the algebra C™ of C*S,, with the algebra of diagonal matrices in M, (C) via the map
(91, ---,9n) — diag(gi, ..., gn), which is an injective lie algebra morphism.

Lemma 6.5. One has w € Q' (Fr(T),C").

Proof. Using the identification above, this follows from the diagonal form of w in eq. (6.7).
O

The next step concerns the transformation law. Let us first check it in general, so not
yet imposing adiabatic behavior.

Lemma 6.6. Let {v;} be a local frame with {67} the corresponding dual frame, set
wg = 67 dv;. If one changes the local frame as v; — vl = Aévl with A invertible at each
point, then

w—w =A"twA+ AT d A (6.29)

Proof. The corresponding change in dual frame is §9 — Hk(A_l)i, hence

(Al dv + (d Abyvy) = 0F (A (AL d v + (d Abw)
T(dAYGFy = (A7 wA)] + (A1) (d AF)

w! —0F (AN d(Aly) = 0%(A7Y)]
(A™H7.(0F dup) AL + (A7)
= (A7 'wA)] + (A7 d A)l.

O]

Checking that the transformation preserves the form of the diagonal adiabatic w suffices
to show the following.
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Proposition 6.3. Given an eigenframe PFB Fr(7'), there is a canonical connection V
specified by connection 1-form w € Q! (Fr(T), C") on it, given in (local) connection matrices
by

wl = v nr=lg (6.30)
0 else

Proof. By lemmas 6.5 and 6.6 we only need to check that the transformed connection
matrix is diagonal so that we may reduce the group to C*S,,. For this, we observe that
then A has the form of a generalized permutation matrix at each point. In particular,
A and A~! contain inverse permutations. As w is diagonal, A~ and wA have inverse
permutations and so A7'wA is diagonal. Similarly d acts diagonally and A~'d A is diag-
onal. Hence w’ is diagonal. To summarize, each matrix w is a local C"-valued 1-form with
correct transformation law, hence it defines a connection of Fr(T). O

Given a connection form w, one has a associated curvature given by
K=dwt+wAw.

Let us compute it for the connection V. Note that as w is diagonal, so is K. So if we
agree that A is the implicit product between 1-forms, one has

K/ =d#" Adv; +60"dv; A0 dw; = d0 dv; — d 00 dv; = d (T — v;60°) d w;.

This expression need not vanish. In fact, v;0% = I by dual basis properties, so that the
above equals
Ki=> d6'(v;t)dv; = Y _ dO'Pdu;
JigF#i JijFi
where P; = v;#7 is the projection operator on the span of v;. This seems to account for
the imposed non-mixing of eigenstate ¢ with other eigenstates j. For the characteristic
class one takes the trace and finds

r(K)= Y  do'Pidy
(4,5)xi#7
which sums all the used terms, hence measures the 'total non-mixing’ that occurs.
It is interesting to consider the dynamics when we do not perform the adiabatic ap-
proximation. Tracing the proofs, by a similar argument it follows that in this case one

obtains a GL(n,C)-PFB over X and that the unapproximated w by lemma 6.6 defines a
connection on this PFB. The curvature of this connection is

K/ =d¢/ Adv; + 67 do, A0¥do; = d67 du; — d@Tvp6F dv; = d 67 (1 — vp6*) dv; = 0.

Indeed, we do not need to twist anything for the standard dynamics. Does zero curvature
mean that no phase can occur? We can say two things about this. First, as seen in previous
cases, the phase is obtained by integrating d w and not from K. Second, given that the
structure group is now GL(n, C), eigenstates need not be conserved, and obtaining a phase
becomes a troublesome notion.

6.5 The adiabatic group and the A-group

We will now consider the holonomy of the connection V of the previous subsection in more
detail. We will use the theory and notation as in appendix A.

First, as the connection is adiabatic, the holonomy operations correspond to state
changes that can be achieved adiabatically. Hence we call the induced holonomy group at
a point the adiabatic group at the point.
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6 ADIABATIC GEOMETRY

Definition 6.3. Given a matrix family 7" and its associated eigenframe bundle Fr(7") — X
endowed with the canonical connection V. For any U C X open, define the adiabatic group
at a point xg restricted to U, denoted Adiar(U, xg), to be the holonomy group at z( from
the restricted bundle Fr(T)|y — U. Equivalently, Adiar(U, o) is the image of Loop(U, x()
under the holonomy map. Symbolically;

Adiar(U, z9) = Holy, (U, V|v) (6.31)
We abbreviate Adiar(X,zg) as Adia(xg) whenever possible.
We can immediately state some properties of these groups.
Lemma 6.7. In the situation of definition 6.3:
e the adiabatic group Adiagr (U, x¢) is isomorphic to a subgroup of C* 1 S,.

e given 29 € V and V C U C X open inclusions, then Adiar(V,x) is a subgroup of
Adiap (U, xp). In particular, any such group is a subgroup of Adia(z).

