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Abstract

In this thesis we will develop a theory that allows us to solve differ-
ential equations driven by irregular signals. With fractional Brownian
motions in our mind, we use the Young integration theory to determine
when we can expect existence and/or uniqueness of such equations. We
will also solve some equations, both numerically and explicit. Finally,
we discuss an extension of the standard Black-Scholes model and show
how it not suitable for praxis in the basic form.
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1 Introduction

Differential equations are one of the most important concepts in mathe-
matics with applications in nearly every field, from physics to economics to
sociology. Using differential equations, we can explain the world around us
in a concise but precise manner.

The most well-known class of differential equations is the class of Cauchy
problems, usually written as y′ = f(x, y), y(0) = ξ0. The theory around
this equation is vast but well-known. It is known when one can guarantee
existence of a solution, which follows from a theorem of Peano, and when
one knows that there is one and only one solution, due to a theorem from
Picard and Lindelöf.

In this thesis we will consider a generalization of the aforementioned con-
cept, the stochastic differential equation (SDE). These are usually written
as

dYt = f(Yt)dXt, Y0 = ξ (1)

Where Yt is the unknown function, which depends on time (t). The above
notation is technically an abuse of notation. The stochastic process Xt is
usually far from differentiable, so we do not immediately know how we can
define the differential of Xt, dXt. It should be noted that Paul Malliavin
developed a theory in which taking the derivative of a stochastic process
makes sense, the framework of Malliavin Calculus. We refer the reader to
[44] for a nice introduction to this theory.

In what follows, we will understand (1) as the following integral equation

Yt =

∫ t

0
f(Yt)dXt (2)

There are two theories developed to evaluate such integrals. The most
well known is the theory by K. Itô. It assumes that Xt is a martingale1 and
then he showed that the Riemann-Stieltjes sums converge in probability to
the proper quantity. Even though the assumption of being a martingale
is usually not too restrictive, as the most widely used stochastic process,
the Brownian motion, satisfies this property, there is still a large class of
stochastic processes that are not martingales. The approach we take allows
us to consider these stochastic processes.

The main question that we will try to answer is how we can define
(2) and use it to solve (1). It should be clear that the ordinary Riemann

1It is sufficient for Xt to be a semi-martingale, but since we don’t need this we will
limit ourself to martingales.
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and Lebesgue integrals offer no answers, as those only allow us to integrate
against t. Since Xt can be seen as a function, we will use the Riemann-
Stieltjes integral as a starting point. The classical variant is only defined
whenXt is of bounded variation, since most stochastic processes, for example
the Brownian motion, have unbounded variation, this is only of limited use
to us.

Young developed an extension of the Riemann-Stieltjes integral in 1936,
which we will call the Young integral. He proved that if X has finite p-
variation, which is a generalization of bounded variation, Y has finite q-
variation, then the integral

∫ t
0 YsdXs exists if 1/p + 1/q > 1. It should

be noted that this implies that both p and q must be less than 2. Even
though this is still a significant restriction, it does allow us to integrate
against certain stochastic processes. We will consider the generalization of
a Brownian motion, the fractional Brownian motion. For this stochastic
process, the regularity depends on a parameter, so we can choose for what
values it should be of bounded p-variation.

As noted above, we are still limited to functions of bounded p-variation
for p < 2. We will show that this is not a shortcoming of the Young integral,
but has a deep significance. The case p ≥ 2 is completely different and needs
a more sophisticated theory.

In the 1990s, Terry Lyons provided this theory, which is now known as
the theory of rough paths. A rough path is defined as an element of the
completion of the space of continuous paths with bounded p-variation and
some other technical properties. The theory of rough paths has been fruitful.
In 2014, Martin Hairer received the Fields medal for his construction of a
robust solution theory of the Kardar–Parisi–Zhang (KPZ) equation using
rough paths and even proposed a further generalization. If the reader is
interested in this theory, we refer to [17] for an detailed study and to [28]
for a more gentle introduction.

In this thesis, we will answer three questions: First we will show how
you can define (2) in the sense of Young. We will also state and proof the
conditions that imply the existence and uniqueness of (1).

We will numerically approximate solutions to (1) and compare different
algorithms. Lastly, we shall look at the fractional Black-Scholes model,
which is an extension of the standard Black-Scholes option pricing model.

Before we start with the thesis itself, I would like to express my gratitude
to my supervisor Daniel Valesin for many helpful comments, discussions and
because he stuck with me, despite the bumpy process that was this project.
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2 Preliminaries

In this section we will define some terminology and state the necessary
knowledge for this thesis. We will look at some real and functional analysis,
measure theoretic probability and an introduction to tensors.

2.1 Analysis of the space of functions of bounded p-variation

In this thesis we will deal with a class of mappings that cannot be integrated
using the standard Riemann-Stieltjes integration theory. As a first step we
look at how we can define integrals of the form

∫
Y dX for a certain class of

functions X and Y .
Let V and W be two Banach spaces, we denote the set of continuous (i.e.

bounded) linear mappings from V to W by L(V,W ). We take J = [0, T ] to
be the compact interval on which we will be working, where T can be seen
as some final time.

Definition 1 ((Continuous) path). Let X : J → E be a Banach space
valued continuous function, we will call this a continuous path. Since we
will assume continuity for all cases, we will mostly refer to simply a path.
Instead of X(t) we will write Xt for the evaluation of our continuous path
at t. If it holds for some positive α that |Xt −Xs| < C|t − s|α for all s, t,
then we say that X is α-Hölder continuous.

The reason why we use path instead of function will become clear later,
when we have covered our introduction to stochastic processes. We now
define one of the key ingredients of this thesis, the p-variation of a continuous
path.

Definition 2 (p-variation). Let X : J → E be a continuous path, we define
the total p-variation of X by

‖X‖p,J =

sup
Π

r−1∑
j=0

|Xtj −Xtj+1 |p
1/p

, (3)

where Π = {0 = t0, t1, ..., tn = T} is a partition of the interval J and
the supremum is taken over all possible partitions, so not just the ones for
which the size of of mesh, |Π| := max

0≤i≤r−1
|ti− ti+1|, goes to zero. If the total

p-variation is finite for some function X, we say that it is of bounded p-
variation. For the case p = 1, we simply say that X is of bounded variation
and write X ∈ BV (J).
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The notation ‖ · ‖p,J is a bit misleading, since it is not actually a norm
but only a semi-norm. It can be easily seen that for a constant nonzero path
Y , we have ‖Y ‖p,J = 0. We shall define the proper norm later on.

Sometimes we have to mention an underlying partition explicitly, in that
case, where we have a partition Π, we will denote this by

‖X‖p,Π :=

(
r−1∑
i=0

|Xti −Xti+1 |p
)1/p

We stress that we take the supremum over all possible partitions, not
only the ones for which the size of the mesh goes to zero. When p = 1, this
distinction does not matter, but if p > 1, it is not necessarily the same, as
we will see in the next proposition.

Proposition 3. For every continuous path, that might not be of bounded
variation, if p > 1, then we can find a partition such that the total p-variation
of that path corresponding to that partition goes to zero.

Proof. Let J = [a, b] be an interval. Given a partition Λ of J and points
x, y ∈ Λ, we will write x ∼ y if there are no points of Λ between x and y.

Let X : J → R be continuous. We will construct a partition Λ0 of J
satisfying

|X(x)−X(y)| ≤ 1 for each x, y ∈ Λ with x ∼ y.

To do so, first use uniform continuity of X to find δ > 0 such that

x, y ∈ J, |x− y| ≤ δ =⇒ |X(x)−X(y)| < 1.

Let x0 = a. In case |X(x)−X(a)| < 1 for all x ∈ [a, b], then let x1 = b and
Λ0 = {x0, x1} = {a, b}; in this case, (2.1) is satisfied. Otherwise, let

x1 = min{x ≥ a : |X(x)−X(0)| = 1};

then, in case |X(x) − X(x1)| < 1 for all x ≥ x1, we can set x2 = b and
Λ0 = {a, x1, b}, so that (2.1) is satisfied. Otherwise, let

x2 = min{x ≥ x1 : |X(x)−X(x1)| = 1},

and so on. Note that, due to (2.1), we have |xi+1−xi| ≥ δ for each i, so the
procedure has to eventually end with some n so that xn = b. Let K be the
number of intervals in Λ (that is, Λ has K + 1 points).
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Now that we have Λ0, we will define a sequence of partitions Λn, n ∈
{0, 1, . . .}, such that, for each n, Λn has K2n intervals and

x, y ∈ Λn, x ∼ y =⇒ |X(x)−X(y)| ≤ 2−n

Assume that Λn is already defined. For each x, y ∈ Λn with x < y and x ∼ y,
since |X(x) −X(y)| ≤ 2−n, there exists some intermediate point z ∈ (x, y)
such that |X(x)−X(z)| ≤ 2−(n+1) and |X(y)−X(z)| ≤ 2−(n+1). We then
define Λn+1 by including all the points of Λn, together with intermediate
points chosen as we just explained. It is then clear that Λn+1 has twice as
many intervals as Λn, and satisfied (2.1) with n replaced by n+1. Moreover,

‖X‖p,Λn ≤ K2n · (2−n)p
n→∞−−−→ 0

since p > 1.

We will limit our study to the case p ≥ 1. The next proposition shows
why the case 0 < p < 1 is not interesting.

Proposition 4. Let X : J = [0, T ]→ E be a continuous path with bounded
p-variation with p < 1. Then X is constant, i.e. Xt = X0 for all t.

Proof. Let 0 ≤ u ≤ T and let Π be a partition of J of size r, then

|Xu −X0| ≤
r−1∑
i=0

|Xti −Xti+1 |p

≤
(
max |Xti −Xti+1 |1−p

)(r−1∑
i=0

|Xti −Xti+1 |p
)

≤
(
max |Xti −Xti+1 |1−p

)
‖X‖pp,J

Since X is continuous, it is also uniformly continuous on J = [0, T ], since J
is compact. This means that we can make |Xti−Xti+1 | as small as we want.
Since, by assumption, X has bounded p-variation, it follows that

|Xu −X0| = 0

So we can conclude that Xt = X0 for all t ∈ J .

Calculating the p-variation is in general quite cumbersome, as there are
uncountably many possible partitions, but for the case p = 1 and when X is
differentiable and its derivative is integrable, we have a standard results that
‖X‖1,J =

∫
J |X

′
t|dt. So we can interpret this as the vertical component of

the arc-length. We shall now prove that a path that is α-Hölder continuous
for α ∈ (0, 1) has finite 1

α -variation.
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Proposition 5. A path that is α-Hölder continuous for α ∈ (0, 1) has finite
1
α -variation.

Proof. Let X : J → E be a path that is 1
α -Hölder continuous and assume

that J is bounded. Then,

‖X‖α,J =

sup
Π

r−1∑
j=0

|Xtj −Xtj+1 |α
1/α

≤ C

sup
Π

r−1∑
j=0

|tj − tj+1|

1/α

≤ C × |J |1/α <∞

Hence, X is of bounded α-variation.

This proposition will be useful to us later, when we define fractional
Brownian motion, for which it is much simpler to determine the Hölder
continuity than the p-variation directly. We will also prove a partial converse
to this proposition in section 4.

For some of the proofs that will follow we need the following lemma:

Lemma 6. Let (ai)
n
i=0 be a sequence of positive real numbers and p ≥ 1,

then

1. (
∑n

i=1 a
p
i )

1/p
is decreasing in p;

2. ln
∑n

i=1 a
p
i is convex in p

Proof. 1. Let q ≥ p be given. Without loss of generality, we can assume

that (
∑n

i=1 a
p
i )

1/p
= 1 by scaling. It follows that

∑n
i=1 a

p
i = 1. Hence

0 ≤ ai ≤ 1 which implies api ≥ aqi . Summing and taking the sum to
the power of 1/q yields the result.

2. The most straight forward method would be using Hölder’s inequal-
ity, this proof can be found here [40]. We will reproduce the novel
(probabilistic) proof from [15]. Let f(i) = ai and let µ({i}) = 1 be the
counting measure so that

n∑
i=1

api = µ(fp), and ϕ(p) = lnµ(fp)
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We have that d
dpf

p = fp ln(f). Hence

ϕ′(p) =
µ(fp ln(f))

µ(fp)

ϕ′′(p) =
µ(fp ln2(f))

µ(fp)
−
(
µ(fp ln(f))

µ(fp)

)2

Let EX := µ(fp ln f)/µ(fp). Then ϕ′(p) = E ln f and hence

ϕ′′(p) = E ln2 f − (E ln f)2 = Var ln f ≥

Hence ϕ′′ ≥ 0 and it follows that ϕ is convex.

Now we state and prove some properties of ‖ · ‖p,J .

Proposition 7. Let X : J → E be a continuous path.

