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Abstract: In this research, a non-branching temporal linear-time logic solver was implemented with the
extendability constraint. The logic was tested on its soundness and completeness. The solver was tested
on how fast it could solve 6 temporal linear-time logic problems with or without allowing infinite branch-
ing. Half of the problems required extendability to get further down the tableau. The results show that
these problems require significantly more time to solve the problem a thousand times with the allowance
of infinite branches compared to the standard solver. There was also one problem that did not require
extendability that still showed significant results. This could have been caused by an extra if-evaluation

or the great variation in run-time in general.

1 Introduction

In this research, a temporal (or tense) linear-time
logic solver will be made using the tableau method in
order to solve the validity problem for both general
temporal logic and temporal logic with the constraint
of extendability. The solver will also be compared to an
existing temporal linear-time logic solver and tested on
its soundness and completeness. In both comparisons,
the run-time of the systems will be compared. The
research question of this paper consists of two parts,
which are:

1. Can we make a non-branching temporal linear-time
logic solver that allows infinite open branches and that
is sound and complete?

2. How fast does a non-branching temporal linear-time
logic solver that allows infinite open branches solve a
set of temporal linear-time logic problems compared
to a normal non-branching temporal linear-time logic
solver using the tableau method?

To answer these questions, we first need to under-
stand the terms used. Temporal logic or tense logic K' is
another interpretation of modal logic K. As the seman-
tics of tense logic is exactly the same as modal logic,
only with more expressive language. We will explore

modal logic first.

1.1 Modal and Temporal logic

Modal logic consists of modes where different truths
are possible, namely possibility, necessity and impos-
sibility. One possible world might hold a notion about
some other possible world it is connected to. This brings
us to the symbols [J and ¢, where [ is read as ’It is
necessarily the case that A’ and ¢ as ’It is possibly the
case that A’. Using these new operators on top of the
general truth functions (—, A and V), makes the lan-
guage of modal logic K. An interpretation of the modal
logic language is a triple < W,R,v >, where W is a
non-empty set of possible worlds, R is a binary rela-
tion on W, and v is a truth function that assigns a truth
value to each atomic proposition at each possible world
(Priest, 2008). We will use this triple < W, R, v > in this
research.

As mentioned before, tense logic K is another inter-
pretation of modal logic with the same semantics. The
difference is the interpretation of wlRw?2. Whereas in
modal logic wlRw?2 refers to an accessibility of w2 from
world w1, in tense logic it means: ‘w1 is earlier than
w2’. [ and ¢ will be replaced by G meaning ‘at all later
times’, F ‘at some later time’, H meaning ‘at all earlier
times’ and P ‘at some earlier time’ (Priest, 2008).

A linear-time logic means basically that the temporal



semantics follows a linear fashion. One time in relation
to another is either before it, at the same time, or after
it. That is, Vxy(xry Vx =y V yrx).

1.2 The tableau method

One of the most common ways to show that an infer-
ence is valid, is by constructing a tableau using the
tableau method by (Beth, 1955). A tableau is a tree
structure. The tree consists of a root and nodes con-
nected by branches; the nodes at the bottom are leaves.
To test the validity of an inference, a tableau is con-
structed with the premises of an inference and the nega-
tion of the conclusion at the root labeled with O, to
refer to a world wyg. Then rules are applied which al-
lows the tree to extend its branches. Once a literal and
its negation appear in a branch in the same world, the
corresponding inference is unsatisfiable and the branch
is closed. When all the branches of the tableau are
closed, the inference is proven to be valid. If one or
more branches are open and complete, meaning ev-
ery rule that can be applied has been applied, these
branches serve as a counter-model for the inference
(Priest, 2008). The tableau rules for G, and H are as
follows:

GA,i HA,i
irj jri
A, j A,j

To be applied for every irj already appearing on the
branch. The tableau rules for ' and P are as follows:

FA,i PA,i
irj Jjri
A,j A,j

To be applied for a new j not yet appearing on the
branch.