Proof. The adiabatic group is the holonomy of a connection with structure group C* .5,
hence the first follows. The second follows from Loop(V, z¢) C Loop(U, xo). O

We see that any element in Adiar (U, zg) preserves the set of eigenstates at g, and so
there is an induced group of eigenstate/eigenvalue permutations. This group is similar to
the A-group as mentioned by Kato in [1], but the version we discuss now is more general as
we allow more general connections, hence we call it the A-group. Let us make this precise.
Let E,, be the set of eigenvalues of T'(x¢), and let us omit the U and T for brevity. As
seen in the previous lemma, Adia(xg) is isomorphic with a subgroup of C*1S,,. As E, has
n elements, labelling the eigenvalues gives an isomorphism Sym(E,,) = S,. If we assume
that the labels of eigenvalues and eigenstates match the below diagram of continuous group
maps commutes

Adia(zg) —— Sym(Ej,)

j F (6.32)

C*1S, —» Sy

where the bottom map is the usual projection. The image of the top map is thus of special
importance. It is a topological subgroup of Sym(FE,,) = S,, with a (surjective) group map
from Adia(zg) to it.

Definition 6.4. Fixing ¢ € X, define the group Ar(U, z¢) as the subgroup of Sym(Ey,)
of elements that can be achieved by an element of Adiar(U,zp). Equivalently, it is the
image of the map Adia(zg) — Sym(Ey,).

This finishes the definition of A(xg), and the following result is immediate.
Lemma 6.8. The group A(zg) is discrete.

This property of A(zg), which could still stand in some infinite-dimensional cases,
allows for some strong results. We consider the induced map Loop(zg) — A(zg) going via
Adia(zg), that is, the map that sends a loop to its induced permutation. It is interesting
to note that this construction is the theoretical counterpart of the 'merging path method’.
Indeed, in this method one measures for various loops if a permutation occurs. The
discreteness of A(xg) implies that permutations are invariant under deformations of the
based loop, as made precise below.
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6.6 Phase group and SES theory

Proposition 6.4. The induced map from Loop(xg) to A(zp) is a surjective group mor-
phism. It factors through the fundamental group 7;(X,x0) as indicated in the below
diagram.

Loop(zo) » m1(X, o)

Lo~ .

Adia(zg) —» A(xo)

In other words, the group element of A(zg) induced by a path v depends only on the based
homotopy class [v].

Proof. The map Loop(zg) — A(xg) is a composition of surjective group maps, hence
one itself. By the discreteness of A(xg), intermediate loops from a based homotopy
H: Loop(zg) % [0,1] — A(xp) are all constant and sent to the same element, in particular
the initial and final ones. It follows that the obtained permutation is path deformation
invariant. O

This result says that permutations are always of topological as opposed to geometrical
nature, and this has strong consequences. For instance, one can deform a measurement
path and still obtain the same permutation. This was already known, but the above also
tells us how to compose the effects from multiple EPs. Indeed, any loop v encircling an
arbitrary EP structure gives a class [y] € m1(X, z¢), which can then be decomposed into
a fixed product of fundamental classes [vy;] where each 7; encloses a single EP structure
(an EP, an exceptional line, exceptional surface, etc. ). As we saw in the previous chapter
this allows for non-abelian effects to occur.

We will now turn our attention to the kernel of the map Adia(xg) — A(x). This will
tell us about the pure phase changes that occur in a system. At the end of this section
we return to the A-group on its own as the key object with which to define an EP.

6.6 Phase group and SES theory

A surjective map of groups canonically induces a short exact sequence (SES) of groups
via its kernel. In the previous subsection we saw that the map Adia(zg) — A(zg) fits
this requirement. The kernel of this map consists of those holonomy operations that do
not permute the eigenvectors. That is, it is the group of solely (complex) phase changing
actions; let us call it the phase group.

Definition 6.5. In the context of the adiabatic group, define the phase group at xy € X,
denoted Phase(z), as the kernel of Adia(xzg) — A(z), in particular it is a normal/invari-
ant subgroup of Adia(zp). In other words, it is the group such that one has a short exact
sequence of groups

0 —— Phase(xg) —— Adia(zg) —— A(xg) —— 0. (6.33)

We will refer to this SES as the adiabatic SES.

We note that this reflects the SES of the wreath product as found in appendix B. In
fact, the following is true.

Corollary 6.1. One has the commuting diagram

0 —— Phase(z¢g) —— Adia(z¢g) —— A(zg) —— 0

l i l (6.34)

0 —— (C)" ——— CX1 S, S, 0

where all vertical maps are injections.
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6 ADIABATIC GEOMETRY

Proof. The right square was already treated in diagram (6.32). Exactness of both se-
quences finishes the proof. O

This allows us to still use the general theory from the wreath product. Some immediate
properties of the phase group are listed below, easily deduced from the above diagram.

Corollary 6.2. It holds that
e the Phase(xg) is a subgroup of (C*)", in particular it is commutative.

e for any permutation of eigenvalues at xg, there are is a fixed amount/cardinality of
adiabatic operations that induce this permutation. These differ by phases only, and
their number equals #Phase(zg).

e the group Adia(zg) is finite/discrete <= the group Phase(zo) is finite/discrete.