1. Let ϕ : J → J be a non-decreasing surjection. Then, for all p ≥ 1
‖X‖p,J = ‖X ◦ ϕ‖p,J ;

2. The function p 7→ ‖X‖p,J from [1,∞) to [0,∞] is non-increasing;

3. The function p 7→ ln ‖X‖pp,J is convex, and continuous on any interval
where it is finite;

4. For all p ≥ 1, ‖X‖p,J ≥ supt,s∈J |Xt −Xs|;

5. The p-variation is lower semi-continuous, that means: Let (X(n)) be
a sequence of elements of C0(J,E), i.e. the linear space of continuous
paths, which converges in the topology of pointwise convergence to a
continuous path X. Then,

lim inf
n→∞

‖X(n)‖p,J ≥ ‖X‖p,J

Proof. 1. We will show this by showing that both quantities are greater
or equal to each other and hence they can only be equal. Let T1 = {τi}
be a partition of J and then let T = {ti}, with ti = ϕ(τi). Since φ is
nondecreasing and a surjection, T is also a partition of J . Therefore

7



(all is to the power of p, for notational convenience),

‖X ◦ ϕ‖pp,T1 =
r−1∑
i=0

|(X ◦ ϕ)τi − (X ◦ ϕ)τi+1 |

=
r−1∑
i=0

|Xti −Xti+1 |p

= ‖X‖pp,T ≤ ‖X‖
p
p,J

For the other inequality, let T1 be a partition of J such that ti < ti+1

for all i, then there exists τi such that ti = ϕ(τi), since ϕ is monotonic
and surjective. We also have that T = {τi} is a partition of J . Hence

‖X‖pp,T = ‖X ◦ ϕ‖pp,T1 ≤ ‖X ◦ ϕ‖
p
p,J

2. Let q > p. From the first item Lemma 6, it follows for any partition
Π that

‖X‖q,Π ≤ ‖X‖p,Π ≤ ‖X‖p,J
and since this holds for any partition, it follows that

‖X‖q,J = sup
Π
‖X‖q,Π ≤ ‖X‖p,J

And hence p 7→ ‖X‖p,J is decreasing.

3. Consider the function ϕΠ(p) := ln ‖X‖pp,Π. By the second item of
Lemma 6, we have that ϕΠ is convex. Let p0, p1 ∈ [1,∞) and let
λ ∈ [0, 1], then from the definition of convexity it follows

ϕΠ(λp0 + (1− λ)p1) ≤ λϕΠ(p0) + (1− λ)ϕΠ(p1)

Since the logarithm is an increasing function, we can conclude that
ϕΠ(p) ≤ ϕ(p) := ln ‖X‖pp,J and hence we have that

ϕΠ(λp0 + (1− λ)p1) ≤ λϕ(p0) + (1− λ)ϕ(p1)

By definition, supΠ ϕΠ(p) = ϕ(p), which allows us to conclude that

ϕ(λp0 + (1− λ)p1) = sup
Π
ϕΠ(λp0 + (1− λ)p1)

≤ λϕ(p0) + (1− λ)ϕ(p1)

8



4. Let ts and us be the points where the supremum is reached, where
we assume without of loss of generality that ts < us and let Π =
{t0, ts, us, tT }. Then we have

‖X‖p,J ≥

(∑
Π

|Xti −Xti+1 |p
)1/p

≥ (|Xts −Xus |p)
1/p = sup

t,s∈J
|Xt −Xs|

5. Let ε > 0 and let Dε be a partition of J such that[∑
Dε

|Xtj −Xtj+1 |p
]1/p

≥ ‖X‖p,J − ε

Since Dε is finite, we have that

lim
n→∞

[∑
Dε

|Xtj −Xtj+1 |p
]1/p

≥ ‖X‖p,J − ε

The result follows from letting ε tend to 0.

For p ≥ 1, we will define a norm on the space of continuous functions
with finite p-variation, Vp(J,E) which we may abbreviate to just Vp. On
this space we will define the norm (X ∈ Vp)

‖X‖Vp = ‖X‖p,J + sup
t∈J
|Xt|

We will now state and prove some properties of the resulting normed space

Proposition 8. For p ≥ 1, the normed space Vp(J,E) is a linear subspace of
C0(J,E), the space of continuous paths. Furthermore, (Vp(J,E), ‖·‖Vp(J,E))
is a Banach space. Lastly, if 1 ≤ p ≤ q, then the following inclusions hold

V1(J,E) ⊂ Vp(J,E) ⊂ Vq(J,E) ⊂ C0(J,E)

Proof. LetX,Y ∈ Vp(J,E),it should be clear that ‖X‖Vp(J,E) ≥ 0, ‖λX‖Vp(J,E) =
|λ|‖X‖Vp(J,E) and that ‖X‖Vp(J,E) = 0 if and only if X = 0. The triangle
inequality follows from |Xtj +Ytj −Xti+1−Yti | ≤ |Xtj −Xti+1 |+ |Ytj −Yti+1 |
and the fact that sup(X+Y ) ≤ sup(X)+sup(Y ). This shows that ‖·‖Vp(J,E)

is a norm and that Vp(J,E) is a linear subspace of C0(J,E).
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Now we show that it is a Banach space, let (Xt(n)) be a Cauchy sequence,
it follows from

‖Xt(n)−Xt(m)‖∞ ≤ ‖X(n)−X(m)‖j,E+sup
t
|Xt(n)−Xt(m)| = ‖X(n)−X(m)‖Vp

So Xt(n) converges uniformly, and hence the limit function, say Xt, is con-
tinuous. So we only need to show that it has bounded variation. Since Xt is
continuous and J is compact, it follows that ‖X‖∞ < M for some M > 0.
So we only need to show that ‖Xt‖p,J is bounded, for which we proceed as
follows: Let Π = {0 = t0, t1, .., tr−1 = T} be a partition of J . By uniform
continuity, there is a m ≥ 0 such that ‖X −X(m)‖∞ ≤ 1

2n , hence

r−1∑
j=0

|Xtj+1 −Xtj+1(m)| ≤
r−1∑
j=0

|Xtj −Xtj (m)|+
r−1∑
j=0

|Xtj+1 −Xtj+1(m)|+ ‖X(m)‖p,J

≤ 1

2
+

1

2
+ sup

n
‖X(n)‖p,J

This implies,
‖X‖p,J ≤ 1 + sup

n
‖X(n)‖p,J <∞

So we conclude that X ∈ Vp(J,E) and hence Vp(J,E) is a Banach space.
The inclusions follow Proposition 7.

One of the questions one could ask about Vp is whether it is separable or
not. The answer to this question is negative if J has more than one element
or E = {0}. We will only consider the case Vp([0, T ],R). The following
proof comes from [18] and is slightly adapted to our notation.

Theorem 9. Vp(J,R) is not separable

Proof. We will construct an uncountable family of functions such that the
distance between any two such functions stays bounded from below by a
constant. Without loss of generality, let T = 1. We consider the following
uncountable subset of C([0, T ],R),

fε(t) =
∑
k≥1

εk2
−k/p sin(2kπt)

Where ε = (εk) ∈ {1,−1}N. We will prove two things, first that fε is
1
p -Hölder continuous and then that ‖fε − fε′‖p,[0,1] > 2.

10



For 0 ≤ s < t ≤ 1, we have

|fε(t)− fε(s)| ≤
∑

1≤k≤| log2(t−s)|

εk2
−k/p(sin(2kπt)− sin(2kπs))

+
∑

k>| log2(t−s)|

εk2
−k/p(sin(2kπt)− sin(2kπs))

Since ‖ε‖`∞ ≤ 1, we have that | sin(2kπt) − sin(2kπs)| ≤ 2kπ|t − s| for the
first sum and we use that | sin(x)| ≤ 1, hence

|fε(t)− fε(s)| ≤ π|t− s|
∑

1≤k≤| log2(t−s)|

2−k/p2k +
∑

k>| log2(t−s)|

2 · 2−k/p

≤ c1(p)|t− s|1/p

And hence fε ∈ Vp([0, 1],R). Now we show that can bound the distances
between two elements of our set from below. Assume ε 6= ε′ and let j ≥ 1
be the first index for which εj 6= ε′j . Define the following partition of [0, 1]:

D = {ti = i2−j−1} for i = 0, . . . , 2j+1. Then it holds that

| sin(2jπti+1)− sin(2jπti)| = 1

Hence we have that ‖ sin(2jπ·)‖p,[0,1] ≥ 2j/p. Furthermore,

|(fε − fε′)(ti+1)− (fε − fε′)(ti)| = |εj − ε′j |2−j/p| sin(2jπti+1)− sin(2jπti)|

= 2 · 2−j/p

Hence it follows that ‖fε − fε′‖p,[0,1] ≥ 2, so we conclude that Vp([0, T ],R)
is not separable.

This has a far reaching consequence, as this limits our ability to approx-
imate paths of bounded p-variation in the p-variation norm. Later we will
see a result that for q > p, we can approximate in the q-variation norm.
Before we can state that result, we first need to do some ground work. We
consider approximations by piecewise linear paths. Let X ∈ C0(J,E) be a
path and let D be a partition of J . We denote by XD the continuous path
which coincides with X on the points of D and is affine on the sub-intervals
of J delimited by D. Since there is only one way to linearly connect two
adjacent points of D, it follows that XD is unique.

Proposition 10. Let X ∈ Vp(J,E) and let D be a partition of J , then

‖XD‖p,J ≤ ‖X‖p,J

11



Proof. Let ε > 0 be given and letDε be a partition of J such that ‖XD‖p,Dε ≥
‖XD‖p,J − ε. We will show that Dε can be chosen such that Dε ⊂ D.

We proceed by contradiction, assume that the aforementioned inclusion
does not hold. If Dε does not contain the endpoints of J , we add them. We
note that this only can increase ‖XD‖p,Dε . Now assume that there is a time
in Dε that is not in D. We consider the smallest of such times, which we
denote by u. Let ti be the last time in Dε before u, tj the last time in D
before u and v the first time after u in D ∪ Dε. Since s 7→ XDs is affine on
[tj , v], the function s 7→ |XDs −XDti |

p + |XDv −XDs |p is convex on [tj , v] and
must attain is maximum at one of the points tj or v. If we then remove
u from Dε and making sure that tj or v, depending on where the function
reaches its maximum, belongs to Dε, we do not decrease ‖XD‖p,Dε , but we
do decrease the number of points in Dε, which are not in D by one. If we
repeat this procedure enough times, we can make sure that Dε ⊂ D. Since
X and XD coincide on Dε, we can now conclude that

‖XD‖p,J − ε ≤ ‖XD‖p,Dε = ‖X‖p,Dε ≤ ‖X‖p,J
Letting ε go to zero results into

‖XD‖p,J ≤ ‖X‖p,J
As required.

The following lemma is a straightforward estimation of the distance of
two paths X,Y ∈ Vp in q-variation.

Lemma 11. Let p, q such that 1 ≤ p < q and let X,Y ∈ Vp(J,E). Then,

‖X − Y ‖Vq(J,E) ≤
(

sup
u∈J
|Xu − Yu|

)1− p
q

‖X − Y ‖
p
q

p,J + sup
u∈J
|Xu − Yu|

Proof. This follows from ap = aqap−q, which gives us

‖X − Y ‖Vq(J,E) = ‖X − Y ‖q,J + sup
u∈J
|Xu − Yu|

=

sup
Π

r−1∑
j=0

|Xtj −Xtj+1 |q
1/q

+ sup
u∈J
|Xu − Yu|

=

sup
Π

r−1∑
j=0

|Xtj −Xtj+1 |p|Xtj −Xtj+1 |q−p
1/q

+ sup
u∈J
|Xu − Yu|

≤
(

sup
u∈J
|Xu − Yu|

)1− p
q

‖X − Y ‖
p
q

p,J + sup
u∈J
|Xu − Yu|

12



We are now in the position to state and prove our approximation result.
This result will be used a lot in the section on the Young integral in this
thesis. Since Vp is not separable, we expect that this is the best we can do.
We denote by |D| the maximum size of the mesh.

Theorem 12. Let p and q be such that 1 ≤ p < q and let X ∈ Vp(J,E).
Then the paths XD converge to X in the q-variation norm as the mesh of D
goes to zero. In other words, if for all ε > 0 there exists a δ > 0 such that,
if D is a partition of J with |D| < δ, then ‖XD −X‖Vp(J,E) < ε

Proof. Let D be a partition of J . By Lemma 11, we have

‖XD −X‖Vq(J,E) ≤
(

sup
u∈J
|XDu −Xu|

)1− p
q

‖XD −X‖
p
q

p,J + sup
u∈J
|XDu −Xu|

Since X is uniformly continuous on J , we can make supu∈J |XDu − Xu| as
small as we want, by taking the mesh of D small enough. So we only need to
show that we can uniformly bound the p-variation norm. By Proposition 10
and the fact that ‖XD −X‖pp,J ≤ 2p−1(‖XD‖pp,J + ‖X‖pp,J) ≤ 2p‖X‖pp,J , we
can indeed uniformly bound this quantity and the result follows.