The constraint of extendability 1 is the constraint of
infinity towards the future. The definition of this con-
straint is that if there is an i on the branch, a new j can
be added such that irj.

irj

Here, i is not new but j is new. The definition of 1’ is

that if there is an i on the branch, a new k can be added
such that kri, that is, infinity towards the past:

kri

Here, i is not new but k is new.

This rule must be applied with care, as it can cause
an infinite branch when called immediately after itself
(Priest, 2008).

In this research, we are dealing with linear-time
logic, meaning a few more tableau-rules need to be
mentioned. The first ones are ¢ and PB. ¢ correspond
to not branching towards the future, that is, for all wy,
wa, ws, if wiRwy and wiRws3, then woRw3 or w3Rwy or
wy = ws. The tableau rule for @ is:

irj
irk

/LN

j=k

B corresponds to not branching towards the past, that
is , for all wy, wa, ws, if woRwy and w3Rw1, then woRw3
or w3Rw, or wp = ws. The tableau rule for f3 is:

jrk krj

jri

kri

/LN

j=k
Another rule that comes with linear time is the rule

of transitivity T, which states that for all wy, wy, ws, if

wiRw, and woRws, then wiRws. Its tableau rule is:

jrk krj

irj
Jjrk

|

irk

Many researchers have previously looked at auto-
matic logic solving. In their research, Felty and Théry
(1997) presented a theorem prover that implements an
inference system for temporal logic. Clarke, Emerson,
and Sistla (1986) have implemented a finite-state con-
current system that meets a specification expressed in a
temporal logic. Kloetzer and Belta (2008) found, given
a linear system and a linear temporal logic inference
over a set of linear predicates in its state variables, a
feedback control law with polyhedral bounds and a set



of initial states so that all trajectories of the closed loop
system satisfy the inference. This is a more complicated
system than will be implemented in this paper, in which
we will deal with a simpler system of propositions.

For the construction of a valid logic solver, the rules
will need to be sound and complete with respect to the
relevant semantics. Soundness is a property of a logic
system if and only if its inference rules only prove in-
ferences that are valid according to its semantics. A for-
mal system is complete with regard to a semantics if
all inferences tha are valid according to the semantics,
can be derived using the system. Soundness and, partic-
ularly, completeness proofs for logics are very simple
using the tableaux method.

2 Methods

2.1 The solver

To build a temporal logic solver that is completely user-
friendly and efficient, we need to consider a few things
before building the solver. The first thing is that we
want the solver to approach the problem in a human-
like way. This means that the input should be given in
a human-readable fashion and the output should look
like a tableau a human could have constructed. Also, the
tableau cannot skip steps in its solving. Although skip-
ping steps would make the runtime faster, this is not the
goal. Lastly, a human would give priority to certain ac-
tions above other, in order to make the tableau easier to
solve for them (it might not be the fastest way to solve
it). The priority of operations the solver follows is given
in Table 2.1.

Table 2.1: Priority of operations

-V and A
- —
V and —A
_>
< and - <
-G, —-H, F and P
Atoms

G, H, —F and —P

Keeping the human-like approach in mind, the solver
also has to be as efficient as possible. To achieve this,
the solver will be implemented in a way that it will get
rid of double negation instantly. Whenever it has to add

a negation on an already negated formula, it will get rid
of the double negation and put the positive version of
the formula in the tableau instead. This decision does
not affect the soundness and completeness of this logic.
It also does not make the tableau less understandable
for end-users: This step is skipped very often in hand-
made tableaus. On top of this, it makes the solver more
time-efficient.

With the extension of extendability, there are some
other things we need to consider before building the
solver. The first thing is that the extendability extension
can create infinite branches. This needs to be avoided if
possible, as there might still be a valid way to close the
branch before ending up in an infinite loop. One way of
solving this is that the rule of extendability is only ap-
plied with the lowest priority, only if there are no rela-
tions available yet to further the tree, and so only when
it is needed and there is no other valid option. If we do
end up in an infinite branch, the program halts after a
pre-determined maximum number of worlds.