The SES (6.33) resembles the SES (A.7) of the monodromy group as the groups in
the middle coincide. However, they need not be isomorphic, a fact that can be checked
by inspecting if the groups on the left are isomorphic. That is, one checks if Phase(xg) =
Hol%(x). One can deduce that is already violated for the standard EP2 as seen in the
below example. The key observation is that phase changes may require non-contractible
loops.

Example 6.1. Consider the standard EP2, where the holonomy group is generated by
0 —1
10

corresponding to a non-contractible fundamental loop. Squaring the above matrix yields

—1, so that Phase(zg) & Z/27. Note that indeed A(zg) = Adia(zg)/Phase(z¢) = Z/27Z.
Hence the associated adiabatic SES can be written as

0 — Z)22 —— Z./]47 —— Z./27Z —— 0. (6.35)

However, any contractible loop yields no change at all so that Holo(xo) = 0. It follows
that Mon(z) = Hol(x¢) = Z/4Z and hence the holonomy SES is given by

0 —— 0 —— Z/AZ —— Z/47 —— 0

which is indeed different.

Still, there is a strong connection between the two different SESs. As any contractible
curve 7y gives the identity permutation, the holonomy of v lies in the phase group. In this
way the following result comes up.

Lemma 6.9. The holonomy and adiabatic SESs are related via the below commutative
diagram where exactness holds everywhere. In addition; one of the dashed arrows holds
if and only if the other does.

0 0

|

0 — Hol%(xg) — Hol(xg) — Mon(z¢) — 0

| - |

0 —— Phase(xg) —— Adia(zg) — A(xg) —— 0

|

0 0 0

¢---0
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Proof. First, there is a canonical map Hol’(xg) — Phase(zg). It suffices to show that con-
tractible loops can not induce a permutation. However, this follows from proposition 6.4.
Injectivity is immediate.

In the fourth row we deal with quotients of the same group. As we just saw that there is
an injection Hol®(zg) — Phase(zg), by group theory there is a surjection Mon(zo) — A(z)
given by enlarging the equivalence classes.

We note that the bottom left arrow is equivalent to Hol’(x) = Phase(zg), which is
equivalent to Mon(zg) = A(x), which is equivalent to the top right arrow. O

Example 6.2. For the standard EP2 as just treated, this becomes the below diagram.

0
0 7/47 —— 7.)J47 —— 0

| -

0 — Z)272 —— Z./A7 —— 7.)27Z —— O

|

0 0

0

Observe that the ’phases are topological’ assumption guarantees that Holo(xo) =0
so that the upper line in the above diagram is trivial and the diagram basically reduces
to the adiabatic SES. A difference between the lines indicates thus indicates that some
phases may be reached only with non-contractible loops. Another quick result along this
line of reasoning is the following.

Corollary 6.3. One has
e if Phase(zg) = 0, then Hol’(x) = 0 and A(xq) = Mon(xq) = Hol(zg)
e if Mon(zp) = 0, then A(zg) = 0 and Phase(xq) = Hol"(2¢) = Hol(xo).

Splitting of the adiabatic SES

One may ask what it means if the adiabatic SES splits, either on the left or on the right.
We will see that this question has physical relevance as well. We will use the Splitting
Lemma as found in appendix B.

Let us start with the question of right splittings. As shown below, a corresponding
physical question is ’given a feasible permutation of eigenstates, can it be realized without
phase changes?”’. Indeed, the image of this permutation under the right splitting would
provide such a adiabatic operation. Formally, the following holds.

Lemma 6.10. The following are equivalent;
e there is a right splitting A(z¢) — Adia(zg)
e one has Adia(zg) = Phase(xg) ! A(xo)

e for any o € A(z), there is an operation a € Adia(xg) such that o is achieved without
extra phase factors.

Proof. The first two are equivalent by the Splitting Lemma. Assuming the third condition
holds, one obtains a right splitting by sending ¢ to its corresponding a, the morphism
property being immediate. Conversely, given Adia(zg) = Phase(zg) ¢ A(zo), one has the
map A(xg) — Phase(zg) ! A(zg) given by inclusion into the second factor, also this being
a morphism. ]
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Note that the adiabatic SES need not split. The standard EP2 provides a counterex-
ample; the two eigenstates can be swapped, but precisely one of the states will carry an
extra phase. The corresponding SES (eq. (6.35)) does not have a right splitting. Indeed,
the induced semi-direct product would be Z /27 x 7Z./2Z. as all groups are commutative,
but this has no element of order 4 as Z /47 has. On the other hand, observe that A(zg) = 0
is a sufficient condition for the existence of a left-splitting

What about the left splittings? The Splitting Lemma says that a left splitting exists if
and only if the middle group is the direct product of the outer two. That is, whether it holds
that Adia(xg) = Phase(zg) x A(zg). We can clearly see that this case has extraordinary
experimental properties. Explicitly, phases and permutations can be achieved completely
independently. Hence, there are paths along one can change phases, but none of these
paths will permute states and vice versa. On the other hand, if phases and permutations
can be reached individually, we have separate generators for Phase(zg) and A(zg) and the
direct product follows. We have thus shown the following.