For finite dimensional spaces, this has the following important corollary

Corollary 13. Assume that E is finite dimensional and let p, q be such that
1 ≤ p < q. Let X ⊂ Vp(J,E) be bounded. If X is uniformly equicontinuous,
then it is relatively compact in Vq(J,E).

Proof. Since X is bounded in Vp and equicontinuous, it is also relatively
compact in the uniform topology. Hence, from every sequence in X one can
extract a uniformly convergent sequence, which converges in Vq.

2.2 Probability theory

Developed in the first half of the previous century, measure theoretic prob-
ability can be seen as a mathematical formalization of probability theory
using the language of measure theory and functional analysis. In all that
follows, assume that (Ω,F ,P) is a probability space when not otherwise
mentioned explicitly. This means that Ω is a set, F is a σ-algebra and P is
a measure for which it holds that P(Ω) = 1.

We will provide only a short and high level introduction to the theory
of measure theoretic probability. For an excellent book-length treatment we
refer the reader to [41]. We will not try to make this section fully rigorous
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and a significant part of the mathematical theory has been omitted, as we
expect the reader to be comfortable with standard probability. This includes
for example (conditional) expectation, but the reader can simply substitute
his knowledge of standard probability theory.

The definition of a random variable is as follows:

Definition 14 (Random variable). Let (Ω,F ,P) be a probability space and
let (E, E) be a measurable space. An (E, E)-valued random variable is a
function X : Ω → E which is measurable. If E = R and E = B(R), which
will be usually the case, then we call X simply a random variable.

The main object that we will study is a stochastic process, which is a
special kind of random variable, as we will see in the next definition.

Definition 15 (Stochastic process). Let T be a set. A stochastic process
Xt, t ∈ T, defined over a probability space (Ω,F ,P) is a family of random
variables. This means that for every t ∈ T, the function Xt(·) is a random
variable. For a single ω ∈ Ω, we say that t 7→ Xt(ω) is a realization or path
of the stochastic process.

We call T the time-indexing set. We will mostly use T = [0, T ], but other
possibilities are for example N,Z and [−T, T ]. An example of a stochastic
process, consider the following: Take T = N, and define Xt as the process
of flipping a fair coin at every t ∈ T . This can be mathematically modeled
as a Xt ∼ Bernoulli(1

2) for all t ∈ T. This is one of the simplest examples of
a stochastic process and has a couple of nice properties that we will define
later in this thesis. Later we will see much more complicated examples of
stochastic processes.

Given a stochastic process Xt, as times progresses, more ‘information’
becomes known about the stochastic process

Definition 16 (Filtration). Let (Ω,F ,P) be a probability space. A filtration
(Ft, t ∈ R) is defined to be a collection of sub-σ-algebras of F such that
Fs ⊂ Ft for all s < t. Further, if Ft satisfies

1. Ft = ∩s>tFs. This is called the right-continuity criterion.

2. F0 contains all P-null sets.

We say that Ft is a standard filtration. We call the quadruplet (Ω,F , {Ft}t≥0,P)
a filtered probability space.

14



Associated to a stochastic process Xt is the natural filtration, which is
Ft = σ(Xs : 0 ≤ s ≤ t). This filtration holds all the information of the past
of the stochastic process, but nothing more.

An important class of stochastic processes is the class of martingales.

Definition 17 (Martingale). A stochastic process Xt with filtration Ft a
martingale if it holds that

1. Xt is Ft measurable for all admissible t;

2. E|Xt| <∞;

3. E(Xt|Fs) = Xs for 0 ≤ s ≤ t.

If the last item holds with ≥ (≤), Xt is a supermartingale (submartingale).

Intuitively, a martingale is a process where the current state Xt is always
the best prediction for its further states. In this sense, martingales describe
fair games. Moreover, a martingale has the remarkable property that its
expectation as a function of t is constant. This follows from

EXs = E[E(Xt|Fs)] = EXt,

which holds for all s, t.
We note that there exists a generalization of a martingale, a so called

semi-martingale. For the application of the Itô theory, it is enough to be
a semi-martingale. As our focus on the Itô theory is limited, we will not
develop this notion any further.

Even though a realization of a stochastic path might not be continuous,
sometimes we can change this realization a little bit (we will define exactly
in what sense in the definition) so that the resulting path is continuous.

Definition 18 (Modification). Let X,Y : [0, T ] → Ω be two stochastic
processes, we will say that X is a modification of Y if it holds that for all
t ∈ [0, T ],

P(Xt = Yt) = 1

We need this definition for the following theorem:

Theorem 19 (Kolmogorov continuity theorem). Let Xt be a stochastic pro-
cess. Suppose that there exists positive constants α, β,K such that

E[|Xt −Xs|α] ≤ K|t− s|1+β

for all s, t. Then there exists a modification X̃t of Xt that is continuous and
furthermore it holds that these paths are γ-Hölder continuous for 0 < γ < β

α .
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2.3 Tensors on finite dimensional vector spaces

When we will prove our main result, the uniqueness and existence of a dif-
ferential equation driven by an irregular signal, we shall come across objects
called tensors and tensors products. For completeness, we will provide an
introduction to these objects. For most proofs we refer the reader to the
literature.

For all that follows, assume that V and W are finite dimensional vector
spaces over the field R. These assumptions can be relaxed, but we won’t need
this. Let {e1, . . . , en} and {f1, . . . , fm} be a basis of V and W , respectively.

A familiar operation on V and W is the direct sum, V ⊕W . A natural
question to ask is: can we also take the product of two vector spaces in a
way that is natural? The answer to this question is positive and is known
as the tensor product. The reader might be already familiar with a tensor
product without knowing it. In the case V = W = Rn, the outer product
vwT ∈ Rn×n for v, w ∈ Rn is a tensor as we will see later.

The tensor product V ⊗ W is defined to be the vector space with a
basis of formal symbols ei ⊗ fj , where we define these quantities as linearly
independent. This means that an element of V ⊗W can be written as the
(formal) sum

∑
ij cijei ⊗ fj , where cij ∈ R. Moreover, for any v ∈ V and

w ∈ W we define v ⊗ w to be the element of V ⊗W obtained by writing v
and w in terms of the original bases of V and W and then expanding out
v ⊗ w as if it were a non-commutative product (allowing any scalars to be
pulled out).

As an example, take V = W = R2, with basis {e1, e2}. Then R ⊗ R2 is
a four dimensional space with basis {e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2}. Also,
let v = e1 − e2 and w = e1 + 2e2, then

v ⊗ w = (e1 − e2)⊗ (e1 + 2e2)

= e1 ⊗ e1 + 2e1 ⊗ e2 − e2 ⊗ e1 − 2e2 ⊗ e2

Notice how explicit the basis of V and W are in this calculation. One could
wonder, if we would have another basis for V and W , would this change
anything? In other words, is the tensor product basis dependent? The
answer to this question is negative. We will not provide a proof of this
statement, but the reader is invited to try a different base on the previous
multiplication and see that after changing back to the original basis, the
result is the same.

We now list some properties of tensor products. Since we are working on
finite dimensional vector spaces with a basis, the proofs are mostly trivial
and omitted.
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Proposition 20. Let V and W be vector spaces of dimension n and m
respectively, with basis {ei} and {fj} and let v, v′ ∈ V and w,w′ ∈W , then

1. V ⊗W is a vector space with basis {ei ⊗ fj};

2. dim(V ⊗W ) = nm;

3. V ⊗W ∼= W ⊗V , in other words, they are isomorphic as vector spaces.
This also means that the tensor product is symmetric;

4. ⊗ : V ×W → V ⊗W is bilinear. In the case that W = V , this bilinear
product is symmetric, see the property above;

5. (w + w′)⊗ v = w ⊗ v + w′ ⊗ v, w ⊗ (v + v′) = w ⊗ v + w ⊗ v′;

6. For r ∈ R, r(w ⊗ v) = (rw)⊗ v = w ⊗ (rv)

We can also give meaning to higher order tensor products, for example
V ⊗V ⊗V . For now, we will define this as V ⊗(V ⊗V ). Since it can be shown
that there exists an isomorphism between V ⊗ (V ⊗ V ) and (V ⊗ V ) ⊗ V ,
we will just write V ⊗ V ⊗ V .

Since even higher orders of tensor products will quickly become a no-
tational burden, we will use the notation V ⊗j for the j-fold tensor prod-
uct of V . Later on we will use this notation extensively. We will also
note that there exists a j-linear symmetric map on V ⊗j , which can be
built from composing the lower order linear mappings. Lastly, observe that
dimV ⊗j = (dimV )j , so in higher dimensions or tensor powers, thing can
become quite unwieldy quickly. Hence we will sometimes use the Einstein
notation. Instead of writing

∑
i aikaij , we will just simply write aikaij and

understand that we sum the repeated indices.
Normally we have that V is equipped with a norm ‖ · ‖. For further

reference, we will state the properties of the norm on tensors product which
we assume to be true

Definition 21. Assume that V is a finite dimensional normed vector space.
We say that its tensor powers are endowed with admissible norms if the
following conditions hold:

1. For all n ≥ 1, the group of symmetric permutations Sn acts by isome-
tries on V ⊗n, i.e.

‖σv‖ = ‖v‖, v ∈ V ⊗n, σ ∈ Sn

2. The tensor product has norm 1, i.e. for all n,m ≥ 1,

‖v ⊗ w‖ ≤ ‖v‖‖w‖, v ∈ V ⊗n, w ∈ V ⊗m
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2.3.1 Tensors as homogeneous non-commuting polynomials

The above notions are quite abstract. We will use this section to give the
reader a more intuitive and concrete exposition. We will think of the tensor
powers of V as spaces of homogeneous non-commuting polynomials in a
family of variables indexed by a basis of V . Let {v1, . . . , vn} be a basis of
V . Then a basis of V ⊗j is given by the set of tensors vI = vi1 ⊗ · · · ⊗ vij ,
where I = {i1, . . . , ij} spans {1, . . . , n}j .

Hence, if (aI)I∈{1,...,n}j is a set of real numbers, then the tensor
∑

I αIvI
can be identified with the polynomial

∑
I αIXI in the indeterminatesX1, . . . , Xn

and XI = Xi1 . . . Xij . It should be noted that all the terms in this polyno-
mial have the same degree, namely j. If we have a sum of such polynomials
with varying degrees but at most k, then we will have the truncated free
algebra on V of order k, T k(V ). In symbols this would be

T k(V ) =

k⊕
i=0

V ⊗i

This object is very important in the study of the signature of a (rough)
path and the corresponding rough path theory, which is an extension of the
theory we will develop in this thesis.

2.3.2 Taylor’s theorem for multivariate functions

In most undergraduate vector calculus classes, an extension of the standard
Taylor expansion to multivariate functions is presented. The following pre-
sentation is usually used: Let f ∈ C∞(Rn,R) be a smooth function, let Df
denote the Jacobian matrix and D2f be the Hessian matrix, then we have
for a fixed h ∈ Rn and x ∈ Rn,

f(x+ h) = f(x) +Df(x)(h) +
1

2
D2f(x)(h, h) + . . .

The form that we have written above is not entirely standard in undergrad-
uate courses, but makes it explicit that the first derivative is a linear form,
the second derivative is a linear 2-form and so on. We will use this form
later on again.

Almost all the literature stops after the second term in the expansion.
This makes sense, because writing higher order terms becomes a notational
nightmare and is usually not necessary. Fully written out, the kth-term has
nk terms. So the third order term of a function defined on R3 already has
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33 = 27 elements. Even though some terms will be equal due to symmetry,
one can imagine that this will become a mess quickly.

Tensors and tensor notation allow us to write it much more succinctly.
Using Einstein notation, we can write for the kth-derivative of f

Dkf = fIkdx⊗Ik

Where Ik spans {1, . . . , n}k, hence fik = ∂i1 . . . ∂ikf and dx⊗Ik = dxi1 ⊗
· · · ⊗ dxik . Using this notation and writing hi for the i-fold tuple consisting
of h, we can now write the full Taylor series of f :

f(x+ h) =

∞∑
i=0

1

i!
Dif(x)(hi)

= f(x) +Df(x)(h) +
1

2!
D2f(x)(h, h) +

1

3!
D3f(x)(h, h, h) + ...
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3 Fractional Brownian motion

Before we consider the two main parts of this thesis, namely the Young
integral and differential equations driven by irregular signals, we shall make
clear why the extension we provide is useful and not an academic exercise.
We assume that the reader is well known with standard Brownian motions,
if this is not the case, we refer the reader to [34] for a thorough introduction.