When it comes to the actual coding, there are a few
sub-problems to solve in order to make the eventual
solver. The first part of the solver needs to parse the
inference. As mentioned before, the input part of the
solver needs to be user-friendly so that the user can pro-
vide the inference without the use of illogical represen-
tation symbols. This part also needs to prepare the input
for the tableau-method solving. This includes separat-
ing the inferences in two categories: premises and con-
clusions, making the conclusions negative, and labeling
them by their corresponding world. After this the solver
needs to do the actual solving. The last part includes
printing the resulting tableau in a user-friendly way.

Before we can solve the inference, we need to parse
the user input. For this we will require the user to put
in machine-readable signs, because not all logic opera-
tors exist on a standard QWERT Y-keyboard. The trans-
lations of these operators are given in Table 2.2.

Table 2.2: Translation of junctions

operator \ input ‘
A &
v |
— >
<> =
G,H,FandP | G, H,Fand P




The inferences are separated by commas, and the
premises and conclusions are separated by a ”-”. The
first thing the code does is making two lists, one con-
taining the premises and the other containing the con-
clusion. The latter will have to be negated after parsing.
The parsing itself is pretty straightforward. The func-
tion buildParseTree moves through the inference re-
cursively, adding left, or right trees with every bracket.
The inference uses a stack to keep track of the par-
ent. The pseudo-code can be found in Algorithm 2.1.
It can be seen in this algorithm how the double nega-
tion is handled. The variable negation can only be True
or False, the function CHANGENEGATION changes
True to False and vice versa.

Algorithm 2.1 buildParseTree

tree <= TREE()
stack <= STACK ()
stack. APPEND(tree)
while input is not empty do
i <= POPINPUT ()
if i =" then
tree. CHANGENEGATION()
else if i =’ (' then
stack. APPEND(tree) tree = tree.left
else if i = (G or F or H or P) then
tree. SETJUNCTION(i)
stack. APPEND(tree)
tree = tree.left
else if i = atom then
tree. SETJUNCTION(i)
parent = stack.POP()
tree = parent
else if i = (& or | or > or =) then
tree.SETJUNCTION(i)
stack. APPEND(tree)
tree = tree.right
else if i =')’ then
tree = stack.POP()
end if
end while
return free

Once all inferences are parsed and the conclusions
are negated, the solver can come to the actual solving.
The solver makes an initial branch from the list of in-
ferences as all these inferences will be in the very top
branch of the tableau. It then starts solving the branch
in the function solve, that can be found in Algorithm

2.2. In this function, the branch is solved recursively,
adding left, right and mid sub-branches when applica-
ble. It applies the extendability rule only when it cannot
find a solution for the highest priority tree (and so there
is nothing else we can do). It chooses the highest prior-
ity tree by sorting the branch according to the priority
scheme given in Table 2.2, and the times the tree has
been chosen already. Trees that have already been cho-
sen a few times are less likely to be chosen again.

Algorithm 2.2 solve

branch.INSERTIONSORT () {sorts the branch ac-
cording to priority and times used}
tree <= branch.POP()
tree.used+ = 0.5
if rree. REACHEDLEAF () then
if not branch.CLOSED() then
SOLVE (branch)
end if
else if branch.ISBRANCHING then
branchl < branch
branchl.relations.add(arb)
branch.left < SOLVE (branchl)
branch? < branch
branch2.relations.add(a=b)
branch.mid <= SOLVE (branch?2)
branch3 < branch
branch3.relations.add(bra)
branch.right <= SOLVE (branch3)
else
branchl,branch2 < TABLEAUSOLVE(tree)
{returns either 2 subbranches or 1 branch
according to the tableau-rules of the tree}
if branchl and branch?2 are empty then
branch.relations.add(EXT ENDABLE (branch)
{add a useful relation so the branch can con-
tinue}
else if branchl is empty then
branch+ = branchl
branch <= SOLVE (branch)
else
branchl+ = branch
branch.left < SOLVE (branchl)
branch2+ = branch
branch.right < SOLVE (branch2
end if
end if
return branch




The last part of the code is the so-called printing
part. There are two options to choose here. For one, the
tableau can be printed in the terminal. This shows the
tableau from left to right instead of from bottom to top.
It also shows the relations per branch and the world the
trees exist in. An example of such an output is given in
Listing 1.