Lemma 6.11. The following are equivalent;
e there is a left splitting Adia(xzg) — Phase(xg)
e one has Adia(zg) = Phase(zg) x A(xg)
e phase changes and permutations can be achieved independently
We observe that the same examples as for the right splitting can be used here to

illustrate that the sequence may be left-split, but it also may not be.

Assuming topological effects only

Until now we discussed a framework that allows for geometric effects which are not topo-
logical per se. However, both EPs and DPs are famous for their topological robustness,
that is invariance under continuous deformation of the path. Hence in this part we inves-
tigate what happens if all holonomy operations are topological in nature. Mathematically,
we asumme there is a surjective morphism of groups m (X, z9) — Adia(zp) such that the
below diagram commutes, where all maps preserve products.

Loop(zg) — m1 (X, z0)

0 —— Phase(zg) —— Adia(zg) — A(xg) —— 0

One may ask when there is also a map of groups (X, x9) — Phase(xo) making the
diagram commute, that is when phases are of topological nature. The below lemma reveals
that this happens in very special cases, namely if and only if no permutations are possible.
That is, if and only if phase changes make up the entire holonomy. At this point we may
recognize the setting of a DP, so one may argue there remains some interest in this speical
case which is summarized below.

Lemma 6.12. The following are equivalent;
e the permutation group A(xg) is trivial
e Phase(zg) = Adia(xp), that is, the adiabatic actions only change phases

e there exists a compatible group map 71 (X, z¢) — Phase(zg)
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Proof. The first two items are equivalent by group theory. Assume existence of a map
m1(X, x9) — Phase(zg), then following an element via Phase(xz() through the SES to A(z)
gives identity, implying the map m (X, x9) — A(zp) is trivial. As this map is a surjection,
A(zo) must be trivial.

Assume the second item; as there is a map 71 (X, z9) — Adia(z), automatically have
a compatible map 71 (X, z¢) — Phase(zg). O

Two cases where the assumption can be checked stand out. First, if Adia(xg) is not
discrete then the assumption does not hold. Indeed, the fundamental group is discrete, so
by the above then also Adia(zg) would be. On the other hand, if the operator family is
complex analytic and the connection matches the connection from analytic continuation
the assumption holds.

6.7 Applications in EP theory

We will now apply the theory from the previous section to EPs. We also use the represen-
tation theory discussed in appendix B. One idea is that the adiabatic SES (6.33) can be
used to summarize the EP properties of achievable phases and permutations. We will first
discuss well-known single EPs examples and after that inspect scenarios with two EPs.

Single EP case

Let us start with the isolated EPs in a complex analytic system. That is, let x be an
EP, let U be an open set in C containing x, pick zg € U any point different from x. We
assume that U contains no other EP. One finds m (U, z9) = Z, and so Adia(xp) and all
other groups in the adiabatic SES are discrete, commutative and cyclic.

In case of the standard EP2 the group Adia(zp) has a representation generated by the

matrix in eq. (2.3), so that
A
P={-1 0

from which it follows that Adia(z¢) = Z/4Z. Going to A(zp), i.e. going to permutations
we obtain the generator
(01
()

showing that A(zg) & Z/27. From the matrices {p,p?> = —1I,p> = —p,p* = I} only I
and p? are diagonal. Hence Phase(xg) is represented by these two matrices and is thus
isomorphic to Z/27Z. The SES of the standard EP2 is then

0 —— Z)22 —— 7./47 —— Z./)27Z —— 0

as found previously via the A-group. We observe that for 2D parameter space the (cyclic)
A-group is either trivial or isomorphic to Z/27Z. These cases represent respectively a
non-EP and an EP.

For the 3D case we can use the explicit results of [6], which reports both an EP2 and
EP3 and the corresponding holonomy matrices. Indeed, after choosing a suitable basis,
the EP3 has holonomy generator given by

=

Il
= o O
S O =
S = O
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which has order 3, hence Adia(xg) = Z/3Z. As all non-zero entries already equal 1 no
phases occur and Phase(zp) = 0. Equivalently, p = p so that A(zg) = Adia(zg) = Z/37Z.
Hence the SES of this EP3 is

0 —— 0 —— Z/32Z —— Z/3Z —— 0.

The reported EP2 in 3D corresponds has generator

01 0
0 0
0 -1

so that Adia(xzg) = Z/2Z. This is a serious difference with respect to the planar case.
The phase change now occurs in a level that is not permuted, hence is unavailable to other
levels. The SES reduces as well; the permutations are generated by

p:

S = O

1
0
0

= o O

so that A(zg) & Z/27Z. In the set {p,p? = I} only I is diagonal, so again Phase(zq) = 0.
The SES is thus
0 ——0—2Z/2Z —— 7/27Z —— 0.