One of the most important properties of a Brownian motion is the in-
dependence of increments, meaning that past behavior has no influence on
future behavior. This properties (with the zero mean) is fundamental to the
fact that it is a martingale. And since it is a martingale, we can apply the
Itô theory.

But there are many processes that can’t be modeled as having indepen-
dent increments. For example, take human behaviour. If an action gives
positive utility, one is keen to keep repeating this behavior and possible
do it more. In this case we have nonindependent and positively correlated
increments.

Such behaviour pops up all over physics, biology and finance. Since in
this case processes are described by differential equations, which we want
to solve or even just know whether there exists (unique) solutions or not.
Since we cannot apply the Itô theory, but we still want to deal with such
equations, we need a new theory. In the next sections we develop this theory,
but first we discuss a special class of stochastic processes, which will serve
as an example in what follows.

In this section we will discuss a generalization of the Brownian motion,
the factional Brownian motion, which was first mentioned by Kolmogorov
in 1940, but he called it a Wiener spiral. The name fractional Brownian
motion was proposed by Mandelbrot and Van Ness, which used a fractional
integral to represent it. We will now define this class of stochastic processes.

Definition 22 (Fractional Brownian motion). A fractional Brownian mo-
tion (fBm) with Hurst index H ∈ (0, 1), BH

t , is a continuous time (centered
Gaussian) stochastic processes that starts at zero, has zero expectation and
has covariance function E[BH

t B
H
s ] = 1

2(|t|2H + |s|2H − |t− s|2H)

The parameter H decides how the increments are correlated. There are
three possibilities, which we will list

• For H = 1
2 , the increments are uncorrelated.

• For H < 1
2 , the increments are negatively correlated.
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• For H > 1
2 , the increments are positively correlated.

If H gets closer to 0 or 1, the stronger the negative resp. positive correlation
is.

We shall now list some properties of fractional Brownian motions, for
which the proofs can be found in the literature.

Proposition 23. A fBm:

1. is self-similar, that is, BH
at ∼ aHBH

t in the sense of probability distri-
butions;

2. has stationary increments, that is, BH
t −BH

s ∼ BH
t−s;

3. exhibits long-range dependence if H > 0.5, meaning that

∞∑
n=1

E[BH
1 (BH

n+1 −BH
n )] =∞;

4. has with probability one a Hausdorff and box dimension of 2−H.

For a proof of its existence, we refer the reader to [34]. We note that if
H = 1

2 we have that E[BH
t B

H
s ] = s∧t which is a standard Brownian motion.

Proposition 24. The fractional Brownian motion BH has a continuous
modification whose trajectories are γ-Hölder continuous for any γ < H

Proof. For any α > 0 we have

E|BH
t −BH

s |α = E|BH
1 |α|t− s|αH = K|t− s|1+αH−1

We can therefore apply the Kolmogorov continuity theorem, where the result
follows if we let α→∞.

From this result we recover the most important result in this section,
namely that the paths of a fBm with Hurst parameter H have bounded
1/H-variation.

Proposition 25. Let BH
t be a fractional Brownian motion, then BH ∈

VH+ε(J,E) for ε > 0.

Proof. This is a straight forward application of Proposition 24 and Propo-
sition 5.
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The previous two results show that if H is lower, realizations of the
process become more irregular. This makes sense, since if H > 1

2 , increments
tend to keep doing what they were doing previously. So we don’t expect a
lot of jumping around. On the contrary, if H < 1

2 , the process becomes very
stubborn. If it went down last increment, it wants to go up next time. The
more H decreases, the more this behavior becomes apparent.

In this thesis most results only apply for the case H > 1
2 . We will also

take briefly about the case H < 1
2 , but one could write another full length

thesis on dealing with this case. The sample paths become so irregular that
you need another fully new theory to deal with this case.

For applications, we need to know the Hurst parameter. It is essentially
all we need to know about the process to describe it. We will now describe
how one can estimate this parameter from a sample. Consider the set of
observations {BH

i }Ni=1, where N is suitable large. We want to estimate H.
First we will use a filter to reduce the dependence of the data. A filter
of order r is a polynomial a(x) =

∑q
k=0 akx

k such that a(i)(1) = 0 for
0 ≤ i ≤ r ≤ q. Then we define the filtered observations as

Ba
n =

q∑
k=0

akB
H
n+k, n = 1, 2, . . . , N − q

Popular filters are: a(x) = x − 1, a(x) = 1
4(x − 1)(x2(1 −

√
3) − 2x and

a(x) = (x − 1)2. The first two filters are of order one, the last is of order
two. Consider now the covariance of a process which is filtered by a filter of
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order r:

E[Ba
nB

a
m] =

q∑
k=0

q∑
j=0

akajE[BH
n+kB

H
m+j ]

=
1

2

q∑
k=0

q∑
j=0

akaj
(
(n+ k)2H + (m+ j)2H − |m+ k − n− j|2H

)

=
1

2

 q∑
k=0

ak(n+ k)2H
q∑
j=0

aj +

q∑
j=0

ak(m+ j)2H
q∑

k=0

ak

−
q∑

k=0

q∑
j=0

akaj |m+ k − n− j|


= −1

2

q∑
k=0

q∑
j=0

akaj |m− n+ k − j|2H

=: ρaH(m− n)

Where we used the fact that
∑q

k=0 ak = a(1) = 0 (i.e. the polynomial
evaluated at 1 is equal to the sum of coefficients which we have set to zero).
Hence the filtered data {Ba

i }
N−q
i=1 is a stationary process.

We shall now define an estimator for the Hurst parameter. For m ≥ 1,
consider the dilated filter a(x) = a(xm) =

∑q
k=0 akx

km. It follows that
ρa

m

H = m2HρaH(0), or equivalently:

log ρa
m

H = 2H logm+ log ρaH(0)

From this equation one can estimate H by using standard linear regression
techniques, by regressing log ρa

m

H on logm. Obviously we want a consistent
estimator. It turns out that the empiric moments are suitable

Theorem 26. The empiric variance

V am

N =
1

N −mq

N−mq∑
k=1

(
Bam

k

)2
is a strongly consistent estimator of ρa

m

H (0). This means that V am

N
a.s.→

ρa
m

H (0).

Even though the proof of this theorem is very short, it includes a theorem
we have not covered, so for a proof we refer the reader to [36], where we warn
the reader that there is a significant number of typos, so a careful reading
is advisable.
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Corollary 27. Let a set M ⊂ N contain at least two elements and let k̂a,MN
be the coefficient of linear regression of {log V am

N : m ∈M} on {logm : m ∈
M}. Then the statistic Ĥa,M

N := k̂a,MN /2 is a strongly consistent estimator
of H.

Consider the following case, let M = {1, 2} ⊂ N and take a(x) = x − 1
as a filter. Then we have the following strongly consistent estimator

ĤN =
1

2 log 2

(
log V d2

N − log V d
N

)
=

1

2
log2

V d2

N

V d
N

with

V di

n =
1

N − i

N−i∑
k=1

(BH
k+i −BH

k )2

It is up to the statistician to choose a proper filter and a suitable set M .
The procedure described above can also be used in the case our observa-

tions are scaled by an unknown constant c, so we have {cBH
i }. In this case

our regression equation will have an extra term log c, which has no effect on
the estimation process. Even more useful is that we don’t need to have an
integer valued grid. All we need is an equidistant grid, as the self-similarity
property allows us to scale it back to an integer grid. But it should be noted
that the aforementioned proof then only gives normal consistency, not strong
consistency. Lastly, we note that Ĥa,M

N is an asymptotically normal estima-
tor of H. For the details we refer once more to [36].

For applications one might also want to simulate some realizations of a
fBm. We now describe the easiest way to do this. Even though it is easy to
describe and implement, it is rather slow. In practice other algorithms are
used, but those take too much time to develop. We refer the reader to [36].

The easiest method to simulate a fBm with Hurst parameter H ∈ (0, 1)
is the Cholesky decomposition method. We will consider a sample on the
interval [a, b] of size n. First we will define the covariance matrix, Γ(n).
Let γ(t1, t2) = 1

2(|t1|2H + |t2|2H − |t1 − t2|2H). Then, if {ti} is a (uniform)
partition of [a, b] of size n, the covariance matrix Γ(n) is defined by:

Γ(n) =


γ(t1, t1) γ(t1, t2) . . . γ(t1, tn)
γ(t2, t1) γ(t2, t2) . . . γ(t2, tn)

...
...

. . .
...

γ(tn, t1) γ(tn, t2) . . . γ(tn, tn)


It can be proven that this matrix is positive definite and hence we decompose
it in a lower triangular matrix L(n), such that L(n)L(n)T = Γ(n) using the
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Cholesky decomposition. This step takes O(n3) flops and is quite expensive
as n grows. Then, let V (n) be a sample of n standard normal random
variables. When the matrix L(n) has been found, we can compute our the
sample of our fBm as

U(n) = L(n)V (n)

Note that for each n, we only have to find the Cholesky decomposition
once if we want multiple samples. If we just take an a.s. different set of
draws from n standard normal random variables, say V ′(n), we just take
U ′(n) = L(n)V ′(n). Since vector-matrix multiplications have a complexity
of O(n2), this is significantly faster than applying the whole procedure again.

3.1 Calculating the Hurst parameter for financial time series
data

As an example, we will now compute the Hurst parameter for three different
time series. The data we took is from two stock markets, namely the Dutch
AEX-500 and the NASDAQ, as well as the currency exchange market for
USD and EUR. The first date of the data is 01/01/2010 and it ends at
06/06/2018. The series look as follows

Figure 2: We estimate a Hurst parameter of 0.5504.
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Figure 3: We estimate a Hurst parameter of 0.5116.

Figure 4: We estimate a Hurst parameter of 0.5020.
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4 Young’s integral

In this section we will proof our first main result, the existence of the Young
integral. Before we do so, we first consider the concept of controls, which
allows us to control the p-variation of a path. After that we will construct
the Young integral and state an existence theorem.

4.1 Controls

Let X ∈ Vp(J,E) for some p ≥ 1 and let s, t ∈ J such that s ≤ t, define the
function ω : ∆J → R by

ωX(s, t) = ‖X‖pp,[s,t]

Where ∆J = {(s, t) ∈ J × J : s ≤ t}. It is obvious that this function
(s, t) 7→ ωX(s, t) is non-negative and that ωX(s, s) = 0, i.e., it vanishes on the
diagonal. It is non-decreasing in t and non-increasing in s. A key property
of ωX is the fact that it satisfies the following inequality, for s ≤ u ≤ t

ωX(s, u) + ωX(u, t) ≤ ωX(s, t)

If a function posses this property, we will call it superadditive. Since X is
a continuous path, ωX is continuous in both s and t. We care about this
function, as it is reparametrization of X that comes quite naturally. To see
this, assume that X is not constant on a sub-interval of J = [0, T ]. Then

the function t 7→ ωX(0, t)

ωX(0, T )
T is an increasing, continuous, bijection on J and

hence has an inverse. Let t 7→ τ(t) be this inverse. Then for all (s, t) ∈ ∆J ,

|Xτ(s) −Xτ(t)|p ≤ ωX(τ(s), τ(t))

≤ ωX(0, τ(t)− ωX(0, τ(s))

=
ωX(0, T )

T
(t− s)

We have proved a sort of converse to proposition 5, namely that every con-
tinuous path of bounded p-variation can be reparametrized to a Hölder con-
tinuous path with exponent 1/p. This has as a consequence that sets of
paths of uniformly bounded p-variation can be reparametrized to become
uniformly equicontinuous.

This discussion is the motivation of a control function, which we define
now.
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Definition 28 (Control function). A control function, or control, on J =
[0, T ] is a continuous, non-negative function ω on ∆J that it superadditive
and vanishes on the diagonal.

The function ωX from above is of course a control function.
The following lemma is a direct result of Theorem 12 and Corollary 13:

Lemma 29. For a control ω, the set of paths controlled in p-variation by ω
is relatively compact in Vq(J,E)

We will need the following lemma in the next section.

Lemma 30. Let ω be a control and let X ∈ VpJ,E. Assume that for some
p ≥ 1 and for all (s, t) ∈ ∆J , one has |Xs − Xt|p ≤ ω(s, t). Then, for all

(s, t) ∈ ∆J , ‖X‖p,[s,t] ≤ ω(s, t)
1
p .

Proof. For notational convenience, we will show that ‖X‖pp,[s,t] ≤ ω(s, t).

Let Xt be as in the lemma and Π a partition of [s, t], then

‖X‖p,[s,t] := sup
Π

∑
Π

|Xti −Xti+1 |p

≤ sup
Π

∑
Π

ω(ti, ti+1)

≤ ω(s, t)

Where in the last step we made use of the super additivity of ω.

If ω satisfies the conclusion of this lemma, we say that it controls the
p-variation of X. This will be a useful concept in the next section, where
we will introduce and develop the Young integral.