Listing 1: output
Tableau
relations:
0r 1
branch:
"F’’p> 0
'G’"’p’ O
o1
o1
X
relations:
branch:
TCFpt="""GTTp7) 0
relations:
0r 2
branch:
G 7p’ O
F’p’ 0
T2
)
X

There is another option regarding the output. The
code can also make a text file containing latex-style
text that produces an actual tree representing the out-
put. This tree-structure of the same output as Listing 1
is given in Figure 2.1.

This output also shows the input and whether the
tableau is closed or not. When it is not closed it will
show an accurate counter-model. As the output in Fig-
ure 2.1 is easier to read and more clear than the output
in Listing 1, we will use this output for the rest of the

paper.

2.2 Experimental setup

To answer the research questions, a clear setup of the
experiments needs to be established. The first part of
the research question requires the solver and temporal
logic to be sound and complete with respect to the ap-
propriate models. The soundness and completeness of
this logic is proven in the next section. The second part

Input: - (Fp < =G—p).
Semantic tableau:

=(Fp + =G-p),0

N

Fp,0 =G-p,0
G-p,0  =Fp,0
Orl 0r2
pl p2
_'pvl _'p72
X X

The tableau is closed.

Figure 2.1: Output

of the question requires some preset temporal logic in-
ferences that are used to compare the solver to itself
including and excluding the extension of extendability.
The handpicked inferences are given in Figure 2.2. The
inferences are chosen in such a way that they cover all
operators, and that in some inferences, namely 2, 5 and
6, extendability is required to at least get further in the
tableau.

atFHFa

. F(Gp — Fp)

. F(Fp <+ -G-p)
. pt(GpV Hp)

. F(FGp — p)

. FPG(pN—-Hq)

Figure 2.2: inferences

The inferences are all solved a 1000 times by the
solver with and without the extension of extendability.
The time is measured for just the solving part of the
solver; the parsing and printing are only done once. The
average and the standard deviation of the 1000 solves is
calculated and from there the t- and p-values are calcu-
lated.



2.3 Soundness and Completeness

Priest (2008) has proven the soundness and complete-
ness of K’ and Kj,. This proof will combine these proofs
such that the soundness of K{1 with respect to extendable
temporal models is established as well.

2.4 Soundness
2.4.1 Definition 1

Let I = <W, R, v> be any modal interpretation (possi-
ble worlds model), and b be any branch of a tableau for
Kl‘

by
Then I is faithful to b iff there is a map, f, from the nat-
ural numbers to W such that:

e For every node D,i on b, D is true at world f{i) in
L

o [firjis on b, then fi)Rf{j) in I
e [fi=jisonb, then f{i)is f(j)in I
We say that f shows that I is faithful to b.

24.2 Lemmal

Let b be any branch of a tableau, and let I = <W, R,
v> be any interpretation (possible worlds model).

If 1 is faithful to branch b, and a tableau rule is applied
to b, then that rule produces at least one extension b’
such that 1 is faithful to b’.

If 1 is faithful to branch b, and i exists on branch b, then
an extension b’ is produced that contains irj or jri such
that I is faithful to b’.

Proof:

Let f be a function which shows I to be faithful to b.
Suppose that GA, i is on b, and that we apply the rule
for G. Since I is faithful to b, GA is true at f{i). Moreover,
for any i and j such that irj is on b, f{(i)Rf{j). Hence, by
truth conditions for G, A is true at f{j) for all those j,
and so 1 is faithful to the extension of the branch. Also,
suppose that FA,i is on b and we apply the rule for F
to get nodes of the form irj and A,j for some j not on b.
Since I is faithful to b, FA is true at f{i). Hence, for some
w € W, fli)Rw and A is true at w. Let ’ be the same
as f except that f’(j) = w. Note that f” also shows that I
is faithful to b, since f and f’ differ only at j; this does
not occur on b. Moreover, by definition, f’(i)Rf’(j), and
A is true at f’(j). Hence, f’ shows I to be faithful to the
extended branch. The rule for H and P is similar.

For transitivity: since irj and jrk are on b, f{i)Rf(j)
and f{(j)Rf(k). Hence f(i)Rf(k) since R is transitive, as
required.