A clear indication of an EP is the non-triviality of A(zp), but as seen above the phase
group may be trivial. For a DP the situation is opposite; now A(zp) = 0 and Phase(xg) #
0. Considering the standard DP in 2D, the holonomy is generated by

=0 )

so that Adia(xg) = Z/27, and p is already diagonal Phase(xg) = 7Z/27. This implies
A(zg) = 0, and indeed this is generated by

10
p‘(o 1)‘1‘

We can consider from a representation point of view what happens if more EPs are allowed
to enter the picture. It implies that more generators are available, and the mixing may
provide non-cyclic group structure, in particular the way to non-abelian groups is open.
We consider only two EP cases as the general behavior is already illustrated there.

Let us start with a planar parameter space with two EPs. This already appears in
standard EP2 examples as one obtains two EP2s, namely the plus and minus solution.
However, these two EP2s are connected to the same branch structure, and the generator
of the second EP2 equals

0 -1 3
(1)

where again p is the generator of the first EP2. It follows that SES remains the same, and
so the newly possible measurements will not find a change of states that was unavailable
before.

Let us shift our attention away from EPs connected to exactly the same sheets. The
other extreme of totally disconnected sheets is not that interesting as well as shown in
below example.

Multiple EP case
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Example 6.3. Consider s a complex parameter and, distinct complex constants cq, co.

Define

1C1 s

s  —ic

T(s) = .
iCo S

s —1icy

which has EP2s at s = 4c¢y,+cs. The generators of the adiabatic group are essentially
copies of the generator of the standard EP2, one for the two upper levels and one for the
lower two levels. Hence they are represented by

p1= 1 yD2 = 1

The SES is then

0 — Z)27 x )27 —— TJAZ x T.JAZ — 7./2Z x 7./]2Z, —> 0.

That is, it is given by products where now interconnection occurs.

It is interesting to look at the mathematical consequences of having two distincts EPs.
As there is a surjective group morphism (X, o) — Adia(zg) and so a surjective group
morphism 71 (X, xg) — A(zg), the target groups can only be non-commutative if 1 (X, x¢)
is. The easiest example is the fundamental group of the figure ’8’, isomorphic to the free
product Z % Z.. This is indeed the fundamental group induces by 2 distinct EPs.

In order to have a non-commutative A-group, one needs to demand in addition that
the 2 distinct EPs induce permutations that do not commute. As S, is commutative
for n < 2, one thus needs a 3 dimensional system. Furthermore, the EPs must connect
different sheets. A system with an EP3 and an EP2 suffices, and the waveguide model of
the previous chapter satisfies this requirement. In fact, the corresponding adiabatic SES
was found to be

0 —— {£1}> —— {£1}1 53 S3 0. (6.36)

For the waveguide system we need non-planar parameter space, and the theory of
this chapter was presented in such a way that it immediately generalizes. In general, the
degeneracies are of codimension at least 2, so walking around is well-defined. In higher
dimensions one would not consider loops around a point, but around a line, surface or
hypersurface of degeneracies. However, as seen in the waveguide system, the degree of an
EP becomes ill-defined.

6.8 A new definition of EP

We finish this section by discussing a new definition of EP based on the geometrical
framework that we have been exploring.

As already argued in section 2, the coalescence definition 2.4 is the broadest serious
EP definition available. As it can be used for any operator family that depends continu-
ously on system parameters, only the trivial characterization 'non-hermitian degeneracy’
is more general. Although coalescence in itself may be enough to describe some physical
phenomena, e.g. two modes that suddenly coincide, for the EP picture it is not enough.
The non-trivial sheets formed by eigenvalues and eigenvectors however are closely related
to the behavior that is measured around the EP, as seen in section 4. This led us to
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introduce definition 2.5 of an experimental EP, as indeed the swaps and the non-trivial
sheet structure are equivalent viewpoints. We can now elaborate of this definition.

Let us formalize definition 2.5. The swaps of eigenvalues are given by the A-group,
hence we should require this group to be non-trivial. As before, we write A7 (U N X, zg)
for all the eigenvalue permutations at xg that can be achieved by xp-based loops in U N X.
Then the point = in parameter space P is an EP if and only if for any neighborhood U
of z in P there is a point zp € U N X such that Ap(U N X, zg) is non-trivial, where we
mimic definition 2.5. Indeed, within any neighborhood of = there lies a curve « such that
the eigenvalues get swapped by traversing . The definition is then as follows.

Definition 6.6. Given operator family 7'(x) with parameter space P. A point z € P
is called an (experimental) EP <= for any open set U in P containing z, there is an
xo € U N X such that

AT(U NnX, .To) 75 0.

We did not include that x should be a degeneracy in the above definition as this is
implicit; if x would not be a degeneracy one can take U small enough such that UNX = U
(using that X is open in P) and take U to be simply connected. For this choice one
obtains Ap(U N X, xo) =0 for any o € U N X. The standard EPs from complex analytic
theory satisfy the criterion; any neighborhood U that includes the branch point allows
for a curve that traverses the branch cut. We do note that this definition does not need
complex analytic branch cuts but allows for any smooth structure of connected eigenvalue
sheets. In proposition 2.1 we already showed that this definition restricts the coalescence
definition.