4.2 Constructing Young’s integral

In this section we will prove the following theorem:

Theorem 31 (Young integral, 1936). Let V and W be Banach spaces and let
p, q ≥ 1 be such that 1/p+1/q > 1. Let T be a positive real number. Consider
X ∈ Vp([0, T ], V ) and Y ∈ Vq([0, T ], L(V,W )). then, for all t ∈ [0, T ], the
limit ∫ t

0
YsdXs = lim

|D|→0,D⊂[0,t]

∫
D
Y dX (4)
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exists and as a function of t belongs to Vp([0, T ],W ). Furthermore, there
exists a constant Cp,q that only depends on p and q such that the following
inequality holds:∥∥∥∥∫ •

0
(Ys − Y0)dXs

∥∥∥∥
p,[0,T ]

≤ Cp,q‖Y ‖q,[0,T ]‖X‖p,[0,T ] (5)

Before we prove this, we first provide some background. Since the Young
integral is an extension of the Riemann-Stieltjes integral, we use similar
terminology. Let X and Y be two paths defined, as usual, on the compact
interval J = [0, T ]. Let D = {0 = t0, ..., tr = T} be a partition of J . We will
use the following notation in this section.∫

D
Y dX =

r−1∑
i=0

Yti(Xti+1 −Xti)

We will consider only partitions that include both endpoints.
First of all, we define what we mean by the limit exists in (4): We say

that the integral
∫ T

0 YsdXs exists if for all ε > 0, there exists a δ > 0 such
that, if D and D′ are two partitions of J such that |D| < δ and |D′| < δ,
then ∣∣∣∣∫

D
Y dX −

∫
D′
Y dX

∣∣∣∣ < ε

It is well known that the Riemann-Stieltjes integral exists
∫
XtdXt exists

if Xt is of bounded variation. Theorem 4 allows us to consider the case where
Xt may be only of bounded p-variation for p < 2. The price we have to pay
for this is that we require more regularity of Yt than just continuity. We
shall now state the proof of theorem (4).

Proof. The proof is inspired by the proof of Proposition 10. We will find
a maximal inequality that bounds |

∫
D Y dX| uniformly with respect to D,

i.e., independent of D. Like in the proof of the lemma, we will repeatedly
remove points from D until we reach this bound. We proceed as follows.

We replace X and Y by X̃ and Ỹ , where these are defined for all u ∈ J
by

X̃u =
Xu

‖X‖p,J
, Ỹu =

Yu
‖Y ‖,J

I.e., we normalize the variation. Now, let ω be the following control function
for all (u, v) ∈ ∆J

ω(u, v) =
‖X‖pp,[u,v]

‖X‖pp,J
+
‖Y ‖qq,[u,v]

‖Y ‖qq,J
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It should be clear that ω ≤ 2 and that it controls both the p-variation of X̃
and the q-variation of Ỹ on J .

Let D = {0 = t0, ..., tr = T} be a partition of J = [0, T ]. We will
successively remove points from D in such a way that the variation of X
and Y remains as evenly spread out as possible between the different sub-
intervals induced by the partition. If D has only three points, so when r = 2,
we choose the middle point, t1. If r > 2, we choose ti, where i is between 1
and r − 1 and such that

ω(ti−1, ti+1) ≤ 2

r − 1
ω(0, T ) (6)

It is guaranteed that such i exists. To see this, assume that the inequality
is false and assume that r is even, then, using superadditivity

2ω(0, T ) < ω(t0, tr) + ω(t1, tr) ≤ 2w(0, T )

A similar argument can be made if r is odd. Furthermore, observe that (6)
holds even for r = 2. Now we consider the partition D \ {ti}. We introduce
the following notation, X̃1

u,v = X̃v−X̃u. Then we have, using the telescoping
property of the sums,

∣∣∣∣∣
∫
D
Ỹ dX̃ −

∫
D\{ti}

Ỹ dX̃

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
r−1∑
j=0

Ỹtj (X̃tj+1 − X̃tj )−
r−1∑
j=0
tj 6=ti

Ỹtj (X̃tj+1 − X̃tj )

∣∣∣∣∣∣∣∣
≤ |Ỹti−1X̃

1
ti−1,ti + ỸtiX̃

1
ti,ti+1

− Ỹti−1X̃
1
ti−1,ti+1

|

= |(Ỹti − Ỹti−1)(X̃ti+1 − X̃ti)|

≤ ω(ti−1, ti)
1
qω(ti, ti+1)

1
p

≤ ω(ti−1, ti+1)
1
p

+ 1
q

≤
(

4

r − 1

) 1
p

+ 1
q

If we apply this procedure iteratively until we are left with a partition con-
sisting of only two points, it follows that∣∣∣∣∫

D
(Y − Y0)dX

∣∣∣∣ ≤ 4
1
p

+ 1
q ζ

(
1

p
+

1

q

)
‖Y ‖q,J‖X‖p,J

Recall that the Riemann-zeta function ζ is defined as ζ(s) =
∑

n≥1 n
−s and

that it converges in the ordinary sense for s > 1. This explains why we need
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1
p + 1

q > 1. Otherwise we would not be able to construct our uniform bound.

Define cp,q = 4
1
p

+ 1
q ζ
(

1
p + 1

q

)
. Then our uniform bound is:

sup
D⊂[s,t]

∣∣∣∣∫
D
Y dX

∣∣∣∣ ≤ cp,q‖Y ‖Vq(J,E)‖X‖p,J (7)

We now proceed by an approximation argument to show the existence of the
integral over J = [0, T ]. Let p′ > p such that 1

p′ + 1
q > 1. From proposition

Theorem 12 it follows that there exists a sequence (X(n))n≥0 of piecewise
linear paths that converge in p′-variation to X. It should be clear that for
all n, X(n) ∈ V1(J,E) and

lim
|D|→0,D⊂[s,t]

∫
D
Y dX(n) =

∫ t

s
YudXu(n)

The right hand side of this equation is a Riemann-Stieltjes integral, which
exists since Y is continuous and X(n) is of bounded variation. Our uniform
bound (8) now implies that

sup
D⊂[s,t]

∣∣∣∣∫
D
Y dX(n)−

∫
D
Y dX

∣∣∣∣ ≤ cp′,q‖Y ‖Vq(J,E)‖X(n)−X‖p′,J (8)

It follows that if n → ∞, the supremum tends to 0. For convenience we
introduce the notation a ∨ b = max(a, b).

lim
δ→0

sup
|D|∨|D′|<δ

∣∣∣∣∫
D
Y dX −

∫
D′
Y dX

∣∣∣∣ = 0

Hence we have proven that
∫ T

0 YudXu exists and is well-defined.

Sometimes we need the inequality of the next corollary, which is a direct
consequence of equation (8)

Corollary 32.∥∥∥∥∫ •
0
YsdXs

∥∥∥∥
Vp([0,T ],W )

≤ 2cp,q‖Y ‖Vq([0,T ],W )‖X‖p,[0,T ] (9)

We have now proved the existence of the Young integral. In the next
section we will apply it to prove theorems concerning (ordinary) differential
equations driven by irregular signals.
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5 Differential equations driven by irregular signals

In this chapter we will extend the results of the classical ODE theory. From
now on, we assume that X ∈ Vp(J,W ), where again J = [0, T ] and W is a
Banach space, and that we have p < 2. For instance, X could be a fractional
Brownian motion with Hurst parameter H ∈ (1

2 , 1). We showed in section

3 that this process is an element of V
1
H

+ε(J,W ) for all ε > 0. This will be
our prime example why it makes sense and would be useful to solve such
differential equations. Furthermore, since a fBm is not a martingale when
H 6= 1

2 , the usual Itô stochastic integration theory does not apply.
In our current setting, we only have that X is of bounded p-variation

for p < 2. We have shown that this implies that the solution Y must
have (at least) bounded p-variation. For the differential equation and the
corresponding integral equation to even make sense, we need that f is of
bounded q-variation such that 1/p+ 1/q > 1. Otherwise the Young integral
is not well defined. Secondly, we expect that we need more regularity of f
for the existence let alone uniqueness of solutions. In this section we will
develop and prove the necessary conditions for existence and uniqueness.
Even though the proofs are similar to those in the classical case, they are
significantly more technical.

First we identity a class of functions f such that f(Y ) has finite q-
variation for Y ∈ Vp. This is relatively straightforward. Let V and W be
two Banach spaces, then we recall that L(V,W ) is the space of bounded
linear operators from V to W .

Proposition 33. Assume that f is Hölder continuous with exponent γ and
0 < γ ≤ 1. Also assume that Y ∈ Vp(J,W ) for some p ≥ 1. Then f ◦ Y ∈
V
p
γ (J, L(V,W )) and there exists a K > 0 such that

‖f ◦ Y ‖V p
γ
≤ K‖Y ‖γVp

Proof. Assume that K > 0 is such that for all w,w′ ∈ W it holds that
|f(w)− f(w′)| ≤ K|w − w′|γ . Then, for every partition D ⊂ J ,

‖f ◦ Y ‖ p
γ
,D ≤ K‖Y ‖

γ
p,D

From taking suprema it follows that

‖f ◦ Y ‖V p
γ
≤ K‖Y ‖γVp

As required.
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So if X ∈ Vp, we need that f is γ-Hölder continuous for γ ∈ (0, 1] such
that 1/p + γ/p > 1. This amounts to γ > p − 1. We note that this also
implies that p < 2. Hence, we have now found the class of suitable functions
f for which our ode makes sense. From now on we will define Lip(γ) the set
of γ-Hölder continuous functions.

Lemma 34. Let (Y (n))n≥0 be a sequence that converges to Y in the p-
variation norm. If f ∈ Lip(γ), then the sequence (f(Y (n))n≥0 converges to

f(Y ) in the p′

γ -variation norm for every p′ > p.

Proof. From the previous lemma it follows that the sequence (f(Y (n))n≥0 is
bounded in p

γ -variation. From the definition of convergence in p-variation,
it follows that it also converges uniformly. From Theorem 12 it follows that
for every p′ > p,

‖f(Y )− f(Y (n))‖
V
p′
γ
≤
(

sup
u∈J
|f(Yu)− f(Yu(n))|

)1− pγ
p′

‖f(Y )− f(Y (n))‖
pγ
p′
p
γ
,J

+ sup
u∈J
|f(Yu)− f(Yu(n))|

Since f(Y (n)) converges to f(Y ) uniformly, we have that lim
n→∞

f(Y (n)) =

f(Y ) in the p′

γ -variation norm.

5.1 Existence

We first state and prove a theorem for existence. The proof is a relative
straight forward application of the Schauder fixed point theorem.

Theorem 35 (Existence). Assume that W is finite-dimensional, let p and
γ be such that 1 ≤ p < 2 and p− 1 < γ < 1. Assume that X ∈ Vp and that
f ∈ Lip(γ). Then, for all ξ ∈W , the ode (1) has a solution.

Proof. Let t ∈ [0, T ] = J and ξ ∈W . Take p′′ > p′ > p such that γ > p′′−1.
We define the functional F : Vp′([0, t],W )→ Vp′([0, t],W ) by

F (Y•) = ξ +

∫ •
0
f(Ys)dXs (10)

First we will prove that this functional is continuous, using the sequential
definition. Let (Y (n))n≥0 be a sequence that converges to Y in p-variation
norm. By the previous lemma, we have that f(Y (n)) converges to f(Y ) in

the p′′

γ -variation norm. By Theorem 12, F (Y (n)) converges to F (Y ) in the
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p-variation norm, which implies that it also does in p′-variation norm, since
p′ > p. This proves that F is continuous.

We have proved that Vp′([0, t],W ) is a Banach space in Proposition 8. We
will need this fact to apply our fixed point theorem. Let M = max(1, 2|ξ|),
assume that ‖Y ‖Vp′ ≤ M and let K be the least Hölder constant of f .
Choose t such that 2c

p, p
′
γ

K‖X‖p,[0,t] ≤ 1
2 , It follows now that

‖F (Y )‖Vp′ ≤ |ξ|+
∥∥∥∥∫ •

0
f(Ys)dXs

∥∥∥∥
Vp′

≤ |ξ|+ 2c
p, p
′
γ

K‖Y ‖γVp′‖X‖p,[0,t]

≤M
(

1

2
+ 2c

p, p
′
γ

K‖X‖p,[0,t]
)

≤M

This shows that if we choose t suitably, then F (B) ⊂ B, where B = {Y ∈
Vp′([0, t],W ) : ‖Y ‖Vp′ ≤ M}. Now we only need to show that F (B) is
relatively compact.

To do so, assume that ω is a control such that the p-variation of X
is controlled by ω. It follows that the elements of F (B) have p-variation
uniformly controlled by Cω for some C > 0. From Corollary 13, it then
follows that F (B) is relatively compact in Vp′([0, t],W ).