Form:ioccurs on b, and we apply the rule to get irj,
where j is new. We know that for some w € W, f(i)Rw.
Let f’ be the same as f except that f’(j) = w. Since j does
not occur on b, f’ shows that I is faithful to b. More-
over, f’(i)Rf’(j) by construction. Hence, f’ shows that [
is faithful to the extended branch. For M’: i occurs on b,
and we apply the rule to get jri, where j is new. We know
that for some w € W, wRf{(i). Let f’ be the same as f ex-
cept that f°(j) = w. Since j does not occur on b, f’ shows
that I is faithful to b. Moreover, f’(j)Rf (i) by construc-
tion. Hence, f’ shows that I is faithful to the extended
branch.

For ¢: Suppose that irj and irk are on b. Then
f)RS(G) and f(i)Rf(k). By the forward convergence con-
straint, f(7)Rf(k) or f(k)Rf(j) or f(j)=f(k). So f shows at
least one of the branches obtained by applying the rule
to be faithful to b. For B: Suppose that jri and kri are on
b. Then f(j)Rf(i) and f(k)Rf(i). By the forward conver-
gence constraint, f{j)Rf(k) or fik)Rf(j) or f(j)=f(k). So f
shows at least one of the branches obtained by applying
the rule to be faithful to b.

2.4.3 Theorem1
For finite X: if ¥ I—K{1 A, then ¥ |=KTz] A.
Proof:

Suppose that X '71({] A. Then there is an interpretation,
I = <W, R, v>, that makes every premise from ¥ true,
and A false, at some world, w € W. Let f be any function
such that f(0) = w. This shows I to be faithful to the
initial list. The proof is now exactly the same as in the
non-modal case (Priest, 2008)

2.5 Completeness
2.5.1 Definition 2

Let b be an open branch of a tableau for Kﬁ
The interpretation I = <W, R, v> that is induced by b is
defined as follows:

e W={w;:ioccursonb};
o wiRw; iff irj occurs on b;
e [fi=jis on b then f{i) is f(j)

o Ifw; € W, then for some j, wiRw;



o Ifw; €W, then for some j, wRw;
o IfwiRw; and wiRwy € R, then wjRwy € R

o Ifp,i occurs on b, then vyi(p) = 1;
if =p,i occurs on b, then v, (p) = 0

2.5.2 Lemma?2

Let b be an open complete branch of a tableau.
Let I = <W, R, v> be the interpretation induced by b.
Then for all (also complex) inferences D and for all i,
the following holds:

IfD,iis on b, then v,, (D) = 1.
if =D,i is on b, then v,, (D) = 0.
The proof'is by recursion on the complexity of A. If A is
atomic, the result is true by definition. Suppose that A is
of the form GB. If GB,i is on b, then for all j such that
irj is on b, B,j is on b. By construction and the induction
hypothesis, for all w; such that wiRw, B is true at w;.
Hence, GB is true at w;, as required. If ~GA,i is on b,
then F—A,i is on b; so, for some j, irj and —A,j are on
b. By induction hypothesis, w;Rw; and A is false at w;.
Hence, GA is false at w; as required. The case for F, H
and P are similar.

For transitivity: for w;, wj, wy € W, suppose that
wiRw; and w jRwy. Then irj and jrk occur on b; but then
irk occurs on b (by the transitivity rule). Hence, wiRwy,
as required.

For m: if w; € W then for some j, irj is on b. Hence,
for some j, wiRw;, as required. For ’: if w; € W then
for some j, jri is on b. Hence, for some j, wiRw;, as
required.

For @: Suppose that w;Rw; and w;Rwy (where i, j,
and k are distinct). Then irj and irk are on b. Because
the ©-rule has been applied, either jrk, krj, or j=k is on
b; so either wjRwy or wiRw; or f{j) is flk). In the last
case, j=k, so wi=w;. In all three case, we therefore have
what we need. For B: Suppose that wiRw; and wiRw;
(where i, j, and k are distinct). Then jri and kri are on
b. Because the ©-rule has been applied, either jrk, krj,
or j=k is on b; so either wjRwy or wyRw; or f(j) is f(k).
In the last case, j=k, so wi=wj. In all three cases, we
therefore have what we need.