The construction above may remind one of the local holonomy group as discussed in
appendix A. Indeed, the local holonomy group is non-trivial if and only if the restricted
holonomy group is non-trivial for any open neighborhood. However, the construction above
has a significant deviation from this setting. Observe that above we take a neighborhood
U of the EP candidate x and fix a basepoint g € U different from x. Hence for any
basepoint g, there is a U’ C U such that o ¢ U’ and hence another basepoint needs to
be found. For the local holonomy group one has x = xg, hence the infinite intersection in
eq. (A.8) is well-defined, whereas here one can not perform such a construction.

We thus claim that the physically intuitive definition above is a new definition for EP
that does not suffer from non-triviality issues.
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7 Conclusion

We investigated the theory of exceptional points and P7 symmetric systems, both in the
context of adiabatic quantum theory.

Although various characterizations of EPs are used in the literature, these are not
equivalent and so a widely accepted precise EP definition is absent. Based on experiments,
we claim that the swaps must be central in this definition.

The theory of PT symmetric systems aids in the study of EPs by providing explicit
systems with EPs. However, it is not necessary to consider P7 theory as not all systems
with an EP are PT symmetric and P7 symmetry needs to be broken explicitly in an
experiment. The P7T phase transitions thus give only a part of the EPs present in a
parametrized system.

The explicit case of a three-channel waveguide system was treated, originating from
PT theory and supporting various EPs. Both EP2s and EP3s were present, and we showed
how their effects can be composed to generate a non-abelian group of adiabatic changes.
The A-group was introduced to formalize the permutations of eigenvalues.

The needed geometry was treated as well, the basis formed by the adiabatic approx-
imation from quantum mechanics. The adiabatic change as measured in experiment can
be modelled on the principal C* ¢ S,,-bundle we called Fr(7') in a natural way, a PFB not
found in the literature to date. The adiabatic approximation indeed allows to reduce the
holonomy group at a non-degeneracy zg, which we called Adia(z), to the group A(zo).
The kernel of this map was identified with all solely phase changing operations and was
called the phase group of the system at xp, denoted Phase(xg). These three groups fit to-
gether in a short exact sequence which can be used to describe and distinguish degeneracy
structures.

The A-group also allows one to phrase a new definition of an exceptional point that
specializes existing definitions. Indeed, one can define an EP by demanding that the A-
group is non-trivial when restricted to any neighborhood of the EP, i.e. by demanding
that swaps of eigenvalues occur arbitrarily close to the EP. This definition is physically
intuitive and restricts the standard mathematical definition to non-trivial cases.
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A HOLONOMY THEORY

A Holonomy theory

We state some basics of holonomy theory; proofs are either a direct check or can be found
in [43].

Given a connection on a principal G bundle 7: B — M and a path «: [0,1] — M, one
has a G-equivariant parallel transport operation P,: 7= 1({v(0)}) — 7 }({y(1)}), with
inverse given by the operation obtained by tracing the path backwards. If the path is a
loop based at xy then the parallel transport operations, also known as holonomies, are
elements of Aut(m~!({zo})) and form a group, called the holonomy group of the connection
at xg. To formalize this, given U a subset of M and z € U, we write the set of (piece-wise
smooth) zg-based loops in U as

Loop(U, zp) = {~: St U |~(0) = T} (A.1)
For future use, we write
Loop® (U, xo) = {7y € Loop(U, xo) | 7 is contractible} . (A.2)
Associating to a loop 7 its parallel transport operation P, is given by a map

P: Loop(U, zp) — Hol,, (U, V)

(A.3)
v Py

where we already used that the image of the above map (in Aut(m~{zo})) is defined
to be the holonomy group, that is

Hol,, (U, V) = {A € Aut(r~"{zo}) | A = P, for some 7 € Loop(U,z0)} . (A.4)
Also this set has a contractible path version given by
Holgo(U, V) = {A € Hol,, (U, V) | A= P, for some v € Loop’(U, z0)} . (A.5)

On Loop(U, xy) one has concatenation of loops which defines a product. This turns
Loop(U, xp) into a monoid, but not into a group as e.g. inverses are missing. Nevertheless,
P does send a concatenation of two loops to the product of their holonomies, so P preserves
the products (or, P is a morphism of monoids).

Another result that we use in the main text is the following; the holonomy group of a
PFB is always contained in the structure group.

Lemma A.1. Let 7: B — M be a G-PFB with some compatible connection V. Then for
all x € M and open subsets U containing xg one has

Hol,,, (U, V) < G.

It is also true that Holgo(U, V) is a normal subgroup of Holg, (U, V). Hence there is a
quotient with the structure of a group, known as the monodromy group.

Definition A.1. The monodromy group of a connection V restricted to open set U
containing xg is the quotient

Mony, (U, V) = Hol,, (U, V)/Hol}, (U, V). (A.6)
Associated to it is the SES of groups

0 — Hol} (U, V) —— Hol,, (U, V) —— Mong, (U, V) — 0. (A.7)
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An interesting result involving all terms in the above SES is the following.