From Schauder’s fixed point theorem, it now follows that F has a fixed
point in B. This fixed point will be a solution on the interval [0, t]. For
the solution on [0, T ], we can just subdivide the interval into sufficiently
small subintervals where the previous argument applies. Stitching these
local solution together yields the full solution on [0, T ].

Thus we now know when there is a solution to our ODE. In the next
section we will answer obvious follow up question: is it unique? This is
significantly more difficult to answer, as we will see in the next section. It
should be clear that this would require more regularity of f . How much
regularity exactly will be expanded on in the next section.

5.2 Uniqueness

Before we can state and prove our extension to the Picard-Lindelöf theorem
on existence and uniqueness, we first have to develop some theory regarding
Lipschitz functions on a Banach space V . We will assume that V is finite
dimensional. Most of the theory can be extended to infinite dimensional
spaces, but we will not consider this.
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The aim for the first part of this section is to better understand the
function Y 7→ f(Y ). In the previous section, Proposition 33 and Lemma 34
gave us some information on this mapping. We will now proceed to study
it more carefully.

Before we consider the general case, we shall explain the idea first on
polynomials. Let P : V → R be a polynomial of degree k ≥ 0. Since V is
finite dimensional, we can write P (v) = C + avT + vTAv + ... for v ∈ V .
Let X : [0, T ] be a Lipschitz (or equivalently, a 1-Hölder) continuous path.
We denote by P 1 : V → L(V,R) the derivative of P . It then follows from
Taylor’s theorem that

P (Xt) = P (X0) +

∫ t

0
P 1(Xs)dXs (11)

Let P 2 : V → L(V ⊗V,R) be the second derivative of P , where L(V ⊗V,R)
is the space of bilinear forms on V . Similarly by Taylor’s theorem, we have

P 1(Xt) = P 1(X0) +

∫ t

0
P 2(Xs)dXs (12)

Substituting this into (11) yields

P (Xt) = P (X0) + P 1(X0)

∫
0<u1<t

dXu1 +

∫∫
0<u1<u2<t

P 2(Xu1)dXu1 ⊗ dXu2

(13)
If we keep doing this and use the fact that P k+1 : V → L(V ⊗k+1,R) is zero
everywhere, just like even higher order derivatives (as P is a polynomial),
we end up with the following expression for P :

P (Xt) = P (X0) + P 1(X0)

∫
0<u1<t

dXu1 +

∫∫
0<u1<u2<t

P 2(Xu1)dXu1 ⊗ dXu2 + . . .

+ P k(X0)

∫
· · ·
∫

0<u1<···<uk<t

dXu1 ⊗ · · · ⊗ dXuk (14)

Before we continue, we clarify on some notation. By L(V ⊗j ,R) we mean the
space of symmetric j-linear forms on V . This means that for f ∈ L(V ⊗j ,R),
f(v1, ..., vn) = f(vσ(1), . . . , vσ(n)) for every σ ∈ Sn, where Sn is the group
of permutations on {1, . . . , n}. The fact that it is symmetric follows from
Young’s theorem on the symmetry of partial derivatives. Since it is sym-
metric, it follows that we have the following equality:

1

j!

∑
σ∈Sj

∫
· · ·
∫

0<u1<···<uk<t

dXuσ(1) ⊗ · · · ⊗ dXuσ(n) =
1

j!
(Xt −X0)⊗j (15)
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Using this equation we can write our Taylor expansion about zero as:

P (Xt) = P (X0) =

k∑
j=1

P j(X0)
1

j!
(Xt −X0)⊗j (16)

Which resembles an ordinary Taylor series, except we have tensor powers
instead of normal powers.

We are now ready for the general case, we will use the ideas from the
polynomial case we just saw.

Definition 36. Let V and W be two Banach spaces, let k ≥ 0 be an integer
and let γ ∈ (k, k+ 1] be a real number. Let F ⊂ V be closed and let f : F →
W be a function. For each integer j = 1, . . . , k, let f j : F → L(V ⊗j ,W ) be a
function which takes its values in the space of symmetric j-linear mappings
from V to W . We say that the collection (f = f0, f1, . . . , fk) is an element
of Lip(γ, F ) if for all j = 0, . . . , k it holds that f j is uniformly bounded on
F , i.e.,

sup
x∈F
|f j(x)| ≤M

and there exists a function Rj : V × V → L(V ⊗j ,W ) such that for all
x, y ∈ F and every v ∈ V ⊗j,

f j(y)(v) =

k−j∑
l=0

1

l!
f j+l(x)(v ⊗ (y − x)⊗l) +Rj(x, y)(v)

and furthermore that

|Rj(x, y)| ≤M |x− y|γ−j

If there is no confusion possible, we will say f ∈ Lip(γ, F ) instead of
(f, f1, . . . , fk) ∈ Lip(γ, F ). The smallest constant M such that all the
inequalities hold for all j is called the Lip(γ, F )-norm and is denoted by
‖f‖Lip(γ).

Two remarks are in order: First of all, we have not specified the under-
lying norm. In the case we consider this does not matter, as all norms on
finite dimensional are equivalent (i.e. induce the same topology).

Secondly, since the functions f1, . . . , fk have as target space the space
of symmetric multi-linear functions from V to W by definition, we have for
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all Lipschitz continuous paths X : [0, T ] → F , for all 0 ≤ s < t ≤ T , each
j = 1, . . . , k and each v ∈ V ⊗j the following equality holds

f j(Xt)(v) =

k−j∑
l=0

f j+l(Xs)

v ⊗ ∫
· · ·
∫

s<u1<···<uk<t

dXu1 ⊗ · · · ⊗ dXul


+Rj(Xs, Xt)(v)

The closed set F may be quite weird, for example its interior may be
empty. Let (f, f1, . . . , fk) ∈ Lip(γ, F ). The functions f1, . . . , fk may not
be uniquely determined by f . On the interior of F , they are the classical
derivatives, but as stated, this interior may be empty. As can be expected
from the discussion on polynomials above, the function f1, . . . , fk are the
polynomial approximations of f at increasing orders, so just like an ordinary
Taylor expansion. If, for example F is contained in a hyperplane, then the
functions f1, . . . , fk are not determined by f in the directions transverse to
this hyperplane.

Theorem 37 (Whitney). Let V be finite dimensional and let F be a closed
subset of V and let 0 < γ ≤ 1. Let f ∈ Lip(γ, F ). Then there exists a con-
tinuous linear extension operator that extends f from F to V continuously.
Furthermore, the operator norm of this operator is independent of F .

Proof. Since the proof is rather lengthy, we refer the reader to [38] theorem
3 in section VI.2.

Unfortunately, this result cannot be extended to the infinite dimensional
case.

From this point we will only consider functions f which are elements of
Lip(γ, V ) for some of γ. The will now continue to study the map Y 7→ f(Y ),
for which the next proposition is essential.

Proposition 38. Let γ > 1. Let f : V →W be an element of Lip(γ). Then
there exists a function g : V × V → L(V,W ) which is Lip(γ − 1) and such
that, for all x, y ∈ V , one has

f(x)− f(y) = g(x, y)(x− y)

Furthermore, there exists a constant C = Cγ,V such that

‖g‖Lip(γ−1) ≤ C‖f‖Lip(γ)
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We note that this closely resembles the standard mean value theorem
from analysis.

Proof. Let k be the integer such that k < γ ≤ k + 1 Let f1, . . . , fk be the
first k differentials of f and let R0, . . . , Rk be the error terms in the Taylor
expansions of f, f1, . . . , fk. Then, define the function g : V × V → L(V,W )
by

g0(x, y)(v) = g(x, y) =

∫ 1

0
f1(tx+ (1− t)y)dt

Similarly, for all j = 0, . . . , k − 1 and u, v ∈ V , define

gj(x, y)(u, v)⊗j =

∫ 1

0
f j+1(tx+ (1− t)y)(tu+ (1− t)v)⊗jdt ∈ L(V,W )

And lastly, for all x′, y′, u, v ∈ V , define

Sj((x, y), (x′, y′))(u, v)⊗j =

∫ 1

0
Rj+1((tx+ (1− t)y), (tx′ + (1− t)y′)

× (tu+ (1− t)v)⊗jdt

Then (g0, . . . , gk−1) is a Lip(γ − 1) function on V × V with corresponding
error terms S0, . . . , Sk−1.

Furthermore, we have using the substitution u = tx + (1 − t)y, du =
(x− y)dt, that

g(x, y) =

∫ 1

0
f1(tx+ (1− t)y)dt

=
1

x− y

∫ x

y
f1(u)du

=
f(x)− f(y)

x− y

And hence it follows that f(x)− f(y) = g(x, y)(x− y).
Lastly, let CV be an upper bound for the Lipschitz norms of the Lipschitz

continuous mappings (x, y) 7→ (tx+ (1− t)y from V ×V to V with t ∈ [0, 1],
then

‖g‖Lip(γ−1) ≤ max
j=1,...,l

Cγ−jV ‖f‖Lip(γ)

And this concludes the proof of the proposition.
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We will now present a last preliminary proposition before we are able to
prove our main result, the existence of a solution. We have nearly completed
our study on the mapping Y 7→ f(Y ) and now we will state and prove our
last regularity result.

Proposition 39. Let W and U be two Banach spaces. Assume that f :
W → U is a Lip(1+α) function for some α ∈ (0, 1]. Let p ≥ 1 be given. For
every K > 0 there exists a constant Cα,p,K > 0 such that if X,Y ∈ Vp(J,W )
with ‖X‖Vp ≤ K and ‖Y ‖Vp ≤ K, we have the following inequality

‖f(X)− f(Y )‖V pα ≤ Cα,p,K‖f‖Lip(1+α)‖X − Y ‖Vp

Proof. Using the previous proposition, construct a function g : W ×W →
L(W,U) such that it is Lip(α) and that for all x, y ∈ W , f(x) − f(y) =
g(x, y)(x− y). Pick s, t ∈ J , then,

|(f(Xt)− f(Yt))− (f(Xs)− f(Ys))|
p
α

= |g(Xt, Yt)(Xt − Yt)− g(Xt, Yt)(Xt − Yt)|
p
α

= |g(Xt, Yt)((Xt − Yt)− (Xs − Ys))

+ (g(Xt, Yt)− g(Xs, Ys))(Xs − Ys)|
p
α

≤ 2
p
α
−1|g(Xt, Yt)|

p
α |(Xt − Yt)− (Xs − Ys)|

p
α

+ 2
p
α
−1‖g‖

p
α

Lip(α)|(Xt, Yt)− (Xs, Ys)|p|Xs − Ys|
p
α

Since all norms on finite dimensional spaces are equivalent, we can find C > 0
such that for all x, y, x′, y′ ∈ W , |(x, y) − (x′, y′)| ≤ C(|x − x′| + |y − y′|).
Using this and taking the supremum in the previous inequality yields

‖f(X)− f(Y )‖
p
α
p
α
,J
≤ 2

p
α
−1 sup

t∈J
|g(Xt, Yt)|

p
α ‖X − Y ‖

p
α
p
α
,J

+ 2
p
α
−1‖g‖

p
α

Lip(α)C
p2p−1(‖X‖pp,J + ‖Y ‖pp,J)‖X − Y ‖

p
α∞

By collecting terms, applying the inequality in the previous proposition and
using the definition of a Lip(1 + α) function, the result follows.

In essence, we have proved in the last proposition that Y 7→ f(Y ) is
Lipschitz continuous under some conditions on f . Using our knowledge
from the theory of standard ordinary differential equations, we expect that
we will use this fact to show that it is a contraction mapping.
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Theorem 40 (Uniqueness). Let p and γ be such that 1 ≤ p < 2 and p < γ.
Assume that X ∈ Vp and that f ∈ Lip(γ). Then, for every ξ ∈ W , the
differential equation (1) has a unique solution.

Let Y = If (X, ξ) denote the unique solution to (1) starting at ξ, then
the Itô mapping If : Vp(J, V )×W → Vp(J,W ) is continuous.

Just as in the classical case, we require exactly one more degree of reg-
ularity on f for uniqueness compared to existence.