2.5.3 Theorem 2

For finite X: if ¥ lZKﬁ A, then X '_K{] A.

Proof:

Suppose that ¥ VKﬁ A. Given an open branch of the
tableau, the interpretation that this induces makes all

the premises true at wo and A false at wy by the Com-
pleteness Lemma. Hence, X VKﬁ A.

3 Results

The solver is able to construct a tableau for all given
inferences in a reasonable time. See Table 3.1 for
the average milli-seconds it took to solve the 6 in-
ferences on average over a 1000 runs with extend-
ability on and off. It also shows the standard devi-
ation of the inferences, and then the t- and p-value
of the two means per inference. Inferences 2, 5, and
6 require extendability in order to get further in the
tableau. For inferences 1 and 3, the difference in aver-
age times is not significant according to an un-paired
two-sample t-test (#(0,780976719) = 0,214945,p >
0.5) and (¢(0,285975574) = 0,387507, p > 0.5). For in-
ferences 2, 4, 5 and 6, when extendability is off, the
times are significantly shorter than when extendabil-
ity is on according to an un-paired two-sample t-test
(#(215,511772) > 0.00001, p < 0.05), (t(—5.96562) =
0,000039, p < 0.05), (¢(404,0119734) > 0.00001,p <
0.05) and (#(233,9500421) > 0.00001, p < 0.05). It can
also be noted that, although the means of inference 4 are
significantly different, their means are not as different
as in inferences 2, 5 and 6.

Table 3.1: Average times of the six inferences, t- and p-
value

Formule | Extendable | Average milli-seconds | Standard Deviation t-value p-value

1 no 0,10935987 0,010491327 0,780976719 | 0,214945
yes 0,109703309 0,009127852

2 no 0,05668339 0,008086576 215,511772 | <0.00001
yes 0,320763961 0,03789626

3 no 0,496430584 0,070329504 0,285975574 | 0,387507
yes 0,497324656 0,069484488

4 no 2 0,070154793 -5,96562 0,000039
yes 2 0,105865634

5 no 0,196671139 0,032972549 404,0119734 | <0.00001
yes 1 0,095699331

6 no 0 0,00160981 233,9500421 | <0.00001
yes 9 1,161395242

In Figure 3.1 you can see how inference 6 is solved
without the extension of extendability. In Figure 3.2 you
can see inference 6 with the extension of extendability
on, it also shows a correct counter-model it got from the
left-most branch. The rest of the solved inferences can
be found in Appendix A.




Input: - (PG(p A—Hg)).
Semantic tableau:

-PG(pA-Hg),

The tableau is not closed, the max number of worlds
is:3

Here is the countermodel:

W= {W()}

R=0

Figure 3.1: Inference 6, non-extendable

Input: - (PG(p A—Hg)).
Semantic tableau:

-PG(pA—Hg),0
10
~G(pA—Hg),1
1r2
~(pA~Hg),2

0r2 “PG(pA—Hqg),2 2r0

=(pA-Hgq),0 /\

SN
e 0=2 2 Hy.2
q; P, 9,
q,1 /\ -G(pA—Hgq),2 q,1
_ ) Hy,2 } ~G(ph—Hg)2

-p,0 Hq,0

S s
. Hg,0 —p0 g1
' Hq2 -p2

: q,1

The tableau is not closed, the max number of worlds
is:3

Here is the countermodel:

W = {w; | i € Z} where Z is the set of integers {......
-2,-1,0,1,2,.....}

R = {< wo,wy >, < wi,wp >, < wi,w >} U{<
wi,wi >[i>2}U{<wy,w; >| j <0}

Vg (p) =0

Figure 3.2: Inference 6, extendable, countermodel read
from the leftmost branch

4 Discussion

4.1 Conclusion

Let’s now look at the research questions again:

1. Can we make a non-branching temporal linear-time
logic solver that allows infinite open branches and that
is sound and complete?

2. How fast does a non-branching temporal linear-time
logic solver that allows infinite open branches solve a
set of temporal linear-time logic problems compared
to a normal non-branching temporal linear-time logic
solver using the tableau method?