Lemma A.2. The group HolgO(U , V) is the connected subgroup of Hol,, (U, V). In par-
ticular, the group Mon,, (U, V) is discrete.

Observe that all groups are in fact Lie groups and the maps are all smooth.
The last notion we want to consider here is that of local holonomy group. For this, fix
x € M and let Uy be a family of nested sets such that

ﬁ U,==x
k=1

then the local holonomy group at x is defined as

Hol*(z, V) = () Hol"(Uy, V). (A.8)
k=1
One can show that this does not depend on the chosen family U and so is a well-defined
object.

B Wreath product

We introduce the concept of a wreath product between an arbitrary group G and a sub-
group H of S,. The following lemma from group theory is a convenient tool for this.

Lemma B.1 (Splitting Lemma). Given a SES of groups

0 A—'»B-"sC 0
then B is the semi-direct product A x C' <= there is a right splitting s: C' — B (that

is, mo s = id¢). Also, a left splitting r: B — A (that is, r o4 = id4) exists <= one has
B AxC.

There exist general formulations of the wreath product, but for us the following defi-
nition suffices.

Definition B.1. Let G be any group, and let H be a subgroup of S,, for some n. The
wreath product G H is defined as the semi-direct product G™ x H, where H acts on G"
by permutation action. Explicitly, Gt H is the set G™ x H with product

(h77_) ’ (g,O’) = (hT(g)aTU)'
The number n is referred to as the degree (of H or G H).

One can also write this using a short exact sequence

0 G™ GIH—— H ——0

where G" — G ! H is inclusion in G x {1x}, and G H — H is projection on the last
factor. The map H — G U H: h+— (1gn,h) is a right-splitting of this sequence, implying
that G ¢ H is indeed a semi-direct product of G™ and H.

In the context of Lie groups, the group H is always discrete. Hence the connected
component of the identity of G H is diffeomorphic to that of G™. This follows from the
discreteness of H; one can’t leave G™ x {1y} as a path from identity to some point outside
descends to a path in H, which must be constant.

In the text we consider PFBs with structure groups of the form G H, in particular the
holonomy group will be a subgroup of Gt H. We note that the restricted holonomy group
lies in the connected component of G H, which by the above is the connected component
of G. This means that actions of H (the swaps in the main text) will never be reached
with contractible paths.
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B WREATH PRODUCT

Induced representation of wreath product

A representation (V,7) of G naturally induces a representation of G ! H in the following
way. First, one has a natural representation (" V,@" 7) of G™. For the wreath product
one alters this representation using the permutations from H. That is, one introduces the
matrices that permute the V’s in @" V.

In the text we are interested in the case G = C* which has a canonical 1 dimensional
representation on €. The representation of G ! H then consists of permutation matrices
where non-zero entries are replaced by non-zero complex numbers. These matrices are
called generalized permutation matrices and are defined as follows.

Definition B.2. A generalized permutation matrix is a matrix A € GL(n, C) of the form
A=DP

where D is diagonal and P a permutation matrix. The space of generalized permutation
matrices with entries in C* we denote by S,,(C).

It follows that the representation induces an isomorphism C* ¢ S, = S,,(C). The use
of this induced representation can easily be illustrated.

Example B.1. The standard EP2 has holonomy generator
0 —1
1 0

Another map that will be of interest in the main text is the canonical surjective mor-
phism II: S, (C) — S,, sending a matrix A = DP to its unique underlying permutation
matrix P (here we identify S,, with the permutation matrices in GL(n, C)).

In the text one fixes a basis ¥; of eigenstates and acts on these with holonomy opera-
tions that can change (complex) phases and labels but do not mix the eigenstates. More
precisely, the groups Adia(zg) are subgroups of C* S, and will follow the representation
discussed here. An element of Adia(xo) will send v¥; — «;v;, and this can be modeled
with a matrix p defined by

which is indeed on the described form.

i Ja; if ; becomes a;1;
0 else

and indeed § € S,,(C). Hence we get a representation P: Adia(zg) — Sy, (C).
We note that the map II: S, (C) — S, in terms of the representation matrices just
sets all phase factors to 1. That is, the representing matrix is given by

;j J1 if ¢ becomes 1,
p; =
0 else

which gives a genuine permutation matrix. In the text we discuss the A-group which is
isomorphic to a subgroup of S,,. The above matrices give a representation P: A(xg) — S,.
As P =Tl o P, this representation is compatible with the one of Adia(xg).

Example B.2. For the standard EP2, setting phases to 1 gives

0 1
10
reflecting the swap of the eigenstates.
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Finally, in the text we consider the group Phase(zg) being the kernel of the map
Adia(zg) — A(xg). Hence, it inherits a representation from Adia(xo) which is a restric-
tion of P. Being the kernel, the matrices representing Phase(zg) do not permute the
basisvectors and are thus diagonal. Hence we get the following result on the decompostion

of this representation.