Proof. Let α ∈ (0, 1] be such that γ ≥ 1 + α > p, so that f ∈ Lip(1 + α).
We note that p < 1 + α if and only if 1/p + α/p > 1. Let ξ ∈ W , t ∈
J = [0, T ] and just like in the proof of existence, consider the functional
F : Vp([0, t],W )→ Vp([0, t],W ), which is again defined by

F (Y•) = ξ +

∫ •
0
f(Ys)ds

We will prove that for suitable t, this functional is a contraction. From
which the result will follow. Let M = 2|ξ| and let Y ∈ Vp([0, t],W ) be such
that ‖Y ‖Vp ≤ M . Since we have that f ∈ Lip(γ) ⊂ Lip(1), we have that
f(Y ) has finite p-variation and it is controlled by ‖f‖Lip(1) times that of Y .
Hence, by Theorem 31 and Corollary 32,

‖F (Y )‖Vp([0,t],W ) ≤ |ξ|+ 2

∥∥∥∥∫ •
0
f(Ys)dXs

∥∥∥∥
p,[0,t]

≤ |ξ|+ 2Cp,p‖f‖Lip(1)‖Y ‖p,[0,t]‖X‖p,[0,t]

≤M
(

1

2
+ Cp,p‖f‖Lip(1)‖X‖p,[0,t]

)
Furthermore, let Y ′ ∈ Vp([0, t],W ) such that ‖Y ′‖Vp ≤M . Then, by Propo-
sition 39,

‖f(Y )− f(Y ′)‖V pα ≤ Cα,p,M‖f‖Lip(1+α)‖Y − Y ′‖Vp

Hence it follows from Corollary 32,

‖F (Y )− F (Y ′)‖Vp ≤ Cp, p
α
Cα,p,M‖f‖Lip(1+α)‖Y − Y ′‖Vp‖X‖p,[0,t]

Now, choose t such that the following inequality holds

‖X‖p,[0,t] < Cp,α,M,f =
(
2Cp,p‖f‖Lip(1)

)−1 ∧
(

2Cp, p
α
Cα,p,M‖f‖Lip(1+α)

)−1
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Using the notation a ∧ b = min(a, b). If t is chosen properly, then we have
on the ball BM = {‖ · ‖Vp([0,t],W ) ≤M}

‖F (Y )‖Vp([0,t],W ) ≤M
‖F (Y )− F (Y ′)‖Vp < ‖Y − Y ′‖Vp

This implies that F (BM ) ⊂ BM and that it is a contraction mapping on this
ball. From Banach’s fixed point theorem, it then follows that our functional
has a unique fixed point, which is our unique solution to (1) on the interval
[0, t].

For global existence and uniqueness on J = [0, T ] we can apply the
usual argument, by subdividing it on suitable small intervals such that the
previous argument applies. Finally stitching together these local solutions
yields the final solution.

Now we check that the Itô mapping is continuous. Let Y = If (X, ξ)
denote the unique solution starting at ξ. Choose X ∈ Vp, M > 0 and
t such that (5.2) holds. Then it follows from (5.2) that if |ξ| ≤ M

2 and
‖Y ‖Vp([0,t],W ) ≤M , then for all n ≥ 1,

‖Fn(Y )− If (X, ξ)‖Vp([0,t],W ) ≤
M

2n−2

Where Fn means that we compose F with itself n times. From this in-
equality it follows that the sequence of continuous mappings (ξ,X, Y ) 7→
(ξ,X, Fn(Y )) converges uniformly to the mapping (ξ,X, Y ) 7→ (ξ,X, If (X, ξ))
on the domain {(ξ,X, Y ) : 2|ξ| ≤ M, ‖X‖p,[0,t] < Cp,α,M,f , ‖Y ‖Vp([0,t],W ) ≤
M}

Since we wrote If as a uniformly converging sequence of continuous
mappings, we conclude that the Itô functional

If : {(ξ,X) : 2|ξ| ≤M, ‖X‖p,[0,t] < Cp,α,M,f} → Vp([0, t],W )

is continuous on this domain.

5.3 Some remarks and further questions

After a long journey we finally know and have proven when we can expect
a solution to a differential equation driven by an irregular signal, and when
it is unique. Even though the proofs and the statements mirror the classical
case quite closely, the proofs are still rather different and significantly more
involved.
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Although we have answered the main question we posed, there are still
multiple other questions one could have. For example, we always assume
that X is of bounded p-variation with p < 2. The reason for this restriction
if simple, because we need 1/p + 1/q > 1 for the Young integral to make
sense, since its proof relies the convergence of the Riemann-zeta function. Is
there some way that we can relax this requirement? This is important, as
we know that a Brownian motion only has bounded p-variation for p > 2.

Secondly, at this point we have no clue what a solution looks like. We
know when it exists and when it is unique, but that’s it. Can we find an
explicit solution to (1) for some function f? If not, can we numerically
approximate a solution?

The answers to all these questions is yes. It is possible to define a
differential equation driven by a path with bounded p-variation for p ≥ 2
and infinite p-variation for p < 2. But it needs a completely different theory,
named rough path theory. The theory is quite young and as stated in the
introduction, its use has already resulted in a Fields medal for Martin Hairer.

As for explicit solutions, these are quite hard to find. There are some
known closed form solutions when Xt is a fractional Brownian motion with
H > 1/2, as we will see in the next section. In the common case that we
don’t have an explicit solution, we will need to numerically approximate
them. We shall detail two algorithms for which convergence can be proved
and use them to simulate solutions.

Finally, it should be mentioned that the path we took here, using p-
variation spaces and methods, is not the only way to do this. After Lyons
developed this theory, Nualart and Rascanu came to similar results using
fractional calculus.
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6 Computing solutions

6.1 Explicit solutions

In this section we will find an explicit solution to a class of differential equa-
tions driven by irregular signals. Let BH

t be a fBm with Hurst parameter
H ∈ (1

2 , 1). We follow the paper [42] for this part.

Proposition 41. Consider the following stochastic differential equation

dYt = aYtdB
H
t , Y0 = ξ 6= 0 (17)

With a ∈ R. Then this equation has the following unique solution

Yt = ξ exp
(
aBH

t

)
(18)

Before we can proof this, we need the following theorem

Theorem 42. Let f ∈ Vp([0, T ],R), let F ∈ C1(R) be a real valued con-
tinuously differentiable function such that F ◦ f ∈ Vq([0, T ],R) for p, q such
that 1/p+ 1/q > 1, then we have for all y ∈ [0, T ],

F (f(y))− F (f(a)) =

∫ y

a
F ′(f(t))df(t)

Proof. Let D be an arbitrary partition, then it follows from the mean value
theorem for F and the continuity of f that

F (f(y))− F (f(a)) =
r−1∑
i=0

F (f(ti+1))− F (f(ti))

=
r−1∑
i=0

F ′(f(t̃i))(f(ti+1)− f(ti))

For some t̃i ∈ [ti, ti+1]. Now if we let |D| → 0, the last expression converges
to
∫ y
a F

′(f(t))df(t).

A generalization of this is given by, with F ∈ C1(R× (a, b))

F (f(y), y)− F (f(a), a) =

∫ y

a
F ′1(f(x), x)df(x) +

∫ y

a
F ′2(f(x), x)dx (19)

We will now prove Proposition 41.

Proof. We simply apply the Theorem 42 with F (z) = ξ exp(z) and f(t) =
aBH

t , from which the conclusion follows.

It is actually possible to solve a much bigger set of such equations, using
the Doss-Sussman representation, for which we refer to [33]
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6.2 Numerically approximating solutions

In this subsection we will consider the following one dimensional differential
equation driven by a fractional Brownian motion BH for H > 1

2 ,

dYt = σ(Yt)dB
H
t , Y0 = ξ (20)

Where we assume that σ is regular enough so that there exists a unique
solution to this equation, which we understand as

Yt = ξ +

∫ t

0
σ(Ys)dB

H
s (21)

We will consider two algorithms to numerically to compute this solution.
Both are well known in the deterministic case, namely the explicit Euler
and the Crank-Nicolson schemes. In the setting we are considering, things
are a bit different as we will see. As one might expect, the convergence of
these algorithms are slower in our setting than in the ordinary, less rough,
deterministic case. We will provide the convergence estimates and will test
them on examples.

This section is not completely mathematically rigorous. The theory nec-
essary for proving the convergence estimates is rather involved and could
warrant another bachelor’s thesis to do it justice. Furthermore, the the-
ory is rather new and expanding quickly. The paper detailing the Crank-
Nicolson scheme has only been published in September 2017. So there is
active research in this field and there are numerous applications in finance
and physics.

In all that follows, we will only consider the one dimensional case. Ex-
tension to higher dimensions are possible and do exist, but are significantly
more involved and hence omitted.

6.2.1 Euler-Maruyama scheme

We will try to numerically approximate (20) on the interval [0, 1]. For sim-
plicity, we will only consider uniform partitions of this interval, tk = k/n.
We will consider the following iteration scheme

Y
(n)

0 = ξ

Y
(n)

(k+1)/n = Y n
k/n + σ(Y n

k/n)
(
BH

(k+1)/n −B
H
k/n

)
, k ∈ {0, . . . , n− 1}
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It has been proven in [31] that

n2H−1‖Y (n) − Y ‖∞
a.s.→ 1

2

(
sup
t∈[0,1]

∣∣∣∣∫ 1

0
DsYtds

∣∣∣∣
)

(22)

Where DsYt is the Malliavin derivative at time s of Yt with respect to the
fBm BH . We will take this result for granted, but its proof can be found
in the reference above. Furthermore, we refer the reader to [44] for a good
introduction on the Malliavin derivative. We note that this result is just a
random variable, which only depends on H.

Our convergence estimate has the implication that if H → 1
2 , i.e. BH is a

standard Brownian motion, then the convergence deteriorates. Furthermore,
if H < 1

2 , then there is no convergence. It also shows that if convergence is
worser the lower the Hurst parameter gets. This makes sense, as we have
seen that a fBm becomes more regular as H increases.

6.2.2 Crank-Nicholson

Once more, we will consider the interval [0, 1] and a uniform partition tk =
k/n. Then the Crank-Nicolson scheme is given by [21]

Y n
0 = ξ

Y n
tk+1

= Y n
tk

+
1

2

(
σ(Y n

tk+1
) + σ(Y n

tk
)
)

(BH
tk+1
−BH

tk
) k = 0, . . . , n− 1

Let Y n
t = Y n

tk
+

1

2

(
σ(Y n

tk+1
) + σ(Y n

tk
)
)

(BH
t − BH

tk
) be the continuous time

linear interpolation of this scheme for t ∈ [tk, tk+1). We then have the
following convergence result: If Y is the solution to the equation, σ is a
bounded three times continuously differentiable function with σ(0) = 0,
then there exists a constant K = Kp independent of n such that we have

sup
t∈[0,1]

(E|Yt − Y n
t |p)

1/p ≤ Kn−2H

We remark that if we formally set H = 1, then we recover the convergence
rate of the normal (i.e. deterministic) Crank-Nicolson scheme. Also, in the
case that σ(0) 6= 0, we still have convergence, but it is slower. Then it is of

order N−H−
1
2 . It can also be generalized to higher dimensional equations.

This yields another deterioration of convergence, as the Levy area does not
vanish in this case. For the details we refer to [21].
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Notice that we have a different kind of convergence compared to the
one for the Euler-Maruyama method, there we had so called strong conver-
gence, here we have weak convergence. Strong convergence implies weak
convergence, but as we can see, the orders of convergence may be different.

6.3 Numerical results for the Euler-Maruyama scheme

In this section we will try to empirically confirm the convergence estimate
(22). In the previous section we solved a linear equation explicitly. We
will use this as the equation to test the above convergence result. To make
matters precise: we consider the equation dYt = 2YtdB

H
t with Y0 = 1 on

the interval [0, 1]. We use the R package somebm to generate a sample of a
fractional Brownian motion. We consider uniform grids.

To determine the validity of the convergence estimate (22), we will use
the following procedure for every H ∈ {0.55, 0.65, 0.75, 0.85, 0.95}:
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M
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um
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rr
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Figure 6: We estimated a convergence rate
of n−0.9018

1. First we generate a sam-
ple of size n = 215 of a
fBm with a certain H on
the [0, 1];

2. For dt = 2−15 = 1/n, we
calculated the applied the
Euler-Maruyama scheme
with dt, 2dt, 4dt, ..., 211dt
and calculated the error;

3. We do this 1000 times and
calculate the mean error;

4. Lastly, we estimate the
speed of convergence us-
ing log-log regression.

When we apply this proce-
dure, we produce the following
graphs, in which the red line is
the theoretical convergence re-
sult. The code can be found in
appendix A. Notice that we look at a slightly weaker statement, as we just
consider the error at t = 1.
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(a) We estimated a convergence rate of n−0.05711
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(b) We estimated a convergence rate of n−0.2659
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(a) We estimated a convergence rate of n−0.5268
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(b) We estimated a convergence rate of n−0.7597

49



Some remarks on the results are in order: As expected, the closer we get
to H = 0.5, the more the convergence rate deteriorates. If we look at the
maximum error when H = 0.55, even with an uniform grid of size 215, we
still have an error of about 4.0. The convergence we get is also lower than
the theoretical result. I can think of two reasons for this:

1. Since our H is pretty close to 0.5, the sample paths of the fBm are
quite wild. This may imply that the variance of the random variable
in (22) which results from the Malliavin derivative has a very high
variance and is possibly very skewed to the right. A very high number
of samples may be necessary to accurately determine the empirical
convergence rate. A Monte-Carlo study to this random variable may
be a good option to determine its properties, but unfortunately out of
the scope of this project;

2. The pseudo random number generator used in the somebm package
does not have enough entropy.

The second one seems unlikely, as it would imply that we’d see the same
behaviour in the other estimates. To test the first possible reason, the
following strategy can be applied. Instead of calculating only one thousand
samples, we try a significant greater amount of samples. Preliminary tests
with 30k and 500k samples shows that the converge rate does indeed improve
slightly,so we can’t rule out this option yet. Unfortunately, due to the lack
of sufficient computing resources, we can’t further investigate the situation.