To answer the first question: yes we can. We made a
non-branching temporal linear-time logic solver that is
sound and complete with respect to the relevant seman-
tics as long as extendability is turned ’on”. The solver
does what it is supposed to do, it solves the inferences.
The soundness and completeness of this logic is proven
in the Methods-section.

The second question is less straight-forward to an-
swer. Looking at Table 3.1 in the results section, we
can find the average milli-seconds it took to solve the
6 inferences on average over a 1000 runs with extend-
ability on and off. It also shows the standard deviation
of the inferences, and then the t- and p-value of the two
means per inference. The inferences for which extend-
ability was used to get further down the branch were
inferences 2, 5, and 6. Looking at the p-values of these
inferences, it was concluded that these inferences take
significantly more time to be solved than the same infer-
ence without the extension of extendability. For the in-
ferences that do not require extendability the situation is
not as clear. Inference 4 requires significantly more time
with the extension of extendability while the other two
inferences (1 and 3) do not differ significantly in their
time to solve the inference with and without extendabil-
ity. It has to be noted, however, that although inference
4 differs significantly in its time with and without ex-
tendability, it does not differ as much as inferences 2, 5
and 6. This raises suspicion that the significance in in-
ference 4’s result might be due to something else than
inferences 2, 5 and 6.

Looking at the individual times of all the different
inferences, we can see that even for the same inference
with either the extension off or on that the calculation
times still vary very much. This might be the cause for



the significant result found for inference 4. A way to
reduce the chance of this happening is creating longer
inferences. With longer inferences, its takes longer to
solve them so the differences in calculation time will be
relatively less.

Another reason for the significant difference in 4’s
calculation time might lie in the inference itself. The
tableau is not closed and produces a countermodel. The
fact that it is not closed means the inference would
try anything to get further in the tableau. The way
the solver is made, it does not create a relation when
it does not help to further the tableau, but that does
not mean that the solver never reaches the if-statement
ifextandable == True during the solving. So it might
have been this extra if-statement that has been requested
many times because the solver couldn’t get any further,
that created the extra time it took the solver with the
extension of extendability.

In the end, the big significant results in the inferences
that require extendability as opposed to the inferences
that do not require extendability that either don’t have
a significant result or have a significant result of ques-
tionable reliability, make the conclusion quite clear. The
non-branching temporal linear-time logic solver solves
a set of infinite temporal linear-time logic problems that
require the extension of extendability to get further in
the tableau more slowly compared to these inferences
without the extension of extendability.

So what does this conclusion tell us exactly? One
could argue that needing more time to solve an infer-
ence is a bad thing. It also requires more computational
power. In the end however, the difference in computa-
tion time between the inferences with extendability or
without is minimal. The solver itself is pretty fast at
solving the inferences, and even with much larger infer-
ences the difference will hardly be noticeable. On the
other hand, the extension of extendability makes sure
the inference can get further down the tableau, and it
might be able to solve the inference this way. The ex-
tension of extendability might make the solver an unno-
ticeable bit slower, it does help with a better insight in
certain inferences. Additionally, without extendability,
one sometimes does not obtain the correct solution.

4.2 Reflection

Looking at the solver’s structure, there is one issue with
extendability. A certain stop needed to be implemented
to avoid the creation of an infinite tableau. It was al-
ready discussed in the methods section that we chose

to implement a maxWorld variable; this would stop the
solver once it wants to make the world with integer
maxWorld, all solutions in this paper had a maxWorld
of three. This is not a very elegant way, however. The
user might not know what a good maxWorld variable
is and using one that is too small might terminate the
solver before it has found the existing counter model. If
the variable is set too high, on the other hand, it might
take more time and computational resources than nec-
essary. It might also create a tableau that is not as sim-
ple as it could be and is therefore not as clear. A bet-
ter solution to solving the infinity issue might be to de-
tect reoccurring actions in the solver. Once the solver
starts repeating actions, it will not find a valid counter-
model anymore and the solver can be terminated. It is
very hard, however, to detect these loops, as they can be
of varying lenghts and also present in sub- and parent-
trees. The way this solver is built, it would be hard to
implement this idea.