Lemma B.2. The representation of Phase(z) is fully reducible, the irreducibles being
representations of a subgroup of C*.

Quite opposite is the representation of A(xg); this representation need not be a restric-
tion of P. That is, the matrices corresponding to P may very well not be achieved in the
representation P of Adia(zg). An example is the standard EP2; it is possible to permute
the two eigenvalues, but it is impossible to do this without introducing a phase.

C Bi-orthogonality theory

In this section we collect properties of eigenvector normalization and existence theorems
on system formed by them. We assume V' is a vector space over F' of finite dimension n,
and A an n X n matrix. We assume no more properties unless stated otherwise. Also,
one has the dual vector space V'V = Hom(V, F') of dimension n. By definition, one has a
canonical pairing given by 6v = 6(v), where v € V and § € V. This pairing will not be
denoted by extra symbols, similar to standard matrix-vector products, but primarily to
distinguish it from inner products later on and to underline the canonical nature.

First, let us revise that given a right-eigenvector with eigenvalue A, there is also a
left-eigenvector with eigenvalue A.

Lemma C.1. Let A be a finite-dimensional matrix, then A has a right-eigenvector <=
A has a left-eigenvector.

Proof. This follows as left-eigenvectors of A correspond to right-eigenvectors of AT with
the same eigenvalue, and det(\] — A) = det(\] — AT).
O

The following two definitions are of main interest.

Definition C.1 (Bi-orthogonal set). Given a finite-dimensional operator A on V', a bi-
orthogonal set for A is a set {(67,v;)} C VV x V where each 67, v; is resp. a left- or right
eigenvector of A for the same eigenvalue, satisfying

07, = 57,

Definition C.2 (Eigenframe). An eigenframe of A is a basis of V' consisting of eigenvectors
of A. This definition extends naturally to the case of frame bundles over M where A =
A(z) depends on z € M.

Next, we want to have a sufficient condition for the existence of a bi-orthogonal set,
that is, to have a guarantee that self-orthogonalities do not appear.

Given a basis {v;} of V, one can always find a dual basis {67} of V'V defined by the
conditions #v; = &7. Hence, in case the v; are eigenvectors of A, one would like the 97 to
be left-eigenvectors.

Lemma C.2. Let A have an eigenframe, then the dual frame is an eigencoframe.
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Proof. Let the frame consist of vectors v;, let 67 be the dual vectors, i.e. #v; = 55 . As the
v; form a basis, it is enough to check equality of /A and A\;67 (no sum for the latter) on
each v;. One obtains ‘ ‘

QjA?}Z' = ejAZ"UZ' = )\155 = )\]55 = )\j@jvi
for each v;, hence 6¢?A and \;07 are equal. This means that the 6/ are indeed left-
eigenvectors. O

This result becomes particularly interesting once there is a sufficient condition for the
existence of an eigenframe. Non-degeneracy of the operator is sufficient.

Theorem C.1. Let A € M,,(C) have a non-degenerate spectrum. Then

e there are n linearly dependent eigenvectors of A, hence A has an eigenframe

e the eigenframe and eigencoframe form a bi-orthogonal set for A.

Proof. By non-degenerateness, the n eigenvectors are not linearly dependent and the first
follows. The second follows as the ¢7v; = & identity follows from the dual basis identity.
O

Given a basis {v;} of a finite dimensional vector space over C, there is a unique inner
product for which the basis is orthonormal. For this inner product, we note that

<avi, ?)j) = @(Z'j

so (aw;, —) = ab;, inducing a conjugate-linear map V. — VV given by v; — 6; via the
inner product. If V was already equipped with an inner product, there is no guarantee it
is the same as the basis induced one. Also, if A has an eigenframe and one takes the inner
product induced by this frame, then A need not be self-adjoint. Indeed, A acts diagonally
on its eigenframe, so A is self-adjoint if and only if all the diagonal entries are real, which
need not be the case.

We summarize the implications in a diagram, where each arrow is independent of the
others. Fix an operator A on finite dimensional complex space V.

Non-degenerateness —— Eigenframe —— FEigencoframe/Bi-orthogonal set

!

Frame ——— Orthonormalizing (—, —)

So far, we note that the inner product on V did not play an important role. We note
that given the eigenvectors {v;} and duals {67}, the duality/orthonormality condition
Qlv; = 51‘.7 fixes normalization of the 6;. However, normalization of the v; has not been
done, and we may recognize some projective aspects of quantum state space.

We finish with a lemmas that treats the effect of a basis transformation.

Lemma C.3. Let {(¢’,v;)} be a bi-orthogonal system for an operator A. Let S be an
invertible matrix. Then if A = S~'A’S, one has a bi-orthogonal system for A’ given by
{7571, Sv;)}.

Proof. If Av = v, then A’(Sv) = A(Sv), so a right-eigenvector v is sent to eigenvector
Sv. Likewise, if wA = w, then (wS~1)A’ = A(wS~!). Hence the listed (co)vectors are
eigen(co)vectors. The orthogonality follows as

(w?! S (Sv;) = wiv; = 5f
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