Since we see the same behaviour with H = 0.65, it seems likely that
the previous reasoning is sound. Interestingly, we see the same behaviour
but reversed with H ∈ {0.75, 0.85}. Now the estimated convergence rate is
faster than the theoretical rate. So in this case the random variable in the
convergence estimate may help speed up the convergence rate. But this is
just speculation, more research has to be done. In any case, it is known
that the converge estimate (22) is strict, in the sense that n2H−1|Xn

t −Xt|
converges almost surely to a finite and nonzero limit, as was proved in [31].

Interestingly, for H = 0.95, the estimated convergence is as expected.
This is once more evidence that more samples are necessary to make con-
clusions.
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7 The fractional Black-Scholes model

One of the most famous models in financial mathematics is the (classical)
Black-Scholes option pricing model. Developed by the economists Black,
Scholes and Merton and awarded a Nobel (Memorial) price in economics in
1997, it was the starting point of a very extensive mathematical theory of
option pricing.

The original Black-Scholes model is described as follows: Consider a
market where there are at least two assets, one risk-less, for instance a bond
of a trusted country, and a risky one, which may be a stock of a company.
We want to price an European option, which is simply a contract between
parties to have the right, but not an obligation, to buy or sell an asset at a
predetermined price (the ’strike’ price) and time. There are many kinds of
options, but for this paper we will focus only on European ones.

We have some more assumptions on the market, such that no dividends
are paid out, the market is efficient 2, there are no transaction costs. Lastly,
in the classical Black-Scholes model it is assumed that the log-returns follow
a Brownian motion with drift.

Even though the model is celebrated, it is not without its flaws. Statis-
tical analysis of market behaviour has shown [37] that there is some kind of
long range dependence. It is well known that a standard Brownian motion is
unable to capture such dynamics. Previously, we have calculated the Hurst
parameter of some stock indices and a currency exchange rate. We saw that
for the Dutch AEX we had H ≈ 0.55, so a standard Brownian motion may
be inappropriate. So recently, a more general model has been proposed, the
fractional Black-Scholes model. In this model the dynamics of the market
are driven by a fractional Brownian motion. For our discussion, we will
restrict the Hurst parameter to (0.5, 1) as usual, so we can use the theory
developed previously in this thesis. Furthermore, the fBm only shows long
term dependence in this parameter range.

7.1 A brief introduction to mathematical finance

Before we dive into the main subsections, we will first give a short introduc-
tion in mathematical finance for the uninitiated. We assume knowledge of
the standard Black-Scholes model, information on it can be found readily
on the internet.

Consider the fractional Black-Scholes market on the time interval [0, 1]
with a risky asset S, say a stock, and a non-risky asset B, for instance a

2See also the efficient market hypothesis
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bond. We assume that the interest rate rt is bounded by a deterministic
constant. We assume that S and B solve the following equations

dBt = rtBtdt

dSt = µStdt+ σStdB
H
t

or, as we have previously proved3, equivalently with B0 = 1,

Bt = exp

{∫ t

0
rsds

}
St = S0 exp{µt+ σBH

t }

Let F be the (left-continuous) filtration generated byB and S, Ft = σ{Bu, Su, u ≤
t} = σ{Bu, BH

u , u ≤ t}.

Definition 43. A portfolio or trading strategy is a F-predictable process
Π = (Πt)t∈[0,1] = (πBt , π

S
t )t∈[0,1], where πBt denotes the number of bonds and

πSt denotes the number of shares that the investor has at time t. The value
of this portfolio a time t is given by

V Π
t = πBt Bt + πSt St

We call a portfolio self-financing if

dV Π
t = πBt dBt + πSt dSt

which states that the changes in the portfolio are only due to changes in
asset prices. In other words, there is no money in or outflow, our theoretical
market is rather limited.

Define the discounted value of the portfolio by

Ct = V Π
t B

−1
t

This is essentially a way to compare the portfolio to the risk-free alternative.
Then it follows that

dCt = πSt StB
−1
t =: πSt Xt

where Xt can be interpreted as the discounted risky asset price process.

3This statement is slightly more general than the one we have proved, because of the
deterministic drift term. The proofs for this case are nearly the same as for the restricted
case and hence were left out.
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Next we are going to define what arbitrage in a market means. Consider
the following scenario: you are a stock trader that is active on two stock
exchanges that use different currencies and you don’t have to pay any trans-
action costs. Furthermore, both markets are perfectly fluid. So any selling
or buying of stocks goes instantaneous. On both the stock exchanges you
can buy the stock of company A. During your market research, you notice
that you can buy a stock of company A for a certain price in currency x and
then sell the same stock on the other stock exchange for a price in currency
y. When you trade your currency y for currency x, you conclude that you
have made a nice profit on these transactions.

The concept described here is known as arbitrage, which means that
you have made a profit without taking any risks. As one might think, such
opportunities are the holy grail for stock traders; risk-less profit. In reality
such opportunities are very rare, as the markets corrects itself very quickly.
So when making a mathematical model of the market, one does not want
to allow the possibility of arbitrage. Before we look at the possibility of
arbitrage in the fractional Black-Scholes model, we shall first define arbitrage
in a mathematical sense.

Definition 44. A self-financing portfolio Π is arbitrage if V Π
0 = 0, V Π

1 ≥ 0
a.s. and P(V Π

1 > 0) > 0. Moreover, if there exists a c > 0 such that V Π
1 ≥ c

a.s. then it is called strong arbitrage.

In other words, in markets where there exists strong arbitrage, the port-
folio holder can choose the amount of profit he/she wants to make. Hence it
is not a good model for a realistic market. In the next section, we will show
that the fractional Black-Scholes model under the standard assumption, has
strong arbitrage.

7.2 Arbitrage in the fractional Black-Scholes model

In this section we will proof that the fractional Black-Scholes model unfor-
tunately has strong arbitrage. Instead of proving it directly, we will proof a
stronger result from which the following theorem will follow:

Theorem 45. The fractional Black-Scholes model admits strong arbitrage

Before we proceed we need the following lemma from [30].

Lemma 46. There exists a F-adapted process ϕ = {ϕt : t ∈ [0, 1]} such
that
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1. For any t < 1 and α ∈ (1 −H, 0.5) ‖ϕ‖1,α,t < ∞ a.s., so the integral

vt =
∫ t

0 ϕsdB
H
s exists;

2. lim
t→1−

vt =∞ a.s.

The norm ‖ · ‖1,α,t is some kind of Hölder norm, for the definition we
refer to the reference, just as for the proof of the lemma, which is rather
lengthy and technical. We now state and proof our result:

Theorem 47. For any distribution function F , there is a self-financing
portfolio Π with V Π

0 = 0 such that its discounted terminal capital CΠ
1 has

distribution F .

Proof. Take a nondecreasing function g such that g(BH
1
2

) has distribution

F , let ϕ be as in Lemma 46. Set vt =
∫ t

1
2
ϕsdXs. Furthermore, let

τ = min{t ≥ 1

2
: vt = g(BH

1
2

)}, πSt = ϕs1[ 1
2
,τ)(t) (23)

Since we have that limt→1− vt = ∞ by Lemma 46, we have that τ < 1 a.s.
Then it possible to construct a self-financing portfolio Π = (πB, πS) with
initial value zero (V Π

0 = 0). By definition, πSt = 0 for t ∈ [0, 1
2), hence

CΠ
1
2

= 0. Moreover,

CΠ
1 = CΠ

1
2

+

∫ 1

1
2

πSs dXs =

∫ τ

1
2

φsdXs = g(BH
1
2

)

If we let F be the distribution function of a constant A > 0 and observe
that B−1

1 is greater than some deterministic constant by assumption, we can
let the terminal value of the portfolio be any number that we want, in other
words, we have shown the existence of strong arbitrage.

So in this setting, the fractional Black-Scholes model has no value as
it is unrealistic. The literature details a couple of solutions to repair this
problems. We list three of them:

1. Incorporate proportional transaction costs;

2. Allow trading only at discrete times (i.e. limit the amount of times
trades can be made;

3. Add a standard Brownian motion to the model, which results in the
Mixed Fractional Black-Scholes model.

These options are still actively being researched and show promising results
so far.
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8 Summary

In this thesis we developed the theory necessary to solve differential equa-
tions driven by irregular signals in a pathwise sense. Our focus was mostly
on proving sufficient conditions for the existence and/or uniqueness of solu-
tions. To do this, we first tried to use the classical ODE theory, by rewriting
it as an integral equation and trying to solve it using fixed point techniques.
In the case of a mildly irregular signal (when it is Lipschitz continuous),
we could use the Riemann-Stieltjes integral. But in the class of signals we
would like to consider, such relatively regular signals are seldom seen.

Since the process we considered most important in this thesis, a fractional
Brownian motion, does not satisfy this property. Even in the case that
H > 1

2 , the Riemann-Stieltjes integral is of no use to us. To be able to solve
(1), we need to extent the Riemann-Stieltjes integral.

The mathematician Young provided us with an extension that proved to
be fruitful for our applications. In 1936 he showed that if f is of bounded
p-variation and if g is of bounded q-variation such that 1/p+ 1/q > 1, then
the integral

∫
fdg is well-defined. Unfortunately, this theory restricts us to

the case q < 2. For our first purpose, this is good enough. But we need to
ask if we can use another extension.

Using the Young integration theory, we were able to show when there are
solutions and when they are unique. The conditions resemble the conditions
from the classical ODE theory: for uniqueness we need exactly one degree
of regularity more than for existence. But since we are integrating against
irregular signals, we need more regularity on our function f . We have shown
how much exactly.

Next we used the tools and knowledge developed previously to try and
determine solutions of differential equations driven by irregular signals. We
have shown that for linear equations, the solution very much resembles
the solution of a standard linear ODE. For more complex cases, we of-
ten need to numerically approximate the solution. We have described two
algorithms, both well known in the deterministic and smooth case. For the
Euler-Maruyama method, we also looked at the convergence rate in practice.

Lastly, we detailed the fractional Black-Scholes model. Statistical analy-
sis has shown that the standard Black-Scholes model driven by a Brownian
motion may not be the optimal form of the model. So an extension to in-
corporate a fractional Brownian motion was proposed. Unfortunately, the
resulting model allows for arbitrage, which renders the model useless in prac-
tice. We finished with a short discussion on how to prevent arbitrage in this
setting.
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A R code for estimating convergence rate of Euler-
Marayama scheme

In this section we present the R code used to compute the convergence
rates of the Euler-Maruyama scheme. To speed up the computing, we have
parallelised the program. All results were calculated on the DLR-SC cluster,
for which I am grateful. An improvement would be to use GPGPU, since the
outer loop is trivially parallizable. There convergence history is plotted and
saved to a file. In the terminal the estimated convergence speed is outputted
as ”convSpeed”.

library(foreach)

library(doParallel)

N <- 2^15

Yzero <- 1

dt <- 1/N

numSamples <- 500000

numTrials <- 11

Yerr <- matrix(0, nrow=numSamples, ncol=numTrials)

Hurst <- 0.85

lambda <- 2

cores <- 55

cl <- makeCluster(cores, outfile="")

registerDoParallel(cl)

Yerr <- foreach (idx=1:numSamples, .combine=’rbind’) %dopar%

{

library(somebm)

tmpYerr <- c(numTrials)

fBmSample <- fbm(Hurst, N)

dB <- diff(fBmSample)

Yexact <- Yzero * exp(lambda * fBmSample)

for (dist in 1:numTrials)

{

R <- 2^(dist - 1)

Dt <- R * dt

L <- N / R
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Ytmp <- Yzero

for (iter in 1:L)

{

tmp <- R * (iter - 1) + 1

tmp2 <- R * iter

Binc <- sum(dB[tmp : tmp2])

Ytmp <- Ytmp + lambda * Ytmp * Binc

}

tmpYerr[dist] <- abs(Ytmp- Yexact[length(Yexact)])

}

tmpYerr

}

rhs <- log(colMeans(Yerr))

DtVals <- dt * 2^(1:numTrials)

convSpeed <- log(DtVals)

lm(rhs ~ convSpeed)

stopCluster(cl)
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