4.3 Further research

For further research, there are a few things to keep in
mind. As mentioned in the reflections, it might be a
good idea to re-implement the handling of the infinite-
worlds problem. Furthermore, looking at the conclu-
sion, a set of longer inferences might make the results
more clear and the conclusion stronger.

A way to extend the program could be to add more
extensions, so that the user can see how inferences are
solved with different extensions. One way to do this
could be that the user can choose the extensions they
want to implement. Another way, or an added feature
could be that the program shows in the output for which
combination of extensions the inference is solvable.
This could create a more universally-applicable appli-
cation.
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S Appendix A: Results

Input: a + (HFa).
Semantic tableau:

a,O
—IHFCl,O
170
—Fa,l
—a, 0
X

The tableau is closed.

Figure 5.1: Inference 1, non-extendable

Input: a - (HFa).
Semantic tableau:

a,O
—HFa,O
170
—Fa,l
—a, 0
X

The tableau is closed.

Figure 5.2: Inference 1, extendable

Input: - (Gp — Fp).
Semantic tableau:

(Gp4Fp)
|
(op

The tableau is not closed, the max number of worlds
is:3

Here is the countermodel:

W= {wo}

R=0

Figure 5.3: Inference 2, non-extendable

Input: - (Gp — Fp).
Semantic tableau:

=(Gp — Fp),0
-Fp,0
Gp,0
Orl
-p, 1

p,1
X

The tableau is closed.

Figure 5.4: Inference 2, extendable

11



Input: - (Fp < =G—p).
Semantic tableau:

=(Fp + =G-p),0
Fp,()/ﬂ\Gﬂp,()
G-p,0 —Fp,0
Orl 0r2
p,1 p2
—|p,1 —lp,2
X X

The tableau is closed.

Figure 5.5: Inference 3, non-extendable

Input: - (Fp <> =G—p).
Semantic tableau:

(Fp ¢ =G-p),0
N
Fp.0  —=G-p,0
G-p,0 —Fp,0
Orl 0r2
p,1 p,2
_‘pal _'p72
X X

The tableau is closed.

Figure 5.6: Inference 3, extendable

Input: p+ (GpV Hp).
Semantic tableau:

p,0
-(GpVvHp),0
-Gp,0
—-Hp,0
Orl

—p,1
2r0

—p,2
2rl

The tableau is not closed, the max number of worlds
is:3

Here is the countermodel:

W= {W(),Wl,Wz}

R={<wo,w; >, <wy,wg >, <wy,w >}

Vo (p)=1

Y (p ) =0
Vo (r)=0

Figure 5.7: Inference 4, non-extendable
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Input: p - (GpV Hp).
Semantic tableau:

_'(Gp\/Hp),O Input: - (FGp — p).

Semantic tableau:

ﬂg’pO,O _‘(FGP—H?),O
~Hp.0 1p70
Orl

prl FG[LO
iy Orl

21" 1 1
The tableau is not closed, the max number of worlds G p,
is:3

Here is the countermodel: The tableau is not closed, the max number of worlds

W = {w; | i € Z} where Z is the set of integers {...... is:3 )

2,-1,0,1,2,.....} Here is the countermodel:

R = {< wo, w1 >, < wa,wo >,< W2,Wj >} U {< };V_: {wo, w1}

wi,wi >|i>2}U{<wj,w, >| j <0} = {<wo,w; >}

Vo (p) =1 Vo (P) =0

Vi, (P) = W, (P) = Vi, (p) = 0, where s can be any in-

teger s ¢ {0’ 1’2} Figure 5.9: Inference 5, non-extendable

Figure 5.8: Inference 4, extendable
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Input: - (FGp — p).
Semantic tableau:
—~(FGp — p),0
—p,0
FGp,0
Orl
Gp,1
172

p,2
0r2

The tableau is not closed, the max number of worlds
is:3

Here is the countermodel:

W = {w; | i € Z} where Z is the set of integers {......
-2,-1,0,1,2,.....}

R = {< Wi, Wj >| i< ]}

o (p) = 0

v, (p) =1foralli>1

Figure 5.10: Inference 5, extendable
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